
The Journal
Volume 12/1, June 2020

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . 4

Contributed Research Articles

gk: An R Package for the g-and-k and Generalised g-and-h Distributions 7

NlinTS: An R Package For Causality Detection in Time Series 21

Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM . 32

mudfold: An R Package for Nonparametric IRT Modelling of Unfolding Processes . . 49

tsmp: An R Package for Time Series with Matrix Profile 76

Individual-Level Modelling of Infectious Disease Data: EpiILM 87

SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified
Proportional Hazards Model via Gradient Boosting. 105

CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model 118

SortedEffects: Sorted Causal Effects in R . 131

npordtests: An R Package of Nonparametric Tests for Equality of Location Against
Ordered Alternatives . 147

lspartition: Partitioning-Based Least Squares Regression 172

Skew-t Expected Information Matrix Evaluation and Use for Standard Error Calcula-
tions . 188

rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data . . . 206

Tools for Analyzing R Code the Tidy Way . 226

spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections of
Multivariate Data . 243

ari: The Automated R Instructor . 258

CopulaCenR: Copula based Regression Models for Bivariate Censored Data in R. . . 266

mistr: A Computational Framework for Mixture and Composite Distributions 283

difNLR: Generalized Logistic Regression Models for DIF and DDF Detection 300

BayesMallows: An R Package for the Bayesian Mallows Model 324

Variable Importance Plots—An Introduction to the vip Package 343

SimilaR: R Code Clone and Plagiarism Detection 367

Linear Fractional Stable Motion with the rlfsm R Package 386

2

The R package NonProbEst for estimation in non-probability surveys 406

ProjectManagement: an R Package for Managing Projects 419

The Rockerverse: Packages and Applications for Containerisation with R 437

Special Articles

S, R, and Data Science. 462

Provenance of R’s Gradient Optimizers . 477

News and Notes

Conference Report: Why R? 2019 . 484

Changes on CRAN . 495

R Foundation News . 498

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

3

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia

Catherine Hurley, Maynooth University, Ireland
Simon Urbanek, University of Auckland, New Zealand

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ,
Thomson Reuters.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

4

Editorial
by Michael J. Kane

On behalf of the editorial board, I am pleased to present Volume 12, Issue 1 of the R Journal
and my second issue as the Editor in Chief. Since the last issue Simon Urbanek has joined
the editorial board and we have made a few structural changes. First, the R Foundation
has approved the R Journal having Associate Editors. This change will allow us to address
the increase in submission volume. The addition of the new AE positions should help
alleviate some of the workload the editors have been dealing with and will result in shorter
turn-around times for submissions. Second, complete issues of the R Journal will no longer
be published in a single pdf. The build process for the document was complex and time
consuming and we were not seeing the volume of download that would justify the effort.
Individual articles are still available and the issue layout is still shown in the “Current Issue”
section of the web page.

In this issue

News from the R Foundation is included in this issue along with an update from the The
R Foundation’s histoRicalg project, which documents historic and historical numerical
algorithms and provides reference implementations in R. In addition, a reprint by John
Chamber, documenting the history of R, which was initially published in the History of
Programming Languages. Finally, this issue features 27 contributed research articles that
have been categorized below.

Papers focusing on reproducibility, managing code and projects, and instruction:

• ari: The Automated R Instructor

• ProjectManagement: an R Package for Managing Projects

• The Rockerverse: Packages and Applications for Containerisation with R

• SimilaR: R Code Clone and Plagiarism Detection

• Tools for Analyzing R Code the Tidy Way

Data exploration and visualization:

• spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections
of Multivariate Data

• Variable Importance Plots—An Introduction to the vip Package

Astronomy

• rcosmo R Package for Analysis of Spherical, HEALPix and Cosmological Data

Medicine and epidemiology

• Individual-Level Modelling of Infectious Disease Data: EpiILM

Probability distributions and processes

• BayesMallows: An R Package for the Bayesian Mallows Model

• gk: An R Package for the g-and-k and Generalised g-and-h Distributions

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

5

• Linear Fractional Stable Motion with the rlfsm R Package

• mistr: A Computational Framework for Mixture and Composite Distributions

• mudfold: An R Package for Nonparametric IRT Modelling of Unfolding Processes

• NlinTS: An R Package For Causality Detection in Time Series

• npordtests: An R Package of Nonparametric Tests for Equality of Location Against
Ordered Alternatives

• Skew-t Expected Information Matrix Evaluation and Use for Standard Error Calcula-
tions

• tsmp: An R Package for Time Series with Matrix Profile

• The R package NonProbEst for estimation in non-probability surveys

Supervised learning

• CopulaCenR: Copula based Regression Models for Bivariate Censored Data in R

• CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model

• difNLR: Generalized Logistic Regression Models for DIF and DDF Detection

• lspartition: Partitioning-Based Least Squares Regression

• Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM

• SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated
Semi-competing Risks Data

• SortedEffects: Sorted Causal Effects in R

• SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified
Proportional Hazards Model via Gradient Boosting

Michael J. Kane
michael.kane@r-project.org
Yale University

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:michael.kane@r-project.org

6

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 7

gk: An R Package for the g-and-k and
Generalised g-and-h Distributions
by Dennis Prangle

Abstract The g-and-k and (generalised) g-and-h distributions are flexible univariate distributions
which can model highly skewed or heavy tailed data through only four parameters: location and
scale, and two shape parameters influencing the skewness and kurtosis. These distributions have
the unusual property that they are defined through their quantile function (inverse cumulative
distribution function) and their density is unavailable in closed form, which makes parameter inference
complicated. This paper presents the gk R package to work with these distributions. It provides the
usual distribution functions and several algorithms for inference of independent identically distributed
data, including the finite difference stochastic approximation method, which has not been used before
for this problem.

Introduction

Statisticians have long sought for a simple extension to the normal distribution which can model data
subject to skew, heavy tails or both. One approach is to transform a standard normal random variable
Z ∼ N (0, 1) to

X = A + BG(Z)H(Z), (1)

where A and B are location and scale parameters, G(·) introduces asymmetry, and H(·) elongates
the tails of the distribution while having little effect near the mode. This paper considers two such
distributions, the g-and-k and generalised g-and-h distributions. These distributions can model many
types of behaviour through just a small number of parameters.

Defining random variables as transformations of Z is equivalent to specifying the distribution’s
quantile function (defined in the next section), and distributions of this type are known as quantile
distributions . Work on quantile distributions goes back at least to Hastings et al. (1947). See Gilchrist
(2000) for a book length treatment of their history and use in statistics. Tukey (1977) proposed the form
(1) and a distribution using it: the original g-and-h distribution. Haynes et al. (1997) were the first to
use the two distributions considered in this paper: the g-and-k distribution and a generalised form of
the g-and-h distribution. For brevity henceforth “g-and-h distribution” will refer to their generalised
form. See Peters et al. (2016) for a thorough review of these and other distributions based on (1).

Applications of the g-and-k and g-and-h distributions have included environmental data (Rayner
and MacGillivray, 2002), financial returns (Drovandi and Pettitt, 2011) and insurance risk (Peters et al.,
2016). There has also been considerable methodological work on inference for these distributions (e.g.
Rayner and MacGillivray, 2002; Haynes and Mengersen, 2005; Allingham et al., 2009; Drovandi and
Pettitt, 2011; Fearnhead and Prangle, 2012). This is because it is not possible to express the densities
of quantile distributions in closed form beyond some special cases, which makes it difficult to apply
standard likelihood-based inference methods.

This paper presents the gk R package to work with the g-and-k and g-and-h distributions. The
remaining sections covering the following:

• A mathematical definition of the distributions.

• A description of the package’s functions to perform standard distributional tasks and how they
are implemented.

• An exploration of the range of valid parameters for these distributions, as this has a complicated
form. We propose a novel rule giving “safe” parameter values for the g-and-k distribution.

• A desctiption of several methods for parameter inference and corresponding functions supplied
by the package.

• An illustrative analysis of a real dataset.

• A summary.

Definitions

The cumulative distribution function (cdf) of a univariate random variable X, FX : R → [0, 1], is
defined as Pr (X ≤ x). (Later we will often drop subscripts where they are clear from the context.) The

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=gk

CONTRIBUTED RESEARCH ARTICLES 8

cdf suffices to completely specify the probability distribution of X. It is often the case that the cdf is
not available in closed form but is implicitly defined through its derivative, the probability density
function (pdf). An example of this is the normal distribution.

For quantile distributions, the cdf is implicity defined through its inverse, the quantile function
F−1

X (u) where F−1
X : [0, 1]→ R. The g-and-k and g-and-h distributions use a quantile function of the

form F−1(u; θ) = Q (z(u); θ) where z(·) is theN (0, 1) quantile function and θ is a vector of parameters.
The Q functions are:

Qgk(z; A, B, g, k, c) = A + B (1 + c tanh[gz/2]) z
(

1 + z2
)k

(2)

Qgh(z; A, B, g, h, c) = A + B (1 + c tanh[gz/2]) z exp
(

hz2/2
)

. (3)

It is possible to sample from the distributions using the inversion method , that is, by simulating
U ∼ U (0, 1) and substituting it into the quantile function. Equivalently one can sample Z ∼ N (0, 1)
and substitute it into Qgk or Qgh i.e. the process described in the introduction based on Equation (1).
In terms of (1), G(z) = 1 + c tanh(gz/2) produces asymmetry and H(z) = z(1 + z2)k or z exp

(
hz2/2

)
elongates tails.

Each distribution has four main parameters: A (location), B (scale), g (shape parameter mainly
affecting skewness), and k or h (shape parameter mainly affecting kurtosis). The remaining parameter
c is discussed below. When both shape parameters are zero the distribution is simply N (0, 1). An
illustration of the flexible shapes that the g-and-k density can take is given in Figure 1. The g-and-h
can produce similar shapes, with the following exception. The g-and-k distribution allows negative
values of k which can produce lighter tails than a normal distribution, but also bimodal distributions
of potentially limited usefulness.

Well-defined continuous distributions result from parameter values producing strictly increasing
quantile functions. Determining when this is true is complicated so discussion is postponed to
a later section. For now note that it is standard to take B > 0 and fix c = 0.8 (which will be
assumed throughout unless mentioned otherwise), and in this case k ≥ 0 or h ≥ 0 guarantees a valid
distribution.

−10 −5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

x

D
en

si
ty

k

0
0.5
1
1.5
2

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

g

0
0.2
0.4
0.6
0.8
1

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

x

g=0, k=−0.4
g=−0.5,k=−0.1

Figure 1: Example g-and-k densities. The first panel fixes g = 0 and varies k, mainly altering kurtosis.
The second fixes k = 0 and varies g, mainly altering skewness. The third shows two examples with
k < 0.

Distribution functions

The gk package provides the standard suite of R functions for the g-and-k and g-and-h distributions
i.e. random sampling and calculation of the pdf, cdf and quantile functions. This section describes
how these functions are implemented. It is assumed that parameters have been chosen such that the
quantile function is strictly increasing. No warning is given when this is not the case as checking
validity is time consuming (see next section).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

Quantile function The qgk and qgh functions calculate the quantile function F−1(u). Their imple-
mentation is straightforward. First z(u) is calculated using qnorm, then this is passed to an internal
function, z2gk or z2gh, which computes Qgk or Qgh.

Random sampling The rgk and rgh functions perform random sampling. This is done by the
method described earlier of sampling N (0, 1) draws and substituting them into Qgk or Qgh, via the
function z2gk or z2gh.

Cumulative distribution function The pgk and pgh functions calculate the cdf F(x) given input
x. They numerically solve Q(z)− x = 0, which is guaranteed to have a unique root for z. The required
final output is then u = Φ−1(z) where Φ is the N (0, 1) cdf. An alternative approach would be to
directly solve Q (z(u))− x = 0 for u. However we found this was less numerically stable for u close
to 0 or 1.

Our code finds the root for z using R’s uniroot command and z2gk or z2gh for Q (z) evaluations.
The need to run a root finding algorithm means this function is slow relative to cdf calculations of
standard distributions - see Table 1.

The functions include an argument zscale. Setting this to TRUE outputs the z value which is found
rather than u. This is used in the density functions below, and more generally is also useful to retain
numerical precision when z has large magnitude.

Probability density function The dgk and dgh functions calculate the pdf f (x), or the log pdf if
the argument log=TRUE is supplied. The method is based on the standard probability result that if A
has density fA(a) and t(a) is a differentiable 1-1 transformation then the density of B = t(A) is

fB(b) = fA(a)/t′(a) where a = t−1(b),

and t′ denotes the first derivative of t.
For quantile distributions we have Z ∼ N (0, 1) and X = Q(Z) for some Q function. So the pdf of

X is
f (x) = φ(z)/Q′(z) where z = Q−1(x),

where φ(z) is the N (0, 1) pdf.

Our code to calculate the pdf first finds z = Q−1(x) using pgk or pgh with zscale=TRUE. Then the
pdf or its log is calculated using formulae (4) and (5) (see Appendix A) for Q′(u). The reliance on
performing root finding within pgk and pgh means that dgk and dgh are slow relative to pdf calculations
for standard distributions - see Table 1.

Note that an alternative representation of f (x) is 1/q′(u) where q(u) represents F−1(u) and
u = F(x). Density calculations based on this approach are described in Rayner and MacGillivray
(2002). However we found that calculating the u values required for this approach was occasionally
numerically unstable, as mentioned above.

Cost Table 1 compares the time to execute gk’s distributional functions to those for the normal
distribution. It illustrates that random sampling and quantile function calculation are reasonably
efficient, but calculating the cdf and pdf are expensive.

Time (microseconds) Ratio vs normal
Normal g-and-k g-and-h g-and-k g-and-h

Quantile function 175 972 445 5.56 2.55
Random sampling 150 921 436 6.15 2.91

cdf 313 143151 116928 457 374
pdf 369 138381 111279 375 302

Table 1: Mean times to perform various distributional operations, evaluated by the microbench-
mark package (Mersmann, 2015). For example the random sampling row compares rnorm(N),
rgk(N,1,2,3,4) and rgh(N,1,2,3,4) for N = 100. We also tried N = 1, which gave qualitatively
similar results but slightly better relative efficiency of the gk functions.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES 10

Range of valid parameters

Recall that a valid continuous distribution requires the quantile function to be strictly increasing.
Clearly this property is unaffected by the choice of A and B > 0. This section discusses the effects of
g, h, k and c.

Several theoretical results on valid parameters can be derived. It’s convenient to concentrate on
c ≥ 0. In this case h < 0 or k < −1/2 is invalid. Taking k ≥ 0 or h ≥ 0 produces valid distributions
when 0 ≤ c < c∗ ≈ 0.83. This is the reason for taking c = 0.8 as standard: it maintains this property
while allowing the skewness factor in (2) and (3) to have a large effect. For justification of all these
results, see Appendix B.

When c = 0.8, the above results completely characterise the range of valid parameters for the
g-and-h distribution. For the g-and-k distribution, there is still some uncertainty for −0.5 ≤ k < 0,
which, as mentioned earlier, corresponds to light tails. For both distributions, the case where c > c∗ is
less clear: even positive values of k or h do not guarantee validity. Therefore we provide the function
isValid to test parameter validity numerically.

Validity can be checked by testing whether the minimum derivative of (2) or (3) is positive.
Appendix A shows that it is equivalent to test whether the functions (6) or (7) are positive. isValid
uses numerical optimisation to minimise these and returns whether the minimum value is positive. To
reduce the possibility of finding local minima, multiple optimisation starting points can supplied as
a vector to the argument initial_z. However it is still not guaranteed that the global minimum is
found, so there remains a possibility that the function may produce false positives.

The function can be used as follows to illustrate the region of valid g-and-k parameter values for
c = 0.8. The results are plotted as Figure 2.

gk_grid = expand.grid(g = seq(-10, 10, 0.1), k = seq(-0.6, 0.1, 0.01))
v = isValid(gk_gridg, gk_gridk)

−0.6

−0.4

−0.2

0.0

−10 −5 0 5 10
g

k

valid

FALSE

TRUE

Figure 2: Validity of parameter values for the g-and-k distribution when c = 0.8, calculated using
isValid. Also shown is a quadratic function k̃(g) near the curved part of the boundary between the
regions.

We do not test validity automatically within the package’s other functions. This is because isValid
is relatively computationally expensive and not guaranteed to be correct. Therefore particular care
should be taken for k < 0 or c > c∗, as the distribution functions will not provide warnings when
invalid parameters are used. A reasonable region of g and k values to use in practice with c = 0.8
can be derived from Figure 2. It shows that for |g| < 7 some −0.5 ≤ k < 0 values are invalid. Apart
from a narrow strip near g = 0, this invalid region’s boundary is roughly quadratic, as illustrated by
the curve k̃(g) = −0.045− 0.01g2 on the figure. Based on this analysis, k ≥ max

(
−0.5, k̃(g)

)
seems a

reasonable sufficient condition for parameter validity to use in practice.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 11

Inference functions

The package provides three inference methods for data x1, x2, . . . , xn which are assumed to be inde-
pendent and identically distributed (IID) draws from a g-and-k or g-and-h distribution with unknown
parameters. This section describes these methods. An illustration of their use is provided in the next
section. See the gk help files for a full description of all the arguments available.

MCMC inference The mcmc function implements inference using Markov chain Monte Carlo
(MCMC). This samples from a Markov chain whose stationary distribution is the Bayesian posterior of
interest for the parameters θ. We use a Metropolis-Hastings algorithm, in which a proposed new state
of the chain θ′ is sampled by adding a N (0, Σ) increment to the current state θt. A decision to accept
or reject θ′ is made based on the prior and likelihood values at θt and θ′ and a random variable (see
steps 3-4 of Algorithm 1.)

Tuning Σ can be difficult. Haynes and Mengersen (2005), who first used MCMC for the g-and-k
distribution, did this manually. Instead we use the adaptive Metropolis (AM) algorithm of Haario et al.
(2001) which tunes Σ automatically during its operation. The resulting θts no longer form a Markov
chain, but it has been proved (Saksman and Vihola, 2010) that, under suitable conditions, calculations
using them still converge to posterior quantities as the length of the chain increases. The AM algorithm
is presented as Algorithm 1. Step 1 states the proposal matrix used in terms of the empirical variance
of the past MCMC states. To calculate this empirical variance efficiently, the code updates it each time
a new state is observed. As a default we specify tuning choices ε = 10−6 and t0 = 100.

Like other Bayesian methods, MCMC requires a prior density for the parameters, π(θ), to be
specified. This must be supplied by the user. For computational convenience this should be supplied
in the form of a function get_log_prior which takes a vector of parameters as input and returns
the log prior density. We allow the user to reparameterise θ, using log B rather than B, via the logB
argument. This can improve MCMC efficiency when the posterior for B is concentrated on values
close to zero.

For IID data the likelihood is L(θ) = ∏n
i=1 f (xi; θ), the product each observation’s pdf. Evaluating

this for the g-and-k or g-and-h distributions using the pgk or pgh command requires n calls to numerical
optimisation. Therefore MCMC becomes computationally expensive for even moderately large
datasets.

Algorithm 1 The Adaptive Metropolis MCMC algorithm

Input: observations x, prior density π(θ), number of iterations to perform N, initial
state θ0, initial variance matrix Σ0, pre-tuning period t0, tuning parameter ε > 0.

Loop over 1 ≤ t ≤ N:

1. If t ≤ t0 let Σt = Σ0. Otherwise let Σt = 1
4 (2.4)2 (Σ̂t−1 + εI

)
, where Σ̂t−1 is the

variance of θ1, θ2, . . . , θt−1.

2. Sample θ′ ∼ N (θt−1, Σt−1)

3. Sample u ∼ U (0, 1) and let r = π(θ′)L(θ′)
π(θt−1)L(θt−1)

.

4. If u < r let θt = θ′. Otherwise let θt = θt−1.

Output: sample θ0, θ1, . . . , θN .

ABC inference The abc function implements inference by approximate Bayesian computation
(ABC). This is a method for approximate Bayesian inference which avoids evaluating the likelihood
function. It is especially useful when the likelihood function is unavailable or, as for quantile distri-
butions, is expensive to compute. ABC is based instead on finding parameter values which produce
simulated data similar to the observations. The abc function implements a simple version of ABC,
Algorithm 2. Here a simulation is accepted if it has one of the M smallest distances to the observations.
Distance refers to a weighted version of Euclidean distance between vectors of simulated and observed
summary statistics . Details of the weighting are given in the algorithm’s description. (For n large,
abc avoids high memory requirements by running several batches of Algorithm 2. Each batch uses

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 12

N = 104 and returns the M best simulations. The overall best M best simulations are then found and
returned. The vj weights calculated in the first batch are reused in the others.)

Like mcmc, abc is a Bayesian method and requires a prior distribution for θ to be provided. It is
convenient for this to be provided in a different form to the mcmc case. A function rprior should be
supplied which a single numeric input and returns that many samples from the prior distribution as
rows of a matrix.

Algorithm 2 Approximate Bayesian computation (ABC)

Input: observations x, prior distribution π(θ), summary statistic function s(x), num-
ber of simulations to perform N, number of samples to output M.

1. Calculate observed summaries s0 = s(x).

2. For 1 ≤ i ≤ N sample parameters θi from the prior.

3. For 1 ≤ i ≤ N simulate summary statistics s(xi) given parameters θi. Let sij denote
the jth component of s(xi).

4. For 1 ≤ j ≤ q (where q = dim(s0)) calculate the empirical variance vj of the (sij)1≤i≤n
values.

5. For 1 ≤ i ≤ N let di = ∑
q
j=1

(
sij − s0j

)2 /vj.

6. Find the M smallest di values and return the corresponding θis.

ABC produces samples from an approximation to the Bayesian posterior distribution. The quality
of the approximation depends in a complex way on the choice of summary statistics and the tuning
parameters N and M. For more background on ABC see the review paper by Marin et al. (2012)
and the handbook of Sisson et al. (2017). Two general R packages for ABC which implement more
advanced methods are abc (Csilléry et al., 2012) and EasyABC (Jabot et al., 2013).

Using ABC for the g-and-k and g-and-h distributions was proposed by Allingham et al. (2009) and
has been investigated in many subsequent papers. Following Drovandi and Pettitt (2011) we offer
three choices of summary statistics which can be selected through the sumstats argument: (1) the full
order statistics; (2) octiles of the observations, E1, E2, . . . , E7; (3) robust estimates of the moments based
on the octiles:

SA = E4, SB = E6 − E2, Sg = (E6 + E2 − 2E4) /Sb, Sk = (E7 − E5 + E3 − E1) /Sb.

Many more sophisticated approaches to choosing ABC summary statistics have been proposed (Blum
et al., 2013), but these are a simple starting point.

For summaries (2) or (3) we follow Fearnhead and Prangle (2012) and speed up step 3 of Algorithm
2 by using the fact that the octiles (or close approximations) can be simulated quickly without the
need to simulate a full dataset. Suppose X1, X2, . . . , XN are g-and-k or g-and-h variables, and let
X(1) < X(2) . . . < X(N) denote the order statistics. We replace Ei with E′i = X(r(iN/8)) where r(·)
rounds to the nearest integer. Now we need to simulate 7 order statistics from the g-and-k or g-and-h
distribution. To do so we simulate corresponding order statistics of the U (0, 1) distribution using the
exponential spacings method (Ripley, 1987). This is implemented by the orderstats function. The
uniform order statistics are then substituted into F−1(u).

FDSA inference The fdsa function performs inference using finite difference stochastic approxi-
mation (FDSA). FDSA, originally due to Kiefer and Wolfowitz (1952), attempts to find θ∗ minimising
a loss function L(θ) by iteratively calculating estimates θ1, θ2, . . . Each iteration moves the estimate in
the opposite direction to an estimate of the loss gradient, based on finite difference calculations.

We use FDSA for maximum likelihood estimation of IID observations. In this setting L(θ) can be
taken to be the negative log likelihood,

L(θ) = − log L(θ) = −
n

∑
i=1

log f (xi; θ) .

The gradient of L(θ) can be estimated using only a small subset of the data, so FDSA has the potential
to scale up to large datasets better than MCMC, while avoiding the approximation error of ABC.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=abc
https://CRAN.R-project.org/package=EasyABC

CONTRIBUTED RESEARCH ARTICLES 13

Unlike ABC and MCMC, we are not aware of FDSA having previously been used for the g-and-k and
g-and-h distributions.

The g-and-k and g-and-h distributions have some parameter constaints (e.g. B > 0, h ≥ 0). Also
we found setting further constaints from preliminary analyses sometimes helps FDSA behave well.
Therefore we use a version of FDSA for bounded minimisation from L’Ecuyer and Glynn (1994),
presented as Algorithm 3.

Algorithm 3 Finite difference stochastic approximation (FDSA)

Input: initial state θ0, choice of at and ct sequences, function L̂(·) which calculates
an unbiased estimate of L(·), number of iterations to perform N, vectors of (possibly
infinite) upper and lower parameter bounds θ+, θ−.

Loop over 0 ≤ t ≤ N − 1.

1. Calculate ĝt by performing the following steps for i ≤ 1 ≤ 4.

(a) Let ∆i be a 4-dimensional vector whose ith component is 1 and others are zero.

(b) Let φ+ = P (θt + ct∆i) and φ− = P (θt − ct∆i).
(Here P(φ) is a projection operator. Its output is φ′ such that φ′i is the closest value
to φi in

[
θ−i , θ+i

]
. The i subscripts represent ith components.)

(c) Let ĝit =
1

|φ+
i −φ−i |

[
L̂(φ+)− L̂(φ−)

]
.

2. Let θt+1 = P (θt − at ĝt).

Output: Final estimate θN .

The unbiased estimate of L(θ) required by Algorithm 3, L̂(θ), can be taken to be the sum of a
random sample of m negative log likelihood terms multiplied by n/m. Hence for a vector y containing
a random subsample of m observations (sometimes referred to as a batch), L̂(θ) can be calculated using
-sum(dgk(y,A,B,g,k,log=TRUE))*n/m (or similar for the g-and-h distribution). Variance reduction in
step 1c of Algorithm 3 is possible by coupling the two estimates (Kushner and Yin, 2003). Hence we
use the same random subsample of data for all L̂ calculations in an iteration of step 1.

FDSA convergence requires that the gain sequences at and ct must satisfy certain conditions.
Following Spall (1998) we take at = a0 (A + t + 1)−α and ct = c0 (t + 1)−γ. This leaves several tuning
choices, which can be selected by the user, or left at default values which we provide. Following
Kleinman et al. (1999) we use default values α = 1 and γ = 0.49. Following Spall (1998) our default
for c0 is an estimate of the standard deviation of L̂(θ0) using some preliminary simulations. We
provide defaults a0 = 1 and A = 100 but it is recommended to manually tune these to produce rapid
convergence. This may require several short pilot runs of the algorithm. The fdsa function allows a0
and c0 to be vectors, in which case operations in Algorithm 3 are interpreted as elementwise where
necessary. This allows the user to tune gain sequences differently for each parameter. As for mcmc,
we allow the user to reparameterise θ, using log B rather than B, via the logB argument, which can
improve FDSA efficiency when the MLE value of B is close to zero.

Under weak assumptions, FDSA converges to a local minimum of L(θ) (Kushner and Yin, 2003).
In our experience the likelihood for the g-and-k and g-and-h distributions is usually unimodal, so
there is little danger of converging to an incorrect mode. Nonetheless it may be a useful check on the
results to rerun the algorithm from various starting points or compare with the output of another
algorithm.

An alternative to FDSA is simultaneous perturbation stochastic approximation (SPSA) (Spall,
1998). Here each iteration makes a finite difference estimate of the derivative of the loss function when
moving in a random direction from θt. An update moves θt a distance (negatively) proportional to this
estimated derivative in the selected direction. Each SPSA iteration requires fewer likelihood estimates
than FDSA, and it is asymptotically more efficient (Kushner and Yin, 2003). However we found in
exploratory work that for our application the SPSA updates were dominated by improving A and B
estimates, and the remaining parameters were learned very slowly.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 14

Illustration

We illustrate gk’s inference methods on the Garch exchange rate dataset from the Ecdat package
(Croissant, 2016). This consists of 1967 daily US dollar exchange rates against other currencies from
1980 to 1987. We concentrate on the exchange rate with Canadian Dollars. Let xt denote the exchange
rate on day t. The log return is defined as log (xt+1/xt). Figure 3 is a time series plot of the log returns.
Figure 7 shows a histogram and a quantile-quantile plot indicating that the tails are heavier than those
of a normal density.

We focus on using the g-and-k distribution to model the log returns under an IID assumption. For
models also including time series structure see for example Drovandi and Pettitt (2011). The full code
for the analysis below can be run via the fx function.

The ABC and MCMC analyses which follow are Bayesian and require specification of a prior. We
use a uniform prior for ease of comparison to the maximum likelihood results from FDSA. For MCMC
we are able to use an improper uniform prior. For ABC a proper prior is required so we bound the
parameters as follows −1 < A < 1, 0 < B < 1, −5 < g < 5, 0 < k < 10. We restrict A and B to
magnitude 1 at most, as we believe log returns of this magnitude are highly unlikely. The g and k
parameters are given wider support which can capture a broad range of distributional shapes.

●
●

●

●●●●
●●

●
●

●

●
●
●●

●

●

●

●

●

●●

●
●●
●
●
●
●
●

●

●
●

●

●

●

●

●
●

●●

●●
●
●

●

●

●●

●

●●

●
●

●●

●●

●

●

●

●

●

●●

●●

●
●
●

●

●

●
●

●●
●

●

●

●●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●●●
●
●
●

●

●

●

●
●
●
●
●

●

●

●

●
●●●

●●

●

●●
●

●

●

●
●
●●
●
●
●

●

●
●
●●●●

●

●

●
●

●

●●
●●●●

●

●
●●●

●

●
●
●

●

●●●

●

●
●

●

●
●
●●

●

●

●
●●
●

●
●●

●
●●

●
●

●
●

●

●

●

●●

●

●

●
●
●●●●
●

●

●●

●

●

●●

●●
●

●
●

●●
●

●

●

●

●

●
●

●

●
●●
●●
●
●●
●
●
●●●

●
●

●

●

●●●
●
●

●●

●

●

●
●

●

●●

●

●

●●●
●

●
●●●

●

●

●

●
●●

●

●

●
●
●
●●

●
●

●

●

●

●

●

●

●●
●

●

●
●●
●

●
●

●
●

●
●
●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●●
●●
●●
●

●

●
●
●
●

●

●

●

●

●●●●
●

●

●●
●●

●
●

●●

●

●

●

●

●●
●●
●

●
●
●●●
●●
●
●
●
●●
●●●●●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●●
●
●

●

●●

●●

●●
●●

●

●●

●●

●

●
●

●●

●

●

●

●
●
●●

●

●●
●●

●
●
●
●
●●
●
●
●

●

●

●

●●
●
●

●

●

●

●
●

●●●

●

●

●
●

●
●
●
●
●●

●

●

●

●●●●
●
●●●
●
●
●●

●

●
●●●

●

●

●

●
●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●
●
●●●●
●
●●●●
●●
●●●

●
●●

●●
●

●
●●
●●

●

●

●

●

●

●
●
●

●

●●

●

●
●●

●
●

●

●

●
●

●●●
●

●

●
●
●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●●

●
●
●
●

●

●

●●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●

●

●

●

●

●●
●●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●
●
●
●●
●
●
●●

●
●●
●●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●●

●
●

●
●●
●
●
●
●
●
●
●
●

●

●

●
●
●

●

●

●●

●
●●●

●
●

●

●●
●

●
●●
●
●
●●
●
●

●
●●
●●●
●
●

●

●
●●

●

●
●
●

●

●

●

●●●

●
●
●
●

●

●●
●
●●
●●●●●
●

●
●

●●●

●

●●●
●●
●
●●●

●

●
●

●●●
●●

●
●

●

●
●
●
●
●●●●
●
●●
●

●
●

●

●

●

●●
●

●●
●●
●
●●●
●

●●●●
●
●

●
●
●●●

●

●●●●
●
●●●
●
●
●●●
●●●
●
●●
●
●●
●
●●
●●
●
●●●●
●

●●●●●●●
●
●●
●
●●●
●
●●●●
●
●
●●●
●
●
●●●●●
●●
●
●

●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●●●
●●

●
●
●

●
●
●●
●●●
●
●
●
●
●●
●
●●
●
●
●●●
●●

●
●●
●

●

●●●
●
●

●

●●
●●●

●
●●●
●●●●
●
●
●
●●●
●

●
●
●
●
●
●
●

●
●
●

●●●●

●
●
●

●

●

●
●

●

●

●●

●
●

●

●●
●●

●●●
●

●

●

●●●

●
●●●●●
●●
●●

●●

●

●

●

●
●
●

●●●●●
●

●●●

●

●●
●
●
●●●
●

●●●●●
●●●●●●

●
●
●

●●●
●●

●
●

●

●●
●

●●

●●
●●●

●

●

●

●
●

●
●●

●

●

●

●

●
●
●

●

●
●●
●
●●
●
●●●●
●●●

●

●

●

●

●●●●
●

●

●
●

●

●

●●●
●
●
●

●

●●
●

●●●
●
●

●

●●

●●
●

●

●

●●
●
●
●●
●●●
●
●

●
●
●
●●
●●●
●
●
●
●
●
●

●

●
●

●

●
●●●●●

●
●

●

●

●●

●
●
●

●
●
●
●
●

●

●

●
●●●
●

●

●

●

●
●
●●●●●●

●

●
●

●

●
●
●

●
●
●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●
●

●

●

●

●●

●●

●

●

●●

●
●
●

●

●

●

●●●●
●
●

●

●
●

●●●●●

●●

●●

●

●

●

●
●
●
●
●
●
●

●

●
●
●●
●●●
●

●
●

●

●●
●●
●●
●
●

●●●
●●

●
●
●

●

●

●
●●

●
●
●
●●

●

●
●
●●●●
●

●

●

●●●●●

●

●●●
●

●

●

●●

●●

●

●

●

●●
●●
●
●

●●
●

●●●●●●
●
●●
●

●
●●

●●

●

●●
●
●●

●

●
●
●

●

●

●●
●

●
●
●
●●

●●
●

●
●

●
●

●
●
●
●

●

●●
●

●

●●
●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●●

●

●
●
●
●

●

●
●

●●
●

●

●

●●

●

●

●

●●

●

●
●●

●

●
●

●●
●

●

●
●
●●
●●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●●●

●●
●
●

●

●●

●
●

●●
●

●

●

●

●●
●●

●
●
●●
●

●
●●

●
●
●

●●●
●
●

●

●

●

●

●●

●
●

●

●

●
●
●
●●
●
●

●●

●

●

●●●
●

●●

●●

●

●●●●●●
●

●
●●●●
●●

●

●●●●●●
●
●
●

●
●
●
●
●

●
●
●●●
●
●●●●
●

●●●
●

●●
●●●
●
●●
●
●●
●●●

●

●●●●●●
●
●

●●
●

●

●

●●
●
●
●●
●

●

●

●

●●
●
●●
●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●

●●
●

●

●●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●
●
●●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●●●●●●●

●

●

1980 1982 1984 1986

−
0.

01
0.

00
0.

01
0.

02

Date

Lo
g

re
tu

rn

Figure 3: Log returns for US dollar / Canadian Dollar exchange rates.

ABC We ran ABC as follows:

rprior = function(i) {
cbind(runif(i, -1, 1), runif(i, 0, 1), runif(i, -5, 5), runif(i, 0, 10))}

abc_out = abc(log_return, N = 1E7, rprior = rprior, M=200,
sumstats = 'moment estimates')

This simulated 107 parameter vectors and accepting the best 200. We used moment estimator summary
statistics, described earlier, which can be simulated quickly without the need to simulate an entire
dataset. As a result this analysis took only 6 minutes.

The resulting approximate posterior samples are shown in Figure 6. Figure 7 shows density and
quantile-quantile plots under the mean parameter values. These reveal a very poor fit to the data.
However this short ABC analysis does provide reasonable tuning choices for the other methods.

FDSA We ran FDSA as follows:

abc_out_tf = abc_out[, 1:4]
abc_out_tf[, 2] = log(abc_out_tf[, 2])
abc_est_tf = colMeans(abc_out_tf)
fdsa_out_pilot = fdsa(log_return, N = 1E4, logB = TRUE, theta0 = abc_est_tf,

batch_size = 100, a0 = 2E-4)
a0 = c(1E-6, 1E-2, 1E-2, 1E-2)
fdsa_out = fdsa(log_return, N = 1E4, logB = TRUE, theta0 = abc_est_tf,

batch_size = 100, a0 = a0)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Ecdat

CONTRIBUTED RESEARCH ARTICLES 15

We found that using the original parameterisation caused high variance in our gradient estimates.
This is because the log-likelihood surface becomes extremely steep for B close to 0. Therefore we
reparameterised B to log B. The initial FDSA state was set to equal the ABC means. The FDSA steps
sizes a0 were tuned by trial-and-error.

Figure 4 shows a trace plot of the FDSA algorithm output. A pilot run with a0 = 2× 10−4 is shown
in black. Parameters log B, g and k do not converge over 10, 000 iterations. However they have smooth
curves, indicating that there is relatively little noise in their gradient estimates and so larger steps
could be taken. In contrast A converges quickly and then oscillates noisily. This indicates that a smaller
step size could be used to average out this noise more effectively without endangering convergence.
Therefore for the final run we used a0 =

(
10−6, 10−2, 10−2, 10−2).

The final FDSA analysis took 17 minutes. The final states were A = 9.1× 10−5, B = 1.7× 10−3,
g = 2.0× 10−2 and k = 0.35. Figure 7 shows density and quantile-quantile plots under these parameter
values. These are a much better fit to the data than the ABC results.

Next we use the FDSA results to help tune an MCMC algorithm, which quantifies the uncertainty
in the parameter values.

0 2000 4000 6000 8000 10000

−
0.

01
5

0.
00

0
0.

01
0

0.
02

0

Iteration

A

0 2000 4000 6000 8000 10000

−
6

−
5

−
4

−
3

Iteration

lo
g

B

0 2000 4000 6000 8000 10000

−
0.

05
0.

05
0.

10
0.

15

Iteration

g

0 2000 4000 6000 8000 10000

0.
2

0.
3

0.
4

0.
5

0.
6

Iteration

k

Figure 4: Output from the FDSA algorithm to infer g-and-k parameters for exchange rate log returns.
Black shows output from a pilot run with a0 = 2× 10−4. Red shows output from the final run with
a0 =

(
10−6, 10−2, 10−2, 10−2).

MCMC We ran MCMC as follows:

fdsa_est_tf = fdsa_out[1E5, 1:4]
Sigma0 = var(fdsa_out[1E5 + (-1000:0), 1:4])
log_prior = function(theta) {

if (theta[4] < 0) return(-Inf)
return(theta[2])

}
mcmcout_tf = mcmc(log_return, N = 1E4, logB = TRUE, get_log_prior = log_prior,

theta0 = fdsa_est, Sigma0 = Sigma0)

Again we used a log reparameterisation for B. To achieve an improper uniform prior on the original
parameterisation, we used a prior density proportional of B1 (k > 0) on (A, log B, g, k) (where 1

represents an indicator function). Our initial parameter vector was the final FDSA state. We use the
variance matrix of the last 1000 FDSA states to select the initial MCMC proposal variance.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 16

Figure 5 shows a trace plot of the MCMC algorithm output. For the first few hundred iterations
small proposals are made, at least for log B, g and k, but the proposal variance quickly adapts and the
remainder of the output appears to have converged. Exploratory work showed that taking a poor
initial state meant MCMC is very slow to converge, because the variance matrix adapts to the transient
state of the algorithm. Hence tuning based on FDSA output is very useful.

The MCMC analysis took 39 minutes. Figure 6 parameter histograms and figure 7 shows density
and quantile-quantile plots. These are similar to the FDSA fit. Note that the density plot is based on
mean parameter values from the MCMC output (after discarding the first half of the output as burn-in
and transforming log B values back to the original parameterisation).

0 2000 4000 6000 8000 10000

−
0.

00
02

0
−

0.
00

00
5

0.
00

01
0

Iteration

A

0 2000 4000 6000 8000 10000

−
6.

50
−

6.
45

−
6.

40
−

6.
35

Iteration

lo
g

B

0 2000 4000 6000 8000 10000

−
0.

05
0.

00
0.

05

Iteration

g

0 2000 4000 6000 8000 10000

0.
30

0.
35

0.
40

Iteration

k

Figure 5: States of an MCMC algorithm to infer g-and-k parameters for exchange rate log returns.

Summary The ABC analysis is quick but produces a poor fit. However it helps tune the FDSA
method which finds a good estimate of the MLE in a reasonable time. Further computational effort
using MCMC provides a Bayesian fit. Figure 7 shows that the g-and-k distribution fits the data better
than a normal distribution, but still does not fit the most extreme observations. Further improvements
might be possible by using more flexible distributions, for example allowing different k parameters for
the upper and lower tails (Peters et al., 2016).

Discussion

This paper has reviewed the g-and-k and g-and-h distributions, and introduced the gk package to work
with them. The package includes the usual distributional functions, although the pdf and cdf functions
are slow due to relying on numerical root-finding. Another function tests the validity of different
parameter combinations, and this was used to produce a novel result on which parameters are valid
for the g-and-k distribution (i.e. it is appears to be sufficient that k ≥ max

(
−0.5,−0.045− 0.01g2).)

The package also provides several methods for inference of IID data under these distributions, and
their use has been illustrated above. The methods include a FPSA algorithm which can find MLEs for
large datasets in a reasonable time and has not been applied to this problem before.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 17

A

D
en

si
ty

−0.04 0.00 0.04

0
5

10
15

20
25

X

A

D
en

si
ty

−0.00020 −0.00005

0
20

00
40

00
60

00
80

00
10

00
0

X

B
D

en
si

ty

0.0 0.1 0.2 0.3 0.4

0
1

2
3

4

X

B

D
en

si
ty

0.00150 0.00165 0.00180

0
20

00
40

00
60

00
80

00
12

00
0

X

g

D
en

si
ty

−0.4 0.0 0.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

X

g

D
en

si
ty

−0.05 0.00 0.05 0.10

0
5

10
15

X

k

D
en

si
ty

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X

A
B

C

k

D
en

si
ty

0.30 0.34 0.38

0
5

10
15

20

X

M
C

M
C

Figure 6: Parameter inference for fitting the g-and-k distribution to exchange rate log returns. The
top row shows the ABC posterior sample and the bottom row the MCMC posterior sample, which
requires much more concentrated parameter scales. FDSA estimates of the MLEs are shown by crosses
on the x-axis.

Log return

D
en

si
ty

−0.01 0.00 0.01 0.02

0
50

10
0

15
0

20
0

25
0

Normal
ABC
FDSA
MCMC

●
●

●
●● ●●

●●●
●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●●●●●● ●●
●

●
●

●

−0.01 0.00 0.01 0.02

−
0.

01
0.

00
0.

01
0.

02

Sample quantile

T
he

or
et

ic
al

 q
ua

nt
ile

●
●

●
●● ●●

●●●
●●●●
●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●●●●●● ●●
●

●
●

●

● Normal
ABC
FDSA
MCMC

Figure 7: (Left) Histogram of exchange rate log returns, and fitted g-and-k densities. (Right) Quantile-
quantile (QQ) plots of fitted g-and-k densities. QQ plots are shown for 30 vectors of parameters
sampled from the second half of the MCMC output.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 18

Appendix A: Formulae

The derivatives of the Q functions are as follows:

Q′gk (z; A, B, g, k, c) = B
(

1 + z2
)k

Rgk (z; g, k) , (4)

Q′gh (z; A, B, g, h, c) = B exp
(

hz2/2
)

Rgh (z; g, h) , (5)

where

Rgk (z; g, k, c) = [1 + c tanh (gz/2)]
1 + (2k + 1) z2

1 + z2 +
cgz

2 cosh2 (gz/2)
, (6)

Rgh (z; g, h, c) = [1 + c tanh (gz/2)]
(

1 + hz2
)
+

cgz
2 cosh2 (gz/2)

. (7)

Observe that each Q′ function has the same sign and roots as the corresponding R function.

Appendix B: Range of valid parameters - theory

This appendix proves theoretical results quoted earlier about which parameter values produce valid
g-and-k and g-and-h distributions.

First note that the defining functions in (2) and (3) both have the property that Q (z; A, B,−g, k, c) =
Q (z; A, B, g, k,−c). Therefore any behaviour produced by c < 0 can be replicated with c > 0 and a
different choice of g. So for simplicity it suffices to concentrate on c ≥ 0.

For the remainder of this appendix, distributional validity will correspond to a strictly increasing
quantile function. This property is generally violated if c > 1, as there are two solutions to Q(z) = A:
z = 0 and a solution to 1 + c tanh (gz/2) = 0 (The only exception is the special case of g = 0.) Also
taking h < 0 or k < −1/2 is invalid, as in either case Q, which is continuous, has a positive gradient at
z = 0 but limits of zero.

Finally it is shown that non-negative values of k or h produce valid distributions provided that
0 ≤ c < c∗ ≈ 0.83 (Rayner and MacGillivray, 2002). From Appendix A it suffices to derive the values
of c such that R(z) – representing either Rgk (z; g, k, c) or Rgh (z; g, h, c) – is guaranteed to be positive
for k ≥ 0 or h ≥ 0. Note that R(z) is a continuous function of z, and R(0) > 0. So a sufficient condition
for validity is that no solution to R(z) = 0 exists. Rearranging R(z) = 0 using (6) and (7) gives

1/c = uv sech2 u + tanh u, (8)

where u = −gz/2,

and v =

{
1+z2

1+(2k+1)z2 (g-and-k)
1

1+hz2 (g-and-h)

For k ≥ 0 or h ≥ 0, v can only take values in (0, 1] with 1 attained by z = 0. Hence (8) gives c > 0
if and only if u > 0, and we concentrate on this case from now on. We wish to find the minimum
positive solution for c. Since 1/c is increasing in v it suffices to concentrate on its largest value, v = 1.
The problem reduces to minimising (u sech u + tanh u)−1 for u > 0. Numerically this gives c∗ ≈ 0.83,
as shown in Figure 8.

Acknowledgements

Thanks to Kieran Peel who wrote a helpful undergraduate dissertation on this topic.

Bibliography
D. Allingham, R. A. R. King, and K. L. Mengersen. Bayesian estimation of quantile distributions.

Statistics and Computing, 19(2):189–201, 2009. URL https://doi.org/10.1007/s11222-008-9083-x.
[p7, 12]

M. G. B. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson. A comparative review of dimension
reduction methods in approximate bayesian computation. Statistical Science, 28(2):189–208, 2013.
URL https://doi.org/10.1214/12-sts406. [p12]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1007/s11222-008-9083-x
https://doi.org/10.1214/12-sts406

CONTRIBUTED RESEARCH ARTICLES 19

0 1 2 3 4 5 6

0.8

0.9

1.0

1.1

1.2

u

c

0.83

Figure 8: Solutions to (8) for v = 1 and u > 0.

Y. Croissant. Ecdat: Data Sets for Econometrics, 2016. URL https://CRAN.R-project.org/package=
Ecdat. R package version 0.3-1. [p14]

K. Csilléry, O. François, and M. G. B. Blum. abc: an R package for approximate Bayesian computation
(ABC). Methods in ecology and evolution, 3(3):475–479, 2012. URL https://doi.org/10.1111/j.2041-
210X.2011.00179.x. [p12]

C. C. Drovandi and A. N. Pettitt. Likelihood-free Bayesian estimation of multivariate quantile
distributions. Computational Statistics & Data Analysis, 55(9):2541–2556, 2011. URL https://doi.
org/10.1016/j.csda.2011.03.019. [p7, 12, 14]

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computation:
Semi-automatic ABC. Journal of the Royal Statistical Society, Series B, 74:419–474, 2012. URL https:
//doi.org/10.1111/j.1467-9868.2011.01010.x. [p7, 12]

W. Gilchrist. Statistical modelling with quantile functions. CRC Press, 2000. URL https://doi.org/10.
1201/9781420035919. [p7]

H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, pages 223–242,
2001. URL https://doi.org/10.2307/3318737. [p11]

C. Hastings, Jr., F. Mosteller, J. W. Tukey, and C. P. Winsor. Low moments for small samples: a
comparative study of order statistics. The Annals of Mathematical Statistics, pages 413–426, 1947. URL
https://doi.org/10.1214/aoms/1177730388. [p7]

M. Haynes and K. Mengersen. Bayesian estimation of g-and-k distributions using MCMC. Computa-
tional Statistics, 20(1):7–30, 2005. URL https://doi.org/10.1007/BF02736120. [p7, 11]

M. A. Haynes, H. L. MacGillivray, and K. L. Mengersen. Robustness of ranking and selection rules
using generalised g-and-k distributions. Journal of Statistical Planning and Inference, 65(1):45–66, 1997.
URL https://doi.org/10.1016/s0378-3758(97)00050-5. [p7]

F. Jabot, T. Faure, and N. Dumoulin. EasyABC: performing efficient approximate Bayesian computation
sampling schemes using R. Methods in Ecology and Evolution, 4(7):684–687, 2013. URL https:
//doi.org/10.1111/2041-210x.12050. [p12]

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. The Annals of
Mathematical Statistics, 23(3):462–466, 1952. URL https://doi.org/10.1007/978-1-4613-8505-9_4.
[p12]

N. L. Kleinman, J. C. Spall, and D. Q. Naiman. Simulation-based optimization with stochastic
approximation using common random numbers. Management Science, 45(11):1570–1578, 1999. URL
https://doi.org/10.1287/mnsc.45.11.1570. [p13]

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications. Springer,
2003. URL https://doi.org/10.1007/b97441. [p13]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Ecdat
https://CRAN.R-project.org/package=Ecdat
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1201/9781420035919
https://doi.org/10.1201/9781420035919
https://doi.org/10.2307/3318737
https://doi.org/10.1214/aoms/1177730388
https://doi.org/10.1007/BF02736120
https://doi.org/10.1016/s0378-3758(97)00050-5
https://doi.org/10.1111/2041-210x.12050
https://doi.org/10.1111/2041-210x.12050
https://doi.org/10.1007/978-1-4613-8505-9_4
https://doi.org/10.1287/mnsc.45.11.1570
https://doi.org/10.1007/b97441

CONTRIBUTED RESEARCH ARTICLES 20

P. L’Ecuyer and P. W. Glynn. Stochastic optimization by simulation: Convergence proofs for the
GI/G/1 queue in steady-state. Management Science, 40(11):1562–1578, 1994. URL https://doi.org/
10.1287/mnsc.40.11.1562. [p13]

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods.
Statistics and Computing, 22(6):1167–1180, 2012. URL https://doi.org/10.1007/s11222-011-9288-
2. [p12]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2015. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-2.1. [p9]

G. W. Peters, W. Y. Chen, and R. H. Gerlach. Estimating quantile families of loss distributions for
non-life insurance modelling via L-moments. Risks, 4(2):14, 2016. URL https://doi.org/10.2139/
ssrn.2739417. [p7, 16]

G. D. Rayner and H. L. MacGillivray. Numerical maximum likelihood estimation for the g-and-k
and generalized g-and-h distributions. Statistics and Computing, 12(1):57–75, 2002. URL https:
//doi.org/10.1023/A:1013120305780. [p7, 9, 18]

B. Ripley. Stochastic Simulation. Wiley, 1987. URL https://doi.org/10.1002/9780470316726. [p12]

E. Saksman and M. Vihola. On the ergodicity of the adaptive Metropolis algorithm on unbounded
domains. The Annals of Applied Probability, 20(6):2178–2203, 2010. URL https://doi.org/10.1214/
10-aap682. [p11]

S. A. Sisson, Y. Fan, and M. Beaumont, editors. Handbook of Approximate Bayesian Computation. Chapman
& Hall/CRC, 2017. URL https://doi.org/10.1201/9781315117195. [p12]

J. C. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization.
IEEE Transactions on aerospace and electronic systems, 34(3):817–823, 1998. URL https://doi.org/10.
1109/7.705889. [p13]

J. W. Tukey. Modern techniques in data analysis. In Proceedings of the NSF-Sponsored Regional Research
Conference. Southern Massachusetts University, 1977. [p7]

Dennis Prangle
Department of Mathematics and Statistics
Newcastle University
NE1 7RU
UK
dennis.prangle@newcastle.ac.uk

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1287/mnsc.40.11.1562
https://doi.org/10.1287/mnsc.40.11.1562
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1007/s11222-011-9288-2
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.2139/ssrn.2739417
https://doi.org/10.2139/ssrn.2739417
https://doi.org/10.1023/A:1013120305780
https://doi.org/10.1023/A:1013120305780
https://doi.org/10.1002/9780470316726
https://doi.org/10.1214/10-aap682
https://doi.org/10.1214/10-aap682
https://doi.org/10.1201/9781315117195
https://doi.org/10.1109/7.705889
https://doi.org/10.1109/7.705889
mailto:dennis.prangle@newcastle.ac.uk

CONTRIBUTED RESEARCH ARTICLES 21

NlinTS: An R Package For Causality
Detection in Time Series
by Youssef Hmamouche

Abstract The causality is an important concept that is widely studied in the literature, and has several
applications, especially when modelling dependencies within complex data, such as multivariate
time series. In this article, we present a theoretical description of methods from the NlinTS package,
and we focus on causality measures. The package contains the classical Granger causality test. To
handle non-linear time series, we propose an extension of this test using an artificial neural network.
The package includes an implementation of the Transfer entropy, which is also considered as a non-
linear causality measure based on information theory. For discrete variables, we use the classical
Shannon Transfer entropy, while for continuous variables, we adopt the k-nearest neighbors approach
to estimate it.

Introduction

The study of dependencies between variables is an important step in the analysis of multi-variate time
series. Not surprisingly, it can be exploited in causal discovery for financial and neuroscience datasets,
in feature selection to determine the most important variables as inputs of prediction models, etc.
Standard measures like correlation and mutual information are very used for analyzing relationships
between time series. Because these measures are symmetrical, they do not provide enough information
concerning the transfer of information over time from one variable to another one. Therefore, in cases
where we are interested in approximating non-symmetrical dependencies between variables, causality
is more adequate than correlation measures.

In the literature, two main causality measures have been well investigated in the field of time series
analysis; the Granger causality test (Granger, 1980), and the Transfer entropy (Schreiber, 2000). The
Granger causality is based on the principle that a variable causes another variable if it contains useful
information in terms of prediction. Consequently, it is mainly linked to the idea of using of a prediction
model to test the causality. The Transfer entropy in the other hand is based on information theory and
has gained an increasing attention during recent years. It measures the flow of information between
variables using the conditional Shannon entropy. Although these two measures seem radically
different, an interesting finding has been presented in Barnett et al. (2009) showing that they are
equivalent for variables that follow a normal distribution. In addition, Transfer entropy is considered
as a non-linear alternative for the Granger causality, since it does not model the relationships between
variables using a statistical model, instead, it is based on information theory.

This article covers a theoretical description of methods implemented in the NlinTS package
(Hmamouche, 2020). Particularly, we focus on methods and models that are related to causality
measures. This package includes the Granger causality test. To deal with non-linear dependencies
between time series, we propose an non-linear extension of the Granger causality test using feed-
forward neural networks. The package includes also an implementation of Transfer entropy. Two
versions are provided, one for discrete variables, and the second is an estimate for continuous variables
based on the k-nearest neighbors approach (Kraskov et al., 2004). Therefore, We detail the Granger
causality test, the proposed non-linear Granger causality test, the VARNN (Vector Auto-Regressive
Neural Network) model, since it is used in the later. Then, we represent the Transfer entropy, including
the original formulation and the continuous estimation, starting by the estimate of the entropy and the
mutual information, because they will be useful to understand the Transfer entropy estimator.

It is worth to mention that there are several R packages that contain an implementation of the
Granger causality test, such as vars (Pfaff, 2008), lmtest (Zeileis and Hothorn, 2002). However, for
Transfer entropy, especially for the continuous estimation, we found only the RTransferEntropy
package (Simon et al., 2019). The approach used for estimating the Transfer entropy for continu-
ous variables is based on discretization methods, by transforming continuous variables to discrete,
then, applying Shannon Transfert entropy. In this paper, our approach is based on the same princi-
ple proposed in Kraskov et al. (2004) to estimate the mutual information, which inherits from the
Kozachenko-Leonenko estimator of the Shannon entropy.

The organization of the paper is as follows, the two first sections are for the theoretical formulation
of the causality tests and the Transfer entropy measures. The third section provides R code examples
of the presented measures, illustrating the usage of the implemented methods. Finally, the last section
summarizes this paper.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=lmtest
https://CRAN.R-project.org/package=RTransferEntropy

CONTRIBUTED RESEARCH ARTICLES 22

The Granger causality test

The Granger causality test (Granger, 1980) is the classical method to test the causality between time
series. To test if a variable X causes another variable Y, the principle of this test is to predict Y using
its own history, and to predict it using it history plus the history of the variable X, and finally to
evaluate the difference between these two situations to see if the added variable has some effect on the
predictions of the target variable.

Formally, two VAR (p) (Vector Auto-Regressive) models are considered. The first one uses the
precedent values of Y, and the second uses both passed values of X and Y in order to predict Y:

Model1 Yt = α0 +
p

∑
i=1

αiYt−i + Ut, (1)

Model2 Yt = α0 +
p

∑
i=1

αiYt−i +
p

∑
i=1

βiXt−i + Ut, (2)

where p is the lag parameter, [α0, . . . , αp] and [β0, . . . , βp] are the parameters of the models, and U is a
white noise error term.

To quantify the causality, we have to evaluate the variances of the errors of Model1 and Model2. In
this case, the Granger causality index (GCI) can be used, and it is expressed as follows:

GCI = log

(
σ2

1
σ2

2

)
, (3)

where σ2
1 and σ2

2 are the variances of the errors of Model1 and Model2 resp. In order to evaluate
the statistical significance of the difference between these variances, the Fisher test can be used, where
the statistic is as follows:

F =
(RSS1 − RSS2) /p
RSS2/ (n− 2p− 1)

.

RSS1 and RSS2 are the residual sum of squares related to Model1 and Model2 resp., and n is the size of
the lagged variables. Two hypotheses have to be considered:

• H0: ∀i ∈ {1, . . . , p}, βi = 0,

• H1: ∃i ∈ {1, . . . , p}, βi 6= 0.

H0 is the hypothesis that X does not cause Y. Under H0, F follows the Fisher distribution with
(p, n− 2p− 1) as degrees of freedom.

A non-linear Granger causality test

Using artificial neural networks (ANNs) may be very important when computing causalities, especially
for time series that change non-linearly over time. We take advantage from the characteristics of
ANNs and propose an implementation of an extended version of the Granger causality test using the
VARNN model. Before describing the proposed causality test, let us first present briefly the VARNN
model which is also available in the package as a prediction model.

The VARNN model: Consider a training dataset that consists of a multivariate time series con-
taining one target variable Y, and k predictor variables {Y1, . . . , Yk}. The VARNN (p) model is a
multi-layer perceptron neural network model that takes into account the p previous values of the
predictor variables and the target variable (Y) in order the predict future values of Y. We made this
choice to allow for the possibility of predicting each target variable with a specific set of predictors,
since target variables do not necessarily have the same predictors. First, the model reorganizes the
data in a form of a supervised learning form with respect to the lag parameter. The optimization
algorithm used to update the weights of the network is based on the Stochastic Gradient Descent
(SGD) algorithm. The Adam algorithm can also be used to update the learning rate while using SGD
(Kingma and Ba, 2015). The global function of the VARNN (p) can be written as follows:

Yt = Ψnn

(
Yt−1, . . . , Yt−p, . . . , Yk(t−1), . . . , Yk(t−p)

)
+ Ut, (4)

where Ψnn is the network function, and Ut represents the error terms.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 23

Yt−1 Yt−2 Yt−1 Yt−2 Xt−1 Xt−2

test (Ŷ1t , Ŷ2t)
Ŷ1t Ŷ2t

Evaluate the difference between

predictions of both models

Figure 1: Illustration of the ANN model for the Granger causality test.

A causality test using the VARNN model: Consider two variables X and Y. Similarly to the
Granger causality, to test the causality from X to Y, two prediction models are considered, the first
takes into account the passed values of the target time series, and the second takes the passed values
of the target and the predictor time series,

Model1 : Yt = Ψ1nn
(
Yt−1, . . . , Yt−p

)
+ Ut, (5)

Model2 : Yt = Ψ2nn
(
Yt−1, . . . , Yt−p, Xt−1, . . . , Xt−p

)
+ Ut, (6)

where Ψ1nn and Ψ2nn are the network functions of Model1 and Model2 resp., using the VARNN
model. Then, we evaluate the difference between these two models by comparing the residual sum
of squares of their errors, and the evaluation is carried out using the Fisher test to examine the null
hypothesis (the hypothesis that X does not cause Y). Figure 1 shows an illustration of the used
structure of the causality model.

The difference compared to the classical test, is that instead of using 2 VAR models (univariate and
bivariate), two VARNN models are used. Therefore, we have to change the statistic of the Fisher test
because there are more parameters in the VARNN models than in the VAR model. In this case, the
statistic of test is as follows:

F =
(RSS1 − RSS2) / (d2 − d1)

RSS2/ (n− d2)
,

where d1 and d2 are the number of parameters of the univariate and the bivariate model resp. They
depend on the chosen structure (number of layers and of neurons).

Let us emphasize an important point about this causality. It is evident that computing causalities
using ANNs may has the classical drawback of increasing the computational time. This is not exactly
precise in some cases, because suppose that we have a large number of time series and we have to
compute causalities between all variables. Also, suppose that relationships between variables change
over time. Therefore, this implies that we need to recalculate the causalities periodically or after each
change. In addition, the basic formulations of the classical causality measures (Granger causality test
and Transfer entropy) are not adaptive, which means they do not make it possible to update the new
values by using the old ones. In the other hand, with ANNs, the first computation of causalities may
be slow compared to the Granger test or the Entropy Transfer, but if we have new observations in the
time series, the model adapts more quickly thanks to the learning properties of ANNs.

Transfer entropy

Transfer entropy (Schreiber, 2000) between two time series X and Y, measures the information flow
from X to Y. It was developed to overcome the main drawback of mutual information, which provides
the common information between two variables (symmetric measure), but does not consider the
transfer of information from one variable to the other. To avoid this problem, time delay parameters

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 24

are included in the equation of the mutual information to specify the direction of information:

TX→Y = ∑
Yt ,Y

q
t ,Xp

t

P
(

Yt, Yq
t , Xp

t

)
log

P
(

Yt | Yq
t , Xp

t

)
P
(

Yt | Yq
t

)


= I
(

Yt; Xp
t |Y

q
t

)
,

where Zl
t = (Zt−1, . . . , Zt−l) for Z = X, Y, p, q are the time delay parameters for X and Y resp.,

P represents the probability, and I represents the mutual information symbol. The transfer entropy
can also be seen as the difference between two conditional entropies, where in the first one, only past
values of Y are used, and in the second, both X and Y are considered:

TEX→Y = H
(
Yt|
(
Yt−1, . . . , Yt−q

))
− H

(
Yt|
(
Yt−1, . . . , Yt−q

)
, (Xt−1, . . . , Xt−p

)
),

where H represents the conditional entropy. Note that this expression resembles, in some sense,
the principle of the Granger causality test which compares two prediction models.

A continuous estimation of Shannon Transfer entropy

In this section, we describe the estimation of Transfer entropy based on the k-nearest neighbors. First,
we show the entropy estimator represented in Kraskov et al. (2004). Then, we show the mutual
information estimator that is based on an extended formulation based on the same principal. Then,
we use this approach to estimate the Transfer entropy.

Entropy estimation The basic approach for estimating the entropy of continuous variables is
based on binning the data, in order to get back to the classical definition of Shannon entropy. However,
more efficient approaches are proposed by estimating directly the continuous entropy:

H (X) = −
∫

p (x) log (x) dx,

where p represents the density function of X. One estimation of the continuous entropy of a
random variable X with n realizations is the expected value of log (p (X)):

Ĥ (X) = − 1
n

n

∑
1

ˆlog (p (xi))

The main point of the Kozachenko-Leonenko estimator to approximate log (p (xi)) by considering
p (xi) constant in the sphere centered at xi, with radius the distance from xi to the k-nearest neighbors
of each point. We do not show the details of the mathematical proof, but just the obtained formula:

Ĥ (X) = Γ (n)− Γ (k) + log (c) +
m
n

n

∑
i=1

di, (7)

where Γ is the gamma function, m is the dimension of X, i.e, the number of variables, di is twice the
distance from xi to its kth neighbor, and c is the volume of the unit ball of dimension m. To compute
the distances between two points xi and xj, we use the max norm, |xi − xj|, therefore, c = 1, and
log (c) = 0. In the rest of the equations, for simplicity, we neglect this term.

Mutual Information estimation The mutual information between two variables X and Y having
n observations can be expressed as follows:

I (X; Y) = H (X) + H (Y)− H (X, Y) . (8)

It is possible to adopt the Kozachenko-Leonenko approach to estimate the mutual information. In
this case, we need to estimate the individual entropy of each variable and the joint entropy. For the
joint entropy, it can be computed using the same way by considering the joint space spanned by X
and Y. Let zi = (xi, yi) for i ∈ [1, n], and di be the distance for zi to its kth neighbor. The estimate of the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 25

joint entropy can be expressed as follows:

Ĥ (X, Y) = Γ (n)− Γ (k) +
mx + my

n

n

∑
i=1

di, (9)

where mx and my are the dimensions of X and Y.

In Kraskov et al. (2004), two new methods have been proposed to improve the Kozachenko-
Leonenko estimator for mutual information. The first method is based on the idea that when estimating
H (X) and H (Y), we do not have to use the same k as used in the joint entropy, but instead, it is more
precise to use the number of neighbors of each variable separately. Thus, the estimate of the individual
entropy, of X for example, is the following:

Ĥ (X) = Γ (n)− 1
n

n

∑
i=1

Γ (nx (i) + 1) +
m
n

n

∑
i=1

di, (10)

where nx (i) is the number of points where the distance from Xi is strictly less than di/2. As for Y,
Ĥ (Y) is computed with the same way. Finally, based on Equations 8, 9 and 10, the mutual information
estimator is as follows:

Î (X; Y) = Γ (k) + Γ (n)− 1
n

n

∑
i=1

(
Γ (nx (i) + 1) + Γ

(
ny (i) + 1

))
(11)

Following the same method and generalizing the previous formulation to l variables{X1, . . . , Xl},
the multivariate mutual information estimator is as follows:

Î (X1, . . . , Xl) = Γ (k) + (l − 1) Γ (n)− 1
n

n

∑
i=1

(Γ (n1 (i) + 1) + · · ·+ Γ (nl (i) + 1)), (12)

where nj (i), for (j, i) ∈ [1, l]× [1, n], is the number of points where the distance from the point Xji
is strictly less than di/2.

The motivation behind the second estimator of mutual information presented in Kraskov et al.
(2004) is that the Kozachenko-Leonenko estimation of the joint entropy (H (X, Y) in the bi-variate
case) may be more precise than the first estimator if we consider that the density is constant in hyper-
rectangles instead of hyper-cubes. Based on this remark, the second estimate of the mutual information
of l variables {X1, . . . , Xl}, with n observations, can be expressed as follows:

Î (X1, . . . , Xl) = Γ (k) +
l − 1

k
+ (l − 1) Γ (n)− 1

n

n

∑
i=1

(Γ (n1 (i) + · · ·+ Γ (nl(i))) , (13)

where nj (i), for (j, i) ∈ [1, l]× [1, n], is the number of points where the distance from the Xji is less
(not strictly) than dji/2, and dji is the distance from Xji to its kth neighbor.

Transfert entropy estimation Let us use the first strategy used by Kraskov for mutual information
estimation to estimate the Transfer entropy. Let X and Y be two time series. The goal is to estimate the
Transfer entropy from X to Y, with time delay parameters p and q resp.

T̂EX→Y = Ĥ
(
Yt|Yt−1, . . . , Yt−q

)
− Ĥ

(
Yt|
(
Yt−1, . . . , Yt−p

)
,
(
Xt−1, . . . , Xt−p

))
. (14)

Consider the following notations :

• Ym
t = {Yt−1, . . . , Yt−q}

• Xm
t = {Xt−1, . . . , Xt−p}

• Y f
t = {Yt, Ym

t }
• X f

t = {Xt, Xm
t }

• Zm
t = {Ym

t , Xm
t }

• Z f
t = {Y f

t , Ym
t , Xm

t }

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 26

We can rewrite then Equation 14 as follows:

T̂EX→Y = Ĥ
(
Yt, Yp

)
− Ĥ

(
Yt|Xp, Yp

)
, (15)

= Ĥ
(
Yt, Yp

)
− Ĥ

(
Yp
)
− Ĥ

(
Yt, Xp, Yp

)
+ Ĥ

(
Xp, Yp

)
= Ĥ

(
Y f

t

)
− Ĥ (Ym

t)− Ĥ
(

Z f
t

)
+ Ĥ (Zm

t) .

The maximum joint space is defined by Z f
t = {Yt, Ym

t , Xm
t }. Consider that Z f

t contains n obser-
vations. The first step is to computes the distances di, i.e., the distance from the point zi to its kth

neighbor, for i ∈ [1, n]. In the same way as estimating mutual information, we compute the maximal

joint entropy Ĥ
(

Z f
t

)
using the Kozachenko-Leonenko estimator, and the other terms by projecting

the number of neighbors in each marginal space using the Kraskov approach:

Ĥ
(

Z f
t

)
= −Γ (k) + Γ (n) +

p + q + 1
n

n

∑
i=1

di,

Ĥ
(

Y f
t

)
= − 1

n

n

∑
i=1

Γ
(

ny f (i) + 1
)
+ Γ (n) +

p + 1
n

n

∑
i=1

di,

Ĥ (Ym
t) = − 1

n

n

∑
i=1

Γ
(
nym (i) + 1

)
+ Γ (n) +

p
n

n

∑
i=1

di,

Ĥ (Zm
t) = − 1

n

n

∑
i=1

Γ (nzm (i) + 1) + Γ (n) +
p + q

n

n

∑
i=1

di,

where ny f (i), nym (i) and nzm (i) are the numbers of points where the distance from the point Y f
i ,

Ym
i , and Zm

i resp., is strictly less than di/2, for i ∈ [1, n]. By replacing each oh these terms in Equation
15, we obtain:

T̂EX→Y = Γ (k)− Γ (n)− (p + 1)− p− (p + q + 1) + (p + q)
n

n

∑
i=1

di (16)

+
1
n

n

∑
i=1

(
−Γ
(

ny f (i) + 1
)
+ Γ

(
nym (i) + 1

)
− Γ (nzm (i) + 1)

)
,

By simplifying this expression, the Transfer entropy estimator can be expressed as follows:

T̂EX→Y = Γ (k)− Γ (n) +
1
n

n

∑
i=1

(
Γ
(
nym (i) + 1

)
− Γ

(
ny f (i) + 1

)
− Γ (nzm (i) + 1)

)
. (17)

And this is the classical Transfer entropy estimator investigated and discussed in Vicente et al.
(2011); Lizier (2014); Zhu et al. (2015).

Normalizing the Transfer entropy

The values obtained by the Transfer entropy (TE) are not normalized, and practically, it is hard to
quantify the causality in this case. Normalizing the values of TE between 0 and 1 simplifies the
interpretation of the amounts of transferred information. For discrete data, The Transfer entropy from
a variable X to a variable Y has a maximum value H (Yt|Ym

t). Thus, the normalized TE (NTE) can be
obtained by dividing TE by its maximum value:

NTE =
Ĥ (Yt|Ym

t)− Ĥ (Yt|Ym
t , Xm

t)

Ĥ (Yt|Ym
t)

(18)

In Gourévitch and Eggermont (2007), a preparation step is added to compute NTE to consider
data that contain noise. It consists of subtracting first the average of TE by shuffling the variable X
several times (rearranged it randomly):

NTE =
TEX→Y −∑n

i=1 TEXshu f f led→Y

Ĥ (Yt|Ym
t)

In the package, we implemented just the first normalization (cf. Equation 18), because the second

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 27

one depends on the way of shuffling the variable X. But it can be obtained easily by computing the
NTE with the original variables, and the average of NTE with several shuffled variables of X.

Concerning continuous Transfer entropy, the term Ĥ (Yt|Ym
t) may be negative, which means that

if we apply the same method to normalize the discrete TE, we will not obtain values in [0, 1]. To avoid
this problem, we adopt another approach presented in Duan et al. (2013):

NTE =
TEX→Y −∑n

i=1 TEXshu f f led→Y

H0 − Ĥ (Yt|Ym
t)

,

where H0 is the maximum entropy of Y by considering the uniform distribution, i.e., H0 =
log (Ymax −Ymin), and Ymax and Ymin are the maximum and the minimum values of Y.

R code examples

In this section, we demonstrate worked examples about the usage of the methods implemented in the
package and discussed theoretically in the two previous sections. We use financial time series from
the package timeSeries (Wuertz et al., 2017). We will present the classical Granger causality test, the
VARNN prediction model, and the proposed non-linear Granger causality test. These functionalities
are provided via Rcpp modules. We present also the functions associated to Transfer entropy measures,
including the discrete and continuous estimate. Since other entropy measures are implemented, we
will present them as well, such as the entropy and the mutual information.

The Granger causality test

The causality.test module is based on an Rcpp module. The two first arguments of the constructor
of this module are two numerical vectors, (the goal is to test if the second vector causes the first one).
The third argument is the lag parameter, which is an integer value. The last argument is logical (false
by default) for the option of making data stationary using the Augmented Dickey-Fuller test, before
performing the causality test.

library (timeSeries)
library (NlinTS)
data = LPP2005REC
Construct the causality model from the second column to the first one,
with a lag equal to 2, and without taking into account stationarity
model = causality.test (data[,1], data[,2], 2, FALSE)

The causality.test module has a summary method to show all the results of the test, and 3
properties: the Granger causality index; gci (cf. 2), the statistic of the test (Ftest), and the p-value (the
probability of non causality) of the test (pvalue).

Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()
model$gci
model$Ftest
model$pvalue

The VARNN model

The varmlp module represents the implementation of the VARNN model. It is an Rcpp module,
where the constructor takes as arguments a numerical Dataframe. Each column represents a variable,
and the first column is the target variable. Note that the Dataframe may contain one column. In
this case, the model will be univariate (ARNN model). The second argument is the lag parameter,
then, a numerical vector representing the size of the hidden layers of the network, then, an integer
argument for the number of iterations to train the model. Other arguments with default values are
available about using the bias neuron, the activation functions to use in each layer, the learning rate,
and the optimization algorithm. More details about these arguments can be found in the manual of
the package (Hmamouche, 2020).

library (timeSeries)
library (NlinTS)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=timeSeries
https://CRAN.R-project.org/package=Rcpp

CONTRIBUTED RESEARCH ARTICLES 28

Load the data
data = LPP2005REC

The lag parameter
lag = 1

The training set
train_data = data[1:(nrow (data) - 1),]

Build and train the model
model = varmlp (train_data, 1, c(10,5), 100)

The varmlp module has 3 methods. The method named forecast compute predictions from an
input dataframe, in other words, to test the model. And a method train update the parameters of the
model from new data.

Predict the last row of the data
predictions = model$forecast (train_data)

Show the predictions
print (predictions[nrow (predictions),])

Update the model (two observations are required at least since lag = 1)
model$train (data[nrow (data) - lag: nrow (data)])

The non-linear Granger causality test

Similarly to the previous test, the nlin_causality.test is an Rcpp module. The two first arguments
of the constructor of this module are two numerical vectors, (the goal is to test if the second causes the
first). The third argument is the lag parameter. The next two arguments are two numerical vectors
representing the size of the hidden layers used in models 1 and 2, resp. The next argument is an integer
for the number of the iterations to train the networks. Similarly to the varmlp model, other arguments
with default values are available about the bias neuron, the activation functions, the learning rate,
and the optimization algorithm. The manual of the package contain more details concerning these
arguments (Hmamouche, 2020). The following is an example of using the non-linear causality test:

library (timeSeries)
library (NlinTS)
data = LPP2005REC
Build and train the model
model = nlin_causality.test (data[,1], data[,2], 2, c(2), c(4))

The nlin_causality.test module returns the same values as the causality.test; a summary
method to show all the results of the test, and 3 properties; the Granger causality index (gci), the
statistic of the test (Ftest), and the p-value of the test (pvalue).

Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()
model$gci
model$Ftest
model$pvalue

The discrete entropy

The function entropy_disc permits to compute the Shannon entropy, where the first argument is a
discrete vector, and the second argument is the logarithm function to use (log2 by default):

library (NlinTS)
The entropy of an integer vector
print (entropy_disc (c(3,2,4,4,3)))

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 29

The continuous estimation of the entropy

The function entropy_disc permits to compute the continuous estimation of Shannon entropy, where
the first argument is a numerical vector, and the second argument is the number of neighbors (see 4.1):

library (timeSeries)
library (NlinTS)
Load data
data = LPP2005REC
The entropy of the first column with k = 3
print (entropy_cont (data[,1], 3))

The discrete mutual information

The function mi_disc permits to compute the Shannon multivariate mutual information, where the
first argument is an integer dataframe, and the second argument is the logarithm function to use (log2
by default):

library (NlinTS)
Construct an integer dataframe with 2 columns
df = data.frame (c(3,2,4,4,3), c(1,4,4,3,3))
The mutual information between columns of df
mi = mi_disc (df)
print (mi)

The continuous estimation of the mutual information

The function mi_cont permits to compute the continuous estimate of the mutual information between
two variables. The two first arguments are two vectors, and the third argument is the number of
neighbors (see 4.1):

library (timeSeries)
library (NlinTS)
Load data
data = LPP2005REC
The mutual information between of the two first columns of the data with k = 3
print (mi_cont (data[,1], data[,2], 3))

The discrete Transfer entropy

The function associated to the discrete TE is named te_disc. The two first arguments are two integer
vectors. Here we allow the two time series to have different lag parameters. Therefore, the second
two arguments are the lag parameters associated to the first and the second arguments resp. The next
argument indicates the logarithm function to use (log2 by default). The last argument is logical for the
option of normalizing the value of TE, with a false value by default. The te_disc function returns the
value of Transfer entropy from the second variable to the first variable:

library (NlinTS)
The transfer entropy between two integer vectors with lag = 1 to 1
te = te_disc (c(3,2,4,4,3), c(1,4,4,3,3), 1, 1)
print (te)

The continuous estimation of the Transfer entropy

The associated function is named te_cont. The two first arguments are two vectors. Then, the second
two arguments are the associated lag parameters for the first and the second arguments resp. The fifth
argument is the number of neighbors. The last argument is logical for the option of normalizing the
value of TE, with a false value by default. The te_cont function returns the value of Transfer entropy
from the second variable to the first one:

library (timeSeries)
library (NlinTS)
Load data

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 30

data = LPP2005REC
The transfer entropy between two columns with lag = 1 and k = 3
te = te_cont (data[,1], data[,2], 1, 1, 3)
print (te)

Conclusion

In this paper, we have presented methods of our NlinTS package for computing causalities in time
series. We have considered two main measures well studied in the literature, the Granger causality
test and the Transfer entropy. The Transfer entropy is originally formulated for discrete variables. For
continuous variables, we adopted a k-nearest neighbors estimation based on the same strategy used to
estimate the Mutual Information in Kraskov et al. (2004). To deal with non-linear time series, we have
proposed another causality measure as an extension of the Granger causality test using an artificial
neural network. Finally, we showed examples for the usage of these methods.

Bibliography
L. Barnett, A. B. Barrett, and A. K. Seth. Granger causality and transfer entropy are equivalent

for gaussian variables. Phys. Rev. Lett., 103:238701, Dec 2009. URL https://doi.org/10.1103/
PhysRevLett.103.238701. [p21]

P. Duan, F. Yang, T. Chen, and S. L. Shah. Direct causality detection via the transfer entropy approach.
IEEE Transactions on Control Systems Technology, 21(6):2052–2066, Nov 2013. ISSN 1063-6536. URL
https://doi.org/10.1109/TCST.2012.2233476. [p27]

B. Gourévitch and J. J. Eggermont. Evaluating Information Transfer Between Auditory Cortical
Neurons. Journal of Neurophysiology, 97(3):2533–2543, Mar. 2007. ISSN 0022-3077. URL https:
//doi.org/10.1152/jn.01106.2006. [p26]

C. W. J. Granger. Testing for causality. Journal of Economic Dynamics and Control, 2:329–352, Jan. 1980.
ISSN 0165-1889. URL https://doi.org/10.1016/0165-1889(80)90069-X. [p21, 22]

Y. Hmamouche. NlinTS: Models for Non Linear Causality Detection in Time Series, 2020. URL https:
//CRAN.R-project.org/package=NlinTS. R package version 1.4.2. [p21, 27, 28]

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980. [p22]

A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Phys. Rev. E, 69:066138,
Jun 2004. URL https://doi.org/10.1103/PhysRevE.69.066138. [p21, 24, 25, 30]

J. T. Lizier. Jidt: An information-theoretic toolkit for studying the dynamics of complex systems.
Frontiers in Robotics and AI, 1:11, 2014. ISSN 2296-9144. URL https://doi.org/10.3389/frobt.
2014.00011. [p26]

B. Pfaff. Var, svar and svec models: Implementation within r package vars. Journal of Statistical Software,
Articles, 27(4):1–32, 2008. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v027.i04. [p21]

T. Schreiber. Measuring Information Transfer. Physical Review Letters, 85(2):461–464, July 2000. URL
https://doi.org/10.1103/PhysRevLett.85.461. [p21, 23]

B. Simon, D. Thomas, P. Franziska J., and Z. David J. Rtransferentropy — quantifying information
flow between different time series using effective transfer entropy. SoftwareX, 10(100265):1–9, 2019.
URL https://doi.org/10.1016/j.softx.2019.100265. [p21]

R. Vicente, M. Wibral, M. Lindner, and G. Pipa. Transfer entropy–a model-free measure of effective
connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1):45–67, Feb. 2011.
ISSN 1573-6873. URL https://doi.org/10.1007/s10827-010-0262-3. [p26]

D. Wuertz, T. Setz, and Y. Chalabi. timeSeries: Rmetrics - Financial Time Series Objects, 2017. URL
https://CRAN.R-project.org/package=timeSeries. R package version 3042.102. [p27]

A. Zeileis and T. Hothorn. Diagnostic checking in regression relationships. R News, 2(3):7–10, 2002.
URL https://CRAN.R-project.org/doc/Rnews/. [p21]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1109/TCST.2012.2233476
https://doi.org/10.1152/jn.01106.2006
https://doi.org/10.1152/jn.01106.2006
https://doi.org/10.1016/0165-1889(80)90069-X
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=NlinTS
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.18637/jss.v027.i04
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1016/j.softx.2019.100265
https://doi.org/10.1007/s10827-010-0262-3
https://CRAN.R-project.org/package=timeSeries
https://CRAN.R-project.org/doc/Rnews/

CONTRIBUTED RESEARCH ARTICLES 31

J. Zhu, J.-J. Bellanger, H. Shu, and R. Le Bouquin Jeannès. Contribution to Transfer Entropy Estimation
via the k-Nearest-Neighbors Approach. Entropy, 17(6):4173–4201, June 2015. URL https://doi.
org/10.3390/e17064173. [p26]

Youssef Hmamouche
Aix Marseille Université, Université de Toulon, CNRS, LIS, UMR7020, Marseille, France
Aix Marseille Université, CNRS, LPL, UMR7309, Aix-en-Provence, France
youssef.hmamouche@lis-lab.fr

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.3390/e17064173
https://doi.org/10.3390/e17064173
mailto:youssef.hmamouche@lis-lab.fr

CONTRIBUTED RESEARCH ARTICLES 32

Mapping Smoothed Spatial Effect
Estimates from Individual-Level Data:
MapGAM
by Lu Bai, Daniel L. Gillen, Scott M. Bartell, Verónica M. Vieira

Abstract We introduce and illustrate the utility of MapGAM, a user-friendly R package that provides
a unified framework for estimating, predicting and drawing inference on covariate-adjusted spatial
effects using individual-level data. The package also facilitates visualization of spatial effects via
automated mapping procedures. MapGAM estimates covariate-adjusted spatial associations with
a univariate or survival outcome using generalized additive models that include a non-parametric
bivariate smooth term of geolocation parameters. Estimation and mapping methods are implemented
for continuous, discrete, and right-censored survival data. In the current manuscript, we summarize
the methodology implemented in MapGAM and illustrate the package using two example simulated
datasets: the first considering a case-control study design from the state of Massachusetts and the
second considering right-censored survival data from California.

Introduction

In spatial epidemiology studies, mapping crude and adjusted spatial distributions of disease risk
is a useful tool for identifying risk factors of public health concern (Elliott and Wartenberg, 2004).
The underlying (or crude) geographic pattern of disease is often what is observed by public health
practitioners, but these patterns may be due to important spatially-varying predictors such as so-
cioeconomic status, race/ethnicity, or environmental exposures. Individual-level spatial analyses
can provide insight regarding disease risk by adjusting for these variables without aggregation bias
(also known as ecological bias). Disease risks often have complex spatial patterns that are subject to
high variability due to sparsity. Smoothing provides an efficient method to deal with these issues by
borrowing strength from adjacent observations to reduce variability while allowing for non-parametric
flexibility when estimating the spatial distribution of risk. Generalized additive models (GAMs), origi-
nally proposed by Hastie and Tibshirani (1986), are common model-based approaches for mapping
point-based epidemiologic data(Webster et al., 2006; Vieira et al., 2008; Baker et al., 2011; Akullian
et al., 2014; Bristow et al., 2014; Hoffman et al., 2015). GAMs provide a unified statistical framework
that allows for the adjustment of individual-level risk factors when evaluating spatial variability in a
flexible way. The flexibility provided by GAMs, together with the intuitive nature of many smoothing
techniques, make them an ideal choice for modeling complex spatial associations.

There are a number of R packages implementing GAMs and related models (R Core Team, 2015).
The gam package (Hastie, 2004) provides an implementation of the GAM framework of Hastie and
Tibshirani (1986) by providing two types of commonly used smoothing methods: cubic loess smooth-
ing splines for univariate variables and local kernel smoothing (LOESS) for multivariate variables.
The mgcv(Wood, 2009; Breslow and Clayton, 1993) package implements cubic smoothing splines and
tensor product smooths, an extension of cubic splines to multi-dimentions. mgcv also provides various
criterion to aid in the selection of model complexity via the choice of effective degrees of freedom
and provides functions to fit generalized additive mixed effects models (GAMMs) for correlated
data. Package gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) implements an
extension of the GAM that incorporates selected distributions outside of the exponential family. With
respect to censored survival data, parametric additive models can be fit using both the gamlss.cens
package (Stasinopoulos et al., 2015) and the VGAM package (W., 2007). Bayesian inferences for the
spatial analysis of survival data based on the parametric proportional hazards model are implemented
in package spatsurv(Taylor et al., 2016; Taylor and Rowlingson, 2014). However, parametric models
assume a full distribution of the survival times, and misspecifying the distribution may yield bias for
estimates. Cox proportional hazards models, which are semi-parametric without specifying a form
for underlying hazard function, are more robust for survival analysis including mulitple adjusted
variables.

A variety of R packages incorporate Cox proportional hazards models and spatial smoothing term.
The R interface to BayesX(Umlauf et al., 2015; Belitz et al., 2016; Kneib et al., 2014), R2BayesX(Umlauf
et al., 2016), provides survival spatial analysis based on structured additive models (STAR) without
specifying the baseline hazard. mboost(Hothorn et al., 2016) implements boosting for optimizing

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 33

penalized likehood function, and as an extention of mboost, gamboostMSM(Reulen, 2014) provides
estimates for multistate models. mgcv also incorporates 'coxph' family in the model fitting. However
these packages use cubic, B- and/or P- splines as smoothing methods; none offer LOESS. LOESS
adapts to varying data densities by defining a local neighborhood based on a fixed proportion ("span")
of the observations; this is especially useful for spatial analyses as population densities typically vary
within any study region.

Therefore, none of the above packages provide an implementation of the Cox proportional hazards
additive model for censored survival data that allows for multivariate loess smoothing of covariates
such as geolocation parameters, despite the fact that spatial effect estimation in the context of survival
outcomes is of great interest in epidemiology studies (Henderson et al., 2002; Bristow et al., 2014).
Moreover, displaying spatial predictions on a map with irregular geographic boundaries is a non-
trivial effort, often handled by exporting statistical predictions to separate specialized geographic
information system (GIS) software such as ArcGIS that requires a paid user license (Webster et al.,
2006; Vieira et al., 2008) or by omitting geographic boundaries altogether(Akullian et al., 2014). At best,
these limitations and complexities pose a significant barrier to researchers not already well versed in
both GAMs and GIS methods and at worst may lead to reporting errors due to the inefficient transfer
of estimates between separate software packages.

To address the above deficiencies of current software, MapGAM was built to provide a single
R package that allows for estimating, predicting, and visualizing covariate-adjusted spatial effects
using individual-level data. The package estimates covariate-adjusted spatial associations with a
univariate or survival outcome via GAMs that include a non-parametric bivariate smooth term of
geolocation parameters. Estimation and mapping methods are implemented for continuous, discrete,
and right-censored survival data. In addition, support functions for efficient control sampling in
case-control studies and inferential procedures for testing global and pointwise spatial effects are
implemented. We have found that a unified system for estimating and visualizing covariate-adjusted
spatial effects on outcomes arising from the most commonly encountered epidemiologic study designs
greatly facilitates efficient and reproducible analyses in these settings.

This article serves as an introduction and illustration of the MapGAM package. The remainder
of the manuscript is organized as follows: Section 2 provides an overview of the methodology
implemented in MapGAM for estimating and visualizing spatial effects in the context of a generalized
additive model for continuous, binary or count outcome data. An illustrative example using MapGAM
to analyze hypothetical case-control data from the state of Massachusetts is also provided. Section 3
considers estimating spatial effects on right-censored survival times via a Cox proportional hazards
additive model. The estimation procedures implemented in MapGAM are provided and a brief
simulation study considers the performance of the proposed fitting methods in various settings. In
Section 4 we consider inference procedures associated with spatial modeling and illustrate how to use
the package to perform a global test of a spatial effect and calculate confidence intervals for predictions
at each spatial prediction point. Section 5 concludes with discussion of the utility of the MapGAM
package and considers possible extensions of the package in future research.

Spatial effect on a univariate outcome

We consider estimating and visualizing covariate-adjusted spatial effects in the context of a GAM
for continuous, binary or count outcome data. The spatial effect can be estimated by fitting a GAM
model with a bivariate smoothing term for the two geolocation parameters. Typical models will also
include additional adjustment for demographic characteristics and other risk factors that may serve as
potential confounding factors in the association between location and the outcome of interest.

Generalized additive model

We consider modeling observations that are distributed on a map with ui and vi denoting the geo-
graphical parameters for the ith observation, i = 1, . . . , n. Let Yi denote the outcome and Xi denote a
vector of adjustment covariates. Further suppose that the distribution of the outcome belongs to the
exponential family. The GAM then assumes that

g(µi) = ηi = β0 + X>i β + f (ui, vi), (1)

where g(·) is the link function for mean of the outcome µi = IE[Yi] and the variance of the outcome
is defined by the assumed probability model and denoted as Vi ≡ Var(Yi) = V(µi, φ); a function of

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=MapGAM

CONTRIBUTED RESEARCH ARTICLES 34

the mean and nuisance parameter φ. β denotes a vector of coefficients associated with adjustment
covariate Xi and f (ui, vi) represents the spatial effects, which is a nonlinear function of location.

When fitting the model, we separate the spatial effect into parametric and nonparametric portions:
f (ui, vi) = γ1ui + γ2vi + si, and the model becomes

g(µi) = ηi = β0 + X̃>i β̃ + si, (2)

where X̃i = [Xi, ui, vi] and β̃ = [β>, γ1, γ2]
>. The parametric part of the spatial effect is fit jointly

with other adjustment variables using least squares, while the nonparametric term is fit using a
nonparametric smoother. To ensure identifiability, we constrain the model so that ∑i si = 0.

A local scoring procedure (Hastie and Tibshirani, 1986) is used to fit the model. Let l denote
the log-likelihood function based upon one observations Y = [Y1, . . . , Yn]>, which is a function of
η = [η1, . . . , ηn]>. To estimate the parameters of the model we seek to maximize the expected log
likelihood:

IE(l(η̂i, Yi)) = max
ηi

IE(l(ηi, Yi)), for i = 1, · · · , n (3)

where the expectation is taken over the joint distribution of X and Y. This has intuitive appeal since
it seeks to choose a model that maximizes the likelihood of all possible future observations. Under
standard regularity conditions (namely the ability to interchange integration and differentiation), we
obtain

IE[dl/dηi]η̂i = 0, (4)

While there is no general closed for solution to Eq.(4), a first-order Taylor series expansion leads to an
iterative estimating procedure given by

ηnew
i = ηold

i − IE[dl/dηi]|ηold
i

/ IE[d2l/dη2
i]|ηold

i
, (5)

which is equivalent to

ηnew
i = IE

[
ηi −

dl/dηi

IE[d2l/dη2
i]

]
ηold

i

. (6)

In the exponential family case, we can compute the first and second derivatives of the expected log
likelihood as

dl
dηi

= (Yi − µi)V−1
i

(
dµi
dηi

)
, (7)

and
d2l
dη2

i
= (Yi − µi)V−1

i

(
d

dηi

) [
V−1

i

(
dµi
dηi

)]
−
(

dµi
dηi

)2
V−1

i . (8)

Then taking the expectation (conditional on X) of Eq.(8) we obtain

E

[(
d2l
dη2

i

)∣∣∣∣∣X

]
= −

(
dµi
dηi

)2
V−1

i . (9)

Hence ηi is updated in the GLM case by

ηnew
i = E

[
ηi + (Yi − µi)

(
dηi
dµi

)∣∣∣∣
ηold

i ,µold
i

]
. (10)

Further, letting Yold
w = [Yold

w1 , · · · , Yold
wn]
> denote the working response computed in terms of ηold and

µold and given by

Yold
wi = ηi + (Yi − µi)

(
dηi
dµi

)∣∣∣∣
ηold

i ,µold
i

, (11)

we obtain from Eq.(2), Eq.(10), and Eq.(11),

E[Yold
wi] = βnew

0 + X̃i
>

β̃new + snew
i . (12)

The coefficients β̃new
0 , β̃new and nonparametric term, s, must be estimated in order to obtain an updated

value of ηnew in Eq.(10). If no parametric linear predictor term is included in the model (beyond the
spatial smoothing term), the updated snew can be estimated by regressing the working response Yold

w
on a bivariate smoother for u and v. However, with the parametric linear predictor term included in
the model, the backfitting algorithm can be used to update β0 ,β̃ and s, as is done in the gam package.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 35

Specifically, we begin by defining W = [W1, · · · , Wn]> as

Wi = (dµi/dηi)
2V−1

i |ηold
i ,µold

i
(13)

and initializing s = 0. The backfitting procedure then loops through the following three steps until the
mean squared error does not further decrease relative to a defined convergence criteria:

1. Update β0 and β̃ by fitting a linear regression model with Yold
w − s as the response and corre-

sponding weight W;

2. Update ŝ by regressing response Yold
w − β0 − X̃β̃ on a bivariate smoother for u and v with weight

W;

3. Calculate s = ŝ− 1> ŝ.

Thus, the general algorithm for fitting a generalized additive model within the MapGAM package is:

1. Initialize s = 0. Initialize β0 and β̃ by fitting a generalized linear regression model with all the
adjusted covariates and geolocation parameters included in the model (ie. omitting s).

2. Loop:

(a) With the current estimated β0, β̃ and s, calculate ηold as well as working response Yold
w and

W using Eq.(2), Eq.(11) and Eq.(13) respectively.

(b) Update β0, β̃ and s via the backfitting algorithm.

3. Repeat 2. until convergence.

A locally weighted scatterplot smoother (LOESS) (Cleveland, 1979, 1981; Cleveland and Devlin,
1988) is utilized as the bivariate smoothing function for the two geolocation parameters u and v in the
MapGAM package. The smoothing parameter defining the neighborhood used to select the K nearest
observations points for smoothing may be user specified or automatically chosen by minimizing AIC
(Webster et al., 2006).

Estimating and mapping a spatial effect

In the MapGAM package, typical spatial applications will start with the predgrid() function to create
a regular grid of points within the study area, potentially restricted to points within optional map
boundaries (e.g., a country, state, or regional map obtained from the maps package or imported from
a shapefile). Crude or covariate-adjusted odds ratios, hazard ratios, or other effect estimates are then
obtained for each grid point using the modgam() function to smooth by geolocation. modgam() provides
compatible and flexible interfaces, acting as a wrapper function to the gam() function in the gam
package. Specifically, the model can be specified via a formula statement, or for users less familiar
with writing model formulas in R, the formula can be omitted in which case the model is specified
implicitly by structuring the data so that the first column of the data represents the outcome to be
modeled (or the first two columns for survival objects), the next two columns represent the parameters
for geolocation, and the remaining columns represent the adjustment covariates to be included in
the model. With the model specified, modgam() proceeds by calling the gam() function to estimate
model parameters, then calls mypredict.gam() to generate predictions for the specified grid. The
optspan() function can be used to find an optimal span size (proportion of data size included in
the neighborhood) for the LOESS smoother. Optionally, the modgam() function can call optspan() to
choose the optimal span for fitting the model in an automated fashion.

Considering the estimated spatial effect f (ui, vi) for the ith location, researchers are often interested
in the spatial effect difference (or ratio, log-ratio) comparing each location to a defined reference.
To obtain spatial effect estimates, one can specify type="spatial", then modgam() provides three
options for the choice of reference: the median of f (ui, vi), i = 1, . . . , n, the mean of f (ui, vi), i =
1, . . . , n, or an estimated spatial effect value at a user-specified geolocation. Alternatively, specifying
reference="none" will produce prediction estimates based upon the linear predictor for each covariate
combination in the prediction dataset (including the model intercept). To produce estimates of effects
for all adjustment covariates, the option type="all" may be specified. The result of modgam() is
an object of class modgam() that can be summarized by class-defined printing, summarizing and
plotting methods. Specifically, a heatmap of the predicted values from a fitted model can be generated
using either the colormap() or plot() functions. For tailored plots, the trimdata() and sampcont()
functions can be used to restrict data to those areas within a specified set of map boundaries and
to conduct simple or spatiotemporal stratified sampling from eligible controls–a useful feature for
analysis of data from large cohorts.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 36

Application to case-control data from Massachusetts

In this section we present an illustrative example using MapGAM to analyze hypothetical case-
control data from Massachusetts. MAdata is a simulated case-control study dataset available in the
MapGAM package. Contained in the dataset are 90 cases and 910 controls with randomly generated
geolocations across Massachusetts, geocoded on a Lambert projection (in meters). MAmap provides a
map of Massachusetts using the same projection. The dataset also contains three randomly generated
potential adjustment covariates: smoking, mercury exposure and selenium exposure. A summary of
the dataset follows:

R> data("MAdata")
R> data("MAmap")
R> summary(MAdata)

Case Xcoord Ycoord Smoking
Min. :0.00 Min. : 35354 Min. :778430 Min. :0.000
1st Qu.:0.00 1st Qu.:111465 1st Qu.:869089 1st Qu.:0.000
Median :0.00 Median :183100 Median :891067 Median :0.000
Mean :0.09 Mean :175054 Mean :889081 Mean :0.177
3rd Qu.:0.00 3rd Qu.:236826 3rd Qu.:919684 3rd Qu.:0.000
Max. :1.00 Max. :327861 Max. :954253 Max. :1.000

Mercury Selenium
Min. :0.1418 Min. :0.2049
1st Qu.:0.7206 1st Qu.:0.8573
Median :1.0010 Median :1.1836
Mean :1.1471 Mean :1.3590
3rd Qu.:1.4017 3rd Qu.:1.6844
Max. :5.6298 Max. :5.8963

The geolocations of the observations are shown in Figure 1, which can be generated with the
following code:

R> plot(MAmap)
R> points(MAdata$Xcoord, MAdata$Ycoord, col = MAdata$Case + 1)

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 1: Map of Massachusetts that indicates the location of cases and controls. Data are contained in
the MAdata dataset. Depicted are controls (black, ‘o’) and cases (red, ‘x’).

We first start with generating a prediction grid for the map using predgrid().

library("PBSmapping")
R> gamgrid <- predgrid(MAdata, map = MAmap)

After defining a prediction grid, modgam() is used to fit a GAM model based on the MAdata and generate
predictions on the defined grid. A formula expression indicates that the indicator Case is specified
as the response, and two spatial parameters Xcoord and Ycoord are included in lo() to specify a

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 37

geospatial smoothing term. In addition, potential confounders Smoking, Mercury and Selenium are
also adjusted for in the model as linear terms. Argument sp is used to specify the span size for the
spatial smoothing term. A specification of sp = null (the default) implies that an optimal span will
be selected. Note that if the model formula is not supplied, the data must be structuring so that the
outcome is in the first column, the two spatial parameters are in the second and third columns and
the adjustment variables are in other columns. In that case, specifying m="adjusted" will include all
other columns of the data as linear terms in the model and m="crude" will fit only the two spatial
parameters (the m argument is ignored if a model formula is supplied). For this particular example,
the resulting call to modgam() using the formula statement is given as follows:

R> fit1 <- modgam(Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +
+ Selenium, data = MAdata, rgrid = gamgrid, sp = NULL,
+ type = "spatial", verbose = FALSE)
R> fit1

Call:
modgam(formula = Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +

Selenium, data = MAdata, rgrid = gamgrid, sp = NULL, type = "spatial",
verbose = FALSE)

Model:
Case ~ lo(Xcoord, Ycoord, span = 0.3, degree = 1) + Smoking +

Mercury + Selenium
Family: binomial Link: logit

Coefficients:
(Intercept)

-6.911648e+00
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Xcoord

2.363118e-06
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Ycoord

4.376156e-06
Smoking

1.533433e+00
Mercury

5.729589e-01
Selenium

-6.431932e-01

Coefficients in the above output represent log-odds ratios. The interpretation of parametric terms
remain the same as the usual logistic regression model. For example, we estimate the odds of disease
is estimated to be e1.53 = 4.63-fold higher when comparing smokers to non-smokers with similar
location and exposure to mercury and selenium.

The interpretation of the smoothed spatial terms is best done graphically. A heatmap of the
estimated spatial effect predictions (representing the odds ratio comparing the odds at each location to
the median odds across all locations) can be generated using the modgam plotting routine via a call to
the plot() function. This in turn relies upon the colormap() function defined within MapGAM. The
resulting heatmap is displayed in Figure 2. The exp argument is used to specify whether the heatmap
is drawn on the scale of the odds ratio (exp=TRUE) or the log odds ratio (exp=FALSE).

R> plot(fit1, exp = TRUE, MAmap, contours = "response")

Estimating spatial effects for right-censored survival data

To quantify spatial effects on censored survival outcomes, MapGAM implements a Cox propor-
tional hazards additive model with a bivariate (two geolocation parameters) smoothing term. The
incorporation of a bivariate smoother within the Cox model is not, to the best of our knowledge,
currently implemented within R. In this section, we briefly introduce the methodology implemented
in MapGAM as an extension of the GAM methods previously discussed for GLMs, provide a limited
simulation study to illustrate the validity of the methodology in selected settings and provide an
example of applying the MapGAM package to estimate spatial effects on censored survival data using
hypothetical survival times derived from the state of California.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 38

Figure 2: Heatmap of the estimated odds ratio of spatial effect predictions compared to the median
estimated odds over all locations. Red colors indicate areas with an increased odds of being a case.
Blue colors represent a decreased odds of being a case.

Fitting the Cox proportional hazards additive model

Suppose we observe right-censored survival data that is distributed on a map with ui and vi as the
geographical parameters for the ith observation, i = 1, . . . , n. Let Ti denote the observed followup
time and δi denote the indicator of whether or not Ti represents the true failure time for observation i.
Further, let X̃i be a vector including adjustment covariates X and geolocations (u, v) corresponding
to observation i. The Cox proportional hazards additive model used in the MapGAM package
incorporates a bivariate smoother into the Cox proportional hazards model (Kelsall and Diggle, 1998)
as

λi(t) = λ0(t) exp{X̃>i β̃ + si}, (14)

where λi(t) represents the hazard function for observation i evaluated at time t and λ0(t) denotes the
baseline hazard (ie. the hazard of an observation with all covariate values equal to 0 and location with
s = 0, where again s is a smooth function of spatial coordinates u and v). Define the linear predictor

ηi = X̃>i β̃ + si. (15)

For ease of exposition, consider the case of no tied failure times. Then the partial likelihood and
log-partial likelihood are given by

PL = ∏
j∈D

eηj

∑k∈Rj
eηk

, (16)

and

l = ∑
j∈D

ηj − log

 ∑
k∈Rj

eηk

 , (17)

respectively, where D represents the set of indices of all unique failures and Rj = {k|Tk ≥ Tj} denotes
the risk set just prior to time Tj. In the event of tied failure times, MapGAM defaults to the use of the
Efron approximation (Efron, 1977) for the partial likelihood:

∏
j∈D

∏k∈Fj
eηk

∏
|Fj |
k=1

[
∑l∈Rj

eηl −∑l∈Fj
eηl (k− 1)/|Fj|

] , (18)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 39

where Fj is the set of indices of the failures occurring at time Tj, and |Fj| is the number of indices in the
set Fj.

Letting l denote the log-partial likelihood in Eq.(17), we again seek to solve the maximization
problem provided in Eq.(3). The solution can be found iteratively using Eq.(6). We can compute the
first and second derivatives of the log-partial likelihood with respect to ηi for observation i as

dl
dηi

= δi − ∑
j:i∈Rj

eηi

∑k∈Rj
eηk

, (19)

and
d2l
dη2

i
= − ∑

j:i∈Rj

eηi

∑k∈Rj
eηk

+ ∑
j:i∈Rj

e2ηi(
∑k∈Rj

eηk

)2 . (20)

The Cox model is a semi-parametric model without any specification for the distribution of the survival
times, so it is not possible to calculate a close form for the expectation of the second derivatives for the
log partial likelihood as required in Eq.(9). So before updating η, a GAM model can be fitted using the
second derivatives as responses to estimate the expectation of the second derivatives of log-partial
likelihood.

To this end, we modify the local scoring procedure presented in Section 2.1 by noting that in Eq.(6),
with an estimate ηold, the new estimate for η can be obtained using the following two steps:

1. Estimate IE[d2l/dη2
i] by fitting a generalized additive model using [d2l/dη2

i], i = 1, · · · , n
as responses, including the linear predictor of X̃ and a bivariate smoother of geolocation
parameters;

2. Estimate ηnew using the backfitting algorithm described in Section 2.1 with Wi = −1/ÎE[d2l/dη2
i]

as weights and Yold
wi = ηold

i − [dl/dηi]|ηold
i

/ÎE[d2l/dη2
i] as working responses.

Simulation examples

In this section we assess the performance of our proposed method for fitting the Cox proportional haz-
ards additive model using two simulation studies. In both simulation settings, two spatial parameters
(u, v) and adjustment covariate x are generated from a uniform distribution with range from −1 to 1.
Survival times were then simulated from an exponential distribution with a hazard function. The first
simulation example assumes a linear effect of all covariates on the log-hazard and that the effect of
adjustment covariate x does not interact with the effect of the spatial parameters u and v.

λ = 0.03 exp {log(0.7)x + log(1.2)u + log(1.5)v} . (21)

In the second simulation example, the spatial parameters have a nonlinear effect on the log-hazard,
while the adjustment covariate x has a linear effect that does not interact with the spatial coordinates.
The hazard function used in the second simulation example is

λ = 0.03 exp
{

log(0.7)x + log(1.2)u + log(1.5)v + log(0.8)u2 + log(1.8)uv
}

. (22)

The true data-generating heatmaps of the two examples are shown in Figures 3a and 3c, respectively.
When we set a seed of 269, with N = 5000 sampled data points. The survival times under the first (sec-
ond) simulation setting range from 0.0011(0.0011) to 316.5(396.8), and have a median of 22.66(24.16).
In both settings, censoring times were randomly sampled from a Uni f orm(0, 70) distribution and
observed times were taken to be the minimum of the true failure time and censoring time for each
observation, yielding approximately 41.6% and 43.9% censoring in scenario 1 and 2, respectively. Code
for this simulation is provided in the Appendix. Cox proportional hazards additive models were fit
and the spatial effect of the points on an equally-spaced grid (201× 201) extended across u ∈ [−1, 1]
and v ∈ [−1, 1] were predicted using the modgam function from the MapGAM package. Smoothing
span sizes of 0.4 and 0.2 were utilized for scenario 1 and 2, respectively. In each case, these values
roughly correspond to the automated span size chosen when optimizing AIC.

Figure 3b and 3d display the estimated spatial effects for example data sets using the first (linear
relationship) and second (nonlinear relationship) simulation settings, respectively. Comparing the
estimated values in Figures 3b and 3d to the corresponding true data generating values displayed
in Figures 3a and 3d, we can see that the additive proportional hazards model implemented in
MapGAM accurately recreates the true spatial effects (either linear or nonlinear) giving rise to the
data. In addition, two scatterplots of the estimated versus true spatial effect are provided in Figure

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 40

4a and 4b, again illustrating that the additive proportional hazards method outlined above is able to
correctly identify the spatial effects present in the data with minimal bias.

(a) Truths for linear spatial effect (b) Estimates for linear spatial effect

(c) Truths for nonlinear spatial effect (d) Estimates for nonlinear spatial effect

Figure 3: Heatmaps of the the log-hazard ratio comparing the hazard of the location to the median
hazard for two simulation examples with 5000 simulated observations. For the first simulation example
with linear spatial effect on log-hazards: (a) estimated log-hazard ratio; (b) true log-hazard ratio; For
the second simulation example with nonlinear spatial effect on log-hazards: (c) true log-hazard ratio;
(d) estimated log-hazard ratio.

(a) Linear spatial effect (b) Nonlinear spatial effect

Figure 4: Comparisons of the true log-hazard ratio and the estimated log-hazard ratio for two simula-
tion examples with 5000 simulated observations: (a) result for the first simulation example with linear
spatial effect; (b) result for the second simulation example with nonlinear spatial effect.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 41

Application to right-censored California data

In this section we use the MapGAM package to estimate and visualize spatial effects for a dataset
simulated from information on censored survival times of California ovarian cancer patients. These
are data contained in the object CAdata within the MapGAM package. The original source is the
California advanced-stage invasive epithelial ovarian cancer patients reported to the California Cancer
Registry from 1996 to 2006 (Bristow et al., 2014). After removing patients with age <25 and >80 for
identifiability reasons, and adding random noise to the geolocation parameters, CAdata represents a
random draw of size N = 5, 000 observations from the original dataset. Observed times and failure
status were simulated based upon the observed distribution found in the original dataset. Potential
covariates available in the dataset include age and insurance type (6 categories in total: Managed
Care, Medicare, Medicaid, Other Insurance, Not Insured and Unknown). A summary of CAdata is as
follows:

R> data("CAdata")
R> summary(CAdata)

time event X Y
Min. : 0.004068 Min. :0.0000 Min. :1811375 Min. :-241999
1st Qu.: 1.931247 1st Qu.:0.0000 1st Qu.:2018363 1st Qu.: -94700
Median : 4.749980 Median :1.0000 Median :2325084 Median : -60387
Mean : 6.496130 Mean :0.6062 Mean :2230219 Mean : 87591
3rd Qu.: 9.609031 3rd Qu.:1.0000 3rd Qu.:2380230 3rd Qu.: 318280
Max. :24.997764 Max. :1.0000 Max. :2705633 Max. : 770658

AGE INS
Min. :25.00 Mcd: 431
1st Qu.:53.00 Mcr:1419
Median :62.00 Mng:2304
Mean :61.28 Oth: 526
3rd Qu.:71.00 Uni: 168
Max. :80.00 Unk: 152

CAmap is the map file for California State. The geolocations of the observations are plotted in Figure 5.

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 5: Map of California displaying the geolocations of the observations in CAdata. Depicted in
the plot are censored observations (black, ‘o’) and observed event observations (red, ‘x’).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 42

R> data("CAmap")
R> plot(CAmap)
R> points(CAdata$X,CAdata$Y)

Below we generate the object CAgrid for the state of California using the predgrid() function and
estimate spatial effects on the relative risk of death from a Cox proportional hazards additive model
using the modgam() function. As with the previous example, coeficients for parametric terms in the
model are interpretable as the would be in a standard (non-GAM) fit of the data. In this case, the
coefficients for these terms represent log-hazard ratios. For example, we estimate that the hazard
ratio comparing two subpopulations differing in age by 1 year but having similar insurance status
is approximately e1.026 = 1.03. The smoothed spatial terms are again best intepreted graphically. A
heatmap of the hazard ratio comparing the estimated hazard at each location to the median hazard
across all locations is plotted using the plotting routines defined for modgam objects via plot(). The
resulting heatmap is displayed in Figure 6.

R> CAgrid = predgrid(CAdata[, c("X","Y")], map = CAmap,
+ nrow = 186, ncol = 179)
R> fit2 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)
R> plot(fit2, CAmap, exp = T, border.gray = 0.5)
R> fit2

Call:
modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,

Y), data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor(INS)Oth factor(INS)Uni

0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor(INS)Unk

0.07594159

Inference for spatial effects

Making inferences

In addition to providing point estimates associated with each spatial location, MapGAM provides
pointwise standard errors as well confidence intervals. This inference is returned by the modgam
function when the option se.fit=TRUE is specified. The estimated pointwise standard errors for
spatial effects are derived from the sum of two variance curves: one from the parametric terms
associated with location, γ1ui + γ2vi, and the other from the non parametric term, si(Chambers and
Hastie, 1992). Briefly, variance estimation requires computation of the operation matrix Gi for each
smooth term si, such that si = Giz, where z is the working response from the last iteration of the
fitting algorithm described in Section 2.1 and is asymptotically distributed as a Gaussian random
variable. From this, the covariance matrix for the estimated si is given by GiCov(z)G>i , which can be
estimated by φ̂GiW−1G>i , where W is a diagonal matrix with elements defined by the weights used
in the last iteration of the fitting algorithm and φ̂ is an overdispersion parameter estimated using
Pearson’s Chi square statistic. The operation matrix, Gi, tends to be computationally expensive to
obtain for non-parametric or semi-parametric smoothing procedures, and hence approximations are
often used when estimating GiCov(z)G>i . One approach is to approximate φ̂GiW−1G>i by φ̂GiW−1,
which is generally conservative for non-projection smoothers (Chambers and Hastie, 1992). In this
case, Gi can be orthogonally decomposed into Gi = Hi + Ni, where Hi can be obtained as the design
matrix corresponding to the parametric portion of the linear predictor, and Ni corresponds to the
non-parametric portion. Thus, the variance of the estimated smooth term can be approximated via
a decomposition of two variance components: (i) the variance from the parametric portion of the
linear predictor which captures the correlation all parametric terms that are fitted together, and (ii)
the variance from the non-parametric portion of linear predictor reflecting the marginal information
obtained in the smoothing terms.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 43

Figure 6: Heatmap of the estimated hazard ratio compared to the median hazard over all locations
using the CAdata. Red areas indicate on increased hazard and blue areas indicate a decreased hazard.

modgam conducts a global test for spatial effects via a likelihood ratio test by comparing the de-
viance between a full model (including the spatial smoother) and a reduced model (omitting the
spatial smoother). For the full model, the degrees of freedom of the non-parametric term are computed
as tr(S) − 1, where S denotes the smoothing matrix, and the degrees of freedom of the paramet-
ric portion are p + 3 (p + 2 for survival data). Thus, the degrees of freedom of the full model are
tr(S) + p + 2 (tr(S)+p+1), and the degrees of freedom for the likelihood ratio test statistic are tr(S) + 1.
The function modgam will return the p-value for the likelihood ratio test automatically. In addition,
modgam also performs a permutation test of the global spatial effect and pointwise significance (Kelsall
and Diggle, 1998; Webster et al., 2006) . The function will return the results of the permutation test
when permute=N.permt is specified in the function call, where N.permt denotes the desired number of
permutations used to generate the permutation distribution.

For visualizing inference for spatial effects, the plot function will plot all point estimates along
with the associated lower and higher band of confidence intervals provided that se.fit=TRUE is
specified in the original modgam call. By setting "contours = intervals", areas with confidence intervals
excluding 0 (on the log estimated effect scale) will be indicated on the map by plotting the contours of
an indicator vector created to indicate whether 0 is below, between or above the confidence intervals
at the grid points. By setting "contours = permrank", contours will be added to indicate significant
areas that had a pointwise permutation based p value less than a specified threshold (default of .05).

An example

Returning to the CAdata example presented in Section 3.3, we consider visualizing spatial inference.
Setting se.fit=TRUE, modgam function returns pointwise standard errors and confidence intervals. In
fit3 below, the resulting standard errors can be obtained via the call fit3$se. The resulting confidence
intervals can be plotted via the plot function, and are shown in Figure 7.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 44

R> fit3 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE,
+ se.fit = TRUE)
R> plot(fit3, CAmap, exp = True, mapmin = 0.2, mapmax = 5,
+ border.gray = 0.7, contours = "interval")
R> fit3

Call:
modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,

Y), data = CAdata, rgrid = CAgrid, sp = 0.3, se.fit = TRUE,
verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor(INS)Oth factor(INS)Uni

0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor(INS)Unk

0.07594159

Figure 7: Heatmap of the hazard ratio as well as confidence intervals compared to the median hazard
with significant areas circled which were identified by confidence intervals. The left plot illustrates
the lower bound of a 95% confidence interval for the hazard ratio at each location. The center plot
depicts the estimated hazard ratio at each location. The right plot indicates the upper bound of a 95%
confidence interval for the hazard ratio at each location.

Concluding remarks

GAMs provide a unified statistical framework that allows for the adjustment of individual-level risk
factors when evaluating spatial variability in a flexible way. Given the complex nature of spatial
patterns, GAMs provide an improved framework over traditional parametric modeling of spatial
patterns. The MapGAM package introduced here provides a fairly comprehensive and user-friendly set of
tools for both fitting GAMs to a variety of outcomes and visualizing complex spatial effects. Of course,
one must be careful of overfitting observed data given the flexibility afforded by the GAM framework.
As such, care is needed when choosing the degree of flexibility utilized in model specifications and
honest assessments of out-of-sample predictive performance should be considered.

Bivariate LOESS smoothing with standard error estimation is computationally intensive, especially
in the context of GAMs and proportional hazards models. For example, with 5000 observations, a span

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 45

size of 0.2, and a binomial outcome modgam took about 1 second to provide estimates without standard
errors but about 50 seconds with standard error estimates (se.fit=TRUE) on recent personal computers.
For the same span size and number of observations but with a proportional hazards model, modgam
took about 40 seconds without standard errors and about 70 seconds with standard errors. Although
slower than we might like, the run times for se.fit=TRUE are much faster than the pointwise permuta-
tion test we previously employed which required a 1000-fold increase in run times (Webster et al., 2006).

Estimating and mapping spatial distributions of disease risk is extremely useful for identifying
health disparities, and mapping risk surfaces that are adjusted for individual-level confounding
variables is of great interest to epidemiologists. By developing and actively maintaining a convenient
R package, MapGAM, we intend to facilitate mapping crude and covariate-adjusted spatial effects for
the most common probability models used to characterize the relationship of disease risk to spatial
location and other factors. In the future we hope to improve the flexibility of the package by expanding
the incorporated smoothing methods, including the addition of basis expansion and tensor product
methods, allowing for smoothing over more than two dimensions, and expanding the sampcont func-
tion to include additional sampling methods such as matching. Further research on the development
and implementation of adaptive smoothing methods that allow for the amount of smoothing to
vary depending on the local extent of a spatial effect is currently in progress, and may be added to
the package in a future update. In addition, while spatial correlation is accounted for via the fixed
effects smoothed spatial term in the models we have presented, correlation may also arise if repeated
measures on sampling units are taken through time. This is currently beyond the scope of the package,
but is an area of our current research.

Acknowledgments

Funding for the project was provided by NIH NIEHS Grant No. P42ES007381.

Bibliography
A. Akullian, P. Kohler, J. Kinuthia, K. Laserson, L. A. Mills, J. Okanda, G. Olilo, M. Ombok,

F. Odhiambo, D. Rao, J. Wakefield, and G. John-Stewart. Geographic distribution of hiv stigma
among women of childbearing age in rural kenya. AIDS, 28:1665–1672, 2014. URL https:
//doi.org/10.1097/QAD.0000000000000318. [p32, 33]

S. Baker, K. E. Holt, A. C. Clements, A. Karkey, A. Arjyal, M. F. Boni, S. Dongol, N. Hammond,
S. Koirala, P. T. Duy, T. V. T. Nga, J. I. Campbell, C. Dolecek, B. Basnyat, G. Dougan, and J. J. Farrar.
Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban
typhoid fever transmission. Open Biology, 1(2):110008, 2011. URL https://doi.org/10.1098/rsob.
110008. [p32]

C. Belitz, A. Brezger, T. Kneib, S. Lang, and N. Umlauf. BayesX: Software for Bayesian Inference in
Structured Additive Regression Models, 2016. URL http://www.BayesX.org/. Version 1.1. [p32]

N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models. Journal
of the American Statistical Association, pages 9–25, 1993. URL https://doi.org/10.1080/01621459.
1993.10594284. [p32]

R. E. Bristow, J. Chang, A. Ziogas, H. Anton-Culver, and M. Vieira, Veronica. Spatial analysis of
adherence to treatment guidelines for advanced-stage ovarian cancer and the impact of race and
socioeconomic status. Gynecologic Oncology, 134:60–67, 2014. URL https://doi.org/10.1016/j.
ygyno.2014.03.561. [p32, 33, 41]

J. Chambers and T. J. Hastie. Statistical Models in S. Chapman and Hall/CRC, 1992. [p42]

W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
Statistical Association, 74:829–836, 1979. URL https://doi.org/10.1080/01621459.1979.10481038.
[p35]

W. S. Cleveland. LOWESS: A program for smoothing scatterplots by robust locally weighted regres-
sion. The American Statistician, 35:54, 1981. [p35]

W. S. Cleveland and S. J. Devlin. Locally-weighted regression: An approach to regression analysis by
local fitting. Journal of the American Statistical Association, 83:596–610, 1988. URL https://doi.org/
10.1080/01621459.1988.10478639. [p35]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1097/QAD.0000000000000318
https://doi.org/10.1097/QAD.0000000000000318
https://doi.org/10.1098/rsob.110008
https://doi.org/10.1098/rsob.110008
http://www.BayesX.org/
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1016/j.ygyno.2014.03.561
https://doi.org/10.1016/j.ygyno.2014.03.561
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639

CONTRIBUTED RESEARCH ARTICLES 46

B. Efron. The efficiency of cox’s likelihood function for censored data. Journal of the Americian Statistical
Association, 72:557–565, 1977. URL https://doi.org/10.1080/01621459.1977.10480613. [p38]

P. Elliott and D. Wartenberg. Spatial epidemioloty: Current approaches and future challenges. Envi-
ronmental Health Perspectives, 112:998–1106, 2004. URL https://doi.org/10.1289/ehp.6735. [p32]

T. Hastie. gam: Generalized Additive Models, 2004. URL https://CRAN.R-project.org/package=gam. R
package version 1.12. [p32]

T. Hastie and R. Tibshirani. Generalized additive model. Statistical Science, pages 297–318, 1986. URL
doi:10.1214/ss/1177013604. [p32, 34]

R. Henderson, S. Shimakura, and D. Gorst. Modeling spaital variation in leukemia survival data.
Journal of the American Statistical Association, 97:965 – 975, 2002. URL https://doi.org/10.1198/
016214502388618753. [p33]

K. Hoffman, A. Aschengrau, T. F. Webster, S. M. Bartell, and V. M. Vieira. Associations between
residence at birth and mental health disorders: A spatial analysis of retrospective cohort data. BMC
Public Health, 15(688), 2015. URL https://doi.org/10.1186/s12889-015-2011-z. [p32]

T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-Based Boosting, 2016.
URL https://cran.r-project.org/web/packages/mboost/. R package version 2.7-0. [p32]

J. E. Kelsall and P. J. Diggle. Spatial variation in risk of disease: A nonparametric binary regression
approach. Applied Statistics, pages 559–573, 1998. URL https://doi.org/10.1111/1467-9876.
00128. [p38, 43]

T. Kneib, F. Heinzl, A. Brezger, D. S. Bove, and N. Klein. BayesX: R Utilities Accompanying the Soft-
ware Package BayesX, 2014. URL https://cran.r-project.org/web/packages/BayesX. R package
Version 0.2-9. [p32]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015. URL http://www.R-project.org/. [p32]

H. Reulen. gamboostMSM: Estimating Multistate Models Using gamboost(), 2014. URL https://cran.
r-project.org/web/packages/gamboostMSM/. R package version 1.1.87. [p33]

R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape,(with
discussion). Applied Statistics, 54:507–554, 2005. URL https://doi.org/10.1111/j.1467-9876.
2005.00510.x. [p32]

D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape
(GAMLSS) in R. Journal of Statistical Software, 2007. [p32]

M. Stasinopoulos, B. Rigby, and N. Mortan. gamlss.cens: Fitting an Interval Response Variable Using
gamlss.family distributions, 2015. URL http://CRAN.R-project.org/package=gamlss.cens. R
package version 4.3.1. [p32]

B. M. Taylor and B. S. Rowlingson. spatsurv: an R package for bayesian inference with spatial survival
models. Journal of Statistical Software, 2014. URL https://doi.org/10.18637/jss.v077.i04. [p32]

B. M. Taylor, B. S. Rowlingson, and Z. Zheng. spatsurv: Bayesian Spatial Survival Analysis with Parametric
Proportional Hazards Models, 2016. URL https://cran.r-project.org/web/packages/spatsurv/. R
package version 0.9-14. [p32]

N. Umlauf, D. Adler, T. Kneib, S. Lang, and A. Zeileis. Structured additive regression models: An
R interface to BayesX. Journal of Statistical Software, 63(21):1–46, 2015. URL https://doi.org/10.
18637/jss.v063.i21. [p32]

N. Umlauf, T. Kneib, S. Lang, and A. Zeileis. R2BayesX: Estimate Structured Additive Regression Mod-
els with BayesX, 2016. URL https://cran.r-project.org/web/packages/R2BayesX/. R package
version 1.1-0. [p32]

V. M. Vieira, T. F. Webster, J. M. Weinberg, and A. Aschengrau. Spatial-temporal analysis of breast
cancer in upper cape cod, massachusetts. International Journal of the Health Geographics, 7(46), 2008.
URL https://doi.org/10.1186/1476-072X-7-46. [p32, 33]

Y. T. W. VGAM: Vector Generalized Linear and Additive Models, 2007. URL https://cran.r-project.
org/web/packages/VGAM. R package version 1.0-2. [p32]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1080/01621459.1977.10480613
https://doi.org/10.1289/ehp.6735
https://CRAN.R-project.org/package=gam
doi:10.1214/ss/1177013604
https://doi.org/10.1198/016214502388618753
https://doi.org/10.1198/016214502388618753
https://doi.org/10.1186/s12889-015-2011-z
https://cran.r-project.org/web/packages/mboost/
https://doi.org/10.1111/1467-9876.00128
https://doi.org/10.1111/1467-9876.00128
https://cran.r-project.org/web/packages/BayesX
http://www.R-project.org/
https://cran.r-project.org/web/packages/gamboostMSM/
https://cran.r-project.org/web/packages/gamboostMSM/
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
http://CRAN.R-project.org/package=gamlss.cens
https://doi.org/10.18637/jss.v077.i04
https://cran.r-project.org/web/packages/spatsurv/
https://doi.org/10.18637/jss.v063.i21
https://doi.org/10.18637/jss.v063.i21
https://cran.r-project.org/web/packages/R2BayesX/
https://doi.org/10.1186/1476-072X-7-46
https://cran.r-project.org/web/packages/VGAM
https://cran.r-project.org/web/packages/VGAM

CONTRIBUTED RESEARCH ARTICLES 47

T. Webster, V. Vieira, J. Weinberg, and A. Aschengrau. Method for mapping population-based case-
control studies: An application using generalized additive models. International Journal of Health
Geographics, 5(26), 2006. URL https://doi.org/10.1186/1476-072X-5-26. [p32, 33, 35, 43, 45]

S. Wood. Mixed Gam Computation Vehicle with GCV/AIC/REML Smoothness Estimation, 2009. URL
https://CRAN.R-project.org/package=mgcv. R package version 1.8-10. [p32]

Appendix

We have conducted simulations to assess the performance of the proposed method for fitting the Cox
proportional hazards additive mode in Section 3.2. Data was generated by the function sim.sample.data
under the settings described in Section 3.2.

R> sim.sample.data <- function(f, N = 5000){
+ set.seed(269)
+ u <- runif(N, -1, 1)
+ v <- runif(N, -1, 1)
+ x <- runif(N, -1, 1)
+ lambda <- 0.03 * exp(f(u, v, x))
+ eventTime <- rexp(N, lambda)
+ censTime <- runif(N, 0, 70)
+ time <- ifelse(eventTime <= censTime, eventTime, censTime)
+ event <- (eventTime <= censTime) * 1
+ obs.data <- data.frame(time = time, event = event, u = u, v = v, x = x)
+ new.data <- data.frame(u = rep(seq(-1, 1, 0.01), each = 201),
+ v = rep(seq(-1, 1, 0.01), 201))
+ truth <- f(new.data$u, new.data$v, 0)
+ list(obs = obs.data, new = new.data, truth = truth - median(truth))
+ }

The first simulation example assumes a linear effect of all covariates on the log-hazard as shown in Eq.
21. The following code generates the data for the first simulation example and estimates the spatial
effect using modgam() function.

R> f.linear <- function(u, v, x){
+ log(0.7) * x + log(1.2) * u + log(1.5) * v
+ }
R> data.linear <- sim.sample.data(f.linear)
R> fit.linear <- modgam(Surv(time, event) ~ lo(u, v) + x,
+ data = data.linear$obs, rgrid = data.linear$new,
+ family = "survival", sp = 0.4)

The second simulation example assumes a nonlinear effect of spatial parameters on the log-hazard
as shown in Eq. 22. The following code generates the data for the second simulation example and
estimates the spatial effect using modgam() function.

R> f.nonlinear <- function(u,v,x){
+ log(0.7)*x + log(1.2)*u + log(1.5)*v+log(0.8)*u^2+log(1.8)*u*v
+ }
R> data.nonlinear <- sim.sample.data(f.nonlinear)
R> fit.nonlinear <- modgam(Surv(time, event) ~ lo(u, v) + x,
+ rgrid = data = data.nonlinear$obs, data.nonlinear$new,
+ family = "survival", sp = 0.2)

Heatmaps of the log-hazard ratio comparing the hazard of the location to the median hazard for the
two simulation examples are generated using the following code:

R> par(mfrow = c(2, 2))
R> obj.linear <- list(grid = data.linear$new, fit = data.linear$truth)
R> colormap(obj.linear, axes = T, arrow = F, mapmin = -0.6, mapmax = 0.55,
+ legend.name = "log hazard ratio", legend.cex = 1.3, legend.add.line = 0,
+ col.seq = diverge_hsv(201))
R> mtext("(a) Truths for linear spatial effect", side = 1, line = 4)
R> plot(fit.linear, mapmin = -0.6, mapmax = 0.55, axes =T, arrow = F,
+ legend.cex = 1.3)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1186/1476-072X-5-26
https://CRAN.R-project.org/package=mgcv

CONTRIBUTED RESEARCH ARTICLES 48

R> mtext("(b) Estimates for linear spatial effect", side = 1, line = 4)
R> obj.nonlinear <- list(grid = data.nonlinear$new,
+ fit = data.nonlinear$truth)
R> colormap(obj.nonlinear, axes = T, arrow = F, mapmin = -0.9,
+ mapmax = 1.05, legend.name = "log hazard ratio", legend.cex = 1.3,
+ legend.add.line = 0, col.seq = diverge_hsv(201))
R> mtext("(c) Truths for nonlinear spatial effect", side = 1 , line = 4)
R> plot(fit.nonlinear, mapmin = -0.9, mapmax = 1.05, axes = T,
+ arrow = F, legend.cex = 1.3)
R> mtext("(d) Estimates for nonlinear spatial effect", side = 1, line = 4)

Comparisons of the true log-hazard ratio and the esimated log-hazard ratio for the two simulation
examples are plotted using the following code:

R> par(mfrow = c(1, 2), mai = c(1.3, 0.8, 0.4, 0.4))
R> plot(data.linear$truth, fit.linear$fit, xlab = "true log hazard ratio",
+ ylab = "predicted log hazard ratio")
R> abline(0, 1, lwd = 4, col = "green")
R> mtext("(a) Linear spatial effect", side = 1, line = 4.5)
R> plot(data.nonlinear$truth, fit.nonlinear$fit,
+ xlab = "true log hazard ratio", ylab = "predicted log hazard ratio")
R> abline(0, 1, lwd = 4, col = "green")
R> mtext("(b) Nonlinear spatial effect", side = 1, line = 4.5)

Lu Bai
Department of Statistics
University of California, Irvine
Irvine, California 92697-1250, United States of America
E-mail: bail1@uci.edu
URL: http://publichealth.uci.edu/spatialepidemiology/

Daniel L. Gillen
Department of Statistics
University of California, Irvine
Irvine, California 92697-1250, United States of America
E-mail: dgillen@uci.edu
URL: http://www.ics.uci.edu/~dgillen

Scott M. Bartell
Program in Public Health
Department of Statistics
University of California, Irvine
Irvine, California 92697, United States of America
E-mail: sbartell@uci.edu
URL: http://publichealth.uci.edu/spatialepidemiology/

Verónica M. Vieira
Program in Public Health
University of California, Irvine
Irvine, California 92697, United States of America
E-mail: bail1@uci.edu
URL: http://publichealth.uci.edu/spatialepidemiology/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:bail1@uci.edu
http://publichealth.uci.edu/spatialepidemiology/
mailto:dgillen@uci.edu
http://www.ics.uci.edu/~dgillen
mailto:sbartell@uci.edu
http://publichealth.uci.edu/spatialepidemiology/
mailto:bail1@uci.edu
http://publichealth.uci.edu/spatialepidemiology/

CONTRIBUTED RESEARCH ARTICLES 49

mudfold: An R Package for
Nonparametric IRT Modelling of
Unfolding Processes
by Spyros E. Balafas, Wim P. Krijnen, Wendy J. Post and Ernst C. Wit

Abstract Item response theory (IRT) models for unfolding processes use the responses of individuals
to attitudinal tests or questionnaires in order to infer item and person parameters located on a latent
continuum. Parametric models in this class use parametric functions to model the response process,
which in practice can be restrictive. MUDFOLD (Multiple UniDimensional unFOLDing) can be used
to obtain estimates of person and item ranks without imposing strict parametric assumptions on the
item response functions (IRFs). This paper describes the implementation of the MUDFOLD method
for binary preferential-choice data in the R package mudfold. The latter incorporates estimation,
visualization, and simulation methods in order to provide R users with utilities for nonparametric
analysis of attitudinal questionnaire data. After a brief introduction in IRT, we provide the method-
ological framework implemented in the package. A description of the available functions is followed
by practical examples and suggestions on how this method can be used even outside the field of
psychometrics.

Introduction

In this paper we introduce the R package mudfold (Balafas et al., 2019), which implements the non-
parametric IRT model for unfolding processes MUDFOLD. The latter, was developed by Van Schuur
(1984) and later extended by Post (1992) and Post and Snijders (1993). IRT models have been designed
to measure mental properties, also called latent traits. These models have been used in the statistical
analysis of categorical data obtained by the direct responses of individuals to tests and questionnaires.
Two response processes that result in different classes of IRT models can be distinguished. The cumu-
lative (also called monotone) processes and the unfolding (also called proximity) processes in the IRT
framework differ in the way that they model the probability of a positive response to a question from
a person as a function of the latent trait, which is termed as item response function (IRF).

Cumulative IRT models also known as Rasch models (Rasch, 1961), assume that the IRF is a
monotonically increasing function. That is, the higher the latent trait value for a person, the higher
the probability of a positive response to an item (Sijtsma and Junker, 2006). This assumption makes
cumulative models suitable for testing purposes where latent traits such as knowledge or abilities need
to be measured. The unfolding models consider nonmonotone IRFs. These models originate from
the work of Thurstone (1927, 1928) and have been formalized by Coombs (1964) in his deterministic
unfolding model. In unfolding IRT the IRF is assumed to be a unimodal (single ’peak’) function of the
distance between the person and item locations on a hypothesized latent continuum. Unimodal IRFs
imply that the closer an individual is located to an item the more likely is that he responds positively
to this item (Hoijtink, 2005). Unfolding models can be used when one is interested to measure bipolar
latent traits such as preferences, choices, or political ideology, which are generally termed as attitudes
(Andrich, 1997). Such type of latent traits when they are analyzed using monotone IRT models usually
result in a multidimensional solution. In this sense, unfolding models are more general than the
cumulative IRT models (Stark et al., 2006; Chernyshenko et al., 2007) and can be seen as a form of
quadratic factor analysis (Maraun and Rossi, 2001).

Parametric IRT (PIRT) models for unfolding processes exist for dichotomous items (Hoijtink, 1991;
Andrich and Luo, 1993; Maydeu-Olivares et al., 2006), polytomous items (Roberts and Laughlin, 1996;
Luo, 2001) as well as for bounded continuously scored items (Noel, 2014). Typically, estimation in PIRT
models exploits maximum likelihood methods like the marginal likelihood (e.g. Roberts et al., 2000)
or the joint likelihood (e.g. Luo et al., 1998), which are optimized using the expectation-maximization
(EM) or Newton type of algorithms. Unfolding PIRT models that infer model parameters by adopting
Bayesian Markov Chain Monte Carlo (MCMC) algorithms (Johnson and Junker, 2003; Roberts and
Thompson, 2011; Liu and Wang, 2019; Lee et al., 2019) are also available. PIRT models however,
make explicit parametric assumptions for the IRFs, which in practice can restrict measurement by
eliminating items with different functional properties.

Nonparametric IRT (NIRT) models do not assume any parametric form for the IRFs but instead
introduce order restrictions (Sijtsma, 2005). These models have been used to construct or evaluate
scales that measure among others, internet gaming disorder (Finserås et al., 2019), pedal sensory
loss (Rinkel et al., 2019), partisan political preferences (Hänggli, 2020), and relative exposure to soft

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mudfold

CONTRIBUTED RESEARCH ARTICLES 50

versus hard news (Boukes and Boomgaarden, 2015). The first NIRT model was proposed by Mokken
(1971) for monotone processes. His ideas were used for the unfolding paradigm by Van Schuur (1984)
who designed MUDFOLD as the unfolding variant of Mokken’s model. MUDFOLD was extended
by Van Schuur (1992) for polytomous items and Post (1992) and Post and Snijders (1993) derived
testable properties for nonparametric unfolding models that were adopted in MUDFOLD. Usually,
NIRT methods employ heuristic item selection algorithms that first rank the items on the latent scale
and then use these ranks to estimate individual locations on the latent continuum. Such estimates for
individuals’ ideal-points in unfolding NIRT have been introduced by Van Schuur (1988) and later by
Johnson (2006). NIRT approaches can be used for exploratory purposes, preliminary to PIRT models,
or in cases where parametric functions do not fit the data.

IRT models can be fitted by means of psychometric software implemented in R (Choi and Asil-
kalkan, 2019), which can be downloaded from the Comprehensive R Archive Network (CRAN)1.
An overview of the R packages suitable for IRT modelling can be found at the dedicated task view
Psychometrics. PIRT models for unfolding where the latent trait is unidimensional, such as the graded
unfolding model (GUM) (Roberts and Laughlin, 1996) and the generalized graded unfolding model
(GGUM) (Roberts et al., 2000) can be fitted by the R package GGUM (Tendeiro and Castro-Alvarez,
2018). Sub-models in the GGUM class are also available into the Windows software GGUM2004
(Roberts et al., 2006). A large variety of unfolding models for unidimensional and multidimensional
latent traits can be defined and fitted to data with the R package mirt (Chalmers, 2012). To our
knowledge, software that fits nonparametric IRT in the unfolding class of models (analogous to the
mokken package (Van der Ark, 2007, 2012) in the cumulative class) is not yet available in R.

In order to fill this gap, we have developed the R package mudfold. The main function of
the package implements item selection algorithm of Van Schuur (1984) for scaling the items on a
unidimensional scale. Scale quality is assessed using several diagnostics such as, scalability coefficients
similar to the homogeneity coefficients of Loevinger (1948), statistics proposed by Post (1992), and
newly developed tests. Uncertainty for the goodness-of-fit measures is quantified using nonparametric
bootstrap (Efron et al., 1979) from the R package boot (Canty and Ripley, 2017). Missing values can
be treated using multiple multivariate imputation by chained equations (MICE, Buuren et al., 2006),
which is implemented in the R package mice (van Buuren and Groothuis-Oudshoorn, 2011). Estimates
for the person locations derived from Van Schuur (1988) and Johnson (2006) are available to the user of
the package. Generally, the MUDFOLD algorithm is suitable for studies where there are no restrictions
on the number of items that a person can “pick". Besides these pick-any-out-of-N study designs,
sometimes individuals are restricted to select a prespecified number of items, i.e. pick-K-out-of-N. The
latter design, due to the violation of independence does not respect the IRT assumptions. However,
our package is also able to deal with such situations.

Methodology

Consider a sample of n individuals randomly selected from a population of interest in order to take a
behavioral test. Participants indexed by i, i = 1, 2, . . . , n are asked to state if they do agree or do not
with each of j = 1, 2, . . . , N statements (i.e. items) towards a unidimensional attitude θ that we intend
to measure. Let Xij be random variables associated with the 0, 1 response of subject i on item j. We
will denote the response of individual i on item j as Xij and xij its realization.

Subsequently, we can define the IRF for an item j as a function of θ. That is, the probability of posi-

tive endorsement of item j from individual i with latent parameter θi we write Pj (θi) = P
(

Xij = 1|θi

)
.

In PIRT models for unfolding, Pj (θi) is a parametric unimodal function of the proximity between
the subject parameter θi and the item parameter β j. NIRT unfolding models avoid to impose strict
functional assumptions on the IRFs. In the latter case, the focus is on ordering the items on a unidi-
mensional continuum. The item ranks are then used as measurement scale to calculate person specific
parameters (ideal-points) on the latent continuum.

Assumptions of the nonparametric unfolding IRT model

In unidimensional IRT models, unidimensionality of the latent trait, and local independence of the
responses are common assumptions. However, the usual assumption of monotonicity that we meet
in the cumulative IRT models, needs modification in the unfolding IRT where unimodal shaped IRFs
are considered. For obtaining diagnostic properties for the nonparametric unfolding model, Post
and Snijders (1993) proposed two additional assumptions for the IRFs. The assumptions of the
nonparametric unfolding model are:

1URL: http://CRAN.R-project.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=GGUM
https://CRAN.R-project.org/package=mirt
https://CRAN.R-project.org/package=mokken
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=mice
http://CRAN.R-project.org

CONTRIBUTED RESEARCH ARTICLES 51

A1. Unidimensionality (UD): There exists a unidimensional latent variable θ ∈ R on which individuals
and items are scaled.

A2. Local Independence (LI): The responses of individuals on distinct items are independent given
the latent parameter θ, i.e the joint conditional probability of N responses simplifies into the
likelihood form,

P (X = x | θ = θ0) =
N

∏
j=1

Pj (θ0)
xj
[
1− Pj (θ0)

]1−xj
.

A3. Unimodality (UM): For every item j, Pj (θ) is a weakly unimodal function of θ.
For the sake of clarity, a function Pj (θ) : R → R, is weakly unimodal if there exists a β j ∈
(−∞,+∞) such that, Pj (θ) is non decreasing for all θ ≤ β j and non increasing for all θ ≥ β j.
The location parameter β j for the jth item is the value of the latent trait for which the IRF Pj (θ)
reaches its maximum (or the midpoint of the interval where Pj (θ) is maximum when β j is not
unique).

A4. Stochastic Ordering (SO): For any probability distribution G (θ) of latent trait values and any

value θ0 on the latent scale, PG

(
θ > θ0|Xj = 1

)
is nondecreasing function of j for all j such that

pj (x) > 0.
Given the item ordering this assumption is equivalent to two properties for the IRFs. First,
given that a single item is chosen, the posterior densities g of θ have a monotone likelihood ratio
(MLR) in θ, and second, the IRFs have a monotone traceline ratio (MTR). The next assumption
concerns only unfolding models and is not applicable for cumulative IRT.

A5. Manifest unimodality (MUM): For any probability distribution G (θ) of latent trait values, and for

any values θ1 < θ2, the posterior probability PG

(
θ1 < θ < θ2 | Xj = 1

)
is a weakly unimodal

function of j.

Assumption A1 implies that there exist only one latent trait that explains the responses of persons
on the items. Assumption A2 is mathematically convenient since it reduces the likelihood to a simple
product and implies that given the latent trait value no other information on the other items is relevant
to predict the responses to a particular item. The next assumption concerns the conditional distribution
of each item given the latent trait. The unimodality assumption that is described in A3 restricts the
IRFs to have a single-peak shape without imposing any explicit functional form. If A3 holds for all the
IRFs then we can order the items on the unidimensional continuum based on their location parameter
β j such that β1 ≤ β2 ≤ · · · ≤ βN . The set of assumptions A1-A3 is the core in unfolding IRT models.

Additionally, two assumptions are needed about the individuals {i | i = 1, . . . , n} and the
distribution G of their latent trait values {θi | i = 1, . . . , n} in order to obtain testable properties for
the nonparametric unfolding model (Post and Snijders, 1993). Assumption A4 is analogous to the
invariant item ordering (IIO) assumption in the monotone IRT models and implies that the posterior
distribution of θ given a positive response to an item located at β j is stochastically ordered by the
location β j (Johnson, 2006). In simple words, A4 assumes that an individual who responds positively
to an item with higher rank should have a larger latent trait than those individuals who respond
positively to a low-rank item. For example, if a person responds positively to an item that is considered
politically conservative, then this person is more likely to be a conservative compared to a person who
responded positively to a liberal statement. Despite the fact that this assumption seems intuitive, not
all parametric unfolding models require this additional assumption. Assumption A5 suggests that
individual i who endorses item j has a latent trait value θi that is most likely close to item location β j
and less likely either much lower or much higher on the latent scale than that. Post (1992) shows that
the measurement assumptions A4-A5 are related to the mathematical property of total positivity of
order 2 (TP2) (Karlin, 1968). In addition, if the IRFs Pj (θ) are positive for all j, then these assumptions
hold if and only if the IRFs satisfy the property of TP3.

Errors and scalability coefficients

PIRT approaches use well defined IRFs that parametrize explicitly persons and items on some known
parameter space. Estimates of the parameters can be obtained using suitable frequentist or Bayesian
methods and the fit of the model to the data is assessed using goodness-of-fit indices. Contrarily, in
NIRT modelling the functional form of the IRF is unknown and alternative estimation methods are
needed (Mokken, 1997).

Models in the NIRT class, typically employ item selection algorithms that construct ordinal
measurement scales for persons by iteratively maximizing some scalability measure upon the items.
The resulting scales are then used to locate the individuals on the latent continuum based on their
responses. Usually, these item selection algorithms are bottom-up methods that are divided into two

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 52

parts. In the first part the algorithms seek to find the best minimal scale, that is a minimal set of items
that meets certain scalability requirements. The best minimal scale is the starting point for the second
part of the scaling procedure, where it is extended iteratively by adding in each step the item that best
fulfills the prespecified scalability criteria.

As in other NIRT models, MUDFOLD adopts a two step item selection algorithm that identifies the
unique rank order for a maximal (sub) set of items. In this algorithm, scalability coefficients analogous
to the ones defined by Mokken (1971) are used as tests for the goodness-of-fit. Mokken’s coefficients
are similar to the H coefficients proposed by Loevinger (1948), which were defined on the basis of
violation probabilities of the deterministic cumulative model (see Guttman, 1944) for ordered item
pairs. In the same line, the scalability coefficients in MUDFOLD are defined on the basis of violation
probabilities of the deterministic unfolding model of Coombs (1964) for triples of items. MUDFOLD’s
scalability coefficients in a triple of items compare the number of errors observed (i.e. the number
of {1, 0, 1} responses, which falsify the Coombsian model) with the number of errors that we would
expect if the items were statistically independent. A triple of items is a permutation (ordering) of three
distinct items.

Observed errors (O) in an ordered triple of items (h, l, k) with h, l, k distinct elements of the set
{1, 2, . . . , N}, is the frequency of {1, 0, 1} responses over all individuals. The observed errors can be
calculated by Ohlk = ∑n

i=1 xih (1− xil) xik where xi. is the realization of random variable Xi. and
xi. = 1 if the ith individual responds positively on item (.) otherwise xi. = 0. It can be seen that the
number of observed errors for three items stays invariant for the permutations (h, l, k) and (k, l, h) for
any h 6= l 6= k 6= h in the integer set {1, 2, . . . , N}.

Expected errors (EO) in an ordered item triple (h, l, k) under random ordering is the expected
frequency of {1, 0, 1} responses if the items h, l, and k were statistically independent multiplied by the
sample size, EOhlk = p (h) (1− p (l)) p (k) n. We can estimate p (j) for item j p (j) = ∑n

i=1
xij
n as the

relative frequency for item j.
Scalability coefficient (H) for any ordered item triple (h, l, k), is defined as the value obtained if we

subtract from unity the ratio of observed errors over the expected errors for this triple,

Hhlk = 1− Ohlk
EOhlk

, ∀ h, l, k ∈ {1, 2, . . . , N}. (1)

Using the scalability coefficients for triples, we can extend the notion of scalability for a scale s
consisting of m items, where 3 < m ≤ N and for an item j ∈ s. The H coefficient for an item j ∈ s,
j = 1, 2, . . . , m is given by,

Hj (s) = 1−
∑(h,l,k)∈Tj(s) Ohlk

∑(h,l,k)∈Tj(s) EOhlk
, (2)

where Tj (s) = {(sh, sl , sk) | sh < sl < sk : j ∈ {sh, sl , sk}} is the set of all item triples (with respect to
the item order), that include item j.

Given that the m items constituting the scale are ordered, we are able to calculate the H coefficient
for the total scale s by summing the observed errors and the expected errors for all m!

3!(m−3)! triples of
items of s and calculate their error ratio. If we subtract the obtained number from the unity results in a
total scalability measure,

Htotal (s) = 1− ∑(h,l,k)∈T(s) Ohlk

∑(h,l,k)∈T(s) EOhlk
, (3)

where T (s) = {(sh, sl , sk) | sh < sl < sk} is the set of all item triples for a given scale s.

Perfect fit of the scale to the data yields a scalability coefficient value of Htotal (s) = 1. The latter
means that no error patterns are observed in this scale. Likewise, Htotal (s) = 0 implies that the number
of observed errors is equal to what you would have expected for a random ordering. Values around
0.5 suggest a moderate unfolding scale. Calculating the triple scalability coefficients for all the items is
the first step in the construction of a MUDFOLD scale.

We will demonstrate how the H coefficients for triples are calculated using the dataset ANDRICH
that comes with the mudfold package in R data format. The dataset contains the binary responses
of n = 54 students on N = 8 statements towards capital punishment. This attitudinal test have been
constructed by Andrich (1988) in order to measure attitudes towards capital punishment.

Calculating scalability coefficients for the ANDRICH data. We can install and subsequently
load the package and the data into the R environment.

Install and load the mudfold package and the ANDRICH data
install.packages("mudfold")
library(mudfold)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 53

data("ANDRICH")
N <- ncol(ANDRICH) # number of items
n <- nrow(ANDRICH) # number of persons
item_names <- colnames(ANDRICH) # item names

Functions for calculating the observed errors, expected errors, and H coefficients for each
possible item triple are available internally in the mudfold package. These functions can
be accessed by the ::: operator. For the ANDRICH data the H coefficients for triples can be
calculated as follows.

experr <- mudfold:::Err_exp(ANDRICH) # errors expected
obserr <- mudfold:::Err_obs(ANDRICH) # errors observed
hcoeft <- 1 - (obserr / experr) # H coefficients

Generally, there exist N3 item permutations of length three with repetitions that can be
obtained from N items. Thus, the corresponding H coefficients of each possible item
permutation of length three can be stored into a three way array with dimension N ×
N × N. In the ANDRICH data example, the scalability coefficients for the item permutations
of length three are stored into three-way array with dimension 8× 8× 8. It can be seen
that the H coefficients for symmetric permutations stay invariant and we demonstrate this
feature below. Consider the ordered triple of items (HIDEOUS, DONTBELIEV, DETERRENT) and its
symmetric permutation (DETERRENT, DONTBELIEV, HIDEOUS).

triple_HDODE <- matrix(c("HIDEOUS", "DONTBELIEV", "DETERRENT"), ncol = 3)
triple_DEDOH <- matrix(rev(triple_HDODE), ncol = 3)

If we compare the H coefficients of these two (symmetric) triples we will see that they
coincide.

Compare H coefficients
hcoeft[triple_HDODE] == hcoeft[triple_DEDOH]

The Hhlk coefficients form the basis in order to calculate the scalability coefficients for items
and scales. The item selection algorithm implemented in the package runs in two steps and
scalability criteria are used in both steps.

Scale construction

In the first step of the item selection algorithm, a search in order to find the best triple of
items is conducted. A lower bound λ1 that controls the scalability properties of the best
triple can be specified by the user (default value is λ1 = 0.3). The value of λ1 is used as a
threshold to determine if the triple is good enough to continue the scaling process. Larger
values of λ1 lead to more strict criteria while lower values of λ1 relax these criteria.

In its second step, the item selection algorithm extends the best elementary scale repeat-
edly until no more items fulfill its scalability criteria. A second threshold λ2 = 0 is explicitly
used in the first criterion of this step. This threshold controls the scalability properties of
the triples containing a candidate item in the scale extension procedure. As for λ1, larger
values of λ2 lead to more strict scalability requirements, while, lower values relax these
requirements.

Step 1: search for the best unique triple.

The search for the optimal item triple in the first step requires the calculation of the scalability
coefficients for every possible permutation of length 3 that can be obtained from N starting
items.

Among the set of all permutations of length three we seek to find those that fulfill certain
scalability criteria and we call this set of permutations unique triples. Unique triples is a
finite set containing all (h, l, k) with h, l, k ∈ {1, 2, . . . , N}, and h 6= l 6= k 6= h for which only
one of their permutations (out of three possible) presents a positive Hhlk coefficient i.e.

Hhlk > 0, Hhkl < 0, Hlhk < 0.

This guarantees that triples in the set of unique triples are “uniquely” represented on the
latent dimension, i.e. are scalable together in only one permutation besides the reverse

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 54

permutation. From the set of unique triples, the triple (h, l, k) that has the maximum Hhlk is
called the best unique triple and it will be selected as the best starting scale if its scalability
coefficient is positive and greater than a specified lower bound λ1. If more than one triples
fulfill the requirements for being the best unique triple it can be shown that all of them will
converge to same solution in the second step.

If the set of unique triples is empty, the algorithm stops automatically without proceeding
in the second step. The same holds also in the case in which unique triples exist but their
scalability coefficient is lower that the bound specified by the user.

First step: search for best minimal scale in the ANDRICH data. Here we describe how the
main function of the mudfold package searches for the best minimal unfolding scale in
the first step of the implemented algorithm. After we calculated the observed errors, the
expected errors, and the scalability coefficients for each triple of items in the ANDRICH dataset,
we need to determine the optimal triple for the first step of MUDFOLD’s item selection
algorithm. The triples of items in the order (h, l, k) for the ANDRICH data can be obtained
with the combinations() function from the R package gtools (Warnes et al., 2015). These
combinations are then permuted twice to yield the orderings (h, k, l) and (l, h, k) respectively.

Install and load the library "gtools"
install.packages(gtools)
library(gtools)

Obtain item permutations (h,l,k), (h,k,l), and (l,h,k)
perm1 <- combinations(N, 3, item_names, set = FALSE)
perm2 <- perm1[, c(1,3,2)]
perm3 <- perm1[, c(2,1,3)]

The set of unique triples can then be obtained.

Find the set of unique triples.
unq <- rbind(perm1[(hcoeft[perm1] > 0 & hcoeft[perm2] < 0 & hcoeft[perm3] < 0),],

perm2[(hcoeft[perm1] < 0 & hcoeft[perm2] > 0 & hcoeft[perm3] < 0),],
perm3[(hcoeft[perm1] < 0 & hcoeft[perm2] < 0 & hcoeft[perm3] > 0),])

The set of unique triples in the ANDRICH data example contains sixteen item triples. With the
command hcoeft[unq] we can see that all except one of the triples show Hhlk coefficients
greater than the lower bound. The ordered triple of items (INEFFECTIV, DONTBELIEV, DETERRENT)

is selected as the best starting scale with a maximum scalability coefficient of 0.853 which
is indeed larger than λ1. This triple will be extended repeatedly in the second step of the
algorithm. In each iteration one from the remaining ones is added to the scale in a specific
position if certain scalability requirements are met.

Step 2: extending the best starting scale

Given the best unique triple obtained in the first step of the algorithm, in the second step
of the item selection process the algorithm investigates repeatedly the remaining N − 3
items to find the best fourth, fifth, etc to add to the scale. In each iteration of this step, all
the possible scales that contain one of the remaining items in every possible position are
investigated to choose the most appropriate one.

For a scale consisting of m items, (3 ≤ m ≤ N − 1) we intend to find one of the
remaining N −m items to add in the scale. For the (m + 1)th item there exist m + 1 possible
scale positions that have to be investigated with respect to their scalability properties. In
each iteration of the MUDFOLD scaling algorithm, the number of candidate scales under
investigation is (N −m) (m + 1).

In order to determine the (m + 1)th best fitting item we test three criteria. The first
criterion uses an explicit value λ2 (by default λ2 = 0) as a lower bound for the scalability
coefficients. The scalability criteria in the second step are :

1. All the (m
2) item triples in the scale (with respect to the item order), containing the

candidate item must have Hhlk coefficient greater than λ2.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=gtools

CONTRIBUTED RESEARCH ARTICLES 55

2. If more than one item fulfills the first criterion, then the item with the minimum
number of possible scale positions is chosen.

3. The scalability coefficient Hj (s) of the selected item has to be higher than λ1.

It can be the case that more than one scales fulfill these criteria. In such instances, the
algorithm continues by choosing the scale that includes the most uniquely represented item
and shows the minimum number of expected errors. The scale extension process continues
as long as the scalability criteria described above are fulfilled.

Second step: scale extension for the ANDRICH data For the ANDRICH data, after the first
step of the item selection process where we obtained the best unique triple, the remaining
five items can still be added to the scale.

BestUnique <- unq[which.max(hcoeft[unq]),] # Best unique triple
ALLitems <- colnames(ANDRICH)
Remaining <- ALLitems[!ALLitems %in% BestUnique] # Remaining items

Next, an iterative procedure needs to be defined for the second, scale extension step of
the MUDFOLD algorithm. Adding one item in each repetition implies that a maximum of
N − 3 = 5 iterations can take place if all items fit in a MUDFOLD scale. In each iteration we
construct the scales to be evaluated where each scale contains one of the remaining items in
a specific position.

For example, in the first iteration of the scale extension step for the ANDRICH dataset, all
the scales that need to be assessed can be constructed as follows. First we need to consider
all the possible positions where a new item can be added. The possible positions depend on
the length of the existing scale. At this point, since the scale consists of three items there
exist four possible positions where a new item can be added.

Create indices to be used in constructing scales
lb <- length(BestUnique) # length of best unique triple
lr <- length(Remaining) # number of remaining items to add in the scale

create all possible positions where each new item from Remaining
can be added in the scale
index_rep <- rep(seq(1, (lb+1)) ,lr) - 1 # possible positions
index_irep <- rep(Remaining, each = lb+1) # item for each position

After we define all the possible positions for new items, each item is added in every position
and results in a different scale to be assessed.

Create all possible scales by adding each item in Remaining
to every possible position of BestUnique
ALLscales <- lapply(1:length(index_rep),

function(i) append(BestUnique, index_irep[i], after = index_rep[i]))

Each of these scales will be judged in terms of its scalability properties. For instance, let us
consider the first scale that is constructed in the first iteration of the scale extension step in
the ANDRICH data.

Examplescale <- ALLscales[[1]]
Examplescale
"HIDEOUS" "INEFFECTIV" "DONTBELIEV" "DETERRENT"

This scale has been constructed after inserting the item HIDEOUS into the first possible position
of the minimal scale (INEFFECTIV, DONTBELIEV, DETERRENT). The first scalability criterion for this
scale determines if the Hhlk coefficients of the triples that contain the new item (i.e. HIDEOUS)
are larger than a user specified λ2 (default λ2 = 0). We can extract all the triples for this
specific scale using the combinations() function.

les <- length(Examplescale)
ExamplescaleTRIPLES <- combinations(n = les, r = 3, v = Examplescale, set = FALSE)

From the four triples in total, only the first three are containing the new item HIDEOUS. We
can obtain the H coefficient for each of these triples with

hcoeft[ExamplescaleTRIPLES[1:3,]]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 56

and we can see that the triple (HIDEOUS, INEFFECTIV, DETERRENT) has a H coefficient which is
lower than λ2. Hence, this scale does not fulfill the first criterion and should be excluded
from the scale extension process. The first criterion is calculated for every scale possible and
the scales that conform to this criterion continue the scale extension process. Lowering the
values of λ2 to a negative number will allow more scales to pass this criterion, while setting
λ2 to a large negative number e.g. −99 will allow all scales to pass this criterion.

The second scale assessment determines which scale or scales contain the item that is the
most “uniquely” represented. Let us assume that the number of scales that fulfill the first
criterion is six. Moreover, assume that five out of these six scales contain the item MUSTHAVEIT

and one scale contains the item CRIMDESERV. In this scenario the scale that contains the item
CRIMDESERV, will be the one that continues the scale extension.

The scales that contain the least frequently observed item are checked according to a
third criterion. The third and last criterion in the iterative scale extension phase concerns
the scalability properties of the new item. The scale that contains the new item with the
highest item scalability coefficient will be chosen as the best MUDFOLD scale if and only
if Hj (s) > λ1 where λ1 is the lower bound that have been used also in the first step of the
item selection algorithm.

In the ANDRICH example the algorithm completes five iterations in the second step which
means that all the items are included in the MUDFOLD scale. The latter, consists of eight
items and shows a scale scalability coefficient equal to 0.64.

After a MUDFOLD scale with a good fit is obtained, one can assess its unfolding quality.
This is done by scale diagnostics described by Post (1992) and Post and Snijders (1993).
These diagnostics are based on sample proportions from which the unimodality assumption
of the scale is evaluated and nonparametric estimates of the item response functions are
obtained.

MUDFOLD diagnostics

In this section, we discuss diagnostics implemented in the mudfold package, which can be
used to assess if a scale s consisting of m items, j = 1, . . . , m conforms with the assumptions
A2 to A5 of a unidimensional nonmonotone homogeneous MUDFOLD scale.

Diagnostic for assumption A2

Let us denote by X−j the n× (m− 1) matrix that contains the responses of n individuals
to all the items in the scale except item j. Testing if A2 (local independence) holds, is
equivalent to testing if the positive response on an item depends solely on the latent trait θ,
i.e. P

(
Xj = 1|X−j, θ

)
= P

(
Xj = 1|θ

)
. If pj = P

(
Xj = 1

)
denotes the probability of positive

response to item j, testing this hypothesis implies fitting the following regularized logistic
regression model,

log
pj

1− pj
= β0 +

m−1

∑
k=1

βkX−jk + βθ θ̂, (4)

where X−jk denotes the kth column of X−j and θ̂ =
(
θ̂1, . . . , θ̂n

)
is a nonparametric estimate

of the latent attitude with regression parameter βθ . The response regression parameters βk
are penalized using the least absolute shrinkage and selection operator (LASSO, Tibshirani,
1996). LASSO shrinks the coefficients βk of the regression in (4) towards zero. If βk = 0
for all k = 1, . . . , m then the local independence assumption if fulfilled and the probability
of positive response on the item j depends only on θ. On the other hand if there is any
k for which βk 6= 0 there is evidence of violations in the local independence assumption.
Fitting sparse generalized linear models with simultaneous estimation of the regularization
parameter is straightforward in R with the function cv.glmnet() that is available with the
package glmnet (Friedman et al., 2010).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet

CONTRIBUTED RESEARCH ARTICLES 57

Diagnostic for assumption A3

The condition A3 required by MUDFOLD is the assumption of unimodality of the IRFs,
which are unknown nonlinear functions of the latent trait. In order to obtain estimates of
these functions, we use a nonlinear generalized additive model (GAM, Wood, 2011) that
is implememented in the R package mgcv (Wood, 2017). Specifically, for each item the
probability of positive response pj is modelled as a smooth function of the latent trait θ, that
is,

log
pj

1− pj
= β0 + βθ fθ

(
θ̂
)

, (5)

where fθ

(
θ̂
)

is a smooth function of θ̂. Plotting the probability of positive response modelled
by (5) against a nonparametric estimate of the latent trait θ̂, should yield a single ’peaked’
curve if the unimodality assumption for the IRFs holds.

Diagnostics for assumptions A4 and A5

For the assumptions A4-A5, diagnostic statistics that quantify to which extent the scale
agrees with these assumptions have been proposed by Post (1992). These statistics are
based on conditional IRF probabilities, which are estimated by their corresponding sample
proportions and collected into a matrix that is called the conditional adjacency matrix
(CAM).

CAM in its (j, k) element contains the conditional frequency that a subject from the
sample will choose the row item j given that the column item k is chosen. The probability
P
(
Xj = 1 | Xk = 1

)
is estimated from the data by dividing the joint frequency of choosing

both items j and k by the relative frequency of choosing item k. That is,

CAMjk =
∑n

i=1 xij xik /n

∑n
i=1 xik /n

=
∑n

i=1 xij xik

∑n
i=1 xik

, for j 6= k. (6)

In the package mudfold, the CAM can be obtained using the function CAM(), which takes
as input either a fitted MUDFOLD object or a dataset with the complete responses of n
individuals to m items. In the ANDRICH dataset example, the CAM of the original data can be
calculated using the command CAM(ANDRICH).

Each row of the CAM is regarded as an empirical estimate of the corresponding IRF.
Hence, if the ordering of the items is correct, and if assumptions A1 to A5 hold, then (i)
the observed maxima of the different rows of the CAM are expected to appear around the
principal diagonal (moving maxima property), and (ii) the rows of the CAM are expected
to show a weakly unimodal pattern. One can potentially evaluate the unfolding model by
checking how strongly the observed row patterns of the CAM deviate from the expected
patterns described above.

Max statistic (MAX) : The moving maxima property of the CAM corresponds to condition
A4, which assumes stochastic ordering of the items by their location parameter β j. In
order to formally check this assumption, Post (1992) proposed a statistic that quantifies the
violations of the moving maxima property for the rows of the CAM , which is called the
max statistic (MAX).

Calculation of the MAX can be done in two ways, namely a top-down and a bottom-up
method

MAXj =


∑m

k=j+1 max
(
0,
(

Mj −Mk
))

(top-down method)

∑
j−1
k=1 max

(
0,
(

Mk −Mj
))

(bottom-up),

(7)

where Mj is the position of the maximum in the jth row of CAM. In order to create a measure
of the moving maxima property that is bounded within the interval [0, 1] we divide MAXj by
the number of potential violations of the moving maxima property which are approximately
equal to m2/12.

The sum over all rows yields the total MAX statistic of the scale, i.e. MAXtotal =

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mgcv

CONTRIBUTED RESEARCH ARTICLES 58

∑m
j=1 MAXj.. The quantity MAXtotal will be the same for both methods in (7), however, the

number of items showing positive MAX can be different. In this situation the method that
yields the minimum number of items showing positive MAX is chosen. If the number
of items with positive MAX is the same for both methods then we choose arbitrarily the
top-down method. In the case where Mj is next to a diagonal element then the maximum in
the jth row can have two positions and the position that yields the lower MAX value will be
chosen.

The MAX statistic can be calculated using the function MAX() from the R package
mudfold, which takes as input either a fitted MUDFOLD object obtained from the main
mudfold() function, or an object of class "cam.mdf" calculated from the function CAM(). The
argument 'type' of the MAX() function controls if the MAX for the items or the whole scale
will be returned to the user. Visual inspection of the observed maxima pattern can also be
useful. If the maximum values of the CAM rows are close to the diagonal then the unfolding
model holds. The diagnostics() will return and plot a matrix with a star at the maximum
of each CAM row for visual inspection of their distribution.

Iso statistic (ISO) : In order to quantify if the rows of the CAM show a weakly unimodal
pattern, the iso statistic (proposed by I. Molenaar, personal communication) was introduced.
Iso statistic (ISO), is a measure for the degree of unimodality violation in the rows of CAM.
ISO can be obtained for each item (ISOj) and their summation results in the total ISO for the
scale (ISOtot).

To come up with an ISO value for an item j, one should first locate the maximum in
each row of the CAM. If we index m∗ the maximum in row j of CAM, the ISO measures
deviations from unimodality to the left and right of m∗, i.e.

ISOj = ∑
h≤k≤m∗

max
(

0, CAMjh −CAMjk

)
+ ∑

m∗≤h≤k
max

(
0, CAMjk −CAMjh

)
. (8)

The total ISO statistic for a scale consisting of m items is calculated as the sum of the
individual ISO statistics, i.e. ISOj’s, i.e. ISOtotal = ∑m

j=1 ISOj. The ISO statistic, both for an
item or for the scale, is zero if the unimodality in row j of the conditional adjacency matrix
is not disturbed and positive if disturbances in unimodality occur in row j.

The user can calculate the ISO statistic using the function ISO(), which takes as input
outputs either from the mudfold() function, or from the function CAM() and returns a vector
with the ISOj’s for each j ∈ {1, 2, . . . , m} or the sum of this vector if type = 'scale'.

All the diagnostic tests discussed in this section are implemented in the function
diagnostics() of the mudfold package. The function diagnostics() can be used with
fitted objects from the main mudfold() function.

Uncertainty estimates for MUDFOLD statistics

Since the sampling distributions of the MUDFOLD’s goodness-of-fit and diagnostic statistics
are non-standard, calculating their standard errors is not straightforward. Instead, for pro-
viding uncertainty estimates of the MUDFOLD statistics both at the item and the scale level,
nonparametric bootstrap is used (Efron et al., 1979). Bootstrap is a resampling technique
that can be used for assessing uncertainty in instances when statistical inference is based on
complex procedures. With bootstrapping we sample R times n samples with replacement
from a dataset of size n. The bootstrap samples of the statistic obtained from R iterations are
then used to approximate the sampling distribution of the statistic.

Given a MUDFOLD scale s, statistics for items such as the Oj (s), EOj (s), Hj (s), and
the total scale such as the Ototal, EOtotal, Htotal are bootstraped R times. The bootstrap
procedure implemented in mudfold depends on the function boot() from the R package
boot (Canty and Ripley, 2017). Using the boot package allows the user of mudfold package
to obtain different types of confidence intervals for assessing uncertainty using the function
boot.ci().

Additional to the uncertainty estimates, a bootstrap estimate of the unfolding scale can

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 59

be also calculated. This estimate corresponds to the most frequently obtained MUDFOLD
scale in R bootstrap iterations. In many instances the bootstrap estimate will coincide with
MUDFOLD scale obtained by the item selection algorithm. When the two estimates are
different the bootstrap scale estimate can be used to correct the MUDFOLD scale after
assessing its properties carefully.

Nonparametric estimation of person ideal points

With MUDFOLD, after obtaining an item ordering (scale) that consists of a (sub) set of
m items, m ≤ N, one can estimate in a nonparametric way subject locations on a latent
continuum. Two nonparametric estimators can be used with slightly different properties
both based on the Thurstone (1927, 1928) estimator for the measurement of attitudes.

Originally, the Thurstone estimator θ̂
β
i of the i-th respondent location parameter given a

vector of known item location parameters β = (β1, β2, . . . , βm)
ᵀ was defined as,

θ̂
β
i =

∑m
j=1 β jxij

∑m
j=1 xij

, (9)

where xij is the response of person i on item j. The parameter estimate θ̂
β
i for each i takes

values within the item parameter range. In MUDFOLD however, the item parameters
vector β is unknown, thus we need to estimate it. In order to do so, we make use of two
alternative estimates for β’s proposed by Van Schuur (1988) and Johnson (2006), respectively.
The former uses item ranks as approximations of the item locations while latter uses item
quantiles.

Van Schuur’s person parameter estimator uses the item ranks obtained from MUD-
FOLD’s item selection algorithm as estimates for the vector β = (β1, β2, . . . , βm)

ᵀ. Since
MUDFOLD estimates only the rank order of the parameter vector, i.e. r = (r1, r2, . . . , rm)

ᵀ

one can define a rank estimate
β̂r

j = rj, (10)

where rj is the rank of the item j on the MUDFOLD scale. By using the estimated ranks
as approximations of the parameter vector we can estimate a respondent’s location as the
mean of the endorsed item ranks. That is,

θ̂r
i =


∑m

j=1 rjxij

∑m
j=1 xij

, if ∑m
j=1 xij > 0

undefined, if ∑m
j=1 xij = 0.

(11)

Alternatively Johnson’s quantile estimator bounds both estimates for θ’s and β’s within
a unit interval. This estimator uses the item ranks divided by the length of the scale
m as approximations for the β vector. In all the estimators described in this section, no
estimates can be defined for individuals with total score X+

i = ∑m
j=1 xij equal to zero. These

individuals are not endorsing any item and therefore provide no information whether they
belong to the extreme right of the scale or to extreme left. The user of the package mudfold
can choose between Van Schuur’s and Johnson’s estimators for obtaining persons scores on
the factors.

Missing values

Missing data occur when intended responses from one or multiple persons are not provided.
Handling missing values is critical since it can bias inferences or lead to wrong conclusions.
One way to go is to ignore the missing observations by applying list-wise deletion. This,
however, can lead to a great loss of information especially if the number of missing values
is large. The other approach, is to replace the missing values with actual values which is
called imputation.

In the case of random missing value mechanisms such as missing completely at random

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 60

(MCAR) and missing at random (MAR) (Rubin, 1976; Little and Rubin, 1987), different
approaches can be used in order to impute the missing observations. Imputation within IRT
is in general associated with more accurate estimates of item location and discrimination
parameters under several missing data generating mechanisms (Sulis and Porcu, 2017). In
the package mudfold missing values can be imputed using the logistic regression version of
multiple multivariate imputation by chained equations (MICE). The latter is available from
the R package mice. MICE imputation within mudfold can be used solely or in combination
with bootstrap uncertainty estimates. In the latter case, each bootstrap sample is imputed
before fitting a MUDFOLD scale, while in the former the data are imputed M times and the
results are averaged across the M datasets.

The mudfold package

The R package mudfold contains a collection of functions related to the MUDFOLD item
selection algorithm. In the following we describe the functionality of the package and the
ANDRICH dataset is used for demonstration purposes.

Description of the functions mudfold() and as.mudfold()

The main function of this package, called mudfold(), fits Van Schuur’s item selection algo-
rithm to binary data in order to obtain a unidimensional ordinal scale for the persons. The
mudfold() function can be called with,

mudfold(data, estimation, lambda1, lambda2, start.scale,
nboot, missings, nmice, seed, mincor, ...)

The functions has ten main arguments where only the first one is obligatory. These are:

data: The input data, i.e. a n× N data.frame or matrix, with persons in the rows and
items in the columns. It contains the binary responses of n individuals on N items. .

estimation: This argument handles the nonparametric estimation of the person parameters.
The default, estimation = "rank" uses a rank based estimator (Van Schuur, 1988).
Alternatively, person parameters are obtained by a quantile estimator (Johnson, 2006),
which is accessible by setting estimation = "quantile".

lambda1: The parameter λ1, 0 ≤ λ1 ≤ 1 is a user specified lower bound for scalability
criteria that are used in MUDFOLD’s item selection algorithm. In the default setting,
λ1 = 0.3. Large values of λ1 lead to more strict criteria in the item selection procedure.

lambda2: Parameter λ2,−∞ < λ2 ≤ 1 is a lower bound explicitly used at the first scalability
criterion of the second step (default λ2 = 0).

start.scale: The user can pass to this argument a character vector of length greater than
or equal to three, containing ordered item names from colnames(data) that are used
as the best elementary scale for the second step of the item selection algorithm. If
start.scale = NULL (default), the first step of the item selection algorithm determines
the best elementary triple of items that is extended in the second step.

nboot: Argument that controls the number of bootstrap iterations. If nboot = NULL (default)
no bootstrap is applied.

missings: Argument that controls treatment of missing values. If missings = "omit"
(default) list-wise deletion is applied to data. If missings = "impute" then the mice
function is applied to data in order to impute the missings nmice times.

nmice: Argument that controls the number of mice imputations (This argument is used
only when missings = "impute" and nboot = NULL.

seed: Argument that is used for reproducibility of bootstrap results.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 61

mincor: This can be scalar, numeric vector (of size ncol(data)) or numeric matrix (square,
of size ncol(data) specifying the minimum threshold(s) against which the absolute
correlation in the data is compared. See ?mice:::quickpred for more details. To be
used when mice becomes problematic due to co-linear terms.

... : Additional arguments to be passed into the boot() function (see ?boot in R).

The function mudfold() internally has four main steps. A data checking step, the first
step of the item selection process, the second step of the item selection process, and the
bootstrap step if the user chooses this option. The output of mudfold(), is a list() of class
"mdf" that contains information for each internal step of the function. The first element of
the output list contains information on the function call. The second element contains results
of the data checking step. The next element of the output contains descriptive statistics
obtained from the observed data and the last element of the output has all the information
from the the fitting process (triple statistics, first step, second step). If bootstrap is applied to
estimate uncertainty , an additional element that contains the bootstrap information is given
to the output.

For example, if you want to fit a MUDFOLD scale to the ANDRICH data and run a non-
parametric bootstrap with R = 100 iterations in parallel, you can specify it directly into the
mudfold() function as follows.

fitANDRICH <- mudfold(ANDRICH, nboot = 100, parallel = "multicore", seed = 1)

In the example above, the first two arguments are core in the mudfold() function. The
third argument parallel is an argument of the boot() function that runs bootstrapping in
parallel fashion in order to reduce computational time. The last argument seed is used to
ensure reproducibility of the bootstrap results.

In some cases the unfolding scale could be known. In these instances, the user is
interested in obtaining the MUDFOLD goodness-of-fit and diagnostic statistics for the given
scale. The function as.mudfold() can be used for treating the given rank order of the items
as a MUDFOLD scale. The function uses only the first two arguments of the mudfold()
function. In principle, this function transforms a given scale into an S3 class "mdf" object.

Description of the generic functions

For "mdf" objects from the mudfold() or as.mudfold() functions, generic functions for
print(), summary() and plot() and coef() are available. The generic function print.mdf()
can be accessed with,

print(x)

where x is an "mdf" class object. This function prints information for x, such as time elapsed
for fitting, warnings from the data checking step, convergence for each step of the algorithm
and statistics with bootstrap confidence intervals if nboot is not equal to NULL.

In the ANDRICH data example, the command print(fitANDRICH) is used to print informa-
tion from the fitANDRICH object to the console. The function call together with the elapsed
time to fit the model, the number of individuals, and the number of items used in the analysis
is the first part of the output. Next, the values of the mudfold() arguments are given, which
are followed by convergence indicators for each step of the item selection algorithm. Scale
statistics such as the scalability coefficient and the ISO statistic are also printed together with
their percentile confidence intervals obtained in 1000 bootstrap iterations. The summary of
the bootstrap iterations finalize the output when printing the fitANDRICH object.

The function summary is a generic function that is summarizing information from model
fitting functions. In our case the output of summary.mdf() is a list object summarizing results
from the mudfold() function. The function can be called via

summary(object, boot, type = "perc", ...)

and consists of three arguments:

object: a list of class "mdf", output of the mudfold() function.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 62

boot: logical argument that controls if bootstrap confidence intervals and bootstrap sum-
mary for each coefficient will be returned. If boot = FALSE (default) no information for
bootstrap is returned. When boot=TRUE, confidence intervals, standard errors, biases,
calculated from the bootstrap iterations for each parameter are given with the output.

type: The type of bootstrap confidence intervals to be calculated if the argumnet boot
= TRUE. Available options are "norm", "basic", "perc" (deafult), and "bca". See the
argument type of the boot.CI() for details.

The output of the summary.mdf() is a list with two main components. The first component
of the list is a data.frame with scale statistics and the second component is a list with item
statistics.

Typing summary(fitANDRICH,boot = TRUE) into the R console will return the summary
of the fitted scale to the ANDRICH data. The output consists of six distinct data.frame objects.
The first data.frame contains information on scale statistics with their bootstraped statistics.
The next four data.frame objects correspond to the H coefficients, the ISO statistics, the
observed errors, and the expected errors for each item in the scale together with their
bootstrap summary statistics. The last data.frame gives descriptive statistics for the items
in the scales.

A generic function for plotting S3 class "mdf" objects is also available to the user. The
function plot.mdf() returns empirical estimates of the IRFs, the order of the items on the
latent continuum or a histogram of the person parameters . You can plot "mdf" class objects
with the following R syntax.

plot(x, select = NULL, plot.type = "IRF")

This function consists of three arguments from which the first is the usual argument x which
stands for the "mdf" object to be plotted. The argument plot.type controls the type of
plot that is returned, and three types of plots are available. If plot.type = "scale", a
unidimensional continuum with the items in the obtained rank order is returned. In the
default settings of this function (i.e. plot.type = "IRF"), the corresponding plot has the
items on the x-axis indicating their order on the latent continuum and the probability of
a positive response on the y-axis. The IRF of each item among the latent scale is plotted
with different colours. When plot.type = "IRF" will return a plot with the distribution of
person parameters on the latent continuum. The argument select is optional and provides
the possibility for the user to plot a subset of items. The user can provide in this argument
a vector of item names to be plotted. If select = NULL, the function returns the estimated
IRFs for all items in the obtained MUDFOLD scale. For plotting S3 class "mdf" objects, we
use the functions na.approx(), melt() and ggplot() from the R packages zoo (Zeileis and
Grothendieck, 2005), reshape2 (Wickham, 2007), and ggplot2 (Wickham, 2009), respectively.

A generic coef.mdf() function for S3 class "mdf" objects can also be used. This function
is a simple wrapper that uses a single argument named 'type'. The coef.mdf() will extract
nonparametric estimates of: persons ranks when type = "persons", item ranks when type
= "items", or both when type = "all" from a fitted MUDFOLD object.

The diagnostics() function

After a scale has been obtained, scale diagnostics need to be applied is order to assess
its unfolding properties. The MUDFOLD diagnostics described in section 2.4 of this pa-
per are implemented into a function named diagnostics() that can calculate all of them
simultaneously. The function syntax is,

diagnostics(x, boot, nlambda, lambda.crit, type, k, which, plot)

and uses eight arguments described below.

x: a list of class "mdf", output of the mudfold() function.

boot: logical argument that controls if bootstrap confidence intervals and summary for
the H coefficients and the ISO and MAX statistics will be returned. If boot = FALSE
(default) no information for bootstrap is returned. When boot = TRUE, confidence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=zoo
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 63

intervals, standard errors, biases, calculated from the bootstrap iterations for each
diagnostic are given with the output.

nlambda: The number of regularization parameters to be used in cv.glmnet() function
when testing local independence.

lambda.crit: String that specifies the criterion to be used by cross-validation for choosing
the optimal regularization parameter. Available options are "class" (default), "de-
viance", "auc", "mse", "mae". See the argument 'type.measure' in the cv.glmnet()
function for more details.

type: The type of bootstrap confidence intervals to be calculated if the argumnet boot
= TRUE. Available options are "norm", "basic", "perc" (deafult), and "bca". See the
argument type of the boot.CI() for details.

k: The dimension of the basis in the thin plate spline that is used when testing for IRF
unimodality. The default value is k = 4.

which: Which diagnostic should be returned by the function. Available options are "H",
"LI", "UM", "ISO", "MAX", "STAR", "all" (default).

plot: Logical. Should plots be returned for the diagnostics that can be plotted? Default
value is plot = TRUE.

For the ANDRICH data example the command diagnostics(fitANDRICH) will calculate and
plot the scale diagnostics for the fitANDRICH object.

Unfolding data simulation and description of the mudfoldsim() function

In order to provide the user the flexibility of simulating unfolding data, the function
mudfoldsim() is available from the mudfold package. The responses of subjects on dis-
tinct items are simulated with the use of a flexible parametric IRF that generalizes proximity
relations between item and person parameters.

Assume that we want to simulate a test dataset with responses from n individuals
indexed by i = 1, 2, . . . , n on N proximity items (indexed by j) with latent parameters θi and
β j respectively. The vector of item parameters β = (β1, . . . , βN)

ᵀ is drawn at random from a
standard normal distribution. For the person parameters, the user can choose if they will
follow a standard normal distribution, or they will be drawn uniformly in the range of item
parameters. Simulating person parameters from a standard normal distribution may imply
that a number of individuals are located too far to the left or right of the most extreme items
(due to sampling variation). These subjects will not agree with any item. These responses
are not useful in unfolding analysis since no discriminant information is provided for the
items in the scale. The user of mudfold package is free to include or exclude such type of
responses.

Unfolding models are also known as distance models since they model the probability
of positive endorsement of item j from individual i as a function of the proximity between
θi and β j. We consider a linear transformation τij of the squared difference d2

ij =
(
θi − β j

)2

given by τij = γ1 + γ2d2
ij, where the parameters γ1 (deterministic parameter) and γ2

(discrimination parameter) are fixed.

Using τij with the standard logistic function one obtains a parametric IRF f
(
τij
)
= 1

1+e−τij
.

Consequently, the positive binary response of individual i on item j can be considered as
the outcome of a Bernoulli trial with “success" probability 1/

(
1 + e−τij

)
. Hence, the item

response variables Xij that contain binary responses from n individuals on N items, follow
a Bernoulli distribution according to,

Xij ∼ Bernoulli
(

1
1 + e−τij

)
for i = 1, . . . , n, j = 1, . . . , N. (12)

In mudfoldsim() function, the model parameters γ (.) are user specified with default settings
γ1 = 5 and γ2 = −10 respectively. This specific set up of the model parameters produces

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 64

nearly deterministic response curves for the subjects which in turn guarantees that the
number of observed errors is small.

We note that the IRF proposed by Andrich (1988) is a special case of the one implemented
in the mudfoldsim() function for γ1 = 0 and γ2 = −1. This parametric simulation method
is implemented in a flexible R function available from the mudfold package. This function
consists of several arguments that allow the user to control the unfolding properties of the
simulated data. The function in its default settings can be called easily with the following
syntax,

mudfoldsim(N, n, gamma1 = 5, gamma2 = -10, zeros = FALSE, parameters = "normal",
seed = NULL)

and makes use of six user-specified arguments:

N: An integer corresponding to the number of items to be simulated.

n: The number of persons to be simulated.

gamma1: This argument is passed to the IRF. Controls the γ1 or discriminative parameter of
the IRF. The higher the parameter the larger the number of items that individuals tend
to endorse if parameter γ2 is kept constant.

gamma2: The deterministic parameter (i.e. γ2) of the IRF. As the value of this parameter
decreases, individuals tend to make less “errors” in their responses (i.e. their responses
are more in line with the unfolding scale).

zeros: A logical argument that controls if individuals who endorse no items will be
simulated. If zeros=TRUE the function allows for individuals that are not endorsing
any of the items. On the other hand, if zeros=FALSE (default) only individuals who
endorse at least one item will be part of the simulated data.

parameters: Argument for the person parameters with two options available. In the default
option parameters="normal" and in this case the person parameters are drawn from a
standard normal distribution. On the other hand, the user can set this argument equal
to "uniform" which implies that subject parameters will be drawn uniformly in the
range of the item parameters.

seed: An integer to be used in the set.seed() function. If seed=NULL (default), then the
seed is not set.

The output of the mudfoldsim() function is a list containing the simulated data (in a
random item order), the parameters used in the IRF, and the matrix of probabilities under
which the binary data has been sampled.

Description of the pick() function

Since the main mudfold() function is designed for dichotomous (binary) items, we provide
the user with the function pick(). The latter, is used to transform quantitative or ordinal type
of variables into a binary form. The underlying idea of this function is that the individual
selects those items with the highest preference. This transformation can be done in two
different ways, either by user specified cut-off value(s) or by assuming a pick K out of N
(individuals are asked to explicitly pick K out of N items) response process, where each
response vector consists of the K highest valued items. Dichotomization is performed
row-wise by default, however the user can also perform the transformation column-wise.

The R function pick() can be utilized with the following code,

pick(x, k = NULL, cutoff = NULL, byItem = FALSE)

and makes use of four parameters. These are,

x: A data.frame or matrix with persons in the rows and items in the columns contain-
ing quantitative or ordinal type of responses from n individuals/raters on N items.
Missing values are not allowed.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 65

k: This integer (1 ≤ k ≤ N) controls the number of items a person can pick (default k=NULL).
This argument is used if one wants to transform the data into pick K out of N form. If
the parameter k is provided by the user, then cutoff should be NULL and vice verca.

cutoff: The numeric value(s) that will be used as thresholds for the transformation (default
cutoff=NULL). Any value greater than or equal to the cutoff will be 1 and 0 otherwise.
The length of this argument should be equal to 1 (indicating same threshold for all
rows of x) or equal to n (when byItem=FALSE) which imposes an explicit cut-off value
for each individual in x. If byItem=TRUE then the length of this parameter should be 1
(global cut-off value) or N (explicit cut-off per item).

byItem: This is a logical argument. If byItem=TRUE, the transformation is applied on the
columns of x. In the default byItem=FALSE, the function "picks" items row-wise.

In the default parameter settings of the function pick(), the parameters k and cutoff
respectively are equal to NULL. In this case, the mean from N responses is used as a person-
specific cut-off value (if byItem=FALSE). When byItem=TRUE (with k,cutoff equal to NULL)
then the item mean over all individuals is used as an item specific cut-off value. The
parameters k and cutoff are responsible for different dichotomization processes and they
cannot be used simultaneously, which means that only one of the two arguments can be
different than NULL.

In the case in which the user chooses to transform the data assuming that persons are
asked to pick exactly K out of N items, ties can occur. If xi is a response vector subject to
transformation, in which ties exist, then we select among the tied items at random.

Generally, dichotomization should be avoided since it could distort the data structure and
lead into information loss. Models that take into account information different categories
should be prefered over dichotomization for polytomous data.

Applications

In this section we provide examples of how to use MUDFOLD method on two datasets,
which are provided with the mudfold package. The first application is from the field of
psychometrics while the second example is a linguistic application.

The commands install.packages("mudfold") and library(mudfold) will download,
install and load the mudfold package so it can be used. The command set.seed(1) will set
the seed for reproducibility.

Loneliness data

In order to demonstrate the functionality of the mudfold package we re-analyze question-
naire data following the strategy suggested by Post et al. (2001). For this purpose, we use
a unidimensional measurement scale for loneliness that follows the definitions of a Rasch
scale and has been constructed by de Jong-Gierveld and Kamphuls (1985). De Jong-Gierveld
loneliness scale consists of eleven items, five of which are positive and six are negative. The
items in the loneliness scale are given below and the sign next to the items corresponds to
the item content.

A: There is always someone I can talk to about my day to day problems +
B: I miss having a really close friend -
C: I experience a general sense of emptiness -
D: There are plenty of people I can lean on in case of trouble +
E: I miss the pleasure of company of others -
F: I find my circle of friends and acquaintances too limited -
G: There are many people that I can count on completely +
H: There are enough people that I feel close to +
I: I miss having people around -
J: Often I feel rejected -
K: I can call on my friends whenever I need them +

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 66

Each item in the scale has three possible levels of response, i.e. “no", “more or less",
“yes" and dichotomization methods that involve item reverse coding have been proposed by
De Jong and van Tilburg (1999). These methods as well as the determination of dimensional-
ity of this scale have been under critical discussion. Following this discussion, Post et al.
(2001) reanalyzed the loneliness scale data obtained from the NESTOR study (Knipscheer
et al., 1995) using MUDFOLD in a three step analysis routine.

Persons with missing responses are removed from the data (nmiss = 69). The dataset with
the complete responses is included in the R package mudfold in R data format. List-wise
deletion in this case yields identical results with MICE imputation. Following the routine
suggested by Post et al. (2001) responses of each subject are dichotomized setting “yes”
versus “no” and “more or less”.

The threshold that is used for the main analysis has been determined on the basis of
MUDFOLD scale analysis on datasets with different thresholds. Specifically, the data has
been dichotomized using as thresholds the response, (i) “yes”, (ii) “more or less”, (iii)
different thresholds per item where the response category “more or less” is collapsed with
the smaller category between “yes” and “no”. The results from this analysis showed that
dichotomizing the data at the higher preference will yield the best unfolding measurement
scale for loneliness.

Dichotomizing the data at “yes” is straightforward with the pick() function.

data("Loneliness")
dat <- pick(Loneliness, cutoff = 3)

In the first step of the analysis, we conduct a MUDFOLD scale search on the transformed
binary responses of n = 3987 individuals on N = 11 items. The λ1 parameter in the
mudfold() function is set to λ1 = 0.1 since the default value leads to a minimal scale of
length three.

Lonelifit <- mudfold(dat, lambda1 = 0.1, nboot = 100, seed = 1)

The function takes about five minutes to run 100 bootstrap iterations. The resulting scale
and its associated statistics can be obtained by summarizing the Lonelifit object.

loneliSummary <- summary(Lonelifit, boot = TRUE)

The MUDFOLD scale for the Loneliness data in its estimated rank order is:

loneliScale <- loneliSummary$ITEM_STATS$ITEM_DESCRIPTIVES$items
loneliScale
"G" "H" "D" "K" "C" "E" "I" "F"

The scale has length eight, with the first four items positively formulated and the last
four negatively formulated. Items A,B, and J are excluded from the scale. This is because
some triples (with respect to the item rank order) that include these items have scalability
coefficient Hhjk lower than λ2. Statistics for the resulting MUDFOLD scale and each item
explicitly can be accessed directly from the summary object loneliSummary. Scale statistics
with their bootstrap uncertainty estimates can be obtained with the following command.

loneliSummary$SCALE_STATS[1:3,]
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
H(scale) 0.536 0.436 0.571 0.511 -0.025 0.031 100
ISO(scale) 0.078 0.001 1.753 0.384 0.306 0.459 100
MAX(scale) 0.000 0.000 2.400 0.381 0.381 0.683 100

The output above, in each row shows a scale statistic and its columns correspond to the
bootstrap properties of this statistic. The H coefficient for the scale shows strong evidence
towards unidimensionality (Htotal (s) ≈ 0.54, se = 0.031), the ISO statistic is low (ISOtotal ≈
0.08, se = 0.459) denoting small amount of violations of the manifest unimodality, and the
MAX statistic is zero (se = 0.683) meaning no violations of the stochastic ordering.

Scale diagnostics are given in Figure 1 and 2. Visual inspection if the maxima of the CAM
rows are a nondecreasing function of the item ranks, violations of the local independence
assumption, and the IRF for each item in the Loneliness unfolding scale can be obtained by
using the diagnostics() function as shown below.

par(mfrow = c(1, 2))
testing for local independence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 67

Local Independence

G

H

D

K

C

E

I

F

G H D K C E I F

C
ol

um
n

in
de

x

Row index

Moving maxima

G

H

D

K

C

E

I

F

G H D K C E I F

C
ol

um
n

in
de

x
Row index

Figure 1: Left hand side: Red squares
in the lower triangular part of the ma-
trix represent pairs of conditionally de-
pendent items. Right hand side: Red
squares represent the position of the ob-
served maxima in the CAM rows for the
Loneliness unfolding scale.

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for G

Theta

P
(

G
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for H

Theta

P
(

H
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for D

Theta

P
(

D
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for K

Theta

P
(

K
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for C

Theta

P
(

C
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for E

Theta

P
(

E
 =

 1
 |

T
he

ta
)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for I

Theta

P
(

I =
 1

 |
T

he
ta

)

1 3 5 7

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for F

Theta

P
(

F
 =

 1
 |

T
he

ta
)

Figure 2: The estimated item response function for each item
in the Loneliness unfolding scale.

diagnostics(Lonelifit, which = "LI")
visual inspection of moving maxima
diagnostics(Lonelifit, which = "STAR")
par(mfrow=c(2,4))
visual inspection for IRF unimodality
diagnostics(Lonelifit, which = "UM")
par(mfrow = c(1, 1))

The H coefficients for each item in the scale are also available in the summary object and
can be accessed by:

loneliSummary$ITEM_STATS$H_MUDFOLD_items
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)

H(G) 0.54 0.444 0.573 0.510 -0.034 0.035 96
H(H) 0.52 0.440 0.543 0.495 -0.027 0.025 72
H(D) 0.51 0.400 0.553 0.498 -0.015 0.032 65
H(K) 0.51 0.440 0.554 0.495 -0.016 0.025 60
H(C) 0.55 0.404 0.590 0.513 -0.041 0.049 76
H(E) 0.57 0.491 0.610 0.555 -0.016 0.029 78
H(I) 0.55 0.493 0.586 0.541 -0.011 0.022 47
H(F) 0.52 0.349 0.546 0.464 -0.057 0.058 84

From the item fit we can see that the H coefficient for each item in the scale is above 0.5
which means that all the items are scalable together. Looking at the column boot(iter)
of the output above you can get information for the number of times each item was in-
cluded in a MUDFOLD scale out of R = 100 bootstrap iterations. The item G was the
most frequently included item (96%) while the items K,I were included less frequently
in a MUDFOLD scale compared to the other items (60% and 47% respectively). Typing
loneliSummary$ITEM_STATS$ISO_MUDFOLD_items into the R console will return a summary
of the ISO statistic for each item in the scale. The latter, shows that only small violations of
unimodality occur for the items in the scale. The same holds for the MAX statistic (it can be
accessed by loneliSummary$ITEM_STATS$MAX_MUDFOLD_items), which shows zero values for
all the items in the scale.

After the scale is obtained and checked for its conformity to the unfolding principles
we can visualize the estimated empirical IRFs and the distribution of the estimated person
parameters. Plots for the IRFs and the person parameters can be obtained by:

plot(Lonelifit,plot.type = "IRF")
plot(Lonelifit,plot.type = "persons")

Figures 3 and 4 show the empirical estimates of the IRFs and the distribution of the person
parameters respectively. In figure 3 you can see that the scale clearly consists of four
positively formulated items in its beginning for which the IRF is decreasing as one moves
from the left to the right of the scale, and four negatively formulated items in the end for
which the IRF is increasing as one moves from the left to the right of the scale. In figure 4 we
can see that the sample under consideration tends to feel less lonely since the distribution

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 68

0.25

0.50

0.75

G H D K C E I F

Latent scale

P
ro

ba
bi

lit
y

of
 p

os
iti

ve
 r

es
po

ns
e Items

G

H

D

K

C

E

I

F

Empirical Estimates for Item Response Curves

Figure 3: MUDFOLD’s empirical estimates of the
IRFs for the Loneliness unfolding scale.

0.0

0.2

0.4

G H D K C E I F

Latent scale

Distribution of θ's (person parameters) on the latent scale

Figure 4: The distribution of the estimated person
ranks for the Loneliness unfolding scale.

of the person parameters is skewed to the right. In such example, clearly any parametric
model that assumed a latent normal distribution of the latent person parameters would be
inappropriate.

Plato’s seven works data

In this section, we present an application of MUDFOLD method to the Plato7 data set. This
dataset is available from the R package smacof (de Leeuw and Mair, 2009) and has been
also included in the mudfold package. The data can be loaded into the R environment with
the command data("Plato7").

Plato7 contains information on the quantity distribution over the sentence ending from
seven works of Plato (D. R. Cox, 1959). Specifically, the last five syllables from each sentence
in seven Plato’s works are extracted and categorized as short or long. This produces 25 = 32
possible combinations of short-long syllables of length five, which are called clausulas and
can be used to identify rhythmic changes in the literary style. The quantity of the clausulas
in each work of Plato is recorded in terms of proportions.

The question is whether it is possible using these data to assign a chronological order
to the works of Plato. Particularly, it is known that Plato wrote first the Republic and last
the Laws. In between Republic and Laws, Plato wrote the Critias, Philebus, Politicus,
Sophist and Timaeus. However, the exact order of these five works is unknown. Assuming
that the change in Plato’s literary style was monotone in time, we might be able to assign a
time order in his works by analyzing the clausula’s distribution in each Plato’s work.

We consider the development of Plato’s literary style as a unidimensional scale, on which
clausulas and works are ordered. In this analysis we consider that the quantity of clausula
i in Plato’s work j will be governed by a proximity relation. That is, each clausula with a
parameter θi on a latent literary style continuum tends to prefer (appear most frequently in)
the works of Plato with parameters β j close to θi.

Since the data is given in continuous form, we transform the percentages into binary
format in order to apply MUDFOLD. We consider the mean quantity of each clausula as
an explicit cut-off value for the transformation. The latter can be seen as a pick any out of
N response process where the number of items “picked” varies across subjects. We can
apply the transformation with the function pick() from the mudfold package in its default
settings as follows.

dat.Plato <- pick(Plato7)

After the transformation, we end up with a matrix containing the binary preferences of
n = 32 clausulas on N = 7 works of Plato. Now we can fit a MUDFOLD scale (with
bootstrap for assessing parameter uncertainty) to the transformed data with the default
search settings and study its summary.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=smacof

CONTRIBUTED RESEARCH ARTICLES 69

fitPlato <- mudfold(dat.Plato, nboot = 100, seed = 1)
summaryPlato <- summary(fitPlato, boot = TRUE)

We can check the MUDFOLD scale from the summary object.
summaryPlato$SCALE_STATS[1:3,]
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
H(scale) 0.558 0.457 1.000 0.714 0.156 0.146 100
ISO(scale) 0.146 0.000 1.129 0.141 -0.005 0.254 100
MAX(scale) 0.000 0.000 0.850 0.035 0.035 0.191 100

The scale shows strong scalability properties with Htotal(s) = 0.56, and low ISO statistic
(ISOtotal = 0.15). Since the scale is strong, the next step is to check the rank order of the
items in the MUDFOLD scale and their scalability properties.
summaryPlato$ITEM_STATS$H_MUDFOLD_items
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
H(Republic) 0.66 0.362 1 0.761 0.097 0.179 70
H(Sophist) 0.41 0.381 1 0.656 0.241 0.157 70
H(Politicus) 0.58 0.392 1 0.662 0.078 0.161 62
H(Philebus) 0.63 0.429 1 0.726 0.094 0.141 83
H(Laws) 0.51 0.394 1 0.688 0.176 0.148 77

The results shows that the MUDFOLD scale has length five and the items Critias and
Timaeus have been excluded from the measurement process. Republic is correctly ordered
first and Laws is correctly ordered last among Plato’s works. Almost all the items are strong
unfolding items with Hj (s) higher than 0.5 which means that the items are scalable together
in one dimension. The item Sophist shows moderate unfolding strength with the lowest
item scalability coefficient (i.e. Hj (s) = 0.41) while the item Republic is the strongest
unfolding item in the scale.

Since the ISO statistic for the scale is positive one may wants to check which items
are responsible for the small amount of manifest unimodality violations that are observed.
Assessing these violations for each item involves checking their ISO statistics.
summaryPlato$ITEM_STATS$ISO_MUDFOLD_items
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
ISO(Republic) 0.104 0 0.365 0.036 -0.068 0.076 74
ISO(Sophist) 0.042 0 0.326 0.039 -0.003 0.078 70
ISO(Politicus) 0.000 0 0.082 0.005 0.005 0.018 65
ISO(Philebus) 0.000 0 0.576 0.027 0.027 0.117 87
ISO(Laws) 0.000 0 0.186 0.019 0.019 0.067 78

The obtained summary output for the ISO statistics of the items in the MUDFOLD scale show
that Republic is the item with the higher manifest unimodality errors in its estimated IRF
with an iso statistic value of 0.1. The higher uncertainty is observed for the item Philebus
that shows a bootstrap standard error of 0.1.

The estimated empirical IRFs and the estimated IRFs for the items in the Plato7 unfolding
scale can be visualized with

plot(fitPlato, plot.type = "IRF")
par(mfrow = c(2, 3))
diagnostics(fitPlato, which = "UM")
par(mfrow = c(1, 1))

and the output is shown in figures 5 and 6 respectively. From figure 5 it can be seen that the
scale consists of two items in the first positions (i.e. Republic and Sophist) with decreasing
empirical IRFs as one moves from the left to the right hand side of the latent scale. These
two items show small amount of manifest unimodality violations which can be seen at the
end of their IRFs where the value of the curves is larger for the item Laws compared to item
Philebus. Third in the scale is the item Politicus for which the empirical IRF shows a
single-peak shape. Politicus is followed by the items Philebus and Laws with increasing
empirical IRFs at positions four and five of the scale. The estimates of the IRFs are shown in
figure 6 with no obvious violations of the IRF unimodality.

Other diagnostics can be obtained by the diagnostics() function. In this example the
bootstrap estimate of the scale with the estimated MUDFOLD scale are slightly different. In
such instances an additional element with a summary of the scale estimated by the bootstrap
is included in the output. Accessing the summary of the bootstrap scale is straightforward
with summaryPlato$BOOT_SCALE.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 70

0.2

0.4

0.6

0.8

Republic Sophist Politicus Philebus Laws

Latent scale

P
ro

ba
bi

lit
y

of
 p

os
iti

ve
 r

es
po

ns
e

Items

Republic

Sophist

Politicus

Philebus

Laws

Empirical Estimates for Item Response Curves

Figure 5: MUDFOLD’s empirical esti-
mates of the IRFs for the items in the
Plato7 unfolding scale.

1.0 2.0 3.0 4.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for Republic

Theta

P
(

R
ep

ub
lic

 =
 1

 |
T

he
ta

)

1.0 2.0 3.0 4.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for Sophist

Theta

P
(

S
op

hi
st

 =
 1

 |
T

he
ta

)

1.0 2.0 3.0 4.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for Politicus

Theta

P
(

P
ol

iti
cu

s
=

 1
 |

T
he

ta
)

1.0 2.0 3.0 4.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for Philebus

Theta

P
(

P
hi

le
bu

s
=

 1
 |

T
he

ta
)

1.0 2.0 3.0 4.00.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated IRF for Laws

Theta

P
(

La
w

s
=

 1
 |

T
he

ta
)

Figure 6: MUDFOLD’s estimates of the IRFs for the items in
the Plato7 unfolding scale.

Summary

In this paper we introduced an R package named mudfold (Balafas et al., 2019). The latter
is available under general public license (GPL ≥ 2) from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=mudfold. This package imple-
ments a nonparametric item response theory model for unfolding proposed by Van Schuur
(1984, 1988) and further developed by Post (1992) (see also Johnson (2006)).

The mudfold package is an addition to a broad family of R packages that fit IRT models.
The approach described here is an additional exploratory and validation method when
fitting such models. Moreover it adds to the package mokken for the case in which proximity
item response data needs to be analysed.

Looking to the future our focus will be on extending the functionality of this package. In
detail, we aim on the implementation of a more efficient item selection algorithm which can
reduce the computational cost implied from the old fashioned iterative algorithm presented
here when the sample size and item number are significantly increasing. Methodologies
for handling multicategory type of items (Van Schuur, 1984) are not yet implemented
in the package, however, we plan to extend its applicability in the future. Last but not
least, a parametric version of MUDFOLD method based on the IRF implemented in the
mudfoldsim() will offer a complete framework for the analysis of data that have been
generated under an unfolding response process.

Bibliography

D. Andrich. The application of an unfolding model of the pirt type to the measurement of
attitude. Applied psychological measurement, 12(1):33–51, 1988. URL https://doi.org/10.
1177/014662168801200105. [p52, 64]

D. Andrich. A hyperbolic cosine irt model for unfolding direct responses of persons to items.
In W. J. van der Linden and R. K. Hambleton, editors, Handbook of Modern Item Response
Theory, pages 399–414. Springer New York, New York, NY, 1997. ISBN 978-1-4757-2691-6.
URL https://doi.org/10.1007/978-1-4757-2691-6_23. [p49]

D. Andrich and G. Luo. A hyperbolic cosine latent trait model for unfolding dichotomous
single-stimulus responses. Applied Psychological Measurement, 17(3):253–276, 1993. URL
https://doi.org/10.1177/014662169301700307. [p49]

S. Balafas, W. Krijnen, and E. Wit. mudfold: Multiple UniDimensional unFOLDing, 2019. URL
https://CRAN.R-project.org/package=mudfold. R package version 1.1.2. [p49, 70]

M. Boukes and H. G. Boomgaarden. Soft news with hard consequences? introducing a
nuanced measure of soft versus hard news exposure and its relationship with political

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://CRAN.R-project.org/package=mudfold
https://doi.org/10.1177/014662168801200105
https://doi.org/10.1177/014662168801200105
https://doi.org/10.1007/978-1-4757-2691-6_23
https://doi.org/10.1177/014662169301700307
https://CRAN.R-project.org/package=mudfold

CONTRIBUTED RESEARCH ARTICLES 71

cynicism. Communication Research, 42(5):701–731, 2015. URL https://doi.org/10.1177/
0093650214537520. [p50]

S. V. Buuren, J. P. Brand, C. G. Groothuis-Oudshoorn, and D. B. Rubin. Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation,
76(12):1049–1064, 2006. URL https://doi.org/10.1080/10629360600810434. [p50]

A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2017. R package version
1.3-20. [p50, 58]

R. P. Chalmers. mirt: A multidimensional item response theory package for the R environ-
ment. Journal of Statistical Software, 48(6):1–29, 2012. URL https://doi.org/10.18637/
jss.v048.i06. [p50]

O. Chernyshenko, S. Stark, F. Drasgow, and B. Roberts. Constructing personality scales
under the assumptions of an ideal point response process: Toward increasing the flexibility
of personality measures. Psychological assessment, 19:88–106, 04 2007. URL https://doi.
org/10.1037/1040-3590.19.1.88. [p49]

Y.-J. Choi and A. Asilkalkan. R packages for item response theory analysis: Descriptions
and features. Measurement: Interdisciplinary Research and Perspectives, 17(3):168–175, 2019.
URL https://doi.org/10.1080/15366367.2019.1586404. [p50]

C. H. Coombs. A Theory Of Data. Wiley, 1964. ISBN 978-0471171140. [p49, 52]

L. B. D. R. Cox. On a discriminatory problem connected with the works of Plato. Journal of
the Royal Statistical Society. Series B (Methodological), 21(1):195–200, 1959. ISSN 00359246.
URL https://doi.org/10.1111/j.2517-6161.1959.tb00329.x. [p68]

G. J. De Jong and T. van Tilburg. Manual of the loneliness scale. Amsterdam: VU University
Amsterdam, 1999. [p66]

J. de Jong-Gierveld and F. Kamphuls. The development of a rasch-type loneliness scale.
Applied psychological measurement, 9(3):289–299, 1985. URL https://doi.org/10.1177/
014662168500900307. [p65]

J. de Leeuw and P. Mair. Multidimensional scaling using majorization: SMACOF in R. Journal
of Statistical Software, 31(3):1–30, 2009. URL https://doi.org/10.18637/jss.v031.i03.
[p68]

B. Efron et al. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1–26, 1979. URL https://doi.org/10.1214/aos/117634455. [p50, 58]

T. R. Finserås, S. Pallesen, R. A. Mentzoni, E. Krossbakken, D. L. King, and H. Molde.
Evaluating an internet gaming disorder scale using mokken scaling analysis. Frontiers
in Psychology, 10:911, 2019. ISSN 1664-1078. URL https://doi.org/10.3389/fpsyg.2019.
00911. [p49]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL
https://doi.org/10.18637/jss.v033.i01. [p56]

L. Guttman. A basis for scaling qualitative data. American Sociological Review, 9(2):139–150,
1944. ISSN 00031224. URL https://doi.org/10.2307/2086306. [p52]

R. Hänggli. Role of Dialogue in Public Opinion Formation, pages 187–222. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-26582-3. URL https://doi.org/10.1007/978-
3-030-26582-3_8. [p49]

H. Hoijtink. The measurement of latent traits by proximity items. Applied psychological
measurement, 15(2):153–169, 1991. URL https://doi.org/10.1177/014662169101500205.
[p49]

H. Hoijtink. Item response models for nonmonotone items. In K. Kempf-Leonard, editor,
Encyclopedia of Social Measurement, pages 373 – 378. Elsevier, New York, 2005. ISBN
978-0-12-369398-3. URL https://doi.org/10.1016/B0-12-369398-5/00464-3. [p49]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1177/0093650214537520
https://doi.org/10.1177/0093650214537520
https://doi.org/10.1080/10629360600810434
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1037/1040-3590.19.1.88
https://doi.org/10.1037/1040-3590.19.1.88
https://doi.org/10.1080/15366367.2019.1586404
https://doi.org/10.1111/j.2517-6161.1959.tb00329.x
https://doi.org/10.1177/014662168500900307
https://doi.org/10.1177/014662168500900307
https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.1214/aos/117634455
https://doi.org/10.3389/fpsyg.2019.00911
https://doi.org/10.3389/fpsyg.2019.00911
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.2307/2086306
https://doi.org/10.1007/978-3-030-26582-3_8
https://doi.org/10.1007/978-3-030-26582-3_8
https://doi.org/10.1177/014662169101500205
https://doi.org/10.1016/B0-12-369398-5/00464-3

CONTRIBUTED RESEARCH ARTICLES 72

M. S. Johnson. Nonparametric estimation of item and respondent locations from unfolding-
type items. Psychometrika, 71(2):257–279, 2006. URL https://doi.org/10.1007/s11336-
003-1098-9. [p50, 51, 59, 60, 70]

M. S. Johnson and B. W. Junker. Using data augmentation and markov chain monte carlo for
the estimation of unfolding response models. Journal of Educational and Behavioral Statistics,
28(3):195–230, 2003. URL https://doi.org/10.3102/10769986028003195. [p49]

S. Karlin. Total positivity, volume 1. Stanford University Press, 1968. ISBN 978-0804703147.
[p51]

C. P. Knipscheer, J. d. Jong-Gierveld, T. G. van Tilburg, P. A. Dykstra, et al. Living arrange-
ments and social networks of older adults. Amsterdam: VU University Amsterdam, 1995.
[p66]

P. Lee, S.-H. Joo, S. Stark, and O. S. Chernyshenko. Ggum-rank statement and person
parameter estimation with multidimensional forced choice triplets. Applied Psychological
Measurement, 43(3):226–240, 2019. URL https://doi.org/10.1177/0146621618768294.
[p49]

R. J. Little and D. B. Rubin. Statistical analysis with missing data. New York: Wiley, 1987,
1987. URL https://doi.org/10.1002/9781119013563. [p60]

C.-W. Liu and W.-C. Wang. A general unfolding irt model for multiple response styles.
Applied Psychological Measurement, 43(3):195–210, 2019. URL https://doi.org/10.1177/
0146621618762743. [p49]

J. Loevinger. The technic of homogeneous tests compared with some aspects of "scale
analysis" and factor analysis. Psychological bulletin, 45(6):507, 1948. URL https://doi.
org/10.1037/h0055827. [p50, 52]

G. Luo. A class of probabilistic unfolding models for polytomous responses. Journal of
Mathematical Psychology, 45(2):224 – 248, 2001. ISSN 0022-2496. URL https://doi.org/10.
1006/jmps.2000.1310. [p49]

G. Luo, D. Andrich, and I. Styles. The jml estimation of the generalised unfolding model
incorporating the latitude of acceptance parameter. Australian Journal of Psychology, 50(3):
187–198, 1998. URL https://doi.org/10.1080/00049539808258795. [p49]

M. D. Maraun and N. T. Rossi. The extra-factor phenomenon revisited: Unidimensional
unfolding as quadratic factor analysis. Applied Psychological Measurement, 25(1):77–87,
2001. URL https://doi.org/10.1177/01466216010251006. [p49]

A. Maydeu-Olivares, A. Hernández, and R. P. McDonald. A multidimensional ideal point
item response theory model for binary data. Multivariate Behavioral Research, 41(4):445–472,
2006. URL https://doi.org/10.1207/s15327906mbr4104_2. PMID: 26794914. [p49]

R. J. Mokken. A theory and procedure of scale analysis: With applications in political research,
volume 1. Walter de Gruyter, 1971. ISBN 978-3-11-081320-3. [p50, 52]

R. J. Mokken. Nonparametric models for dichotomous responses. In W. J. van der Linden
and R. K. Hambleton, editors, Handbook of Modern Item Response Theory, pages 351–367.
Springer New York, New York, NY, 1997. ISBN 978-1-4757-2691-6. URL https://doi.
org/10.1007/978-1-4757-2691-6_20. [p51]

Y. Noel. A beta unfolding model for continuous bounded responses. Psychometrika, 79(4):
647–674, Oct 2014. ISSN 1860-0980. URL https://doi.org/10.1007/s11336-013-9361-1.
[p49]

W. J. Post. Nonparametric Unfolding Models: A Latent Structure Approach. M & T series. DSWO
Press, 1992. ISBN 978-9066950641. [p49, 50, 51, 56, 57, 70]

W. J. Post and T. A. Snijders. Nonparametric unfolding models for dichotomous data.
Methodika, 1993. [p49, 50, 51, 56]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1007/s11336-003-1098-9
https://doi.org/10.1007/s11336-003-1098-9
https://doi.org/10.3102/10769986028003195
https://doi.org/10.1177/0146621618768294
https://doi.org/10.1002/9781119013563
https://doi.org/10.1177/0146621618762743
https://doi.org/10.1177/0146621618762743
https://doi.org/10.1037/h0055827
https://doi.org/10.1037/h0055827
https://doi.org/10.1006/jmps.2000.1310
https://doi.org/10.1006/jmps.2000.1310
https://doi.org/10.1080/00049539808258795
https://doi.org/10.1177/01466216010251006
https://doi.org/10.1207/s15327906mbr4104_2
https://doi.org/10.1007/978-1-4757-2691-6_20
https://doi.org/10.1007/978-1-4757-2691-6_20
https://doi.org/10.1007/s11336-013-9361-1

CONTRIBUTED RESEARCH ARTICLES 73

W. J. Post, M. A. van Duijn, and B. van Baarsen. Single-peaked or monotone tracelines? on
the choice of an irt model for scaling data. In Essays on item response theory, pages 391–414.
Springer, 2001. URL https://doi.org/10.1007/978-1-4613-0169-1_21. [p65, 66]

G. Rasch. On general laws and the meaning of measurement in psychology. In Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Contribu-
tions to Biology and Problems of Medicine, pages 321–333, Berkeley, Calif., 1961. University
of California Press. URL http://projecteuclid.org/euclid.bsmsp/1200512895. [p49]

W. D. Rinkel, M. H. Aziz, J. W. Van Neck, M. C. Cabezas, L. A. van der Ark, and J. H. Coert.
Development of grading scales of pedal sensory loss using mokken scale analysis on the
rotterdam diabetic foot study test battery data. Muscle & Nerve, 60(5):520–527, 2019. URL
https://doi.org/10.1002/mus.26628. [p49]

J. S. Roberts and J. E. Laughlin. A unidimensional item response model for unfolding
responses from a graded disagree-agree response scale. Applied Psychological Measurement,
20(3):231–255, 1996. URL https://doi.org/10.1177/014662169602000305. [p49, 50]

J. S. Roberts and V. M. Thompson. Marginal maximum a posteriori item parameter estima-
tion for the generalized graded unfolding model. Applied Psychological Measurement, 35(4):
259–279, 2011. URL https://doi.org/10.1177/0146621610392565. [p49]

J. S. Roberts, J. R. Donoghue, and J. E. Laughlin. A general item response theory model for
unfolding unidimensional polytomous responses. Applied Psychological Measurement, 24
(1):3–32, 2000. URL https://doi.org/10.1177/01466216000241001. [p49, 50]

J. S. Roberts, H.-r. Fang, W. Cui, and Y. Wang. Ggum2004: A windows-based program to
estimate parameters in the generalized graded unfolding model. Applied Psychological
Measurement, 2006. URL https://doi.org/10.1177/0146621605280141. [p50]

D. B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. URL https:
//doi.org/10.1093/biomet/63.3.581. [p60]

K. Sijtsma. Nonparametric item response theory models. In K. Kempf-Leonard, editor,
Encyclopedia of Social Measurement, pages 875 – 882. Elsevier, New York, 2005. ISBN
978-0-12-369398-3. URL https://doi.org/10.1016/B0-12-369398-5/00459-X. [p49]

K. Sijtsma and B. W. Junker. Item response theory: Past performance, present developments,
and future expectations. Behaviormetrika, 33(1):75–102, 2006. URL https://doi.org/10.
2333/bhmk.33.75. [p49]

S. Stark, O. Chernyshenko, F. Drasgow, and B. Williams. Examining assumptions about
item responding in personality assessment: Should ideal point methods be considered
for scale development and scoring? Journal of Applied Psychology, 91(1):25–39, 2006. ISSN
0021-9010. URL https://doi.org/10.1037/0021-9010.91.1.25. [p49]

I. Sulis and M. Porcu. Handling missing data in item response theory. assessing the accuracy
of a multiple imputation procedure based on latent class analysis. Journal of Classification,
34(2):327–359, Jul 2017. ISSN 1432-1343. URL https://doi.org/10.1007/s00357-017-
9220-3. [p60]

J. N. Tendeiro and S. Castro-Alvarez. GGUM: Generalized Graded Unfolding Model, 2018. URL
https://CRAN.R-project.org/package=GGUM. R package version 0.3.3. [p50]

L. L. Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927. URL
https://doi.org/10.1037/h0070288. [p49, 59]

L. L. Thurstone. Attitudes can be measured. American journal of Sociology, pages 529–554,
1928. URL https://doi.org/10.1086/214483. [p49, 59]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996. URL https://doi.org/10.1111/j.
2517-6161.1996.tb02080.x. [p56]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1007/978-1-4613-0169-1_21
http://projecteuclid.org/euclid.bsmsp/1200512895
https://doi.org/10.1002/mus.26628
https://doi.org/10.1177/014662169602000305
https://doi.org/10.1177/0146621610392565
https://doi.org/10.1177/01466216000241001
https://doi.org/10.1177/0146621605280141
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1016/B0-12-369398-5/00459-X
https://doi.org/10.2333/bhmk.33.75
https://doi.org/10.2333/bhmk.33.75
https://doi.org/10.1037/0021-9010.91.1.25
https://doi.org/10.1007/s00357-017-9220-3
https://doi.org/10.1007/s00357-017-9220-3
https://CRAN.R-project.org/package=GGUM
https://doi.org/10.1037/h0070288
https://doi.org/10.1086/214483
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

CONTRIBUTED RESEARCH ARTICLES 74

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. Journal of Statistical Software, 45(3):1–67, 2011. URL https://doi.org/10.
18637/jss.v045.i03. [p50]

L. A. Van der Ark. Mokken scale analysis in R. Journal of Statistical Software, 20(11):1–19,
2007. URL https://doi.org/10.18637/jss.v020.i11. [p50]

L. A. Van der Ark. New developments in mokken scale analysis in R. Journal of Statistical
Software, 48(5):1–27, 2012. URL https://doi.org/10.18637/jss.v048.i05. [p50]

W. Van Schuur. Stochastic unfolding. In Sociometric research, pages 137–158. Springer, 1988.
URL https://doi.org/10.1007/978-1-349-19051-5_9. [p50, 59, 60, 70]

W. H. Van Schuur. Structure in Political Beliefs: A New Model for Stochastic Unfolding with
Application to European Party Activities. CT Press, 1984. ISBN 978-9070758042. [p49, 50, 70]

W. H. Van Schuur. Nonparametric unidimensional unfolding for multicategory data. Political
Analysis, 4:41–74, 1992. URL https://doi.org/10.1093/pan/4.1.41. [p50]

G. R. Warnes, B. Bolker, and T. Lumley. gtools: Various R Programming Tools, 2015. URL
https://CRAN.R-project.org/package=gtools. R package version 3.5.0. [p54]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):
1–20, 2007. URL https://doi.org/10.18637/jss.v021.i12. [p62]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
ISBN 978-0-387-98140-6. URL https://doi.org/10.1007/978-0-387-98141-3. [p62]

S. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2
edition, 2017. [p57]

S. N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73
(1):3–36, 2011. URL https://doi.org/10.1111/j.1467-9868.2010.00749.x. [p57]

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular time series.
Journal of Statistical Software, 14(6):1–27, 2005. URL https://doi.org/10.1007/978-0-
387-98141-3. [p62]

Spyros E. Balafas
Bernoulli Institute for Mathematics, Computer Science & Artificial Intelligence
University of Groningen (RUG)
Bernoulliborg, Rm. 460, Nijenborgh 9
9747 AG Groningen
The Netherlands
s.balafas@rug.nl

Wim P. Krijnen
Bernoulli Institute for Mathematics, Computer Science & Artificial Intelligence
University of Groningen (RUG)
Bernoulliborg, Nijenborgh 9
9747 AG Groningen
The Netherlands
w.p.krijnen@rug.nl

Wendy J. Post
Orthopedagogy & Clinical Educational Science
University of Groningen (RUG)
Grote Rozenstraat 38
9712 TJ Groningen
The Netherlands
w.j.post@rug.nl

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v020.i11
https://doi.org/10.18637/jss.v048.i05
https://doi.org/10.1007/978-1-349-19051-5_9
https://doi.org/10.1093/pan/4.1.41
https://CRAN.R-project.org/package=gtools
https://doi.org/10.18637/jss.v021.i12
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
mailto:s.balafas@rug.nl
mailto:w.p.krijnen@rug.nl
mailto:w.j.post@rug.nl

CONTRIBUTED RESEARCH ARTICLES 75

Ernst C. Wit
Faculty of Science & Informatics
Universita della Svizzera Italiana (USI)
Via Buffi 13
6900 Lugano
Switzerland
wite@usi.ch

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:wite@usi.ch

CONTRIBUTED RESEARCH ARTICLES 76

tsmp: An R Package for Time Series with
Matrix Profile
by Francisco Bischoff and Pedro Pereira Rodrigues

Abstract This article describes tsmp, an R package that implements the MP concept for TS. The tsmp
package is a toolkit that allows all-pairs similarity joins, motif, discords and chains discovery, semantic
segmentation, etc. Here we describe how the tsmp package may be used by showing some of the
use-cases from the original articles and evaluate the algorithm speed in the R environment. This
package can be downloaded at https://CRAN.R-project.org/package=tsmp.

Introduction: time series data mining

A TS is a sequence of real-valued numbers indexed in time order. Usually, this sequence is taken
in a regular period of time, which will be assumed to be true in this context. The interests in TS
data mining have been growing along with the increase in available computational power. This
kind of data is easily obtained from sensors (e.g., ECG), (ir)regular registered data (e.g., weekly sales,
stock prices, brachial blood pressure). Even other kinds of data can be converted to TS format, such
as shapes (Wei et al., 2006) and DNA sequences (Shieh and Keogh, 2008). TS are generally large,
high dimensional and continuously updated which requires algorithms fast enough in order to be
meaningful. Besides, unlike other kinds of data, which usually have exact answers, TS are usually
analysed in an approximated fashion.

These characteristics have been challenging researchers to find faster and more accurate methods to
retrieve meaningful information from TS. This required one or more of these methods: dimensionality
reduction, constraints, domain knowledge, parameter tweaks. Only afterwards could the data mining
tasks be applied in feasable time. Typical tasks include motif and discord discovery, subsequence
matching, semantic segmentation, rule discovery, similarity search, anomaly detection, clustering,
classification, indexing, etc. (Fu, 2011).

This paper describes the tsmp package (Bischoff, 2018) which uses a novel approach to TS data
mining: the MP Yeh et al. (2017b), which is based on the APSS (also known as similarity join). The
APSS’ task is to, given a collection of data objects, retrieve the nearest neighbour for each object. The
remaining part of this paper is organised as follows: In Section 2 we describe the reasoning behind the
MP, in Section 3 we present the tsmp package with examples, in Section 4 we compare the performance
of the R implementation, and in Section 5 we conclude with a brief discussion.

The matrix profile

The reader may be aware of what a DM is. It is widely used in TS for clustering, classification, motif
search, etc. But, even for modestly sized datasets, the algorithms can take months to compute even with
speed-up techniques such as indexing (Shieh and Keogh, 2008; Fu et al., 2008), lower-bounding (Keogh
and Ratanamahatana, 2005), data discretization (Lin et al., 2003) and early abandoning (Faloutsos
et al., 1994). At best, they can be one or two orders of magnitude faster.

The MP is an ordered vector that stores the Euclidean distance between each pair within a similarity
join set. One (inefficient) way would be to use the full DM of every iteration of a sliding window join
and retrieve just the smallest (non-diagonal) value of each row. The MP also has a companion vector
called PI, that gives us the position of the nearest neighbour of each subsequence.

This method has a host of interesting and exploitable properties. For example, the highest point
on the MP corresponds to the TS discord, the (tied) lowest points correspond to the locations of the
best TS motif pair, and the variance can be seen as a measure of the TS complexity. Moreover, the
histogram of the values in the MP is the exact answer to the TS density estimation. Particularly, it has
implications for TS motif discovery, TS joins, shapelet discovery (classification), density estimation,
semantic segmentation, visualisation, rule discovery, clustering, etc. (Yeh et al., 2017b).

Some of the advantages/features of this method:

• It is exact, providing no false positives or false dismissals.

• It is simple and parameter-free. In contrast, the more general metric space APSS algorithms
require building and tuning spatial access methods and/or hash functions.

• It requires an inconsequential space overhead, just O(n) with a small constant factor.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 77

• It is extremely scalable, and for massive datasets, we can compute the results in an anytime
fashion, allowing ultra-fast approximate solutions.

• Having computed the similarity join for a dataset, we can incrementally update it very efficiently.
In many domains, this means we can effectively maintain exact joins on streaming data forever.

• It provides full joins, eliminating the need to specify a similarity threshold, which is a near-
impossible task in this domain.

• It is parallelizable, both on multicore processors and in distributed systems (Zhu et al., 2016).

The tsmp package

The tsmp package provides several functions that allow for an easy workflow using the MP concept for
TS mining. The package is available from the CRAN at https://CRAN.R-project.org/package=tsmp.
In Section 3.1 we explain how to install this package. In Section 3.2 we describe the syntax for the main
functions in tsmp, giving an example of a particular model. In Section 3.3 we will further explain the
available algorithms for MP computation and its current use. In Section 3.4 we show some examples
of MP application for data mining.

Installation

The tsmp package can be installed in two ways:

The release version from CRAN:

install.packages("tsmp")

or the development version from GitHub:

install.packages("devtools")
devtools::install_github("franzbischoff/tsmp")

Input arguments and example

The tsmp has a simple and intuitive workflow. First, you must compute the MP of the desired TS.
Depending on the task, the user might want to follow one of three paths: univariate self-join, AB-join
or multivariate self-join. One exception is the SiMPle algorithm that is a multivariate AB-join and will
be explained in Section 3.3.

The main function is tsmp(), which has the following usage:

tsmp(..., window_size, exclusion_zone = 1/2,
mode = c("stomp", "stamp", "simple", "mstomp", "scrimp"),
verbose = 2, s_size = Inf, must_dim = NULL, exc_dim = NULL,
n_workers = 1, .keep_data = TRUE)

The first argument ellipsis (the three dots) receives one or two TS. For self-joins, the user must
input just one TS; two for AB-joins. Multivariate TS may be input as a matrix where each column
represents one dimension. Alternatively, the user may input the Multivariate TS as a list of vectors. The
second argument window_size is the size of the sliding window. These are the most basic parameters
you need to set.

Further parameters are:

• exclusion_zone, is an important parameter for self-joins. This is used to avoid trivial matches
and is a modifier of the window_size, i.e., for an exclusion_zone of 1/2, and window_size of 50,
internally the result will be 25.

• mode, here the user may choose the algorithm used for the MP calculation. stomp, stamp and
scrimp return equal results, although differing in some practical attributes, and they will be
further explained in Section 3.3. mstomp is designed for Multivariate TS self-join only. simple is
designed for Multivariate TS for self-join and AB-join, which will also be further explained in
Section 3.3.

• verbose, controls the verbosity of the function. 0 means no feedback, 1 means text messages
only, 2 (the default) means text messages and progress bar, and 3 also plays a sound when
finished.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 78

• s_size, controls the anytime algorithms. This is just a way to end the algorithm in a controlled
manner because the anytime algorithms can be stopped anytime and the result will be returned.

• must_dim, is an optional argument for the mstomp algorithm. See next item.

• exc_dim, as must_dim, is an optional argument for the mstomp algorithm. These arguments con-
trol which dimensions must be included and which must be excluded from the multidimensional
MP.

• n_workers, controls how many threads will be used for the stamp, stomp, and mstomp. Note that
for small datasets, multiple threads add an overhead that makes it slower than just one thread.

• .keep_data, TRUE by default, keeps the input data inside the output object. This is useful for
chained commands.

Example data

We think that the best and simple example to demonstrate the tsmp package is the motif search.

The tsmp package imports the %>% (pipe) operator from the magrittr package that makes the tsmp
workflow easier.

The following code snippet shows an example of the workflow for motif search:

R> data <- mp_fluss_data$walkjogrun$data
R> motifs <- tsmp(data, window_size = 80, exclusion_zone = 1/2) %>%
+ find_motif(n_motifs = 3, radius = 10, exclusion_zone = 20) %T>% plot()

The find_motif() function is an S3 class that can receive as the first argument the output of tsmp()
function as a univariate or multivariate MP. This allows us to use the pipe operator easily. The plot()
function is also an S3 class extension for plotting objects from the tsmp package and works seamlessly.

Computational methods

There are several methods to compute the MP. The reason for that is the unquenchable need for
speed of the UCR’s researchers. Before starting, let’s clarify that the time complexity of a brute force
algorithm has a time complexity of O(n2m), for n being the length of the reference TS and m the length
of the sliding window (query) that is domain dependent.

STAMP

This was the first algorithm used to compute the MP. It uses the MASS (Mueen et al., 2015) as the core
algorithm for calculating the similarity between the query and the reference TS, called the DP. The
ultimate MP comes from merging the element-wise minimum from all possible DP. This algorithm
has the time complexity of O(n2 log n) and space complexity of O(n) (Yeh et al., 2017b). The anytime
property is achieved using a random approach where the best-so-far MP is computed using the DP
that have been already calculated.

STOMP

This was the second algorithm used to compute the MP. It also uses the MASS to calculate the DP
but only for the first iteration of each batch. The researchers noticed that they could reuse the values
calculated of the first DP to make a faster calculation in the next iterations. This results on a time
complexity of O(n2), keeping the same space complexity of O(n). This algorithm is also suitable for
a GPU framework (although this was not yet implemented in tsmp package) (Zhu et al., 2016). The
main drawback of STOMP compared with STAMP is the lack of the anytime property. In scenarios
where a fast convergence is needed (e.g., finding the top-k motifs) it may be required only 5% of the
MP computation to provide a very accurate approximation of the final result.

SCRIMP

The SCRIMP algorithm is still experimental at the time of this article. It combines the best features of
STOMP and STAMP, having a time complexity of O(n2) and the anytime property (UCR, 2016).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 79

SiMPle

The SiMPle algorithm is a variation designed for music analysis and exploration (Silva et al., 2018).
Internally it uses STOMP for MP computation and allows multidimensional self-joins and AB-joins.
The resulting MP is computed using all dimensions. One major difference is that it doesn’t apply any
z-normalization on the data, since for music domain this would result in spurious similarities.

mSTOMP

The mSTOMP algorithm was designed to motif search in multidimensional data (Yeh et al., 2017a).
Performing motif search on all dimensions is almost guaranteed to produce meaningless results,
so this algorithm, differently from SiMPle, doesn’t compute the MP using all dimensions naïvely,
but the d-dimensional MP for every possible setting of d, simultaneously, in O(dn2 log d) time and
O(dn) space. The resulting MP allow motif search in multiple dimensions and also to identify which
dimensions are relevant for the motifs founded.

Data mining tasks

Motif search

In Section 3.2 we have shown a basic example of the workflow for motif search. Let’s take a look at the
result of that code:

R> motifs

Matrix Profile

Profile size = 9922
Window size = 80
Exclusion zone = 40
Contains 1 set of data with 10001 observations and 1 dimension

Motif

Motif pairs found = 2
Motif pairs indexes = [584, 741] [4799, 5329]
Motif pairs neighbors = [2948, 9900, 8265] [7023, 8861, 2085, 248]

As we can see, this is a summary that tsmp package automatically generates from the resulting
object. One nice property is that the object always holds the original MP and by default also holds
the input data so that you can keep mining information from it. If the dataset is too big or you are
concerned about privacy, you may set the argument .keep_data = FALSE.

In addition to this summary, you can see the results using plot() in Figure 1:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 80

R> plot(motifs, type = "matrix")

0 2000 4000 6000 8000 10000

2
4

6
8

Matrix Profile (w = 80; ez = 0.5)

index

di
st

an
ce

MOTIF Discover

0 20 40 60 80

−
1.

5
0.

0

Motif 1

length

no
rm

al
iz

ed
 d

at
a

0 20 40 60 80

−
1

1
2

Motif 2

length

no
rm

al
iz

ed
 d

at
a

0 20 40 60 80

−
2

0
2

Motif 3

length

no
rm

al
iz

ed
 d

at
a

Figure 1: The upper graphic shows the computed MP with each motif pair as a coloured vertical bar.
The lower graphics show each motif in colour and the founded neighbours in grey.

This dataset is the WalkJogRun PAMAP’s dataset (Reiss and Stricker, 2012). It contains the recording
of human movements in three states, walking, jogging and running. As we can see, the plot shows the
motifs of each state. Experienced readers might say that this is not the purpose of motif search, and
we agree. The result shown here was achieved using a large radius and exclusion_zone to force the
algorithm to look for distant motifs. Semantic segmentation is the proper algorithm for this task, and
we will show this in the next section.

Semantic segmentation

As previously explained, the resulting object holds the original data and MP. So let’s save some time
and use the resulting object from the last section to try to find where the human subject started to jog
and to run:

R> segments <- motifs %>% fluss(num_segments = 2)
R> segments

Matrix Profile

Profile size = 9922
Window size = 80
Exclusion zone = 40
Contains 1 set of data with 10001 observations and 1 dimension

Arc Count

Profile size = 9922
Minimum normalized count = 0.063 at index 3448

Fluss

Segments = 2
Segmentation indexes = 3448 6687

We can see that this object now holds information of the FLUSS algorithm (Gharghabi et al., 2017),
but the motif information is still there and can be retrieved using as.motif(). In Figure 2 we can see
the graphic result of the segmentation.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 81

R> plot(segments, type = "data")

0 2000 4000 6000 8000 10000

Arc Plot

index

Right
Left

Fast Low−cost Unipotent Semantic Segmentation

0 2000 4000 6000 8000 10000

−
15

−
5

5
15

Data

index

0 2000 4000 6000 8000 10000

0.
2

0.
6

1.
0

Arc count

index

no
rm

al
iz

ed
 c

ou
nt

Figure 2: Semantic segmentation using MP. The upper graphic shows the arc plot of predicted
semantic changes (ground truth is 3800 and 6800). The middle graphic shows the data. The lower
graphic shows the normalised arc counts with correction for the "edge-effect" (Gharghabi et al., 2017).

Time series chains

As a final example of practical application, let’s search for a new kind of primitive: time series chains
(Zhu et al., 2018a). This algorithm looks for patterns that are not just similar but evolve through
time. The dataset used in this example is a record of the Y-axis of a mobile phone accelerometer while
placing it on a walking subject’s pocket (Hoang et al., 2015). The authors of this dataset wanted to
analyse the stability of the mobile phone as it slowly settles in the pocket. This is a good example of a
pattern that changes through time. Let’s start with the workflow for this example:

R> chains <- mp_gait_data %>% tsmp(window_size = 50, exclusion_zone = 1/4,
+ verbose = 0) %>% find_chains()
R> chains

Matrix Profile

Profile size = 855
Window size = 50
Exclusion zone = 13
Contains 1 set of data with 904 observations and 1 dimension

Chain

Chains found = 58

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 82

Best Chain size = 6
Best Chain indexes = 148 380 614 746 778 811

Here we see that the algorithm found 58 chains. Id est, it found 58 evolving patterns with at least
three elements, and the best one is presented in the last line, a chain with six elements. Figure 3 shows
the patterns discovered.

R> plot(chains, ylab = "")

200 300 400 500 600 700 800

Arc Plot

index

Right
Left

Chain Discover

200 300 400 500 600 700 800

−
0.

5
−

0.
2

0.
0

Data

index

0 10 20 30 40 50

−
5

−
3

−
1

1

Motifs

length

no
rm

al
iz

ed
 d

at
a

Figure 3: Finding evolving patterns using MP. The upper graphic shows the arc plot of the discovered
patterns. The middle graphic shows the data and the position of every pattern as a vertical coloured
line. The lower graphic shows the patterns for comparison. They are y-shifted for visualisation only.

Speed

While this new method for TS data mining is extremelly fast, we have to take into consideration that
the R environment is not as fast as a low-level implementation such as C/C++. In Table 1 we present
the comparison to the MATLAB version that is available at the UCR. Yeh et al. (2017b) shows that the
slowest algorithm (STAMP) can be hundreds of times faster than the MK algorithm (the fastest known
exact algorithm for computing TS motifs) (Yoon et al., 2015), while the R implementation is just 1.65 to
8.04 times slower than MATLAB’s, which is not a problem for an R researcher.

R> set.seed(2018)
R> data <- cumsum(sample(c(-1, 1), 40000, TRUE))

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 83

Algorithm R Time∗ MATLAB Time∗ Threads
scrimp 45.30 27.49 1
stomp 52.72 10.27 8
stomp 136.01 16.91 1
stamp 140.25 55.57 8
stamp 262.03 113.18 1

Table 1: Performances of R and MATLAB implementations on an Intel(R) Core(TM) i7-7700 CPU @
3.60GHz using a random walk dataset. ∗Median of 5 trials, in seconds.

Conclusion

The examples in Section 3.4 show how straightforward the usage of tsmp package is. Regardless,
these examples are just a glimpse of the potential of the MP. Several new algorithms based on MP are
being developed and will be gradually implemented in the tsmp package (Linardi et al., 2018; Zhu
et al., 2018b; Gharghabi et al., 2018; Imani et al., 2018). Yeh et al. (2017a) for example, have developed
an algorithm to allow MDS visualisation of motifs. Gharghabi et al. (2018) have developed a new
distance measure that better suits repetitive patterns (Imani et al., 2018).

The MP has the potential to revolutionise the TS data mining due to its generality, versatility,
simplicity and scalability (UCR, 2016). All existing algorithms for MP have been proven to be flexible
to be used in several domains using very few parameters and they are also robust, showing good
performance with dimensionality reduced data and noisy data. In addition, a yet to be published
article shows a fantastic score of > 1018 pairwise comparisons a day using GPU for motif discovery
(Zimmerman et al., 2018).

The tsmp package is the first known MP toolkit available on any statistical language, and we hope
it can help researchers to better mining TS and also to develop new methods based on MP.

Acknowledgements

We would like to thank the researchers from UCR for their contribution and permission to use their
base code to be implemented in this package. Particularly to Prof. Eamonn Keogh whose work
and assistance led to this project. We also acknowledge the participation in project NanoSTIMA
(NORTE-01-0145-FEDER-000016) which was financed by the North Portugal Regional Operational
Program (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement and through the European
Regional Development Fund (ERDF).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 84

Acronyms

• APSS: all-pairs similarity search

• CRAN: Comprehensive R Archive Network

• DM: distance matrix

• DP: distance profile

• ECG: electrocardiogram

• FLUSS: fast low-cost unipotent semantic segmentation

• GPU: graphics processor unit

• MASS: Mueen’s algorithm for similarity search

• MDS: multidimensional space

• MP: matrix profile

• mSTOMP: Multivariate scalable time series ordered-search matrix profile

• PI: profile index

• SCRIMP: Scalable column independent matrix profile

• SiMPle: Similarity matrix profile

• STAMP: Scalable time series anytime matrix profile

• STOMP: Scalable time series ordered-search matrix profile

• TS: time series

• UCR: University of California Riverside

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 85

Bibliography
F. Bischoff. tsmp: Time Series with Matrix Profile, 2018. URL https://CRAN.R-project.org/package=

tsmp. R package version 0.3.2. [p76]

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series
databases. ACM SIGMOD Record, 23(2):419–429, jun 1994. ISSN 01635808. doi: https://doi.org/10.
1145/191843.191925. [p76]

A. W. C. Fu, E. Keogh, L. Y. H. Lau, C. A. Ratanamahatana, and R. C. W. Wong. Scaling and
time warping in time series querying. VLDB Journal, 17(4):899–921, 2008. ISSN 10668888. doi:
https://doi.org/10.1007/s00778-006-0040-z. [p76]

T. C. Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):
164–181, 2011. ISSN 09521976. doi: https://doi.org/10.1016/j.engappai.2010.09.007. [p76]

S. Gharghabi, Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, and E. Keogh. Matrix Profile VIII:
Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In 2017 IEEE
International Conference on Data Mining (ICDM), volume 2017-Novem, pages 117–126. IEEE, nov
2017. ISBN 978-1-5386-3835-4. doi: https://doi.org/10.1109/ICDM.2017.21. [p80, 81]

S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, and E. Keogh. Matrix Profile XII: MPdist: A
Novel Time Series Distance Measure to Allow Data Mining in More Challenging Scenarios. In 2018
IEEE International Conference on Data Mining (ICDM), 2018. [p83]

T. Hoang, D. Choi, and T. Nguyen. On the Instability of Sensor Orientation in Gait Verification on
Mobile Phone. In Proceedings of the 12th International Conference on Security and Cryptography, pages
148–159. SCITEPRESS - Science and and Technology Publications, 2015. ISBN 978-989-758-117-5.
doi: https://doi.org/10.5220/0005572001480159. [p81]

S. Imani, F. Madrid, W. Ding, S. Crouter, and E. Keogh. Matrix Profile XIII : Time Series Snippets : A
New Primitive for Time Series Data Mining. In 2018 IEEE International Conference on Data Mining
(ICDM), 2018. [p83]

E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and
Information Systems, 7(3):358–386, mar 2005. ISSN 0219-1377. doi: https://doi.org/10.1007/s10115-
004-0154-9. [p76]

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications
for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data
mining and knowledge discovery - DMKD ’03, page 2, New York, New York, USA, 2003. ACM Press.
ISBN 978-3-642-41397-1. doi: https://doi.org/10.1145/882085.882086. [p76]

M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh. Matrix Profile X: VALMOD - Scalable Discovery
of Variable-Length Motifs in Data Series. In Proceedings of the 2018 International Conference on
Management of Data - SIGMOD ’18, pages 1053–1066, New York, New York, USA, 2018. ACM Press.
ISBN 9781450347037. doi: https://doi.org/10.1145/3183713.3183744. [p83]

A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. K. Gupta, and E. Keogh. The Fastest
Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance and Correlation
Coefficient, 2015. URL https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html. [p78]

A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. In
2012 16th International Symposium on Wearable Computers, pages 108–109. IEEE, jun 2012. ISBN
978-0-7695-4697-1. doi: https://doi.org/10.1109/ISWC.2012.13. [p80]

J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized time series. In Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08, page 623,
New York, New York, USA, 2008. ACM Press. ISBN 9781605581934. doi: https://doi.org/10.1145/
1401890.1401966. [p76]

D. F. Silva, C.-C. M. Yeh, Y. Zhu, G. Batista, and E. Keogh. Fast Similarity Matrix Profile for Music
Analysis and Exploration. IEEE Transactions on Multimedia, 14(8):1–1, 2018. ISSN 1520-9210. doi:
https://doi.org/10.1109/TMM.2018.2849563. [p79]

UCR. UCR Matrix Profile Page, 2016. URL http://www.cs.ucr.edu/~eamonn/MatrixProfile.html.
[p78, 83]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

CONTRIBUTED RESEARCH ARTICLES 86

L. Wei, E. Keogh, and X. Xi. SAXually Explicit Images: Finding Unusual Shapes. In Sixth International
Conference on Data Mining (ICDM’06), pages 711–720. IEEE, dec 2006. ISBN 0-7695-2701-7. doi:
https://doi.org/10.1109/ICDM.2006.138. [p76]

C.-c. M. Yeh, N. Kavantzas, and E. Keogh. Matrix Profile VI : Meaningful Multidimensional Motif
Discovery. In Proceedings - IEEE International Conference on Data Mining, ICDM, 2017a. [p79, 83]

C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, and E. Keogh.
Matrix profile I: All pairs similarity joins for time series: A unifying view that includes motifs,
discords and shapelets. Proceedings - IEEE International Conference on Data Mining, ICDM, pages
1317–1322, 2017b. ISSN 15504786. doi: https://doi.org/10.1109/ICDM.2016.89. [p76, 78, 82]

C. E. Yoon, O. OReilly, K. J. Bergen, and G. C. Beroza. Earthquake detection through computationally
efficient similarity search. Science Advances, 1(11):e1501057–e1501057, dec 2015. ISSN 2375-2548. doi:
https://doi.org/10.1126/sciadv.1501057. [p82]

Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-c. M. Yeh, and G. Funning. Matrix Profile II : Exploiting a
Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and
Joins. Icdm, 54(1):739–748, jan 2016. ISSN 0219-1377. doi: https://doi.org/10.1109/ICDM.2016.126.
[p77, 78]

Y. Zhu, M. Imamura, D. Nikovski, and E. Keogh. Matrix Profile VII: Time Series Chains: A New
Primitive for Time Series Data Mining. Knowledge and Information Systems, pages 1–27, jun 2018a.
ISSN 0219-1377. doi: https://doi.org/10.1007/s10115-018-1224-8. [p81]

Y. Zhu, C.-c. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh. Matrix Profile XI: SCRIMP++: Time
Series Motif Discovery at Interactive Speeds. In 2018 IEEE International Conference on Data Mining
(ICDM), 2018b. [p83]

Z. Zimmerman, K. Kamgar, Y. Zhu, N. S. Senobari, B. Crites, and G. Funning. Scaling Time Series
Motif Discovery with GPUs: Breaking the Quintillion Pairwise Comparisons a Day Barrier. ACM,
2018. doi: https://doi.org/10.1145/3357223.3362721. [p83]

Francisco Bischoff
CINTESIS - Center for Health Technology and Services Research
MEDCIDS - Community Medicine, Information and Health Decision Sciences Department
Faculty of Medicine of the University of Porto
Rua Dr. Placido Costa, s/n
4200-450 Porto, Portugal
ORCiD: 0000-0002-5301-8672
fbischoff@med.up.pt

Pedro Pereira Rodrigues
CINTESIS - Center for Health Technology and Services Research
MEDCIDS - Community Medicine, Information and Health Decision Sciences Department
Faculty of Medicine of the University of Porto
Rua Dr. Placido Costa, s/n
4200-450 Porto, Portugal
ORCiD: 0000-0001-7867-6682
pprodrigues@med.up.pt

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:fbischoff@med.up.pt
mailto:pprodrigues@med.up.pt

CONTRIBUTED RESEARCH ARTICLES 87

Individual-Level Modelling of Infectious
Disease Data: EpiILM
by Vineetha Warriyar K. V., Waleed Almutiry and Rob Deardon

Abstract In this article we introduce the R package EpiILM, which provides tools for simulation from,
and inference for, discrete-time individual-level models of infectious disease transmission proposed by
Deardon et al. (2010). The inference is set in a Bayesian framework and is carried out via Metropolis-
Hastings Markov chain Monte Carlo (MCMC). For its fast implementation, key functions are coded in
Fortran. Both spatial and contact network models are implemented in the package and can be set in
either susceptible-infected (SI) or susceptible-infected-removed (SIR) compartmental frameworks. Use
of the package is demonstrated through examples involving both simulated and real data.

Introduction

The task of modelling infectious disease transmission through a population poses a number of
challenges. One challenge is that successfully modelling many, if not most, infectious disease systems
requires accounting for complex heterogeneities within the population. These heterogeneities may be
characterized by individual-level covariates, spatial clustering, or the existence of complex contact
networks through which the disease may propagate. A second challenge is that there are inherent
dependencies in infection (or event) times.

To model such scenarios, Deardon et al. (2010) introduced a class of discrete time individual-
level models (ILMs), fitting the models to data in a Bayesian Markov chain Monte Carlo (MCMC)
framework. They applied spatial ILMs to the UK foot-and-mouth disease (FMD) epidemic of 2001,
which accounted for farm-level covariates such as the number and type of animals on each farm.
However, the ILM class also allows for the incorporation of contact networks through which disease
can spread. Once fitted, such models can be used to predict the course of an epidemic (e.g., O’Reilly
et al., 2018) or test the effectiveness of various control strategies (e.g., Tildesley et al., 2006) that can be
imposed upon epidemics simulated from the fitted model.

A third challenge when modelling disease systems is that very little software so far has been made
available that allows for simulation from, and especially inference for, individual-level models of
disease transmission. Most inference for such models is carried out in fast, low-level languages such
as Fortran or variants of C, which makes it difficult for researchers (e.g., public health epidemiologists)
without a strong background in computational statistics and programming to make use of the models.

A number of R packages have recently been developed for modelling infectious disease systems
(e.g., R0 (Boelle and Obadia, 2015), EpiEstim (Cori, 2019), EpiModel (Jenness et al., 2018), and epinet
(Groendyke and Welch, 2016)). Most of these packages can be used to carry out epidemic simulation
from given models; in addition, R0 or EpiEstim, for example, can be used to calculate the (basic)
reproduction number under various scenarios. The EpiModel package allows for the simulation of
epidemics from stochastic models, primarily exponential-family random graph models (ERGMs), and
provides tools for analyzing simulation output. Functions for carrying out some limited forms of
inference are also provided. Another widely used package for monitoring and modelling infectious
disease spread through surveillance data is surveillance (Meyer et al., 2017). This package provides
for a highly flexible modelling framework for such data. However, the package does not cover
mechanistic, individual-level disease transmission models such as those of Deardon et al. (2010).

Here, we detail a novel R statistical software package EpiILM (Warriyar. K. V. et al., 2020) for
simulating from, and carrying out Bayesian MCMC-based statistical inference for spatial and/or
network-based models in the Deardon et al. (2010) individual-level modelling framework. The
package allows for the incorporation of individual-level susceptibility and transmissibility covariates
in models, provides various methods of summarizing epidemic data sets, and permits reasonably
involved scenarios to be coded up by the user due to its setting in an R framework. The main
functions, including for likelihood calculation are coded in Fortran in order to achieve the goal of agile
implementation.

The type of spatial and network-based transmission models that EpiILM facilitates can be used
to model a wide range of disease systems, as well as other transmissible processes. Human diseases
such as influenza, measles or HIV, tend to be transmitted via interactions which can be captured by
contact networks. For example, Malik et al. (2014) used a network representing whether two people
shared the same household for modelling influenza spread in Hong Kong. Networks can also be used
to characterize social or sexual relationships.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=R0
https://CRAN.R-project.org/package=EpiEstim
https://CRAN.R-project.org/package=EpiModel
https://CRAN.R-project.org/package=epinet
https://CRAN.R-project.org/package=R0
https://CRAN.R-project.org/package=EpiEstim
https://CRAN.R-project.org/package=EpiModel
https://CRAN.R-project.org/package=surveillance
https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 88

In the livestock industries, diseases are often transmitted from farm to farm via supply trucks or
animal movements from farm to farm, or from farm to market. For example, ILM’s were used by
Kwong et al. (2013) to model the spread of porcine reproductive and respiratory syndrome (PRRS)
through Ontario swine farms via such mechanisms. Spatial mechanisms are also often important in
livestock industries (e.g., Jewell et al., 2009; Deardon et al., 2010; Kwong et al., 2013), as well as for
modelling crop diseases (e.g., Pokharel and Deardon, 2016), since airborne spread is often a key factor.

Further, these types of models can also be used to model transmissible processes other than infec-
tious disease spread. For example, Cook et al. (2007) used similar models to model the transmission of
alien species through a landscape; specifically, giant hogweed in the UK. In addition, Vrbik et al. (2012)
used spatial ILM’s to model fire spread. They looked at fire spread under controlled conditions, but
such models would likely be useful for modelling the spread of forest fires since important covariates
such as vegetation-type could be incorporated into the models.

Data from infectious disease systems are generally ’time-to-event’, typically involving multiple
states. However, standard survival models (e.g., Cox (1972), Therneau (2015)) or multi-state time-to-
event models (e.g., see Jackson (2011)) are not applicable here, because in an infectious disease system
individual event times cannot be assumed independent even after conditioning on covariates. That
is, my risk of contracting and infectious disease generally depends upon the disease state of other
individuals in the population; this is not typically the case for most cancers, for example to which
more standard models can be applied.

The remainder of this paper is structured as follows: Section 2 explains the relevant models
involved in the package; Section 3 describes the contents of the package along with some illustrative
examples; and Section 4 concludes the paper with a brief discussion on future development.

Model

In our EpiILM package, we consider two compartmental frameworks: susceptible-infectious (SI) and
susceptible-infectious-removed (SIR). In the former framework, individuals begin in the susceptible
state (S) and if/when infected become immediately infectious (I) and remain in that state indefinitely. In
the latter framework, individuals once infected remain infectious for some time interval before entering
the removed state (R). This final state might represent death, quarantine, or recovery accompanied
by immunity. We consider discrete time scenarios so a complete epidemic history is represented by
t = 1, 2, . . . , tend, where (typically) t = 1 is the time when the first infection is observed and tend is the
time when the epidemic ends. Hence, for a given time point t, an individual i belongs to one, and only
one, of the sets S(t) or I(t) if the compartmental framework is SI, and i belongs to one, and only one,
of the sets S(t), I(t), or R(t) if the compartmental framework is SIR.

Under either framework, the probability that a susceptible individual i is infected at time point t is
given by IP(i, t) as follows:

IP(i, t) = 1− exp{−ΩS(i) ∑
j∈I(t)

ΩT(j)κ(ij)− ε}, ΩS(i) > 0, ΩT(j) > 0, ε > 0 (1)

where: ΩS(i) is a susceptibility function that accommodates potential risk factors associated with
susceptible individual i contracting the disease; ΩT(j) is a transmissibility function that accommodates
potential risk factors associated with infectious individual j contracting the disease; ε is a sparks term
which represents infections originating from outside the population being observed or some other
unobserved infection mechanism; and κ(i, j) is an infection kernel function that represents the shared
risk factors between pairs of infectious and susceptible individuals.

The susceptibility function can incorporate any individual-level covariates of interest, such as age,
genetic factors, vaccination status, and so on. In Equation (1), ΩS(i) is treated as a linear function of the
covariates, i.e., ΩS(i) = α0 + α1X1(i) + α2X2(i) + · · ·+ αns Xns (i), where X1(i), . . . , Xns (i) denote ns
covariates associated with susceptible individual i, along with susceptibility parameters α0, . . . , αns > 0.
Note that, if the model does not contain any susceptibility covariates then ΩS(i) = α0 is used. In a
similar way, the transmissibility function in Equation (1) can incorporate any individual-level covari-
ates of interest associated with infectious individual. ΩT(j) is also treated as a linear function of the
covariates, but without the intercept term, i.e., ΩT(j) = φ1X1(j) + φ2X2(j) + · · ·+ φnt Xnt (j), where
X1(j), . . . , Xnt (j) denote the nt covariates associated with infectious individual j, along with transmis-
sibility parameters φ1, . . . , φnt > 0. Also note that if the model does not contain any transmissibility
covariates then ΩT(j) = 1 is used.

In this package, we also consider two broad types of ILM models based on the type of the kernel
function κ(i, j): spatial and network-based ILMs. In the spatial-based ILMs, the infection kernel

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 89

function is represented by the power-law function as

κ(ij) = d−β
ij ,

where β is the spatial parameter that accounts for the varying risk of transmitting disease over the
Euclidean distance between individuals i and j, dij. Whereas in the network-based ILMs, κ(i, j) can be
represented by one or more contact network matrices and is written as

κ(ij) = β1 C(1)
ij + · · ·+ βn C(n)

ij ,

where C(.)
ij denotes the (i, j)th element of what we term the contact matrix of a given contact network;

in graph theory this is more typically referred to as a (weighted) adjacency matrix. The corresponding
β(.)’s represent the effect of each of the n networks on transmission risk. In each contact network, each
individual in the population is denoted by a node and is connected by lines or edges. These connections
represent potential transmission routes through which disease can spread between individuals in the
population. If the network is unweighted, the contact matrix is treated as binary (0 or 1). If the edges

have weights assigned to them, then C(.)
ij ∈ R+ or C(.)

ij ∈ [0, 1] are typically used. These weights can be
used to allow for different infection potential between different pairs of individuals. If the network is
undirected, the contact matrix will be symmetric; if directed, it can be non-symmetric. Finally, the Cii
(diagonal terms) are not used in the models and are typically set to Cii = 0, ∀ i.

Note that IP(i, t) gives the probability that susceptible individual i is infected at time point t,
representing some interval in continuous time (e.g., a day or week), but they actually become infectious
at time t + 1.

Following Deardon et al. (2015), the likelihood function for the ILMs (1) is given by

f (S, I, R|θ) =
tmax

∏
t=1

ft(S, I, R|θ) (2)

where

ft(S, I, R|θ) =
[

∏
i∈I(t+1)\I(t)

IP(i, t)
][

∏
i∈S(t+1)

(1− IP(i, t))
]

(3)

and where, θ is the vector of unknown parameters, I(t + 1)\I(t) denotes all new infections observed
at t + 1 in the infectious state at time t, and tmax ≤ tend is the last time point at which data are observed
or being simulated.

Contents of EpiILM

The EpiILM package makes use of Fortran code that is called from within R. This package can be
used to carry out simulation of epidemics, calculate the basic reproduction number, plot various
epidemic summary graphics, calculate the log-likelihood, and carry out Bayesian inference using
Metropolis-Hastings MCMC for a given data set and model. The functions involved in the package
are summarized in Table 1.

Simulation of epidemics

The function epidata() allows the user to simulate epidemics under different models and scenarios.
One can use the argument type to select the compartmental framework (SI or SIR) and population
size through the argument n. If the compartmental framework is SIR, the infectious period is passed
through the argument infperiod. Depending on whether a spatial or network model is being con-
sidered, the user can pass the arguments: x, y for location and contact for contact networks. Users
can also control the susceptibility function ΩS(i) through the Sformula argument, with individual-
level covariate information passable through this argument. If there is no covariate information,
Sformula is null. An expression of the form Sformula = ∼ model is used to specify the covariate
information, separated by + and - operators similar to the R generic function formula(). For example,
ΩS(i) = α0 + α1X(i), i = 1, . . . , n can be passed through the argument Sformula as Sformula = ∼ 1
+ X. In a similar way, the user can control the transmissibility function ΩT(i) through the Tformula
argument. Note that, the Tformula must not include the intercept term to avoid model identifiability
issues, i.e., for a model with one transmissibility covariate (X), the Tformula becomes Tformula = ∼
-1 + X. The spatial (or network), susceptibility, transmissibility, and spark (if any) parameters are
passed through arguments beta, alpha, phi, and spark, respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 90

Function Output

epiBR0 Calculates the basic reproduction num-
ber for a specified SIR model

epidata Simulates epidemic for the specified
model type and parameters

plot.epidata Produces spatial plots of epidemic pro-
gression over time as well as various
epidemic curves of epidata object

epidic Computes the deviance information cri-
terion for a specified individual-level
model

epilike Calculates the log-likelihood for the
specified model and data set

epimcmc Runs an MCMC algorithm for the esti-
mation of specified model parameters

summary.mcmc Produces the summary of epimcmc ob-
ject

plot.mcmc Plots epimcmc object

pred.epi Computes posterior predictions for a
specified epidemic model

plot.pred.epi Plot posterior predictions

Table 1: Description of functions and their output in the EpiILM package

The argument tmin helps to fix the initial infection time while generating an epidemic. By default,
tmin is set as time t = 1. We can also specify the initial infective or infectives using the argument
inftime. For example, in a population of 10 individuals, we could choose, say, the third individual
to become infected at time point 1, using the option inftime = c(0,0,1,0,0,0,0,0,0,0). We could
also infect more than one individual and they could be infected at different time points. This allows
simulation from a model conditional on, say, data already observed, if we set the tmin option at the
maximum value of inftime.

The output of the function epidata() is formed as class of epidata object. This epidata object
contains a list that consist of type (the compartmental framework), XYcoordinates(the XY coordinates
of individual for spatial model) or contact (the contact network matrix for the network model),
inftime (the infection times) and remtime (the removal times). Other functions such as plot.epidata
and epimcmc involved in the package use this object class as an input argument.

Descriptive analyses

We introduce an S3 method plot function to graphically summarize, and allow for a descriptive
analyses of, epidemic data. The function plot.epidata() illustrate the spread of the epidemic over
time. One of the key input arguments (x) of this function has to be an epidata object. The other key
argument plottype has two options: curve and spatial. Specifying the first option produces various
epidemic curves, while the latter show the epidemic propagation over time and space when the model
is set to spatial-based. When the plottype = curve, an additional argument needs to be passed through
the function through curvetype. This has four options: curvetype = "complete" produces curves
of the number of susceptible, infected, and removed individuals over time (when type = "SIR'');
"susceptible" gives a single curve for the susceptible individuals over time; "totalinfect" gives
the cumulative number of infected individuals over time; and "newinfect" produces a curve of the
number of newly infected individuals at each time point.

The plot functions plot.epimcmc() and plot.pred.epi() can be used to illustrate inference results
(see Bayesian inference section). Detailed explanation is provided in the corresponding subsections.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 91

Example: spatial model

Suppose we want to simulate an epidemic from the model (1) using a spatial kernel with type SI,
Ωs(i) = α, and no transmissibility covariates, ΩT(j) = 1. Choosing the infectivity parameter α = 0.3,
spatial parameter β = 5.0, sparks parameter ε = 0, and tmax = 15, the model is given by:

IP(i, t) = 1− exp{−0.3 ∑
j∈I(t)

d−5
ij }, t = 1, . . . , 15 (4)

where dij is the Euclidean distance between individuals i and j, with their locations specified through
x and y.

First, we install the EpiILM package and call the library.

R> install.packages("EpiILM")
R> library("EpiILM")

Then, let us simulate (x, y) coordinates uniformly across a 10× 10 unit square.

R> x <- runif(100, 0, 10)
R> y <- runif(100, 0, 10)

One could now use the following syntax to simulate an epidemic from spatial model (4) and summarize
the output as an epidemic curve and spatial plot.

R> SI.dis <- epidata(type = "SI", n = 100, tmax = 15, sus.par = 0.3, beta = 5.0,
+ x = x, y = y)
R> SI.dis$inftime
[1] 0 0 10 4 7 0 0 0 4 5 0 0 9 2 6 6 3 0 0 0 11

[22] 0 0 9 12 3 0 15 9 0 8 0 0 0 11 9 0 2 0 5 7 0
[43] 2 15 7 0 0 5 0 0 0 14 8 2 0 15 9 10 10 4 1 5 4
[64] 6 11 3 0 8 0 6 8 5 12 4 2 13 0 9 3 6 3 4 9 13
[85] 0 0 0 0 0 0 0 0 10 0 9 11 9 9 0 0

Here, the epidemic is generated across the uniformly distributed population of 100 individuals with
a default first infection time t = 1 and last observed time point of tmax = 15. The declaration of
the spatial locations of individuals through x and y specifies that we are simulating from a spatial
model. (See later for network-based models). The output SI.dis$inftime provides the times at which
individuals enter the infectious state, with 0 representing individuals who are still susceptible at time
tmax. Figures 1 and 2 show the summary graphics for the simulated epidemic, which are produced
using the S3 method plot.epidata() as follows:

R> plot(SI.dis, plottype = "curve", curvetype ="complete")
R> plot(SI.dis, plottype = "spatial")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 92

0
20

40
60

80
10

0

Epidemic Curves

time

N
um

be
r o

f i
nd

iv
id

ua
ls

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Infected Susceptible

Figure 1: Epidemic curves of simulated epidemic from (4) for 100 individuals at t = 1, . . . , 15

Example: network model

To illustrate simulation from a contact network-based model, we consider a disease system in which
disease transmission can occur through a single, directed, binary network over a population of n = 100
individuals. The elements in the contact matrix represent the existence or non-existence of a directed
connection through which disease can transmit between two individuals in the population. Each
individual within the population is represented by a row and column within the matrix. Specifically,
an element Cij in the contact matrix is given by:

Cij =

(
1 if a directed edge exists between i and j
0 otherwise

)
(5)

We also consider the inclusion of a binary susceptibility covariate Z in the model. This can be thought
to represent, say, treatment or vaccination status. The infection model is then given by

IP(i, t) = 1− exp{−(α0 + α1Zi) ∑
j∈I(t)

Cij}, t = 1, . . . , tmax (6)

where α0 is the baseline susceptibility and α1 is the binary treatment effect. The parameters in the
model are set to be (α0, α1) = (0.1, 0.05) and ε = 0, and we also set tmax = 15. We simulate a directed

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 93

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 1
xx

yy

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 2
xx

yy

●
●●● ●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 3
xx

yy

●●

●

●●● ●
●

●
●
●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 4
xx

yy

●

●

●●

●

●●●

●

●

●

●

●

●
●
●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 5
xx

yy

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●
●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 6
xx

yy

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 7
xx

yy

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 8
xx

yy

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 9
xx

yy

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 10
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 11
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 12
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 13
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 14
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

time 15
xx

yy

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●Infected Susceptible

Figure 2: Simulated epidemic from (4) for 100 individuals, where open circles represent susceptible
individuals and filled red circles represent infected individuals

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 94

network using the following code:

R> contact <- matrix(rbinom(10000, 1, 0.1), nrow = 100, ncol = 100)
R> diag(contact[,]) <- 0

Various packages are available in R for network visualization, such as igraph, ergm, etc and as an
example, we use the igraph package for the network display as shown in Figure 3.

R> require("igraph")
R> net1 <- graph_from_adjacency_matrix(contact)
R> plot(net1, vertex.size = 10, vertex.label.cex = 0.5, edge.arrow.mode = "-")

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50
51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67 68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

9697

98 99

100

Figure 3: Contact network generated for model (6)

The epidemic is generated using the function epidata(). The arguments Sformula = ∼ Z and
sus.par = c(0.1,0.05) define the susceptibility function 0.1+ 0.05Zi. As there is one contact network
matrix in the model, the effect of the network C is set to one by default. The use of the contact
argument informs the package that we are dealing with a contact network-based model.

R> Z <- round(runif(100, 0, 2))
R> SI.contact <- epidata(type = "SI", Sformula = ~Z, n = 100, tmax = 15,
+ sus.par = c(0.1, 0.05), contact = contact)
R> SI.contact$inftime
[1] 0 9 11 10 9 5 8 9 8 9 9 10 1 7 12 11 7 11 8 4 8

[22] 10 8 11 7 9 11 5 7 6 6 8 9 8 9 6 6 7 9 9 7 4
[43] 7 10 8 3 10 9 10 11 6 7 9 6 5 11 4 7 8 8 10 8 8

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=ergm
https://CRAN.R-project.org/package=igraph

CONTRIBUTED RESEARCH ARTICLES 95

[64] 7 7 6 11 7 8 7 6 8 8 10 7 6 10 11 9 6 10 7 4 7
[85] 8 7 9 9 10 9 8 10 5 8 7 7 8 9 9 8

Figure 4 shows the epidemic curve, obtained via the following code.

R> plot(SI.contact, plottype = "curve", curvetype ="complete")
0

20
40

60
80

10
0

Epidemic Curves

time

N
um

be
r o

f i
nd

iv
id

ua
ls

1 2 3 4 5 6 7 8 9 10 11 12

Infected Susceptible

Figure 4: Epidemic curve of contact network model (6) for 100 individuals

Bayesian Inference

In EpiILM, ILMs can be fitted to observed data within a Bayesian framework. A Metropolis-Hastings
MCMC algorithm is provided which can be used to estimate the posterior distribution of the pa-
rameters. The function epimcmc() provides three choices for the marginal prior distribution of each
parameter: the gamma, half-normal, and uniform distributions. The parameters are assumed to be a
priori independent. The proposal used is a Gaussian random walk. Again, users can use the Sformula
and Tformula arguments to specify any individual-level susceptibility and transmissibility covariates.
Users can also control the number of MCMC simulations, initial values, and proposal variances of the
parameters to be estimated. Note that in case of fixing one parameter and updating other parameters,
users can do it by setting the proposal variance of fixed parameter to zero. This is usually the case
to avoid identifiability issue when the model has both susceptibility and transmissibility covariates

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 96

without intercept terms. Again, spatial/network, susceptibility parameters and transmissibility pa-
rameters are passed through arguments beta, sus.par and trans.par, respectively. One can specify
the spark parameter using the spark argument, but by default its value is 0. epimcmc() can also call
the adaptive MCMC method of inference facilitated by the adaptMCMC package. Specifically, users
can pass the argument adapt = TRUE along with acc.rate to run the adapt MCMC algorithm.

We can use the S3 method functions summary.epimcmc() and plot.epimcmc() available in the package
for output analysis and diagnostics. Both are dependent upon the coda package. The argument
plottype in the function plot.epimcmc, has two options to specify which samples are to be plotted: (1)
"parameter" is used to produce trace plots (time series plots) of the posterior distributions of the model
parameters, and (2) "loglik" to produce trace plots of the log likelihood values of the model parameter
samples. Other options that are used in the coda package can be used in the plot.epimcmc() as well;
e.g., start, end, thin, density, etc.

Spatial or network-based ILMs can be fitted to data as shown in the following examples.

Example: spatial model

Suppose we are interested in modelling the spread of a highly transmissible disease through a series
of farms, say n = 100, along with an assumption that the spatial locations of the farms and the number
of animals on each farm are known. In this situation, it is reasonable to treat the farms themselves as
individual units. If we treat the extent of infection from outside the observed population of farms as
negligible (ε = 0), we can write the ILM model as

IP(i, t) = 1− exp{−(α0 + α1 A(i)) ∑
j∈I(t)

d−β
ij }, t = 1, . . . , tmax, (7)

where the susceptibility covariate A represents the number of animals on each farm, α0 is the baseline
susceptibility, α1 is the number of animals effect, and β is the spatial parameter. Let us use the
same (simulated) spatial locations from the previous spatial model example and set the parameters
(α0, α1) = (0.2, 0.1) and β = 5. We also set tmax = 50. Considering an SI compartmental framework
for this situation, the epidemic is simulated using the following command:

R> A <- round(rexp(100,1/50))
R> SI.dis.cov <- epidata(type = "SI", n = 100, tmax = 50, x = x, y = y,
+ Sformula = ~A, sus.par = c(0.2, 0.1), beta = 5)

We can now refit the generating model to this simulated data and consider the posterior estimates of
the model parameters. We can do this using the following code:

R> t_end <- max(SI.dis.cov$inftime)
R> unif_range <- matrix(c(0, 0, 10000, 10000), nrow = 2, ncol = 2)
R> mcmcout_Model7 <- epimcmc(SI.dis.cov, Sformula = ~A, tmax = t_end, niter = 50000,
+ sus.par.ini = c(0.001, 0.001), beta.ini = 0.01,
+ pro.sus.var = c(0.01, 0.01), pro.beta.var = 0.5,
+ prior.sus.dist = c("uniform","uniform"), prior.sus.par = unif_range,
+ prior.beta.dist = "uniform", prior.beta.par = c(0, 10000))

where niter denotes the number of MCMC iterations and sus.par.ini and beta.ini are the initial
values of the parameters to be estimated. The proposal variances for (α0, α1) and β are set to (0.01, 0.01)
and 0.5, respectively (after tuning). Vague uniform prior distributions are used for all three parameters,
i.e., we choose U(0, 10000) for α0, α1, and β. As the locations x and y are specified, a spatial ILM is
fitted rather than a network-based ILM. Note that the full data set to which the model is being fitted
consists of the spatial locations (x, y) and the infection times. Figure 5 displays the MCMC traceplot
after 10000 burn-in using the command

R> plot(mcmcout_Model7, partype = "parameter", start = 10001, density = FALSE)

The posterior means and 95% credible intervals (CI) of the parameters, calculated as the 2.5% and
97.5% percentiles of 50000 MCMC draws after a burn-in of 10000 iterations has been removed, can be
obtained using the following code:

R> summary(mcmcout_Model7, start = 10001)

Model: SI distance-based discrete-time ILM
Method: Markov chain Monte Carlo (MCMC)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=adaptMCMC
https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=coda

CONTRIBUTED RESEARCH ARTICLES 97

Iterations = 10001:50000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 40000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha.1 0.2868 0.23516 0.0011758 0.012449
alpha.2 0.1997 0.07544 0.0003772 0.002393
beta.1 5.6790 0.48188 0.0024094 0.014631

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha.1 0.02018 0.1141 0.2226 0.3917 0.9072
alpha.2 0.08680 0.1486 0.1875 0.2395 0.3769
beta.1 4.81361 5.3377 5.6704 5.9872 6.6588

10000 20000 30000 40000 50000

0.
0

0.
5

1.
0

1.
5

Iterations

Trace of alpha.1

10000 20000 30000 40000 50000

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6

Iterations

Trace of alpha.2

10000 20000 30000 40000 50000

4
5

6
7

Iterations

Trace of beta.1

Figure 5: MCMC traceplot for the estimation of model (7) parameters

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 98

Example: network model

Now consider modelling the spread of an animal infectious disease through a series of farms (n = 500)
in a region. We once again consider individuals in the population to be the farms, rather than animals
themselves, and a single binary contact network to represent connections between farms. We assume
that there are two species of animals in farms that play an important role in spreading the disease; let
us say, cows and sheep. Thus, we include the number of cows and sheep on the farm as susceptibility
and transmissibility covariates in the model. Thus, the probability of susceptible farm i to be infected
at time t becomes:

IP(i, t) = 1− exp{−(α1X1(i) + α2X2(i)) ∑
j∈I(t)

[φ1X1(j) + φ2X2(j)]Cij}, t = 1, . . . , tmax (8)

with susceptibility parameters, (α1, α2), transmissibility parameters, (φ1, φ2), and X1 and X2 represent
the number of sheep and cows in farms, respectively. Note, when we have a single network, there is
no network parameter to estimate; this is to avoid problems of non-identifiability.

We can generate such a directed contact network using the following commands:

R> n <- 500
R> contact <- matrix(rbinom(n*n, size = 1, prob = 0.1), nrow = n, ncol = n)
R> diag(contact) <- 0

We also sample the number of sheep and cows on each farm using the following code

R> X1 <- round(rexp(n, 1/100))
R> X2 <- round(rgamma(n, 50, 0.5))

Assuming each infected farm to be infectious for an infectious period of 3 days and by setting tmax = 25,
α1 = 0.003, α2 = 0.01, φ1 = 0.0003, and φ2 = 0.0002, we can simulate the epidemic from the SIR
network-based ILMs (8) as follows and the epidemic curves are shown in Figure 6.

R> infp <- rep(3, n)
R> SIR.net <- epidata(type = "SIR", n = 500, tmax = 15,
+ sus.par = c(0.003, 0.01), trans.par = c(0.0003, 0.0002),
+ contact = contact, infperiod = infp,
+ Sformula = ~ -1 + X1 + X2, Tformula = ~ -1 + X1 + X2)
R> plot(SIR.net, plottype = "curve", curvetype = "complete")

To estimate the unknown parameters (α1, α2, φ1, φ2), we use the function epimcmc() assuming the
event times (infection and removal times) and contact network are observed. Note that the specification
of the contact argument means a network-based (rather than spatial) ILM will be assumed. We run the
epimcmc() function to produce an MCMC chain of 50000 iterations assigning gamma prior distribution
for the model parameters (α2, φ1, φ2) while fixing α1 to avoid the non-identifiablity issue in the model.
This is done by setting the proposal variance of this parameter to zero in the pro.sus.var argument.
To illustrate the use of adaptMCMC method, we set adapt = TRUE and set the acceptance rate as 0.5 via
acc.rate = 0.5. It should also be noted that we need to provide initial values and proposal variances
of the parameters when we use the adaptive MCMC option in the epimcmc() function. The syntax is
as follows:

R> t_end <- max(SIR.net$inftime)
R> prior_par <- matrix(rep(1, 4), ncol = 2, nrow = 2)
R> mcmcout_SIR.net <- epimcmc(SIR.net, tmax = t_end, niter = 50000,
+ Sformula = ~-1 + X1 + X2, Tformula = ~-1 + X1 + X2,
+ sus.par.ini = c(0.003, 0.001), trans.par.ini = c(0.01, 0.01),
+ pro.sus.var = c(0.0, 0.1), pro.trans.var = c(0.05, 0.05),
+ prior.sus.dist = c("gamma", "gamma"), prior.trans.dist = c("gamma", "gamma"),
+ prior.sus.par = prior_par, prior.trans.par = prior_par,
+ adapt = TRUE, acc.rate = 0.5)

Figure 7 shows the MCMC traceplot for the 50000 iterations. The estimate of the posterior mean
of the model parameters (α2, φ1, φ2) and their 95% credible intervals, after 10000 iterations of burn-
in have been removed are: α̂2 = 0.0094 (0.0051, 0.0168), φ̂1 = 0.0004 (0.0002, 0.0007), and φ̂1 =
0.0002 (0.00006, 0.0003).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 99

0
10
0

20
0

30
0

40
0

50
0

Epidemic Curve

time

N
um

be
r o

f i
nd

iv
id

ua
ls

1 2 3 4 5 6 7 8 9 10 11

Infected Susceptible Removed

Figure 6: Epidemic curve of the contact network model (8) for 500 farms

R> summary(mcmcout_SIR.net, start = 10001)

Model: SIR network-based discrete-time ILM
Method: Markov chain Monte Carlo (MCMC)

Iterations = 10001:50000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 40000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
alpha.2 0.0093899 0.0030070 1.504e-05 1.866e-04
phi.1 0.0004123 0.0001218 6.089e-07 4.483e-06
phi.2 0.0001851 0.0000732 3.660e-07 1.911e-06

2. Quantiles for each variable:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 100

10000 20000 30000 40000 50000

0.
00
5

0.
01
0

0.
01
5

0.
02
0

Iterations

Trace of alpha.2

10000 20000 30000 40000 50000

2e
-0
4

6e
-0
4

1e
-0
3

Iterations

Trace of phi.1

10000 20000 30000 40000 50000

0e
+0
0

2e
-0
4

4e
-0
4

Iterations

Trace of phi.2

Figure 7: MCMC traceplot for the estimation of model (8) parameters.

2.5% 25% 50% 75% 97.5%
alpha.2 5.130e-03 0.0071826 0.0088076 0.0110550 0.0168404
phi.1 2.123e-04 0.0003226 0.0004020 0.0004879 0.0006800
phi.2 6.646e-05 0.0001322 0.0001763 0.0002299 0.0003463

Case Study: Tomato spotted wilt virus (TSWV) data

Here, we consider data from a field trial on TSWV as described in Hughes et al. (1997). The experiment
was conducted on 520 pepper plants grown inside a greenhouse and the spread of the disease caused
by TSWV was recorded at regular time intervals. Plants were placed in 26 rows spaced one metre
apart, with 20 plants spaced half a metre apart in each row. The experiment started on May 26, 1993
and lasted until August 16, 1993. During this period, assessments were made every 14 days. We set the
initial infection time to be t = 2 as the epidemic starts at time point 2 and the last observation made is
set to be t = 7. The TSWV data in this package contain ID number, locations (x and y) and infectious
and removal time of each individual. The data set was reconstructed from a spatial plot in Hughes
et al. (1997). The infectious period for each tomato plant is assumed to span three time points (Brown

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 101

et al., 2005, Pokharel and Deardon, 2016). Thus, an SIR model is fitted using the following code:

R> data(tswv)
R> x <- tswv$x
R> y <- tswv$y
R> inftime <- tswv$inftime
R> removaltime <- tswv$removaltime
R> infperiod <- rep(3, length(x))

In order to see the spatial dispersion of the TSWV data, we use the function epispatial(). As no new
infections occurred at the second time point, we display spatial plots from that second observation by
setting tmin = 2 (see Figure 8). The required code is given by:

R> epidat.tswv <- as.epidata(type = "SIR", n = 520, x = x, y = y,
+ inftime = inftime, infperiod = infperiod)
R> plot(epidat.tswv, plottype = "spatial", tmin = 2)

0 5 10 15 20 25

2
4

6
8

10

time 2
xx

yy

Infected Susceptible Removed

0 5 10 15 20 25

2
4

6
8

10

time 3
xx

yy
Infected Susceptible Removed

0 5 10 15 20 25

2
4

6
8

10

time 4
xx

yy

Infected Susceptible Removed

0 5 10 15 20 25

2
4

6
8

10

time 5
xx

yy

Infected Susceptible Removed

0 5 10 15 20 25

2
4

6
8

10

time 6
xx

yy

Infected Susceptible Removed

0 5 10 15 20 25

2
4

6
8

10

time 7
xx

yy

Infected Susceptible Removed

Figure 8: Epidemic dispersion of TSWV data across a grid of 520 individuals, where open circles
represent susceptible individuals, filled red circles represent infected individuals, and blue crosses
represent the removed individuals.

The function epimcmc() is used to fit our model to the data. We ran 50000 MCMC iterations. The
computing time taken for the MCMC is about 10 min on a 16 GB MacBook Pro with a 2.9 GHz Intel
Core i5 processor. Proposal variances are chosen to be 0.000005 and 0.005 for α and β, respectively
(after tuning). We use vague independent marginal prior distributions for the parameters. Here, a
gamma distribution with shape parameter 1 and rate parameter 10−3 is used for both α and β. We
choose to fit our model to data starting at the second time point because no infections occur between
the first and second time points. Thus, we again set tmin = 2. The code for fitting our model is:

R> mcmc.tswv <- epimcmc(epidat.tswv, tmin = 2, tmax = 10,
+ niter = 50000, sus.par.ini = 0.0, beta.ini = 0.01,
+ pro.sus.var = 0.000005, pro.beta.var = 0.005, prior.sus.dist = "gamma",
+ prior.sus.par = c(1,10**(-3)), prior.beta.dist = "gamma",
+ prior.beta.par = c(1,10**(-3)))

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 102

The posterior mean estimates for this model are α̂ = 0.014 and β̂ = 1.351. The 95% credible interval of
the posterior mean of α and β are (0.009, 0.0190) and (1.041, 1.629), respectively. Once again, these
intervals are calculated as the 2.5% and 97.5% percentiles of 50000 draws after 10000 iterations of
burn-in have been removed. The MCMC traceplots shown in Figure 9.

10000 20000 30000 40000 50000

0.
01

0
0.

01
5

0.
02

0

Iterations

Trace of alpha.1

10000 20000 30000 40000 50000

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Iterations

Trace of beta.1

Figure 9: MCMC traceplots of the posterior samples for TSWV data

Conclusion

This paper discusses the implementation of the R software package EpiILM. Other than this package,
there does not appear to be any R software that offers spatial and network-based individual-level
modelling for infectious disease systems. Thus, this package will be helpful to many researchers and
students in epidemiology as well as in statistics. These models can be used to model disease systems
of humans (e.g., Malik et al. (2014)), animals (e.g., Kwong et al. (2013)), or plants (e.g., Pokharel and
Deardon (2016)), as well as other transmission-based systems such as invasive species (e.g., Cook et al.
(2007)) or fire spread (Vrbik et al., 2012).
The EpiILM package continues to exist as a work in progress. We hope to implement additional models
and options in the future, that might be useful for other researchers in their research and teaching.
Such additions may include the incorporation of time-varying networks, covariates and/or spatial

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES 103

kernels (e.g., Vrbik et al. (2012)), models that allow for a joint spatial and network-based infection
kernel, uncertainty in the times of transitions between disease states (e.g., Malik et al. (2016)), unknown
covariates (e.g., Deeth and Deardon (2013), and extensions to other compartmental frameworks such
as SEIR and SIRS. Finally, we hope to extend the package to allow for the modelling of disease systems
with multiple interacting strains or pathogens (Romanescu and Deardon, 2016).

Acknowledgments

Warriyar was funded by a University of Calgary Eyes High Postdoctoral Scholarship. Both Deardon,
and equipment used to carry out this work, were funded by a Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant.

Bibliography
P.-Y. Boelle and T. Obadia. R0: Estimation of R0 and Real-Time Reproduction Number from Epidemics, 2015.

URL https://CRAN.R-project.org/package=R0. R package version 1.2-6. [p87]

S. Brown, A. Csinos, J. Díaz-Pérez, R. Gitaitis, S. LaHue, J. Lewis, N. Martinez, R. McPherson, S. Mullis,
C. Nischwitz, et al. Tospoviruses in solanaceae and other crops in the coastal plain of georgia. The
University of Georgia College of Agriculture and Environmental Sciences, Research Report, 704:19, 2005.
[p100]

A. R. Cook, G. Marion, A. Butler, and G. J. Gibson. Bayesian inference for the spatio-temporal invasion
of alien species. Bulletin of Mathematical Biology, 69:2005–2025, 2007. [p88, 102]

A. Cori. EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves, 2019. URL
https://CRAN.R-project.org/package=EpiEstim. R package version 2.2-1. [p87]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society, 34(2):187–220, 1972.
[p88]

R. Deardon, S. P. Brooks, B. T. Grenfell, M. J. Keeling, M. J. Tildesley, N. J. Savill, D. J. Shaw, and
M. E. Woolhouse. Inference for individual-level models of infectious diseases in large populations.
Statistica Sinica, 20(1):239, 2010. [p87, 88]

R. Deardon, X. Fang, and G. Kwong. Statistical modeling of spatiotemporal infectious disease
transmission. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases (eds. Chen
D, Moulin B, Wu J, pages 211–232, 2015. [p89]

L. Deeth and R. Deardon. Latent conditional individual-level models for infectious disease modeling.
The International Journal of Biostatistics, 9(1):75–93, 2013. [p103]

C. Groendyke and D. Welch. epinet: Epidemic/Network-Related Tools, 2016. URL https://CRAN.R-
project.org/package=epinet. R package version 2.1.7. [p87]

G. Hughes, N. McRoberts, L. V. Madden, and S. C. Nelson. Validating mathematical models of
plant-disease progress in space and time. Mathematical Medicine and Biology, 14(2):85–112, 1997.
[p100]

C. H. Jackson. Multi-state models for panel data: The msm package for R. Journal of Statistical Software,
38(8):1–29, 2011. URL http://www.jstatsoft.org/v38/i08/. [p88]

S. Jenness, S. M. Goodreau, and M. Morris. EpiModel: Mathematical Modeling of Infectious Disease
Dynamics, 2018. URL https://CRAN.R-project.org/package=EpiModel. R package version 1.6.1.
[p87]

C. P. Jewell, T. Kypraios, P. Neal, and G. O. Roberts. Bayesian analysis for emerging infectious diseases.
Bayesian Analysis, 4(4):465–496, 2009. [p88]

G. Kwong, Z. Poljak, R. Deardon, and C. Dewey. Bayesian analysis of risk factors for infection with
a genotype of porcine reproductive and respiratory syndrome virus in ontario swine herds using
monitoring data. Preventive Veterinary Medicine, 110(3-4):405–17, 2013. [p88, 102]

R. Malik, R. Deardon, G. Kwong, and B. J. Cowling. Individual-level modeling of the spread of
influenza within households. Journal of Applied Statistics, 41(7):1578–1592, 2014. [p87, 102]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=R0
https://CRAN.R-project.org/package=EpiEstim
https://CRAN.R-project.org/package=epinet
https://CRAN.R-project.org/package=epinet
http://www.jstatsoft.org/v38/i08/
https://CRAN.R-project.org/package=EpiModel

CONTRIBUTED RESEARCH ARTICLES 104

R. Malik, R. Deardon, and G. Kwong. Parameterizing spatial models of infectious disease transmission
that incorporate infection time uncertainty using sampling- based likelihood approximations. PLoS
One, 11(1), 2016. URL https://doi.org/10.1371/journal.pone.0146253. [p103]

S. Meyer, L. Held, and M. Hohle. Spatio-temporal analysis of epidemic phenomena using the R
package surveillance. Journal of Statistical Software, 77(11):1–55, 2017. URL https://doi.org/10.
18637/jss.v077.i11. [p87]

K. M. O’Reilly, R. Lowe, W. J. Edmunds, P. Mayaud, A. Kucharski, R. M. Eggo, S. Funk, D. Bhatia,
K. Khan, M. U. G. Kraemer, A. Wilder-Smith, L. C. Rodrigues, P. Brasil, E. Massad, T. Jaenisch,
S. Cauchemez, O. J. Brady, and L. Yakob. Projecting the end of the zika virus epidemic in latin
america: a modelling analysis. BMC Medicine, 16(1):180, 2018. [p87]

G. Pokharel and R. Deardon. Gaussian process emulators for spatial individual-level models of
infectious disease. Canadian Journal of Statistics, 44(4):480–501, 2016. [p88, 101, 102]

R. Romanescu and R. Deardon. Modelling two strains of disease via aggregate-level infectivity curves.
Journal of Mathematical Biology, 72(5):1195–1224, 2016. [p103]

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.org/
package=survival. version 2.38. [p88]

M. J. Tildesley, N. J. Savill, D. J. Shaw, R. Deardon, S. P. Brooks, M. E. J. Woolhouse, B. T. Grenfell, and
M. J. Keeling. Optimal reactive vaccination strategies for an outbreak of foot-and-mouth disease in
great britain. Nature, 440(7080):83–86, 2006. [p87]

I. Vrbik, R. Deardon, Z. Feng, A. Gardner, and J. Braun. Using individual-level models to model the
spatio-temporal dynamics of combustion. Bayesian Analysis, 7(3):615–638, 2012. [p88, 102, 103]

V. Warriyar. K. V., W. Almutiry, and R. Deardon. EpiILM: Spatial and Network Based Individual Level
Models for Epidemics, 2020. URL https://CRAN.R-project.org/package=EpiILM. R package version
1.5. [p87]

Vineetha Warriyar. K. V.
Faculty of Veterinary Medicine
University of Calgary
Canada
vineethawarriyar.kod@ucalgary.ca

Waleed Almutiry
Department of Mathematics
College of Science and Arts in Ar Rass
Qassim University
Saudi Arabia
wkmtierie@qu.edu.sa

Rob Deardon
Faculty of Veterinary Medicine and Department of Mathematics and Statistics
University of Calgary
Canada
robert.deardon@ucalgary.ca

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1371/journal.pone.0146253
https://doi.org/10.18637/jss.v077.i11
https://doi.org/10.18637/jss.v077.i11
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=EpiILM
mailto:vineethawarriyar.kod@ucalgary.ca
mailto:wkmtierie@qu.edu.sa
mailto:robert.deardon@ucalgary.ca

CONTRIBUTED RESEARCH ARTICLES 105

SurvBoost: An R Package for
High-Dimensional Variable Selection in
the Stratified Proportional Hazards Model
via Gradient Boosting
by Emily Morris, Kevin He, Yanming Li, Yi Li, and Jian Kang

Abstract High-dimensional variable selection in the proportional hazards (PH) model has many
successful applications in different areas. In practice, data may involve confounding variables that do
not satisfy the PH assumption, in which case the stratified proportional hazards (SPH) model can be
adopted to control the confounding effects by stratification without directly modeling the confounding
effects. However, there is a lack of computationally efficient statistical software for high-dimensional
variable selection in the SPH model. In this work an R package, SurvBoost, is developed to implement
the gradient boosting algorithm for fitting the SPH model with high-dimensional covariate variables.
Simulation studies demonstrate that in many scenarios SurvBoost can achieve better selection accuracy
and reduce computational time substantially compared to the existing R package that implements
boosting algorithms without stratification. The proposed R package is also illustrated by an analysis
of gene expression data with survival outcome in The Cancer Genome Atlas study. In addition, a
detailed hands-on tutorial for SurvBoost is provided.

Introduction

Variable selection for high-dimensional survival data has become increasingly important in a variety
of research areas. One of the most popular methods is based on the proportional hazards (PH) model.
Many penalized regression methods including adaptive lasso and elastic net have been proposed for
the PH model (Tibshirani, 1997; Simon et al., 2011; Goeman, 2010). Alternatively, boosting described
by Bühlmann and Yu (2010) has been adopted for variable selection in regression models and the PH
model via gradient descent techniques. It can have a better variable selection accuracy compared with
other methods in many scenarios. The R package mboost has been developed and become a powerful
tool for variable selection and parameter estimation in complex parametric and nonparametric models
via the boosting methods (Hothorn et al., 2017). It has been widely used in many applications.

However, in many biomedical studies, the collected data may involve confounding variables that
do not satisfy the PH assumption. For example, in cancer research you may argue that gender effects
are not proportional, but we are more interested in selecting genes as the important risk factors for
cancer survival. The PH assumption can reasonably be imposed on modeling the gene effects but
not for gender effects. In this case the stratified proportional hazards (SPH) models are needed. In
particular, the data are often grouped into multiple strata according to confounding variables. The
SPH model adjusts those confounding effects by fitting the Cox regression with different baseline
hazards for different strata, while still assuming that the covariate effects of interest are the same
across different strata and satisfy the proportional hazard assumption.

The SPH model has a wide range of applications for survival analysis, but no computationally
efficient statistical software are available for high-dimensional variable selection in the SPH model.
To fill this gap, we develop an R package, SurvBoost, to implement the gradient boosting algorithm
for fitting the SPH model with high-dimensional covariates with adjusting confounding variables.
SurvBoost implements the gradient descent algorithm for fitting both PH and SPH model. The
algorithm for the PH model has been used for the additive Cox model in the mboost package,
which cannot fit the SPH model to perform variable selection. The survival package is capable of
performing model fitting for the SPH model, but does not implement variable selection desired in
the high-dimensional setting. In our SurvBoost package, we optimize the implementations which
can reduce 30%–50% computational time. Additional options are available in the SurvBoost package
to determine an appropriate stopping criteria for the algorithm. Another useful function assists in
selecting stratification variables, which may improve model fitting results.

The rest of the paper is organized as follows: In Section 2, we will provide a brief overview
of the gradient boosting method for the SPH model along with the algorithm stopping criteria. In
Section 3, we show that SurvBoost can achieve a better selection accuracy and reduce computational
time substantially compared with mboost. In Section 4, we provide a detailed hands-on tutorial for
SurvBoost. In Section 5, we illustrate the proposed R package on an analysis of the gene expression

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mboost
https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES 106

data with survival outcome in The Cancer Genome Atlas (TCGA) study.

Methods

Stratified proportional hazards model

The Cox proportional hazards model is effective for modeling survival outcomes in many applications.
An important assumption underlying this model is a constant hazard ratio, meaning that the hazard
for one individual is proportional to that of any other individual. This is a strong assumption for many
applications. Thus, one useful adaptation to this model is relaxing the strict proportional hazards
assumption; one approach is to allow the baseline hazard to differ by group across the observations.
This is known as the stratified proportional hazards (SPH) model.

Suppose the dataset consists of n subjects. For i = 1, . . . , n, denote by Ti the observed time of event
or censoring for subject i, and δi indicates whether or not an event occurred for subject i. Denote by G
the total number of strata and by ng the number of subjects in stratum g. Let gi be the strata indicator
for subject i. Suppose there are p potential covariate variables of our interest to select. For j = 1, . . . , p,
let xij be the covariate j for subject i. For stratum g = 1, . . . , G, the hazard of subject i at time t in
stratum g becomes

hg(t, Xi,g) = h0,g(t) exp
{

XT
i,gβ
}

,

where h0,g(t) is the baseline hazard function, Xi,g is a vector of covariates and β is the regression
coefficients of interest.

Allowing the baseline hazard to differ across strata allows flexibility often desired when propor-
tional hazards is too strong. The SPH model can control effects of confounding variables through this
stratification. The estimates of the effect of covariates remain constant across strata, so the model is
still interpretable across all subjects.

Gradient boosting for SPH

The log partial likelihood of the SPH model is

`(β) =
n

∑
i=1

δi

XT
i,gβ− log

 ∑
`∈Ri,g

exp{XT
`,gβ}

 ,

where β = (β1, . . . , βp)>, Xi = (Xi1, . . . , Xip)
> and Rig = {` : T` ≥ Ti, gl = g} for all i with gi = g

representing the set of at risk subjects in group g. We adopt the following gradient boosting algorithm
to find the maximum partial likelihood estimate (MPLE). Let Skg(i, j) = ∑`∈Rig

Xk
`j exp{X>`gβ} for

k = 0, 1, 2.

Data: {Ti, δi, gi, Xi}n
i=1; Number of iterations M; Updating rate υ

Result: β.
1 begin
2 Initialize β j = 0 (j = 1, . . . , p).
3 for m = 1, . . . , M do
4 for j = 1, . . . , p do
5 Compute the first partial derivative with respect to j:

L1(j) = ∑n
i=1 ∑G

g=1 I[gi=g]δi{Xij − S1g(i, j)/S0g(i, i)}.
6 end
7 Find j∗ = argmaxj |L1(j)|.
8 Calculate the second partial derivative with respect to j∗:

L2(j∗) = ∑n
i=1 ∑G

g=1 I[gi=g]δi

S2g(i, i)
S0g(i, i)

−
{

S1g(i, j∗)
S0g(i, i)

}2


9 Update β j∗ = β j∗ + υL2(j∗)−1L1(j∗)
10 end
11 end

Algorithm 1: Boosting gradient descent algorithm

This algorithm updates variables one at a time, by selecting the variable which maximizes the first
partial derivative. The number of iterations is important for ensuring a sufficient number of updates

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 107

to the β estimates, in addition to selecting the true signals (He et al., 2016). Note that this algorithm
is slightly different than the one implemented in the mboost package even in the unstratified case,
which we will use for comparison in the simulation setting. Buhlmann and Hothorn’s algorithm uses
only the first derivative to update the estimated β values (Bühlmann and Hothorn, 2007).

Stopping criteria

Selection of the number of boosting iterations is important. Over-fitting can occur if the number of
iterations is too large (Jiang, 2004). Additionally the stopping criteria is important for accuracy of the
coefficient estimates, since each iteration contributes to updating the estimate of one coefficient. The
algorithm is less sensitive to the step size (Bühlmann and Hothorn, 2007).

SurvBoost provides several options for optimizing the number of iterations including: k-fold cross
validation, Bayesian information criteria, change in likelihood, or specifying the number of variables
to select.

The Bayesian Information Criteria (BIC) is one approach for selecting the optimal number of
boosting iterations.

BIC = −2 {lj(θ̂j)− l0(θ̂0)}+ (pj − p0) log(d), (1)

where lj(θ̂j) is the maximized likelihood for a model with pj selected variables and l0(θ̂0) is the
maximized likelihood for the reference model with p0 selected variables. The number of uncensored
events is d. Volinsky and Raftery (2000) argue that replacing the sample size, n, with d in the BIC
calculation has better properties when dealing with censored survival models.

The extended BIC is also useful in high dimensional cases; this approach penalizes for greater
complexity

EBIC = −2 lj(θ̂j) + pj log(d) + 2 γ log
(

p
pj

)
, (2)

where (p
pj
) is the size of the class of models that model j belongs to, p is the total number of variables.

The value of γ is fixed between 0 and 1, selected to penalize at the appropriate rate. Selecting 0 will
reduce this to the standard BIC; EBIC and BIC are implemented jointly in the package using this
connection to reduce from EBIC to BIC. AIC is available as well as a stopping criteria, although this
information might not be as effective in the high dimensional setting.

Cross validation is another approach which may be used to determine the stopping point. The
goodness of fit function is calculated as suggested by Simon et al. (2011). It is the log-partial likelihood
of all the data using the optimal β determined with data excluding fold k (β−k) minus the log-partial
likelihood excluding fold k (`−k) of the data with the same β.

CVk(m) = −[`{β−k(m)} − `−k{β−k(m)}], (3)

Where m is the current number of iterations and k indicates the subset of data being excluded.

Change in likelihood is another approach incorporated in the package. This method stops iterating
once a small change in likelihood, specified in the function, is reached.

∆` = − [`(β(m))− `(β(m + 1))] < α, (4)

Where α is a small constant. Default change in likelihood, used in simulations, is a change of 0.001.

Simulation studies

This section compares the variable selection performance to a competing R package, mboost (Hofner
et al., 2014).

Stratified Data Stratified data was simulated such that censoring rates were relatively constant
across groups and the expected survival time differed by group. These assumptions mimic realistic
settings such as those encountered with data grouped by hospital or facility.

For this simulation 1,500 observations were generated into ten strata; each strata had a different
baseline hazard following a Weibull distribution. The Weibull distribution shape parameter was 3
for all strata, and the scale parameter varied across strata from e−1 to e−15 with ten evenly spaced
intervals. There were 100 true signals among 4,000 variables with true magnitude of 2 or -2. There was
uniform censoring from time 0 to 200. Fifty of these data sets were generated.

The following example demonstrates the importance of the stopping criteria. SurvBoost has five

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 108

options for specifying the number of iterations as described in the methods section. Selecting an
appropriate number of iterations depends on the goals of the analysis. For example, if the goal is to
achieve high sensitivity cross validation or extended BIC may be the best approach.

The performance of different stopping criteria are compared based on several selection and
estimation measures: sensitivity (Se), specificity (Sp), false discovery rate (FDR), and mean squared
error (MSE). FDR is calculated as the ratio of false positives over the total number of selected variables.
Sensitivity, specificity, and FDR aim to address the performance of the variable selection, while MSE
aims to address the accuracy of the coefficient estimates.

This simulation presents the performance of SurvBoost compared to the R package mboost. The
boosting algorithm implemented in mboost is very similar to that of SurvBoost but does not allow
stratification. We will compare results between the two packages using only a fixed number of
iterations as the stopping rule; mboost has K-fold cross validation available for some settings but
no longer provides it for Cox PH models. All of the stopping methods implemented in SurvBoost
are not available in mboost. The performance can be compared by measures such as sensitivity and
mean squared error. Table 1 presents the results of 50 simulated data sets, comparing the boosting
algorithm using several different stopping procedures and to results from mboost. In this simulation,
mboost selects fewer variables on average resulting in fewer false positives and more false negatives.
Additionally the mean squared error is slightly higher than that of all the SurvBoost options.

Runtime is also an important factor with this algorithm. Stratification speeds up the algorithm as
seen in the first simulation. All runtimes were generated on a MacBook with 2.9GHz Intel Core i5 and
16GB memory.

stopping number Se Sp FDR MSE number of runtime
method selected iterations (seconds)

SurvBoost fixed 111 (5) 0.90 (.02) 0.99 (.00) 0.19 (.04) 382 (1) 500 (0) 163 (20)
mboost 99 (4) 0.82 (.03) 1.00 (.00) 0.17 (.04) 387 (1) 500 (0) 396 (254)

SurvBoost cv 379 (24) 1.00 (.00) 0.93 (.01) 0.74 (.02) 333 (3) 3896 (275) 5742 (595)
SurvBoost # selected 101 (0) 0.84 (.03) 1.00 (.00) 0.17 (.03) 385 (2) 385 (40) 163 (24)
SurvBoost likelihood 121 (6) 0.95 (.02) 0.99 (.00) 0.21 (.04) 378 (1) 632 (15) 242 (33)
SurvBoost EBIC 140 (7) 0.99 (.01) 0.99 (.00) 0.29 (.04) 370 (1) 993 (10) 624 (60)

Table 1: Results from simulation with approximately 1,500 observations in 10 strata and 4,000 variables to be
selected. The table presents averages with the standard deviation, in parentheses, from 50 simulated datasets.
Sensitivity (Se) is calculated as the proportion of true positives out of the total number of true signals. Specificity
(Sp) is calculated as the proportion of true negatives out of the total number of variables that are not true signals.
The false discovery rate (FDR) is the proportion of false positives in the total number of selected variables.

To further demonstrate the importance of using the SPH model, we compared results of modeling
with and without stratification for data simulated with ten strata. In this setting the true signal for all
100 variables is 0.75 to illustrate the performance with a smaller effect size.

Stopping number Se Sp FDR MSE number of runtime
Method selected iterations (seconds)

Stratified

fixed 116 (7) 0.71 (.04) 0.95 (.01) 0.39 (.04) 49 (0) 500 (0) 14 (1)
cv 198 (16) 0.90 (.04) 0.88 (.02) 0.54 (.03) 50 (2) 1585 (316) 263 (60)

selected 100 (0) 0.65 (.04) 0.96 (.00) 0.36 (.04) 50 (1) 391 (42) 11 (2)
likelihood 112 (8) 0.69 (.04) 0.95 (.01) 0.38 (.03) 49 (1) 472 (33) 14 (2)

EBIC 161 (9) 0.84 (.03) 0.91 (.01) 0.48 (.04) 44 (1) 41 (45) 29 (3)

Unstratified SB fixed 122 (7) 0.67 (.04) 0.94 (.01) 0.45 (.04) 49 (1) 500 (0) 13 (1)
mboost 58 (5) 0.41 (.03) 0.98 (.00) 0.30 (.06) 53 (0) 500 (0) 13 (1)

Table 2: Results from simulation with approximately 1,000 observations and 1,000 possible variables for
selection with 100 true signals. The table presents averages with the standard deviation from 50 simulated
datasets. All methods in this table were run using the SurvBoost package except for the unstratified mboost
row.

From this example we can evaluate the importance of using the stratified model. This case
demonstrates that when not stratifying by group the model is not as sensitive to the true signals,
resulting in lower sensitivity. We also observe a larger or similar number of variables selected, meaning

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 109

that there are a larger number of false positives when ignoring the stratification. Depending on the
context, a larger number of false positives may be very undesirable. The algorithm implemented for
the Cox PH model is slightly different than the one used in SurvBoost, which can be seen here by the
difference in the two unstratified rows.

Unstratified Data Another simulation was used to compare performance of our method to mboost
when stratification is not necessary for appropriate modeling. Similarly to the stratified case, four
thousand variables were generated for 1,500 observations but without stratification. The baseline
hazard followed a Weibull distribution, with shape parameter equal to 5 and scale equal to exp−5. The
true β contained 100 true signals of magnitude 2 or -2 out of 4,000 variables.

We can observe in Table 2 that SurvBoost performs similarly to mboost under these conditions.
mboost tends to select fewer variables than SurvBoost, so in this simulation mboost has fewer false
positives and more false negatives compared to SurvBoost.

stopping number Se Sp FDR MSE number of runtime
method selected iterations (seconds)

SurvBoost fixed 104 (3) 0.94 (.02) 1.00 (.00) 0.10 (.02) 381 (.45) 500 (0) 138 (11)
mboost 98 (4) 0.89 (.03) 1.00 (.00) 0.10 (.03) 384 (.36) 500 (0) 220 (198)

SurvBoost cv 141 (7) 1.00 (.00) 0.99 (.00) 0.29 (.04) 298 (1) 5010 (0) 6531 (18)
SurvBoost # selected 100 (0) 0.91 (.02) 1.00 (.00) 0.10 (.02) 382 (2) 452 (62) 151 (18)
SurvBoost likelihood 109 (3) 0.98 (.01) 1.00 (.00) 0.10 (.03) 382 (.54) 668 (14) 216 (18)
SurvBoost EBIC 112 (4) 0.99 (.01) 1.00 (.00) 0.11 (.03) 366 (1) 999 (.25) 530 (27)

Table 3: Results from simulation with approximately 1,500 observations and 4,000 possible variables for
selection with 100 true signals. The table presents averages with the standard deviation from 50 simulated
datasets.

Illustration of package

This section provides a brief tutorial on how to use this package based on simulated data. In order
to install the package, several other R packages must be installed. The code relies on Rcpp, RcppAr-
madillo, and RcppParallel in order to improve computational speed (Eddelbuettel et al., 2018a,b;
Allaire et al., 2018). Additionally the survival package is used for simulation and post selection
refitting for inference and will be required for installation of SurvBoost (Therneau, 2017). If working
on a Windows machine, installing Rtools is also necessary. The following line of R code installs the
package from CRAN.

R > install.packages("SurvBoost")

Model fitting

The boosting_core() function requires similar inputs to the familiar coxph() function from the
package survival.

boosting_core(formula, data = matrix(), rate = 0.01, num_iter = 500, ...)

The input formula has the form Surv(time,death) ∼ variable1 + variable2. The input data is in
matrix form or a data frame. Two additional parameters must be specified for the boosting algorithm:
rate and num_iter. Rate is the step size in the algorithm, although choice of this may not impact the
performance too significantly (Bühlmann and Hothorn, 2007), default value is set to 0.01. Selecting
an appropriate number of iterations to run the algorithm will, however, have a greater impact on the
results. The last input num_iter is used to determine the number of iterations to run the algorithm,
default value is 500.

Simple example

We present a simple example demonstrating the convenience of using the package for stratified data.
We simulate survival data for five strata with different constant baseline hazards.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppParallel
https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES 110

Call Method

boosting_core(formula, data) fixed mstop = 500
boosting_core(formula, data, num_iter=1000) fixed mstop = specified value
boosting_core(formula, data, control_method="cv") 10-fold cross validation
boosting_core(formula, data, control_method="num_selected", number selected, need to specify

control_parameter = 5) number of variables
boosting_core(formula, data, control_method="likelihood") change in likelihood
boosting_core(formula, data, control_method="BIC") minimum BIC or EBIC
boosting_core(formula, data, control_method="AIC") minimum AIC

Table 4: Stopping criteria options for boosting_core function.

Function Result

summary.boosting() prints summary of variable selection and estimation
plot.boosting() plots variable selection frequency
predict.boosting() generates predicted hazard ratio for each observation or new data
post.selection.fitting.boosting() refits model with only subset of selected covariates

Table 5: Functions available in SurvBoost package. Every function accepts a boosting object input to generate
the corresponding result.

R > TrueBeta
[1] 0.5 0.5 0.0 0.0 0.0 -0.5 0.5 0.5 0.0 0.0
R > set.seed(123)
R > data_small <- simulate_survival_cox(true_beta=TrueBeta,

base_hazard="auto",
num_strata=5,
input_strata_size=100, cov_structure="ar",
block_size=5, rho=0.6, censor_dist="unif",
censor_const=2, tau=Inf, normalized=F)

We have p = 10 and |β j| ranges from 0 to 0.5. There are five “facilities” with average size of 100
each representing one stratum, and n is approximately 500. The covariance structure within the blocks
is AR(1) with correlation 0.6. The censoring rate is about 33%. In this case the variable strata_idx
indicates the variable to stratify on in the survival model; each “facility” in this simulated data has a
different baseline hazard function.

Another feature of the package assists with determining variables to stratify on if this information
is unknown. The function strata.boosting will print box plots and a summary table of the survival time
grouped by splits in the specified variable. The variable can be categorical or continuous; if continuous,
the function will split on the median value to demonstrate whether there appears to be a difference
in the survival time distribution for the two groups. This information alone does not suggest that
stratification on this variable is necessary. It is intended to be a tool to confirm if there are differences
seen across groups, when stratification is anticipated to be necessary.

R > strata.boosting(data_small$strata_idx, data_small$time)

as.factor(x) Min Q1 Median Q3 Max
1 1 0.0046772744 0.1163388 0.3108169 1.096236 1.693283
2 2 0.0005600448 0.1422992 0.5849665 1.270754 1.951286
3 3 0.0057943145 0.1371938 0.9125127 1.314191 1.989180
4 4 0.0042511208 0.1998902 0.5797646 1.437124 1.960646
5 5 0.0015349222 0.1283325 0.5896426 1.325094 1.873137

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 111

Figure 1: Box plots of survival time by strata index in simulated data generated by the function
strata.boosting.

Simulated data includes a vector of survival or censoring time, time, indicator of an event, delta, and
matrix of covariates, Z. Then generate the formula including all possible variables for selection.

R > time <- data_small$time
R > delta <- data_small$delta
R > Z <- as.matrix(data_small[,-c(1,2,3)])

R > covariates <- paste("strata(strata_idx)+", paste(colnames(Z),
collapse = "+"))

R > formula <- as.formula(paste("Surv(time,delta)~", covariates))

Run the boosting_core() function to obtain the variables selected. This example uses the number of
iterations control as a fixed input of 75 and update rate of 0.1.

R > test1 <- boosting_core(formula,
+ data=data_small,
+ rate=0.1,
+ num_iter=75)
R > summary.boosting(test1)

Call:
boosting_core(formula = formula, data = data_small, rate = 0.1,

num_iter = 75)

data: data_small

n = 506
Number of events = 371
Number of boosting iterations: mstop = 75
Step size = 0.1

Coefficients:
V1 V2 V6 V7 V8

0.4486589 0.3676104 -0.2150421 0.2384806 0.4728502

Function summary.boosting() displays the variables which are selected as well as the coefficient
estimates and the number of boosting iterations performed. Set the argument all_beta = TRUE to see
all the variables, not just those selected.

To use a different method for the number of boosting iterations use the arguments control_method
and control_parameter. The value of control_parameter should be a list containing the value of the
parameter(s) corresponding to the method specified by control_method. For example,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 112

R > test2 <- boosting_core(formula, data=data_small, rate=0.1,
control_method="num_selected", control_parameter=list(num_select=5))

R > summary.boosting(test2)
Call:
boosting_core(formula = formula, data = data_small, rate = 0.1,

control_method = "num_selected", control_parameter = list(num_select = 5))

data: data_small

n = 506
Number of events = 371
Number of boosting iterations: mstop = 104
Step size = 0.1

Coefficients:
V1 V2 V6 V7 V8

0.11828718 0.11021464 -0.05292158 0.25561965 0.05199151

Number of iterations: 10

This option iterates until the specified number of variables, 5 in this example, are selected. See
methods for other stopping criteria. Note that in the package BIC and EBIC are available jointly in one
option when control_method is set to "BIC". Setting the parameter γ = 0 will reduce the EBIC penalty
to the BIC penalty. In order to implement EBIC, a nonzero value of gamma should be specified in
control_parameter.

The plot.boosting() function displays a plot of the selection frequency by the number of iterations.
Another option of the plot.boosting() function is to plot the coefficient paths of each variable by the
number of boosting iterations. See Figures 2 and 3.

Figure 2: Plot generated by plot.boosting function, variable selection frequency by number of boosting
iterations.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 113

Figure 3: Plot generated by plot.boosting function with option “coefficients,” coefficient paths for variables
selected by number of boosting iterations.

The function predict.boosting() provides an estimate of the hazard ratio for each observation in the
dataset provided, relative to the average of p predictors.

R > predict.boosting(test1)[1:6]
46.385476 1.823920 42.049932 16.427860 4.013200 2.243711

The model selected using boosting can be refit with coxph() for post selection inference. The function
post.selection.fitting.boosting() will perform this refitting and output the coefficient estimates
with corresponding standard errors and p-values. Note that the statistical inferences performed here
are conditional on the variable selection results. The interpretation of p-values and standard errors
are fundamentally different from the regular unconditional statistical inferences. The performance of
conditional statistical inferences is highly dependent on the variable selection accuracy. In our case, it
depends on the choice of stopping rule.

R > summary.test1 <- summary.boosting(test1)
R > fmla <- summary.test1$formula
R > post.selection.fitting.boosting(fmla, data=data_small)
Call:
coxph(formula = fmla, data = data)

n = 506, number of events = 371

coef exp(coef) se(coef) z Pr(>|z|)
V1 0.59181 1.80726 0.07454 7.940 2.00e-15 ***
V2 0.48079 1.61736 0.06948 6.920 4.53e-12 ***
V6 -0.51830 0.59553 0.07145 -7.254 4.05e-13 ***
V7 0.51108 1.66709 0.08479 6.028 1.66e-09 ***
V8 0.54758 1.72907 0.07116 7.695 1.42e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

exp(coef) exp(-coef) lower .95 upper .95
V1 1.8073 0.5533 1.5616 2.0915
V2 1.6174 0.6183 1.4114 1.8533
V6 0.5955 1.6792 0.5177 0.6851
V7 1.6671 0.5998 1.4118 1.9685
V8 1.7291 0.5783 1.5040 1.9879

Concordance= 0.762 (se = 0.036)
Rsquare= 0.487 (max possible= 0.997)
Likelihood ratio test= 338.1 on 5 df, p=0
Wald test = 287.8 on 5 df, p=0
Score (logrank) test = 299.1 on 5 df, p=0

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 114

TCGA data example
Data from three breast cancer cohorts was used to demonstrate this method on data outside of the
simulation framework. There were 578 patients included in the combined data, with 8,864 variables
measured for each patient: 8,859 genes and 5 phenotypic variables. The phenotype variables included
age at diagnosis, tumor size, cancer stage, progesterone-receptor status, and estrogen-receptor status.
The data can be downloaded from The Cancer Genome Atlas (TCGA) (Naderi et al., 2006; Chin et al.,
2006; Miller et al., 2005) or from GitHub using the following R code.

R > library(piggyback)
R > pb_download("data.tcga.tsv.gz",

repo = "EmilyLMorris/survBoost")
R > data <- read_tsv("data.tcga.tsv")

The patients were split into two cohorts depending on their cancer stage and tumor size. One cohort
contained patients with a less severe prognosis, cancer stage of one and tumor size less than the
median; the other cohort contained those with cancer stage greater than one and/or with a tumor
larger than the median size.

R > fit.plot <- survfit(Surv(survival_time, survival_ind) ~ as.factor(severity), data=data)
R > ggsurvplot(fit.plot,

conf.int = TRUE,
risk.table = TRUE,
risk.table.col="strata",
ggtheme = theme_bw(), palette = "grey")

Figure 4: Survival curves for the two strata based on cancer stage and tumor size.
This plot demonstrates that the proportional hazards assumption may not hold in this case. Stratifying
based on this criteria generates the following results.

Using stability selection (Meinshausen and Bühlmann, 2010), 14 variables were identified with selection
frequencies greater than 50% from 50 iterations of subsampling. Age and progesterone-receptor status
were selected in addition to 12 genes. The boosting algorithm was performed with the number of
iterations fixed at the sample size of 578.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 115

Figure 5: Selection frequencies for genes or phenotype variables that were selected at least 50% of the time with
stability selection.

Several of the genes selected in this analysis have been previously identified as having an association
with breast cancer. Psoriasin (S100A7) has been associated with breast cancer (Al-Haddad et al., 1999).
Several studies have found COL2A1 to be part of gene signatures for predicting tumor recurrence
(Yu et al., 2007; Wang et al., 2005). Other genes selected that have been identified as part of a gene
signature or association with breast cancer tumor progression risk include: ZIC1 (Boersma et al.,
2008), CYP2B6 (Tozlu et al., 2006), ELF5 (Chakrabarti et al., 2012), IGJ (Boersma et al., 2008), DHRS2
(Krijgsman et al., 2012), and CEACAM5 (Blumenthal et al., 2007). Mboost using the same criteria but
without a stratified model only identifies one gene of importance, MC2R, demonstrating the utility of
the SPH model in this context.

Conclusion
In this article, we introduce a new R package SurvBoost which implements the gradient boosting
algorithm for high-dimensional variable selection in the stratified proportional hazards (SPH) model,
while most existing R packages, such as mboost only focus on the proportional hazards model. In the
simulation studies, we show that SurvBoost can improve the model fitting and achieve better variable
selection accuracy for the data with stratified structures. In addition, we optimize the implementations
of the gradient boosting in both the SPH and the PH models. For the PH model fitting, SurvBoost
can reduce about 30%-50% computational time compared to mboost. In the future, we plan to extend
the package to handle more complex survival data such as left-truncation data and interval censoring
data.

Acknowledgments
The authors would like to thank the editor and reviewers for suggestions that led to an improved
manuscript. This work was partially supported by the NIH grants R01MH105561 (Kang) and
R01GM124061 (Kang).

Bibliography
S. Al-Haddad, Z. Zhang, E. Leygue, L. Snell, A. Huang, Y. Niu, T. Hiller-Hitchcock, K. Hole, L. C.

Murphy, and P. H. Watson. Psoriasin (s100a7) expression and invasive breast cancer. The American
journal of pathology, 155(6):2057–2066, 1999. [p115]

J. Allaire, R. Francois, K. Ushey, G. Vandenbrouck, M. Geelnard, and Intel. RcppParallel: Parallel
Programming Tools for ’Rcpp’, 2018. URL https://CRAN.R-project.org/package=RcppParallel. R
package version 4.4.0. [p109]

R. D. Blumenthal, E. Leon, H. J. Hansen, and D. M. Goldenberg. Expression patterns of ceacam5 and
ceacam6 in primary and metastatic cancers. BMC Cancer, 7(1):2, Jan 2007. doi: 10.1186/1471-2407-7-2.
URL https://doi.org/10.1186/1471-2407-7-2. [p115]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=RcppParallel
https://doi.org/10.1186/1471-2407-7-2

CONTRIBUTED RESEARCH ARTICLES 116

B. J. Boersma, M. Reimers, M. Yi, J. A. Ludwig, B. T. Luke, R. M. Stephens, H. G. Yfantis, D. H.
Lee, J. N. Weinstein, and S. Ambs. A stromal gene signature associated with inflammatory breast
cancer. International Journal of Cancer, 122(6):1324–1332, 2008. doi: 10.1002/ijc.23237. URL https:
//doi.org/10.1002/ijc.23237. [p115]

P. Bühlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and model fitting (with
discussion). Statistical Science, 22(4):477–505, 2007. [p107, 109]

P. Bühlmann and B. Yu. Boosting. Wiley Interdisciplinary Reviews: Computational Statistics, 2(1):69–74,
2010. doi: 10.1002/wics.55. URL https://doi.org/10.1002/wics.55. [p105]

R. Chakrabarti, J. Hwang, M. A. Blanco, Y. Wei, M. Lukacisin, R.-A. Romano, K. Smalley, S. Liu,
Q. Yang, T. Ibrahim, L. Mercatali, D. Amadori, B. G. Haffty, S. Sinha, and Y. Kang. Elf5 inhibits the
epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by
transcriptionally repressing snail2. Nature Cell Biology, 14:1212–1222, 2018/2/7/ 2012. [p115]

K. Chin, S. DeVries, J. Fridlyand, P. T. Spellman, R. Roydasgupta, W.-L. Kuo, A. Lapuk, R. M. Neve,
Z. Qian, T. Ryder, F. Chen, H. Feiler, T. Tokuyasu, C. Kingsley, S. Dairkee, Z. Meng, K. Chew,
D. Pinkel, A. Jain, B. M. Ljung, L. Esserman, D. G. Albertson, F. M. Waldman, and J. W. Gray.
Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10
(6):529–541, 2017/12/18 2006. doi: 10.1016/j.ccr.2006.10.009. URL https://doi.org/10.1016/j.
ccr.2006.10.009. [p114]

D. Eddelbuettel, R. Francois, J. Allaire, K. Ushey, Q. Kou, N. Russell, D. Bates, and J. Chambers.
Rcpp: Seamless R and C++ Integration, 2018a. URL https://CRAN.R-project.org/package=Rcpp. R
package version 0.12.15. [p109]

D. Eddelbuettel, R. Francois, D. Bates, and B. Ni. RcppArmadillo: ’Rcpp’ Integration for the ’Armadillo’ Tem-
plated Linear Algebra Library, 2018b. URL https://CRAN.R-project.org/package=RcppArmadillo.
R package version 0.8.400.0.0. [p109]

J. J. Goeman. L1 penalized estimation in the cox proportional hazards model. Biometrical Journal, 52(1):
70–84, 2010. doi: 10.1002/bimj.200900028. [p105]

K. He, Y. Li, J. Zhu, H. Liu, J. E. Lee, C. I. Amos, T. Hyslop, J. Jin, H. Lin, Q. Wei, and Y. Li. Component-
wise gradient boosting and false discovery control in survival analysis with high-dimensional
covariates. Bioinformatics, 32(1):50–57, 2016. doi: 10.1093/bioinformatics/btv517. URL https:
//doi.org/10.1093/bioinformatics/btv517. [p107]

B. Hofner, A. Mayr, N. Robinzonov, and M. Schmid. Model-based boosting in R: A hands-on tutorial
using the R package mboost. Computational Statistics, 29:3–35, 2014. [p107]

T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-Based Boosting, 2017.
URL https://CRAN.R-project.org/package=mboost. R package version 2.8-1. [p105]

W. Jiang. Process consistency for adaboost. Ann. Statist., 32(1):13–29, 02 2004. doi: 10.1214/aos/
1079120128. URL https://doi.org/10.1214/aos/1079120128. [p107]

O. Krijgsman, P. Roepman, W. Zwart, J. S. Carroll, S. Tian, F. A. de Snoo, R. A. Bender, R. Bernards,
and A. M. Glas. A diagnostic gene profile for molecular subtyping of breast cancer associated with
treatment response. Breast Cancer Research and Treatment, 133(1):37–47, May 2012. doi: 10.1007/
s10549-011-1683-z. URL https://doi.org/10.1007/s10549-011-1683-z. [p115]

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 72(4):417–473, 2010. doi: 10.1111/j.1467-9868.2010.00740.x. URL http:
//dx.doi.org/10.1111/j.1467-9868.2010.00740.x. [p114]

L. D. Miller, J. Smeds, J. George, V. B. Vega, L. Vergara, A. Ploner, Y. Pawitan, P. Hall, S. Klaar, E. T.
Liu, and J. Bergh. An expression signature for p53 status in human breast cancer predicts mutation
status, transcriptional effects, and patient survival. Proceedings of the National Academy of Sciences
of the United States of America, 102(38):13550–13555, 2005. doi: 10.1073/pnas.0506230102. URL
https://doi.org/10.1073/pnas.0506230102. [p114]

A. Naderi, A. E. Teschendorff, N. L. Barbosa-Morais, S. E. Pinder, A. R. Green, D. G. Powe, J. F. R.
Robertson, S. Aparicio, I. O. Ellis, J. D. Brenton, and C. Caldas. A gene-expression signature to
predict survival in breast cancer across independent data sets. Oncogene, 26:1507–1516, 08 2006.
[p114]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1002/ijc.23237
https://doi.org/10.1002/ijc.23237
https://doi.org/10.1002/wics.55
https://doi.org/10.1016/j.ccr.2006.10.009
https://doi.org/10.1016/j.ccr.2006.10.009
https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=RcppArmadillo
https://doi.org/10.1093/bioinformatics/btv517
https://doi.org/10.1093/bioinformatics/btv517
https://CRAN.R-project.org/package=mboost
https://doi.org/10.1214/aos/1079120128
https://doi.org/10.1007/s10549-011-1683-z
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
https://doi.org/10.1073/pnas.0506230102

CONTRIBUTED RESEARCH ARTICLES 117

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s proportional
hazards model via coordinate descent. Journal of Statistical Software, Articles, 39(5):1–13, 2011. doi:
10.18637/jss.v039.i05. URL https://doi.org/10.18637/jss.v039.i05. [p105, 107]

T. M. Therneau. survival: Survival Analysis, 2017. URL https://CRAN.R-project.org/package=
survival. R package version 2.41-3. [p109]

R. Tibshirani. The lasso method for variable selection in the cox model. Statistics in medicine, 16(4):
385–395, 1997. [p105]

S. Tozlu, I. Girault, S. Vacher, J. Vendrell, C. Andrieu, F. Spyratos, P. Cohen, R. Lidereau, and I. Bieche.
Identification of novel genes that co-cluster with estrogen receptor alpha in breast tumor biopsy
specimens, using a large-scale real-time reverse transcription-pcr approach. Endocrine-Related Cancer,
13(4):1109–1120, 2006. doi: 10.1677/erc.1.01120. URL https://doi.org/10.1677/erc.1.01120.
[p115]

C. T. Volinsky and A. E. Raftery. Bayesian information criterion for censored survival models. Biometrics,
56(1):256–262, 2000. doi: 10.1111/j.0006-341X.2000.00256.x. URL https://doi.org/10.1111/j.
0006-341X.2000.00256.x. [p107]

Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans,
M. E. Meijer-van Gelder, J. Yu, et al. Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. The Lancet, 365(9460):671–679, 2005. [p115]

J. X. Yu, A. M. Sieuwerts, Y. Zhang, J. W. Martens, M. Smid, J. G. Klijn, Y. Wang, and J. A. Foekens.
Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer.
BMC Cancer, 7(1):182, 2007. doi: 10.1186/1471-2407-7-182. URL https://doi.org/10.1186/1471-
2407-7-182. [p115]

Emily Morris
Department of Biostatistics
University of Michigan
1415 Washington Heights, Ann Arbor, MI 48109
E-mail: emorrisl@umich.edu

Kevin He
Department of Biostatistics
University of Michigan
1415 Washington Heights, Ann Arbor, MI 48109
E-mail: kevinhe@umich.edu

Yanming Li
Department of Biostatistics
University of Michigan
1415 Washington Heights, Ann Arbor, MI 48109
E-mail: liyanmin@umich.edu

Yi Li
Department of Biostatistics
University of Michigan
1415 Washington Heights, Ann Arbor, MI 48109
E-mail: yili@umich.edu

Jian Kang
Department of Biostatistics
University of Michigan
1415 Washington Heights, Ann Arbor, MI 48109
E-mail: jiankang@umich.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.18637/jss.v039.i05
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1677/erc.1.01120
https://doi.org/10.1111/j.0006-341X.2000.00256.x
https://doi.org/10.1111/j.0006-341X.2000.00256.x
https://doi.org/10.1186/1471-2407-7-182
https://doi.org/10.1186/1471-2407-7-182
mailto:emorrisl@umich.edu
mailto:kevinhe@umich.edu
mailto:liyanmin@umich.edu
mailto:yili@umich.edu
mailto:jiankang@umich.edu

CONTRIBUTED RESEARCH ARTICLES 118

CoxPhLb: An R Package for Analyzing
Length Biased Data under Cox Model
by Chi Hyun Lee, Heng Zhou, Jing Ning, Diane D. Liu and Yu Shen

Abstract Data subject to length-biased sampling are frequently encountered in various applications
including prevalent cohort studies and are considered as a special case of left-truncated data under
the stationarity assumption. Many semiparametric regression methods have been proposed for length-
biased data to model the association between covariates and the survival outcome of interest. In
this paper, we present a brief review of the statistical methodologies established for the analysis of
length-biased data under the Cox model, which is the most commonly adopted semiparametric model,
and introduce an R package CoxPhLb that implements these methods. Specifically, the package
includes features such as fitting the Cox model to explore covariate effects on survival times and
checking the proportional hazards model assumptions and the stationarity assumption. We illustrate
usage of the package with a simulated data example and a real dataset, the Channing House data,
which are publicly available.

Introduction

In prevalent cohort studies, subjects who have experienced an initiating event (e.g., disease diagnosis)
but have not yet experienced a failure event (e.g., death) are sampled from the target population and
followed until a failure or censoring event occurs. Data collected from such sampling designs are
subject to left truncation since subjects who experienced a failure event prior to study enrollment are
selectively excluded and are not observed in the data. When the occurrence of the initiating event
follows a stationary Poisson process, the data are called “length-biased data”, which is a special case
of left-truncated data. These data are encountered in a variety of fields such as cancer screening trials
(Zelen and Feinleib, 1969), studies of unemployment (Lancaster, 1979; de Una-Alvarez et al., 2003),
epidemiologic cohort studies (Gail and Benichou, 2000; Scheike and Keiding, 2006), and genome-wide
linkage studies (Terwilliger et al., 1997). The failure times observed in such data tend to be longer than
those in the target population since subjects with longer failure times are more likely to be included in
the length-biased data. Figure 1 depicts the occurrence of length-biased sampling. The underlying
length-biased sampling assumption (i.e., the stationarity assumption) can be analytically examined
(Addona and Wolfson, 2006).

I
Enrollment

| �

| �

| �

| �

| �

0-0

Figure 1: Illustration of length-biased sampling. Black horizontal lines represent observations that are
included in the observed data cohort; gray horizontal lines represent observations excluded; black
squares (�) represent uncensored failure events; and empty squares (�) represent censored failure
events.

Provided that the observed data are not random samples of the target population, statistical
methods for conventional survival data cannot be directly applied to length-biased data. Extensive
studies have been conducted on statistical methodologies that account for length bias. In particular,
a number of semiparametric regression methods have been proposed in the literature to model the
association between covariates and the survival outcome of interest. Among the semiparametric

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 119

regression models, the Cox proportional hazards model (Cox, 1972) has been the most commonly
adopted. Under the Cox model, Wang (1996) proposed a pseudo-partial likelihood approach to assess
the covariate effects. However, her estimation method is limited to length-biased data with no right
censoring. Tsai (2009) generalized the method to handle potential right censoring. Qin and Shen
(2010) constructed estimating equations based on risk sets that are adjusted for length-biased sampling
through inverse weights. A thorough review of the existing nonparametric and semiparametric
regression methods can be found in Shen et al. (2017).

Although there is a substantial amount of literature on statistical methods for length-biased
data, publicly available computational tools for analyzing such data are limited. In this paper, we
introduce a new package, CoxPhLb (Lee et al., 2019a), in R that provides tools to analyze length-
biased data under the Cox model. The package includes functions that fit the Cox model using
the estimation method proposed by Qin and Shen (2010), check the proportional hazards model
assumptions based on methods developed by Lee et al. (2019b) and check the underlying stationarity
assumption. CoxPhLb is available from the Comprehensive R Archive Network (CRAN) at http:
//CRAN.R-project.org/package=CoxPhLb. To the best of our knowledge, this is the first and only
publicly available R package for analyzing length-biased data under the Cox model.

The remainder of this paper is organized as follows. The following section provides a brief review
of the semiparametric estimation method under the Cox model to assess the covariate effects on the
survival outcome. Then, we outline how the Cox proportional hazards model assumptions can be
checked both graphically and analytically, and describe two approaches to test the stationarity of the
underlying incidence process. We illustrate the R package CoxPhLb using a simulated data example
and a real dataset, the Channing House data. Finally, we conclude this paper with summarizing
remarks.

Fitting the Cox model

Notation and model

Let T̃, Ã, and ZZZ be the duration from an initiating event to failure, the duration from the initiating
event to enrollment in the study, and the p× 1 baseline covariate vector, respectively. Assume that the
failure time T̃ follows the Cox model,

λ(t | zzz) = λ0(t) exp
(

βββ>0 zzz
)

, (1)

where βββ0 is a p× 1 vector of unknown regression coefficients and λ0(t) is an unspecified baseline
hazard function. Under length-biased sampling, we only observe failure times that satisfy Ã < T̃. We
denote the length-biased failure time by T = A + V, where A is the observed truncation variable (i.e.,
backward recurrence time) and V is the duration from study enrollment to failure (i.e., residual survival
time or forward recurrence time). Since V is subject to right censoring, the observed failure time is
Y = min(T, A + C) and the censoring indicator is δ = I(T ≤ A + C), where C is the duration from
study enrollment to censoring (i.e., residual censoring). The data structure is illustrated in Figure 2.
We assume that C is independent of A and V given ZZZ, and the distribution of C is independent of ZZZ.

EnrollmentOnset DeathCensoring

� -Y = min(A+ V,A+ C)

� -T = A+ V

� -A � -V

� -C

0-0

Figure 2: A diagram of the right-censored length-biased data.

The length-biased data consist of {(Yi, Ai, δi, ZZZi), i = 1, . . . , n}, for n independent subjects. We note
that the observed data are not representative of the target population, and the observed biased data
do not follow Model (1). Thus, conventional Cox regression methods cannot be used when evaluating
the covariate effects on the duration from the initiating event to failure for the target population.
Furthermore, even under the independent censoring assumption on C with A and V, the sampling
mechanism induces dependent censoring because Cov(T, A + C | ZZZ) = Var(A | ZZZ) + Cov(A, V |
ZZZ) > 0.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CoxPhLb
http://CRAN.R-project.org/package=CoxPhLb
http://CRAN.R-project.org/package=CoxPhLb

CONTRIBUTED RESEARCH ARTICLES 120

Estimation of the covariate effects

Among many estimation methods established for length-biased data under the Cox model, we
provide the estimation function based on the inversely weighted estimating equation of Qin and Shen
(2010). While this estimating equation approach may not be the most efficient method, the estimation
procedure is easy to implement and provides a mean zero stochastic process that forms the basis of
model checking. We adopt this estimation method for model fitting and checking in the R package
CoxPhLb.

For subject i, we denote Ni(t) = I{Yi ≤ t, δi = 1} and Ri(t) = I{Yi ≥ t, δi = 1} following the
counting process notation. Let a0 = 1, a1 = a, and a2 = aa> for any vector a. Define

S(k)(βββ, t) = n−1
n

∑
i=1

wC(t)Ri(t){wC(Yi)}−1ZZZk
i exp(βββ>ZZZi),

where the weight function wC(y) =
∫ y

0 SC(u)du, in which SC(y) = Pr(C > y) is the survival function
of the residual censoring variable C for k = 0, 1, and 2. By replacing wC(y) with its consistent estimator,
ŵC(y) =

∫ y
0 ŜC(u)du, where ŜC(·) is the Kaplan–Meier estimator of the residual censoring survival

function, we have

Ŝ(k)(βββ, t) = n−1
n

∑
i=1

ŵC(t)Ri(t){ŵC(Yi)}−1ZZZk
i exp(βββ>ZZZi)

for k = 0, 1, and 2. The regression parameter βββ0 can be estimated by solving the following unbiased
estimating equation:

Û(βββ) =
n

∑
i=1

∫ τ

0

{
ZZZi − Ê(βββ, u)

}
dNi(u) = 0, (2)

where τ satisfies Pr(Y ≥ τ) > 0 and Ê(βββ, t) = Ŝ(1)(βββ, t)/Ŝ(0)(βββ, t). The solution to Equation (2), which
is denoted by β̂ββ, is unique and a consistent estimator to βββ0. Using the Taylor series expansion, it can be
shown that the distribution of β̂ββ converges weakly to a normal distribution with variance Γ−1ΣΓ−1,
where Γ = − limn→∞ n−1∂Û(βββ)/∂βββ and Σ is the covariance matrix of limn→∞ n−1/2Û(βββ0).

This estimation procedure can be implemented using the coxphlb function in the CoxPhLb pack-
age as follows:

coxphlb(formula,data,method = c("Bootstrap","EE"),boot.iter = 500,
seed.n = round(runif(1,1,1e09)),digits = 3L)

where formula has the same syntax as the formula used in coxph from the survival package (Therneau,
2020). The response needs to be a survival object such as Surv(a,y,delta) where a, y, and delta
are the truncation times, the observed failure times, and the censoring indicators, respectively. The
argument data is a data frame that includes variables named in the formula. We can choose either
the bootstrap variance estimates ("Bootstrap"), or the model-based variance estimates ("EE") to be
returned in the fitted model object through the argument method. When bootstrap resampling is
chosen for variance estimation, the bootstrap sample size is controlled by boot.iter with the default
set as 500, and a seed number can be fixed by seed.n. A summary table is returned with values
rounded by the integer set through digits.

Alternatively, one can implement the estimation procedure by using the coxph function with
the subset of the data that consist of uncensored failure times only and an offset term to add
log{ŵC(Yi)}−1 to the linear predictor with a fixed coefficient of one as discussed in Qin and Shen
(2010). The coxph function will return the same point estimates as the coxphlb function. To compute
the corresponding standard errors using coxph, we need to use the bootstrap approach. Later, in the
simulated data example, we further evaluate the computational efficiency of the coxphlb function
with the model-based variance estimation (i.e., method = EE) opposed to the bootstrap resampling
method (i.e., method = Bootstrap).

Checking the Cox model assumptions

Two primary components of checking the Cox proportional hazards model assumptions are examining
(i) the functional form of a covariate and (ii) the proportional hazards assumption. To detect violations
of these model assumptions, the general form of the cumulative sums of multiparametric stochastic

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES 121

processes is considered.

Under Model (1), we can construct a mean zero stochastic process,

Mi(t) = Ni(t)−
∫ t

0
wC(u)Ri(u){wC(Yi)}−1 exp(βββ>0 ZZZi)dΛ0(u),

for i = 1, . . . , n, where Λ0(t) =
∫ t

0 λ0(s)ds is the cumulative baseline hazard function. The stochastic
process can be estimated by

M̂i(t) = Ni(t)−
∫ t

0
ŵC(u)Ri(u){ŵC(Yi)}−1 exp(β̂ββ

>
ZZZi)dΛ̂0(β̂ββ, u),

where

Λ̂0(β̂ββ, t) =
∫ t

0

∑n
i=1 dNi(u)

nŜ(0)(β̂ββ, u)
.

The stochastic process can be considered as the difference between the observed and the expected
number of events, which mimics the ordinary martingale residuals. When the estimated processes
M̂i(t), i = 1, . . . , n deviate from zero systematically, it may be a sign of model misspecification.

Let

GGG(t, zzz) =
n

∑
i=1

f (ZZZi)I(ZZZi ≤ zzz)M̂i(t), (3)

where f (·) is a prespecified smooth and bounded function, and I(ZZZi ≤ zzz) = I(Zi1 ≤ z1, . . . , Zip ≤ zp)

with ZZZi = (Zi1, . . . , Zip)
> and zzz = (z1, . . . , zp)>. When the model assumptions are satisfied, the

process (3) will fluctuate randomly around zero. We can adjust the general form (3) to examine the
specific model assumptions. To assess the functional form of the jth covariate, we choose f (·) = 1,
t = τ, and zk = ∞ for all k 6= j. The proportional hazards assumption for the jth covariate can be
evaluated by setting f (Zij) = Zij and zzz = ∞∞∞. To develop analytical test procedures, test statistics can

be constructed using the supremum test, supt,zzz|GGG(t, zzz)|. Let T j
1 = supz|GGG

j
1(z)| be the test statistics

for checking the functional form of the jth covariate, where GGGj
1(z) = ∑n

i=1 I(Zij ≤ z)M̂i(τ); and

T j
2 = supt|GGG

j
2(t)|, where GGGj

2(t) = ∑n
i=1 Zij M̂i(t) for checking the proportional hazards assumption for

the jth covariate. We can also consider the global test statistic T2 = supt ∑
p
j=1|GGG

j
2(t)| when the overall

proportionality of hazards for all covariates is of interest.

The null distribution of the general form (3) under Model (1) has been studied in Lee et al. (2019b)
to derive the critical values for test statistics T j

1, T j
2, and T2. We can approximate the null distribution

by adopting the resampling technique used in Lin et al. (1993). Let

ĜGG
∗
i (t, zzz) =

∫ t

0

{
f (ZZZi)I(ZZZi ≤ zzz)− ÊZ(β̂ββ, u, zzz)

}
dM̂i(u) +

∫ t

0
Ĥ(β̂ββ, u)

dM̂Ci (u)
π̂(u)

+ Γ̂Z(β̂ββ, t, zzz){Γ̂(β̂ββ)}−1
∫ τ

0

{
ZZZi − Ê(β̂ββ, u)

}
dM̂i(u),

where

Ŝ(l)
Z (βββ, t, zzz) = n−1

n

∑
i=1

f (ZZZi)I(ZZZi ≤ zzz)ŵC(t)Ri(t){ŵC(Yi)}−1ZZZl
i exp(βββ>ZZZi)

for l = 0, 1, ÊZ(βββ, u, zzz) = Ŝ(0)
Z (βββ, t, zzz)/Ŝ(0)(βββ, t),

Ĥ(βββ, t) =
n

∑
i=1

n

∑
k=1

f (ZZZk)I(ZZZk ≤ zzz)ŵC(Yi)Rk(Yi) exp(βββ>ZZZk){ŵC(Yk)}−2ĥk(t)
n2Ŝ(0)(βββ, Yi)

,

M̂Ci (t) = I(Vi ≤ t, δi = 0)−
∫ t

0
I(Vi ≥ u)dΛ̂C(u),

ĥk(t) = I(Yk ≥ t)
∫ Yk

t
ŜC(u)du,

π̂(t) = ŜC(t)ŜV(t),

in which Λ̂C(·) is the Nelson-Aalen estimator for the residual censoring time and ŜV(·) is the Kaplan–

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 122

Meier estimator of the residual survival time, and

Γ̂Z(βββ, t, zzz) = n−1
n

∑
i=1

∫ t

0

 Ŝ(1)
ZZZ (βββ, u, zzz)

Ŝ(0)(βββ, u)
− Ŝ(0)

ZZZ (βββ, u, zzz)Ŝ(1)(βββ, u)

{Ŝ(0)(βββ, u)}2

dNi(u),

Γ̂(βββ) = −n−1
n

∑
i=1

∫ τ

0

 Ŝ(2)(βββ, u)
Ŝ(0)(βββ, u)

−
{

Ŝ(1)(βββ, u)
Ŝ(0)(βββ, u)

}2
dNi(u).

Define G̃GGm(t, zzz) = ∑n
i=1 ĜGG

∗
i (t, zzz)Vmi, where Vmi, i = 1, . . . , n, are independent random variables sam-

pled from a standard normal distribution for m = 1, . . . , M. The simulated realizations of G̃GGm(t, zzz) for
a large M approximate the null distribution. For graphical assessment, we can plot a few randomly
chosen realizations of G̃GGm(t, zzz) and compare the observed process based on the data with them. A
departure of the observed process from the simulated realizations implies violations of model as-
sumptions. For an analytical test, the critical values for the test statistics can be derived by simulating
supt,z|G̃GGm(t, zzz)| for m = 1, . . . , M. We can compute the p values by the proportion of critical values
greater than the test statistic.

We can carry out model checking in R using the function coxphlb.ftest to examine the functional
form of a continuous covariate as follows:

coxphlb.ftest(fit,data,spec.p = 1,n.sim = 1000,z0 = NULL,seed.n = round(runif(1,1,1e09)),
digits = 3L)

where the argument fit is an object of the "coxphlb" class, which can be obtained by using the
coxphlb function, and data is the data frame used in the fitted model. We specify the jth compo-
nent of the covariates to be examined via spec.p, where the default is set as j = 1. To approximate
the null distribution, we sample a large number of realizations. The argument n.sim controls the
number of samples with the default set as 1000. When specific grid points over the support of the
jth covariate are to be examined, we can plug them in as a vector in z0, which if NULL, 100 equally
distributed grid points will be selected over the range of the jth covariate by default. The random
seed number can be fixed through seed.n. The p value returned by the function is rounded by the
integer set via digits. To test the proportional hazards assumption, we use coxphlb.phtest as follows:

coxphlb.phtest(fit,data,spec.p = NULL,n.sim = 1000,seed.n = round(runif(1,1,1e09)),
digits = 3L)

where all arguments play the same role as in the coxphlb.ftest function, except for spec.p. The
proportional hazards assumption can be tested for the jth covariate if we set spec.p equal to j. The
function will conduct the global test by default if spec.p is left unspecified.

We can conduct graphical assessment by using the following functions:

coxphlb.ftest.plot(x,n.plot = 20,seed.n = round(runif(1,1,1e09)))
coxphlb.phtest.plot(x,n.plot = 20,seed.n = round(runif(1,1,1e09)))

where x are objects of the "coxphlb.ftest" class and the "coxphlb.phtest" class, respectively. These
functions return a plot of the observed process along with a randomly sampled n.plot number of
realizations. We can fix the random seed number through seed.n.

Checking the stationarity assumption

When the underlying incidence process follows a stationary Poisson process, the distribution of
the truncation variable is uniform and the data are considered length-biased. In the literature, two
approaches have been proposed to check the stationarity assumption: a graphical assessment and an
analytical test procedure. Asgharian et al. (2006) demonstrated that the stationarity assumption can be
checked graphically by comparing the Kaplan–Meier estimators based on the current and residual
survival times. A large discrepancy indicates that the stationarity assumption is invalid. Addona
and Wolfson (2006) proposed an analytic test to check the assumption. They showed that testing
the stationarity assumption is equivalent to testing whether the distributions of the backward and
forward recurrence times are the same. Let F(t) = Pr(A ≤ t) and G(t) = Pr(V∗ ≤ t, δ = 1), where

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 123

V∗ = min(V, C). Following Wei (1980), the test statistic can be constructed as follows:

W = n−2
n

∑
i=1

n

∑
j=1

{
Φ(Ai, V∗j , δj)− p

}
,

where Φ(Ai, V∗j , δj) = I(Ai > V∗j , δj = 1) − I(Ai < V∗j) and p = IE{G(Ai)} − IE{F(V∗j)}. The
limiting distribution of the test statistic W has been studied in Addona and Wolfson (2006), and the
corresponding p value can be computed.

In R, we can explore the stationarity assumption graphically using function station.test.plot
as follows:

station.test.plot(a,v,delta)

where a is the vector of backward recurrence times, v is the vector of forward recurrence times, and
delta is the vector of censoring indicators. The function produces a plot of two Kaplan–Meier curves.
To test the assumption analytically, we can use

station.test(a,v,delta,digits = 3L)

where the data input arguments are the same as those in the station.test.plot function. The test
statistic and the corresponding p value based on the two-sided test will be returned with the values
rounded by the integer set by digits.

Implementation of CoxPhLb

The three major components of CoxPhLb are (i) model fitting using function coxphlb, (ii) model
checking using functions coxphlb.ftest and coxphlb.phtest, and (iii) stationarity assumption testing
using function station.test. An overview of all functions in the CoxPhLb package is presented in
Table 1. In the following sections, we provide R codes that illustrate how to use the functions with the
simulated data that are available in the CoxPhLb package and a real dataset, the Channing House
data, which is publicly available in the KMsurv package (Klein et al., 2012). The provided R codes can
be implemented after installing and loading the CoxPhLb package, which will automatically load the
survival package.

Function Description S3 methods

coxphlb Fits a Cox model to right-censored length-
biased data

print()
summary()
coef()
vcov()

coxphlb.ftest Tests the functional form of covariates print()
coxphlb.phtest Tests the proportional hazards assumption print()

station.test Tests the stationarity assumption print()

coxphlb.ftest.plot Returns a graph for testing the functional
form of covariates

coxphlb.phtest.plot Returns a graph for testing the proportional
hazards assumption

station.test.plot Returns a graph for testing the stationarity
assumption

Table 1: Summary of functions in the CoxPhLb package.

The simulated data example

We use the simulated dataset, ExampleData1, that is available in the CoxPhLb package for illustration.
The data have 200 observations and consist of length-biased failure times (y), the truncation variable
(a), the censoring indicator (delta), and two covariates, X1 with binary values (x1) and X2 with
continuous values that range from 0 to 1 (x2). The vector of forward recurrence times (v) is the
difference between the failure times and the backward recurrence times (y-a).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=KMsurv

CONTRIBUTED RESEARCH ARTICLES 124

We begin by checking the stationarity assumption of the simulated dataset graphically as follows.

> data("ExampleData1", package = "CoxPhLb")
> dat1 <- ExampleData1
> station.test.plot(a = dat1$a, v = dat1$y - dat1$a, delta = dat1$delta)

The resulting plot is presented in Figure 3. We observe that the two Kaplan–Meier curves are very
close to each other, especially at the early time points, which provides some evidence of the stationarity
of incidence. However, we note some discrepancy in the tails of the curves. Thus, we conduct an
analytical test to verify the underlying assumption as follows.

0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 s

ur
vi

va
l f

un
ct

io
n

forward recurrence time
backward recurrence time

Figure 3: Testing the stationarity assumption for Example Data 1.

> station.test(a = dat1$a, v = dat1$y - dat1$a, delta = dat1$delta)
test.statistic p.value
-0.375 0.707

To save the computed test statistic and the corresponding p value in the form of a list, we may assign
the function outputs to an object. The analytical test provides a p value of 0.707, which indicates that
the underlying stationarity of the incidence process is reasonable for the simulated dataset. Given
that the data are subject to length bias, we evaluate the covariate effects on the failure time under the
Cox model using the estimation method for length-biased data. First, we consider the model-based
variance estimation.

> fit.ee1 <- coxphlb(Surv(a, y, delta) ~ x1 + x2, data = dat1, method = "EE")
Call:
coxphlb(formula = Surv(a, y, delta) ~ x1 + x2, method = EE)

coef variance std.err z.score p.value lower.95 upper.95
x1 1.029 0.031 0.177 5.83 <0.001 0.683 1.375
x2 0.45 0.132 0.364 1.24 0.216 -0.263 1.163

The outputs include the estimated coefficients, the corresponding variance and the standard error
estimates, the computed z scores and p values, and the 95% confidence intervals. In the above example
R code, the list of outputs is saved by fit.ee1 as an object of the "coxphlb" class. In the resulting table,
we observe that the effect of X1 is significant whereas that of X2 is not. As an alternative approach for
estimating the variance, we may use the bootstrap resampling method as follows.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 125

> coxphlb(Surv(a, y, delta) ~ x1 + x2, data = dat1, method = "Bootstrap", seed.n = 1234)
Call:
coxphlb(formula = Surv(a, y, delta) ~ x1 + x2, method = Bootstrap)

coef variance std.err z.score p.value lower.95 upper.95
x1 1.029 0.032 0.178 5.78 <0.001 0.68 1.378
x2 0.45 0.133 0.365 1.23 0.218 -0.266 1.166

The outputs based on the bootstrap resampling method (i.e., method = Bootstrap) are close to the
results from the model-based variance estimation (i.e., method = EE). To measure the average execution
times of the two variance estimation methods, we ran the coxphlb function 100 times. The average
execution times were 0.972s and 3.581s for method = EE and Bootstrap, respectively, on a desktop
computer with Intel Core i5 CPU@3.40GHz and 8 GB 2400 MHz DDR4 of memory, which demonstrates
the computational efficiency of coxphlb with the model-based variance estimation.

We note that the estimation results are only valid when the Cox proportional hazards model
assumptions are correct. We thus verify the proportional hazards model assumptions. First, the linear
functional form of the second covariate which has continuous values, can be checked as follows.

> ftest1 <- coxphlb.ftest(fit = fit.ee1, data = dat1, spec.p = 2, seed.n = 1234)
p.value

x2 0.433
> coxphlb.ftest.plot(ftest1, n.plot = 50, seed.n = 1234)

0.2 0.4 0.6 0.8

-1
.0

-0
.5

0.
0

0.
5

1.
0

x2

z

P
ar

tia
l-M

ea
n

P
ro

ce
ss

es

Figure 4: Checking the functional form of continuous covariate X2 of Example Data 1.

To test the linear functional form, the object fit.ee1 is specified as an input argument. We set spec.p
= 2 to conduct the test for X2 and set seed.n = 1234 for reproducible results. The coxphlb.ftest
function returns a p value from the analytical test. For graphical assessment, we specify the object
ftest1 which is in the "coxphlb.ftest" class and set n.plot = 50 to plot 50 realization lines. Based on
Figure 4 and the p value, the functional form of X2 satisfies the model assumption. Another important
assumption of the Cox model is the proportional hazards assumption. We first test the assumption for
each covariate and then conduct the global test for the overall proportionality.

> phtest11 <- coxphlb.phtest(fit = fit.ee1, data = dat1, spec.p = 1, seed.n = 1234)
p.value

x1 0.59
> phtest12 <- coxphlb.phtest(fit = fit.ee1, data = dat1, spec.p = 2, seed.n = 1234)

p.value
x2 0.833

> coxphlb.phtest.plot(phtest11, n.plot = 50, seed.n = 1234)
> coxphlb.phtest.plot(phtest12, n.plot = 50, seed.n = 1234)

The outputs consist of the p values derived from the analytical tests of checking the proportional
hazards assumption and a plot of the stochastic processes. Figure 5 shows that the proportional
hazards assumption is reasonable for both covariates. This is further confirmed by the computed p
values, which are greater than 0.05.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 126

0.5 1.0 1.5

-0
.5

0.
0

0.
5

x1

t

P
se

ud
o-

S
co

re
 P

ro
ce

ss
es

0.5 1.0 1.5

-0
.3

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

x2

t

P
se

ud
o-

S
co

re
 P

ro
ce

ss
es

Figure 5: Checking the proportional hazards assumption for covariates X1 and X2 of Example Data 1.

> coxphlb.phtest(fit = fit.ee1, data = dat1, spec.p = NULL, seed.n = 1234)
p.value

GLOBAL 0.762

The global test can be conducted by specifying spec.p = NULL. The result is consistent with the tests
performed for each covariate. Note that the graphical assessment is unavailable for the global test.

The Channing House data

The Channing House data were collected from 462 individuals at a retirement center located in Palo
Alto, California, from 1964 to 1975 (Klein and Moeschberger, 2003). We consider the elders aged 65
years or older as the target group of interest. Hence, we analyze the subset of the dataset composed of
450 individuals who entered the center at age 65 or older, in which 95 are males and 355 are females.
The data include information of death indicator (death), age at entry (ageentry), age at death or
censoring (age), and gender (gender). The observed survival times are left-truncated because only
individuals who have lived long enough to enter the retirement center will be included in the data.
We load the original dataset and select the subset of the dataset for illustration. Note that we convert
age measured in months to years.

> install.packages("KMsurv")
> data("channing", package = "KMsurv")
> dat2 <- as.data.frame(cbind(ageentry = channing$ageentry/12, age = channing$age/12,
+ death = channing$death, gender = channing$gender))
> dat2 <- dat2[dat2$ageentry >= 65,]

First, we check the stationarity assumption as follows.

> station.test.plot(a = (dat2$ageentry - 65), v = (dat2$age - dat2$ageentry),
+ delta = dat2$death)

The resulting plot in Figure 6 provides a strong sign that the stationarity assumption is satisfied. We
further verify the assumption by conducting the analytical test.

> station.test(a = (dat2$ageentry - 65), v = (dat2$age - dat2$ageentry),
+ delta = dat2$death)
test.statistic p.value
0.261 0.794

Based on the results, we can conclude that the stationarity assumption is valid. Hence, we use the
functions in CoxPhLb to assess the covariate effects on the survival outcome for the Channing House
data. The model can be fitted as follows.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 127

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
st

im
at

ed
 s

ur
vi

va
l f

un
ct

io
n

forward recurrence time
backward recurrence time

Figure 6: Testing the stationarity assumption for Channing House data.

> fit.ee2 <- coxphlb(Surv((ageentry - 65), (age - 65), death) ~ gender, data = dat2,
+ method = "EE")
Call:
coxphlb(formula = Surv((ageentry - 65), (age - 65), death) ~ gender, method = EE)

coef variance std.err z.score p.value lower.95 upper.95
gender -0.112 0.029 0.17 -0.66 0.509 -0.445 0.22

Using the model-based variance estimation, we find that gender is not a significant factor for survival.
The bootstrap resampling approach provides consistent results as follows.

> coxphlb(Surv((ageentry - 65), (age - 65), death) ~ gender, data = dat2,
+ method = "Bootstrap", seed.n = 1234)
Call:
coxphlb(formula = Surv((ageentry - 65), (age - 65), death) ~ gender, method = Bootstrap)

coef variance std.err z.score p.value lower.95 upper.95
gender -0.112 0.028 0.168 -0.67 0.504 -0.441 0.217

The estimation of the covariate effects is only valid when the Cox model assumptions are not violated.
By conducting the following proportional hazards assumption test, we verify that the assumption is
reasonable based on the computed p value and Figure 7.

> phtest2 <- coxphlb.phtest(fit = fit.ee2, data = dat2, spec.p = 1, seed.n = 1234)
p.value

gender 0.723
> coxphlb.phtest.plot(phtest2, seed.n = 1234)

Summary

Observational data subject to length-biased sampling have been widely recognized by epidemiologists,
clinicians, and health service researchers. While statistical methodologies have been well established
for analyzing such types of failure time data, the lack of readily available software has been a barrier to
the implementation of proper methods. We introduce the R package CoxPhLb that allows practitioners
to easily and properly analyze length-biased data under the Cox model, which is commonly used for
conventional survival data. When the stationarity assumption is uncertain for the data, one can check
the assumption graphically and analytically using tools provided in the package prior to fitting the
Cox model. In addition, the fundamental assumptions of the Cox model can be examined.

The CoxPhLb package may be further expanded by including other estimation approaches under
the Cox model. For example, Qin et al. (2011) proposed an estimation method based on the full

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

70 75 80 85 90 95 100

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

gender

t

P
se

ud
o−

S
co

re
 P

ro
ce

ss
es

Figure 7: Checking the proportional hazards assumption for gender in the Channing House data.

likelihood, which involves more intensive computations. Implementation of this method yields more
efficient estimators, which is certainly desirable. In addition, when a violation of the proportional
hazards assumption is detected by the coxphlb.phtest or coxphlb.phtest.plot functions, we may
consider extending the regression method to handle covariates with non-proportionality such as the
coxphw package (Dunkler et al., 2018) which implements the weighted Cox regression method for
conventional survival data. We leave these possible extensions for future work.

Acknowledgements

This work was partially supported by the U.S. National Institutes of Health, grants CA193878 and
CA016672.

Bibliography
V. Addona and D. B. Wolfson. A formal test for the stationarity of the incidence rate using data

from a prevalent cohort study with follow-up. Lifetime Data Analysis, 12:267–284, 2006. URL
https://doi.org/10.1007/s10985-006-9012-2. [p118, 122, 123]

M. Asgharian, D. B. Wolfson, and X. Zhang. Checking stationarity of the incidence rate using prevalent
cohort survival data. Statistics in Medicine, 25:1751–1767, 2006. URL https://doi.org/10.1002/
sim.2326. [p122]

D. R. Cox. Regression models and life-tables (with discussion). Journal of Royal Statistical Society B, 34:
187–220, 1972. URL https://doi.org/10.1111/j.2517-6161.1972.tb00899.x. [p119]

J. de Una-Alvarez, M. S. Otero-Giraldez, and G. Alvarez-Llorente. Estimation under length-bias and
right-censoring: an application to unemployment duration analysis for married women. Journal of
Applied Statistics, 30:283–291, 2003. URL https://doi.org/10.1080/0266476022000030066. [p118]

D. Dunkler, M. Ploner, M. Schemper, and G. Heinze. Weighted cox regression using the r package
coxphw. Journal of Statistical Software, 84:1–26, 2018. URL https://doi.org/10.18637/jss.v084.
i02. [p128]

M. H. Gail and J. Benichou. Encyclopedia of Epidemiologic Methods. Chichester: Wiley, 2000. [p118]

J. P. Klein and M. L. Moeschberger. Survival analysis: techniques for censored and truncated data. Springer-
Verlag New York, Inc., 2nd edition, 2003. URL https://doi.org/10.1007/978-1-4757-2728-9.
[p126]

J. P. Klein, M. L. Moeschberger, and J. modifications by Yan. KMsurv: Data sets from Klein and
Moeschberger (1997), Survival Analysis, 2012. URL https://CRAN.R-project.org/package=KMsurv.
R package version 0.1-5. [p123]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=coxphw
https://doi.org/10.1007/s10985-006-9012-2
https://doi.org/10.1002/sim.2326
https://doi.org/10.1002/sim.2326
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1080/0266476022000030066
https://doi.org/10.18637/jss.v084.i02
https://doi.org/10.18637/jss.v084.i02
https://doi.org/10.1007/978-1-4757-2728-9
https://CRAN.R-project.org/package=KMsurv

CONTRIBUTED RESEARCH ARTICLES 129

T. Lancaster. Econometric methods for the duration of unemployment. Econometrica, 47:939–956, 1979.
URL https://doi.org/10.2307/1914140. [p118]

C. H. Lee, D. D. Liu, J. Ning, H. Zhou, and Y. Shen. CoxPhLb: Analyzing Right-Censored Length-Biased
Data, 2019a. URL https://CRAN.R-project.org/package=CoxPhLb. R package version 1.2.0. [p119]

C. H. Lee, J. Ning, and Y. Shen. Model diagnostics for the proportional hazards model with length-
biased data. Lifetime Data Analysis, 25:79–96, 2019b. URL https://doi.org/10.1007/s10985-018-
9422-y. [p119, 121]

D. Y. Lin, L. J. Wei, and Z. L. Ying. Checking the cox model with cumulative sums of martingale-based
residuals. Biometrika, 80:557–572, 1993. URL https://doi.org/10.2307/2337177. [p121]

J. Qin and Y. Shen. Statistical methods for analyzing right-censored length-biased data under cox
model. Biometrics, 66:382–392, 2010. URL https://doi.org/10.1111/j.1541-0420.2009.01287.x.
[p119, 120]

J. Qin, J. Ning, H. Liu, and Y. Shen. Maximum likelihood estimations and em algorithms with
length-biased data. Journal of American Statistical Association, 106:1434–1449, 2011. URL https:
//doi.org/10.1198/jasa.2011.tm10156. [p127]

T. H. Scheike and N. Keiding. Design and analysis of time-to-pregnancy. Statistical Methods in Medical
Research, 15:127–140, 2006. URL https://doi.org/10.1191/0962280206sm435oa. [p118]

Y. Shen, J. Ning, and J. Qin. Nonparametric and semiparametric regression estimation for length-biased
survival data. Lifetime Data Analysis, 23:3–24, 2017. URL https://doi.org/10.1007/s10985-016-
9367-y. [p119]

J. D. Terwilliger, W. D. Shannon, G. M. Lathrop, J. P. Nolan, L. R. Goldin, G. A. Chase, and D. E. Weeks.
True and false positive peaks in genomewide scans: applications of length-biased sampling to
linkage mapping. American Journal of Human Genetics, 61:430–438, 1997. URL https://doi.org/10.
1086/514855. [p118]

T. M. Therneau. A Package for Survival Analysis in R, 2020. URL https://CRAN.R-project.org/
package=survival. R package version 3.1-12. [p120]

W. Y. Tsai. Pseudo-partial likelihood for proportional hazards models with biased-sampling data.
Biometrika, 96:601–615, 2009. URL https://doi.org/10.1093/biomet/asp026. [p119]

M. C. Wang. Hazards regression analysis for length-biased data. Biometrika, 83:343–354, 1996. URL
https://doi.org/10.1093/biomet/83.2.343. [p119]

L. J. Wei. A generalized gehan and gilbert test for paired observations that are subject to arbitrary
right censorship. Journal of American Statistical Association, 75:634–637, 1980. URL https://doi.org/
10.1080/01621459.1980.10477524. [p123]

M. Zelen and M. Feinleib. On the theory of screening for chronic diseases. Biometrika, 56:601–614, 1969.
URL https://doi.org/10.1093/biomet/56.3.601. [p118]

Chi Hyun Lee
Department of Biostatistics and Epidemiology
University of Massachusetts Amherst
(https://orcid.org/0000-0001-6340-2718)
chihyunlee@umass.edu

Heng Zhou
Biostatistics and Research Decision Sciences
Merck & Co., Inc.
hengzhou89@gmail.com

Jing Ning
Department of Biostatistics
The University of Texas MD Anderson Cancer Center
jning@mdanderson.org

Diane D. Liu
Department of Biostatistics

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.2307/1914140
https://CRAN.R-project.org/package=CoxPhLb
https://doi.org/10.1007/s10985-018-9422-y
https://doi.org/10.1007/s10985-018-9422-y
https://doi.org/10.2307/2337177
https://doi.org/10.1111/j.1541-0420.2009.01287.x
https://doi.org/10.1198/jasa.2011.tm10156
https://doi.org/10.1198/jasa.2011.tm10156
https://doi.org/10.1191/0962280206sm435oa
https://doi.org/10.1007/s10985-016-9367-y
https://doi.org/10.1007/s10985-016-9367-y
https://doi.org/10.1086/514855
https://doi.org/10.1086/514855
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1093/biomet/asp026
https://doi.org/10.1093/biomet/83.2.343
https://doi.org/10.1080/01621459.1980.10477524
https://doi.org/10.1080/01621459.1980.10477524
https://doi.org/10.1093/biomet/56.3.601
mailto:chihyunlee@umass.edu
mailto:hengzhou89@gmail.com
mailto:jning@mdanderson.org

CONTRIBUTED RESEARCH ARTICLES 130

The University of Texas MD Anderson Cancer Center
dianeliu@mdanderson.org

Yu Shen
Department of Biostatistics
The University of Texas MD Anderson Cancer Center
yshen@mdanderson.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:dianeliu@mdanderson.org
mailto:yshen@mdanderson.org

CONTRIBUTED RESEARCH ARTICLES 131

SortedEffects: Sorted Causal Effects in R
by Shuowen Chen, Victor Chernozhukov, Iván Fernández-Val and Ye Luo

Abstract Chernozhukov et al. (2018) proposed the sorted effect method for nonlinear regression
models. This method consists of reporting percentiles of the partial effects, the sorted effects, in
addition to the average effect commonly used to summarize the heterogeneity in the partial effects.
They also propose to use the sorted effects to carry out classification analysis where the observational
units are classified as most and least affected if their partial effect are above or below some tail sorted
effects. The R package SortedEffects implements the estimation and inference methods therein and
provides tools to visualize the results. This vignette serves as an introduction to the package and
displays basic functionality of the functions within.

The sorted effects method

Many empirical questions in econometrics, machine learning and statistics boil down to studying
how changes in a key variable T affect an outcome variable of interest Y, holding fixed some control
variables W. Such effects are called predictive partial effects (PEs), or treatment or structural partial
effects when they have a causal or structural interpretation. Depending on the context, researchers
often work with models that feature nonlinearity in the key variable of interest or nonlinearity in
parameters. The first kind of models includes mean and quantile regressions in which T is interacted
with W, while the second type includes generalized linear models such as logit and probit. The
methods implemented in SortedEffects are designed to estimate and make inference on PEs in
nonlinear models.

In nonlinear models the PEs vary with the underlying control variables. Consider the probit model
as an example. The conditional probability of {Y = 1} is

Pr (Y = 1 | T = t, W = w) = Φ
(
tβ + w′γ

)
,

where Φ denotes CDF of standard normal distribution. Then, the PE of changing T on Y, holding W
fixed at w, is

Φ
(

β + w′γ
)
−Φ

(
w′γ

)
when T is binary with values 0 and 1, or

φ
(
tβ + w′γ

)
β, φ (u) = ∂Φ (u) /∂u,

when T is continuous. Since W typically differ among observational units, the PEs are heterogeneous.

More generally, suppose we have a regression function g (X) corresponding to some characteristic
of Y conditional on the covariates X := [T, W]. Let ∆ (x) denote the PE of T on Y, holding W fixed.
Then,

∆ (x) = g (t1, w)− g (t0, w)

if T is discrete and takes values t0 and t1, or

∆ (x) = ∂g (t, w) /∂t

if T is continuous and t 7→ g (t, w) is differentiable. As ∆ (x) is a function of x, the PE of an observa-
tional unit, ∆ (X), is a random variable with a distribution induced by the distribution of X. A popular
statistic to summarize the heterogeneity of ∆ (X) is the average partial effect (APE):

E [∆(X)] =
∫

∆ (x) dµ (x) ,

where µ denotes the distribution of X in the population of interest. However, the APE might provide
an incomplete summary of ∆ (X) as it neglects all the heterogeneity by design.

Chernozhukov et al. (2018) proposed the sorted partial effect (SPE) method to provide a more
complete summary of ∆ (X). This method consists on reporting the entire set of PEs, sorted in
increasing order and indexed by a user-specified ranking in the population of interest. More specifically,
the SPEs are defined as percentiles of the PE in the population of interest, that is

∆∗µ (u) = uth − quantile of ∆ (X) , X ∼ µ.

The SPEs are also useful to conduct classification analysis (CA). This analysis consists of two steps.
First, classify the observational units with PEs above or below some thresholds defined by tail SPEs in

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=SortedEffects
https://CRAN.R-project.org/package=SortedEffects

CONTRIBUTED RESEARCH ARTICLES 132

the most or least affected groups. Second, report and compare the moments or distributions of the
outcome and covariates in the two groups.

To apply the methods in practice, we need to replace ∆ and µ by sample analogs ∆̂ and µ̂, and
quantify the sampling uncertainty. Chernozhukov et al. (2018) derived the theoretical underpinnings
of the resulting empirical SPEs. We refer the interested reader to that paper for details. We expect
the method to be helpful to a large audience. For example, medical researchers are often interested
in estimating the treatment effect of a drug. Treated units can experience different effects due to
individual characteristics such as age and health status. The SortedEffects package thus provides a
way to visualize the heterogeneity in the effect. Researchers can also define the most and least affected
groups and compare their characteristics.

The rest of the vignette proceeds as follows. We first introduce the main functions within the
SortedEffect package and use an application to racial-based discrimination in mortgage lending to
illustrate the command options. Then we provide another application to gender wage gap using the
Current Population Survey (CPS) data. The empirical results show that the SPE method is effective in
uncovering heterogeneous effects and demographic differences between the most and least affected
groups in both applications.

The SortedEffects package

Functions in the package

The package contains three main commands: spe, ca, and subpop. The package adds three methods to
the generic plot() (plot.spe, plot.ca and plot.subpop) and summary() (summary.spe, summary.ca
and summary.subpop). In practice, users only need to type plot and summary since the generic com-
mands will automatically dispatch the appropriate method. In this section we explain the options
in each function respectively. Lastly we briefly explain the bootstrap procedures for inference and
bias correction. We provide the mathematical expressions and an application to racial discrimation in
mortgage lending to facilitate the understanding of the options of the commands.

spe

The command spe provides estimation and inference methods for the SPE and APE. The general
syntax is:

spe(fm, data, method = c("ols", "logit", "probit", "QR"),
var_type = c("binary", "continuous", "categorical"), var, compare, subgroup = NULL,
samp_weight = NULL, us = c(1:9)/10, alpha = 0.1, taus = c(5:95)/100,
b = 500, parallel = FALSE, ncores = detectCores(), seed = 1, bc = TRUE,
boot_type = c("nonpar", "weighted"))

The option fm stores the user-specified regression formula to estimate the PEs, which assigns the
outcome Y on the left-hand-side of a∼ operator, and the covariates X on the right-hand-side, separated
by + operators. The option data specifies the data set that contains the variables for the analysis. The
user needs to specify the variable of interest T in var as a string. The package accommodates four
regression methods to estimate the PE, ∆ (x): OLS (default), probit ("probit"), logit ("logit") and
quantile regression ("QR").1 If "QR" is called, then the user needs to further specify the quantile indexes
with taus. The default is taus = c(5:95)/100.

The option samp_weight allows the user to input sampling weights. When samp_weight = NULL,
the default, the package automatically uses a vector of ones, i.e. no sampling weights are used.

The package provides three options for the variable of interest var:

1. var_type = "binary" if var is a binary variable such as a black or female indicator.

2. var_type = "categorical" if var is a categorical (factor) variable with more than 2 levels. One
example is means of transportation with labels "bus", "train" or "bike". In this case, the user
needs to further specify the two labels to be compared with the option compare. If the user is
interested in the effect of changing from bus to bike, then compare = c("bus","bike"). If the
data only have levels, say "1","2" and "3", the users need to input levels instead.

3. var_type = "continuous" if var is a continuous variable. The package obtains the PEs using a

1We use the quantreg package to conduct quantile regression (Koenker et al., 2018).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=SortedEffects
https://CRAN.R-project.org/package=SortedEffect
https://CRAN.R-project.org/package=SortedEffects
https://CRAN.R-project.org/package=quantreg

CONTRIBUTED RESEARCH ARTICLES 133

central difference numerical derivative of the form:

f ′ (x) = lim
h→0

f (x + h)− f (x− h)
2h

,

where h is set to be 1e-7. We avoid the symbolic derivative because it cannot correctly interpret
terms involving I() for transformations of the variables such as powers, and can therefore cause
erroneous estimation. The code of this part is inspired by Thomas Leeper’s vignette on the
margins package (Leeper et al., 2018).

The option subgroup allows the user to specify the population of interest. The default is NULL,
which corresponds to the entire population. If the user is interested in subpopulations, say households
whose income is lower than 10, 000 dollars, and the data in use is called Data, then the user can set
subgroup = Data[,"income"] <10000. When T is a binary treatment indicator, the user can specify
that the population of interest is the treated population with subgroup = Data[,var] == 1. Note that
users cannot input subgroup directly to the data option or using the subset option because the SPE
methods use the whole sample to estimate the PEs. The option subgroup only specifies the population
for the estimation of µ, the distribution of X.

The option us specifies the set of quantile indexes corresponding to the estimated SPE to be
reported. The mathematical definition of each empirical SPE is

∆̂∗µ̂ (u) = uth − quantile of ∆̂ (X) , X ∼ µ̂.

The empirical SPE function {
u 7→ ∆̂∗µ̂ (u) : u ∈ U

}
, U ⊂ [0, 1]

then outputs the SPEs with quantile indexes in the set U . The option us specifies U . For example, us =
c(0.25,0.5,0.75) specifies to report the SPEs corresponding to the three quartiles.

The option alpha specifies the significance level of the confidence bands. The default is alpha =
0.1, i.e. 90% confidence level. The option b specifies the number of bootstrap repetitions. The default
is b = 500.

The package supports two types of bootstrap: nonparametric (boot_type = "nonpar") and
weighted with standard exponential weights (boot_type = "weighted"). The user can fix the random
seed for bootstrap simulation with the option seed and decide whether or not to bias-correct the
estimates with the option bc. The default is bc = TRUE. Bootstrap and bias-correction will be discussed
in section 2.5. The package features parallel computing, which is convenient to speed up the bootstrap.
The user can use the option parallel to turn on or off parallel computing. If parallel = TRUE, the
option ncores allows the user to specify the number of cores in the parallel computing. The default is
ncores = detectCores(), where detectCores() is a command of the package parallel.

The output of spe is a list containing four components: spe, ape, us and alpha. As the names
indicate, spe stores the results for the SPE, and ape stores the results for the APE. Each component is a
list with four elements: the estimates, lower and upper bounds of the uniform confidence bands, and
bootstrapped standard errors obtained as rescaled interquartile ranges; see Chernozhukov et al. (2018).
The other two components respectively store the percentile indices of the SPE and significance level of
the confidence bands, which are used in the functions plot.spe and summary.spe.

The plot.spe function plots the result of spe in one graph that includes the SPEs, APE and their
corresponding confidence bands. Its general syntax is

plot.spe(object, ylim = NULL, main = NULL, sub = NULL, xlab = "Percentile Index",
ylab = "Sorted Effects", ...)

where object is the output of spe. The range of the x-axis is fixed to be the range of user-specified
quantile index us. The options ylim, xlab and ylab respectively denote range of the y-axis and labels
of the two axes. The options main and sub allow users to specify the main and sub titles of the plot. The
option ... is an argument of the generic plot command that allows for further graphic parameters.

The syntax of summary.spe is as follows

summary.spe(object, result = c("sorted", "average"), ...)

If result = "sorted", the method provides a table that contain the SPE percentile indexes, estimates,
bootstrap standard errors, pointwise and uniform confidence bands. If result = "average", the
methods tabulates APE estimate, bootstrap standard error and confidence interval.

We illustrate the usage of the command with an empirical application to racial discrimination in
mortgage lending. We use data on mortgage applications in Boston from 1990 (Munnell et al., 1996).
The Federal Reserve Bank of Boston collected these data in relation to the Home Mortgage Disclosure

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=margins
https://CRAN.R-project.org/package=parallel

CONTRIBUTED RESEARCH ARTICLES 134

Act (HMDA), which was passed to monitor minority access to the mortgage market. To retrieve the
data from the package, issue the command

data("mortgage")

The outcome variable, Y, is deny, a binary indicator for mortgage denial. The key variable of interest,
T, is black, a binary indicator for the applicant being black, while the control variables, W, are
financial and demographical characteristics that might affect the mortgage decision of the bank. These
characteristics include the debt-to-income ratio (p_irat), expenses-to-income ratio (hse_inc), bad
consumer credit (ccred), bad mortgage credit (mcred), credit problems (pubrec), denied mortgage
insurance (denpmi), medium loan-to-house value (ltv_med), high loan-to-house value (ltv_high), self
employed (selfemp), single (single), and high school graduate (hischl). The regression formula for
the estimation of the PEs is specified as:

fm <- deny ~ black + p_irat + hse_inc + ccred + mcred + pubrec + ltv_med + ltv_high +
denpmi + selfemp + single + hischl

We invoke the spe command to calculate the bias-corrected estimates of the SPE at the quantile indexes
{0.02, 0.03, . . . , 0.98} for the entire population using a logit model.

test <- spe(fm = fm, data = mortgage, var = "black", method = "logit", us = c(2:98)/100,
b = 500, bc = TRUE)

The output test includes the estimates and confidence bands for the APE and SPE in the entire
population. We use plot to visualize the results.

plot(x = test, ylim = c(0, 0.25), ylab = "Change in Probability",
main = "APE and SPE of Being Black on the Prob of Mortgage Denial",
sub = "Logit Model")

Figure 1: Output of plot.spe function. Estimates and 90% confidence bands for the APE and SPE of
black indicator on probability of mortgage denial. Confidence bands obtained by bootstrap with 500
replications.

The result in Figure (1) shows significant heterogeneity in the SPEs, with the PEs ranging from 0 to
14%. The APE misses this heterogeneity, and therefore provides an incomplete picture of the effects.

We can also tabulate the result using summary. First, we apply the command to the APE and display
the results in Table (1).

summary(test, result = "average")

Next, we obtain the results for the SPE. To save space we only show the first 15 rows of summary(test)
in Table (2). The columns labelled as PLB and PUB correspond to the lower and upper pointwise
confidence bands, whereas the columns labelled as ULB and UUB correspond to their uniform
counterparts.

summary(test)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 135

Table 1: Bias-corrected estimate and 90% band for APE of black indicator on probability of mortgage
denial.

Est SE 90% LB 90% UB
APE 0.051 0.019 0.021 0.081

Table 2: Bias-corrected estimates and 90% pointwise and uniform bands for SPE of black indicator on
probability of mortgage denial.

Est SE 90% PLB 90% PUB 90% ULB 90% UUB
0.02 0.011 0.005 0.003 0.018 0.001 0.020
0.03 0.012 0.005 0.004 0.020 0.002 0.022
0.04 0.013 0.006 0.004 0.022 0.002 0.024
0.05 0.014 0.006 0.004 0.023 0.002 0.025
0.06 0.014 0.006 0.004 0.024 0.002 0.026
0.07 0.015 0.007 0.004 0.026 0.002 0.028
0.08 0.016 0.007 0.005 0.027 0.003 0.029
0.09 0.017 0.007 0.005 0.029 0.003 0.031

0.1 0.018 0.007 0.006 0.030 0.003 0.032
0.11 0.018 0.008 0.005 0.031 0.003 0.033
0.12 0.019 0.008 0.006 0.031 0.004 0.034
0.13 0.019 0.008 0.006 0.032 0.004 0.035
0.14 0.020 0.008 0.007 0.034 0.004 0.036
0.15 0.021 0.008 0.007 0.034 0.004 0.037
0.16 0.021 0.009 0.007 0.035 0.004 0.038

ca

The command ca provides estimation and inference methods for the CA. The general syntax is:

ca(fm, data, method = c("ols", "logit", "probit", "QR"),
var_type = c("binary", "continuous", "categorical"), var,
compare, subgroup = NULL, samp_weight = NULL, taus = c(5:95)/100,
u = 0.1, interest = c("moment", "dist"),
t = c(1, 1, rep(0, dim(data)[2] - 2)), cl = c("both", "diff"),
cat = NULL, alpha = 0.1, b = 500, parallel = FALSE,
ncores = detectCores(), seed = 1, bc = TRUE,
range_cb = c(1:99)/100, boot_type = c("nonpar", "weighted"))

The first step in the CA is to classify the observational units in most and least affected groups based on
some tail SPEs. The option u specifies the quantile index of the tail SPEs. Thus, the u-least affected
group includes the observational units with ∆̂(X) < ∆̂∗µ̂ (u) and the u-most affected group the units

with ∆̂(X) > ∆̂∗µ̂ (1− u). The default is u = 0.1 to obtain the 10% least and most affected groups. The
option subgroup specifies the population of interest and has the same syntax as in the spe command.

Let Λ̂−u
∆̂,µ̂

(t) and Λ̂+u
∆̂,µ̂

(t) denote the objects of interest in the least and most affected groups for the

CA. Define

Λ̂u
∆̂,µ̂

(t) :=
[

Λ̂−u
∆̂,µ̂

(t) , Λ̂+u
∆̂,µ̂

(t)
]

.

These objects are indexed by the vector t, which specifies the variables of interest among the out-
come and covariates. The option t is a vector that specifies t. Suppose the data has 5 variables
("a","b","c","d","e") and we are interested in "a" and "c", then we can either set t = c("a","c")
directly or t = c(1,0,1,0,0). The second approach requires the user to know the order of the variables
in the data set, which can be found with the command View.

Let Z denote the set of variables of interest. The package provides two types of objects of interest.
If interest = "moment", then Λ̂u

∆̂,µ̂
(t) include the means of the variables in Z for the least and most

affected groups. If interest = "dist", then Λ̂u
∆̂,µ̂

(t) includes the distributions of the variables in Z

for the least and most affected groups.

If interest = "moment", ca estimates and makes inference on features of the chosen variables of
interest in the least and most affected groups. These features are specified with the option cl. For
example, if cl = "both", the command estimates the mean of the variables in the two affected groups.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 136

On the other hand, cl = "diff" estimates the differences of the means of the variables between the
two groups.

If interest = "dist", the option range_cb specifies the region of interest for the domain of the
distribution2. For example, if the variable of interest x is discrete, we can specify the region of interest
as the support of x with range_cb = NULL. If x is continuous, we can specify range_cb = c(1:99)/100
if we are interested in the percentiles with indexes {0.01, 0.03, . . . , 0.99}. The default is range_cb =
c(1:99)/100. The choice range_cb = NULL shuts down this feature by settimg the region of interest as
all the distint values of the variable.

The output of ca depends on the choice of interest. For interest = "moment", the output is
a list containing the estimates of Λ̂u

∆̂,µ̂
(t), bootstrapped standard errors, pointwise and adjusted

p-values. The null hypothesis for the p-values is that the estimated coefficient is zero. The p-values
are adjusted for multiplicity to account for joint testing for all variables. In addition, users can
adjust the pointwise p-values to account for joint testing for all simulataneous tests of categories
within a factor. For example, if the variables of interest include a marital status factor "ms" with
labels ("nevermarried","married","divorced","separated","widowed"), then users could consider
adjusting the pointwise p-values within this factor. To illustrate how to define the option cat, suppose
we have selected specified 3 variables of interest: t = c("a","b","c"). Without loss of generality,
assume "a" is not a factor, while "b" and "c" are two factors. Then we need to specify cat as cat =
c("b","c"). If cat = NULL, we report the unadjusted pointwise p-values. If interest = "dist", the
output is a list containing the rearranged estimates, upper confidence bands and lower confidence
bands for the variables of interest in both groups.

When interest = "moment", the user can use method summary.ca to tabulate the output. The
general syntax is

summary.ca(object, ...)

If cl = "both", the p-values are omitted from the table. When interest = "dist", users can plot the
output for better visualization. The general syntax is

plot.ca(object, var, main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ...)

The user needs to input the variable for plotting with the option var. Note that the variable must be
one of the variables specified in t.

Returning to the mortgage denial example, we classify the 10% least and most affected applicants
and compare their characteristics. The variables of interest include deny, black and all the controls.
We first specify t to reflect the choice of variables of interest3

t <- c("deny", "p_irat", "black", "hse_inc", "ccred", "mcred", "pubrec", "denpmi",
"selfemp", "single", "hischl", "ltv_med", "ltv_high")

Then we invoke the ca command and summarize the result.

CA <- ca(fm = fm, data = mortgage, var = "black", method = "logit", cl = "both",
t = t, b = 500, bc = TRUE)

summary(CA)

Table (3) shows that the 10% of the applicants most affected by the racial mortgage denial gap are more
likely to have either of the following characteristics relative to the 10% of the least affected applicants:
mortgage denied, high debt-to-income ratio, black, high expense-to-income ratio, bad consumer or
credit scores, credit problems, self employed, single, no high school diploma, and medium or high
loan-to-income ratio.

Next we test if the differences in the characteristics between the two groups are statistically
significant. To do so we set cl = "diff", which means taking difference between the two groups. The
full command is as follows

CAdiff <- ca(fm = fm, data = mortgage, var = "black", t = t, method = "logit",
cl = "diff", b = 500, bc = TRUE)

summary(CAdiff)

Table (4) shows the results. The joint p-values account for the fact that we conduct simultaneous
inference on 13 differences of variables. We employ the so-called “single-step” methods for controlling
the family-wise error rate and obtain the p-values by bootstrap. We find that 8 differences are jointly
statistically different from zero at the 5% level and 9 at the 10% level.

2Note that cl doesn’t have any bearing when interest = "dist".
3Alternatively, we can use View(mortgage) to locate the variables and set t <- c(rep(1, 4), 0, rep(1, 7),

0, 0, 1, 1).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 137

Table 3: Bias-corrected estimates and standard errors for the average characteristics of the groups with
the 10% most and least effected applicants by the racial mortgage denial gap.

Most SE Least SE
deny 0.45 0.03 0.09 0.04

p_irat 0.39 0.01 0.25 0.02
black 0.38 0.03 0.06 0.02

hse_inc 0.28 0.01 0.21 0.02
ccred 4.80 0.26 1.28 0.09

mcred 2.01 0.06 1.36 0.10
pubrec 0.46 0.05 0.05 0.02

denpmi 0.01 0.01 0.04 0.03
selfemp 0.17 0.04 0.04 0.03

single 0.61 0.06 0.09 0.07
hischl 0.93 0.03 1.00 0.01

ltv_med 0.59 0.06 0.05 0.04
ltv_high 0.12 0.04 0.01 0.01

Table 4: Bias-corrected estimates, standard errors, and p-values for the differences in average charac-
teristics between the groups with the 10% most and least affected applicants by the racial mortgage
denial gap. P-values are for the hypothesis that the difference is zero. P-vals are pointwise p-values
for each difference and JP-vals are joint p-values that account for simultaneous inference on all the
differences.

Estimate SE JP-vals P-vals
deny 0.36 0.05 0.00 0.00

p_irat 0.14 0.02 0.00 0.00
black 0.32 0.04 0.00 0.00

hse_inc 0.07 0.02 0.13 0.00
ccred 3.52 0.28 0.00 0.00

mcred 0.65 0.15 0.01 0.00
pubrec 0.41 0.05 0.00 0.00

denpmi -0.03 0.04 1.00 0.23
selfemp 0.13 0.06 0.48 0.02

single 0.53 0.10 0.00 0.00
hischl -0.06 0.03 0.48 0.02

ltv_med 0.54 0.07 0.00 0.00
ltv_high 0.10 0.03 0.10 0.00

We also plot the distributions of monthly debt-to-income ratio (p_irat) and monthly housing
expenses-to-income ratio (hse_inc) for both groups. Such plots are useful if the user wants to visualize
if there is stochastic dominance between the two groups. To do so we use the ca command and change
the interest to "dist".

t2 <- c("p_irat", "hse_inc")
CAdist <- ca(fm = fm, data = mortgage, var = "black", method = "logit", t = t2,

b = 500, interest = "dist")
plot(CAdist, var = "p_irat", ylab = "Prob", xlab = "Monthly Debt-to-Income Ratio",

sub = "logit model")
plot(CAdist, var = "hse_inc", ylab = "Prob",

xlab = "Monthly Housing Expenses-to-Income Ratio", sub = "logit model")

Figure (2) shows that for both variables the distribution in the most affected group first-order stochas-
tically dominates the distribution in least affected group.

subpop

In addition to means and distributions, we can conduct inference on the sets of most and least affected
units. Let Z be a compact subset of the support of the outcome and covariates. Define

M−u ≡
{
(x, y) ∈ Z : ∆ (x) ≤ ∆∗µ (u)

}

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 138

Figure 2: Output of plot.ca. Bias-corrected estimates and 90% confidence bands for the distribution
of p_irat and hse_inc in the 10% most and least affected groups by the racial mortgage denial gap.
Confidence bands obtained by bootstrap with 500 replications.

as the set of the least affected units and

M+u ≡
{
(x, y) ∈ Z : ∆ (x) ≥ ∆∗µ (1− u)

}
as the set of the most affected units. The command subpop provides estimation and inference methods
for these sets. The general syntax is

subpop(fm, data, method = c("ols", "logit", "probit", "QR"),
var_type = c("binary", "continuous", "categorical"), var, compare,
subgroup = NULL, samp_weight = NULL, taus = c(5:95)/100, u = 0.1, alpha = 0.1,
b = 500, seed = 1, parallel = FALSE, ncores = detectCores(),
boot_type = c("nonpar", "weighted"))

No new option is introduced in the command. For theoretical details, we refer the reader to Cher-
nozhukov et al. (2015).

The output of subpop is a list containing six components: cs_most, cs_least, u, subgroup, most and
least. As the names indicate, cs_most and cs_least denote the confidence sets for the most and least
affected groups. u stores the percentile index that defines the most and least affected groups. subgroup
stores the indicators for the population of interest specified with the option subgroup. most and least
store the estimates of the most and least affected units respectively. The first four components are used
in plot.subpop and the last two components can be visualized with summary.subpop.

The general syntax of summary.subpop is

summary.subpop(object, affected = c("most", "least"), vars = NULL, ...)

The option object is the output of subpop. The option affected allows users to tabulate either the
most or the least affected units, and the option vars provides summary statistics for user-specified
variables of interest. The summary statistics include the minimum, 1st quartile, median, mean, 3rd
quaritle and maximum. The default is NULL, which produces summary statistics of all the variables.

The plot.subpop function plots 2-dimensional projections of the confidence sets for the most and
least affected units with respect to two variables. The general syntax is

plot.subpop(object, varx, vary, xlim = NULL, ylim = NULL, main = NULL, sub = NULL,
xlab = NULL, ylab = NULL, overlap = FALSE, ...)

The user needs to specify the two variables for the projection with varx and vary, and object should
be specified as the output of subpop. The option overlap allows users to either keep or drop common
observations in both confidence sets. The default is overlap = FALSE, which drops the observations.

We estimate the 10% most and least affected applicants in the mortgage application.

set_b <- subpop(fm, data = mortgage, method = "logit", var = "black", u = 0.1,
alpha = 0.1, b = 500)

Using summary, we can estimate the most/least affected applicants and report summary statistics of
the variables of interest in the most/least affected groups. Table 5 lists the estimated most affected
applicants. For the purpose of illustration we only show the first ten rows and columns.

groups <- summary(set_b, vars = c("p_irat", "hse_inc"))
most_affected <- groups$most_affected

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 139

Table 5: Elements of the estimated group of the 10% most affected applicants by racial mortgage
denial gap.

deny p_irat black hse_inc loan_val ccred mcred pubrec denpmi selfemp
1 1.00 0.46 0.00 0.27 0.84 5.00 2.00 0.00 0.00 0.00
2 1.00 0.38 0.00 0.26 0.88 6.00 1.00 1.00 0.00 0.00
3 0.00 0.40 0.00 0.34 0.80 2.00 2.00 0.00 0.00 1.00
4 1.00 0.24 0.00 0.23 0.90 5.00 2.00 0.00 0.00 0.00
5 0.00 0.38 0.00 0.25 0.80 6.00 2.00 1.00 0.00 0.00
6 0.00 0.36 0.00 0.13 0.95 5.00 2.00 0.00 0.00 0.00
7 0.00 0.35 0.00 0.27 0.90 6.00 2.00 0.00 0.00 0.00
8 1.00 0.30 0.00 0.30 0.50 6.00 2.00 1.00 0.00 0.00
9 1.00 0.37 0.00 0.23 0.80 6.00 2.00 1.00 0.00 0.00

10 1.00 0.39 0.00 0.27 0.90 6.00 2.00 1.00 0.00 0.00

We can also report summary statistics of the variables of interest in the most and least affected groups
using the output of summary. Table (6) reports summary statistics for p_irat and hse_inc for the
applicants in the most affected group.

sum_stats_most <- groups$stats_most

Table 6: Summary statistics of the estimated group of the 10% most affected applicants by racial
mortgage denial gap.

p_irat hse_inc
Min 0.16 0.01

1st Quartile 0.34 0.23
Median 0.37 0.28

Mean 0.39 0.28
3rd Quartile 0.42 0.32

Max 1.16 0.74

We finally plot the projection of the confidence sets for the most and least affected applicants with
respect to p_irat and hse_inc. Figure (3) keeps the overlapped observations and shows that the most
affected applicants tend to have higher levels of debt to income and expenses to income ratios.

plot(set_b, varx = mortgage$p_irat, vary = mortgage$hse_inc, xlim = c(0, 1.5),
ylim = c(0, 1.5), xlab = "Debt/Income", ylab = "Housing expenses/Income",
overlap = TRUE)

Inference

Chernozhukov et al. (2018) derived the asymptotic distributions and bootstrap validity for the estima-
tors of the SPE and classification analysis. The package uses bootstrap to compute standard errors and
critical values for tests and confidence bands.

The package features nonparametric and weighted bootstrap. When boot_type = "nonpar", the
package draws samples with replacement of the variables and samp_weight and run all estimation
commands weighted by samp_weight. When boot_type = "weighted", the package draws weights
from the standard exponential distribution and runs all estimation commands weighted by the product
of these weights and samp_weight. We use the boot package (Canty and Ripley, 2017), which is flexible
enough to accommodate both types.

Inference on SPE The (1− α)-uniform confidence band of ∆∗µ (u) in U is[
∆̂∗µ̂ − t̂1−α (U) Σ̂ (u)1/2 /

√
n, ∆̂∗µ̂ + t̂1−α (U) Σ̂ (u)1/2 /

√
n
]

,

where t̂1−α (U) is a bootstrapped uniform critical value and Σ̂ (u)1/2 is a boostrapped standard
error of ∆̂∗µ̂ (u).

4 To deal with the possibility that the end-point functions of the confidence band

u 7→ ∆̂∗µ̂ ± t̂1−α (U) Σ̂ (u)1/2 /
√

n be nonincreasing, we monotonize these functions via rearrangement

4See Algorithm 2.1 in Chernozhukov et al. (2018) for details.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=boot

CONTRIBUTED RESEARCH ARTICLES 140

Figure 3: Projection of the 90% confidence sets for the groups of the 10% most and least affected
applicants by the racial mortgage denial gap with respect to p_irat and hse_inc. Confidence regions
obtained by bootstrap with 500 replications.

(Chernozhukov et al., 2009). The (1− α)-pointwise confidence band of ∆∗µ (u) is obtained replacing
t̂1−α (U) by the (1− α/2)-quantile of the standard normal distribution.

Inference on CA The joint p-value for the hypothesis Λ+u
∆,µ (t) = Λ−u

∆,µ (t) for all t ∈ T is

Pr

t̂u (T) > sup
t∈T

|c′Λ̂u
∆̂,µ̂

(t)c|√
c′Σ̂u (t) c

 ,

where c = (−1, 1)′, t̂u (T) is a bootstrap estimator of

tu (T) = sup
t∈T

|c′Λ̂u
∆̂,µ̂

(t) c− c′Λu
∆,µ (t) c|√

c′Σu (t) c
,

and Σ̂u (t) is a bootstrap estimator of Σu (t), the asymptotic variance of Λ̂u
∆̂,µ̂

(t).5 The poitwise p-value

for the hypothesis Λ+u
∆,µ (t) = Λ−u

∆,µ (t) is obtained by setting T = {t}.
Inference on sets of least/most affected units The outer (1− α)-confidence set forM−u is

CM−u (1− α) =
{
(x, y) ∈ Z : Σ̂−1/2 (x, u)

√
n
[
∆̂ (x)− ∆̂∗µ (u)

]
≤ ĉ (1− α)

}
,

where Σ̂ (x, u) is an estimator of the asymptotic variance of ∆̂ (x)− ∆̂∗µ (u). Similarly the outer (1− α)-
confidence set forM+u is

CM+u(1− α) =
{
(x, y) ∈ Z : Σ̂−1/2 (x, 1− u)

√
n
[
∆̂∗µ (1− u)− ∆̂ (x)

]
≤ c̃ (1− α)

}
.

The critical value ĉ (1− α) is the (1− α)-quantile of the statistic:

Ṽ∗∞ = sup
{x∈X :∆̂(x)=∆̂∗µ(u)}

Σ̂−1/2 (x, u)
√

n
([

∆̃ (x)− ∆̃∗µ (u)
]
−
[
∆̂ (x)− ∆̂∗µ (u)

])
.

while the critical value c̃ (1− α) is the (1− α)-quantile of the statistic:

Ṽ∗∗∞ = sup
{x∈X :∆̂(x)=∆̂∗µ(1−u)}

Σ̂−1/2 (x, 1− u)
√

n
([

∆̃ (x)− ∆̃∗µ (1− u)
]
−
[
∆̂ (x)− ∆̂∗µ (1− u)

])
.

5See Algorithm 2.2 in Chernozhukov et al. (2018) for details.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 141

To implement sup
{

x ∈ X : ∆̂ (x) = ∆̂∗µ (u)
}

in the code, we find the minimum of |∆̂ (x)− ∆̂∗µ̂ (u) |
among all x’s.

Bias-correction Nonlinear estimators are prone to finite-sample bias, and bootstrap methods can
estimate the bias up to some asymptotic order. To bias correct the SPE, replace ∆̂∗µ̂ with 2∆̂∗µ̂ − ∆∗µ,

where ∆∗µ is the mean of bootstrap draws. Similarly, for CA we replace Λ̂u
∆̂,µ̂

(t) with 2Λ̂u
∆̂,µ̂

(t)−Λu
∆,µ,

where Λu
∆,µ is the mean of the bootstrap draws. Bias-corrected estimates and corresponding inference

will be reported if bc = TRUE, the default.

Gender wage gap application

We analyze the gender wage gap using data from the U.S. March Supplement of the Current Population
Survey (CPS) in 2015. The gender wage gap measures the difference in wages between female and male
workers with the same observable characteristics. The SPE method allows us to look for heterogeneity
in the gender wage gap and to identify the characteristics of the most and least affected workers. To
retrieve the data, issue the command

data(wage2015)

The data contain the following variables: log hourly wages (lnw); a marital status factor ms with 5
categories widowed,divorced,separated,nevermarried,married; CPS sampling weights (weight); a
indicator for female worker (female); an education attainment factor educ with 5 categories lhs (less
than high school graduate), hsg (high school graduate), sc (some college), cg (college) and ad (advanced
degree); a region factor region with 4 categories mw (midwest), so (south), we (west) and ne (northeast);
potential work experience exp1 computed as max {0, age - years of educ− 7}; 4 powers of experience
(exp2,exp3,exp4); an occupation factor occ with 5 categories manager, service, sales, construction
and production, and an industry factor ind with 12 categories minery, construction, manufacture,
retail, transport, information, finance, professional, education, leisure, services and public.

The CPS data contains sampling weights in the variable weight, so we will set samp_weight =
wage2015$weight. Because women in general earn less than men, the PEs are predominately negative
if we use the female indicator. To facilitate the interpretation of most and least affected groups we
create an indicator called male, which assigns 0 to female workers instead.

wage2015$male <- 1 - wage2015$female

We apply OLS regression to estimate the PEs using the following specification

fmla1 <- lnw ~ male*(ms + (exp1 + exp2 + exp3 + exp4)*educ + occ + ind + region)

We first look at the SPE of the gender wage gap at the quantile indexes {0.02, 0.03, . . . , 0.98} in the
population of women via the command spe and plot the result. We specify that the population of
interest is female workers with subgroup = wage2015[,"female"] == 1.

gap <- spe(fm = fmla1, data = wage2015, samp_weight = wage2015$weight,
var = "male", subgroup = wage2015[,"female"] == 1, boot_type = "weighted",
us = c(2:98)/100, b = 500, bc = FALSE)

plot(x = gap, main = "APE and SPE of Gender Wage Gap for Women", sub = "OLS Model",
xlab = "Percentile Index", ylab = "Gender Wage Gap", ylim = c(-0.1, 0.45))

Figure (4) shows large heterogeneity in the gender wage gap that is missed if we only report the APE.

We also compare the SPE across subsets of women defined by marital status. We implement this
by changing the subgroup options as follows

fem_mar <- wage2015[, "female"] == 1 & wage2015[, "ms"] == "married"
fem_nev <- wage2015[, "female"] == 1 & wage2015[, "ms"] == "nevermarried"

gap_mar <- spe(fm = fmla1, data = wage2015, samp_weight = wage2015$weight,
var = "male", subgroup = fem_mar, us = c(2:98)/100, b = 500,
bc = FALSE, boot_type = "weighted")

gap_nev <- spe(fm = fmla1, data = wage2015, samp_weight = wage2015$weight,
var = "male", subgroup = fem_nev, us = c(2:98)/100, b = 500,
bc = FALSE, boot_type = "weighted")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 142

Figure 4: Estimates and 90% confidence bands for the APE and SPE of the gender wage gap for
women. Confidence bands obtained by weighted bootstrap with 500 replications.

plot(x = gap_mar, main = "Married Women", sub = "OLS Model", xlab = "Percentile Index",
ylab = "Gender Wage Gap", ylim = c(-0.2, 0.45))

plot(x = gap_nev, main = "Never Married Women", sub = "OLS Model",
xlab = "Percentile Index", ylab = "Gender Wage Gap", ylim = c(-0.2, 0.45))

Figure (5) shows the results for the two subpopulations. Here we find large heterogeneity not
only between married and never married women, but also within these more narrowly defined
subpopulations. Now we compare the differences in characteristics of the 5% most and least affected

Figure 5: Estimates and 90% confidence bands for the APE and SPE of the gender wage gap for
married and never married women. Confidence bands obtained by weighted bootstrap with 500
replications.

women using weighted bootstrap with 500 repetitions. We pick the following variables

tw <- c("lnw", "female", "ms", "educ", "region", "exp1", "occ", "ind")

Since many variables arecategory indicators of the same factor, we can specify cat as follows to get
categorical p-values.

cat <- c("ms", "educ", "region", "occ", "ind")

Then we issue the ca command and tabulate the mean characteristics of the two groups

Char <- ca(fm = fmla1, data = wage2015, samp_weight = wage2015$weight, var = "male",
t = tw, cl = "both", b = 500, subgroup = wage2015[,"female"] == 1,
boot_type = "weighted", bc = FALSE, u = 0.05)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 143

Table (7) reports the estimates and standard errors obtained by weighted bootstrap with 500 replica-
tions. We find that, compared to the 5% least affected women, the 5% most affected women are much
more likely to be married, much less likely to be never married, less likely to have an advanced degree,
live in the South, don’t live in Northeast and West, possess more potential experience, are more likely
to have sales and non-managerial occupations, and work more often in manufacture, retail, transport
and finance, and less often in education and leisure industries.

summary(Char)

Table 7: Bias-corrected estimates and standard errors for the average characteristics of the groups with
the 5% most and least affected women by the gender wage gap.

Most SE Least SE
lnw 2.97 0.10 3.02 0.06
female 1.00 0.00 1.00 0.00
exp1 26.58 2.01 8.47 2.54
occ_manager 0.21 0.13 0.77 0.08
occ_service 0.04 0.03 0.12 0.06
occ_sales 0.56 0.14 0.10 0.05
occ_construction 0.00 0.01 0.01 0.01
occ_production 0.19 0.08 0.01 0.01
ind_minery 0.00 0.02 0.00 0.00
ind_construction 0.00 0.01 0.01 0.01
ind_manufacture 0.19 0.09 0.02 0.01
ind_retail 0.17 0.14 0.03 0.02
ind_transport 0.14 0.07 0.00 0.00
ind_information 0.00 0.02 0.01 0.02
ind_finance 0.43 0.17 0.02 0.01
ind_professional 0.04 0.06 0.05 0.03
ind_education 0.00 0.03 0.56 0.09
ind_leisure 0.00 0.00 0.21 0.08
ind_services 0.00 0.00 0.09 0.05
ind_public 0.02 0.05 0.02 0.01
educ_lhs 0.04 0.04 0.04 0.02
educ_hsg 0.26 0.13 0.04 0.05
educ_sc 0.50 0.15 0.12 0.06
educ_cg 0.14 0.11 0.34 0.10
educ_ad 0.07 0.07 0.46 0.08
ms_married 1.00 0.02 0.02 0.04
ms_widowed 0.00 0.00 0.03 0.07
ms_separated 0.00 0.00 0.03 0.03
ms_divorced 0.00 0.01 0.07 0.04
ms_nevermarried 0.00 0.00 0.85 0.12
region_mw 0.29 0.09 0.28 0.06
region_so 0.47 0.11 0.25 0.06
region_we 0.12 0.06 0.22 0.05
region_ne 0.13 0.07 0.25 0.06

We also test the statistical significance of the mean differences. Table 8 shows that the differences
mentioned above are significant after controlling for simultaneous inference within categories, but only
the differences in marital status, potential experience and education industry remain jontly significant
at the 5% level.

Chardiff <- ca(fm = fmla1, data = wage2015, samp_weight = wage2015$weight, var = "male",
t = tw, cl = "diff", b = 500, cat = cat, bc = FALSE, u = 0.05
subgroup = wage2015[, "female"] == 1, boot_type = "weighted",)

summary(Chardiff)

Lastly we use show the functionality of the command subpop. We plot projections of 90% confi-
dence sets for the 5% most and least affected group with respect to two pairs of variables: log wages
and potential experience, and marital status and potential experience. The estimated sets are obtained
by weighted bootstrap with 500 repetitions and we drop the overlapped observations.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 144

Table 8: Bias-corrected estimates, standard errors, and p-values for the differences in average char-
acteristics between the groups of the 5% most and least affected women by the gender wage gap.
P-values are for the hypothesis that the difference is zero. JP-vals are joint p-values that account
for simultaneous inference on all the differences and Cat JP-vals are joint p-values that account for
simultaneous inference within the categories ms, educ, region, occ and ind.

Estimate SE JP-vals Cat P-vals
lnw -0.06 0.12 1.00 0.32
female 0.00 0.00
exp1 18.12 3.49 0.09 0.00
occ_manager -0.55 0.18 0.49 0.03
occ_service -0.08 0.08 1.00 0.88
occ_sales 0.46 0.17 0.67 0.09
occ_construction -0.01 0.02 1.00 1.00
occ_production 0.18 0.09 0.89 0.24
ind_minery 0.00 0.02 1.00 1.00
ind_construction -0.01 0.02 1.00 1.00
ind_manufacture 0.18 0.10 0.97 0.79
ind_retail 0.14 0.14 1.00 0.99
ind_transport 0.14 0.07 0.90 0.63
ind_information -0.00 0.04 1.00 1.00
ind_finance 0.41 0.18 0.86 0.58
ind_professional -0.00 0.08 1.00 1.00
ind_education -0.56 0.10 0.07 0.04
ind_leisure -0.21 0.09 0.79 0.50
ind_services -0.09 0.05 0.98 0.82
ind_public -0.00 0.06 1.00 1.00
educ_lhs 0.00 0.05 1.00 1.00
educ_hsg 0.22 0.16 1.00 0.64
educ_sc 0.38 0.16 0.77 0.13
educ_cg -0.21 0.16 1.00 0.69
educ_ad -0.39 0.12 0.37 0.01
ms_married 0.98 0.05 0.00 0.00
ms_widowed -0.03 0.07 1.00 0.97
ms_separated -0.03 0.03 1.00 0.83
ms_divorced -0.07 0.05 0.99 0.56
ms_nevermarried -0.85 0.12 0.02 0.01
region_mw 0.01 0.15 1.00 1.00
region_so 0.22 0.17 1.00 0.50
region_we -0.10 0.11 1.00 0.75
region_ne -0.13 0.12 1.00 0.71

set <- subpop(fm = fmla1, data = wage2015, var = "male", samp_weight = wage2015$weight,
boot_type = "weighted", b = 500, subgroup = wage2015[, "male"] == 0,
u = 0.05)

plot(set, varx = wage2015$exp1, vary = wage2015$lnw, main = "Projections of Exp-lnw",
sub = "OLS", xlab = "Exp", ylab = "Log Wages")

plot(set, varx = wage2015$exp1, vary =wage2015$ms, main = "Projections of Exp-MS",
sub = "OLS", xlab = "Exp", ylab = "Marital Status")

Figure (6) shows that there are relatively more least affected women with low experience at all
wage levels, more high affected women with high wages with between 15 and 45 years of experience,
and more least affected women which are not married at all experience levels.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 145

Figure 6: Projections of the 90% confidence sets for the groups of the 5% most affected women by the
gender wage gap with respect to exp and lnw (left panel), and exp and ms (right panel). Confidence
regions obtained by weighted bootstrap with 500 replications.

Acknowledgements

We thank the editor Norman Matloff, Thomas Leeper and an anonymous referee for valuable sugges-
tions on the paper and package. We gratefully acknowledge research support from the NSF.

Bibliography
A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2017. URL https://cran.r-project.

org/web/packages/boot/index.html. R package version: 1.3-23. [p139]

V. Chernozhukov, I. Fernández-Val, and A. Galichon. Improving point and inverval estimators of
monotone functions by rearrangement. Biometrika, 96(3), 2009. URL https://doi.org/10.1093/
biomet/asp030. [p140]

V. Chernozhukov, E. Kocatulum, and K. Menzel. Inference on sets in finance. Quantitative Economics, 6
(2):309–358, 2015. URL https://doi.org/10.3982/QE387. [p138]

V. Chernozhukov, I. Fernández-Val, and Y. Luo. The sorted effects method: Discovering heterogeneous
effects beyond their averages. Econometrica, 86(6):1911–1938, 2018. URL https://doi.org/10.3982/
ECTA14415. [p131, 132, 133, 139, 140]

R. Koenker, S. P. Portnoy, P. Tian Ng, A. Zeileis, P. Grosjean, and B. Ripley. quantreg: Quantile Regres-
sion, 2018. URL https://cran.r-project.org/web/packages/quantreg/index.html. R package
version: 5.51. [p132]

T. Leeper, J. Arnold, and V. Arel-Bundock. margins: Marginal Effects for Model Objects, 2018. URL https:
//cran.r-project.org/web/packages/margins/index.html. R package version: 0.3.23. [p133]

A. Munnell, G. Tootell, L. Browne, and J. McEneaney. Mortgage lending in boston: Interpreting hmda
data. The American Economic Review, 86(1), 1996. URL http://www.jstor.org/stable/2118254.
[p133]

Shuowen Chen
Department of Economics
Boston University
270 Bay State Road, Boston, MA 02215
USA
swchen@bu.edu

Victor Chernozhukov
Department of Economics
Massachusetts Institute of Technology
50 Memorial Drive, Cambridge, MA 02142

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/boot/index.html
https://cran.r-project.org/web/packages/boot/index.html
https://doi.org/10.1093/biomet/asp030
https://doi.org/10.1093/biomet/asp030
https://doi.org/10.3982/QE387
https://doi.org/10.3982/ECTA14415
https://doi.org/10.3982/ECTA14415
https://cran.r-project.org/web/packages/quantreg/index.html
https://cran.r-project.org/web/packages/margins/index.html
https://cran.r-project.org/web/packages/margins/index.html
http://www.jstor.org/stable/2118254
mailto:swchen@bu.edu

CONTRIBUTED RESEARCH ARTICLES 146

USA
vchern@mit.edu

Iván Fernández-Val
Department of Economics
Boston University
270 Bay State Road, Boston, MA 02215
USA
ivanf@bu.edu

Ye Luo
Faculty of Business and Economics
The University of Hong Kong
Cyberport Four, 100 Cyberport Rd, Telegraph Bay
Hong Kong
hurtluo@hku.hk

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:vchern@mit.edu
mailto:ivanf@bu.edu
mailto:hurtluo@hku.hk

CONTRIBUTED RESEARCH ARTICLES 147

npordtests: An R Package of
Nonparametric Tests for Equality of
Location Against Ordered Alternatives
by Bulent Altunkaynak and Hamza Gamgam

Abstract Ordered alternatives are an important statistical problem in many situation such as increased
risk of congenital malformation caused by excessive alcohol consumption during pregnancy life test
experiments, drug-screening studies, dose-finding studies, the dose-response studies, age-related
response. There are numerous other examples of this nature. In this paper, we present the npordtests
package to test the equality of locations for ordered alternatives. The package includes the Jonckheere-
Terpstra, Beier and Buning’s Adaptive, Modified Jonckheere-Terpstra, Terpstra-Magel, Ferdhiana-
Terpstra-Magel, KTP, S and Gaur’s Gc tests. A simulation study is conducted to determine which test
is the most appropriate test for which scenario and to suggest it to the researchers.

Introduction

Ordered alternative tests are employed to evaluate if a quantitative feature is linked to an ordinal trait,
as in the association between ammonia levels and the severity of hepatic encephalopathy (Ong et al.,
2003), the association of abnormal MRI findings with bone-marrow-related disease (Bredella et al.,
2006), and the association between single nucleotide polymorphisms in human genes and quantitative
phenotypes (Hoffmeyer et al., 2000; Cheng et al., 2005; Kawaguchi et al., 2012; Uchiyama et al., 2012;
Tan et al., 2014; Yorifuji et al., 2018)

There are parametric and nonparametric methods to test ordered alternatives. Nevertheless, the
statistical validity of parametric methods depends upon distributional assumptions, such as normality
or equality of variances. However, nonparametric tests do not necessitate assumptions about the
distribution of the data and are robust to outliers and influential values (Lin et al., 2017b).

Several nonparametric tests were developed to test the equality of locations against ordered
alternatives. These tests can be grouped under three headings such as linear combination of two
sample statistics, linear rank statistics, and statistics based on k-tuplet.

The tests proposed by Terpstra (1952), Jonckheere (1954), Puri (1965), Govindarajulu and Haller
(1971), Tryon and Hettmansperger (1973), Cuzick (1985), Le (1988), Neuhäuser et al. (1998), Gaur
(2014), Shan et al. (2014), Gaur (2017) are based on a linear combination of two sample statistics with
pairs of samples of k(k − 1)/2. The problem of testing homogeneity against ordered alternatives
was considered for the first time by Terpstra (1952) and Jonckheere (1954). They suggested the
nonparametric test (JT) based on a sum of k(k− 1)/2 Mann-Whitney (MW) statistics for the ordered
alternatives.

Linear rank statistics consist of a combination of the rank scores obtained from the combined data
and the regression constants. These statistics were originally named as the Left Skewed (LS) and Right
Skewed (RS) scores as proposed by Hogg et al. (1975). Gastwirth (1965), Buning and Kossler (1996),
and Beier and Buning (1997) proposed Short-Tailed (ST), Long-Tailed (LT), and Wilcoxon (WS) scores,
respectively. Beier and Buning (1997) proposed a nonparametric Adaptive Test (AT) for the choice of
suitable scores based on the underlying distribution.

The k-tuplet tests are based on the information simultaneously obtained across all samples. These
tests are determined by adding N∗ = n1 × n2 × ...× nk functions. That is, k-tuplet includes one
observation from each group. Terpstra and Magel (2003) proposed a test k-tuplet statistic (TM), which
is based on the indicator function. Ferdhiana et al. (2008) proposed a test statistic (FTM), which can be
viewed as a generalization of the TM test. The FTM test uses Kendall correlation coefficient based on
the following data: (1, X1i1), (2, X2i2), ..., (k, Xkik

), where Xij i = 1, 2, ..., k, j = 1, 2, ..., ni is the sample
data. Here, k is the number of groups and ni denotes the number of observations in the ith group.
Similarly, Terpstra et al. (2011) proposed KTP test, which uses Spearman correlation coefficient instead
of Kendall correlation coefficient.

JT is the classical and the most common ordered test. It is included in some packages such as
clinfun (Venkatraman, 2018), jtGWAS (Lin et al., 2017a), fastJT (Lin et al., 2017b), kSamples (Scholz
and Zhu, 2018), StatCharrms (Swintek et al., 2018), PMCMRplus (Pohlert, 2018). However, the other
ordered alternative tests considered in this study are not included in any CRAN package other than
npordtests.

However, there may be more efficient tests than JT for different data scenarios; nonetheless, a

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=clinfun
https://CRAN.R-project.org/package=jtGWAS
https://CRAN.R-project.org/package=fastJT
https://CRAN.R-project.org/package=kSamples
https://CRAN.R-project.org/package=StatCharrms
https://CRAN.R-project.org/package=PMCMRplus

CONTRIBUTED RESEARCH ARTICLES 148

perusal of literature does not yield a comprehensive simulation study in which ordered alternative
tests are compared for various scenarios. The nonparametric ordered alternative tests have recently
been adapted for such big data structures as gene data and machine learning (Lin et al., 2017b), which
clearly indicates the significance such a simulation study has.

Our study contributes significantly to the related literature in two ways: 1) This study includes most
of the ordered alternative tests in the literature, introduced as an R package, npordtests (Altunkaynak
and Gamgam, 2019) including the JT, Modified JT, LS, RS, ST, LT, WS, AT, TM, FTM, KTP, S, and Gaur’s
Gc tests, and presents open source codes. The npordtests package is publicly available on the CRAN.
2) This study presents a comprehensive simulation study that compares ordered alternative tests in
terms of power, which helps researchers choose the most appropriate test for a given scenario.

The organization of this paper is presented as follows. After the introduction, firstly, we give the
theoretical information about the nonparametric tests for ordered alternatives included in this study.
Secondly, we introduce the npordtests package and demonstrate the applicability of the package
using two benchmark datasets. Thirdly, a simulation study is conducted to determine which test is the
most appropriate test for which scenario and to give some advice to the researchers. The results of this
simulation study and general comments are given in the final section.

Ordered alternative tests

Let Xi1, Xi2, ..., Xini , i = 1, ..., k be random independent samples with size ni from k populations with
continuous cumulative distribution function Fi(x) = F((x − θi)/σi), where −∞ < θi < +∞ and
σi > 0 are location and scale parameters, respectively. The null hypothesis to identify whether the
populations have common continuous cumulative distribution function can be expressed as

H0 : F1(x) = F2(x) = ... = Fk(x) ∀x. (1)

A number of test statistics have been proposed to test the null hypothesis in (1) under certain
assumptions and for different forms of H1. The ordered alternative states that the distributions are
stochastically ordered, i.e.,

H1 : F1(x) ≥ F2(x) ≥ ... ≥ Fk(x) ∃x : F1(x) > Fk(x) . (2)

Under H1, Xi tends to be smaller than Xi+1, i = 1, 2, ..., k− 1, since Fi(x) ≥ Fi+1(x) implies that
P(Xi ≤ Xi+1) ≥ 1/2. For the special case of the location model, (2) is equivalent to (Terpstra et al.,
2011)

H1 : θ1 ≤ θ2 ≤ ... ≤ θk (θ1 < θk). (3)

Similarly, the ordered alternative hypothesis

H1 : F1(x) ≤ F2(x) ≤ ... ≤ Fk(x) ∃x : F1(x) < Fk(x) (4)

states that Xi tends to be larger than Xi+1, i = 1, 2, ..., k − 1, since Fi(x) ≤ Fi+1(x) implies that
P(Xi ≥ Xi+1) ≥ 1/2 under H1 given in (4). For the location model, (4) is equivalent to

H1 : θ1 ≥ θ2 ≥ ... ≥ θk (θ1 > θk). (5)

Jonckheere-Terpstra test

This classic nonparametric test is typically used for ordered alternatives and was proposed by Terpstra
(1952) and Jonckheere (1954). It is known that the Mann-Whitney statistic defines as

Uij =
ni

∑
l=1

nj

∑
m=1

I(Xil < Xjm);

where ni and nj are the sample sizes for the ith and jth populations, respectively, and I(ψ) = 1 if ψ is
true and 0 otherwise. The test statistic JT corresponds to the sum of the k(k− 1)/2 Mann-Whitney
statistics, i.e.,

JT =
k−1

∑
i=1

k

∑
j=i+1

Uij. (6)

The statistic JT is approximately normally distributed under H0. The mean and variance of this

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=npordtests

CONTRIBUTED RESEARCH ARTICLES 149

statistic are

E(JT) =
N2 −

k
∑

i=1
n2

i

4
and

V(JT) =
N2(2N + 3)−

k
∑

i=1
n2

i (2ni + 3)

72
,

where N = n1 + n2 + ... + nk.

Beier and Buning’s Adaptive test

This test is a two-step method based on the selection of the weight coefficients of the linear rank
statistics according to the shape of the distribution (Beier and Buning, 1997). A linear rank statistics
has the following form:

LN =
k

∑
i=1

ni

∑
j=1

cN(i)aN(Rij) (7)

where N is the combined sample size; cN(.) are the regression constants; aN(.) are the scores; Rij is the
rank of Xij in the combined data. For an ordered alternative, the following proposal is made:

cN(i) = i, i = 1, 2, ..., k.

Under H0, the mean and variance of linear rank statistics are

E(LN) = Nc̄N āN ,

and

V(LN) =
1

N − 1

k

∑
i=1

ni(cN(i)− c̄N)2
N

∑
r=1

(aN(r)− āN)2

where

c̄N =
1
N

k

∑
i=1

nicN(i)

and

āN =
1
N

N

∑
r=1

aN(r).

The distribution of a linear rank statistic converges to a normal distribution with mean E(LN) and
variance V(LN) (Hogg and Craig, 2013; Beier and Buning, 1997).

There are some suggestions for the score aN(.) according to the shape of the distribution in the
literature as follows

aLS(r) =

{
0 if r ≤ (N + 1)/2
r− (N + 1)/2 if r > (N + 1)/2

These scores are efficient for detecting shifts in distributions that are skewed to the left (Beier and
Buning, 1997).

aST(r) =


r− (N + 1)/4 if r ≤ (N + 1)/4
0 if (N + 1)/4 < r < 3(N + 1)/4
r− 3(N + 1)/4 if r ≥ 3(N + 1)/4

These scores are particularly good for detecting shifts in short-tailed distributions and were proposed
by Gastwirth (1965).

aWS(r) = r, r = 1, 2, ..., N

These scores are efficient for detecting shifts in symmetric distributions with medium to heavy tails
(Beier and Buning, 1997).

aLT(r) =


−((N/4) + 1) if r < (N/4) + 1
r− (N + 1)/2 if (N/4) + 1 ≤ r ≤ 3(N + 1)/4
(N/4) + 1 if r > 3(N + 1)/4

These scores are efficient for detecting shifts in long-tail distributions and were proposed by Buning

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 150

and Kossler (1996).

aRS(r) =

{
r− (N + 1)/2 if r ≤ (N + 1)/2
0 if r > (N + 1)/2

These scores are efficient for detecting shifts in distributions that are skewed to the right (Hogg et al.,
1975).

The adaptive test proposed by Beier and Buning (1997) is denoted by the index of their scores. For
example, the distribution-free test based on the scores aST(.) of Gastwirth (1965), which is particularly
good for detecting a shift in short-tailed distributions, is denoted by ST. Now, the adaptive test AT is
defined by

AT =



LS if 0 ≤ Ŝ1 ≤ 0.6, Ŝ2 ≥ 1
ST if 0.6 < Ŝ1 ≤ 2, 1 ≤ Ŝ2 ≤ 1.5
WS if 0.6 < Ŝ1 ≤ 2, 1.5 < Ŝ2 ≤ 1.5
LT if 0.6 < Ŝ1 ≤ 2, Ŝ2 ≥ 2
RS if Ŝ1 ≥ 2, Ŝ2 ≥ 1

(8)

where xp is the quantile value of the combined data, and the estimation values of the skewness and
tailweight of the distribution are

Ŝ1 =
x0.975 − x0.5
x0.5 − x0.025

and
Ŝ2 =

x0.975 − x0.025
x0.875 − x0.125

.

Since the adaptive statistic is a linear rank statistic, the distribution of each of these statistics converges
to a normal distribution with mean E(LN) and variance V(LN).

Modified Jonckheere-Terpstra test

Tryon and Hettmansperger (1973) proposed the modified JT statistic to test H0 against the ordered
alternatives,

MJT =
k−1

∑
i=1

k

∑
j=i+1

(j− i)Uij, (9)

where Uij is the Mann-Whitney statistic computed for the samples from the ith and jth populations.
Neuhäuser et al. (1998) suggested that this test be used in place of the JT tests because it often has
larger powers.

This statistic has a normal distribution under H0, and its mean and variance are

E(Uij) =
1
2

ninj, ∀i 6= j

V(Uij) =
1

12
ninj(ni + nj + 1), ∀i 6= j

Cov(Uij, Uil) = Cov(Uji, Uli) =
1

12
ninjnl , if all i, j, l are different

Cov(Uij, Uli) = Cov(Uji, Uil) = −
1
12

ninjnl , if all i, j, l are different

Cov(Uij, Ulm) = 0, if all i, j, l, m are different

Terpstra-Magel test

Terpstra and Magel (2003) proposed a test statistic that does not focus on pairwise information. Instead,
they use the information present in the N∗ = n1 × n2 × ...× nk k-tuplets, where a k-tuplet includes
one observation from each treatment group. More specifically, the Terpstra–Magel (TM) test is based
on the following statistic:

TM =
n1

∑
i1=1

...
nk

∑
ik=1

I(X1i1 ≤ X2i2 ≤ ... ≤ Xkik
) (10)

where the indicator function is equal to one when X1i1 < Xkik
.

The statistic TM is approximately normally distributed under H0. The mean and variance of this

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 151

statistic are

E(TM) =
N∗

k!
and

V(TM) = N∗
(

1
k!

)(
1− 1

k!

)
+

k−1

∑
i=1

v2
i

where

v2
i = ∑

1≤l1<...<li≤k
N∗
[

k

∏
s=1

(ns − 1)I(s 6=l1)...I(s 6=li)

]  (2(k−li)
k−li

)

2k− i

i

∏
s=1

(
2(ls − ls−1 − 1)

ls − ls−1 − 1

)
− 1

(k!)2


where l0 = 0.

Ferdhiana-Terpstra-Magel test

Ferdhiana et al. (2008) proposed FTM test statistic can be viewed as a generalization of the TM test.

FTM =
n1

∑
i1=1

...
nk

∑
ik=1

τ(X1i1 , X2i2 , ..., Xkik
) (11)

where τ(X1i1 , X2i2 , ..., Xkik
) denotes the Kendall correlation coefficient based on (1, X1i1), (2, X2i2), ...,

(k, Xkik
).

Under H0, the statistic FTM is approximately normally distributed with zero mean, and its variance
is

V(FTM) =

[
2N∗√

3k(k− 1)

]2 [k−1

∑
r=1

k

∑
s=r+1

nr + ns + 1
nrns

+ 2
k−2

∑
r=1

1
nr

((
k
2

)
+

r2 − (2k− 1)r
2

)

− 2
k−2

∑
r=1

k−1

∑
s=r+1

k− s
ns

+ 2
k−2

∑
r=1

k−1

∑
s=r+1

k

∑
t=s+1

1
ni

]
.

KTP test

Terpstra et al. (2011) proposed the k-tuplet Terpstra-Page (KTP) test based on the statistic

KTP =
n1

∑
i1=1

...
nk

∑
ik=1

rs(X1i1 , X2i2 , ..., Xkik
) (12)

where rs(X1i1 , X2i2 , ..., Xkik
) denotes the Spearman rank correlation coefficient based on (1, X1i1),

(2, X2i2), ..., (k, Xkik
).

Under H0, the statistic KTP is approximately normally distributed, and its mean and variance are

E(KTP) = 0

, and

V(KTP) =
144(N∗)2

k2(k2 − 1)2 S,

where

S =
k−1

∑
i1=1

k

∑
i2=i1+1

[
(i2 − i1)

2(ni1 + ni2 + 1)
12ni1 ni2

]

+
k−2

∑
i1=1

k−1

∑
i2=i1+1

k

∑
i3=i2+1

[
(i2 − i1)(i3 − i1)

6ni1

+
(i3 − i2)(i1 − i2)

6ni2

+
(i1 − i3)(i2 − i3)

6ni3

]

In the KTP test, Spearman’s rank correlation coefficient rs is given by the following formula:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 152

rs = 1−
6

k
∑

i=1
d2

i

k(k2 − 1)

where di represents the difference between the rank given to the value of the variable for each item of
the particular data with yi. This formula is applied in cases when there are no tied observations. The
formula to use when there are tied observations is:

rs =

k
∑

i=1
(yi − ȳ)(xi − x̄)√

k
∑

i=1
(yi − ȳ)2

k
∑

i=1
(xi − x̄)2

where (y, x) = (1, X1i1), (2, X2i2), ..., (k, Xkik
) and xi is rank of Xi. Note that if all of xi values is equal,

then ∑(xi − x̄)2 is zero. This result is also similar for Kendall correlation coefficient. Therefore, FTM
and KTP tests cannot be applied to this type data. See Lehmann’s data used in the demonstration of
the npordtests package.

S test

Shan et al. (2014) proposed the new rank-based nonparametric test by incorporating the actual
differences as follows

S =
k−1

∑
i=1

k

∑
j=i+1

Dij (13)

where

Dij =
ni

∑
l=1

nj

∑
m=1

Zijlm, Zijlm = (Rjm − Ril)I(Xjm > Xil)

and Ril(Rjm) is the rank of observation Xil(Xjm) in the combined data.

Under H0, the statistic S has a normal distribution with the following mean and variance

E(S) =
N + 1

6

k−1

∑
i=1

k

∑
j=i+1

ninj

V(S) =
(

N2 + N
12

− (N + 1)2

36

) k−1

∑
i=1

k

∑
j=i+1

ninj

+ 2

k−1

∑
i=1

ni

(k
∑

j=i+1
nj

2

)
+

k

∑
i=2

ni

(i−1
∑

j=1
nj

2

)CovA + 2

k−2

∑
i=1

k−1

∑
j=i+1

k

∑
l=j+1

ninjnl

CovB

where CovA = 2N2+N−1
90 , and CovB = −7N2−11N−4

360 .

Gaur’s Gc test

Let (w1, w2, ..., wk−1) be suitably selected real positive constants. Gaur (2017) proposed the Gc statistic
to test H0 against the ordered alternatives,

Gc =
k−1

∑
g=1

wgVg,g+1 (14)

where

Vg,h =

[(
ng

c

)(
nh
c

)]−1

∑
0

φgh(Xgα1 , ..., Xgαc ; Xhβ1
, ..., Xhβc)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 153

for g < h; h = 1, 2..., k; ∑
0

is the sum over all combinations (α1, ..., αc) of c integers selected from

(1, ..., ng) and over all combinations (β1, ..., βc) of c integers selected from (1, ..., nh);

φgh(Xgα1 , ..., Xgαc ; Xhβ1
, ..., Xhβc) =


1 if max(Xgα1 , ..., Xgαc) ≤ min(Xhβ1

, ..., Xhβc)
−1 if max(Xhβ1

, ..., Xhβc) ≤ min(Xgα1 , ..., Xgαc)
0 otherwise

.

The distribution of Gaur’s statistic Gc converges to a normal distribution with zero mean under
H0, and the variance of this statistic are obtained as follows

V(Gc) = w>∑ w

where w> = (w1, w2, ..., wk−1) and ∑ = [σgh] is the variance-covariance matrix, such as:

σgh =



(
(c−1)!c!
(2c−1)!

)2 (1
λg

+ 1
λg+1

)
δc for g = h = 1, 2, ..., k− 1

−
(
(c−1)!c!
(2c−1)!

)2
δc

λg+1
for h = g + 1; g = 1, 2, ..., k− 2

−
(
(c−1)!c!
(2c−1)!

)2
δc
λg

for h = g− 1; g = 2, ..., k− 1

0 otherwise

where

δc = −1 +
4

4c− 1

2c−1

∑
i=c

2c−1

∑
j=c

(
2c− 1

i

)(
2c− 1

j

)(
4c− 2
i + j

)−1
.

It is recommended to use Gc tests for light-tailed and moderate-tailed distributions with c = 2,
whereas for heavy-tailed and long-tailed distributions with large values of c. The optimum weights
wg’s in the Gc test are

wg =
g(k− g)

2k
, g = 1, 2, ..., k− 1.

Demonstration of the npordtests package

The npordtests package includes thirteen tests and six datasets for ordered alternatives. In this section,
firstly, we introduce the datasets included in the package. Then, we demonstrate the usage of the
package by using two of these datasets. All the examples in this section should run if you type them in
exactly as printed, provided that you have the npordtests package not only installed but also loaded
into your current search path. This is done by entering

R> library(npordtests)

at the command prompt.

Datasets

Jonckheere’s data: jdata

This hypothetic data given by Jonckheere (1954) are used to test the hypothesis that the four samples
have come from the same population against the alternative that the populations are such that the
values from the samples I, II, III, IV are in an expected order of increasing value.

Lehmann’s data: lehmann

This dataset was used by Lehmann (1975) to assess if it is possible for a particular diagnostic test to be
successfully interpreted without psychological training. This dataset later became one of the classical
datasets used to investigate sequential alternatives (Beier and Buning, 1997). The data included 72
evaluators’ (21 staff members, 23 trainees and 28 undergraduate psychology majors) assessment scores
for the diagnostic test. If training and experience have any effects, the staff members could be expected
to perform the most accurately, the trainees next, and the undergraduates the least.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 154

Chicks’ weight data: chicks

These data are given by Desu and Raghavarao (2004) to examine the hypothesis that the chicks’ mean
weight goes up with the increase in the amount of protein. Eighteen chicks were randomly assigned to
three treatments with six chicks in each for balanced data. Treatment 1 had the diet with the lowest
level of protein; treatment 2 had the diet with a medium level of protein; and treatment 3 had the
highest level of protein. After six weeks of feeding, the values of weight gain were recorded. We
wanted to test if the mean weight gain increased with the amount of protein (Chang and Yen, 2011).

Hepatic vein waveform index data: hvwi

These data were collected by Pedersen et al. (2008) through doppler waveforms corresponding to 66
patients scheduled for a percutaneous liver needle biopsy. The waveforms were characterized using a
hepatic vein waveform index (HVWI), whereas the biopsy specimens were grouped according to the
degree of fibrosis. The hypothesis of interest was that the HVWI values would tend to decrease as the
degree of fibrosis increases (Terpstra et al., 2011).

Hypertension data: hypertension

These data presented by Dmitrienko et al. (2006) examine the effect of different drug doses on diastolic
blood pressure. The patients with hypertension were randomized into four groups with different dose
levels, 0, 10, 20, and 40 mg/day, where the group with 0 mg/day was the placebo group. The number
of the patients in each group were 17, 17, 18, and 16, respectively. The complete data can be found at
the Dmitrienko et al. (2006) or Shan et al. (2014).

Neuhauser’s data: neuhauser

These synthetic data are reported by Neuhäuser et al. (1998). The data consist of 4 groups with 10
observations in each.

In order to compare the distributions of groups for each dataset, the boxplots are given in Figure 1.
As can be seen from the figure, there is a ordered alternative pattern in all datasets.

Figure 1: Boxplots for the datasets. Each box plot gives median (the bold line that divides the box into
two parts), lower and upper quartiles (start and end points of the box on the vertical axis) and min
and max value (the horizontal lines outside the box). The outliers appear as the circles.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 155

Tests

Using the datasets which are named jdata and lehmann, demonstration of the tests are given below,
respectively.

Jonkheere-Terpstra test: JtTest(...)

The JtTest function in the npordtests package is used to perform the Jonkheere-Terpstra test.

R> data(jdata)
R> JtTest(Y~X,jdata,alpha=0.05,na.rm=TRUE,verbose=TRUE)

Test : Jonckheere-Terpstra Test
data : Y and X

Statistic = 71
Mean = 48
Variance = 114.6667
Z = 2.147876
Asymp. p-value = 0.0158618

Result : Null hypothesis is rejected.

Here, the JT statistic is calculated from the Equation (6). Also, the Mean and Variance are
expected value and variance of the JT statistic, respectively. Z is calculated from (JT− E(JT))/

√
V(JT).

p-value is the significance value for the JT test. Because this p-value is smaller than α = 0.05, the
hypothesis of the equality of locations against the ordered alternative is rejected.

alpha is the level of significance to assess the statistical difference. Default is set to alpha = 0.05.
na.rm is a logical value indicating whether NA values should be stripped before the computation
proceeds. Default is na.rm = TRUE. verbose is a logical for printing output to R console. Default is set
to verbose = TRUE. These arguments are available in the functions for ordered alternatives. The users
who would like to use the statistics in the output in their programs can use the following codes.

R> res<-JtTest(Y~X,jdata,alpha=0.05,na.rm=TRUE,verbose=FALSE)

R> res$statistic
[1] 71

R> res$mean
[1] 48

R> res$variance
[1] 114.6667

R> res$Z
[1] 2.147876

R> res$p.value
[1] 0.0158618

Here, the codes for how to obtain the statistics from the Jonckheere-Terpstra test output are given.
Since all ordered alternative tests return similar outputs, similar codes are not repeated in the other
tests. For all tests, the level of significance is taken as 0.05.

Beier and Buning’s Adaptive test: AtTest(...)

The AtTest function in the npordtests package is used to perform the Adaptive test. The LS, RS, ST,
WS and LT tests are also available as functions in the package.

R> LsTest(Y~X,jdata)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 156

Test : LS test
data : Y and X

Statistic = 68
Mean = 48
Variance = 141.3333
Z = 1.682316
Asymp. p-value = 0.04625375

Result : Null hypothesis is rejected.

Here, the Statistic is calculated from the Equation (7) using the score aLS(r). Also, the Mean and
Variance are the expected value and variance of the this statistic, respectively. Z is calculated from
(LS− E(LS))/

√
V(LS). p-value is the significance value for the LS test. Since this p-value is smaller

than α = 0.05, the null hypothesis against the ordered alternative is rejected.

R> RsTest(Y~X,jdata)

Test : RS test
data : Y and X

Statistic = -27
Mean = -48
Variance = 141.3333
Z = 1.766432
Asymp. p-value = 0.03866168

Result : Null hypothesis is rejected.

In the output, similar to LsTest, the Statistic is calculated from the Equation (7) using the score
aRS(r). Z is calculated from (RS− E(RS))/

√
V(RS). p-value is the significance value for the RS test.

According to these results, because the p-value is smaller than α = 0.05, the hypothesis of the equality
of locations against the ordered alternative is rejected.

R> StTest(Y~X,jdata)

Test : ST test
data : Y and X

Statistic = 17.25
Mean = 0
Variance = 46
Z = 2.543374
Asymp. p-value = 0.005489386

Result : Null hypothesis is rejected.

In the output, the Statistic is calculated from the Equation (7) using the score aST(r). Z is
calculated from (ST − E(ST))/

√
V(ST). p-value is the significance value for the ST test. Here, the

Statistic is calculated value of the test statistic. The p-value for the TM test is 0.005489386. Thus, we
can conclude that the null hypothesis of the equality of locations is rejected under setting α = 0.05.

R> WsTest(Y~X,jdata)

Test : WS test
data : Y and X

Statistic = 245

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 157

Mean = 204
Variance = 453.3333
Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.

Here, the WS statistic is calculated from the Equation (7) using the score aWS(r). Z is calculated
from (WS− E(WS))/

√
V(WS). p-value is the significance value for the WS test. Because this p-value

is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered alternative is
rejected.

R> LtTest(Y~X,jdata)

Test : LT test
data : Y and X

Statistic = 27.5
Mean = 0
Variance = 322.6667
Z = 1.530931
Asymp. p-value = 0.06289321

Result : Null hypothesis is not rejected.

The LT statistic is calculated from the Equation (7) using the score aLT(r). Z is calculated from
(LT − E(LT))/

√
V(LT). p-value is the significance value for the LT test. According to these results,

because the p-value is not smaller than α = 0.05, the hypothesis of the equality of locations (null
hypothesis) is not rejected.

R> AtTest(Y~X,jdata)

Test : Adaptive Test
data : Y and X

Statistic = 17.25
Mean = 0
Variance = 46
Z = 2.543374
Asymp. p-value = 0.005489386

Result : Null hypothesis is rejected.

Here, the Statistic is calculated from the Equation (8). Note that the AT Statistic is equal to
the ST Statistic for this example. Since this p-value is smaller than α = 0.05, the null hypothesis
against the ordered alternative is rejected.

Modified Jonkheere-Terpstra test: MjtTest(...)

The MjtTest function in the npordtests package is used to perform the MJT test.

R> MjtTest(Y~X,jdata)

Test : Modified Jonckheere-Terpstra Test
data : Y and X

Statistic = 121
Mean = 80
Variance = 453.3333

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 158

Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.

Here, the Statistic is calculated from the Equation (9). According to these results, because the
p-value is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered
alternative is rejected.

Terpstra-Magel test: TmTest(...)

The TmTest function in the npordtests package is used to perform the TM test.

R> TmTest(Y~X,jdata)

Test : Terpstra-Magel Test
data : Values and Group

Statistic = 78
Mean = 10.66667
Variance = 151.327
Z = 5.473586
Asymp. p-value = 2.205097e-08

Result : Null hypothesis is rejected.

In the output, the Statistic is calculated from the Equation (10). Z is calculated from (TM −
E(TM))/

√
V(TM). p-value is the significance value for the TM test. The p-value for the TM test

is 0.00000002205097. Thus, we can conclude that the null hypothesis of the equality of locations is
rejected under setting α = 0.05.

Ferdhiana-Terpstra-Magel test: FtmTest(...)

The FtmTest function in the npordtests package is used to perform the FTM test.

R> FtmTest(Y~X,jdata)

Test : Ferdhiana, Terpstra and Magel Test
data : Y and X

Statistic = 122.6667
Mean = 0
Variance = 3261.63
Z = 2.147876
Asymp. p-value = 0.0158618

Result : Null hypothesis is rejected.

Here, the Statistic is calculated from the Equation (11). Z is calculated from FTM/
√

V(FTM).
p-value is the significance value for the FTM test. Because this p-value is smaller than α = 0.05, the
hypothesis of the equality of locations against the ordered alternative is rejected.

KTP test: KtpTest(...)

The KtpTest function in the npordtests package is used to perform the KTP test.

R> KtpTest(Y~X,jdata)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 159

Test : KTP Test
data : Y and X

Statistic = 131.2
Mean = 0
Variance = 4642.133
Z = 1.92564
Asymp. p-value = 0.02707469

Result : Null hypothesis is rejected.

Here, the Statistic is calculated from the Equation (12). Z is calculated from KTP/
√

V(KTP).
p-value is the significance value for the KTP test. Since this p-value is smaller than α = 0.05, the null
hypothesis against the ordered alternative is rejected.

S test: SsTest(...)

The SsTest function in the npordtests package is used to perform the S test.

R> SsTest(Y~X,jdata)

Test : Shan's S test
data : Y and X

Statistic = 436
Mean = 272
Variance = 1973.511
Z = 3.69168
Asymp. p-value = 0.0001113888

Result : Null hypothesis is rejected.

In the output, the Statistic is calculated from the Equation (13). Z is calculated from (S −
E(S))/

√
V(S). p-value is the significance value for the S test. According to these results, because

the p-value is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered
alternative is rejected.

Gaur’s Gc test: GcTest(...)

The GcTest function in the npordtests package is used to perform the Gaur’s Gc test.

R> GcTest(Y~X,jdata)

Test : Gaur's Gc Test
data : Values and Group

Statistic = 0.375
Mean = 0
Variance = 0.06746032
Z = 1.4438
Asymp. p-value = 0.0743976

Result : Null hypothesis is not rejected.

Here, the Statistic is calculated from the Equation (14). Z is calculated from Gc/
√

V(Gc).
p-value is the significance value for the Gc test. Here, the Statistic is calculated value of the test
statistic. The p-value for the Gc test is 0.0743976. Thus, we can conclude that the null hypothesis of
the equality of locations is not rejected under setting α = 0.05.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 160

Jonkheere-Terpstra test: JtTest(...)

The JtTest function in the npordtests package is used to perform the JT test.

R> data(lehmann)
R> JtTest(Values~Group,lehmann)

Test : Jonckheere-Terpstra Test
data : Values and Group

Statistic = 1159
Mean = 857.5
Variance = 9305.917
Z = 3.125415
Asymp. p-value = 0.0008877709

Result : Null hypothesis is rejected.

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
this test. The p-value for the JT test is 0.0008877709. Thus, we can conclude that the null hypothesis of
the equality of locations is rejected under setting α = 0.05.

Beier and Buning’s Adaptive test: AtTest(...)

The AtTest function in the npordtests package is used to perform the AT test.

R> AtTest(Values~Group,lehmann)

Test : Adaptive Test
data : Values and Group

Statistic = 851
Mean = 583.1944
Variance = 6570.726
Z = 3.303794
Asymp. p-value = 0.0004769302

Result : Null hypothesis is rejected.

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
this test. The p-value for the AT test is 0.0004769302. Because this p-value is smaller than α = 0.05,
the hypothesis of the equality of locations against the ordered alternative is rejected.

Modified Jonkheere-Terpstra test: MjtTest(...)

The MjtTest function in the npordtests package is used to perform the MJT test.

R> MjtTest(Values~Group,lehmann)

Test : Modified Jonckheere-Terpstra Test
data : Values and Group

Statistic = 1610
Mean = 1151.5
Variance = 20771.92
Z = 3.181274
Asymp. p-value = 0.0007331448

Result : Null hypothesis is rejected.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 161

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the MJT test. The p-value for the MJT test is 0.0007331448. Since this p-value is smaller than α = 0.05,
the null hypothesis against the ordered alternative is rejected.

Terpstra-Magel test: TmTest(...)

The TmTest function in the npordtests package is used to perform the TM test.

R> TmTest(Values~Group,lehmann)

Test : Terpstra-Magel Test
data : Values and Group

Statistic = 5173
Mean = 2254
Variance = 405043.8
Z = 4.586518
Asymp. p-value = 2.253498e-06

Result : Null hypothesis is rejected.

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for this
test. The p-value for the TM test is 0.000002253498. Thus, we can conclude that the null hypothesis of
the equality of locations is rejected under setting α = 0.05.

Ferdhiana-Terpstra-Magel test: FtmTest(...)

The FtmTest function in the npordtests package is used to perform the FTM test.

R> FtmTest(Values~Group,lehmann)

Test : Ferdhiana, Terpstra and Magel Test
data : Values and Group

Statistic = NA
Mean = 0
Variance = 2294071
Z = NA
Asymp. p-value = NA

Error in if (p-value > alpha) { : missing value where TRUE/FALSE needed
In addition: Warning message:
In cor(t(Xmat), Ymat, method = "kendall") : the standard deviation is zero

As seen in the output, the error standard deviation is zero is encountered. This error occurs
because the values of 68.5, 69.0, 70.5, 71.5, 73.0, 74.0, 74.5 are included in all groups.

KTP test: KtpTest(...)

The KtpTest function in the npordtests package is used to perform the KTP test.

R> KtpTest(Values~Group,lehmann)

Test : KTP Test
data : Values and Group

Statistic = NA
Mean = 0
Variance = 2897517

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 162

Z = NA
Asymp. p-value = NA

Error in if (p-value > alpha) { : missing value where TRUE/FALSE needed
In addition: Warning message:
In cor(t(Xmat), Ymat, method = "spearman") : the standard deviation is zero

In the output, similar to FtmTest, the error standard deviation is zero is encountered.

S test: SsTest(...)

The SsTest function in the npordtests package is used to perform the S test.

R> SsTest(Values~Group,lehmann)

Test : Shan's S test
data : Values and Group

Statistic = 32234
Mean = 20865.83
Variance = 6929623
Z = 4.318527
Asymp. p-value = 7.853701e-06

Result : Null hypothesis is rejected.

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the S test. The p-value for the S test is 0.000007853701. According to these results, because the p-value
is smaller than α = 0.05, the hypothesis of the equality of locations against the ordered alternative is
rejected.

Gaur’s Gc test: GcTest(...)

The GcTest function in the npordtests package is used to perform the Gaur’s Gc test.

R> GcTest(Values~Group,lehmann)

Test : Gaur's Gc Test
data : Values and Group

Statistic = 0.1506891
Mean = 0
Variance = 0.03597884
Z = 0.7944348
Asymp. p-value = 0.2134712

Result : Null hypothesis is not rejected.

Here, the Statistic is calculated value of the test statistic. p-value is the significance value for
the Gc test. The p-value for the Gc test is 0.2134712. Because this p-value is not smaller than α = 0.05,
the hypothesis of the equality of locations against the ordered alternative is not rejected.

Simulation study

In this section, we compared the JT, AT, Modified JT, TM, FTM, KTP, S and Gaur’s Gc tests in terms of
power and Type I error under some selected scenarios. Since the AT test includes the LS, RS, ST, LT,
WS tests, these tests do not need to be compared. The number of iterations and nominal type I error
are 10000 and .05, respectively. The five design factors manipulated in this simulation study are:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 163

• number of samples (k = 3 and 4),

• average number of observations per group (n = 5, 10, 20, 30, and 50),

• sample size patterns (progressive, equal, and one extreme),

• distribution shapes (symmetric, left skewed, and right skewed),

• ordered alternatives shapes (linear, convex, and concave).

The sample size patterns in this simulation study are shown in Table 1. We used log -F(v1, v2)
distributions to generate the random variable Xij = θi + εij, where εij is the iid log-F distribution, and
θi is the location parameter; which is symmetric when v1 = v2, right skewed when v1 > v2, and left
skewed when v1 < v2 (Terpstra et al., 2011).

Table 1: Simulation study sample size patterns. k is number of samples and n is average number of
observations per group. The values in the table are sample sizes. For example, in case of k = 3, n = 5
and progressive pattern, the sample sizes of groups are 4, 5 and 6, respectively.

Sample size patterns
Progressive Equal One extreme

k = 3
1 4 9 19 29 49 5 10 20 30 50 2 4 8 12 20
2 5 10 20 30 50 5 10 20 30 50 2 4 8 12 20
3 6 11 21 31 51 5 10 20 30 50 11 22 44 66 110

Average n 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50

k = 4
1 2 7 14 21 35 5 10 20 30 50 3 6 12 18 30
2 4 9 18 27 45 5 10 20 30 50 3 6 12 18 30
3 6 11 22 33 55 5 10 20 30 50 3 6 12 18 30
4 8 13 26 39 65 5 10 20 30 50 11 22 44 66 110

Average n 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50

In order to evaluate the performances of the tests, we consider the cases of (v1, v2) = (5, 5), (1, 10)
and (10, 1) for the symmetric, left skewed and right skewed populations, respectively.

While the location parameters of populations are equal, simulated type I error rates are calculated.
Otherwise, in case the location parameters of the populations are not equal, the simulated powers of
the tests are computed. In order to assess the robustness of the tests in terms of Type I error rate, we
used the robustness criterion recommended by Bradley (1978). This liberal criterion for the robustness
is set at ±.5α around the nominal alpha level. For instance, using the alpha level of .05, a test is
considered robust when the simulated Type I error rates fall between .025 and .075.

Results

Figure 2 presents a set of boxplots based on the simulated Type I error rates for all scenarios considered
while the nominal alpha level is .05. As shown in Figure 2, although all of the tests ensure the Bradley’s
liberal criterion, the JT, MJT, and FTM tests are the three best performing approaches that controlled
nominal Type I error in all simulation scenarios. On the other hand, the TM test has a wider range
than the others for the simulated type I error rates.

The simulated power values of the tests for the simulation scenarios above are given in Table 2-4.
The results in these tables can be interpreted as follows:

• As seen in Table 2, when the data is generated from the symmetric distribution (log -F(5, 5)),
the most powerful test changes according to the shape of ordered alternative. When the shape
of ordered alternative is linear, the MJT test are more powerful test than the other tests for all
sample size patterns. On the other hand, when the shape of ordered alternative is convex, the S
test has the highest power among all tests considered for all sample size patterns. Beside these,
the simulated power values of KTP test for ordered alternative with concave shape are higher
than those of the other tests when sample size patterns are progressive or one extreme. But, the
S test is better than the other tests in terms of power when the sample size pattern is equal. On
the other hand, when the average sample size for all distributions was quite large such as 50,
the simulated power values for all tests were found to be quite close to 1.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 164

Table 2: Simulated power values (1− β) of the test for log-F(5,5) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .422 .706 .932 .979 1.00 .424 .701 .930 .980 1.00 .364 .586 .846 .945 .992
AT .372 .666 .922 .977 .998 .373 .661 .917 .967 1.00 .264 .549 .838 .952 .992
MJT .442 .709 .934 .993 1.00 .449 .722 .930 .984 1.00 .383 .606 .872 .999 1.00
TM .431 .665 .904 .948 .991 .434 .678 .907 .950 .994 .348 .512 .751 .888 .972
FTM .431 .696 .933 .978 .999 .415 .700 .929 .974 .997 .316 .542 .816 .979 .988
KTP .435 .704 .934 .978 .999 .436 .715 .930 .971 .996 .339 .552 .823 .900 .990
S .440 .702 .926 .990 1.00 .448 .699 .926 .967 1.00 .375 .595 .847 .973 .995
Gc .359 .674 .915 .924 .990 .388 .656 .914 .958 .990 .233 .439 .757 .841 .902

4 JT .672 .960 .999 1.00 1.00 .766 .963 .999 1.00 1.00 .769 .962 .999 1.00 1.00
AT .616 .939 .999 1.00 1.00 .708 .952 .999 1.00 1.00 .700 .953 .999 1.00 1.00
MJT .678 .961 .999 1.00 1.00 .784 .978 .999 1.00 1.00 .782 .967 .999 1.00 1.00
TM .597 .894 .993 .999 1.00 .684 .919 .999 1.00 1.00 .586 .815 .999 1.00 1.00
FTM .621 .955 .999 1.00 1.00 .778 .972 .999 1.00 1.00 .719 .924 .999 1.00 1.00
KTP .592 .958 .999 1.00 1.00 .775 .965 .999 1.00 1.00 .731 .951 .999 1.00 1.00
S .667 .951 .999 1.00 1.00 .763 .961 .999 1.00 1.00 .768 .961 .999 1.00 1.00
Gc .485 .916 .999 1.00 1.00 .630 .948 .999 1.00 1.00 .455 .869 .992 .999 1.00

ordered alternatives shape=convex
3 JT .477 .716 .937 .988 1.00 .405 .682 .920 .977 .999 .486 .756 .955 .985 .999

AT .387 .674 .925 .981 1.00 .365 .662 .912 .980 .999 .311 .659 .920 .977 .998
MJT .476 .715 .936 .990 1.00 .411 .705 .926 .990 .999 .448 .708 .932 .984 .999
TM .388 .577 .827 .972 1.00 .395 .599 .813 .967 .984 .332 .448 .661 .969 .988
FTM .391 .672 .922 .980 1.00 .392 .679 .907 .978 .998 .284 .509 .789 .970 .995
KTP .421 .686 .921 .979 1.00 .410 .698 .930 .978 .992 .316 .530 .813 .972 .990
S .510 .742 .943 .992 1.00 .439 .716 .932 .992 1.00 .519 .765 .958 .988 .999
Gc .348 .648 .903 .974 .999 .371 .644 .905 .975 .992 .189 .440 .734 .945 .989

4 JT .586 .771 .966 .999 1.00 .389 .623 .887 .996 1.00 .655 .894 .994 1.00 1.00
AT .468 .702 .938 .997 1.00 .360 .627 .887 .996 1.00 .527 .829 .980 1.00 1.00
MJT .525 .732 .950 .999 1.00 .399 .635 .887 .997 1.00 .585 .847 .986 1.00 1.00
TM .328 .476 .871 .989 1.00 .329 .473 .812 .990 1.00 .284 .421 .798 .985 1.00
FTM .286 .602 .940 .999 1.00 .380 .620 .893 .997 1.00 .333 .569 .914 1.00 1.00
KTP .279 .620 .941 .999 1.00 .384 .638 .880 .998 1.00 .320 .594 .838 .990 1.00
S .595 .780 .971 1.00 1.00 .401 .642 .899 .999 1.00 .659 .899 .995 1.00 1.00
Gc .222 .519 .827 .980 1.00 .309 .597 .833 .977 1.00 .219 .487 .765 .952 1.00

ordered alternatives shape=concave
3 JT .341 .633 .914 .984 1.00 .386 .688 .922 .992 1.00 .227 .363 .591 .704 .812

AT .305 .612 .897 .978 .998 .350 .642 .905 .987 1.00 .200 .418 .694 .816 .929
MJT .384 .661 .923 .993 1.00 .421 .689 .926 .994 1.00 .256 .453 .729 .837 .943
TM .381 .605 .839 .919 .952 .375 .595 .850 .919 1.00 .270 .426 .691 .801 .942
FTM .399 .678 .930 .998 1.00 .380 .679 .919 .999 1.00 .269 .515 .805 .925 .999
KTP .422 .683 .931 .999 1.00 .413 .690 .927 .999 1.00 .302 .538 .819 .931 .999
S .371 .663 .920 .990 1.00 .453 .714 .933 1.00 1.00 .245 .392 .639 .738 .846
Gc .361 .633 .904 .974 .995 .378 .626 .912 .980 1.00 .234 .433 .755 .863 .983

4 JT .154 .449 .704 .782 .815 .376 .630 .893 .784 .816 .252 .401 .652 .583 .715
AT .158 .468 .755 .835 .862 .342 .604 .887 .842 .862 .250 .459 .757 .752 .872
MJT .176 .511 .777 .858 .878 .391 .643 .895 .860 .878 .300 .484 .766 .771 .889
TM .290 .484 .720 .810 .830 .332 .468 .821 .811 .842 .275 .405 .744 .774 .905
FTM .278 .611 .814 .884 .904 .376 .636 .877 .883 .934 .339 .575 .842 .888 .998
KTP .296 .619 .882 .952 .992 .388 .639 .902 .950 1.00 .359 .577 .860 .948 .999
S .145 .452 .719 .789 .809 .395 .658 .903 .961 1.00 .247 .417 .666 .614 .724
Gc .241 .535 .840 .912 .942 .363 .589 .838 .921 .962 .245 .496 .767 .890 .999

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 165

Table 3: Simulated power values (1− β) of the test for log-F(1,10) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .179 .309 .495 .718 .941 .174 .296 .492 .688 .884 .145 .230 .383 .537 .694
AT .181 .318 .544 .815 1.00 .203 .316 .535 .765 .995 .146 .230 .411 .592 .813
MJT .198 .307 .496 .723 .950 .187 .304 .494 .684 .882 .145 .243 .398 .553 .708
TM .214 .319 .474 .684 .894 .217 .322 .457 .592 .727 .177 .250 .366 .482 .598
FTM .187 .313 .484 .689 .894 .185 .295 .475 .655 .835 .137 .209 .369 .529 .689
KTP .193 .303 .499 .734 .969 .197 .314 .500 .686 .872 .134 .220 .371 .522 .673
S .188 .303 .481 .695 .908 .199 .297 .483 .669 .855 .146 .225 .367 .509 .651
Gc .156 .284 .451 .651 .852 .178 .267 .467 .667 .867 .112 .188 .324 .460 .596

4 JT .293 .538 .801 1.00 1.00 .333 .549 .816 1.00 1.00 .347 .549 .828 1.00 1.00
AT .282 .578 .851 1.00 1.00 .353 .599 .863 1.00 1.00 .312 .596 .875 1.00 1.00
MJT .285 .545 .802 1.00 1.00 .346 .560 .816 1.00 1.00 .328 .569 .836 1.00 1.00
TM .302 .473 .761 1.00 1.00 .328 .491 .742 .993 1.00 .284 .444 .661 .878 1.00
FTM .231 .533 .772 1.00 1.00 .335 .562 .720 .878 1.00 .305 .522 .669 .816 .963
KTP .247 .530 .770 1.00 1.00 .359 .553 .815 1.00 1.00 .302 .517 .801 1.00 1.00
S .267 .510 .769 1.00 1.00 .338 .534 .801 1.00 1.00 .327 .521 .774 1.00 1.00
Gc .173 .446 .710 .994 1.00 .298 .493 .749 1.00 1.00 .204 .424 .670 .916 1.00

ordered alternatives shape=convex
3 JT .212 .323 .500 .697 .910 .181 .309 .478 .649 .826 .208 .303 .540 .779 1.00

AT .227 .352 .566 .794 1.00 .220 .342 .559 .790 1.00 .215 .316 .543 .782 1.00
MJT .209 .317 .499 .687 .893 .190 .306 .489 .674 .877 .180 .292 .493 .704 .927
TM .220 .330 .502 .676 .866 .219 .330 .506 .688 .890 .199 .265 .420 .577 .738
FTM .191 .295 .485 .685 .899 .176 .298 .495 .702 .927 .144 .220 .392 .570 .766
KTP .187 .299 .481 .673 .881 .190 .316 .486 .668 .858 .142 .213 .364 .521 .688
S .217 .324 .501 .680 .863 .204 .305 .484 .681 .898 .206 .313 .490 .687 .902
Gc .164 .288 .442 .602 .768 .186 .280 .462 .660 .874 .117 .192 .322 .462 .620

4 JT .264 .349 .555 .769 .989 .186 .283 .450 .631 .824 .275 .440 .701 .978 1.00
AT .244 .371 .614 .861 1.00 .209 .324 .521 .738 .957 .244 .442 .705 .980 1.00
MJT .223 .331 .521 .713 .911 .184 .283 .447 .629 .827 .237 .389 .641 .897 1.00
TM .224 .287 .560 .839 1.00 .203 .282 .468 .656 .860 .191 .258 .567 .894 1.00
FTM .140 .257 .546 .841 1.00 .180 .277 .457 .647 .851 .156 .258 .544 .848 1.00
KTP .142 .285 .509 .749 .993 .193 .300 .468 .644 .824 .160 .240 .412 .592 .776
S .251 .335 .538 .753 .984 .182 .275 .439 .609 .795 .259 .407 .658 .919 1.00
Gc .127 .226 .372 .522 .686 .167 .289 .369 .457 .551 .116 .209 .377 .559 .747

ordered alternatives shape=concave
3 JT .150 .274 .467 .670 .891 .165 .285 .481 .679 .887 .118 .163 .245 .331 .429

AT .140 .270 .485 .716 .955 .179 .294 .511 .736 .977 .135 .149 .284 .437 .596
MJT .172 .278 .470 .678 .904 .178 .294 .485 .696 .909 .119 .182 .296 .422 .552
TM .181 .256 .375 .508 .655 .194 .256 .386 .526 .678 .154 .190 .293 .404 .525
FTM .166 .285 .476 .679 .896 .176 .288 .492 .712 .948 .119 .203 .360 .527 .710
KTP .175 .288 .490 .722 .966 .179 .315 .516 .743 .982 .118 .212 .369 .542 .725
S .162 .268 .461 .666 .889 .190 .300 .484 .688 .900 .127 .157 .245 .343 .457
Gc .163 .274 .436 .610 .796 .141 .242 .406 .572 .752 .130 .167 .294 .433 .582

4 JT .093 .195 .305 .433 .567 .167 .269 .445 .641 .839 .123 .181 .286 .405 .528
AT .082 .205 .332 .479 .636 .160 .271 .459 .649 .843 .105 .190 .325 .462 .617
MJT .101 .208 .350 .504 .668 .172 .277 .448 .633 .830 .126 .201 .337 .485 .647
TM .166 .197 .288 .389 .508 .175 .181 .351 .529 .709 .153 .177 .330 .495 .668
FTM .119 .247 .356 .473 .598 .162 .248 .458 .686 .930 .139 .219 .391 .583 .791
KTP .117 .279 .452 .639 .836 .169 .298 .462 .696 .932 .141 .225 .396 .585 .794
S .087 .178 .294 .428 .576 .168 .255 .433 .617 .807 .125 .173 .266 .371 .490
Gc .114 .203 .333 .473 .619 .124 .260 .381 .514 .659 .107 .216 .311 .426 .547

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 166

Table 4: Simulated power values (1− β) of the test for log-F(10,1) distribution.

Sample size pattern
Progressive Equal One Extreme
Average n Average n Average n

k Test 5 10 20 30 50 5 10 20 30 50 5 10 20 30 50
ordered alternatives shape=linear

3 JT .190 .310 .491 .682 .893 .179 .298 .491 .690 .909 .180 .256 .404 .566 .742
AT .182 .315 .526 .747 .976 .203 .323 .527 .741 .967 .204 .302 .473 .654 .847
MJT .208 .304 .490 .690 .896 .191 .318 .491 .676 .863 .176 .266 .415 .574 .753
TM .215 .293 .465 .645 .845 .221 .298 .438 .590 .750 .213 .251 .350 .455 .564
FTM .187 .280 .482 .700 .924 .186 .290 .463 .642 .827 .158 .242 .390 .540 .698
KTP .184 .304 .484 .682 .888 .185 .305 .493 .689 .897 .178 .249 .393 .553 .721
S .199 .305 .477 .663 .863 .195 .304 .487 .688 .907 .208 .291 .433 .593 .773
Gc .153 .279 .454 .649 .856 .168 .263 .458 .655 .862 .127 .195 .324 .461 .614

4 JT .305 .537 .796 1.00 1.00 .340 .554 .819 1.00 1.00 .350 .555 .806 1.00 1.00
AT .319 .570 .834 1.00 1.00 .344 .581 .851 1.00 1.00 .379 .594 .848 1.00 1.00
MJT .304 .544 .801 1.00 1.00 .342 .550 .819 1.00 1.00 .360 .558 .816 1.00 1.00
TM .313 .485 .800 1.00 1.00 .319 .478 .812 1.00 1.00 .297 .428 .788 1.00 1.00
FTM .262 .535 .812 1.00 1.00 .337 .557 .822 1.00 1.00 .323 .510 .797 1.00 1.00
KTP .269 .505 .785 1.00 1.00 .339 .566 .835 1.00 1.00 .334 .511 .782 1.00 1.00
S .295 .518 .804 1.00 1.00 .332 .532 .805 1.00 1.00 .364 .576 .823 1.00 1.00
Gc .193 .442 .697 .960 1.00 .266 .533 .760 .999 1.00 .207 .430 .670 .916 1.00

ordered alternatives shape=convex
3 JT .206 .310 .505 .714 .933 .167 .286 .474 .670 .880 .232 .337 .533 .741 .963

AT .176 .307 .510 .757 1.00 .175 .289 .501 .725 .953 .228 .349 .530 .729 .948
MJT .210 .310 .497 .696 .913 .177 .302 .487 .690 .895 .214 .320 .482 .646 .816
TM .182 .235 .406 .587 .788 .186 .271 .394 .527 .678 .193 .216 .300 .396 .510
FTM .174 .253 .503 .723 .956 .167 .304 .499 .708 .935 .162 .228 .354 .492 .646
KTP .178 .297 .481 .673 .873 .174 .303 .484 .683 .890 .175 .245 .379 .533 .695
S .219 .320 .501 .692 .897 .189 .311 .484 .661 .852 .261 .381 .573 .767 .973
Gc .135 .263 .443 .629 .821 .154 .253 .446 .657 .882 .113 .187 .315 .463 .621

4 JT .254 .344 .566 .806 1.00 .161 .260 .447 .648 .855 .284 .455 .697 .941 1.00
AT .227 .326 .546 .782 1.00 .156 .262 .451 .642 .837 .263 .425 .670 .929 1.00
MJT .221 .317 .522 .747 .992 .171 .276 .452 .662 .882 .247 .397 .626 .857 1.00
TM .198 .208 .540 .892 1.00 .164 .211 .365 .521 .679 .158 .202 .324 .464 .620
FTM .149 .280 .556 .834 1.00 .172 .272 .444 .636 .842 .169 .259 .432 .617 .818
KTP .155 .250 .515 .800 1.00 .195 .268 .450 .652 .870 .167 .279 .462 .649 .850
S .257 .354 .572 .898 1.00 .162 .257 .437 .629 .841 .304 .479 .728 .995 1.00
Gc .109 .213 .331 .461 .601 .145 .242 .383 .526 .675 .113 .226 .332 .452 .580

ordered alternatives shape=concave
3 JT .165 .286 .467 .654 .857 .179 .299 .485 .675 .877 .139 .178 .265 .354 .445

AT .179 .316 .505 .696 .903 .216 .331 .524 .737 .952 .176 .249 .375 .521 .673
MJT .192 .286 .475 .670 .883 .184 .306 .480 .670 .862 .153 .218 .329 .458 .605
TM .226 .341 .508 .700 .916 .223 .339 .528 .741 .960 .187 .265 .398 .593 .782
FTM .196 .306 .474 .662 .868 .180 .300 .498 .710 .930 .160 .211 .385 .573 .771
KTP .194 .313 .486 .663 .842 .184 .310 .471 .644 .825 .183 .250 .393 .548 .707
S .177 .290 .477 .674 .877 .204 .306 .486 .682 .894 .157 .208 .304 .412 .532
Gc .150 .288 .453 .638 .831 .162 .272 .420 .588 .760 .152 .181 .353 .541 .731

4 JT .104 .213 .324 .447 .576 .180 .280 .456 .638 .822 .138 .191 .295 .405 .535
AT .131 .257 .416 .589 .778 .188 .318 .480 .644 .810 .167 .263 .406 .561 .720
MJT .117 .232 .365 .518 .679 .179 .281 .455 .637 .839 .156 .232 .356 .500 .662
TM .208 .280 .433 .602 .779 .210 .332 .491 .652 .855 .186 .287 .441 .613 .795
FTM .160 .276 .425 .576 .737 .181 .271 .445 .635 .841 .171 .269 .410 .561 .724
KTP .160 .271 .426 .585 .746 .192 .301 .466 .641 .826 .172 .283 .432 .601 .778
S .103 .207 .322 .455 .600 .184 .273 .440 .609 .798 .140 .200 .302 .424 .554
Gc .144 .246 .345 .446 .557 .174 .289 .398 .523 .654 .141 .213 .329 .455 .583

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 167

Figure 2: Distributions of simulated Type I error rates across all simulation scenarios when nominal
alpha is .05. Each box plot gives median (the bold line that divides the box into two parts), lower
and upper quartiles (start and end points of the box on the vertical axis) and min and max value (the
horizontal lines outside the box). The outliers appear as the circles.

• For the data generated from the log -F(1, 10) distribution which is a skewed to the left, when the
shape of ordered alternative is linear, and average sample size is 5 or 10, the TM test for k = 3
gives better results, however, the AT test has the highest powers among the whole tests when
average sample size is 20, 30, and 50. On the other hand, when k = 4 and average sample size is
10, the AT test has the highest powers among the whole tests. For the data generated from this
distribution, the AT test, generally, is the most powerful test for ordered alternative with convex
shape as seen in Table 3. For the data generated from the log -F(1, 10) distribution which is a
skewed to the left, the TM test has the highest powers among the whole tests when the shape
of ordered alternative is concave and average sample size is 5, but the KTP test for ordered
alternative with concave shape is the most powerful among the whole tests when average
sample size is 10, 20, 30, and 50. On the other hand, when the average sample size increased in
all scenarios considered, the power values of all tests increased as expected.

• When the data is generated from the log -F(10, 1) distribution which is a skewed to the right,
Table 4 shows that the AT test for ordered alternatives with linear shape, generally, gives better
results. On the other hand, when average sample size is 5 and k = 3 the TM test for this
situation is the most powerful test. As seen in Table 4, when the shape of ordered alternative is
a convex, it is observed that the S test generally yields the highest power values. In addition,
while the sample size patterns are progressive and equal, and average sample size is 20, 30, and
50, the power values of the AT test for this situation are greater than those of the others. By the
examination of the results in Table 6, when ordered alternative has a concave shape, it is seen
that the TM test is the most powerful test among the whole tests.

Table 5 gives decision rules indicating which test is more appropriate for which design.

When the ordered alternative has a linear shape and the distribution is symmetric, the MJT test
should be preferred. However, when the ordered alternative has a linear shape and the distribution is
skewed to left and average sample size is 5 or 10, it can be stated that the TM test has a more significant
power advantage than the others. On the other hand, average sample size is 20, 30, or 50, it can be said
that the AT test has a more significant power advantage than the others.

On the other hand, when the ordered alternative has a convex shape, the AT test is recommended
for the distributions skewed to left. However, if these distributions are symmetric, the S test is
proposed. Besides this, if the distributions are skewed to right and the sample size pattern is equal,
then the MJT test is recommended. Further, if the distributions are skewed to right and the sample
size pattern is progressive or one extreme, then S test is used.

When the ordered alternative has a concave shape and the sample size pattern is equal, then the
S test is used for symmetric distribution. In addition, when the ordered alternative has a concave
shape and the sample size pattern is progressive or one extreme, then the KTP test is recommended for
symmetric distribution. Moreover, if the distributions are skewed to left and the sample size is 5, TM
test is recommended, but in the case of 10, 20, 30, 50 for the sample size, the KTP test is recommended.
Finally, if the distributions are skewed to right, the TM test is recommended.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 168

Table 5: The rules based on the simulation results for choice the test. For example, when the ordered
alternative has a linear shape and the distribution is symmetric, the MJT test should be preferred.

Alternative Distribution Sample Average
hypothesis shape size pattern sample size Test
Linear symmetric - - MJT

skewed to left - 5, 10 TM
skewed to left - 20, 30, 50 AT
skewed to right - - AT

Convex symmetric - - S
skewed to left - - AT
skewed to right - - S

Concave symmetric Equal - S
symmetric Progressive or One Extreme - KTP
skewed to left - 5 TM
skewed to left - 10, 20, 30, 50 KTP
skewed to right - TM

Summary

Tests for ordered alternative are the most frequently used nonparametric methods in a wide range
of statistical and medical applications. For example, the evaluation of preclinical studies, clinical
dose-finding trials, typical toxicity studies, education studies, agricultural studies and etc. We present
the npordtests package to test the equality hypothesis of the locations against ordered alternative.

In this paper, we compared the tests included in the npordtests package in terms of Type I error
rate and power. With the results of the simulation study, when the data is generated from a symmetric
distribution, we propose that the use of the MJT test for ordered alternatives with linear shape and the
S test for ordered alternatives with convex shape. On the other hand, when ordered alternative has a
concave shape, the S test for equal sample size patterns is suggested, but the KTP test is recommended
when sample size pattens are progressive and one extreme. For the data generated from a left skewed
distribution, when k = 3 and shape of ordered alternative is linear, we recommend that the use of
the TM test for small sample sizes such as n = 5 and 10, and the AT test for sample size 20, 30, and
50. However, when k = 4 and sample sizes are 10, 20, 30, and 50, we propose to prefer the AT test.
For this kind of data, we propose the use of the AT test when the ordered alternative has a convex
shape. On the other hand, if ordered altenative has a concave shape, we propose that the use of the
KTP test for sample sizes such as n = 10, 20, 30, and 50 and the TM test for small sample size such as
n = 5. For the data generated from a right skewed distribution, when k = 4, we recommend that the
use of the AT test for ordered alternative with linear shape. However, when k = 3, and the shape of
ordered alternative is linear, we propose to choose the AT test for sample sizes n = 10, 20, 30, and 50
and the TM test for sample size 5. On the other hand, when ordered alternative has a concave shape,
the TM test is the most powerful test in all simulation scenarios. Besides these, for this kind of data, it
is understood that it is appropriate to prefer the S test for ordered alternative with convex shape.

To test the equality hypothesis of locations parameters against ordered alternatives, the npordtests
package covers the prominent nonparametric tests such as Jonckheere-Terpstra test, Beier and Buning’s
Adaptive test, Modified Jonckheere-Terpstra test, Terpstra-Magel test, Ferdhiana-Terpstra-Magel test,
KTP test, S test and Gaur’s Gc test. According to the authors knowledge, the tests which are present in
the npordtests package, except the JT test, are not available in any other R tool. The package will be
updated at regular intervals.

Acknowledgments

The authors are genuinely grateful to anonymous reviewer and the Executive Editor (Dianne Cook)
for their invaluable contributions to the improvement of our paper.

Bibliography
B. Altunkaynak and H. Gamgam. npordtests: An R Package for Nonparametric Tests for Equality of Location

Against Ordered Alternatives, 2019. URL https://CRAN.R-project.org/package=npordtests. R
package version 1.2. [p148]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=npordtests

CONTRIBUTED RESEARCH ARTICLES 169

F. Beier and H. Buning. An adaptive test against ordered alternatives. Computational Statistics and Data
Analysis, 25(4):441–452, 1997. URL https://doi.org/10.1016/S0167-9473(97)00014-5. [p147, 149,
150, 153]

J. V. Bradley. Robustness? British Journal of Mathematical and Statistical Psychology, 31:144–152, 1978.
URL https://doi.org/10.1111/j.2044-8317.1978.tb00581.x. [p163]

M. A. Bredella, L. S. Steinbach, S. Morgan, M. Ward, and J. C. Davis. Mri of the sacroiliac joints in
patients with moderate to severe ankylosing spondylitis. American Journal of Roentgenology, 187(6):
1420–1426, 2006. URL https://doi.org/10.2214/AJR.05.1423. [p147]

H. Buning and W. Kossler. Robustness and efficiency of some tests for ordered alternatives in the
c-sample location problem. Journal of Statistical Computation and Simulation, 55(4):337–352, 1996. URL
https://doi.org/10.1080/00949659608811774. [p147, 149]

C. H. Chang and C. H. Yen. A nonparametric test for the ordered alternative based on fast discrete
fourier transform coefficient. Journal of Testing and Evaluation, 39(6):1131–1143, 2011. URL https:
//doi.org/10.1520/Jte103464. [p154]

Q. Cheng, W. Yang, S. C. Raimondi, C.-H. Pui, M. V. Relling, and W. E. Evans. Karyotypic abnormalities
create discordance of germline genotype and cancer cell phenotypes. Nature Genetics, 37(8):878–882,
2005. URL https://doi.org/10.1038/ng1612. [p147]

J. Cuzick. A Wilcoxon-Type test for trend. Statistics in Medicine, 4(1):87–90, 1985. URL https:
//doi.org/10.1002/sim.4780040112. [p147]

M. Desu and D. Raghavarao. Nonparametric Statistical Methods for Complete and Censored Data. Chapman
and Hall/CRC, New York, 1st edition, 2004. [p154]

A. Dmitrienko, C. Chuang-Stein, and R. D’Agostino. Pharmaceutical Statistics using SAS®: A practical
guide (SAS Press). SAS Institute, NC, 1st edition, 2006. ISBN 159047886X. [p154]

R. Ferdhiana, J. Terpstra, and R. C. Magel. A nonparametric test for the ordered alternative based on
Kendall’s Correlation Coefficient. Communications in Statistics-Simulation and Computation, 37(6):
1117–1128, 2008. URL https://doi.org/10.1080/03610910801894870. [p147, 151]

J. L. Gastwirth. Asymptotically most powerful rank tests for the two-sample problem with censored
data. Ann. Math. Statist., 36(4):1243–1247, 1965. URL https://doi.org/10.1214/aoms/1177699995.
[p147, 149, 150]

A. Gaur. A new class of distribution-free tests for testing ordered location parameters based on
sub-samples. Statistics and Probability Letters, 90(1):53–59, 2014. URL https://doi.org/10.1016/j.
spl.2014.03.011. [p147]

A. Gaur. A class of k-sample distribution-free tests for location against ordered alternatives. Commu-
nications in Statistics-Theory and Methods, 46(5):2343–2353, 2017. URL https://doi.org/10.1080/
03610926.2015.1041986. [p147, 152]

Z. Govindarajulu and H. S. Haller. c-sample tests of homogeneity against ordered alternatives. In J. S.
Rustagi, editor, Optimizing Methods in Statistics, page 479. Academic Press, 1971. ISBN 978-0-12-
604550-5. URL https://doi.org/10.1016/B978-0-12-604550-5.50030-4. [p147]

S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmöller, A. Johne, I. Cascorbi, T. Gerloff,
I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug
resistance gene: Multiple sequence variations and correlation of one allele with p glycoprotein
expression and activity in vivo. Proceedings of the National Academy of Sciences of the United States of
America, 97(7):3473–3478, 2000. URL https://doi.org/10.1073/pnas.050585397. [p147]

J. W. Hogg, Robert V. McKean and A. T. Craig. Introduction to Mathematical Statistics. Pearson, Boston,
7 edition, 2013. ISBN 9780321795434. [p149]

R. V. Hogg, D. M. Fisher, and R. H. Randles. A two-sample adaptive distribution-free test. Journal of
the American Statistical Association, 70(351):656–661, 1975. URL https://doi.org/10.2307/2285950.
[p147, 150]

A. R. Jonckheere. A distribution-free k-sample test against ordered alternatives. Biometrika, 41(1):
133–145, 1954. URL https://doi.org/10.2307/2333011. [p147, 148, 153]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1016/S0167-9473(97)00014-5
https://doi.org/10.1111/j.2044-8317.1978.tb00581.x
https://doi.org/10.2214/AJR.05.1423
https://doi.org/10.1080/00949659608811774
https://doi.org/10.1520/Jte103464
https://doi.org/10.1520/Jte103464
https://doi.org/10.1038/ng1612
https://doi.org/10.1002/sim.4780040112
https://doi.org/10.1002/sim.4780040112
https://doi.org/10.1080/03610910801894870
https://doi.org/10.1214/aoms/1177699995
https://doi.org/10.1016/j.spl.2014.03.011
https://doi.org/10.1016/j.spl.2014.03.011
https://doi.org/10.1080/03610926.2015.1041986
https://doi.org/10.1080/03610926.2015.1041986
https://doi.org/10.1016/B978-0-12-604550-5.50030-4
https://doi.org/10.1073/pnas.050585397
https://doi.org/10.2307/2285950
https://doi.org/10.2307/2333011

CONTRIBUTED RESEARCH ARTICLES 170

T. Kawaguchi, Y. Sumida, A. Umemura, K. Matsuo, M. Takahashi, T. Takamura, K. Yasui, T. Saibara,
E. Hashimoto, M. Kawanaka, S. Watanabe, S. Kawata, Y. Imai, M. Kokubo, T. Shima, H. Park,
H. Tanaka, K. Tajima, R. Yamada, F. Matsuda, T. Okanoue, and D. Japan Study Group of Nonalcoholic
Fatty Liver. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with
severity of non-alcoholic fatty liver disease in Japanese. PloS one, 7(6):e38322–e38322, 2012. URL
https://doi.org/10.1371/journal.pone.0038322. [p147]

C. Le. A new rank test against ordered-alternatives in k-sample problems. Biometrical Journal, 30(1):
87–92, 1988. URL https://doi.org/10.1002/bimj.4710300116. [p147]

E. Lehmann. Nonparametrics: Statistical Methods based on Ranks. Holden-Day, San Francisco, 1st edition,
1975. ISBN 9780387352121. [p153]

J. Lin, A. Sibley, I. Shterev, and K. Owzar. jtGWAS: Efficient Jonckheere-Terpstra Test Statistics, 2017a.
URL https://CRAN.R-project.org/package=jtGWAS. R package version 1.5.1. [p147]

J. Lin, A. Sibley, I. Shterev, and K. Owzar. fastJT: Efficient Jonckheere-Terpstra Test Statistics for Robust
Machine Learning and Genome-Wide Association Studies, 2017b. URL https://CRAN.R-project.org/
package=fastJT. R package version 1.0.4. [p147, 148]

M. Neuhäuser, P.-Y. Liu, and L. A. Hothorn. Nonparametric tests for trend: Jonckheere’s Test, a
modification and a maximum test. Biometrical Journal, 40(8):899–909, 1998. URL https://doi.org/
10.1002/(SICI)1521-4036(199812)40:8<899::AID-BIMJ899>3.0.CO;2-9. [p147, 150, 154]

J. P. Ong, A. Aggarwal, D. Krieger, K. A. Easley, M. T. Karafa, F. Van Lente, A. C. Arroliga, and
K. D. Mullen. Correlation between ammonia levels and the severity of hepatic encephalopathy.
The American Journal of Medicine, 114(3):188–193, 2003. URL https://doi.org/10.1016/S0002-
9343(02)01477-8. [p147]

J. F. Pedersen, L. G. Madsen, V. A. Larsen, O. Hamberg, T. Horn, B. Federspiel, and P. Bytzer. A doppler
waveform index to characterize hepatic vein velocity pattern and evaluate hepatic fibrosis. Journal
of Clinical Ultrasound, 36(4):208–211, 2008. URL https://doi.org/10.1002/jcu.20446. [p154]

T. Pohlert. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended, 2018.
URL https://CRAN.R-project.org/package=PMCMRplus. R package version 1.4.1. [p147]

M. L. Puri. Some distribution-free k-sample rank tests of homogeneity against ordered alternatives.
Communications on Pure and Applied Mathematics, 18(1):51–63, 1965. URL https://doi.org/10.1002/
cpa.3160180108. [p147]

F. Scholz and A. Zhu. kSamples: K-Sample Rank Tests and Their Combinations, 2018. URL https://CRAN.R-
project.org/package=kSamples. R package version 1.2-8. [p147]

G. G. Shan, D. Young, and L. Kang. A new powerful nonparametric rank test for ordered alternative
problem. Plos One, 9(11):1–10, 2014. URL https://doi.org/10.1371/journal.pone.0112924. [p147,
152, 154]

J. Swintek, K. Flynn, and J. Haselman. StatCharrms: Statistical Analysis of Chemistry, Histopathology,
and Reproduction Endpoints Including Repeated Measures and Multi-Generation Studies, 2018. URL
https://CRAN.R-project.org/package=StatCharrms. R package version 0.90.91. [p147]

H.-L. Tan, S. M. Zain, R. Mohamed, S. Rampal, K.-F. Chin, R. C. Basu, P.-L. Cheah, S. Mahadeva,
and Z. Mohamed. Association of glucokinase regulatory gene polymorphisms with risk and
severity of non-alcoholic fatty liver disease: An interaction study with adiponutrin gene. Journal
of Gastroenterology, 49(6):1056–1064, 2014. URL https://doi.org/10.1007/s00535-013-0850-x.
[p147]

J. T. Terpstra. The asymptotic normality and consistency of Kendall’s test against trend, when ties are
present in one ranking. Indagationes Mathematicae, 14(3):327–333, 1952. [p147, 148]

J. T. Terpstra and R. C. Magel. A new nonparametric test for the ordered alternative prob-
lem. Journal of Nonparametric Statistics, 15(3):289–301, 2003. URL https://doi.org/10.1080/
1048525031000078349. [p147, 150]

J. T. Terpstra, C. H. Chang, and R. C. Magel. On the use of Spearman’s Correlation Coefficient for
testing ordered alternatives. Journal of Statistical Computation and Simulation, 81(11):1381–1392, 2011.
URL https://doi.org/10.1080/00949655.2010.485316. [p147, 148, 151, 154, 163]

P. Tryon and T. Hettmansperger. A class of nonparametric tests for homogeneity against ordered
alternatives. Annals of Statistics, 1:1061–1070, 1973. [p147, 150]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1371/journal.pone.0038322
https://doi.org/10.1002/bimj.4710300116
https://CRAN.R-project.org/package=jtGWAS
https://CRAN.R-project.org/package=fastJT
https://CRAN.R-project.org/package=fastJT
https://doi.org/10.1002/(SICI)1521-4036(199812)40:8<899::AID-BIMJ899>3.0.CO;2-9
https://doi.org/10.1002/(SICI)1521-4036(199812)40:8<899::AID-BIMJ899>3.0.CO;2-9
https://doi.org/10.1016/S0002-9343(02)01477-8
https://doi.org/10.1016/S0002-9343(02)01477-8
https://doi.org/10.1002/jcu.20446
https://CRAN.R-project.org/package=PMCMRplus
https://doi.org/10.1002/cpa.3160180108
https://doi.org/10.1002/cpa.3160180108
https://CRAN.R-project.org/package=kSamples
https://CRAN.R-project.org/package=kSamples
https://doi.org/10.1371/journal.pone.0112924
https://CRAN.R-project.org/package=StatCharrms
https://doi.org/10.1007/s00535-013-0850-x
https://doi.org/10.1080/1048525031000078349
https://doi.org/10.1080/1048525031000078349
https://doi.org/10.1080/00949655.2010.485316

CONTRIBUTED RESEARCH ARTICLES 171

T. Uchiyama, H. Kanno, K. Ishitani, H. Fujii, H. Ohta, H. Matsui, N. Kamatani, and K. Saito. An snp
in CYP39A1 is associated with severe neutropenia induced by docetaxel. Cancer Chemotherapy and
Pharmacology, 69(6):1617–1624, 2012. URL https://doi.org/10.1007/s00280-012-1872-4. [p147]

E. Venkatraman. clinfun: Clinical Trial Design and Data Analysis Functions, 2018. URL https://CRAN.R-
project.org/package=clinfun. R package version 1.0.15. [p147]

K. Yorifuji, Y. Uemura, S. Horibata, G. Tsuji, Y. Suzuki, K. Miyagawa, K. Nakayama, K.-i. Hirata,
S. Kumagai, and N. Emoto. CHST3 and CHST13 polymorphisms as predictors of bosentan-induced
liver toxicity in Japanese patients with pulmonary arterial hypertension. Pharmacological Research,
135:259–264, 2018. URL https://doi.org/10.1016/j.phrs.2018.08.011. [p147]

Bulent Altunkaynak
Department of Statistics
Gazi University Faculty of Science, Yenimahalle, Ankara
Turkey
bulenta@gazi.edu.tr

Hamza Gamgam
Department of Statistics
Gazi University Faculty of Science, Yenimahalle, Ankara
Turkey
gamgam@gazi.edu.tr

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1007/s00280-012-1872-4
https://CRAN.R-project.org/package=clinfun
https://CRAN.R-project.org/package=clinfun
https://doi.org/10.1016/j.phrs.2018.08.011
mailto:bulenta@gazi.edu.tr
mailto:gamgam@gazi.edu.tr

CONTRIBUTED RESEARCH ARTICLES 172

lspartition: Partitioning-Based Least
Squares Regression
by Matias D. Cattaneo, Max H. Farrell and Yingjie Feng

Abstract Nonparametric partitioning-based least squares regression is an important tool in empirical
work. Common examples include regressions based on splines, wavelets, and piecewise polynomials.
This article discusses the main methodological and numerical features of the R software package
lspartition, which implements results for partitioning-based least squares (series) regression estimation
and inference from Cattaneo and Farrell (2013) and Cattaneo, Farrell, and Feng (2020). These results
cover the multivariate regression function as well as its derivatives. First, the package provides
data-driven methods to choose the number of partition knots optimally, according to integrated mean
squared error, yielding optimal point estimation. Second, robust bias correction is implemented to
combine this point estimator with valid inference. Third, the package provides estimates and inference
for the unknown function both pointwise and uniformly in the conditioning variables. In particular,
valid confidence bands are provided. Finally, an extension to two-sample analysis is developed, which
can be used in treatment-control comparisons and related problems.

Introduction

Nonparametric partitioning-based least squares regression estimation is an important method for
estimating conditional expectation functions in statistics, economics, and other disciplines. These
methods first partition the support of covariates and then construct a set of local basis functions on
top of the partition to approximate the unknown regression function or its derivatives. Empirically
popular basis functions include splines, compactly supported wavelets, and piecewise polynomials.
For textbook reviews on classical and modern nonparametric regression methodology see, among
others, Fan and Gijbels (2018), Györfi, Kohler, Krzyżak, and Walk (2002), Ruppert, Wand, and Carroll
(2003), and Harezlak, Ruppert, and Wand (2018). For a review on partitioning-based approximations
in nonparametrics and machine learning see Zhang and Singer (2010) and references therein.

This article gives a detailed discussion of the software package lspartition, available for R, which
implements partitioning-based least squares regression estimation and inference. This package offers
several features which improve on existing tools, leveraging the recent results of Cattaneo and
Farrell (2013) and Cattaneo, Farrell, and Feng (2020), and delivering data-driven methods to easily
implement partitioning-based estimation and inference, including optimal tuning parameter choices
and uniform inference results such as confidence bands. We cover splines, compactly supported
wavelets, and piecewise polynomials, in a unified way, encompassing prior methods and routines
previously unavailable without manual coding by researchers. Piecewise polynomials generally
differ from splines and wavelets in that they do not enforce global smoothness over the partition, but
in the special cases of zero-degree bases on a tensor-product partition, the three basis choices (i.e.,
zero-degree spline, Haar wavelet, and piecewise constant) are equivalent.

The first contribution offered by lspartition is a data-driven choice of the number of partitioning
knots that is optimal in an integrated mean squared error (IMSE) sense. A major hurdle to practical
implementation of any nonparametric estimator is tuning parameter choice, and by offering several
feasible IMSE-optimal methods for splines, compactly supported wavelets, and piecewise polynomials,
lspartition provides practitioners with tools to overcome this important implementation issue.

However, point estimation optimal tuning parameter choices yield invalid inference in general,
and the IMSE-optimal choice is no exception. The second contribution of lspartition is the inclusion
of robust bias correction methods, which allow for inference based on optimal point estimators. lspar-
tition implements the three methods studied by Cattaneo, Farrell, and Feng (2020), which are based
on novel bias expansions therein. Both the bias and variance quantities are kept in pre-asymptotic
form, yielding better bias correction and standard errors robust to conditional heteroskedasticity of
unknown form. Collectively, this style of robust bias correction has been proven to yield improved
inference in other nonparametric contexts (Calonico, Cattaneo, and Farrell, 2018, 2020).

The third main contribution is valid inference, both pointwise and uniformly in the support of the
conditioning variables. When robust bias correction is employed, this inference is valid for the IMSE-
optimal point estimator, allowing the researcher to combine an optimal partition for point estimation
and a “faithful” measure of uncertainty (i.e., one that uses the same nonparametric estimation choices,
here captured by the partition). In particular, lspartition delivers valid confidence bands that cover the
entire regression function and its derivatives. These data-driven confidence bands are constructed by
approximating the distribution of t-statistic processes, using either a plug-in approach or a bootstrap

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 173

approach. Importantly, the construction of confidence bands does not employ (asymptotic) extreme
value theory, but instead uses the strong approximation results of Cattaneo, Farrell, and Feng (2020),
which perform substantially better in samples of moderate size.

Last but not least, the package also offers a convenient function to implement estimation and
inference for linear combinations of regression estimators of different groups with all the features
mentioned above. This function can be used to analyze conditional treatment effects in random control
trials in particular, or for two-sample comparisons more generally. For example, a common question
in applications is whether two groups have the same “trend” in a regression function, and this is often
answered in a restricted way by testing a single interaction term in a (parametric) linear model. In
contrast, lspartition delivers a valid measure of this difference nonparametrically and uniformly over
the support of the conditioning variables, greatly increasing its flexibility in applications.

All of these contributions are fully implemented for splines, wavelets, and piecewise polynomials
through the following four functions included in the package lspartition:

• lsprobust(). This function implements estimation and inference for partitioning-based least
squares regression. It takes the partitioning scheme as given, and constructs point and variance
estimators, bias correction, conventional and robust bias-corrected confidence intervals, and
simulation-based conventional and robust bias-corrected uniform inference measures (e.g.,
confidence bands). Three approximation bases are provided: B-splines, Cohen-Daubechies-
Vial wavelets, and piecewise polynomials. When the partitioning scheme is not specified,
the companion function lspkselect() is used to select a tensor-product partition in a fully
data-driven fashion.

• lspkselect(). This function implements data-driven procedures to select the number of knots
for partitioning-based least squares regression. It allows for evenly-spaced and quantile-spaced
knot placements, and computes the corresponding IMSE-optimal choices. Two selectors are
provided: rule of thumb (ROT) and direct plug-in (DPI) rule.

• lsplincom(). This function implements estimation and robust inference procedures for linear
combinations of regression estimators of multiple groups based on lsprobust(). Given a user-
specified linear combination, it offers all the estimation and inference methods available in the
functions lsprobust() and lspkselect().

• lsprobust.plot(). This function builds on ggplot2 (Wickham and Chang, 2016), and is used
as a wrapper for plotting results. It plots regression function curves, robust bias-corrected
confidence intervals and uniform confidence bands, among other possibilities.

The paper continues as follows. The next section describes the basic setup including a brief intro-
duction to partitioning-based least squares regression and the empirical example to be used throughout
to illustrate features of lspartition. The third section discusses data-driven IMSE-optimal selection of
the number of knots and gives implementation details. Estimation and inference implementation is
covered in the fourth section, including bias correction methods. The last section provides concluding
remarks. We defer to Cattaneo, Farrell, and Feng (2020, CFF hereafter) for complete theoretical and
technical details. Statements below are sometimes specific versions of a general case therein.

Setup

We assume that {(yi, x′i)
′ : 1 ≤ i ≤ n} is an observed random sample of a scalar outcome yi and a

d-vector of covariates xi ∈ X ⊂ Rd. The object of interest is the regression function µ(x) = E[yi|xi = x]
or its derivative, the latter denoted by ∂qµ(x) = ∂[q]µ(x)/∂xq1

1 · · · ∂xqd
d , for a d-tuple q = (q1, . . . , qd)

′ ∈
Zd

+ with [q] = ∑d
j=1 qj.

Estimation and inference is based on least squares regression of yi on set of basis functions
of xi which are themselves built on top of a partition of the support X . A partition, denoted by
∆ = {δl ⊂ X : 1 ≤ l ≤ κ}, is a collection of κ disjoint open sets such that the closure of their union
is X . For a partition, a set of basis functions, each of order m and denoted by p(x), is constructed so
that each individual function (i.e., each element of the vector p(x)) is nonzero on a fixed number of
contiguous δl . lspartition allows for three such bases: piecewise polynomials, B-splines, and Cohen-
Daubechies-Vial wavelets (Cohen, Daubechies, and Vial, 1993). For the first two bases, the order m of
the basis can be any positive integer, and any derivative of µ up to total order (m− 1) can be estimated
employing such a basis. For wavelets, the current version allows for m ≤ 4 (i.e., up to cubic wavelets),
and q = (0, . . . , 0). The package takes m = 2 (linear basis) as default. To fix ideas, consider d = 1
with piecewise constants. Each δl is an interval and p(x) collects all the indicator functions 1{x ∈ δl},
1 ≤ l ≤ κ.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 174

Once the basis p(x) is constructed, the final estimator of ∂qµ(x), for [q] < m, is

∂̂qµ(x) = ∂qp(x)′ β̂, where β̂ = arg min
b∈RK

n

∑
i=1

(
yi − p(xi)

′b
)2 . (1)

When q = 0, we write µ̂(·) = ∂̂0µ(·) for simplicity.

The approximation power of such estimators increases with the granularity of the partition ∆ and
the order m. We take the latter as fixed in practice. The most popular structure of ∆ in applications is a
tensor-product form, which partitions each covariate marginally into intervals and then sets ∆ to be the
set of all tensor (Cartesian) products of these intervals (CFF consider more general cases). For this type
of partition, the user must choose the number and placement of the partitioning knots in each dimension.
lspartition allows for three knot placement types: user-specified, evenly-spaced, and quantile-spaced.
In the first case, the user has complete freedom to choose both the number and positions of knots for
each dimension. In the latter two cases, the knot placement scheme is pre-specified, and hence only
the number of subintervals for each dimension needs to be chosen.

We denote the number of knots in the d dimensions of the regressor xi by κ = (κ1, . . . , κd) ∈ Zd
+,

which can be either specified by users or selected by data-driven procedures (see Section 3 below).
Moreover, for wavelet bases, motivated by the standard multi-resolution analysis, we provide an
option J for the regression command lsprobust(), which indicates the resolution level of a wavelet
basis. This gives κ` = 2J` , ` = 1, . . . d, for a resolution J` (see Chui, 1992, for a review). In any case, the
tuning parameter to be chosen is κ = κ1 × · · · × κd. In the next section we choose κ to minimize the
IMSE of the estimator (1).

Package and data

We will showcase the main aspects of lspartition using a running empirical example. The package is
available in R and can be installed as follows:

> install.packages("lspartition", dependencies = TRUE)
> library(lspartition)

The data we use come from Capital Bikeshare, and is available at http://archive.ics.uci.edu/
ml/datasets/Bike+Sharing+Dataset/. For the first 19 days of each month of 2011 and 2012 we observe
the outcome count, the total number of rentals and the covariates atemp, the “feels-like” temperature
in Celsius, and workingday, a binary indicator for working days (versus weekends and holidays). The
data is summarized as follows.

> data <- read.csv("bikesharing.csv", header = TRUE)
> summary(data)

count atemp workingday
Min. : 1.0 Min. :-14.997 Min. :0.0000
1st Qu.: 42.0 1st Qu.: 5.998 1st Qu.:0.0000
Median :145.0 Median : 15.997 Median :1.0000
Mean :191.6 Mean : 15.225 Mean :0.6809
3rd Qu.:284.0 3rd Qu.: 24.999 3rd Qu.:1.0000
Max. :977.0 Max. : 44.001 Max. :1.0000

We will investigate nonparametrically the relationship between temperature and number of rentals
and compare the two groups defined by the type of days:

> y <- data$count
> x <- data$atemp
> g <- data$workingday

The sample code that follows will use this designation of y, x, and g.

Partitioning scheme selection

We will now briefly describe the IMSE expansion and its use in tuning parameter selection. To
differentiate the original point estimator of (1) and the post-bias-correction estimators, we will add a

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset/
http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset/

CONTRIBUTED RESEARCH ARTICLES 175

subscript “0” to the original estimator: ∂̂qµ0(x). The three bias corrections discussed below will add
corresponding subscripts of 1, 2, and 3. We first discuss the bias and variance of ∂̂qµ0(x), and then use
these for minimizing the IMSE. Throughout, ≈ denotes that the approximation holds for large sample
in probability, � indicates an asymptotic rate, and En[·] denotes the sample average over 1 ≤ i ≤ n.
To simplify notation, we may write the estimator as

∂̂qµ0(x) := γ̂′q,0En[p(xi)yi], where γ̂q,0(x)′ := ∂qp(x)′En[p(xi)p(xi)
′]−1.

Again, note the subscript “0”; the bias-corrected estimators are of the same form (see below).

Bias and variance

The bias expansion for the ∂̂qµ0(x) is:

E[∂̂qµ0(x)|X]− ∂qµ(x) = γ̂q,0(x)′En[p(xi)µ(xi)]− ∂qµ(x) (2)

≈ Bm,q(x)− γ̂q,0(x)′En[p(xi)Bm,0(xi)]. (3)

Bm,q(·) is the leading approximation error in the L∞-norm and the second term is the accompanying
error from the linear projection of Bm,0(·) onto the space spanned by the basis functions. The form of
each of these is complex, and depends on the basis, but what is crucial for the present purposes is that
the form is known and the only unknown elements are derivatives of order m, ∂uµ(x), [u] = m. CFF
derive exact expressions for splines, wavelets, and piecewise polynomials. Both bias terms will, in
general, contribute to the same order, and both will matter in finite samples. However, the second term
in (3) will be higher order if the bases are carefully constructed so that Bm,0(·) is orthogonal to p(·) in
L2 with respect to the Lebesgue measure. lspartition allows users to choose whether the projection of
the leading error is used in partitioning scheme selection, as well as estimation and inference.

The conditional variance is straightforward from least squares algebra and takes the familiar
sandwich form. With σ2(xi) = V [yi|xi], we have

V[∂̂qµ0(x)|X] =
1
n

γ̂q,0(x)′Σ̄0γ̂q,0(x), where Σ̄0 = En

[
p(xi)p(xi)

′σ2(xi)
]

. (4)

Only σ2(xi) is unknown here, and will be replaced by a residual-based estimator. In particular
lspartition allows for the standard Heteroskedasticity-Consistent (HC) class of estimators via the
options hc0, hc1, hc2, hc3. See Long and Ervin (2000) for a review in the context of least squares
regression.

Integrated mean squared error

In general, for a weighting function w(x), CFF derive the following (conditional) IMSE expansion:

IMSE[∂̂qµ(·)|X] ≈ 1
n

Vκ,q +Bκ,q,

where the n-varying quantities Vκ,q and Bκ,q correspond to fixed-n approximations to the variance and
squared bias, respectively, and are asymptotically of order Vκ,q � κ1+2[q]/d and Bκ,q � κ−2(m−[q])/d.

Under regularity conditions on the partition and basis used, CFF derive explicit leading constants
in this expansion. lspartition implements IMSE-minimization for the common simple case where ∆
is a tensor product of marginally formed intervals where the same number of intervals are used for
each dimension. Specifically, ∆` = {x` = t`,0 < t`,1 < · · · < t`,κ̄−1 < t`,κ̄ = x̄`} partitions X` into κ̄

subintervals, and the complete partition ∆ = ⊗d
`=1∆`, where ⊗ denotes tensor (Cartesian) product.

Thus, the IMSE-optimal number of cells of a tensor-product partition is κIMSE = κ̄d
IMSE � n

d
2m+d .

To select κ̄IMSE, or equivalently κIMSE, assume that the partitioning knots {0 = t`,0 < t`,1 < · · · <
t`,κ̄−1 < t`,κ̄ = 1} are generated as quantiles of some marginal distributions G`(·), ` = 1, . . . , d, that is,
for l = 0, 1, . . . , κ̄ and ` = 1, . . . , d,

t`,l = G−1
`

(
l
κ̄

)
,

where G−1
` (v) = inf{x ∈ R : G`(x) ≥ v}. Then, the IMSE-optimal choice for q = 0 is

κ̄IMSE,0 =

⌈(
2mBG,0

dV0

) 1
2m+d

n
1

2m+d

⌉
,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 176

where dxe is a ceiling operator that outputs the smallest integer that is no less than x and BG,0 is a
(squared) bias term that may depend on the marginals G` and, as before, is entirely known up to mth

order derivatives: ∂uµ(x), [u] = m.

Implementation details

Two popular choices of partitioning schemes are evenly-spaced partitions (ktype="uni"), which sets
G`(·) to be the uniform distribution over the support of the data, and quantile-spaced partitions
(ktype="qua"), which sets G`(·) to be the empirical distribution function of each covariate. The
package lspartition implements both partitioning schemes, and for each case offers two IMSE-optimal
tuning parameter selection procedures: rule of thumb (imse-rot) and direct plug-in (imse-dpi) choices.
We close this section with a brief description of the implementation details and an illustration using
real data.

Rule-of-Thumb Choice

The rule-of-thumb choice is based on the special case of q = 0. Let the weighting function w(x) be
the density of xi. The implementation steps are summarized in the following:

• Bias constant. The unknown quantities in the bias constants are: ∂uµ(·), u ∈ Λm, which is
estimated by a global polynomial regression of degree (m + 2); and the density of xi, which is
either assumed to be uniform or estimated by a trimmed-from-below Gaussian reference model
(controlled by the option rotnorm).

• Variance constant. The unknown quantities in the variance constants are: the conditional
variance σ2(x) = E[y2

i |xi = x] − (E[yi|xi = x])2, which is estimated by global polynomial
regressions of degree (m + 2); and the density of xi, which is either assumed to be uniform or
estimated by a trimmed-from-below Gaussian reference model.

• Rule-of-thumb ˆ̄κrot. Using the above results, a simple rule-of-thumb choice of κ̄ is

ˆ̄κrot =

⌈(
2mB̂G,0

dV̂0

) 1
2m+d

n
1

2m+d

⌉
,

where B̂G,0 and V̂0 are the estimates of bias and variance constants respectively. While this choice
of κ̄ is obtained under strong parametric assumptions, it still exhibits the correct convergence
rate (ˆ̄κrot � n

1
2m+d).

The command lspkselect() implements the rule-of-thumb selection (kselect="imse-rot"). For
example, we focus on a subsample of bike rentals during working days (g==1), and then the selected
number of knots are reported in the following:

> summary(lspkselect(y, x, kselect = "imse-rot", subset = (g ==
+ 1)))
Call: lspkselect

Sample size (n) = 7412
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Knot placement (ktype) = Uniform
Knot method (kselect) = imse-rot

=======================
IMSE-ROT

k k.bc
=======================

5 9
=======================

In this example, for the point estimator based on an evenly-spaced partition, the rule-of-thumb
estimate of the IMSE-optimal number of knots is k = 5, and for the derivative estimators used in bias
correction for later inference, the rule-of-thumb choice is k.bc = 9.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 177

Direct Plug-in Choice

Assuming the weighting w(x) is equal to the density of xi, the package lspartition implements a
direct-plug-in (DPI) procedure summarized by the following steps.

• Preliminary choice of κ̄. Implement the rule-of-thumb procedure to obtain ˆ̄κrot.

• Preliminary regression. Given the user-specified basis, knot placement scheme, and rule-of-
thumb choice ˆ̄κrot, implement a partitioning-based regression of order (m + 1) to estimate all
necessary order-m derivatives; denote these by ∂̂uµpre(·), [u] = m.

• Bias constant. Construct an estimate B̂m,q(·) of the leading error Bm,q(·) by replacing ∂uµ(·)
by ∂̂uµpre(·). B̂m,0(·) can be obtained similarly. Then, use the pre-asymptotic version of the
conditional bias to estimate the bias constant:

B̂κ,q =
1
n

n

∑
i=1

(
B̂m,q(xi)− γ̂q,0(xi)

′En[p(xi)Bm,0(xi)]
)2

.

As mentioned before, for the three bases considered in the package lspartition, the second
term in the conditional bias is of smaller order under some additional conditions. We employ
this property to simplify the estimate of bias constant for wavelets. For splines and piecewise
polynomials, however, users may specify whether the projection of the leading error is taken
into account in the selection procedure (see option proj).

• Variance constant. Implement a partitioning-based series regression of order m with κ̄ = ˆ̄κrot,
and then use the pre-asymptotic version of the conditional variance to estimate the variance
constant. Specifically, let ε̂i be the regression residuals and Σ̂0 = En[p(xi)p(xi)

′wi ε̂
2
i] be an

estimate of Σ0 = E[p(xi)p(xi)
′σ2(xi)], where different weights wi are used to construct different

HC variance estimators. Then set

V̂κ,q =
1
n

n

∑
i=1

γ̂q,0(xi)
′Σ̂0γ̂q,0(xi).

• Direct plug-in κ̄. Collecting all these results, a direct plug-in choice of κ̄ is

ˆ̄κdpi =

⌈(
2(m− [q]) ˆ̄κ2(m−[q])

rot B̂κ,q

(d + 2[q]) ˆ̄κ−(d+2[q])
rot V̂κ,q

) 1
2m+d

n
1

2m+d

⌉
.

The following shows the results of the direct plug-in procedure based on the real data:

> summary(lspkselect(y, x, kselect = "imse-dpi", subset = (g ==
+ 1)))
Call: lspkselect

Sample size (n) = 7412
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Knot placement (ktype) = Uniform
Knot method (kselect) = imse-dpi

=======================
IMSE-DPI

k k.bc
=======================

8 10
=======================

The direct plug-in procedure gives more partitioning knots than the rule-of-thumb, leading to a
finer partition. For point estimation, ˆ̄κdpi = 8 knots are suggested, while for bias correction purpose, it
selects ˆ̄κdpi = 10 knots to estimate derivatives in the leading bias. Quantile-spaced knot placement is
obtained by adding ktype = "qua".

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 178

Estimation and inference

This section reviews and illustrates the estimation and inference procedures implemented. A crucial
ingredient is the bias correction that allows for valid inference after tuning parameter selection.

Point estimation and bias correction

The estimator ∂̂qµ0(x) is IMSE-optimal from a point estimation perspective when implemented
using the choice κIMSE to form ∆, but conventional inference methods based on this resulting point
estimator will be invalid. More precisely, the ratio of bias to standard error in the t-statistic is non-
negligible, requiring either ad-hoc undersmoothing or some form of bias correction. In addition to
the (uncorrected) point estimate in (1), the package lspartition implements the three bias correction
options derived by CFF for valid (pointwise and uniform) inference. All these strategies resort to a
higher-order basis, p̃(x), of order m̃ > m. The partition ∆̃ where p̃(x) is built on may be different from
∆ but need not be. These approaches allow researchers to combine an optimal point estimate ∂̂qµ0(x)
based on the IMSE-optimal κIMSE with inference based on the same tuning parameter and partitioning
scheme choices.

Our bias correction strategies are based on (2) and (3), where the only unknowns are µ(·), ∂qµ(·),
and ∂uµ(·) for [u] = m. These are summarized as follows; see CFF for details.

• Approach 1: Higher-order-basis bias correction. Use p̃(x) to construct a higher-order least
squares estimator ∂̂qµ1(x) which takes exactly the same form as ∂̂qµ0(x) but has less bias. If we
substitute yi and ∂̂qµ1(x) for µ(xi) and ∂qµ(x) in (2) respectively and subtract this estimated
bias from ∂̂qµ0(x), the resulting “bias-corrected” estimator is equivalent to ∂̂qµ1(x). This option
is called by bc="bc1".

• Approach 2: Least squares bias correction. Construct ∂̂qµ1(x) and substitute it for ∂qµ(x) in
(2), but replace µ(xi) by µ̂1(xi) rather than yi. The least squares bias-corrected estimator ∂̂qµ2(x)
is obtained by subtracting this estimated bias from ∂̂qµ0(x). The supplement to CFF discusses
in detail how this approach relates to higher-order-basis bias correction and when they are
equivalent. This option is called by bc="bc2".

• Approach 3: Plug-in bias correction. Referring to (3), use p̃(x) to construct ∂̂uµ1(x) for all
needed u. Substitute ∂̂uµ1(x) and ∂̂uµ1(xi) for ∂uµ(x) and ∂uµ(xi) in Bm,q(x) and Bm,0(xi),
respectively. Subtracting this estimated bias from ∂̂qµ0(x) leads to a plug-in bias-corrected
estimator ∂̂qµ3(x). This option is called by bc="bc3".

The optimal (uncorrected) point estimator (j = 0) and the three bias-corrected estimators (j = 1, 2, 3)
can be written in a unified form for a given j = 0, 1, 2, 3 as

∂̂qµj(x) = γ̂q,j(x)
′En[Πj(xi)yi].

These estimators only differ in γ̂q,j(·) and Πj(·), which depend in different ways on p(x) and p̃(x).
See CFF for exact formulas.

Pointwise inference

Pointwise inference relies on a Gaussian approximation for the t-statistics, which holds for any
j = 0, 1, 2, 3:

T̂j(x) =
∂̂qµj(x)− ∂qµ(x)√

Ω̂j(x)/n
 N(0, 1).

where Ω̂j(x)/n = γ̂q,j(x)′Σ̂jγ̂q,j(x)/n is an estimator of the conditional variance of ∂̂qµj(·), and
denotes convergence in distribution. Σ̂j(x) = En[Πj(xi)Πj(xi)

′wi ε̂
2
i,j] is a consistent estimator of

Σj = E[Πj(xi)Πj(xi)σ
2(xi)], where ε̂i,j = yi − µ̂j(xi) and the wi’s are additional weights leading to

various HC variance estimators. Then nominal 100(1− α)-percent symmetric confidence intervals are

Ij(x) =
[

∂̂qµj(x)−Φ1−α/2

√
Ω̂j(x)/n, ∂̂qµj(x)−Φα/2

√
Ω̂j(x)/n

]
, (5)

where Φu is the uth quantile of the standard normal distribution.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 179

For conventional confidence intervals (j = 0), (asymptotically) correct coverage relies on under-
smoothing (κ � κIMSE) that renders the bias negligible relative to the standard error in large samples.
Though straightforward in theory, it is difficult to implement in a principled way. In comparison,
given the IMSE-optimal tuning parameter, all three bias-corrected estimators (j = 1, 2, 3) have only
higher-order bias, and thus the corresponding confidence intervals based on these estimators will
have asymptotically correct coverage. Importantly, the Studentization quantity Ω̂j(x)/n also captures
the additional variability introduced by bias correction.

We now illustrate the pointwise inference features of lsprobust() using the bike rental data. The
previous result of knot selection based on the DPI procedure will be employed. Specifically, we set
nknot=8 for point estimation. For higher-order-basis bias correction (bc="bc1"), the same number of
knots is used to correct bias by default, while for plug-in bias correction (bc="bc3"), we use 10 knots
(bnknot=10) to estimate the higher-order derivatives in the leading bias. One may leave these options
unspecified and then the command lsprobust() will automatically implement knot selection using
the command lspkselect().

> est_workday_bc1 <- lsprobust(y, x, neval = 20, bc = "bc1", nknot = 8,
+ subset = (g == 1))
> est_workday_bc3 <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ bnknot = 10, subset = (g == 1))
> summary(est_workday_bc1)
Call: lprobust

Sample size (n) = 7412
Num. covariates (d) = 1
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Smoothness point estimation (smooth) = 0
Smoothness bias correction (bsmooth) = 1
Knot placement (ktype) = Uniform
Knots method (kselect) = User-specified
Uniform inference method (uni.method) = NA
Num. knots point estimation (nknot) = (8)
Num. knots bias correction (bnknot) = (8)

===
Eval Point Std. Robust B.C.
X1 n Est. Error [95% C.I.]

===
1 -2.998 7412 90.667 5.316 [77.610 , 96.347]
2 -0.002 7412 110.509 3.909 [100.736 , 119.604]
3 1.998 7412 123.937 3.580 [115.071 , 133.583]
4 3.998 7412 137.364 5.183 [129.929 , 144.504]
5 5.998 7412 148.437 3.627 [139.724 , 158.148]

6 7.001 7412 153.989 3.571 [144.494 , 164.327]
7 11.001 7412 173.306 5.690 [164.945 , 181.894]
8 11.997 7412 174.599 4.600 [167.492 , 186.141]
9 13.997 7412 177.194 3.771 [171.250 , 190.769]
10 15.997 7412 179.789 5.300 [173.561 , 189.839]

11 17.000 7412 182.743 5.708 [172.595 , 189.229]
12 18.003 7412 189.044 4.662 [172.267 , 191.494]
13 19.000 7412 195.303 4.070 [174.665 , 196.009]
14 22.003 7412 214.165 5.899 [201.197 , 220.363]
15 24.003 7412 231.911 5.770 [228.211 , 248.431]

16 24.999 7412 243.335 4.760 [239.920 , 262.104]
17 26.002 7412 254.833 4.486 [251.063 , 273.840]
18 28.002 7412 277.755 6.284 [270.701 , 291.816]
19 30.002 7412 298.199 7.278 [280.463 , 309.527]
20 32.002 7412 313.696 6.596 [289.109 , 324.772]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 180

===

The above table summarizes the results for pointwise estimation and inference, including point
estimates, conventional standard errors, and robust confidence intervals based on higher-order-basis
bias correction for 20 quantile-spaced evaluation points. We can use the companion plotting command
lsprobust.plot() to visualize the results:

> lsprobust.plot(est_workday_bc1, xlabel = "Temperature", ylabel = "Number of Rentals",
+ legendGroups = "Working Days") + theme(text = element_text(size = 17),
+ legend.position = c(0.15, 0.9))
> ggsave("output/pointwise1.pdf", width = 6.8, height = 5.5)
> lsprobust.plot(est_workday_bc3, xlabel = "Temperature", ylabel = "Number of Rentals") +
+ theme(text = element_text(size = 17), legend.position = "none")
> ggsave("output/pointwise2.pdf", width = 6.8, height = 5.5)

100

150

200

250

300

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

Working Days

(a) Higher-order-basis bias correction

100

150

200

250

300

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

(b) Plug-in bias correction

Figure 1: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curves are the point estimates, and the shaded regions are robust
confidence intervals. 1a shows the results based on higher-order-basis correction, and 1b shows the
results based on plug-in bias correction. We see that as the temperature increases, so does the number
of rentals, and that lspartition gives a valid visualization of this trend.

The result is displayed in Figure 1. As the temperature gets higher, the number of rentals increases
as expected. Both panels show the same point estimator, µ̂0. We plot both the robust confidence
intervals based on higher-order-basis bias correction (Figure 1a) and plug-in bias correction (Figure
1b). Since the higher-order-basis approach is equivalent to a quadratic spline fitting, the resulting
confidence interval has a smoother shape.

Uniform inference

To obtain uniform inference (over the support of x), CFF establish Gaussian approximations for the
whole t-statistic processes, and propose several sampling-based approximations which are easy to
implement in practice. To be concrete, for each j = 0, 1, 2, 3, there exists a Gaussian process Zj(·) such
that T̂j(·) ≈d Zj(·). This Guassian process is given by

Zj(·) =
γq,j(·)′Σ1/2

j√
Ωj(·)

NKj ,

where Kj = dim(Πj(·)) ∝ κ, γq,j(·) and Ωj(·) are population counterparts of γ̂q,j(·) and Ω̂j(·), and
NKj is a Kj-dimensional standard normal random vector. The notation≈d means that the two processes
are asymptotically equal in distribution in the following sense: in a sufficiently rich probability space,
we have identical copies of T̂j(·) and Zj(·) whose difference converges in probability to zero uniformly.

The Gaussian stochastic process Zj(·) is not feasible in practice because it involves unknown
population quantities. Thus, the package lspartition offers two options for implementation: plug-in or
bootstrap.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 181

• Plug-in. Replace all unknowns in Zj(·) by some consistent estimators:

Ẑj(·) =
γ̂q,j(·)′Σ̂1/2

j√
Ω̂j(·)

NKj .

CFF show that Ẑj(·) delivers a valid distributional approximation to T̂j(·). In practice one may
obtain many simulated realizations of Ẑj(·) by sampling from the Kj-dimensional standard
normal distribution conditional on the data. This option is called by uni.method="pl".

• Bootstrap. Construct a bootstrapped version of the approximation process (conditional on the
data):

ẑ∗j (·) =
γ̂q,j(·)′En[Πj(xi)ε̂

∗
i,j]√

Ω̂∗j (·)/n
,

where Ω̂∗j (·) = γ̂q,j(·)′En[Πj(xi)Πj(xi)
′(ε̂∗i,j)

2]γ̂q,j(·), ε̂∗i,j = ωi ε̂i,j and {ωi}n
i=1 is an i.i.d se-

quence of bounded random variables with zero mean and unit variance. CFF show that this
bootstrapped process also approximates Zj(·) conditional on the data. Thus one can implement
bootstrapping by sampling from the distribution of ωi given the data. In the package lspartition,
the ωi’s are taken to be Rademacher variables, and this option is called by uni.method="wb".

Importantly, these strong approximations apply to the whole t-statistic processes, and thus can
be used to implement general inference procedures based on transformations of T̂j(·). The main
regression command lsprobust() will output the the following quantities for uniform analyses upon
setting uni.out=TRUE:

• t.num.pl,t.num.wb1,t.num.wb2. The numerators of approximation processes except the “sim-
ulated components”, which are evaluated at a set of pre-specified grid points K. Suppose that
K contains L grid points. Then for the plug-in method, the numerator, stored in t.num.pl,

is the L × Kj matrix
{

γ̂q,j(x)′Σ̂
1/2
j /
√

n : x ∈ K
}

. For wild bootstrap, the numerator is sepa-

rated to t.num.wb1 and t.num.wb2, which are
{

γ̂q,j(x)′/n : x ∈ K
}

and (Πj(x1), . . . , Π(xn))′

respectively.

• t.denom. The denominator of approximation processes, i.e.,
{√

Ω̂j(x)/n : x ∈ K
}

, stored in a
vector of length L.

• res. Residuals from the specified bias-corrected regression (needed for bootstrap-based approx-
imation).

For example, the following command requests the necessary quantities for uniform inference
based on the plug-in method:

> est_workday_bc1 <- lsprobust(y, x, bc = "bc1", nknot = 4, uni.method = "pl",
+ uni.ngrid = 100, uni.out = T, subset = (g == 1))
> round(est_workday_bc1$uni.output$t.num.pl[1:5,], 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 30.549 -4.923 2.311 -1.470 0.779 -0.451 0.121
[2,] 27.104 -3.553 1.746 -1.162 0.620 -0.354 0.090
[3,] 23.856 -2.285 1.236 -0.880 0.474 -0.266 0.062
[4,] 20.803 -1.117 0.780 -0.624 0.341 -0.185 0.037
[5,] 17.946 -0.052 0.379 -0.395 0.221 -0.113 0.014

We list the first 5 rows of the numerator matrix. Each row corresponds to a grid point. Since
we use a linear spline for point estimation and set nknot=4, the higher-order-basis bias correction is
equivalent to quadratic spline fitting. Thus the numerator matrix has 7 columns corresponding to the
quadratic spline basis.

As a special application, these results can be used to construct uniform confidence bands, which
builds on the suprema of |T̂j(·)|. The function lsprobust() computes the critical value to construct
confidence bands. Specifically, it generates many simulated realizations of Ẑj(·) or ẑ∗j (·) using the

methods described above, and then obtains an estimated 100(1− α)-quantile of supx∈X |Ẑj(x)| or
supx∈X |ẑ∗j (x)| given the data, denoted by qj(1− α). Then, (1− α) confidence band for ∂qµ(x) is given
by

∂̂qµj(x)± qj(1− α)
√

Ω̂j(x)/n.

For example, the following command requests a critical value for constructing confidence bands:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 182

> est_workday_bc1 <- lsprobust(y, x, neval = 20, bc = "bc1", uni.method = "pl",
+ nknot = 8, subset = (g == 1), band = T)
> est_workday_bc1$sup.cval

95%
2.993436

Once the critical value is available, the command lsprobust.plot() is able to visualize confidence
bands:

> lsprobust.plot(est_workday_bc1, CS = "all", xlabel = "Temperature",
+ ylabel = "Number of Rentals", legendGroups = "Working Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.15,
+
+ 0.9))
> ggsave("output/uniform1.pdf", width = 6.8, height = 5.5)

100

150

200

250

300

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

Working Days

Figure 2: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curve shows the point estimates, the error bars show the robust
confidence intervals, and the shaded region shows the robust confidence band based on the plug-in
method with higher-order-basis bias correction. We see that the uniform coverage of the confidence
band makes it wider than a single pointwise interval and that lspartition allows both to be cleanly
displayed.

The result is displayed in Figure 2. Since we set CS="all", the command simultaneously plots
pointwise confidence intervals (error bars) and a uniform confidence band (shaded region).

It is also possible to specify other bias correction approaches or uniform methods:

> est_workday_bc3 <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ bnknot = 10, uni.method = "wb", subset = (g == 1), band = T)
> est_workday_bc3$sup.cval

95%
3.009244
> lsprobust.plot(est_workday_bc3, CS = "all", xlabel = "Temperature",
+ ylabel = "Number of Rentals", legendGroups = "Working Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.15,
+
+ 0.9))
> ggsave("output/uniform2.pdf", width = 6.8, height = 5.5)

The result is displayed in Figure 3. In this example, the critical values based on different methods
are quite close, but in general their difference could be more pronounced in finite samples. See CFF for
some simulation evidence.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 183

100

150

200

250

300

350

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

Working Days

Figure 3: Estimated relationship between the number of rentals (y-axis) and temperature (x-axis)
during working days. The solid curve shows the point estimates, the error bars show the robust
confidence intervals, and the shaded region shows the robust confidence band based on the bootstrap
method with plug-in bias correction. Comparing to Figure 2, we see that using the bootstrap to
measure uncertainty produces similar results, as expected from the theory.

Linear combinations

The package lspartition also includes a function lsplincom(), which implements estimation and
inference for a linear combination of regression functions of different subgroups. To be concrete,
consider a random trial with G groups. Let µ(x; g) be the conditional expectation function (CEF) for
group g, g = 1, . . . , G. The parameter of interest is θ(x) = ∑G

g=1 rg∂qµ(x; g), i.e., a linear combination of
CEFs (or derivatives thereof) for different groups. To fix ideas, consider the most common application,
the difference between two groups (or the conditional average treatment effect). Here, G = 2, q = 0,
and (r1, r2) = (−1, 1). Then θ(x) = E[yi|xi = x, g = 1]−E[yi|xi = x, g = 0].

To implement estimation and inference for θ(x), lsplincom() first calls lsprobust() to obtain a
point estimate ∂̂qµ0(x; g) and all other objects for each group. The tuning parameter for each group
can be selected by the data-driven procedures above. Then the point estimate of θ(x) is

θ̂0(x) =
G

∑
g=1

rg ∂̂qµ0(x).

The standard error of θ̂j(x) can be obtained simply by taking the appropriate linear combination

of standard errors for each ∂̂qµj(x; g) and their estimated covariances. Robust confidence intervals can
be similarly constructed as in (5).

lsplincom() also allows users to construct confidence bands for θ(·). Specifically, it requests
lsprobust() to output the numerators (t.num.pl for “plug-in”, or t.num.wb1 and t.num.wb2 for
“bootstrap”) and denominators (t.denom) of the feasible approximation processes Ẑj(·) or ẑ∗(·). Let
Uj(·; g) and vj(·; g) denote the numerator and denominator from group g based on bias correction
approach j, g = 1, . . . , G and j = 1, 2, 3. The approximation process for the t-statistic process based on
θ̂j(x) is

Ẑj,θ(·) =
∑G

g=1 rgUj(·; g)Ng,Kj,g√
∑G

g=1 r2
gvj,g(·)2

,

where {Ng,Kj,g}G
g=1 is a collection of independent standard normal vectors, and Kj,g indicates the

dimension of Ng,Kj,g . As discussed before, the dimensionality of these normal vectors depends on
the particular bias correction approach and may vary across groups since the selected number of
knots may be different across groups. The bootstrap approximation process ẑ∗j,θ(·) can be constructed
similarly.

Given these processes, inference is implemented by sampling from G standard normal vectors
(“plug-in" method) or G groups of Rademacher vectors given the data. Then critical values used

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 184

to construct 100(1− α) confidence bands for θ(·) are estimated similarly by 100(1− α) empirical
quantiles of supx∈X |Ẑj,θ(x)| or supx∈X |ẑ∗j,θ(x)|.

As an illustration, we compare the number of rentals during working days and other time periods
(weekends and holidays) based on linear splines and plug-in bias correction. To begin with, we first
estimate the conditional mean function for each group using the command lsprobust().

> est_workday <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ subset = (g == 1))
> est_nworkday <- lsprobust(y, x, neval = 20, bc = "bc3", nknot = 8,
+ subset = (g == 0))
> lsprobust.plot(est_workday, est_nworkday, legendGroups = c("Working Days",
+ "Nonworking Days"), xlabel = "Temperature", ylabel = "Number of Rentals",
+ lty = c(1, 2)) + theme(text = element_text(size = 17), legend.position = c(0.2,
+ 0.85))
> ggsave("output/diff1.pdf", width = 6.8, height = 5.5)

The pointwise results for each group are displayed in Figure 4. The shaded regions represent
confidence intervals. Clearly, when the temperature is low, two regions are well separated, implying
that people may rent bikes more during working days than weekends or holidays when the weather
is cold.

100

200

300

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

Nonworking Days
Working Days

Figure 4: Estimated relationships between the number of rentals (y-axis) and temperature (x-axis)
during working and nonworking days. The solid and dashed curves show the point estimates, and
the shaded regions show the robust confidence intervals for the two groups. We observe that the two
groups appear statistically different at some points, but not all, and testing across the entire range
requires uniform, not pointwise, results.

Next, we employ the command lsplincom() to formally test this result. We specify R=(-1,1),
denoting that −1 is the coefficient of the conditional mean function for the group workingday==0 and
1 is the coefficient of the conditional mean function for the group workingday==1.

> diff <- lsplincom(y, x, data$workingday, R = c(-1, 1), band = T,
+ cb.method = "pl")
> summary(diff)
Call: lprobust

Sample size (n) = 10886
Num. covariates (d) = 1
Num. groups (G) = 2
Basis function (method) = B-spline
Order of basis point estimation (m) = 2
Order of derivative (deriv) = (0)
Order of basis bias correction (m.bc) = 3
Smoothness point estimation (smooth) = 0
Smoothness bias correction (bsmooth) = 1

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 185

Knot placement (ktype) = Uniform
Knots method (kselect) = imse-dpi
Confidence band method (cb.method) = Plug-in

===
Eval Point Std. Robust B.C.
X1 Est. Error [95% C.I.]

===
1 -2.998 32.170 6.077 [24.120 , 47.837]
2 -0.002 49.661 5.552 [37.497 , 61.394]
3 1.998 39.749 4.553 [30.882 , 51.186]
4 3.998 29.838 6.463 [17.013 , 42.425]
5 5.998 17.571 7.049 [3.137 , 30.514]

6 7.001 16.300 6.121 [4.717 , 29.559]
7 9.997 12.569 7.733 [-4.275 , 26.973]
8 11.997 3.039 8.339 [-12.379 , 19.761]
9 13.000 1.653 7.540 [-9.502 , 21.073]
10 15.000 3.060 6.664 [-13.960 , 14.078]

11 17.000 6.118 8.836 [-6.110 , 27.954]
12 18.003 11.823 9.513 [-2.996 , 33.270]
13 19.000 12.311 9.746 [-23.007 , 15.243]
14 22.003 -17.533 8.520 [-20.891 , 15.791]
15 24.003 -32.221 10.024 [-49.905 , -11.277]

16 24.999 -36.962 11.016 [-67.843 , -25.825]
17 26.002 -31.760 9.171 [-37.713 , -1.062]
18 28.002 -21.347 8.789 [-46.161 , -9.332]
19 30.002 -13.412 11.053 [-34.039 , 8.122]
20 32.002 -15.438 11.606 [-44.170 , 1.813]

===

The pointwise results are summarized in the above table. Clearly, when the temperature is low, the
point estimate of the rental difference is significantly positive since the robust confidence intervals do
not cover 0. In contrast, when the temperature is above 7, it is no longer significant. This implies that
the difference in the number of rentals between working days and other periods is less pronounced
when the weather is warm. Again, we can use the command lsprobust.plot() to plot point estimates,
confidence intervals and uniform band simultaneously:

> lsprobust.plot(diff, CS = "all", xlabel = "Temperature", ylabel = "Number of Rentals",
+ legendGroups = "Difference between Working and Other Days") +
+ theme(text = element_text(size = 17), legend.position = c(0.36,
+
+ 0.2))
> ggsave("output/diff2.pdf", width = 6.8, height = 5.5)

In addition, some basic options for the command lsprobust() may be passed on to the command
lsplincom(). For example, the following code generates a smoother fit of the rental difference by
setting m=3:

> diff <- lsplincom(y, x, data$workingday, R = c(-1, 1), band = T,
+ cb.method = "pl", m = 3)
> lsprobust.plot(diff, CS = "all", xlabel = "Temperature", ylabel = "Number of Rentals") +
+ theme(text = element_text(size = 17), legend.position = "none")
> ggsave("output/diff3.pdf", width = 6.8, height = 5.5)

The results are shown in Figure 5. The confidence band for the difference is constructed based on
the plug-in distributional approximation computed previously. It leads to an even stronger conclusion:
the entire difference as a function of temperature is significantly positive uniformly over a range of low
temperatures since the confidence band is above zero when the temperature is low.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 186

−80

−40

0

40

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

Difference between Working and Other Days

(a) Linear basis (m = 2)

−40

0

40

0 10 20 30
Temperature

N
um

be
r

of
 R

en
ta

ls

(b) Quadratic basis (m = 3)

Figure 5: Estimated difference in the number of rentals between working and nonworking days. The
y-axis plots the difference in the number of rentals, and the x-axis plots the temperature. The solid
curves show the point estimates, error bars show the robust confidence intervals, and the shaded
regions show the robust confidence bands. Results in 5a are based on a linear basis, and those in 5b are
based on a quadratic basis. The uniformly valid confidence bands used here provide an assessment of
the difference between the groups overall, compared to the pointwise results in Figure 4.

Summary

We gave an introduction to the software package lspartition, which offers estimation and robust
inference procedures (both pointwise and uniform) for partitioning-based least squares regression.
In particular, splines, wavelets, and piecewise polynomials are implemented. The main underlying
methodologies were illustrated empirically using real data. Finally, installation details, scripts repli-
cating the numerical results reported herein, links to software repositories, and other companion
information, can be found in the package’s website:

https://nppackages.github.io/lspartition/.

Bibliography
S. Calonico, M. D. Cattaneo, and M. H. Farrell. On the effect of bias estimation on coverage accuracy

in nonparametric inference. Journal of the American Statistical Association, 113(522):767–779, 2018.
URL https://doi.org/10.1080/01621459.2017.1285776. [p172]

S. Calonico, M. D. Cattaneo, and M. H. Farrell. Coverage error optimal confidence intervals for local
polynomial regression. arXiv:1808.01398, 2020. URL https://arxiv.org/abs/1808.01398. [p172]

M. D. Cattaneo and M. H. Farrell. Optimal convergence rates, bahadur representation, and asymptotic
normality of partitioning estimators. Journal of Econometrics, 174(2):127–143, 2013. URL https:
//doi.org/10.1016/j.jeconom.2013.02.002. [p172]

M. D. Cattaneo, M. H. Farrell, and Y. Feng. Large sample properties of partitioning-based estimators.
Annals of Statistics, 48(3):1718–1741, 2020. URL https://doi.org/10.1214/19-AOS1865. [p172, 173,
174, 175, 178, 180, 181, 182]

C. K. Chui. An Introduction to Wavelets. Academic Press, Boston, 1992. URL https://doi.org/10.
1016/B978-0-12-174584-4.50005-0. [p174]

A. Cohen, I. Daubechies, and P. Vial. Wavelets on the interval and fast wavelet transforms. Applied and
Computational Harmonic Analysis, 1(1):54–81, 1993. URL https://doi.org/10.1006/acha.1993.1005.
[p173]

J. Fan and I. Gijbels. Local Polynomial Modelling and Its Applications. Routledge, New York, 2018. URL
https://doi.org/10.1201/9780203748725. [p172]

L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of Nonparametric Regression.
Springer-Verlag, 2002. URL https://doi.org/10.1007/b97848. [p172]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://nppackages.github.io/lspartition/
https://doi.org/10.1080/01621459.2017.1285776
https://arxiv.org/abs/1808.01398
https://doi.org/10.1016/j.jeconom.2013.02.002
https://doi.org/10.1016/j.jeconom.2013.02.002
https://doi.org/10.1214/19-AOS1865
https://doi.org/10.1016/B978-0-12-174584-4.50005-0
https://doi.org/10.1016/B978-0-12-174584-4.50005-0
https://doi.org/10.1006/acha.1993.1005
https://doi.org/10.1201/9780203748725
https://doi.org/10.1007/b97848

CONTRIBUTED RESEARCH ARTICLES 187

J. Harezlak, D. Ruppert, and M. P. Wand. Semiparametric Regression with R. Springer, New York, 2018.
URL https://doi.org/10.1007/978-1-4939-8853-2. [p172]

J. S. Long and L. H. Ervin. Using heteroscedasticity consistent standard errors in the linear regression
model. The American Statistician, 54(3):217–224, 2000. URL https://doi.org/10.1080/03610918.
2012.750354. [p175]

D. Ruppert, M. P. Wand, and R. Carroll. Semiparametric Regression. Cambridge University Press, New
York, 2003. URL https://doi.org/10.1017/CBO9780511755453. [p172]

H. Wickham and W. Chang. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics,
2016. URL https://CRAN.R-project.org/package=ggplot2. R package version 2.2.1. [p173]

H. Zhang and B. H. Singer. Recursive Partitioning and Applications. Springer, 2010. URL https:
//doi.org/10.1007/978-1-4419-6824-1. [p172]

Matias D. Cattaneo
Department of Operation Research and Financial Engineering
Princeton University
Princeton, NJ 08544
cattaneo@princeton.edu

Max H. Farrell
Booth School of Business
University of Chicago
Chicago, IL 60637
max.farrell@chicagobooth.edu

Yingjie Feng
Department of Politics
Princeton University
Princeton, NJ 08544
yingjief@princeton.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1007/978-1-4939-8853-2
https://doi.org/10.1080/03610918.2012.750354
https://doi.org/10.1080/03610918.2012.750354
https://doi.org/10.1017/CBO9780511755453
https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.1007/978-1-4419-6824-1
https://doi.org/10.1007/978-1-4419-6824-1
mailto:cattaneo@princeton.edu
mailto:max.farrell@chicagobooth.edu
mailto:yingjief@princeton.edu

CONTRIBUTED RESEARCH ARTICLES 188

Skew-t Expected Information Matrix
Evaluation and Use for Standard Error
Calculations
by R. Douglas Martin, Chindhanai Uthaisaad and Daniel Z. Xia

Abstract Skew-t distributions derived from skew-normal distributions, as developed by Azzalini
and several co-workers, are popular because of their theoretical foundation and the availability of
computational methods in the R package sn. One difficulty with this skew-t family is that the elements
of the expected information matrix do not have closed form analytic formulas. Thus, we developed
a numerical integration method of computing the expected information matrix in the R package
skewtInfo. The accuracy of our expected information matrix calculation method was confirmed
by comparing the result with that obtained using an observed information matrix for a very large
sample size. A Monte Carlo study to evaluate the accuracy of the standard errors obtained with
our expected information matrix calculation method, for the case of three realistic skew-t parameter
vectors, indicates that use of the expected information matrix results in standard errors as accurate as,
and sometimes a little more accurate than, use of an observed information matrix.

Introduction

The primary motivation for this paper was our desire to use a flexible family of skew-t distributions for
quantitative finance research, and in particular for empirical studies of the tail fatness and skewness
of returns distributions of various classes of assets, e.g., stock returns and hedge fund returns. That
said, we hasten to add that skew-t distributions have extensive application uses in the broad areas
of physical and social sciences, and in engineering and computer science. We believe that the main
results of this paper will be of interest to this broader audience as well as to those interested in finance
applications.

We chose to focus on the family of skew-t distributions based on skew-normal distribution,
henceforth “skew-t” distributions, for two main reasons. The first reason is the existence of extensive
research results on the family, as reflected for example in Azzalini and Capitanio (2003) and Azzalini
and Arellano-Valle (2013), along with the extensive coverage of both univariate and multivariate
skew-t distributions in the Azzalini and Capitanio (2014) (AZC) monograph. The second reason is
that research using skew-t distributions based on the skew-normal distribution is greatly facilitated by
the existence of the comprehensive and well-supported R package sn.

The expected information matrix for skew-t distributions is a key quantity for a number of
purposes, including: (a) computing approximate standard errors of skew-t parameter estimates from
the asymptotic covariance matrix evaluated at maximum-likelihood estimates (MLEs); (b) evaluating
the large-sample inefficiencies of skew-t MLEs when the distribution is normal; (c) comparing the
large-sample performances of non-parametric versus skew-t MLE expected shortfall estimators. See
for example Martin and Zhang (2017) for (b) and (c) in the case of symmetric-t distributions, where a
closed-form expression exists for the expected information matrix.

Unfortunately, there does not exist a closed form analytic matrix expression for the skew-t infor-
mation matrix. Therefore, we have developed a numerical integration method for computing the
elements of a skew-t information matrix at specified skew-t parameter values, and have implemented
the resulting algorithm in the R function stInfoMat() in the R package skewtInfo. Users can install
the package with RStudio via the following commands:

install.packages("devtools")
devtools::install_github("chindhanai/skewtInfo")

Although our particular interest in using the skewtInfo package is focused on applications in
quantitative finance, we anticipate that it will be of interest to researchers across many fields of study,
e.g., physical and social sciences and engineering and computer science, where skew-t distribution
have important applications.

For the purpose of analyzing the resulting expected information matrix (henceforth simply "the
information matrix") and evaluating its use for computing standard errors, we used the sn package
maximum penalized-likelihood estimator (MPLE) function st.mple() to compute three sets of skew-t
parameter values for three sets of returns, labeled D1, D2, D3 obtained from a single stock with ticker
D on three different time segments between December 1991 and September 2015.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sn

CONTRIBUTED RESEARCH ARTICLES 189

The remainder of this paper is organized as follows. The "Skew-t Distribution" section introduces
the skew-t distribution family, and provides the relationship between the skew-t distribution direct
parameters "dp" and the usual moment-based "cp" parameters, i.e., the mean, standard deviation,
skewness and excess kurtosis. The "Maximum Penalized Likelihood Estimation Method" section
briefly describes the sn package MPLE method used to fit skew-t distributions, and uses the method to
compute skew-t parameters for each of the three sets of returns D1, D2, D3, compares the parameters
to those obtained with symmetric-t distribution maximum-likelihood estimates (MLEs), and computes
the values of the cp parameters from the skew-t dp parameters. The "Skew-t Information Matrix"
section discusses our numerical method for computing the information matrix, as implemented in
the package skewtInfo, and describes how we verified by examples the accuracy of our method. That
section also examines the ill-conditioning of the information matrix for the three sets of skew-t MPLEs
and computes and discusses the corresponding asymptotic correlations of the skew-t parameter
MPLEs for D1, D2, D3. The "Standard Errors of Skew-t Parameter MPLEs" section uses Monte Carlo to
evaluate the use of an expected information matrix to compute standard errors of skew-t MPLEs, in
comparison with the use of an observed information matrix, and in comparison with Monte Carlo
"true" standard errors, which are used as true skew-t parameters the MPLEs for stock returns D1, D2,
D3. As a preliminary to this Monte Carlo, the first part of the "Standard Errors of Skew-t Parameter
MPLEs" section discusses a problem that arises when using skew-t MPLEs to compute them for a
large number of replicates, and shows how to deal with the problem. Finally, the last section discusses
related future research that needs to be done.

Skew-t distributions

It is well-known that a random variable X with a standard t-distribution, i.e., with location parameter
of value zero, scale parameter of value one, and ν degrees of freedom has the stochastic representation

X =
Z√

χ2
ν/ν

(1)

where Z follows a standard normal distribution and the independent random variable χ2
ν follows a chi-

squared distribution with ν degrees of freedom. The following results and related details concerning
skew-t random variables and their distributions are provided in Azzalini and Capitanio (2014).

A standard skew-t random variable Y0,1, α, ν ∼ ST(0, 1, α, ν) with slant (skewness) parameter α
and degrees of freedom parameter ν, can be obtained by replacing Z with an independent standard
skew-normal random variable Z0,1,α ∼ SN(0, 1, α), whose probability density function is

fSN(x; α) = 2 φ(x) ·Φ(αx) (2)

where φ(x) is the standard normal density function and Φ(x) is the standard normal (cumulative)
distribution function. The resulting standard skew-t random variable

Y0,1,α,ν =
Z0,1,α√

χ2
ν/ν

(3)

has the standard skew-t probability density

fST,std(x; α, ν) = 2 tν(x) · Tν+1

(
αx ·

√
ν + 1
ν + x2

)
(4)

where tν(x) is the density function of a standard t-distribution random variable with ν degrees of
freedom, and Tν(x) is the corresponding cumulative distribution function.

A general skew-t random variable Yξ,ω,α,ν with location parameter ξ and scale parameter ω, whose
distribution we denote as ST(ξ, ω, α, ν), has the stochastic representation

Yξ, ω, α, ν = ξ + ωY0,1, α, ν (5)

with the transformations

z =
y− ξ

ω
, τ(z) =

√
ν + 1
ν + z2 (6)

A general skew-t probability density function of Yξ, ω, α, ν is then given by

fST(y; ξ, ω, α, ν) =
2
ω
· t(z) · Tν+1 (αzτ(z)) (7)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 190

with the transformations

δα =
α√

1 + α2
, bν =

√
ν

π
· Γ((ν− 1)/2)

Γ(ν/2)
(8)

one would find that the variance of the standardized skew-t random variable z is:

σ2
z = var(z) =

ν

ν− 2
− (bνδα)

2 (9)

Note that as the slant parameter α ranges over (−∞,+∞), the parameter δα ranges over the interval
(−1, 1) , and when there is no skewness, i.e., when α = δα = 0, the variance of z is that of a standard
symmetric-t random variable.

It will sometimes be of interest to transform a skew-t distribution parameter vector (ξ, ω, α, ν) to
the usual mean, standard deviation, skewness, and excess kurtosis vector (µ, σ, γ, κ). 1 This can be
done with the following transformations, provided on pages 103-104 of AZC:

µ = ξ + ωbνδα

σ2 = ω2σ2
z for ν > 2 (10)

γ =
bνδα

σ3
z

[
ν(3− δ2

α)

ν− 3
− 3ν

ν− 2
+ 2(bνδα)

2
]

for ν > 3

κ =
1

σ4
z

[
3ν2

(ν− 2)(ν− 4)
− 4(bνδα)2ν(3− δ2

α)

ν− 3
+

6ν(bνδα)2

ν− 2
− 3(bνδα)

4
]
− 3 for ν > 4.

The maximum penalized likelihood estimation method

The log-likelihood for a single observation y with density f (y; θ) is

`(θ; y) = log f (y; θ)

where θ is a parameter vector. With θ = (ξ, ω, α, ν) and z = (y− ξ)/ω, it follows from (7) that for a
skew-t distribution the log-likelihood function for a single observation y is

`ST(θ; y) = constant− 1
2

log ν + log Γ(
1
2
(ν + 1))− log Γ(

ν

2
)

− 1
2
(ν + 1) log

(
1 +

z2

ν

)
+ log Tν+1 (αzτ(z)) (11)

For n independently and identically distributed skew-t observations y = (y1, y2, . . . , yn) the log-
likelihood is

`n(θ) = `n(θ; y) =
n

∑
i=1

`ST(θ; yi) (12)

Let θ̂n = (ξ̂n, ω̂n, α̂n, ν̂n) denote a maximum-likelihood estimate (MLE) for sample size n.
Azzalini and Arellano-Valle (2013) showed that with non-negligible probability the MLE α̂n of the
skewness parameter α diverges. Consequently, they proposed a maximum penalized likelihood
estimator (MPLE) to solve this problem, based on a penalized likelihood of the form

˜̀n(θ) = `n(θ)−Q(θ) (13)

where Q(θ) = Q(α, ν) is a non-negative quantity that penalizes the divergence of α by virtue of
tending to infinity as α → ±∞ for each fixed ν. Details may be found in Section 3 of Azzalini and
Arellano-Valle (2013).

Application to stock returns data

We illustrate the use of the sn package function st.mple() to compute skew-t distribution MPLE fits
to three disjoint time segments of the returns of a large-cap stock with ticker D and company name
The Dominion Resources, INC2. The code shown below creates the plot of monthly returns of this
stock from December 1991 to September 2015 in Figure 1.

1The skewness and excess kurtosis are given by γ = E
[(

Y−µ
σ

)3
]

and κ = E
[(

Y−µ
σ

)4
]
− 3, respectively.

2See https://www.sec.gov/Archives/edgar/data/715957/000119312505038704/d10k.htm#toc55089_2 for
more information.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://www.sec.gov/Archives/edgar/data/715957/000119312505038704/d10k.htm#toc55089_2

CONTRIBUTED RESEARCH ARTICLES 191

tsDRet = ts(as.numeric(Dreturns[,2]), start = c(1991, 12), frequency = 12)
plot(tsDRet*100, main = "", col = 4, ylab = "RETURNS(%)")
abline(h = 0, lty = 3)

R
E

T
U

R
N

S
 (

%
)

−20

−10

0

10

1995 2000 2005 2010 2015

Figure 1: Stock D monthly returns.

The entire time history of the D returns is longer than one would normally use for portfolio
construction, and we note that this time interval contains several major market crises, e.g., the Russian
default in 1998, the dot-com bubble collapse in 2000, and the financial markets crises of 2007-2008.
Thus we will fit skew-t distributions, and also symmetric-t distributions, to the stock with ticker D
for the sub-intervals 1991-1996, 1998-2009, and 2010-2015. The first interval, consisting of 61 months,
contains no market crises, and the same is true of the third interval that consists of 72 months. The
second interval, consisting of 156 months, contains all three crises. For convenience, we refer to the
stock D returns on the first, second and third time intervals as D1, D2, and D3. Based on this fact that
D2 contains three market crises, along with the visual character of the D2 returns, we expected that we
would obtain a skew-t fit with negative slant parameter and rather small degrees of freedom for D2.
But for D1 and D3 we were not sure what to expect.

The code below extracts the three segments of returns D1, D2 and D3, then uses st.mple() with
the optional argument symmetr = T to obtain symmetric-t MLE values θ̂Di, sym, i = 1, 2, 3, and finally
uses st.mple() without that optional argument to compute skew-t MPLE estimates θ̂Di, i = 1, 2, 3.

Define returns in each time period
Dreturns <- as.numeric(Dreturns[, 2])
returns1 <- Dreturns[1:61]
returns2 <- Dreturns[62:217]
returns3 <- Dreturns[218:289]

Symmetric-t fit
tFitD1 <- st.mple(y = returns1, symmetr = TRUE)$dp
tFitD2 <- st.mple(y = returns2, symmetr = TRUE)$dp
tFitD3 <- st.mple(y = returns3, symmetr = TRUE)$dp
tFit <- rbind(tFitD1, tFitD2, tFitD3)

Skew-t fit
stFitD1 <- st.mple(y = returns1, penalty = "Qpenalty")$dp
stFitD2 <- st.mple(y = returns2, penalty = "Qpenalty")$dp
stFitD3 <- st.mple(y = returns3, penalty = "Qpenalty")$dp
stFit <- rbind(stFitD1, stFitD2, stFitD3)

The results are shown in Table 1.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 192

Symmetric-t Skew-t

location scale dof location scale slant dof

D1 returns 0.006 0.035 2764147.496 0.049 0.053 -3.735 32.102
D2 returns 0.013 0.044 4.209 0.046 0.054 -1.064 4.416
D3 returns 0.014 0.031 8.562 0.036 0.035 -1.021 6.638

Table 1: Symmetric-t and skew-t parameter estimates for D1, D2 and D3.

The results show that in the first time interval 1991-1996, before the dot-com bubble collapse,
θ̂D1, sym implies very normally distributed D1 returns, but θ̂D1 indicates that the D1 returns distribution
in that time interval is better approximated by a skew-normal distribution with strong negative
skewness reflected by the negative slant parameter estimate of −3.73. In the second period 1998-2009,
that contains three financial crises, both θD2, sym and θD2 imply that the D2 returns are quite fat-tailed
with degrees-of-freedom estimates of 4.21 and 4.42 respectively, θD2 indicates that the returns are
negatively skewed, but less so than for D1, as indicated by skew-t slant parameter estimate of −1.06.
Finally, for the third interval both θD3, sym and θD3 imply that that the D3 returns distribution is
fat-tailed, but a little less so than in the second period, and θD3 indicate that the D3 returns distribution
is negatively skewed by about the same amount as the D2 returns.

Skew-t information matrix

There are two equivalent forms of an information matrix, one of which involves the products of
score functions that are derivatives with respect to each parameter of the log-likelihood for a single
observation, and the other of which involves the partial derivatives of the score functions (second
partial derivatives of the log-likelihood for a single observation) with respect to each parameter.3 In
our case here, where θ = (ξ, ω, α, ν) and the skew-t log-likelihood for a single observation is

`ST(θ; y) = `ST(ξ, ω, α, ν; z), z = (y− ξ)/ω (14)

We also have the scalar score functions

Sξ(y) =
∂`ST(ξ, ω, α, ν; z)

∂ξ

Sω(y) =
∂`ST(ξ, ω, α, ν; z)

∂ω
(15)

Sα(y) =
∂`ST(ξ, ω, α, ν; z)

∂α

Sν(y) =
∂`ST(ξ, ω, α, ν; z)

∂ν

and the score vector is the gradient of the log-likelihood:

S(y; ξ, ω, α, ν) = ∇`ST(θ; y) = [Sξ(y) Sω(y) Sα(y) Sν(y)]′ (16)

The two equivalent forms of the information matrix are:

I(θ) =


E[Sξ(y)Sξ(y)] E[Sξ(y)Sω(y)] E[Sξ(y)Sα(y)] E[Sξ(y)Sν(y)]
E[Sω(y)Sξ(y)] E[Sω(y)Sω(y)] E[Sω(y)Sα(y)] E[Sω(y)Sν(y)]
E[Sα(y)Sξ(y)] E[Sα(y)Sω(y)] E[Sα(y)Sα(y)] E[Sα(y)Sν(y)]
E[Sν(y)Sξ(y)] E[Sν(y)Sω(y)] E[Sν(y)Sα(y)] E[Sν(y)Sν(y)]

 (17)

= −


E[Sξξ(y)] E[Sξω(y)] E[Sξα(y)] E[Sξν(y)]
E[Sωξ(y)] E[Sωω(y)] E[Sωα(y)] E[Sων(y)]
E[Sαξ(y)] E[Sαω(y)] E[Sαα(y)] E[Sαν(y)]
E[Sνξ(y)] E[Sνω(y)] E[Sνα(y)] E[Sνν(y)]

 (18)

The importance of the information matrix I(θ) is that V(`) = I(`)−1 is the asymptotic covariance

3See for example Casella and Berger (2001).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 193

matrix of a consistent and asymptotically normal MPLE θ̃n = (ξ̃n, ω̃n, α̃n, ν̃n). Consequently V(˜̀n)
can be used to compute approximate standard errors in the usual way, i.e., by extracting the diagonal
elements of V(˜̀n), taking the square root of the result and then dividing by

√
n. In the remainder of

this section, we focus on a numerical integration method of evaluating I(θ), verifying the accuracy of
the method, and analyzing the character of the resulting I(θ) for the MPLE parameters for the stock
returns D1, D2, and D3.

Numerical evaluation of the skew-t information matrix

The skew-t information matrix in (17)-(18) does not admit of closed-form analytic expressions for its
elements, and one must resort to numerical integration. It turns out that information matrix form (17)
is considerably simpler than that of (18) for purposes of numerical integration, and so we focus on
the former. For this purpose we need the following analytic expressions for the score functions (15)
derived by DiCiccio and Monti (2011). Let

w(z) =
tν+1(αz · τ(z))
Tν+1(αz · τ(z)) , ψ(x) =

∂

∂x
log(Γ(x))

where ψ(x) is the digamma function. Then the score functions are

Sξ(y) =
z · τ(z)2

ω
− αν · τ(z)

ω(ν + z2)
· w(z) (19)

Sω(y) = −
1
ω

+
z2 · τ(z)2

ω
− αzν · τ(z)

ω(ν + z2)
· w(z) (20)

Sα(y) = z · w(z) · τ(z) (21)

Sν(y) = ϕ(ν)− log
(

1 +
z2

ν

)
+

z2 · τ(z)2

ν
+

αz(z2 − 1)
(ν + z2)2τ(z)

· w(z) +
ζ(z)

Tν+1(αz · τ(z)) (22)

where

ϕ(ν) =
1
2

[
ψ
(ν

2
+ 1
)
− ψ

(ν

2

)]
− 2ν + 1

ν(ν + 1)
(23)

ζ(z) =
∫ αz·τ(z)

−∞

{
(ν + 1)u2

(ν + 1)(ν + 1 + u2)
− log

(
1 +

u2

ν + 1

)}
t(u; ν + 1) du (24)

We have developed the R package skewtInfo at https://github.com/chindhanai/skewtInfo for
numerically evaluating Equation (17). The main function in this package is stInfoMat(), which has
an argument type that controls the type of information matrix to be computed, with the choice type =
"expected" resulting in computing an expected information matrix, and the choice type = "observed"
resulting in computing an observed information matrix. We note that the computation of an observed
information matrix for skew-t distributions is already available using the functions st.infoUv() in
the sn package. But for the sake of stand-alone completeness of the skewtInfo package we included
the capability to compute an observed information matrix.

The stInfoMat() function, with about 400 lines of R code, uses numerical quadrature as imple-
mented in the function integrate() from the R base package, with the choice of tolerance of 10−9. The
integrate() function maps the infinite range of parameters onto finite sub-intervals, and then uses
globally adaptive interval subdivision in conjunction with Wynn’s Epsilon algorithm extrapolation,
with the basic step being Gauss-Kronrod quadrature. See Piessens et al. (1983) and the documentation
of the function integrate for more information.

Note that the expectations in the bottom row of the information matrix involve a double integration
due to the presence of ζ(z) in the last term of Sν(y), and hence the presence of ζ(z) in the pairwise
products of (22) with (19)-(21). For example, as a part of computing the expected value of the score
functions product Sα · Sν, we need to evaluate4

E
(

zwτζ

Tν+1(αzτ)

)
=
∫ (zwτζ

Tν+1(αzτ)

)
fST(y) dy

=
∫

R

(∫ αzτz

−∞

{
(ν + 1)u2

(ν + 1)(ν + 1 + u2)
− log

(
1 +

u2

ν + 1

)}
t(u; ν + 1) du

)
zwτ · fST(y)
Tν+1(αzτ)

dy

To compute such an integral in R, we do the following

1. Define the innermost integrand of (24) as a function of u and ν

4We suppress the variable z dependency for w, τ and ζ for a more compact expression of the integrals.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/chindhanai/skewtInfo

CONTRIBUTED RESEARCH ARTICLES 194

2. Integrate the inner integrand with respect to u and define this inner integral as a function of z

3. Define the outer integrand to be the product of integral from Step 2 and the function

z · w(z) · τ(z) · fST(y)
Tν+1(αz · τ(z))

4. Integrate the vectorized integrand in Step 3 with respect to y by using sapply() on the y range
over the real line.

Usage example

The function stInfoMat() has three arguments:

1. y, a vector of skew-t random variables used to compute an observed information matrix. Its
default is NULL.

2. dp, the skew-t direct parameter used to compute an expected information matrix, or an observed
information matrix.

3. type = c("expected","observed"), the type of output information matrix, with default
"expected".

The object returned by a call to stInfoMat() is a list having four objects:

1. dp, the skew-t direct parameter used to compute an expected information matrix or an observed
information matrix.

2. stInfoMat, an expected information matrix when type = "expected", and an observed infor-
mation matrix when type = "observed".

3. type, the type of output information matrix.

4. SEMat, the asymptotic standard errors of the skew-t parameters when type = "expected",
and the element-wise standard error of the observed information matrix in the case of type =
"observed".
Here the asymptotic standard errors of the skew-t MPLEs are the square roots of the diagonal
elements of the inverse of the expected information matrix, and the element-wise standard
errors of the observed information matrix are the standard errors of the element-wise sample
means defined in equation (27) in the next subsection.

The following code illustrates the use of stInfoMat() to compute the expected information matrix
I(θD2) for the case of the skew-t parameter values θD2 = (0.0461, 0.0536, −1.06, 4.42), previously
obtained as MPLE for D2 returns.

expInfo_D2 <- stInfoMat(dp = stFitD2, type = "expected")$stInfoMat

392.994 -133.197 6.697 0.111
-133.197 459.792 2.931 -1.005

6.697 2.931 0.205 -0.007
0.111 -1.005 -0.007 0.005

Expected information matrix accuracy verification

Recall the expression for a skew-t log-likelihood `n(θ) in (12) for a sample of size n, where `ST(θ; yi)
is the log-likelihood for a single observation, and the gradient of the log-likelihood is given by (16). It
follows that the Hessian of `n(θ) is

∇2`n(θ; y) =


∑n

i=1 Sξξ(yi) ∑n
i=1 Sξω(yi) ∑n

i=1 Sξα(yi) ∑n
i=1 Sξν(yi)

∑n
i=1 Sξω(yi) ∑n

i=1 Sωω(yi) ∑n
i=1 Sωα(yi) ∑n

i=1 Sων(yi)

∑n
i=1 Sξα(yi) ∑n

i=1 Sωα(yi) ∑n
i=1 Sαα(yi) ∑n

i=1 Sαν(yi)

∑n
i=1 Sξν(yi) ∑n

i=1 Sων(yi) ∑n
i=1 Sαν(yi) ∑n

i=1 Sνν(yi)

 (25)

where the expressions for the second partial derivatives above were derived by DiCiccio and Monti
(2011). The observed information matrix Iobs,n(θ) for a sample of size n is :

Iobs,n(θ) = −∇2`n(θ; y) (26)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 195

It is a general result that the observed information matrix converges in probability to the expected
information matrix:

− 1
n
∇2`n(θ; y)→P I(θ) (27)

We shall confirm the accuracy of our numerical evaluation of I(θ) by evaluating the observed
information matrix on the left-hand side of the above convergence result for very large n.

We could use either stInfoMat() with type = "observed" or the sn package function st.infoUv()
to compute the observed information matrix. These two functions give virtually identical results,
and since our skewtInfo package contains stInfoMat(), we use that function to compute both
observed and expected information matrices for the case of the skew-t parameter vector θD2 =
(0.0461, 0.0536, −1.06, 4.42) with n = 100, 000, and compare the results. Table 2 shows the following
results: the absolute differences (AD) and relative differences (RD) between the expected and observed
information matrix, along with the standard errors (SE) of the observed information matrix estimates,
and the t-statistics (AD/SE) for testing whether or not the observed information matrix values are
equal to those of the expected information matrix.

Diagonal Expected Observed AD RD SE tstat.AD

I_11 392.994 393.048 0.054 0.000 0.825 0.065
I_22 459.792 459.621 -0.170 0.000 2.249 -0.076
I_33 0.205 0.206 0.000 0.002 0.000 0.812
I_44 0.005 0.005 0.000 0.002 0.000 0.334

Off.diagonal Expected Observed AD RD SE tstat.AD

I_12 -133.197 -136.135 -2.938 0.022 1.582 -1.857
I_13 6.697 6.643 -0.054 -0.008 0.030 -1.807
I_14 2.931 2.904 -0.027 -0.009 0.020 -1.386
I_23 0.111 0.111 0.000 0.000 0.003 -0.017
I_24 -1.005 -1.004 0.002 -0.002 0.008 0.213
I_34 -0.007 -0.007 0.000 -0.007 0.000 0.485

Table 2: Absolute differences (AD), relative differences (RD), standard errors (SE), and t-statistics
(tstat.AD) of diagonal elements (Top) and off-diagonal elements (Bottom) of the expected information
matrix and the observed information matrix based on n = 100, 000 for the skew-t parameter θD2.

The accuracy of the results in this table indicate that the observed information matrix with a very
large sample size n is sufficiently close to the expected information matrix for us to conclude that our
expected information matrix computation is sufficiently accurate.

Information matrices condition numbers and parameters correlations

One obtains an MPLE asymptotic covariance matrix by computing the inverse of an expected informa-
tion matrix, and the stability of such inversion depends on the condition number of the latter matrix.5

In order to get a feeling for the extent of ill-conditioning of expected information matrices for the three
skew-t MPLEs of the previous section, we computed the eigenvalues and condition numbers for the
corresponding expected information matrices, and show the results in Table 3.

We see that the expected information matrix for θD1 is very badly ill-conditioned, and the expected
information matrices of θD2 and θD3 are also quite ill-conditioned, but less so than the information
matrix for θD1. Nonetheless all three of these information matrices are positive definite and their
inverses exist.

5The condition number of a positive definite real matrix A is given by

κ(A) =
λmax

λmin
=

λ−1
min

λ−1
max

= κ(A−1)

where λmin and λmax are the smallest eigenvalue and the largest eigenvalue of A.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 196

lambda1 lambda2 lambda3 lambda4 condition numbers

D1 returns 1381.5806 534.8326 0.0055 0.0000 1201125125
D2 returns 563.7201 289.2469 0.0262 0.0024 232597
D3 returns 1466.7779 716.4898 0.0222 0.0005 2734502

Table 3: Eigenvalues and condition numbers corresponding to the information matrices in the three
time periods.

Asymptotic correlations of the four parameter MPLEs

The correlation matrix obtained from such an MPLE asymptotic covariance matrix indicates how
correlated the skew-t MPLEs will be in large samples. In order to see what these correlations look like,
we display below the MPLE asymptotic correlation matrices for the returns D1, D2 and D3.

1.000 0.734 -0.802 0.443
0.734 1.000 -0.706 0.769
-0.802 -0.706 1.000 -0.411
0.443 0.769 -0.411 1.000

1.000 0.850 -0.938 0.394
0.850 1.000 -0.836 0.641
-0.938 -0.836 1.000 -0.359
0.394 0.641 -0.359 1.000

1.000 0.885 -0.954 0.434
0.885 1.000 -0.874 0.661
-0.954 -0.874 1.000 -0.407
0.434 0.661 -0.407 1.000

The six pairwise asymptotic correlations are rather similar across the three skew-t parameter
values as follows. The correlations between location and scale parameters tend to be quite positive
(ranging from 0.734 to 0.885), the correlations between location are slant parameters are strongly
negative (ranging from -.954 to -.802), and the correlations between location and DoF tend to be
small and positive (ranging from 0.394 to 0.443). The scale and slant parameters are substantially
negatively correlated (ranging from -.874 to -.706), and the scale and DoF parameters are rather
positively correlated (ranging from 0.641 to 0.769). Finally, the slant and DoF parameters are somewhat
negatively correlated (ranging from -.411 to -.359).

Standard errors of skew-t parameter MPLEs

Since our expected information matrix computation is highly accurate, we will use the inverse of
the expected information matrix to compute standard errors in the usual way, i.e., by taking the
square root of the variance estimates obtained as the diagonal elements of the estimated asymptotic
covariance matrix (the inverse of the estimated expected information matrix) divided by n:

SEθ =
(
SEξ , SEω , SEα, SEν

)
=
√

diag
(
I−1(θ̂n)

)
We evaluate the performance of these standard errors in the following two ways: (a) we compare

them with the "true" standard errors obtained via Monte Carlo, and (b) we compare them with the
standard errors based on an observed information matrix computed in the sn package. These results
will reveal whether or not there are any meaningful differences in the accuracy of the standard errors
obtained using the expected information matrix versus using the observed information matrix.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sn

CONTRIBUTED RESEARCH ARTICLES 197

Before we make such comparisons, the next subsection first discusses a basic problem that occurs
in carrying out Monte Carlo studies with many replicates of st.mple() fits, and how to deal with the
problem.

A Monte Carlo skew-t fitting difficulty and a solution

When carrying out our Monte Carlo studies involving generating a large number of random sample
replicates from a skew-t distribution, and fitting a skew-t distribution with st.mple() to each replicate,
we would often run into a problem that st.mple() sometimes results in a huge value for the degrees
of freedom estimate and simultaneously an essentially zero estimate for the slant parameter. This
problem is associated with a well-known singularity problem with a skewed normal distribution
when the slant (skewness) parameter is zero, and a near singularity when the slant parameter is close
to zero. The problem occurs when a randomly generated replicate of a skew-t random variable is close
to normality, which happens the more so for small sample sizes.

We illustrate the behavior using M = 1, 000 replicates of samples of size n = 50, 100, 200, 400
from a skew-t distribution with parameter value θD2 = (0.0461, 0.0536,
− 1.06, 4.42) that we obtained as an st.mple() estimate in Table 1.6 The code below implements this
for the case n = 50, with the replicates stored in the matrix retReps, and the fits stored in the matrix
skewtFits.

set.seed(123)
Skew-t parameters corresponding to D2 returns
dp <- stFitD2
M <- 1000
n <- 50
retReps <- matrix(NA, ncol = n, nrow = M)
skewtFits <- matrix(NA, ncol = 4, nrow = M)
for (m in 1:M) {
retReps[m,] <- rst(n = n, dp = dp)

}
for (m in 1:M) {
skewtFits[m,] <- st.mple(y = retReps[m,], penalty = "Qpenalty")$dp

}

Now for each sample size 50, 100, 200, and 400, we identify a sub-matrix skewtFitsHugeDof of
skewtFits for which the degrees of freedom estimate is larger than each of thresholds 20, 40, 100, 500
and 1,000, and print the number of rows of skewtFitsHugeDof for which this occurs for each of those
thresholds, along with the parameter estimates of the first such row. The code below accomplishes
this for the threshold value 1,000.

skewtFitsHugeDof <- skewtFits[(skewtFits[, 4] > 1000),]
nrow(skewtFitsHugeDof)
[1] 123
skewtFitsHugeDof[1,]
[1] 5.777610e-03 6.016062e-02 -9.752894e-07 4.897225e+06

Table 4 displays the number and percent of replicates for which the st.mple() fit for the parameters
choice θD2 = (0.046, 0.054, −1.064, 4.416), has degrees of freedom larger than the threshold of 20,
40, 100, 500 and 1, 000, for each of the sample sizes 50, 100, 200, 400. The percentages of replicates
whose DoF estimates are larger than the above thresholds indicate that the fits are quite unreliable for
n = 50 and n = 100, but are much more reliable for sample size 200, where the percent of huge DoF
estimates is less than 1% for all thresholds greater than 40, and at the sample size 400 it is only 0.3%
for a threshold of 20, and 0.1% for larger thresholds.7

In order to carry out our Monte Carlo studies with 1,000 replicates, whose results we discuss in
the remainder of this subsection, we need to obtain that many replicates after deleting any replicates
for which the DoF estimate is sufficiently large. For purposes of our study, we will use a threshold
of 20, noting that any replicate with a DoF estimate larger than 20 is rather close to normality, and if

6We note that following ? "How to sample from the SN and related distributions when we want to fix skewness
and other cumulants", we always use the DP parameterization when generating random samples from a skew-t
distribution.

7On page 63 of Azzalini and Capitanio (2014) the authors suggest that for fitting their skew distributions the
usual assumption that "sample sizes less than 30" should be considered "small sample", should be replaced with
"sample sizes less than 50". But they also say that setting such a threshold is difficult because it depends on the
slant parameter α. For the case of the α values for the three skew-t parameter vectors we focus on here, it seems
like the threshold may be more like 200.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 198

50 100 200 400

Fit DoF > 20 170 (17 %) 80 (8 %) 16 (1.6 %) 3 (0.3 %)
Fit DoF > 40 148 (14.8 %) 58 (5.8 %) 10 (1 %) 1 (0.1 %)
Fit DoF > 100 136 (13.6 %) 45 (4.5 %) 6 (0.6 %) 1 (0.1 %)
Fit DoF > 500 126 (12.6 %) 39 (3.9 %) 5 (0.5 %) 1 (0.1 %)
Fit DoF > 1000 123 (12.3 %) 36 (3.6 %) 5 (0.5 %) 1 (0.1 %)

Table 4: Numbers and percentages of replicates for θD2 whose MPLE fit has DoF greater than
20, 40, 100, 500, 1000.

significant skewness is indicated by the slant parameter estimate then one should fit a skew-normal
distribution. Thus we carry out our Monte Carlo study to obtain 1,000 clean replicates, with no DoF
estimate larger than 20, by first generating 1,300 replicates to clean, which will leave more than 1,000
replicates remaining for all cases considered, and take the first 1,000 of those remaining replicates for
Monte Carlo calculations.

Our main goal here is to do a simple Monte Carlo comparison of the MPLE values with true
parameter values, where we take the true parameter values to be the three sets of values θDi, i = 1, 2, 3
in Table 1 for the skew-t distribution. So we compute the sample mean values MCDi, n of the MPLEs
across the 1,000 replicates, along with their Monte Carlo standard errors, and their percent relative
biases:

RBDi, n = 100× MCDi, n − θDi
θDi

, i = 1, 2, 3.

However, before we show the results of deleting MPLEs whose DoF estimate is larger than 20,
we first show the results obtained without doing such deleting. These results, shown in Table 8 for
sample sizes n = 100, 200, 400, with standard errors of the MC values in parentheses, reveal that for all
three parameter sets considered, the average values of the DoF estimates are hugely positively biased.
This is because a fraction of the st.mple() estimates of the DoF are huge outliers that very adversely
distort the DoF Monte Carlo average value.8

Table 12 then shows the results of deleting any MPLEs whose DoF estimate is greater than 20. In
Table 9a where the true DoF parameter has a value close to 32 and a rejection threshold of 20 is used,
it is not surprising that the DoF values are very negatively biased. However in Tables 10a and 11a,
where the true DoF values are about 4.4 and 6.6 respectively, the DoF values are positively biased, and
the relative bias is considerably smaller than in Table 9a where the true DoF parameter value is close
to 32.

8We deleted the standard error estimates for the DoF average values for display reasons, and that they are pretty
irrelevant.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 199

(a)

D1 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.049 0.044 (2e-04) -10.1 0.047 (1e-04) -3.9 0.048 (1e-04) -1.9
0.053 0.047 (2e-04) -12 0.05 (2e-04) -6.4 0.052 (1e-04) -2.7
-3.735 -3.145 (0.0617) -15.8 -3.394 (0.0295) -9.1 -3.522 (0.022) -5.7
32.102 5.81e+05 2.e+06 6e+05 2.e+06 6e+05 2.e+06

(a)

D2 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.046 0.04 (5e-04) -13.2 0.043 (4e-04) -6.7 0.045 (3e-04) -2.3
0.054 0.053 (3e-04) -1.1 0.053 (2e-04) -1.1 0.054 (2e-04) 0.8
-1.064 -0.974 (0.0227) -8.5 -1.015 (0.0158) -4.6 -1.066 (0.0115) 0.2
4.416 1.77e+05 4.e+06 4.27e+03 1.e+05 4.82e+00 9.e+00

(a)

D3 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.036 0.0296 (4e-04) -16.9 0.0324 (3e-04) -9.1 0.0343 (2e-04) -3.7
0.035 0.0342 (2e-04) -3.2 0.0347 (2e-04) -1.8 0.0352 (1e-04) -0.4
-1.021 -0.8279 (0.0236) -18.9 -0.9188 (0.0175) -10 -0.9973 (0.0128) -2.3
6.638 4.61e+05 7.e+06 7.58e+04 1.e+06 1.15e+01 7.e+01

Table 8: Means MC and percent relative biases RB% of the Monte Carlo skew-t MPLEs corresponding
to (a) θD1 (b) θD2 (c) θD3 with M = 1000. The four rows of values in each table are for the location,
scale, slant and DoF parameters, respectively, and MC standard errors are shown in parentheses.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 200

(a)

D1 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.049 0.045 (0.00019) -8.0 0.046 (0.00012) -6.0 0.047 (9e-05) -3.9
0.053 0.046 (2e-04) -13.9 0.048 (0.00015) -10.2 0.049 (1e-04) -8.3
-3.735 -3.143 (0.06056) -15.8 -3.25 (0.02883) -13.0 -3.324 (0.02108) -11.0
32.102 9.923 (0.13035) -69.1 11.547 (0.12452) -64.0 13.132 (0.10893) -59.1

(a)

D2 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.046 0.04 (0.00051) -13.2 0.043 (0.00037) -6.7 0.045 (0.00027) -2.3
0.054 0.052 (0.00031) -3.0 0.053 (0.00024) -1.1 0.054 (0.00019) 0.8
-1.064 -0.981 (0.02195) -7.8 -1.013 (0.01548) -4.8 -1.065 (0.01151) 0.1
4.416 5.314 (0.09363) 20.3 5.099 (0.0715) 15.5 4.782 (0.04686) 8.3

(a)

D3 n = 100 n = 200 n = 400

Theta MC RB% MC RB% MC RB%

0.036 0.031 (0.00036) -13.0 0.032 (0.00027) -10.2 0.034 (2e-04) -4.6
0.035 0.033 (0.00019) -6.6 0.034 (0.00015) -3.8 0.035 (0.00012) -1.0
-1.021 -0.863 (0.022) -15.5 -0.892 (0.01635) -12.7 -0.988 (0.01233) -3.3
6.638 7.229 (0.11885) 8.9 7.341 (0.1022) 10.6 7.505 (0.08947) 13.1

Table 12: Means MC and percent relative biases RB% of the Monte Carlo skew-t MPLEs corresponding
to (a) θD1 (b) θD2 (c) θD3 with a DoF threshold of 20 for eliminating an estimate with M = 1000. The
four rows of values in each table are for the location, scale, slant and DoF parameters, respectively,
and MC standard errors are shown in parentheses.

Further comparison of the Monte Carlo average values and relative biases of the location, scale and
slant parameter estimates in Tables 8 and 12 reveal that for the stock returns data under consideration:
(a) These parameter estimates are not much affected by whether or not MPLEs are rejected because
their DoF estimate is larger than 20; (b) These parameter estimates all have relative bias percentages
that decrease with increasing sample size, with small single digit relative bias percentages at sample
size 400 for stocks D2 and D3. emphasize that this is a very narrow conclusion based on the returns
subsets of a particular stock, and a much more extensive study is needed of large cross-sections of
stock to explore this issue thoroughly.

Standard errors of skew-t MPLEs

A reason for studying the accuracy of the standard errors obtained from our skew-t expected informa-
tion matrices is that in general one does not know whether or not the use of an expected information
matrix yields standard errors that are more accurate, less accurate, or as accurate as those obtained
using an observed information matrix. The statistical literature concerning this question includes,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 201

among other, an early paper by Efron and Hinkley (1978) that argues in favor of the observed informa-
tion, and the more recent papers by Cao and Spall (2010) and Cao (2013) arguing that the use of the
expected information matrix is preferred.

For our Monte Carlo study of the relative performance of standard errors obtained using our
expected information matrix versus an observed information matrix, we focus on the two skew-
t parameter vectors θD2, n and θD3, n of the "Maximum Penalized Likelihood Estimation Method"
section, and skip θD1, n since its DoF parameter value calls for using a skew-normal or a normal
distribution model. Noting that the Monte Carlo standard error of a standard error estimate under
normality, relative to the standard deviation of the observations, is approximately 1/

√
2 · (M− 1)

where M is the number of Monte Carlo replicates, we use M = 4000 to obtain a standard error of
about 1%. The detailed steps of our Monte Carlo are as follows.

For i = 2, 3 and for each of the sample sizes n = 50, 100, 200, 400 and 800, we do the following:

1. Generate a first random sample of size n of skew-t random random variables with parameter
θDi, n. 9

2. Use the random sample to fit a skew-t distribution with the sn package function st.mple(),
thereby obtaining the set of skew-t parameter estimates ξ̂n, 1, ω̂n, 1, α̂n, 1,
ν̂n, 1.

3. Redo Step 1 and 2 for 5000 times so that we have
(
ξ̂n, m, ω̂n, m, α̂n, m, ν̂n, m

)
, m = 1, 2, . . . , 5000.

4. Remove the parameter estimate vectors for which the DoF estimate ν̂n, m is larger than 20, and
take the first 4000 of the resulting skew-t parameter estimate vectors.

5. Compute the Monte Carlo standard error SEMC of each of the four parameters as their sample
standard deviations for the 4000 replicates.

Table 13 shows the SEMC results in the columns labeled MC for each of θD2, n and θD3, n. The columns
labeled OBS contain the standard errors SEobs obtained using the observed information matrix as
computed by st.infoUv() in sn, and the columns labeled EXP contain the standard errors SEexp as
computed with the function stInfomat() in our new package skewtInfo.

9For the sake of reproducibility, we use set.seed(123) for the simulation results in this section

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sn
https://CRAN.R-project.org/package=sn

CONTRIBUTED RESEARCH ARTICLES 202

D2 D3

MC OBS EXP MC OBS EXP

n = 50
0.0201 0.0214 0.0220 0.0141 0.0170 0.0164
0.0118 0.0175 0.0170 0.0073 0.0144 0.0121
1.7353 0.9236 0.9424 1.9118 1.0860 1.0409
3.3251 3.1274 2.8506 3.8040 8.2432 6.0912

n = 100
0.0157 0.0151 0.0155 0.0109 0.0120 0.0116
0.0096 0.0124 0.0120 0.0058 0.0102 0.0086
0.6744 0.6531 0.6663 0.6734 0.7679 0.7361
2.9386 2.2114 2.0157 3.6845 5.8288 4.3071

n = 200
0.0112 0.0107 0.0110 0.0086 0.0085 0.0082
0.0075 0.0087 0.0085 0.0048 0.0072 0.0061
0.4794 0.4618 0.4712 0.5121 0.5430 0.5205
2.1900 1.5637 1.4253 3.3139 4.1216 3.0456

n = 400
0.0079 0.0076 0.0078 0.0060 0.0060 0.0058
0.0059 0.0062 0.0060 0.0039 0.0051 0.0043
0.3379 0.3265 0.3332 0.3693 0.3840 0.3680
1.4120 1.1057 1.0078 2.7228 2.9144 2.1535

n = 800
0.0056 0.0054 0.0055 0.0042 0.0043 0.0041
0.0042 0.0044 0.0042 0.0029 0.0036 0.0030
0.2405 0.2309 0.2356 0.2625 0.2715 0.2602
0.8146 0.7818 0.7126 1.9839 2.0608 1.5228

Table 13: Standard errors of skew-t MPLEs for θD2 and θD3 with M = 4000.

The results in Table 13 are displayed graphically in the two Lattice plots of Figure 2. Each panel
of the plots contains the three standard errors SEMC, SEobs, SEexp for one of the parameters, versus
sample size. corresponding to columns in Table 13.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 203

0.005
0.010
0.015
0.020 ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

xi

0.005

0.010

0.015
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

om
eg

a

0.5

1.0

1.5
●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

al
ph

a

1.0
1.5
2.0
2.5
3.0

50 100 200 400 800

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

nu

MC
obsINFO
expINFO

0.005

0.010

0.015 ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

xi

0.004
0.006
0.008
0.010
0.012
0.014

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

om
eg

a

0.5
1.0
1.5

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

al
ph

a

2
4
6
8

50 100 200 400 800

● ● ●
●

●

●

●

●

●
●

●

●

●
●

●

nu

MC
obsINFO
expINFO

Figure 2: Standard errors plot for θD2 = (0.046, 0.054, −1.064, 4.416) (top) and θD3 =
(0.036, 0.035, −1.021, 6.638) (bottom) with M = 4000.

The figure results indicate that there is often little difference between the standard errors computed
with the expected information matrix versus those of the observed information matrix, and when
there are significant differences, such as for the scale and DoF estimates for D3 at small sample sizes,
the expected information matrix typically results in somewhat more accurate standard errors than
the observed information matrix. While sample size 100 seems to be adequate for obtaining accurate
standard errors for the location and slant parameter MPLEs, it appears that one needs sample size
at least 200 to obtain accurate standard errors for scale parameter MPLEs. Furthermore, while the
expected information matrix standard error of the DoF skew-t MPLE for D3 is quite accurate for
sample sizes 100 and larger, this is not the case for D2, which indicates that quite large sample sizes
are likely needed in order to obtain accurate standard errors for DoF skew-t MPLEs.

Concluding comments

Since there is no analytic formula for the Azzalini skew-t expected information matrix, we developed
a numerical integration method of evaluation and implemented it in the function stInfoMat() in

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 204

the R package skewtInfo. We made an initial exploration of the properties of the resulting expected
information matrix for three skew-t parameter vectors obtained using on the sn package function
st.mple() for three sets of monthly returns D1, D2, D3 of a single stock with ticker D, on three
disjoint time intervals from December 1991 to September 2015. We confirmed the accuracy of our
expected information matrix evaluation method for one of these skew-t parameter vectors by using
the well-known fact that an observed information matrix converges in probability to the negative of
the expected information matrix, and showing that for n = 100, 000 the observed information matrix
values differ by a negligible amount from those of our expected information matrix. We examined the
condition number of the expected information matrices for those three skew-t parameter vectors and
found that although the matrices are positive definite, they are quite poorly conditioned to various
extents. The asymptotic correlation patterns of the three skew-t parameter MPLEs was examined, and
we found that they are fairly consistent in sign and magnitude across those thee parameter vectors, as
described at the end of the "Information Matrices Condition Numbers and Paramters Correlation"
subsection.

For the two of the three skew-t MPLE parameter vectors with single digit DoF values, we carried
out a Monte Carlo study of the standard errors obtained with the expected information matrix, as
compared with the observed information matrix, and comparing both with Monte Carlo reference
standard errors. The results indicate that accurate standard errors for location and slant parameters
can be obtained using both expected and observed information matrices for sample sizes of at last 100,
but not for smaller sample sizes. For the scale and DoF parameters, it appears that sample sizes as
large as 200 or 400 may be needed to obtain accurate standard errors, and in some cases the expected
information matrix gives better results.

The Reviewer’s suggestion to consider the methods for model reduction presented by DiCiccio
and Monti (2018) is quite interesting. However, we feel that it is rather outside the focus and scope of
the current paper, and could be the basis of a separate study, that would also include the hypothesis
that the distribution is a symmetric-t distribution. In fact, it would be great to see this capability in the
sn package at some point in the future.

R. Douglas Martin
Department of Applied Mathematics
University of Washington
United States
doug@amath.washington.edu

Chindhanai Uthaisaad
Department of Applied Mathematics
University of Washington
United States
chindu@uw.edu

Daniel Z. Xia
Department of Applied Mathematics
University of Washington
United States
zhiyexia@uw.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:doug@amath.washington.edu
mailto:chindu@uw.edu
mailto:zhiyexia@uw.edu

CONTRIBUTED RESEARCH ARTICLES 205

Bibliography
A. Azzalini and R. B. Arellano-Valle. Maximum penalized likelihood estimation for skew-normal

and skew-t distributions. Journal of Statistical Planning and Inference, 143:419–433, 2013. URL
https://doi.org/10.1016/j.jspi.2012.06.022. [p188, 190]

A. Azzalini and A. Capitanio. Distributions generated by pertubation of symmetry with emphasis
on a multivariate skew t distribution. J. of the Royal Statistical Society, 65(2):367–389, 2003. URL
https://doi.org/10.1111/1467-9868.00391. [p188]

A. Azzalini and A. Capitanio. The Skew-Normal and Related Families. Institute of Mathematical Statistics
Monographs, 2014. URL https://doi.org/10.1017/CBO9781139248891. [p188, 189, 197]

X. Cao. Relative Performance of Expected and Observed Fisher Information in Covariance Estimation for
Maximum Likelihood Estimates. PhD thesis, Johns Hopkins University, 2013. [p201]

X. Cao and J. C. Spall. Comparison of expected and observed fisher information in variance calculations
for parameter estimates. Johns Hopkins APL Technical Digest, 28(3):294–295, 2010. [p201]

G. Casella and R. Berger. Statistical Inference. Duxbury Resource Center, 2001. ISBN 0534243126. [p192]

T. J. DiCiccio and A. C. Monti. Inferential aspects of the skew t-distribution. Quaderni di Statistica, 13,
2011. [p193, 194]

T. J. DiCiccio and A. C. Monti. Testing for sub-models of the skew t-distribution. Statistical Methods &
Applications, 27(1):25–44, 2018. URL https://doi.org/10.1007/s10260-017-0387-x. [p204]

E. Efron and D. V. Hinkley. Assessing the accuracy of the maximum likelihood estimator: Observed
versus expected fisher information. Biometrika, 65(3):457–482, 1978. URL https://doi.org/10.
1093/biomet/65.3.457. [p201]

R. D. Martin and S. Zhang. Nonparametric versus parametric expected shortfall. Available
at https://papers.ssrn.com/abstract=2747179., 2017. URL https://doi.org/10.2139/ssrn.2747179.
[p188]

R. Piessens, E. de Doncker-Kapenga, C. W. Uberhuber, and D. K. Kahaner. Quadpack - A Subroutine
Package for Automatic Integration. Springer-Verlag, 1983. URL https://doi.org/10.1007/978-3-
642-61786-7. [p193]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1016/j.jspi.2012.06.022
https://doi.org/10.1111/1467-9868.00391
https://doi.org/10.1017/CBO9781139248891
https://doi.org/10.1007/s10260-017-0387-x
https://doi.org/10.1093/biomet/65.3.457
https://doi.org/10.1093/biomet/65.3.457
https://doi.org/10.2139/ssrn.2747179
https://doi.org/10.1007/978-3-642-61786-7
https://doi.org/10.1007/978-3-642-61786-7

CONTRIBUTED RESEARCH ARTICLES 206

rcosmo: R Package for Analysis of
Spherical, HEALPix and Cosmological
Data
by Daniel Fryer, Ming Li, Andriy Olenko

Abstract The analysis of spatial observations on a sphere is important in areas such as geosciences,
physics and embryo research, just to name a few. The purpose of the package rcosmo is to conduct
efficient information processing, visualisation, manipulation and spatial statistical analysis of Cosmic
Microwave Background (CMB) radiation and other spherical data. The package was developed for
spherical data stored in the Hierarchical Equal Area isoLatitude Pixelation (Healpix) representation.
rcosmo has more than 100 different functions. Most of them initially were developed for CMB, but
also can be used for other spherical data as rcosmo contains tools for transforming spherical data in
cartesian and geographic coordinates into the HEALPix representation. We give a general description
of the package and illustrate some important functionalities and benchmarks.

Introduction

Directional statistics deals with data observed at a set of spatial directions, which are usually positioned
on the surface of the unit sphere or star-shaped random particles. Spherical methods are important
research tools in geospatial, biological, palaeomagnetic and astrostatistical analysis, just to name a few.
The books (Fisher et al., 1987; Mardia and Jupp, 2009) provide comprehensive overviews of classical
practical spherical statistical methods. Various stochastic and statistical inference modelling issues are
covered in (Yadrenko, 1983; Marinucci and Peccati, 2011).

The CRAN Task View Spatial shows several packages for Earth-referenced data mapping and
analysis. All currently available R packages for spherical data can be classified in three broad groups.

The first group provides various functions for working with geographic and spherical coordinate
systems and their visualizations. Probably the most commonly used R package to represent spatial
maps and data is sp (Bivand et al., 2013). It includes tools for spatial selection, referencing and
plotting spatial data as maps. It has comprehensive hierarchical classes and methods for spatial 2d
and 3d data. Another example, sphereplot (Robotham, 2013), uses rgl (Adler et al., 2018) to create
3d visualizations in the spherical coordinate system. The functions car2sph and sph2car implement
transformations between Cartesian and spherical coordinates. The package geosphere (Hijmans, 2017)
includes functions for computing distances, directions and areas for geographic coordinates.

The second group covers various numerical procedures that can be useful for spherical approxi-
mations and computations. For example, SpherWave (Fernández-Durán and Gregorio-Domíinguez,
2016) is developed to implement the spherical wavelets and conduct the multiresolution analysis on
the sphere. Functions for numerical integration over high-dimensional spheres and balls are provided
in the package SphericalCubature (Nolan and University, 2017).

The third group provides statistical tools for spherical data analysis. In this group, the most
commonly used packages are RandomFields (Schlather et al., 2015) and geoR (Ribeiro Jr and Diggle,
2018). These packages provide a number of tools for model estimation, spatial inference, simulation,
kriging, spectral and covariance analyses. Most of their underlying models are for 2d or 3d data, but
some additional spherical models are listed for future developments. The package Directional (Tsagris
et al., 2019) has functions for von Mises-Fisher kernel density estimation, discriminant and regression
analysis on the sphere. The package gensphere (Nolan, 2017) implements multivariate spherical
distributions. CircNNTSR (Fernández-Durán and Gregorio-Domíinguez, 2016) provides functions
for statistical analysis of spherical data by means of non-negative trigonometric sums. The package
VecStatGraphs3D (Felicísimo et al., 2014) conducts statistical analysis on 3d vectors. It includes
estimation of parameters and some spherical test. Another example is the package sm (Bowman and
Azzalini, 2018) for spherical regression analysis and non-parametric density estimation.

There are also several R packages developed for spherical data in astronomy1. For example,
cosmoFns (Harris, 2012) and CRAC (Liu, 2014) implement functions to compute spherical geometric
quantities useful for cosmological research. The package FITSio (Harris, 2016) reads and writes files
in one of standard astronomical formats, FITS (Flexible Image Transport System). spider (Brown
et al., 2012) includes functions for all-sky grid/scatter plots under various astronomical coordinate

1see the list in https://asaip.psu.edu/forums/software-forum/459833927

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/view=Spatial
https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=sphereplot
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=SpherWave
https://CRAN.R-project.org/package=SphericalCubature
https://CRAN.R-project.org/package=RandomFields
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=Directional
https://CRAN.R-project.org/package=gensphere
https://CRAN.R-project.org/package=CircNNTSR
https://CRAN.R-project.org/package=VecStatGraphs3D
https://CRAN.R-project.org/package=sm
https://CRAN.R-project.org/package=cosmoFns
https://CRAN.R-project.org/package=CRAC
https://CRAN.R-project.org/package=FITSio
https://CRAN.R-project.org/package=spider
https://asaip.psu.edu/forums/software-forum/459833927

CONTRIBUTED RESEARCH ARTICLES 207

systems (equatorial, ecliptic, galactic). The package astro (Kelvin, 2014) provides functions for basic
cosmological statistics and FITS file manipulations.

In recent years the spatial analysis and theory of spherical data have been strongly motivated
by the studies on the Cosmic Microwave Background (CMB) radiation data collected by NASA and
European Space Agency missions COBE, WMAP and Planck and usually stored in the Hierarchical
Equal Area isoLatitude Pixelation (HEALPix) format. Cosmologists have developed comprehensive
Python and MATLAB software packages2 to work with CMB and HEALPix data.

Although the mentioned before R packages can be used for geographic or spherical coordinate
referenced data, comprehensive and easy to use tools for CMB and HEALPix data are not available in
R, which motivated the authors to design the package rcosmo (Fryer et al., 2020).

The aims of the package rcosmo are

• to give convenient access and integrated in one package tools for analysis and visualisation of
CMB and HEALPix data to the R statistical community;

• to develop R functions for models and methods in spherical statistics that are not available in
the existing R packages;

• to extend familiar R classes to spherical HEALPix data making them cross-compatible and
intuitively interactable with many existing R statistical packages.

The HEALPix format has numerous advantages to classical geographic representations of spherical
data, see (Gorski et al., 2005). R implementation of computationally expensive statistical and geometri-
cal methods, such as nearest neighbour searches, empirical covariance function estimation, uniform
sampling, spectral density estimation, in a way that takes advantage of the HEALPix data structure,
could be useful for geostatistics and other applications. It can reduce algorithmic complexity and
computational time. Various data processing, manipulation, visualisation and statistical analysis tasks
are achieved efficiently in rcosmo , using optimised C++ code where necessary.

Basics of CMB data

In the Standard Cosmological Model, the Cosmic Microwave Background is redshifted microwave
frequency light that is believed to have originated around 14 billion years ago. CMB is the main source
of data about the early universe and seeds of future galaxies. Bell Labs physicists Arno Penzias and
Robert Wilson received the Nobel prize in physics in 1978 for their famously happenstance discovery
of CMB radiation as an inconvenient background “noise” during their experimentation with the
Holmdel Horn Antenna radio telescope (Durrer, 2015).

Over a decade later, NASA’s Cosmic Microwave Background Explorer (COBE) satellite mission
produced the first detailed full CMB sky map (Efstathiou et al., 1992). Referred to as the dawn of preci-
sion cosmology, COBE results provided fine constraints on many cosmological parameters. Particular
attention has been paid to the existence of CMB anisotropies and associated non-Gaussianity, usually
investigated through the CMB angular power spectrum (Durrer, 2015). The Wilkinson Microwave
Anisotropy Probe, was launched in 2001 by NASA and returned more precise measurements of CMB
(Bennett et al., 2003). Then, the third and most detailed space mission to date was conducted by the
European Space Agency, via the Planck Surveyor satellite (Adam et al., 2016). The radiation that
astronomers detect today forms an expanding spherical surface of radius approximately 46.5 billion
light years. The next generation of CMB experiments, CMB-S4, LiteBIRD, and CORE, will consist of
highly sensitive telescopes. It is expected that these experiments will provide enormous amount of
CMB measurements and maps to nearly the cosmic variance limit.

The term “CMB data” refers to a broad range of location tagged quantities describing properties of
the CMB. For example, the Infrared Science Archive by Caltech’s Infrared Processing and Analysis
Center (IPAC) hosts curated CMB products from the North American Space Agency (NASA)3.

To produce CMB maps (see Figure 5), the products of the Planck mission data (in the range of
frequencies from 30 to 857 GHz) are separated from foreground noise using one of the four detailed
methods named COMMANDER, NILC, SEVEM and SMICA4. These CMB maps are provided at either
low resolution (Nside = 1024, i.e., 10 arcmin resolution), or high resolution (Nside = 2048, i.e., 5 arcmin
resolution). The maps include temperature intensity and polarisation data, as well as common masks
for identifying regions where the reconstructed CMB is untrusted.

2https://healpix.sourceforge.io/, https://healpy.readthedocs.io, http://sufoo.c.ooco.jp/program/
healpix.html

3hosted at the link http://irsa.ipac.caltech.edu
4https://wiki.cosmos.esa.int/planckpla2015/index.php/Astrophysical_component_separation

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=astro
https://CRAN.R-project.org/package=rcosmo
https://healpix.sourceforge.io/
https://healpy.readthedocs.io
http://sufoo.c.ooco.jp/program/healpix.html
http://sufoo.c.ooco.jp/program/healpix.html
http://irsa.ipac.caltech.edu
https://wiki.cosmos.esa.int/planckpla2015/index.php/Astrophysical_component_separation

CONTRIBUTED RESEARCH ARTICLES 208

Our focus will mostly be on the CMB temperature intensity data. In Planck CMB products, these
data are stored as 4-byte floating point binary numbers in Kcmb defined as the unit in which a black
body spectrum at 2.725 Kelvin (K) is flat with respect to the frequency (Hurier et al., 2015).

The map of the CMB temperature is usually modelled as a realization of an isotropic Gaussian
random field on the unit sphere. The Appendix introduces a statistical model and basic notations of
spherical random fields. More details can be found, for example, in the monographs (Marinucci and
Peccati, 2011), (Yadrenko, 1983) and the paper (Leonenko et al., 2018).

rcosmo package

The current version of the rcosmo package can be installed from CRAN. A development release is
available from GitHub (https://github.com/frycast/rcosmo).

The package offers various tools for

• Handling and manipulating of CMB radiation and other spherical data,
• Working with Hierarchical Equal Area isoLatitude Pixelation of a sphere (Healpix),
• Spherical geometry,
• Various statistical analysis of CMB and spherical data,
• Visualisation of HEALPix data.

Most of rcosmo features were developed for CMB, but it can also be used for other spherical data.

The package has more than 100 different functions. Figure 1 shows the core functions available in
rcosmo and some typical data analysis flow sequences.

maxWindowDist
triangulate

downloadCMBMap downloadCMBPS

CMBDataFrame

window
coords
plot

summary
nside
pix
cbind
rbind

is.CMBDataFrame
areCompatibleCMBDFs
as.CMBDataFrame

header
resolution

CMBDat

window

is.CMBDat

HPDataFrame

window
plot

summary
nside
pix

coords

is.HPDataFrame
assumedUniquePix

CMBWindow

is.CMBWindow
assumedConvex

winType

coords
plot

summary

ancestor
baseNeighbours

children
displayPixelBoundaries

displayPixels
ibp2p

neighbours
p2bp
p2ibp
parent

nest2ring
nestSearch
pix2coords
pixelWindow
ring2nest
siblings

HEALPix

Geometric

geoDist
maxDist
minDist
pixelArea
geoArea
geo2sph
geoAngle

summary
sampleCMB
plotAngDist

entropyCMBfmf
exprob
extrCMB
fRen
qstat

sphericalHarmonics
chi2CMB
qqnormWin
qqplotWin

Statistical
(univariate and multivariate)

covmodelCMB
plotCovModelCMB
plotVariogram

practicalRangeCMB
variogramCMB
variofitCMB
linesCMB
corrCMB
covCMB

Statistical
(spatial dependencies)

pwSpCorr
covPwSp

Geometric

data.frame

Figure 1: The flowchart of rcosmo main structure and core functions for 3 typical inputs: "data.frame"
(general input), "downloadCMBMap" (conventional HEALPix format), and "downloadCMBPS" (power
spectrum data).

Rather than attempting a systematic description of each functions, the remainder of this paper
shows broad classes of methods implemented in rcosmo with particular examples of core functions.
A reproducible version of the code in this paper for the current version of rcosmo is available in the
folder "Research materials" from the website https://sites.google.com/site/olenkoandriy/.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/frycast/rcosmo
https://sites.google.com/site/olenkoandriy/

CONTRIBUTED RESEARCH ARTICLES 209

Visualisation tools

Interactive visualisations of spherical data are a focus point of rcosmo . Standard Python and MATLAB
tools for CMB and HEALPix visualization use the Mollweide projection of the unit sphere to the
2d plane. This is an equal-area projection, but it distorts spherical angles and distances. In contrast
rcosmo employs the ‘OpenGL’ powered 3d visualization device system rgl for R to allow 3d interactive
plots of data on the unit sphere.

The generic plot function produces interactive 3d vector graphics that may be easily exported
to a HTML document. Some examples of using different plot functions are provided later in the
paper. The results of plot.CMBDataFrame are given in Figures 5 and 6. For an example of using
plot.HPDataFrame see Figure 15 and examples of using plot.CMBWindow are shown in Figures 5 and 7.
For better visualization some figures produced by the R code in this paper were rotated and zoomed
in before including in the article.

By default, the Planck colour scale is applied to CMB intensity data for plotting5. Additional
features such as automatic plot legends, alternative colour scales, and greater configurability are
planned for future releases. In addition, rcosmo provides a variety of 2d plot functionality to support
visualisation of statistical analysis results and some additional 3d plot functionality for demonstrating
HEALPix pixel properties.

rcosmo classes

Four R classes have been developed to support HEALPix data representation and analysis in the
package rcosmo : "CMBDat", "CMBDataFrame", "HPDataFrame" and "CMBWindow". First three are main
parent classes of objects to store spherical data. The class "CMBWindow" is used to choose observation
windows.

• The function CMBDat creates objects of class "CMBDat". CMBDat objects are lists containing header
information, other metadata and a data slot. Data slots may include standard information about
CMB intensity (I), polarisation (Q, U), PMASK and TMASK. It also may contain a mmap object
that points to the CMB map data table in a FITS file. As for standard data frames new data slots
can be created to store other types of spherical data.

• The function CMBDataFrame creates objects of class "CMBDataFrame". These class is a special
modification of "data.frame" that also carries metadata about, e.g., the HEALPix ordering
scheme, coordinate system, and nside parameter (i.e., the resolution of the HEALPix grid that is
being used). Each row of a CMBDataFrame is associated with a unique HEALPix pixel index.

• The class "HPDataFrames" is a type of "data.frame" designed to carry data located on the unit
sphere. Unlike "CMBDataFrame", "HPDataFrames" may have repeated pixel indices. It allows to
store multiple data points falling within a given pixel in different rows of HPDataFrame objects.

• The function CMBWindow creates objects of class "CMBWindow". These objects are polygons, spheri-
cal discs, or their compliments, unions and intersections.

As the main rcosmo data classes are special modifications of "data.frame" it means that spatial
objects produced by rcosmo can be subsequently processed by other R packages/functions that work
with standard data frames. The rbind and cbind generics that work with the "data.frame" class have
been customised in rcosmo to preserve the validity of CMBDataFrame objects.

Getting data into rcosmo

In this section, we demonstrate how to import CMB data in the typical case of a full sky map stored as
a FITS file. Such maps can be sourced from the NASA/IPAC Infrared Science Archive6.

The function downloadCMBMap can be used to download Planck CMB maps. One can specify the
type of map (‘COMMANDER’, ‘NILC’, ‘SEVEM’ or ‘SMICA’), the resolution (Nside = 1024 or 2048), and save it
in a working directory with a specified file name.

The map ‘COM_CMB_IQU-smica_1024_R2.02_full.fits’ used in most of the examples in this paper is
a FITS file of approximate size 200 megabytes. This map has the resolution Nside = 1024, so it contains
Npix = 12× 10242 = 12582912 pixels, each having its own intensity I, polarisation Q, U, temperature
mask value Tmask ∈ {0, 1} and polarisation mask value Pmask ∈ {0, 1}.

5Colour scale is available here: https://github.com/zonca/paperplots/tree/master/data
6hosted by Caltech at the link http://irsa.ipac.caltech.edu/data/Planck/release_2/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://irsa.ipac.caltech.edu/data/Planck/release_2/

CONTRIBUTED RESEARCH ARTICLES 210

After downloading the map with downloadCMBMap and applying the function CMBDataFrame, we
obtain an object of class "CMBDataFrame".

> library(rcosmo)
> filename <- "CMB_map_smica1024.fits"
> downloadCMBMap(foreground = "smica", nside = 1024, filename)
> sky<-CMBDataFrame(filename)
> str(sky)
Classes ‘CMBDataFrame’ and 'data.frame': 12582912 obs. of 1 variable:
$ I: num -9.20e-05 -8.04e-05 -8.99e-05 -7.71e-05 -7.01e-05 ...
- attr(*, "nside")= int 1024
- attr(*, "ordering")= chr "nested"
- attr(*, "resolution")= num 10

...

An alternative to the above act of reading the entire map into memory is to take a random sample
of points on the sphere. This is achieved without reading the entire map into R memory. Simple
random sampling in rcosmo will be discussed further under the section on statistical functions.

> set.seed(0); s <- 2e6;
> cmb_sample <- CMBDataFrame(filename, sample.size = s, include.m = T, include.p = T)
> cmb_sample
A CMBDataFrame
A tibble: 2,000,000 x 5

I Q U TMASK PMASK
<dbl> <dbl> <dbl> <int> <int>

1 -0.0000771 5.45e-9 -0.000000718 0 0
2 -0.0000701 -7.10e-8 -0.000000730 0 0
...
10 -0.0000710 8.25e-8 -0.000000618 0 0
... with 1,999,990 more rows

Use of memory mapping

The standard library for reading data from FITS files is a collection of C and FORTRAN subroutines
called ‘CFITSIO’. In R, the package FITSio (Harris, 2016) is the only general FITS file reader that the
authors are aware of. However, importing a full sky CMB map with approximately 12 million intensity
samples from a FITS file using FITSio took too long when development of rcosmo began. We were
able to reduce the necessary run time to under 4 seconds with the rcosmo function CMBDat. rcosmo still
substantially outperforms the last version of FITSio. In the following example we used the CMB
map with ‘SMICA’ foreground separation and Nside = 2048 (having approximately 50 million intensity
samples) to test it on a modern laptop7.

> filename1 <- "CMB_map_smica2048.fits"
> downloadCMBMap(foreground = "smica", nside = 2048, filename1)
> system.time(sky <- CMBDataFrame(filename1))

user system elapsed
1.36 0.29 1.73

> system.time(fits <- FITSio::readFITS(filename1))
user system elapsed

822.28 90.05 942.14

The approach used in rcosmo is based on a novel application of the mmap package by Jeffrey
Ryan (Ryan, 2018). The package mmap is a highly optimised interface to ‘POSIX mmap’ and Windows
‘MapViewOfFile’. Using mmap in rcosmo required an update of mmap to support big-Endian byte
order. The current version of mmap allows us to import data from a FITS binary table very efficiently,
one row at a time, using a C struct data type. Ideally, for a typical rcosmo user, the details of using
mmap are abstracted away while the user constructs and interacts with "CMBDataFrame" objects.

Another use of mmap in rcosmo concerns the elimination of the need to read a large full sky CMB
map into R memory. Often it is unmanageable to read the entire contents of a FITS file. For example,

7Laptop specifications: Microsoft Surface Laptop with 7th Gen Intel Core m3 (i5) processor; 8GB LPDDR3
SDRAM (1866MHz)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 211

it may not be possible to obtain sufficiently large blocks of continguous memory from the operating
system when importing more than a few hundred megabytes of data as a numeric vector. In rcosmo ,
integration of mmap allows one to maintain a C-style pointer at a particular byte-offset to the target
binary file (e.g., the FITS file), so that data can be read into R memory on command from this offset. In
the following example, only rows 1, 2, 4, 7 and 11 are read into memory from the file.

> v <- c(1,2,4,7,11)
> sky <- CMBDataFrame(filename, spix = v, include.p = T, include.m = T,
coords = "spherical")
> sky
A CMBDataFrame
A tibble: 5 x 7
theta phi I Q U TMASK PMASK
<dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>

1 1.57 0.785 -0.0000920 6.47e-8 -0.000000657 0 0
2 1.57 0.786 -0.0000804 -9.19e-9 -0.000000694 0 0
3 1.57 0.785 -0.0000771 5.45e-9 -0.000000718 0 0
4 1.57 0.786 -0.0000663 -5.81e-8 -0.000000751 0 0
5 1.57 0.783 -0.0000836 7.60e-8 -0.000000697 0 0

> pix(sky)
[1] 1 2 4 7 11

The next section discusses the HEALPix data structure. HEALPix ordering schemes can be used to
map coordinates on the sphere to row indices in a FITS binary table. Combining this feature with the
technique in the above example allows rcosmo to efficiently import random samples of data from a
variety of geometric regions of the sphere without ever having to import the entire CMB map. This is
particularly useful on larger maps and will become increasingly important in future as advances in
cosmology allow for higher resolution CMB maps to be produced.

Introduction to HEALPix

Present generation Cosmic Microwave Background experiments produce data with up to 5 arcminutes
resolution on the sphere. For a full-sky map, this amounts to approximately 50 million pixels, each
describing distinct location, intensity, polarisation and other attributes. The statistical analysis of such
massive datasets, and associated discretisation of functions on the sphere, can involve prohibitive
computational complexity and non-adequate sampling in the absence of an appropriate data structure.
The Hierarchical Equal Area isoLatitude Pixelation is a geometric structure designed to meet this
demand using a self-similar refinable mesh. It is currently the most widely used pixelation for storing
and analysing CMB data (Gorski et al., 2005).

The package rcosmo provides various tools to visualize and work with the HEALPix structure.

HEALPix initially divides the sphere into 12 equiareal base pixels . To visualise these with rcosmo ,
we can first generate a CMBDataFrame at some low resolution (e.g, Nside = 64) and then take three
separate window subsets in the pixels that we intend to colour, as shown in Figure ??). Note that, while
all HEALPix pixels are 4-sided, their edges are not geodesics, i.e., they are not spherical quadrillaterals
(Calabretta and Roukema, 2007).

> ns <- 64; rand <- rnorm(12 * ns ^ 2)
> cmbdf <- CMBDataFrame(nside = ns, I = rand, ordering = "nested")
> w1 <- window(cmbdf, in.pixels = c(1,9))
> w2 <- window(cmbdf, in.pixels = c(2,10))
> w3 <- window(cmbdf, in.pixels = c(4,12))
> plot(w1, col = "blue", back.col = "white", xlab = '', ylab = '', zlab = '')
> plot(w2, col = "green", add = TRUE)
> plot(w3, col = "orange", add = TRUE)
> displayPixelBoundaries(nside = 1,ordering = "nested",incl.labels = 1:12,col ="red")

Each of the 12 base pixels can be further subdivided into 4 equiareal 4-sided pixels. For a demonstration,
we can create another window subset based on a higher resolution CMBDataFrame and display the
outputs in Figure ??.

> ns <- 256; rand <- rnorm(12 * ns ^ 2)
> w21 <- window(CMBDataFrame(nside = ns, I = rand, ordering ="nested"), in.pixels = 1)
> plot(w21, col = "light blue", back.col = "white", add = TRUE, size = 1.2)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 212

> displayPixelBoundaries(nside=2,ordering="nested",incl.labels=c(1,2,3,4),col ="black")
> plot(window(cmbdf,in.pixels = 2), col = "green", add = TRUE)
> plot(window(cmbdf,in.pixels = 4), col = "purple", add = TRUE)
> plot(window(cmbdf,in.pixels = 5), col = "orange", add = TRUE)
> plot(window(cmbdf,in.pixels = 6), col = "red", add = TRUE)

This process of subdivision can be repeated until a desired resolution is achieved. At the required
resolution, the number of edge segments per base pixel edge is referred to as the Nside parameter, and
satisfies Npix = 12N2

side, where we use Npix to denote the total number of pixels.

(a) HEALPix base pixel boundaries (b) HEALPix nested ordering

Figure 2: (a): HEALPix base pixel boundary visualisation. The 12 base pixels are labelled 1 to 12;
(b): HEALPix nested ordering visualisation at Nside = 2. Pixels 1, 2, 3 and 4 (labelled) all fall within
base pixel 1 (coloured solid).

At a given Nside, the HEALPix representation provides a bijection from the first 12N2
side natural

numbers P to a set of locations L on the unit sphere. We refer to P as the set of pixel indices and L as
the set of pixel centers . For assigning the pixel indices to the pixel centers there are two approaches,
known respectively as the "ring" and "nested" ordering schemes . The nested scheme is demonstrated
with the numbering in Figure ??. The ring scheme is demonstrated in Figure 3.

Figure 3: HEALPix ring ordering scheme visualisation. The black line traces in order through pixel
centers from 1 to Npix = 768. The locations of pixels 100 to 107 are labelled.

> cmbdf <- CMBDataFrame(nside = 8, ordering = "ring")
> plot(cmbdf, type = 'l', col = "black", back.col = "white")
> tolabel <- c(1,100:107,768)
> plot(cmbdf[tolabel,], labels = tolabel, col = "red", add = TRUE)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 213

Regardless of the choice of ordering scheme, all HEALPix pixel centers lie on 4Nside − 1 rings
of constant latitude. This feature facilitates fast discrete spherical harmonic transforms, since the
associated Legendre functions need only be evaluated once per isolatitude ring of pixel centers (Gorski
et al., 2005).

Many tasks gain or lose efficiency with the choice of ordering scheme. For example, nearest
neighbour searches are best conducted in the nested scheme (Gorski et al., 2005). As such, every object
of class "CMBDataFrame" or "HPDataFrame" has an attribute named ordering to indicate which of the
two schemes is being used. This allows rcosmo functions to choose the most efficient scheme for each
task, performing any necessary conversions with the internal functions nest2ring and ring2nest.

HEALPix functions

For working directly with HEALPix properties there are a number of rcosmo functions. Some core
functions are shown in Figure 1 in the yellow colour, other are internal and some were exported.
Broadly, there are the following categories:

• Working with ordering schemes,

• Navigating the nested ordering hierarchy,

• Geometric functions involving pixel indices,

• Visualising the HEALPix structure.

The main ordering functions include converting between two ordering schemes and getting
information about a type of ordering (ordering generic and internals nest2ring and ring2nest). For
example, the ordering generic function is useful for getting and setting the ordering attribute of a
CMBDataFrame or HPDataFrame.

> sky <- CMBDataFrame(nside = 2, ordering = "ring"); ordering(sky)
[1] "ring"
> ordering(sky) <- "nested"; ordering(sky)
[1] "nested"

rcosmo functions for navigating the HEALPix structure provide various tools to investigate local
neighbourhoods of specific pixels and relative positions of pixels at different levels of the nested order-
ing hierarchy, see, for example, ancestor, pixelWindow, neighbours, etc. Since the nested ordering is
self-similar, many of these functions are resolution independent.

For example, the kth ancestor of a pixel index p at resolution j := log2(Nside) is the pixel index pa
to which p belongs, k steps up the hierarchy (i.e., at resolution j− k). It turns out that pa is a function
pa = f (p, k) that is independent of j. The following example produces the ancestors of pixel p = 103,
for k = 1, 2, . . . , 5, using the internal function ancestor.

> ancestor(1e3, 1:5)
[1] 250 63 16 4 1

A function that is not resolution independent is pixelWindow. In the following code, pixelWindow
retrieves all pixels at resolution j2 = 5 that lie within pixel p = 1, specified at resolution j1 = 1. The
result is shown in Figure 4.

p <- 1; j1 <- 1; j2 <- 5
P <- pixelWindow(j1 = j1, j2 = j2, pix.j1 = p)
displayPixels(spix = P, j = j2, plot.j = j2)

The group of rcosmo functions that includes pix2coords, pixelArea, nestSearch, etc., computes
spherical geometric properties in relation to by pixel indices. For example, the nestSearch function
searches a pixel closest to a point in 3d space. It uses an algorithm that achieves a high level of
efficiency using the nested hierarchy. A comparison, via microbenchmark (Mersmann, 2018), with a
basic linear search algorithm which we call geoDistSearch reveals the following.

> library(microbenchmark)
> geoDistSearch <- function(target, nside, spix) {

xyz <- pix2coords(nside = nside, spix = spix)
dists <- geoDist(xyz, target)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES 214

Figure 4: All pixel centers (at resolution 5), within pixel 1 (at resolution 1)

return(xyz[which.min(dists),])}

> t <- data.frame(x = 0.6, y = 0.8, z = 0)
> nside <- 16; p <- 1:(12*(nside)^2)
> mb <- microbenchmark::microbenchmark(

geoDistSearch(target = t, nside = nside, spix = p),
nestSearch(target = t, nside = nside))

> summary(mb)$median[1]/summary(mb)$median[2]
[1] 283.9834

From the above, it was observed that nestSearch was over 200 times faster than geoDistSearch at
finding the closest pixel center at Nside = 16 to the point (x, y, z) = (0.6, 0.8, 0). With nestSearch, the
closest pixel to a target point is found by checking only 12 + 4 log2(Nside) pixels rather than 12N2

side.
When Nside = 2048, only 12 + 4 log2(2048) = 56 pixels must be checked from over 50 million.

Subsetting and combining spherical regions

rcosmo functions for selecting and visualizing spherical regions can be broadly divided in the following
groups:

• Creating basic CMBWindow objects (polygons or spherical discs),

• Combining different sub-regions by using compliments, unions and intersections to create a
new CMBWindow object,

• Plotting a region with boundary and inside points,

• Extracting data from a given CMBDataFrame restricted to a CMBWindow region.

Class CMBWindow is designed to carry geometrical information describing the interior or exterior of
spherical figures (polygons, spherical discs (caps), and their complements, unions and intersections).
The polygons can be non-convex, though CMBWindow carries a boolean attribute assumedConvex that
should be set to TRUE, if the polygon is known in advance to be convex. In this case special methods
that decrease computation times are applied.

A CMBWindow object can be created using the CMBWindow function. The code below illustrates
the creation of two CMBWindows that correspond to the Dragon and Scorpion constellations. Files of
constellation boundaries8 include coordinates of spherical polygons vertices that correspond to each
constellation. The function hms2deg converts celestial coordinates (hours, minutes, seconds) to the
degrees format. Then "phi" and "theta" columns of the data.frame CB are used to create CMBWindow
objects. To inspect these CMBWindow objects using interactive 3D graphics, we can pass them to the
generic plot function. Below, we also plot the CMB map as a background. The resulting plot is
displayed in Figure 5.

> download.file("https://www.iau.org/static/public/constellations/txt/dra.txt",
"bound1.txt")

> x1 <- readLines("bound1.txt")

8available at https://www.iau.org/public/themes/constellations/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://www.iau.org/public/themes/constellations/

CONTRIBUTED RESEARCH ARTICLES 215

> x1 <- gsub("\\|", " ", x1)
> Constellation_Boundary1 <- read.table(text = x1,col.names=c("H","M","S","D","Con_N"))
> download.file("https://www.iau.org/static/public/constellations/txt/sgr.txt",
"bound2.txt")

> x2 <- readLines("bound2.txt")
> x2 <- gsub("\\|", " ", x2)
> Constellation_Boundary2 <- read.table(text = x2,col.names=c("H","M","S","D","Con_N"))

> CB0 <- Constellation_Boundary1
> deg <- celestial::hms2deg(CB0[,1],CB0[,2],CB0[,3])
> CB1 <- data.frame(pi*deg/180, pi*CB0[,4]/90)
> colnames(CB1) <- c("phi","theta")
> polygon1 <- CMBWindow(phi = CB1$phi, theta = CB1$theta)
> plot(cmb_sample, back.col = "white")
> plot(polygon1, lwd=2)

After repeating the steps above for the Scorpion constellation we obtain and the second CMBWindow
object polygon2 in Figure 5.

(a) The Dragon (b) The Scorpion

Figure 5: Boundary visualisation of polygon CMBWindow objects, plotted against 105 CMB intensities.

Note that for the CMBWindow polygons defined above, entire polygons lie within any one hemisphere
of S2. To obtain CMBWindow objects that occupy more than one hemisphere, we can specify a polygon or
disc exterior (complement in S2) using the set.minus = TRUE parameter. For example, the following
command gives the exterior of a spherical cap with a base radius 0.5.

> d.exterior <- CMBWindow(theta = pi/2, phi = 0, r = 0.5, set.minus = TRUE)

To specify more complicated regions, we can combine multiple CMBWindow objects into a list. For
example, the following command results in the list containing d.exterior and the interior of a spherical
disc (cap) of base radius 1 (disc’s radius is computed on the sphere surface), which is a spherical
segment shown in Figure 6.

> wins <- list(d.exterior, CMBWindow(theta = pi/2, phi = 0, r = 1))

Figure 6: CMB intensity data extracted from an CMBDataFrame object by the window function.

By passing CMBWindow objects to the window function, one can extract data from a CMBDataFrame or
mmap object. Below, using the above spherical window wins the CMBDataFrame named sky.annulus is
created and plotted in Figure 6.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 216

> df <- CMBDataFrame(filename)
> sky.annulus <- window(df, new.window = wins)
> plot(sky.annulus, back.col = "white")
> plot(wins[[1]], lwd = 5, col="blue"); plot(wins[[2]], lwd = 5, col="blue")

Spherical geometry functions

Several basic tools for spherical geometry are implemented in rcosmo :

• Converting between different coordinate systems on the sphere,

• Computing geodesic distances between points and windows,

• Calculating spherical angles,

• Computing areas of spherical figures,

• Triangulating spherical polygons.

The currently implemented core geometric functions are shown in Figure 1 in the orange colour.
Some other spherical geometric tools are specified for the HEALPix representation or CMBWindows and
are shown in the green colour.

For example, the functions geoArea computes the area of a figure on the unit sphere that is
encompassed by its pixels.

> geoArea(sky.annulus)
[1] 2.11917

Another example is the function maxDist that computes the maximum geodesic distance either
between all points in a data.frame pairwise, or between all points in a data.frame and a target point.

> p <- c(0,0,1)
> maxDist(sky.annulus, p)
[1] 2.570114

Various geometric problems require triangulations of spherical polygons. For a polygonal
CMBWindow the function triangulate produces a set of spherical triangles with pairwise disjoint
interiors and the union equals to the original polygon. For example, Figure 7 shows a triangulation of
the Dragon constellation spherical polygon.

Figure 7: Triangulation of a spherical polygon.

> win1 <- triangulate(polygon2)
> for (i in 1:11) {plot(win1[[i]], col=i)}

Statistical functions

In this section we overview core statistical functions implemented in rcosmo . The package provides
various tools for statistical analysis of spherical data that can be broadly divided in the following
types:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 217

• Spherical random sampling,

• Univariate spherical statistics and plots,

• Multivariate statistics for data from different CMBWindows,

• Measures of spatial dependencies.

The main currently implemented statistical functions are shown in Figure 1 in the blue colour.
Below we provide few examples of functions for each type.

Random sampling

An immediate advantage of equiareal HEALPix pixel sizes is that simple random sampling is not
regionally dependent (Gorski et al., 2005). That is, a simple random sample of pixel indices produces
an approximately uniform sample of locations on the sphere.

To get a simple random sample from a CMBDataFrame one can use the function sampleCMB. This
function returns a CMBDataFrame which size equals to the function’s parameter sample.size. This new
object has rows that comprise a simple random sample of the rows from the input CMBDataFrame.

> set.seed(0)
> sampleCMB(df, sample.size = 3)
A CMBDataFrame
A tibble: 3 x 1

I
<dbl>

1 -0.0000198
2 -0.000307
3 -0.0000915

Univariate spherical statistics and plots

There are several methods in rcosmo for statistical analysis and visualisation of CMB temperature
intensity data. For example, function summary produces a CMBDataFrame summary that includes
information about window’s type and area, total area covered by observations, and the main statistics
for the intensity data in the spherical window.

> summary(sky.annulus)
============================= CMBDataFrame Object ============================
Number of CMBWindows: 2
+-----------------------------+
| |
| Window type: minus.disc |
| Window area: 11.7972 |
| |
+-----------------------------+

+-------------------------+
| |
| Window type: disc |
| Window area: 2.8884 |
| |
+-------------------------+
METHOD = 'smica ' / Separation method
Total area covered by all pixels: 2.11917
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Intensity quartiles
Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.609e-04 -6.908e-05 -6.208e-07 -1.487e-06 6.737e-05 7.697e-04
================================================================================

The function entropyCMB returns an estimated entropy for specified column intensities and
CMBWindow.

> entropyCMB(cmbdf = df, win = d.exterior, intensities = "I")
[1] 2.13523

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 218

The first Minkowski functional fmf returns an area of the spherical region, where the intensities
are above of the specified threshold level α.

> fmf(cmbdf = sky.annulus, alpha = 0, intensities = "I")
[1] 1.054269

fRen computes values of the sample fractal scaling exponent on the grid of N uniformly spaced
points in the interval [q.min, q.max]. The scaling exponent describes fractal properties of random
fields and can be used for testing departures from Gaussianity, see (Leonenko and Shieh, 2013). For
example, Figure 8 shows that the sample scaling exponent is an approximate strait line for for the data
in CMBWindow sky.annulus. Thus, there is not enough evidence for substantial multifractality of the
random field based on the data in this CMBWindow. More details can be found in the paper (Leonenko
et al., 2020).

> Tq <- fRen(cmbdf = sky.annulus, q.min = 1.01, q.max = 10, N = 20, intensities = "I")
> plot(Tq[,1], Tq[,2], ylab =expression(T[q]), xlab = "q", main = "Sample fractal
scaling exponent", pch = 20, col = "blue")

Figure 8: Sample fractal scaling exponent of sky.annulus on [1.01,10].

The function plotAngDis helps to visualise the marginal distributions of temperature intensities
versus θ and φ angles. It produces scatterplots and barplots of the corresponding means computed
over bins, see Figure 9.

Figure 9: Distributions of temperature versus θ and φ angles for the Scorpion constellation region.

> df1 <- sampleCMB(df, sample.size = 100000)
> cmbdf.win <- window(df1, new.window = polygon2)
> plotAngDis(cmbdf.win, intensities = "I")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 219

Multivariate statistics for data from different CMBWindows.

There are several rcosmo functions for comparison of data from two or more CMBWindows. For example,
the function qqplotWin is a modification of the standard qqplot to produces a QQ plot of quantiles of
observations in two CMBWindows against each other for a specified CMBDataFrame column.

The example below shows that the distributions of temperatures in the Dragon and Scorpion
constellations are similar.

> qqplotWin(df1, polygon1, polygon2)

Figure 10: QQ plot of observations in the Dragon vs Scorpion constellation regions.

The function qstatq can be used to measure spatial stratified heterogeneity in a list of CMBWindows.
It takes values in [0, 1], where 0 corresponds to no spatial stratified heterogeneity, 1 means a perfect
heterogeneity case. For example, the results below shows that there is not enough evidence for spatial
stratified heterogeneity, i.e. the value of the temperature intensities are not different in these two
CMBWindows.

> lw <- list(polygon1, polygon2)
> qstat(df1, lw)
[1] 0.01089514

Investigating spatial dependencies

This section presents some of rcosmo tools for the analysis of spatial dependencies in spherical data.

As the geodesic and Euclidean distances are different, covariance functions on R3 can not be used
directly for S2. The package implemented several parametric models of covariance functions (2) on the
sphere, see theoretical foundations in (Gneiting, 2013). rcosmo uses the package geoR and extends its
list of general spatial models and some functions to the spherical case. Currently available choices of
covariance models are matern,exponential,spherical,powered.exponential,cauchy, gencauchy,
pure.nugget,askey, c2wendland,c4wendland,sinepower, and multiquadric. The default option is
matern.

The function covmodelCMB computes values of theoretical covariance functions given the separation
distance of locations. The function returns the value of the covariance Γ(h) at the geodesic distance h.
The covariance model uses the general form Γ(h) = σ2 · ρ(h/ψ), where the variance σ2 and the range
ψ are vertical and horizontal scaling parameters respectively.

For example, the following command computes the value of the Askey covariance function with
the parameters σ2 = 1, ψ = π, and κ = 4 at the geodesic distance h = π/4.

> covmodelCMB(pi/4, cov.pars = c(1, pi), kappa = 4, cov.model = "askey" )
[1] 0.3164062

The command plotcovmodelCMBPlot is designed to produce quick plots of theoretical covariance
functions. The result for the Askey covariance function is shown in Figure 11.

> plotcovmodelCMB("askey", phi = pi/4, to = pi/2, kappa = 4)

If a random fields is isotropic its covariance function depends only on a geodesic distance between
locations. In this case the function covCMB can be used to compute an empirical covariance function for
intensity data in a CMBDataFrame or data.frame. Output is given up to a maximal geodesic distance
max.dist, which can be chosen between 0 and π (by default equals π).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=geoR


CONTRIBUTED RESEARCH ARTICLES 220

Figure 11: Plot of the Askey covariance function for the parameters σ2 = 1, ψ = π/4, and κ = 4.

> df1 <- sampleCMB(df, sample.size = 100000)
> Cov <- covCMB(df1, max.dist = 0.03, num.bins = 10)
> Cov$v
[1] 1.041607e-08 6.955709e-09 4.305906e-09 3.180806e-09
[5] 2.675364e-09 2.436718e-09 2.407982e-09 2.316794e-09
[9] 2.319271e-09 2.308250e-09 2.263268e-09

Obtained estimated covariance values can be visualised using the command

> plot(Cov)

Figure 12: Plot of the empirical covariance function for max.dist = 0.03.

The function variofitCMB estimates parameters of variogram models (see equation (3) for the link
between covariance and variogram functions) by fitting a parametric model from the list covmodelCMB
to a sample variogram estimated by the function variogramCMB. This function is built on and extends
variofit from the package geoR to specific rcosmo covariance models on the sphere.

In the example below the Matern variogram is fitted to the empirical variogram on the interval
[0, 0.1] using the ordinary least squares method, see Figure 13.

> varcmb <- variogramCMB(df1, max.dist = 0.1, num.bins = 30)
> ols <- variofitCMB(varcmb, fix.nug=FALSE, wei="equal", cov.model= "matern")
> plot(varcmb)
> lines(ols, lty=2)

The package also has tools to work with angular power spectra of spherical random fields. The
CMB power spectrum data are freely available from the section "Cosmology products" of the Planck
Legacy Archive9. They can be easily downloaded in a ready-to-use rcosmo format by the function
downloadCMBPS.

The function covPwSp uses values of an angular power spectra to provide a covariance estimate by
equation (2). As the argument of the covariance function in equation (2) is cos Θ the following code
uses the inverse transformation acos to plot the covariance estimate as a function of angular distances
in Figure 14.

9hosted at the link https://pla.esac.esa.int/pla/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=geoR
https://pla.esac.esa.int/pla/


CONTRIBUTED RESEARCH ARTICLES 221

Figure 13: Plots of the empirical and fitted variograms.

> COM_PowerSpectra <- downloadCMBPS(link=1)
> Cov_est <- covPwSp(COM_PowerSpectra[,1:2], 2000)
> plot(acos(Cov_est[,1]), Cov_est[,2], type ="l", xlab ="angular distance",
ylab ="Estimated Covariance")

Figure 14: Plot the covariance estimate using CMB power spectrum.

Converting other spherical data to HEALPix format

While the HEALPix is the main representation in cosmological applications there are numerous
spherical data, for example, in geosciences, that use different coordinate systems and spherical formats.
This example shows how non-HEALPix spherical data can be converted to the HEALPix format for
rcosmo analysis.

A HPDataFrame is suitable for storing data that is located on a sphere, but has not been preprocessed
to suit HEALPix structured storage. There are various ways to assign HEALPix pixel indices to the
rows of a HPDataFrame. This example presents the way when a desired resolution is specified in
advance. Then the HPDataFrame constructor automatically assigns pixel indices based on coordinates
provided. A row is assigned the pixel index of its closest pixel center. rcosmo also has the option of
automatic computing of a required resolution for given data to assign data locations to unique pixels.

As an example we use the database with the latitude and longitude of over 13 thousand world’s
large cities and towns available from the World Cities Database10. First, cities latitudes and longitudes
in degrees are converted to spherical coordinates (θ, φ) in radians. Then , we create and visualize
HPDataFrame at the resolution nside = 1024, see Figure 15.

> worldcities <- read.csv("worldcities.csv")
> sph <- geo2sph(data.frame(lon = pi/180*worldcities$lng, lat = pi/180*worldcities$lat))
> df1 <- data.frame(phi = sph$phi, theta = sph$theta, I = rep(1,nrow(sph)))
> hp <- HPDataFrame(df1, auto.spix = TRUE, nside = 1024)
> plot(hp, size = 3, col = "darkgreen", back.col = "white")

10hosted at the link https://simplemaps.com/data/world-cities

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://simplemaps.com/data/world-cities


CONTRIBUTED RESEARCH ARTICLES 222

Figure 15: Plot of world’s large cities and towns at the resolution nside = 1024.

Some other examples of converting directional and star-shaped data into rcosmo formats are given in
(Fryer and Olenko, 2019).

Summary and future directions

This article introduces the package rcosmo for analysis of CMB, HEALPix and other spherical data.
The package integrates the HEALPix representation and various spherical geometric and statistical
methods in a convenient unified framework. It opens efficient handling and analysis of HEALPix
and CMB data to the R statistical community. rcosmo also introduces several new spherical statistical
models and methods that were not available in R before. The package can also be very useful for
researchers working in geosciences.

There are several possible extensions that would be useful to the package. Some of them include:

• integrating with available Python and C++ HEALPix software,

• including new spherical statistical models and methods,

• further development of spherical spectral and multifractal methods,

• adding new visualisation tools,

• improved use of memory mapping to use on extremely high resolution images.

Acknowledgements

This research was partially supported under the Australian Research Council’s Discovery Projects
funding scheme (project number DP160101366). We are thankful to the anonymous referee for
suggestions that helped to improve the paper. We also would like to thank V.V. Anh, P.Broadbridge,
N.Leonenko, I.Sloan, and Y.Wang for their comments on early drafts of rcosmo and discussions of
CMB and spherical statistical methods, and J.Ryan for developing and extending the mmap package.

Bibliography
R. Adam, P. Ade, N. Aghanim, Y. Akrami, M. Alves, F. Argüeso, M. Arnaud, F. Arroja, M. Ashdown,

J. Aumont, et al. Planck 2015 results-I. Overview of products and scientific results. Astronomy and
Astrophysics, 594(A1):1–38, 2016. URL https://doi.org/10.1051/0004-6361/201527101. [p207]

D. Adler, D. Murdoch, and others. rgl: 3D Visualization Using OpenGL, 2018. URL https://CRAN.R-
project.org/package=rgl. R package version 0.99.16. [p206]

C. L. Bennett, M. Halpern, G. Hinshaw, N. Jarosik, A. Kogut, M. Limon, S. Meyer, L. Page, D. Spergel,
G. Tucker, et al. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Prelim-
inary maps and basic results. The Astrophysical Journal Supplement Series, 148(1):1–27, 2003. URL
https://doi.org/10.1086/377253. [p207]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1051/0004-6361/201527101
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
https://doi.org/10.1086/377253


CONTRIBUTED RESEARCH ARTICLES 223

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied spatial data analysis with R, Second edition.
Springer, NY, 2013. ISBN 9781461476184. [p206]

A. W. Bowman and A. Azzalini. R package sm: nonparametric smoothing methods (version 2.2-5.6).
University of Glasgow, UK and Università di Padova, Italia, 2018. URL http://www.stats.gla.ac.
uk/~adrian/sm/. [p206]

S. D. J. Brown, R. A. Collins, S. Boyer, M.-C. Lefort, J. Malumbres-Olarte, C. J. Vink, and R. H.
Cruickshank. SPIDER: an R package for the analysis of species identity and evolution, with
particular reference to DNA barcoding. Molecular Ecology Resources, 12:562–565, 2012. URL https:
//doi.org/10.1111/j.1755-0998.2011.03108.x. [p206]

M. R. Calabretta and B. F. Roukema. Mapping on the healpix grid. Monthly Notices of the Royal
Astronomical Society, 381(2):865–872, 2007. URL https://doi.org/10.1111/j.1365-2966.2007.
12297.x. [p211]

R. Durrer. The cosmic microwave background: the history of its experimental investigation and its
significance for cosmology. Classical and Quantum Gravity, 32(12), 2015. URL https://doi.org/10.
1088/0264-9381/32/12/124007. [p207]

G. Efstathiou, J. Bond, and S. White. COBE background radiation anisotropies and large-scale
structure in the universe. Monthly Notices of the Royal Astronomical Society, 258(1):1P–6P, 1992. URL
https://doi.org/10.1093/mnras/258.1.1P’. [p207]

A. Felicísimo, J. C. R. Cuetos, M. E. P. García, A. Cuartero, and P. G. Rodriguez. VecStatGraphs3D:
Vector analysis using graphical and analytical methods in 3D, 2014. URL https://CRAN.R-project.org/
package=VecStatGraphs3D. R package version 1.6. [p206]

J. J. Fernández-Durán and M. M. Gregorio-Domíinguez. CircNNTSR: An R package for the statistical
analysis of circular, multivariate circular, and spherical data using nonnegative trigonometric sums.
Journal of Statistical Software, 70(6):1–19, 2016. URL https://doi.org/10.18637/jss.v070.i06.
[p206]

N. I. Fisher, T. Lewis, and B. J. J. Embleton. Statistical Analysis of Spherical Data. Cambridge University
Press, Cambridge, 1987. ISBN 978-0521456999. [p206]

D. Fryer and A. Olenko. Spherical data handling and analysis with R package rcosmo. In H. Nguyen,
editor, Statistics and Data Science. RSSDS 2019, pages 211–225. Springer, Singapore, 2019. URL
https://doi.org/10.1007/978-981-15-1960-4_15. [p222]

D. Fryer, A. Olenko, M. Li, and Y. Wang. rcosmo: Cosmic Microwave Background Data Analysis, 2020.
URL https://CRAN.R-project.org/package=rcosmo. R package version 1.1.2. [p207]

T. Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli, 19(4):1327–1349,
09 2013. URL https://doi.org/10.3150/12-BEJSP06. [p219]

K. M. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann.
Healpix: a framework for high-resolution discretization and fast analysis of data distributed on
the sphere. The Astrophysical Journal, 622(2):759–771, 2005. URL https://doi.org/10.1086/427976.
[p207, 211, 213, 217]

A. Harris. cosmoFns: Functions for cosmological distances, times, luminosities, etc., 2012. URL https:
//CRAN.R-project.org/package=cosmoFns. R package version 1.0-1. [p206]

A. Harris. FITSio: FITS (Flexible Image Transport System) Utilities, 2016. URL https://CRAN.R-project.
org/package=FITSio. R package version 2.1-0. [p206, 210]

R. J. Hijmans. geosphere: Spherical Trigonometry, 2017. URL https://CRAN.R-project.org/package=
geosphere. R package version 1.5-7. [p206]

G. Hurier, M. Douspis, N. Aghanim, E. Pointecouteau, J. Diego, and J. Macias-Perez. Cosmological
constraints from the observed angular cross-power spectrum between Sunyaev-Zel’dovich and x-ray
surveys. Astronomy and Astrophysics, 576(A90):1–11, 2015. URL https://doi.org/10.1051/0004-
6361/201425555. [p208]

L. Kelvin. astro: Astronomy Functions, Tools and Routines, 2014. URL https://CRAN.R-project.org/
package=astro. R package version 1.2. [p207]

N. Leonenko and N.-R. Shieh. Rényi function for multifractal random fields. Fractals, 21(02):1350009(1–
13), 2013. URL https://doi.org/10.1142/S0218348X13500096. [p218]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://www.stats.gla.ac.uk/~adrian/sm/
http://www.stats.gla.ac.uk/~adrian/sm/
https://doi.org/10.1111/j.1755-0998.2011.03108.x
https://doi.org/10.1111/j.1755-0998.2011.03108.x
https://doi.org/10.1111/j.1365-2966.2007.12297.x
https://doi.org/10.1111/j.1365-2966.2007.12297.x
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1088/0264-9381/32/12/124007
https://doi.org/10.1093/mnras/258.1.1P'
https://CRAN.R-project.org/package=VecStatGraphs3D
https://CRAN.R-project.org/package=VecStatGraphs3D
https://doi.org/10.18637/jss.v070.i06
https://doi.org/10.1007/978-981-15-1960-4_15
https://CRAN.R-project.org/package=rcosmo
https://doi.org/10.3150/12-BEJSP06
https://doi.org/10.1086/427976
https://CRAN.R-project.org/package=cosmoFns
https://CRAN.R-project.org/package=cosmoFns
https://CRAN.R-project.org/package=FITSio
https://CRAN.R-project.org/package=FITSio
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://doi.org/10.1051/0004-6361/201425555
https://doi.org/10.1051/0004-6361/201425555
https://CRAN.R-project.org/package=astro
https://CRAN.R-project.org/package=astro
https://doi.org/10.1142/S0218348X13500096


CONTRIBUTED RESEARCH ARTICLES 224

N. Leonenko, M. Taqqu, and G. Terdik. Estimation of the covariance function of Gaussian isotropic
random fields on spheres, related Rosenblatt-type distributions and the cosmic variance problem.
Electron. J. Statist., 12(2):3114–3146, 2018. URL https://doi.org/10.1214/18-EJS1473. [p208]

N. Leonenko, R. Nanayakkara, and A. Olenko. Analysis of spherical monofractal and multifractal
random fields with cosmological applications. arXiv, (2004.14522):1–30, 2020. URL https://arxiv.
org/abs/2004.14522. [p218]

J. Liu. CRAC: Cosmology R Analysis Code, 2014. URL https://CRAN.R-project.org/package=CRAC. R
package version 1.0. [p206]

K. Mardia and P. Jupp. Directional Statistics. Wiley, 2009. ISBN 9780470317815. [p206]

D. Marinucci and G. Peccati. Random Fields on the Sphere: Representation, Limit Theorems and Cosmological
Applications. Cambridge University Press, Cambridge, 2011. ISBN 9780521175616. [p206, 208]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2018. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-6. [p213]

J. P. Nolan. gensphere: Generalized Spherical Distributions, 2017. URL https://CRAN.R-project.org/
package=gensphere. R package version 1.1. [p206]

J. P. Nolan and A. University. SphericalCubature: Numerical Integration over Spheres and Balls in n-
Dimensions; Multivariate Polar Coordinates, 2017. URL https://CRAN.R-project.org/package=
SphericalCubature. R package version 1.4. [p206]

P. J. Ribeiro Jr and P. J. Diggle. geoR: Analysis of Geostatistical Data, 2018. URL https://CRAN.R-
project.org/package=geoR. R package version 1.7-5.2.1. [p206]

A. Robotham. sphereplot: Spherical plotting, 2013. URL https://CRAN.R-project.org/package=
sphereplot. R package version 1.5. [p206]

J. A. Ryan. mmap: R interface to POSIX mmap and Window’s MapViewOfFile, 2018. R package Version
0.6-15. [p210]

M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb. Analysis, simulation and
prediction of multivariate random fields with package RandomFields. Journal of Statistical Software,
63(8):1–25, 2015. URL http://www.jstatsoft.org/v63/i08/. [p206]

M. Tsagris, G. Athineou, A. Sajib, E. Amson, and M. J. Waldstein. Directional: Directional Statistics, 2019.
URL https://CRAN.R-project.org/package=Directional. R package version 3.7. [p206]

M. I. Yadrenko. Spectral Theory of Random Fields. Optimization Software, New York, 1983. ISBN
0911575006. [p206, 208]

Daniel Fryer
School of Mathematics and Physics
The University of Queensland, St Lucia, 4067
Australia
ORCiD: 0000-0001-6032-0522
daniel.fryer@uq.edu.au

Ming Li
Department of Educational Technology
Zhejiang Normal University, Jinhua, 321004
China
ORCiD: 0000-0002-1218-2804
mingli@zjnu.edu.cn

Andriy Olenko
Department of Mathematics and Statistics
La Trobe University, VIC, 3086
Australia
ORCiD: 0000-0002-0917-7000
a.olenko@latrobe.edu.au

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1214/18-EJS1473
https://arxiv.org/abs/2004.14522
https://arxiv.org/abs/2004.14522
https://CRAN.R-project.org/package=CRAC
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=gensphere
https://CRAN.R-project.org/package=gensphere
https://CRAN.R-project.org/package=SphericalCubature
https://CRAN.R-project.org/package=SphericalCubature
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=sphereplot
https://CRAN.R-project.org/package=sphereplot
http://www.jstatsoft.org/v63/i08/
https://CRAN.R-project.org/package=Directional
mailto:daniel.fryer@uq.edu.au
mailto:mingli@zjnu.edu.cn
mailto:a.olenko@latrobe.edu.au


CONTRIBUTED RESEARCH ARTICLES 225

Appendix: Statistical model

Consider a sphere in the three-dimensional Euclidean space S2 =
{

x ∈ R3 : ‖x‖ = 1
}
⊂ R3.

A spherical random field on a probability space (Ω,F , P), denoted by

T = {T(θ, ϕ) = Tω(θ, ϕ) : 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π, ω ∈ Ω} ,

or T̃ = {T̃(x) , x ∈ S2}, is a stochastic function defined on the sphere S2.

The field T̃(x) is called isotropic on the sphere S2 if its mean ET(θ, ϕ) = c = constant and the
covariance function ET(θ, ϕ)T(θ′, ϕ′) depends only on the angular distance Θ = ΘPQ between the
points P = (θ, ϕ) and Q = (θ′, ϕ′) on S2.

A real-valued second-order mean-square continuous spherical random field T can be expanded in
the series

T(θ, ϕ) =
∞

∑
l=0

l

∑
m=−l

almYlm(θ, ϕ), (1)

where {Ylm(θ, ϕ)} represents the complex spherical harmonics and alm are random variables.

If a random field is isotropic then

Ealma∗l′m′ = δl′
l δm′

m Cl , −l ≤ m ≤ l, −l′ ≤ m′ ≤ l′, l ≥ 0.

Thus, E|alm|2 = Cl , m = 0,±1, ...,±l. The series {C1, C2, ..., Cl , ...} is called the angular power spectrum
of the isotropic random field T(θ, ϕ).

The covariance function of the isotropic random fields T has the following representation

Γ(cos Θ) = ET(θ, ϕ)T(θ′, ϕ′) =
1

4π

∞

∑
l=0

(2l + 1)Cl Pl(cos Θ), (2)

where Pl(·) is the l-th Legendre polynomial and ∑∞
l=0(2l + 1)Cl < ∞.

The variogram (semivariogram) function is defined by

γ(h) = Γ(0)− Γ(h). (3)

The package uses observations of the field T at HEALPix points. There are two main approaches
in the statistical analysis of T that are realised in rcosmo . First approach directly uses the observations
for parameter estimation and hypothesis tests. For example, the classical estimator of the isotropic
variogram γ(h) takes the form of

γ̂(h) =
1

2Nh
∑

(x1,x2)∈Nh

(T(x1)− T(x2))
2 ,

where Nh is the set of the spherical location pairs at the geodesic distance h. The second approach is
spectrum-based. Initially, the estimates âlm are computed by inverting (1). Then, empirical covariance
functions and variograms can be obtained by substituting the estimated values of the angular power
spectrum

Ĉl =
1

2l + 1

l

∑
m=−l

|âlm|2

in equations 2 and 3.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 226

Tools for Analyzing R Code the Tidy Way
by Lucy D’Agostino McGowan, Sean Kross, Jeffrey Leek

Abstract With the current emphasis on reproducibility and replicability, there is an increasing need
to examine how data analyses are conducted. In order to analyze the between researcher variability
in data analysis choices as well as the aspects within the data analysis pipeline that contribute to
the variability in results, we have created two R packages: matahari and tidycode. These packages
build on methods created for natural language processing; rather than allowing for the processing of
natural language, we focus on R code as the substrate of interest. The matahari package facilitates the
logging of everything that is typed in the R console or in an R script in a tidy data frame. The tidycode
package contains tools to allow for analyzing R calls in a tidy manner. We demonstrate the utility of
these packages as well as walk through two examples.

Introduction

With the current emphasis on reproducibility and replicability, there is an increasing need to examine
how data analyses are conducted (Goecks et al., 2010; Peng, 2011; McNutt, 2014; Miguel et al., 2014;
Ioannidis et al., 2014; Richard, 2014; Leek and Peng, 2015; Nosek et al., 2015; Sidi and Harel, 2018). In
order to accurately replicate a result, the exact methods used for data analysis need to be recorded,
including the specific analytic steps taken as well as the software utilized (Waltemath and Wolkenhauer,
2016). Studies across multiple disciplines have examined the global set of possible data analyses that
can be conducted on a specific data set (Silberzhan et al., 2018). While we are able to define this global
set, very little is known about the actual variation that exists between researchers. For example, it is
possible that the true range of data analysis choices is realistically a much more narrow set than the
global sets that are presented. There is a breadth of excellent research and experiments examining
how people read visual information (Majumder et al., 2013; Loy et al., 2017; Wickham et al., 2015;
Buja et al., 2009; Loy et al., 2016), for example the Experiments on Visual Inference detailed here:
(http://mamajumder.github.io/html/experiments.html), but not how they actually make analysis
choices, specifically analysis coding choices. In addition to not knowing about the “data analysis choice”
variability between researchers, we also do not know which portions of the data analysis pipeline
result in the most variability in the ultimate research result. We seek to build tools to analyze these
two aspects of data analysis:

1. The between researcher variability in data analysis choices
2. The aspects within the data analysis pipeline that contribute to the variability in results

Specifically, we have designed a framework to conduct such analyses and created two R packages
that allow for the study of data analysis code conducted in R. In addition to answering these crucial
questions for broad research fields, we see these tools having additional concrete use cases. These tools
will facilitate data science and statistics pedagogy, allowing researchers and instructors to investigate
how students are conducting data analyses in the classroom. Alternatively, a researcher could use
these tools to examine how collaborators have conducted a data analysis. Finally, these tools could be
used in a meta-manner to explore how current software and tools in R are being utilized.

Tidy principles

We specifically employ tidy principles in our proposed packages. Tidy refers to an implementation strat-
egy propagated by Hadley Wickham and implemented by the Tidyverse team at RStudio (Wickham
and Grolemund, 2016) Here, by tidy we mean our packages adhere to the following principles:

1. Our functions follow the principles outlined in R packages (Wickham, 2015) as well as the
tidyverse style guide (Wickham, 2019).

2. Our output data sets are tidy, as in:

• Each variable has its own column.
• Each observation has its own row.
• Each value has its own cell.

By implementing these tidy principles, and thus outputting tidy data frames, we allow for data
manipulation and analysis to be conducted using a specific set of tools, such as those included in the
tidyverse meta package (Wickham et al., 2019).

Ultimately, we create a mechanism to utilize methods created for natural language processing;
here the substrate is code rather than natural language. We model our tools to emulate the tidytext

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
http://mamajumder.github.io/html/experiments.html
http://style.tidyverse.org
https://CRAN.R-project.org/package=tidyverse
https://CRAN.R-project.org/package=tidytext


CONTRIBUTED RESEARCH ARTICLES 227

Figure 1: A flowchart of a typical analysis that uses matahari and tidycode to analyze and classify R
code.

package (Silge and Robinson, 2016, 2017); instead of analyzing tokens of text, we are analyzing tokens
of code.

We present two packages, matahari, a package for logging everything that is typed in the R console
or in an R script, and tidycode, a package with tools to allow for analyzing R calls in a tidy manner. In
this paper, we first explain how these packages work. We then demonstrate two examples, one that
analyzes data collected from an online experiment, and one that analyzes “old” data via previously
created R scripts.

Methods

We have created two R packages, matahari and tidycode. The former is a way to log R code, the latter
allows the user to analyze R calls on the function-level in a tidy manner. Figure 1 is a flowchart of the
process described in more detail below. This flowchart is adapted from Figure 2.1 in Text Mining with
R: A Tidy Approach (Silge and Robinson, 2017).

We demonstrate how to create these tidy data frames of R code and then emulate the data analysis
workflow similar to that put forth in the tidy text literature.

Terminology

In this paper, we refer to R “expressions” or “calls” as well as R “functions” and “arguments”. An R
call is a combination of an R function with arguments. For example, the following is an R call (Example
1).

library(tidycode)

Example 1. R call, library

Another example of an R call is the following piped chain of functions from the dplyr package
(Example 2).

starwars %>%
select(height, mass)

Example 2. Piped R call

Specifically, we know something is a call in R if is.call() is TRUE.

quote(starwars %>%
select(height, mass)) %>%
is.call()

#> [1] TRUE

Calls in R are made up of a function or name of a function, and arguments. For example, the
call library(tidycode) from Example 1 is comprised of the function library() and the argument
tidycode. Example 2 is a bit more complicated. The piped code can be rewritten, as seen in Example 3.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=dplyr


CONTRIBUTED RESEARCH ARTICLES 228

`%>%`(starwars, select(height, mass))

Example 3. Rewritten piped R call

From this example, it is easier to see that the function for this R call is %>% with two argu-
ments, starwars and select(height, mass). Notice that one of these arguments is an R call itself,
select(height, mass).

matahari

matahari is a simple package for logging R code in a tidy manner. It can be installed from CRAN
using the following code.

install.packages("matahari")

There are three ways to use the matahari package:

1. Record R code as it is typed and output a tidy data frame of the contents
2. Input a character string of R code and output a tidy data frame of the contents
3. Input an R file containing R code and output a tidy data frame of the contents

In the following sections, we will split these into two categories, tidy logging from the R console
(1) and tidy logging from an R script (2 and 3).

Tidy logging from the R console In order to begin logging from the R console, the dance_start()
function is used. Logging is paused using dance_stop() and the log can be viewed using dance_tbl().
For example, the following code will result in the subsequent tidy data frame.

library(matahari)
dance_start()
1 + 2
"here is some text"
sum(1:10)
dance_stop()
dance_tbl()

#> # A tibble: 6 x 6
#> expr value path contents selection dt
#> <list> <list> <list> <list> <list> <dttm>
#> 1 <languag... <S3: sessionIn... <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 2 <languag... <lgl [1]> <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 3 <languag... <lgl [1]> <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 4 <chr [1]> <lgl [1]> <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 5 <languag... <lgl [1]> <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12
#> 6 <languag... <S3: sessionIn... <lgl [1... <lgl [1... <lgl [1]> 2018-09-11 22:22:12

Example 4. Logging R code from the R console using matahari

The resulting tidy data frame consists of 6 columns: expr, the R call that was run, value, the value
that was output, path, if the code was run within RStudio, this will be the path to the file in focus,
contents, the file contents of the RStudio editor tab in focus, selection, the text that is highlighted
in the RStudio editor tab in focus, and dt, the date and time the expression was run. By default,
value, path, contents and selection will not be logged unless the argument is set to TRUE in the
dance_start() function. For example, if the analyst wanted the output data frame to include the
values computed, they would input dance_start(value = TRUE).

In this particular data frame, there are 6 rows. The first and final rows report the R session
information at the time when dance_start() was initiated (row 1) and when dance_stop() was run
(row 6). The second row holds the R call dance_start(), the first command run in the R console, was
run; the third row holds 1 + 2, the fourth holds here is some text, and the fifth holds sum(1:10).

dance_tbl()[["expr"]]

#> [[1]]
#> sessionInfo()
#>
#> [[2]]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari


CONTRIBUTED RESEARCH ARTICLES 229

#> dance_start()
#>
#> [[3]]
#> 1 + 2
#>
#> [[4]]
#> [1] "here is some text"
#>
#> [[5]]
#> sum(1:10)
#>
#> [[6]]
#> sessionInfo()

These functions work by saving an invisible data frame called .dance that is referenced by
dance_tbl(). Each time dance_start() is subsequently run after dance_stop(), new rows of data
are added to this data frame. This invisible data frame exists in a new environment created by the
matahari package. We can remove this data frame by running dance_remove().

This data frame can be manipulated using common R techniques. Below, we rerun the same code
as above, this time saving the values that are computed in the R console by using the value = TRUE
parameter.

dance_start(value = TRUE)
1 + 2
"here is some text"
sum(1:10)
dance_stop()
tbl <- dance_tbl()

As an example of the type of data wrangling that this tidy format allows for, using dplyr and
purrr, we can manipulate this to only examine expressions that result in numeric values.

library(dplyr)
library(purrr)

t_numeric <- tbl %>%
mutate(
numeric_output = map_lgl(value, is.numeric)

) %>%
filter(numeric_output)

t_numeric

#> # A tibble: 3 x 7
#> expr value path contents selection dt numeric_output
#> <list> <list> <list> <list> <list> <dttm> <lgl>
#> 1 <language> <int [1]> <lgl [1]> <lgl [1]> <lgl [1]> 2019-04-29 22:39:05 TRUE
#> 2 <language> <dbl [1]> <lgl [1]> <lgl [1]> <lgl [1]> 2019-04-29 22:39:05 TRUE
#> 3 <language> <int [1]> <lgl [1]> <lgl [1]> <lgl [1]> 2019-04-29 22:39:05 TRUE

Here, three rows are output, since we have filtered to only calls with numeric output:

1. The dance_start() call (this defaults to have a numeric value of 1)
2. The 1 + 2 call, resulting in a value of 3
3. The sum(1:10), resulting in a value of 55

Tidy logging from an R script In addition to allowing for the logging of everything typed
in the R console, the matahari package also allows for the logging of pre-created R scripts. This
can be done using the dance_recital() function, which allows for either a .R file or a character
string of R calls as the input. For example, if we have a code file called sample_code.R, we can
run dance_recital("sample_code.R") to create a tidy data frame. Alternatively, we can enter code
directly as a string of text, such as dance_recital("1 + 2") to create the tidy data frame. Below
illustrates this functionality.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=purrr
https://CRAN.R-project.org/package=matahari


CONTRIBUTED RESEARCH ARTICLES 230

code_file <- system.file("test", "sample_code.R", package = "matahari")
dance_recital(code_file)

#> # A tibble: 7 x 6
#> expr value error output warnings messages
#> <list> <list> <list> <list> <list> <list>
#> 1 <language> <dbl [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 2 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 3 <language> <dbl [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 4 <language> <NULL> <S3: simpleError> <NULL> <NULL> <NULL>
#> 5 <language> <chr [1]> <NULL> <chr [1]> <chr [1]> <chr [0]>
#> 6 <language> <NULL> <NULL> <chr [1]> <chr [0]> <chr [1]>
#> 7 <language> <NULL> <NULL> <chr [1]> <chr [0]> <chr [0]>

Example 5. R call, Logging code from a .R file using matahari

code_string <- '
4 + 4
"wow!"
mean(1:10)
stop("Error!")
warning("Warning!")
message("Hello?")
cat("Welcome!")
'
dance_recital(code_string)

#> # A tibble: 7 x 6
#> expr value error output warnings messages
#> <list> <list> <list> <list> <list> <list>
#> 1 <language> <dbl [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 2 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 3 <language> <dbl [1]> <NULL> <chr [1]> <chr [0]> <chr [0]>
#> 4 <language> <NULL> <S3: simpleError> <NULL> <NULL> <NULL>
#> 5 <language> <chr [1]> <NULL> <chr [1]> <chr [1]> <chr [0]>
#> 6 <language> <NULL> <NULL> <chr [1]> <chr [0]> <chr [1]>
#> 7 <language> <NULL> <NULL> <chr [1]> <chr [0]> <chr [0]>

Example 6. Logging code from a character string using matahari

The resulting tidy data frame from dance_recital(), as seen in Examples 5 and 6, is different
from that of dance_tbl(). This data frame has 6 columns. The first is the same as the dance_tbl(),
expr, the R calls in the .R script or string of code. The subsequent columns are, value, the computed
result of the R call, error, which contains the resulting error object from a poorly formed call, output,
the printed output from a call, warnings, the contents of any warnings that would be displayed in the
console, and messages, the contents of any generated diagnostic messages. Now that we have a tidy
data frame with R calls obtained either from the R console or from a .R script, we can analyze them
using the tidycode package.

The development version of the matahari package can be found on GitHub at https://github.
com/jhudsl/matahari. Users can submit feature requests, issues, and bug reports here.

tidycode

The goal of tidycode is to allow users to analyze R scripts, calls, and functions in a tidy way. There are
two main tasks that can be achieved with this package:

1. We can “tokenize” R calls
2. We can classify the functions run into one of nine potential data analysis categories: “Setup”,

“Exploratory”, “Data Cleaning”, “Modeling”, “Evaluation”,“Visualization”, “Communication”,
“Import”, or “Export”.

The tidycode package can be installed from CRAN in the following manner.

install.packages("tidycode")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://github.com/jhudsl/matahari
https://github.com/jhudsl/matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode


CONTRIBUTED RESEARCH ARTICLES 231

library(tidycode)

We can first create a tidy data frame using the matahari package. Alternatively, we can use a
function in the tidycode package that wraps the dance_recital() function called read_rfiles().
This function allows you to read in multiple .R files or links to .R files. There are a few example files
included in the tidycode package. The paths to these files can be accessed via the tidycode_example()
function. For example, running the following code will give the file path for the example_analysis.R
file.

tidycode_example("example_analysis.R")

#> [1] "/Library/Frameworks/R.framework/Versions/3.5/Resources/library/tidycode/extdata/example_analysis.R"

Running the function without any file specified will supply a vector of all available file names.

tidycode_example()

#> [1] "example_analysis.R" "example_plot.R"

We can use these example files in the read_rfiles() function.

df <- read_rfiles(tidycode_example(c("example_analysis.R", "example_plot.R")))
df

#> # A tibble: 9 x 3
#> file expr line
#> <chr> <list> <int>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 1
#> 2 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 2
#> 3 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 3
#> 4 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 4
#> 5 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 5
#> 6 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 6
#> 7 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 7
#> 8 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 1
#> 9 /Library/Frameworks/R.framework/Versions/3.5/Resources/li~ <langua~ 2

This will give a tidy data frame with three columns: file, the path to the file, expr the R call, and
line the line the call was made in the original .R file.

We can then use the unnest_calls() function to create a data frame of the calls, splitting each into
the individual functions and arguments. We liken this to the tidytext unnest_tokens() function. This
function has two parameters, .data, the data frame that contains the R calls, and input the name of
the column that contains the R calls. In this case, the data frame is m and the input column is expr.

u <- unnest_calls(df, expr)
u

#> # A tibble: 35 x 4
#> file line func args
#> <chr> <int> <chr> <list>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/R~ 1 libra~ <list [1]>
#> 2 /Library/Frameworks/R.framework/Versions/3.5/R~ 2 libra~ <list [1]>
#> 3 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 <- <list [2]>
#> 4 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %>% <list [2]>
#> 5 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %>% <list [2]>
#> 6 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 mutate <named lis~
#> 7 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 / <list [2]>
#> 8 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ( <list [1]>
#> 9 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ^ <list [2]>
#> 10 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ( <list [1]>
#> # ... with 25 more rows

This results is a tidy data frame with two additional columns: func the name of the function called
and args the arguments of the function called. Because this function takes a data frame as the first
argument, it works nicely with the tidyverse data manipulation packages. For example, we could get
the same data frame as above by using the following code.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidytext


CONTRIBUTED RESEARCH ARTICLES 232

df %>%
unnest_calls(expr)

#> # A tibble: 35 x 4
#> file line func args
#> <chr> <int> <chr> <list>
#> 1 /Library/Frameworks/R.framework/Versions/3.5/R~ 1 libra~ <list [1]>
#> 2 /Library/Frameworks/R.framework/Versions/3.5/R~ 2 libra~ <list [1]>
#> 3 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 <- <list [2]>
#> 4 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %>% <list [2]>
#> 5 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 %>% <list [2]>
#> 6 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 mutate <named lis~
#> 7 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 / <list [2]>
#> 8 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ( <list [1]>
#> 9 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ^ <list [2]>
#> 10 /Library/Frameworks/R.framework/Versions/3.5/R~ 3 ( <list [1]>
#> # ... with 25 more rows

We can further manipulate this, for example we could select just the func and args columns using
dplyr’s select() function.

df %>%
unnest_calls(expr) %>%
select(func, args)

#> # A tibble: 35 x 2
#> func args
#> <chr> <list>
#> 1 library <list [1]>
#> 2 library <list [1]>
#> 3 <- <list [2]>
#> 4 %>% <list [2]>
#> 5 %>% <list [2]>
#> 6 mutate <named list [1]>
#> 7 / <list [2]>
#> 8 ( <list [1]>
#> 9 ^ <list [2]>
#> 10 ( <list [1]>
#> # ... with 25 more rows

The get_classifications() function calls a classification data frame that we curated that classifies
the individual functions into one of nine categories: setup, exploratory, data cleaning, modeling,
evaluation, visualization, communication, import, or export. This can also be merged into the data
frame. For this classification analysis, we are using an inner_join(), keeping only the functions that
are classified, similar to the workflow for a sentiment analysis in tidytext (Silge and Robinson, 2017). If
you did not want to remove unclassified functions from your dataframe, the left_join() function
would be appropriate.

u %>%
inner_join(get_classifications()) %>%
select(func, classification, lexicon, score)

#> # A tibble: 322 x 4
#> func classification lexicon score
#> <chr> <chr> <chr> <dbl>
#> 1 library setup crowdsource 0.687
#> 2 library import crowdsource 0.213
#> 3 library visualization crowdsource 0.0339
#> 4 library data cleaning crowdsource 0.0278
#> 5 library modeling crowdsource 0.0134
#> 6 library exploratory crowdsource 0.0128
#> 7 library communication crowdsource 0.00835
#> 8 library evaluation crowdsource 0.00278
#> 9 library export crowdsource 0.00111
#> 10 library setup leeklab 0.994
#> # ... with 312 more rows

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidytext


CONTRIBUTED RESEARCH ARTICLES 233

There are two lexicons for classification, crowdsource and leeklab. The former was created by
volunteers who classified R code using the classify shiny application. The latter was curated by Jeff
Leek’s Lab. To select a particular lexicon, you can specify the lexicon parameter. For example, the
following code will merge in the crowdsource lexicon only.

u %>%
inner_join(get_classifications("crowdsource")) %>%
select(func, classification, score)

#> # A tibble: 271 x 3
#> func classification score
#> <chr> <chr> <dbl>
#> 1 library setup 0.687
#> 2 library import 0.213
#> 3 library visualization 0.0339
#> 4 library data cleaning 0.0278
#> 5 library modeling 0.0134
#> 6 library exploratory 0.0128
#> 7 library communication 0.00835
#> 8 library evaluation 0.00278
#> 9 library export 0.00111
#> 10 library setup 0.687
#> # ... with 261 more rows

It is possible for a function to belong to multiple classes. This will result in multiple lines (and
multiple classifications) for a given function. By default, these multiple classifications are included
along with the prevalence of each, indicated by the score column. To merge in only the most prevalent
classification, set the include_duplicates option to FALSE.

u %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE)) %>%
select(func, classification)

#> # A tibble: 33 x 2
#> func classification
#> <chr> <chr>
#> 1 library setup
#> 2 library setup
#> 3 <- data cleaning
#> 4 %>% data cleaning
#> 5 %>% data cleaning
#> 6 mutate data cleaning
#> 7 / data cleaning
#> 8 ( data cleaning
#> 9 ^ modeling
#> 10 ( data cleaning
#> # ... with 23 more rows

In text analysis, there is the concept of “stopwords”. These are often small common filler words
you want to remove before completing an analysis, such as “a” or “the”. In a tidy code analysis, we can
use a similar concept to remove some functions. For example we may want to remove the assignment
operator, <-, before completing an analysis. We have compiled a list of common stop functions in the
get_stopfuncs() function to anti join from the data frame.

u %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE)) %>%
anti_join(get_stopfuncs()) %>%
select(func, classification)

#> # A tibble: 15 x 2
#> func classification
#> <chr> <chr>
#> 1 library setup
#> 2 library setup
#> 3 mutate data cleaning
#> 4 select data cleaning

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://lucy.shinyapps.io/classify
https://jtleek.com
https://jtleek.com


CONTRIBUTED RESEARCH ARTICLES 234

#> 5 options setup
#> 6 summary exploratory
#> 7 plot visualization
#> 8 library setup
#> 9 select data cleaning
#> 10 filter data cleaning
#> 11 is.na data cleaning
#> 12 is.na data cleaning
#> 13 ggplot visualization
#> 14 aes visualization
#> 15 geom_point visualization

The development version of the tidycode package can be found on GitHub at https://github.com/jhudsl/tidycode.
Users can submit feature requests, issues, and bug reports here.

Examples

Online experiment: P-hack-athon

This first example demonstrates how to use the matahari and tidycode packages to analyze data from
a prospective study, using the “recording” capabilities of the matahari package to capture the code as
participants run it. Recently, we launched a “p-hack-athon” where we encouraged users to analyze
a dataset with the goal of producing the smallest p-value (IRB # IRB00008885, Not Human Subjects
Research Classification, Johns Hopkins Bloomberg School of Public Health IRB). We captured the code
the participants ran using the dance_start() and dance_stop() functions from the matahari package.
This resulted in a tidy data frame of R calls for each participant. We use the tidycode package to
analyze these matahari data frames.

Setup

library(tidyverse)
library(tidycode)

## load the dataset, called df
load("data/df_phackathon.Rda")

The data from the “p-hack-a-thon” is saved as a data frame called df. This includes data from
29 participants. We have bound the expr column from the matahari data frame for each participant.
Using the unnest_calls() function, we unnest each of these R calls into a function and it’s arguments.

tbl <- df %>%
unnest_calls(expr)

We can then remove the “stop functions” by doing an anti join with the get_stopfuncs() function
and merge in the crowd-sourced classifications with the get_classifications() function.

classification_tbl <- tbl %>%
anti_join(get_stopfuncs()) %>%
inner_join(get_classifications("crowdsource", include_duplicates = FALSE))

Classifications We can use common data manipulation functions from dplyr. For example, on
average, “data cleaning” functions made up 36.4% of the functions run by participants (Table 1).

classification_tbl %>%
group_by(id, classification) %>%
summarise(n = n()) %>%
mutate(pct = n / sum(n)) %>%
group_by(classification) %>%
summarise(`Average percent` = mean(pct) * 100) %>%
arrange(-`Average percent`)

We can also examine the most common functions in each classification.

func_counts <- classification_tbl %>%
count(func, classification, sort = TRUE) %>%

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tidycode
https://github.com/LucyMcGowan/tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=dplyr


CONTRIBUTED RESEARCH ARTICLES 235

Table 1: Average percent of functions spent on each task.

classification Average percent

data cleaning 36.40
visualization 23.17
exploratory 21.32
setup 18.87
modeling 17.69

import 8.58
communication 5.14
evaluation 3.62
export 0.82

ungroup()

func_counts

#> # A tibble: 152 x 3
#> func classification n
#> <chr> <chr> <int>
#> 1 summary exploratory 361
#> 2 lm modeling 277
#> 3 factor data cleaning 141
#> 4 select data cleaning 138
#> 5 library setup 128
#> 6 as.factor data cleaning 116
#> 7 filter data cleaning 107
#> 8 aes visualization 89
#> 9 ggplot visualization 82
#> 10 lmer modeling 80
#> # ... with 142 more rows

func_counts %>%
filter(classification %in% c("data cleaning", "exploratory", "modeling", "visualization")) %>%
group_by(classification) %>%
top_n(5) %>%
ungroup() %>%
mutate(func = reorder(func, n)) %>%
ggplot(aes(func, n, fill = classification)) +
theme_bw() +
geom_col(show.legend = FALSE) +
facet_wrap(~classification, scales = "free_y") +
scale_x_discrete(element_blank()) +
scale_y_continuous("Number of function calls in each classification") +
coord_flip()

We could then examine a word cloud of the functions used, colored by the classification. We can
do this using the wordcloud library.

library(wordcloud)

classification_tbl %>%
count(func, classification) %>%
with(
wordcloud(func, n,
colors = brewer.pal(9, "Set1")[factor(.$classification)],
random.order = FALSE,
ordered.colors = TRUE

)
)

Additionally, we could examine the variability in the types of functions used between groups.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=wordcloud


CONTRIBUTED RESEARCH ARTICLES 236

modeling visualization

data cleaning exploratory

0 100 200 300 0 100 200 300

dim

table

sum

head

summary

geom_smooth

log

geom_point

ggplot

aes

is.na

filter

as.factor

select

factor

formula

glm

cor.test

lmer

lm

Number of function calls in each classification

Figure 2: Functions that contribute to data cleaning, exploratory analysis, modeling and visualization
classifications in p-hack-athon trial. This plot ranks the most common functions in each classification
and displays the top 5, with the x-axis representing the number of times the given function was called.
For example, by far the most common function classified as "exploratory" is the ‘summary()‘ function.
The most common function classified as "modeling" is the ‘lm()‘ function.

For example, we asked participants whether they perform analyses as part of their job. 82.76% of
participants (n = 24) answered “Yes”.

classification_tbl %>%
group_by(id, analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(pct = n / sum(n)) %>%
group_by(analysis_job, classification) %>%
summarise(n = n()) %>%
mutate(avg_pct = n / sum(n)) %>%
ggplot(aes(x = analysis_job, y = avg_pct, fill = classification)) +
geom_bar(stat = "identity") +
scale_y_continuous("Average percent", labels = scales::percent) +
scale_x_discrete("Participant conducts analyses as part of their job")

Figure 4 demonstrates the variability in the types of functions users ran, split by whether they
conduct analyses as part of their jobs. It appears that users who conduct analyses as part of their jobs
ran a larger percentage of functions classified as “modeling”, “exploratory”, and “communication”,
whereas those who do not ran a larger percentage of “setup” functions. Of note, among those who do
not conduct analyses as part of their job, there were 0 functions used that classify as “communication”.
Had this experiment been run on a larger scale, we could potentially draw inference on the differences
between these two groups and how they choose to code.

Static Analysis

This second example demonstrates how to use the matahari and tidycode packages to analyze data
from a retrospective study, or static R scripts. Here, we use the read_rfiles() function from the
tidycode package. This wraps the dance_recital() matahari function and allows for multiple file
paths or URLs to be read, resulting in a tidy data frame. As an example, we are going to scrape all
of the .R files from two of the most widely used data manipulation packages, the data.table package
(Dowle and Srinivasan, 2019) and the dplyr package. We are going to use the gh package (Bryan and
Wickham, 2017) to scrape these files from GitHub.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=gh


CONTRIBUTED RESEARCH ARTICLES 237

su
m
m
ar
y

lm
factor
selectlibrary

as.factor filter

aes
gg
pl
ot

lmergeom_point

is.na
for

round

co
r.t
es
t

mutate

glm
exp

formula

function
paste

print

as.numeric
names

sessionInfo

log

nrow

geom_smooth

head
hist

I

sum

%<>%
plot

na.omit setdiffcor

xlim

co
ln
am

es

group_by

aov

table

geom_lineunique

dim

sapply

%in%

as.data.frame

glimpse
length

Filter

qplotseq

tidy

coef

data.table

glm.nb

if

quantile

st
r

View

duplicated

min

source

starts_with
str_extract

vars

w
hi
ch

ifelse

install.packages

scale

sqrt

cu
t

mean

month

select_if

w
da
y

apply
as.Date

cb
in
d

class

ncol

nest

predict

rownames

summarise

ungroup

append

df

map

sample

so
rt

theme_minimal

which.min

arrange

as.matrix

distinct

fp

grepl

list

log10replace

scale_y_log10

set.seed

sub

su
bs
et

tibble

year

Figure 3: Word cloud of functions used in the p-hack-athon trial, colored by classification. This
provides another view of the most common functions run in the p-hack-athon. The size of the function
corresponds to the number of times the function is called. For example, the ‘summary()‘ function is
the largest, as this was the most frequently called function. The color of the function corresponds to
the classification of the function: red: communication, blue: data cleaning, green: evaluation, purple:
exploratory, orange: export, yellow: import, brown: modeling, pink: setup, grey: visualization.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 238

0%

25%

50%

75%

100%

No Yes
Participant conducts analyses as part of their job

A
ve

ra
ge

 p
er

ce
nt

classification

communication

data cleaning

evaluation

exploratory

export

import

modeling

setup

visualization

Figure 4: Variability in the types of functions used by whether the participant performs analyses as
part of their job. The bar on the left represents the distribution of average classifications among those
who do not perform analyses as part of their job, the bar on the right represents the distribution of
the average classifications among those who do perform analyses as part of their job. It appears that
users who conduct analyses as part of their jobs ran a larger percentage of functions classified as
"modeling", "exploratory", and "communication", whereas those who do not ran a larger percentage of
"setup" functions. Of note, among those who do not conduct analyses as part of their job, there were 0
functions used that classify as "communication".

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 239

Setup We access the files via GitHub using the gh() function from the gh package. This gives a list
of download URLs that can be passed to the read_rfiles() function from the tidycode package.

library(tidyverse)
library(gh)
library(tidycode)

dplyr_code <- gh("/repos/tidyverse/dplyr/contents/R") %>%
purrr::map("download_url") %>%
read_rfiles()

datatable_code <- gh("/repos/Rdatatable/data.table/contents/R") %>%
purrr::map("download_url") %>%
read_rfiles()

Data Cleaning We can combine these two tidy data frames. We will do some small data manipula-
tion, removing R calls that were either NULL or character. For example, in the dplyr package some .R
files just reference data frames as a character string.

pkg_data <- bind_rows(
list(
dplyr = dplyr_code,
datatable = datatable_code

),
.id = "pkg"

) %>%
filter(
!map_lgl(expr, is.null),
!map_lgl(expr, is.character)

)

Analyze R functions Now we can use the tidycode unnest_calls() function to create a tidy data
frame of the individual functions along with the arguments used to create both packages. Notice
here we are not performing an anti join on “stop functions”. For this analysis, we are interested
in examining some key differences in the commonly used functions contained the two packages.
Common operators may actually be of interest, so we do not want to drop them from the data frame.
We can count the functions by package.

func_counts <- pkg_data %>%
unnest_calls(expr) %>%
count(pkg, func, sort = TRUE)

func_counts

#> # A tibble: 1,163 x 3
#> pkg func n
#> <chr> <chr> <int>
#> 1 datatable = 1640
#> 2 dplyr <- 1634
#> 3 datatable if 1590
#> 4 datatable { 1172
#> 5 dplyr { 1047
#> 6 dplyr function 724
#> 7 datatable ! 616
#> 8 datatable <- 579
#> 9 datatable [ 564
#> 10 datatable length 557
#> # ... with 1,153 more rows

Using this data frame, we can visualize which functions are most commonly called in each package.

top_funcs <- func_counts %>%
group_by(pkg) %>%
top_n(10) %>%

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=gh
https://CRAN.R-project.org/package=tidycode
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=tidycode


CONTRIBUTED RESEARCH ARTICLES 240

datatable dplyr

0 500 1000 1500 0 500 1000 1500

::

names

length

[

$

if

!

function

{

<−

stop

&&

[[

length

[

<−

!

{

if

=

n

Figure 5: Most frequent functions used in data.table and dplyr package development. The y-axis
displays the 10 most frequently used functions for each package, the x-axis represents the number
of times that function is implemented. This allows us to examine coding style, for example the most
frequent function in the data.table packages is ‘=‘, compared to ‘<-‘ in the dplyr package. The authors
of data.table use the ‘=‘ as an assignment operator at times, explaining this difference.

ungroup() %>%
arrange(pkg, n) %>%
mutate(i = row_number())

ggplot(top_funcs, aes(i, n, fill = pkg)) +
theme_bw() +
geom_col(show.legend = FALSE) +
facet_wrap(~pkg, scales = "free") +
scale_x_continuous(
element_blank(),
breaks = top_funcs$i,
labels = top_funcs$func,
expand = c(0, 0)

) +
coord_flip()

We can glean a few interesting details from Figure 5. First, the data.table authors sometimes
use the = as an assignment operator, resulting in this being the most frequent function used. The
dplyr authors always use <- for assignment, therefore this is the most frequent function seen in this
package (Wickham, 2019). Additionally, the dplyr authors often create modular code as a combination
of small functions to complete specific tasks. This may explain why function is the third most frequent
R call in this package, and less prevalent in the data.table package. This just serves as a glimpse of
what can be accomplished with these tools.

Discussion

We have designed a framework to analyze the data analysis pipeline and created two R packages
that allow for the study of data analysis code conducted in R. We present two packages, matahari,
a package for logging everything that is typed in the R console or in an R script, and tidycode, a
package with tools to allow for analyzing R calls in a tidy manner. These tools can be applied both
to prospective studies, where a researcher can intentionally record code typed by participants, and

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=matahari
https://CRAN.R-project.org/package=tidycode


CONTRIBUTED RESEARCH ARTICLES 241

retrospectively, where the researcher can retrospectively analyze code. We believe that these tools will
help shape the next phase of reproducibility and replicability, allowing the analysis of code to inform
data science pedagogy, examine how collaborates conduct data analyses, and explore how current
software tools are being utilized.

Acknowledgements

We would like to extend a special thank you to the members of the Leek Lab at Johns Hopkins
Bloomberg School of Public Health as well as volunteers who used the “classify” shiny application for
helping classify R functions.

Bibliography
J. Bryan and H. Wickham. Gh: ’GitHub’ ’API’, 2017. URL https://CRAN.R-project.org/package=gh.

R package version 1.0.1. [p236]

A. Buja, D. Cook, H. Hofmann, M. Lawrence, E.-K. Lee, D. F. Swayne, and H. Wickham. Statistical
inference for exploratory data analysis and model diagnostics. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1906):4361–4383, 2009. URL
https://doi.org/10.1098/rsta.2009.0120. [p226]

M. Dowle and A. Srinivasan. Data.table: Extension of ‘data.frame‘, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.0. [p236]

J. Goecks, A. Nekrutenko, J. Taylor, and G. Team. Galaxy: a Comprehensive Approach for Supporting
Accessible, Reproducible, and Transparent Computational Research in the Life Sciences. Genome
biology, 11(8), 2010. URL https://doi.org/10.1186/gb-2010-11-8-r86. [p226]

J. P. A. Ioannidis, M. R. Munafo, P. Fusar-Poli, B. A. Nosek, and S. P. David. Publication and Other
Reporting Biases in Cognitive Sciences: Detection, Prevalence, and Prevention. Trends in Cognitive
Sciences, 18(5):235–241, 2014. URL https://doi.org/10.1016/j.tics.2014.02.010. [p226]

J. T. Leek and R. D. Peng. Opinion: Reproducible Research Can Still Be Wrong: Adopting a Prevention
Approach. Proceedings of the National Academy of Sciences, 112(6):1645–1646, 2015. URL https:
//doi.org/10.1073/pnas.1421412111. [p226]

A. Loy, L. Follett, and H. Hofmann. Variations of q–q plots: The power of our eyes! The American
Statistician, 70(2):202–214, 2016. URL https://doi.org/10.1080/00031305.2015.1077728. [p226]

A. Loy, H. Hofmann, and D. Cook. Model choice and diagnostics for linear mixed-effects models
using statistics on street corners. Journal of Computational and Graphical Statistics, 26(3):478–492, 2017.
URL https://doi.org/10.1080/10618600.2017.1330207. [p226]

M. Majumder, H. Hofmann, and D. Cook. Validation of visual statistical inference, applied to linear
models. Journal of the American Statistical Association, 108(503):942–956, 2013. URL https://doi.
org/10.1080/01621459.2013.808157. [p226]

M. McNutt. Reproducibility. Science, 343(6168):229–229, 2014. URL https://doi.org/10.1126/
science.1250475. [p226]

E. Miguel, C. Camerer, K. Casey, J. Cohen, K. M. Esterling, A. Gerber, R. Glennerster, D. P. Green,
M. Humphreys, G. Imbens, D. Laitin, T. Madon, L. Nelson, B. A. Nosek, M. Petersen, R. Sedlmayr,
J. P. Simmons, U. Simonsohn, and M. Van der Laan. Promoting Transparency in Social Science
Research. Science, 343(6166):30–31, 2014. URL https://doi.org/10.1126/science.1245317. [p226]

B. A. Nosek, G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler, S. Buck, C. D. Chambers,
G. Chin, G. Christensen, M. Contestabile, A. Dafoe, E. Eich, J. Freese, R. Glennerster, D. Goroff,
D. P. Green, B. Hesse, M. Humphreys, J. Ishiyama, D. Karlan, A. Kraut, A. Lupia, P. Mabry,
T. A. Madon, N. Malhotra, E. Mayo-Wilson, M. McNutt, E. Miguel, E. L. Paluck, U. Simonsohn,
C. Soderberg, B. A. Spellman, J. Turitto, G. VandenBos, S. Vazire, E. J. Wagenmakers, R. Wilson,
and T. Yarkoni. Promoting an Open Research Culture. Science, 348(6242):1422–1425, 2015. URL
https://doi.org/10.1126/science.aab2374. [p226]

R. D. Peng. Reproducible Research in Computational Science. Science, 334(6060):1226–1227, 2011. URL
https://doi.org/10.1126/science.1213847. [p226]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=gh
https://doi.org/10.1098/rsta.2009.0120
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.1016/j.tics.2014.02.010
https://doi.org/10.1073/pnas.1421412111
https://doi.org/10.1073/pnas.1421412111
https://doi.org/10.1080/00031305.2015.1077728
https://doi.org/10.1080/10618600.2017.1330207
https://doi.org/10.1080/01621459.2013.808157
https://doi.org/10.1080/01621459.2013.808157
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1250475
https://doi.org/10.1126/science.1245317
https://doi.org/10.1126/science.aab2374
https://doi.org/10.1126/science.1213847


CONTRIBUTED RESEARCH ARTICLES 242

B. Richard. Reproducibility Undergoes Scrutiny. BioScience, 64(4):368–368, 2014. [p226]

Y. Sidi and O. Harel. The Treatment of Incomplete Data: Reporting, Analysis, Reproducibility, and
Replicability. Social Science & Medicine, 209:169–173, 2018. URL https://doi.org/10.1016/j.
socscimed.2018.05.037. [p226]

R. Silberzhan, E. L. Uhlmann, D. P. Martin, P. Anselmi, F. Aust, E. Awtrey, Štěpán Bahník, F. Bai,
C. Bannard, E. Bonnier, and others. Many analysts, one data set: Making transparent how variations
in analytic choices affect results. Advances in Methods and Practices in Psychological Science, 1(3):
337–356, 2018. URL https://doi.org/10.1177/2515245917747646. [p226]

J. Silge and D. Robinson. Tidytext: Text mining and analysis using tidy data principles in r. The Journal
of Open Source Software, 1(3):37, 2016. URL https://doi.org/10.21105/joss.00037. [p227]

J. Silge and D. Robinson. Text Mining with R: A Tidy Approach. " O’Reilly Media, Inc.", 2017. [p227, 232]

D. Waltemath and O. Wolkenhauer. How Modeling Standards, Software, and Initiatives Support
Reproducibility in Systems Biology and Systems Medicine. Ieee Transactions on Biomedical Engineering,
63(10):1999–2006, 2016. URL https://doi.org/10.1109/TBME.2016.2555481. [p226]

H. Wickham. R Packages: Organize, Test, Document, and Share Your Code. " O’Reilly Media, Inc.", 2015.
[p226]

H. Wickham. The tidyverse style guide, 2019. URL https://style.tidyverse.org. [p226, 240]

H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. "
O’Reilly Media, Inc.", 2016. [p226]

H. Wickham, D. Cook, and H. Hofmann. Visualizing statistical models: Removing the blindfold.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 8(4):203–225, 2015. URL https:
//doi.org/10.1002/sam.11271. [p226]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. URL https://doi.org/10.21105/joss.
01686. [p226]

Lucy D’Agostino McGowan
Wake Forest University
Winston-Salem, North Carolina, USA
lucydagostino@gmail.com

Sean Kross
UC San Diego
La Jolla, California, USA
seankross@ucsd.edu

Jeffrey Leek
Johns Hopkins Bloomberg School of Public Health
Baltimore, Maryland, USA
jtleek@gmail.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1016/j.socscimed.2018.05.037
https://doi.org/10.1016/j.socscimed.2018.05.037
https://doi.org/10.1177/2515245917747646
https://doi.org/10.21105/joss.00037
https://doi.org/10.1109/TBME.2016.2555481
https://style.tidyverse.org
https://doi.org/10.1002/sam.11271
https://doi.org/10.1002/sam.11271
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
mailto:lucydagostino@gmail.com
mailto:seankross@ucsd.edu
mailto:jtleek@gmail.com


CONTRIBUTED RESEARCH ARTICLES 243

spinifex: An R Package for Creating a
Manual Tour of Low-dimensional
Projections of Multivariate Data
by Nicholas Spyrison and Dianne Cook

Abstract Dynamic low-dimensional linear projections of multivariate data collectively known as tours
provide an important tool for exploring multivariate data and models. The R package tourr provides
functions for several types of tours: grand, guided, little, local and frozen. Each of these can be viewed
dynamically, or saved into a data object for animation. This paper describes a new package, spinifex,
which provides a manual tour of multivariate data where the projection coefficient of a single variable
is controlled. The variable is rotated fully into the projection, or completely out of the projection. The
resulting sequence of projections can be displayed as an animation, with functions from either the
plotly or gganimate packages. By varying the coefficient of a single variable, it is possible to explore
the sensitivity of structure in the projection to that variable. This is particularly useful when used
with a projection pursuit guided tour to simplify and understand the solution. The use of the manual
tour is applied particle physics data to illustrate the sensitivity of structure in a projection to specific
variable contributions.

Introduction

Exploring multivariate spaces is a challenging task, increasingly so as dimensionality increases. Tradi-
tionally, static low-dimensional projections are used to display multivariate data in two dimensions
including principal component analysis, linear discriminant spaces or projection pursuit. These are
useful for finding relationships between multiple variables, but they are limited because they show
only a glimpse of the high-dimensional space. An alternative approach is to use a tour (Asimov, 1985)
of dynamic linear projections to look at many different low-dimensional projections. Tours can be
considered to extend the dimensionality of visualization, which is important as data and models exist
in more than 3D. The package tourr (Wickham et al., 2011) provides a platform for generating tours.
It can produce a variety of tours, each paired with a variety of possible displays. A user can make
a grand, guided, little, local or frozen tour, and display the resulting projected data as a scatterplot,
density plot, histogram, or even as Chernoff faces if the projection dimension is more than 3.

This work adds a manual tour to the collection. The manual tour was described in Cook and Buja
(1997) and allows a user to control the projection coefficients of a selected variable in a 2D projection.
The manipulation of these coefficients allows the analyst to explore their sensitivity to the structure
within the projection. As manual tours operate on only one variable at a time, they are particularly
useful once a feature of interest has been identified.

One way to identify “interesting” features is with the use of a guided tour (Cook et al., 1995-09).
Guided tours select a very specific path, which approaches a projection that optimizes an objective
function. The optimization used to guide the tour is simulated annealing (Kirkpatrick et al., 1983). The
direct optimization of a function allows guided tours to rapidly identify interesting projection features
given the relatively large parameter-space. After a projection of interest is identified, an analyst can
then use the “finer brush” of the manual tour to control the contributions of individual variables to
explore the sensitivity they have on the structure visible in the projection.

The paper is organized as follows. Section 2 describes the algorithm used to perform a radial
manual tour as implemented in the package spinifex. Section 2.2 explains how to generate an
animation of the manual tour using the animation frameworks offered by plotly (Sievert, 2020) and
gganimate (Pedersen and Robinson, 2020). Package functionality and code usage following the order
applied in the algorithm follows in section 3.3. Section 4 illustrates how this can be used for sensitivity
analysis applied to multivariate data collected on high energy physics experiments (Wang et al., 2018).
Section 5 summarizes this paper and discusses potential future directions.

Algorithm

The algorithm to conduct a manual tour interactively, by recording mouse/cursor motion, is described
in detail in Cook and Buja (1997). Movement can be in any direction and magnitude, but it can also be
constrained in several ways:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tourr
https://CRAN.R-project.org/package=spinifex
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=gganimate


CONTRIBUTED RESEARCH ARTICLES 244

• radial: fix the direction of contribution, and allow the magnitude to change.
• angular: fix the magnitude, and allow the angle or direction of the contribution to vary.
• horizontal, vertical: allow rotation only around the horizontal or vertical axis of the current 2D

projection.

The algorithm described here produces a radial tour as an animation sequence. It takes the current
contribution of the chosen variable, and using rotation brings this variable fully into the projection,
completely removes it, and then returns to the original position.

Notation

The notation used to describe the algorithm for a 2D radial manual tour is as follows:

• X, the data, an n× p numeric matrix to be projected to 2D.

• B = (B1, B2), any 2D orthonormal projection basis, p× 2 matrix, describing the projection from
Rp ⇒ R2. This is called this the “original projection” because it is the starting point for the
manual tour.

• k, is the index of the variable to manipulate, called the “manip var”.

• e, a 1D basis vector of length p, with 1 in the k-th position and 0 elsewhere.

• M is a p × 3 matrix, defining the 3D subspace where data rotation occurs and is called the
manip(ulation) space.

• R, the 3D rotation matrix, for performing unconstrained 3D rotations within the manip space,
M.

• θ, the angle of in-projection rotation, for example, on the reference axes; cθ , sθ are its cosine and
sine.

• φ, the angle of out-of-projection rotation, into the manip space; cφ, sφ are its cosine and sine. The
initial value for animation purposes is φ1.

• U, the axis of rotation for out-of-projection rotation orthogonal to e.

• Y, the resulting projection of the data through the manip space, M, and rotation matrix, R.

The algorithm operates entirely on projection bases and incorporates the data only when making
the projected data plots, in light of efficiency.

Steps

Step 0) Set up

The flea data (Lubischew (1962)), available in the tourr package, is used to illustrate the algorithm. The
data contains 74 observations on 6 variables, which are physical measurements made on flea beetles.
Each observation belongs to one of three species.

An initial 2D projection basis must be provided. A suggested way to start is to identify an
interesting projection using a projection pursuit guided tour. Here the holes index is used to find a
2D projection of the flea data, which shows three separated species groups. Figure 1 shows the initial
projection of the data. The left panel displays the projection basis (B) and can be used as a visual guide
of the magnitude and direction that each variable contributes to the projection. The right panel shows
the projected data, Y[n, 2] = X[n, p]B[p, 2]. The color and shape of points are mapped to the flea species.
This plot is made using the view_basis() function in spinifex, which generates a ggplot2 (Wickham,
2016) object.

Step 1) Choose manip variable

In figure 1 the contribution of the variables tars1 and aede2 mostly contrast the contribution of the
other four variables. These two variables combined contribute in the direction of the projection where
the purple cluster is separated from the other two clusters. The variable aede2 is selected as the manip
var, the variable to be controlled in the tour. The question that will be explored is: how important is
this variable to the separation of the clusters in this projection?

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 245

tars1

tars2 head
aede1

aede2

aede3

Figure 1: Initial 2D projection: representation of the basis (left) and resulting data projection (right)
of standardized flea data. The color and shape of data points are mapped to beetle species. The
basis was identified using a projection pursuit guided tour, with the holes index. The contribution
of the variables aede2 and tars1 approximately contrasts the other variables. The visible structure in
the projection are the three clusters corresponding to the three species. Produced with the function
view_basis().

Step 2) Create the 3D manip space

Initialize the coordinate basis vector as a zero vector, e, of length p, and set the k-th element to 1. In the
example data, aede2 is the fifth variable in the data, so k = 5, set e5 = 1. Use a Gram-Schmidt process
to orthonormalize the coordinate basis vector on the original 2D projection to describe a 3D manip
space, M.

ek ← 1

e∗[p, 1] = e− 〈e, B1〉B1 − 〈e, B2〉B2

M[p, 3] = (B1, B2, e∗)

The manip space provides a 3D projection from p-dimensional space, where the coefficient of the
manip var can range completely between [0, 1]. This 3D space serves as the medium to rotate the
projection basis relative to the selected manipulation variable. Figure 2 illustrates this 3D manip space
with the manip var highlighted. This representation is produced by calling the view_manip_space()
function. This diagram is purely used to help explain the algorithm.

Step 3) Defining a 3D rotation

The basis vector corresponding to the manip var (red line in Figure 2), can be operated like a lever
anchored to the origin. This is the process of the manual control, that rotates the manip variable into
and out of the 2D projection (Figure 3). As the variable contribution is controlled, the manip space
rotates, and the projection onto the horizontal projection plane correspondingly changes. This is a
manual tour. Generating a sequence of values for the rotation angles produces a path for the rotation
of the manip space.

For a radial tour, fix θ, the angle describing rotation within the projection plane, and compute a
sequence for φ, defining movement out of the plane. This will change φ from the initial value, φ1, the
angle between e and its shadow in B, to a maximum of 0 (manip var fully in projection), then to a
minimum of π/2 (manip var out of projection), before returning to φ1.

Rotations in 3D can be defined by the axes they pivot on. Rotation within the projection, θ, is
rotation around the Z axis. Out-of-projection rotation, φ, is the rotation around an axis on the XY
plane, U, orthogonal to e. Given these axes, the rotation matrix, R can be written as follows, using
Rodrigues’ rotation formula (originally published in Rodrigues (1840)):

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 246

tars1

tars2 headaede1
aede2

aede3

aede2

φ

θ

Figure 2: Illustration of a 3D manip space, this space is rotated effectively changing the contribution of
the manip variable, aede2 in the example data. The blue circle and variable map lies on the projection
plane. The red circle, orthogonal to the projection plane, illustrates the manipulation space and how
the manip var can be controlled and how this affects the variable contribution back onto the projection
plane. The other variables are omitted from the manipulation dimension for simplicity. Picturing the
other variables in that dimension reveals the intuition that rotating one variable performs a constrained
rotation on the others. This is illustrated with the view_manip_space() function.

R[3, 3] = I3 + sφU + (1− cφ)U2

=

1 0 0
0 1 0
0 0 1

+

 0 0 cθsφ

0 0 sθsφ

−cθsφ −sθsφ 0

+

 −cθ(1− cφ) s2
θ(1− cφ) 0

−cθsθ(1− cφ) −s2
θ(1− cφ) 0

0 0 cφ − 1


=

 c2
θcφ + s2

θ −cθsθ(1− cφ) −cθsφ

−cθsθ(1− cφ) s2
θcφ + c2

θ −sθsφ

cθsφ sθsφ cφ



where

U = (ux, uy, uz) = (sθ ,−cθ , 0)

=

 0 −uz uy
uz 0 −ux
−uy ux 0

 =

 0 0 −cθ

0 0 −sθ

cθ sθ 0



Step 4) Creating an animation of the radial rotation

The steps outlined above can be used to create any arbitrary rotation in the manip space. To use these
for sensitivity analysis, the radial rotation is built into an animation where the manip var is rotated
fully into the projection, completely out, and then back to the initial value. This involves allowing φ to
vary between 0 and π/2, call the steps φi.

#> function (`_class` = NULL, `_inherit` = NULL, ...)
#> {
#> e <- new.env(parent = emptyenv())
#> members <- list(...)
#> if (length(members) != sum(nzchar(names(members)))) {
#> abort("All members of a ggproto object must be named.")
#> }

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 247

tars1

tars2 headaede1

aede2

aede3

(1) phi = 0.78

tars1

tars2head
aede1

aede2

aede3

(2) phi = 0

tars1

tars2 headaede1

aede2

aede3

(3) phi = 1.57

tars1

tars2 headaede1

aede2

aede3

(4) phi = 0.78

Figure 3: Snapshots of a radial manual tour manipulating aede2: (1) original projection, (2) full
contribution, (3) zero contribution, (4) back to original.

#> if (length(members) > 0) {
#> list2env(members, envir = e)
#> }
#> `_inherit` <- substitute(`_inherit`)
#> env <- parent.frame()
#> find_super <- function() {
#> eval(`_inherit`, env, NULL)
#> }
#> super <- find_super()
#> if (!is.null(super)) {
#> if (!is.ggproto(super)) {
#> abort("`_inherit` must be a ggproto object.")
#> }
#> e$super <- find_super
#> class(e) <- c(`_class`, class(super))
#> }
#> else {
#> class(e) <- c(`_class`, "ggproto", "gg")
#> }
#> e
#> }
#> <bytecode: 0x7f9c6f227828>
#> <environment: namespace:ggplot2>

1. Set initial value of φ1 and θ: φ1 = cos−1
√

B2
k1 + B2

k2, θ = tan−1 Bk2
Bk1

. Where φ1 is the angle
between e and its shadow in B.

2. Set an angle increment (∆φ) that sets the step size for the animation, to rotate the manip var
into and out of the projection. (Note: Using angle increment, rather than a number of steps, to
control the movement, is consistent with the tour algorithm as implemented in the tourr).

3. Step towards 0, where the manip var is completely in the projection plane.
4. Step towards π/2, where the manip variable has no contribution to the projection.
5. Step back to φ1.

In each of the steps 3-5, a small step may be added to ensure that the endpoints of φ (0, π/2, φ1)
are reached.

Step 5) Projecting the data

The operation of a manual tour is defined on the projection bases. Only when the data plot needs to be
made is the data projected into the relevant basis.

Y(i)
[n, 3] = X[n, p]M[p, 3]R

(i)
[3,3]

where R(i)
[3,3] is the incremental rotation matrix, using φi. To make the data plot, use the first two

columns of Y. Show the projected data for each frame in sequence to form an animation.

Figure 4 illustrates a manual tour sequence having 15 steps. The projection axes are displayed on
the top half, which corresponds to the projected data in the bottom half. When aede2 is removed from

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 248

Table 1: Summary of available functions.

Type Function Description

construction create_manip_space forms the 3D space of rotation
construction rotate_manip_space performs 3D rotation
construction manual_tour generates sequence of 2D frames

render array2df turn the tour path array into long form, for plotting
render render_ render long form as a ggplot2 objection for animation
render render_plotly render the animation as a plotly object (default)
render render_gganimate render the animation as a gganimate object

animation play_tour_path composite function animating the specified tour path
animation play_manual_tour composite function animating the specified manual tour

specialty print_manip_space table of the rotated basis and manip space
specialty oblique_frame display the reference axes of a given basis
specialty view_manip_space illustrative display of any manip space

the projection, the purple cluster overlaps with the green cluster. This suggests that aede2 is important
for distinguishing between these species.

Tours are typically viewed as an animation. The animation of this tour can be viewed online at
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/flea_radialtour_mvar5.
gif. The page may take a moment to load. Animations can be produced using the function
play_manual_tour().

Package structure and functionality

This section describes the functions available in the package, and how to use them.

Installation

The spinifex is available from CRAN, and can be installed by:

## Install from CRAN
install.package("spinifex")
## Load into session
library("spinifex")

Also see the shiny app for understandign and the vignette for basic usage:

## Shiny app for visualizing basic application
run_app("intro")
## View the code vignette
vignette("spinifex_vignette")

The development version can be installed from github:

## Optionally install latest developmention version from GitHub
remotes::install_github("nspyrison/spinifex")

Functions

Table 1 lists the primary functions and their purpose. These are grouped into four types: construction
for building a tour path, render to make the plot objects, animation for running the animation, and
specialty for providing illustrations used in the algorithm description.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/flea_radialtour_mvar5.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/flea_radialtour_mvar5.gif


CONTRIBUTED RESEARCH ARTICLES 249

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2 hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1
ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

tr1
tr2hedad1

ad2
ad3

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

Figure 4: Radial manual tour manipulating aede2 of standardized flea data. The axis for aede2
increases in contribution to the projection, from its initial value to 1, decreasing to 0 and then returning
to the initial value. This effects the separation between the purple and green clusters. This shows that
aede2 is important for distinguishing the purple species, because the separation disappears when
aede2 is not contributing to the projection.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 250

Usage

Using the flea data from the tourr package, we will illustrate generating a manual tour to explore the
sensitivity of the cluster structure is to the variable aede2.

library(spinifex)
## Standardized flea data
f_data <- tourr::rescale(flea[, 1:6])
## Guided tour path, holes index
f_path <- save_history(f_data, guided_tour(holes()))
## Local extrema found
f_basis <- matrix(f_path[,, max(dim(f_path)[3])], ncol=2)
## Categorical class variable
f_clas <- factor(flea$species)
## Manip var, number of the variable to alter
f_mvar <- 5
## Anglular dist between frames (radians)
step_size <- .26
## Render and play animate, as plotly object by default
play_manual_tour(data = f_data,

basis = f_basis,
manip_var = f_mvar,
angle = step_size,
col = f_clas,
pch = f_clas)

The play_manual_tour() function is a composite function handling interaction between manual_tour(),
array2df(), and render_plotly(). This will generate an html animation using plotly. Switching the
renderer to render_gganimate() alternatively creates an animated gif. Each of these formats allows for
the animation to be made available on a web site, or directly visible in an html formatted document.

Making illustrations

The function oblique_frame can be used to show a projection of the basis, or with the data overlaid.
For example, the plots in Figures 1 and 3 were made with code similar to this:

## View a basis and projected data
oblique_frame(basis = f_basis,

data = f_data,
color = f_clas,
shape = f_clas)

An illustration of the manip space (as shown in Figure 2) is made with the view_manip_space function,
as follows:

## Displays the projection plane and manipulation space for the
view_manip_space(basis = f_basis,

manip_var = f_mvar,
lab = colnames(f_data))

Application

Wang et al. (2018) introduces a new tool, PDFSense, to visualize the sensitivity of hadronic experiments
to nucleon structure. The parameter-space of these experiments lies in 56 dimensions, δ ∈ R56, and
are visualized as 3D subspaces of the 10 first principal components in linear (PCA) and non-linear
(t-SNE) embeddings.

Cook et al. (2018) illustrates how to learn more about the structures using a grand tour. Tours can
better resolve the shape of clusters, intra-cluster detail, and better outlier detection than PDFSense
& TFEP (TensorFlow embedded projections) or traditional static embeddings. This example builds
from here, illustrating how the manual tour can be used to examine the sensitivity of structure in
a projection to different parameters. The specific 2D projections passed to the manual tour were
provided in their work.

The data has a hierarchical structure with top-level clusters; DIS, VBP, and jet. Each cluster is
a particular class of experiments, each with many experimental datasets which, each have many

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 251

observations of their own. In consideration of data density, we conduct manual tours on subsets of the
DIS and jet clusters. This explores the sensitivity of the structure to each of the variables in turn and
we present the subjectively best and worst variable to manipulate for identifying dimensionality of
the clusters and describing the span of the clusters.

Jet cluster

The jet cluster resides in a smaller dimensionality than the full set of experiments with four principal
components explaining 95% of the variation in the cluster (Cook et al., 2018). The data within this 4D
embedding is further subsetted, to ATLAS7old and ATLAS7new, to focus on two groups that occupy
different parts of the subspace. Radial manual tours controlling contributions from PC4 and PC3 are
shown in Figures 5 and 6, respectively. The difference in shape can be interpreted as the experiments
probing different phase-spaces. Back-transforming the principal components to the original variables
can be done for a more detailed interpretation.

When PC4 is removed from the projection (Figure 5) the difference between the two groups is
removed, indicating that it is important for distinguishing experiments. However, removing PC3 from
the projection (Figure 6) does not affect the structure, indicating it is not important for distinguishing
experiments. Animations for the remaining PCs can be viewed at the following links: PC1, PC2, PC3,
and PC4. It can be seen that only PC4 is important for viewing the difference in these two experiments.

DIS cluster

Following Cook et al. (2018), to explore the DIS cluster, PCA is recomputed and the first six principal
components, explaining 48% of the full sample variation, are used. The contributions of PC6 and PC2
are explored in Figures 7 and 8, respectively. Three experiments are examined: DIS HERA1+2 (green),
dimuon SIDIS (purple), and charm SIDIS (orange).

Both PC2 and PC6 contribute to the projection similarly. When PC6 is rotated into the projection,
variation in the DIS HERA1+2 is greatly reduced. When PC2 is removed from the projection, dimuon
SIDIS becomes more clearly distinct. Even though both variables contribute similarly to the original
projection, their contributions have quite different effects on the structure of each cluster, and the
distinction between clusters. Animations of all of the principal components can be viewed from the
links: PC1, PC2, PC3, PC4, PC5, and PC6.

Discussion

Dynamic linear projections of numeric multivariate data, tours, play an important role in data visual-
ization; they extend the dimensionality of visuals to peek into high-dimensional data and parameter
spaces. This research has taken the manual tour algorithm, specifically the radial rotation, used in
GGobi (Swayne et al., 2003-08-28) to interactively rotate a variable into or out of a 2D projection, and
modified it to create an animation that performs the same task. It is most useful for examining the
importance of variables, and how the structure in the projection is sensitive or not to specific variables.
This functionality available in package spinifex. The work complements the methods available in the
tourr package.

This work was motivated by problems in physics, and thus the usage was illustrated on data
comparing experiments of hadronic collisions, to explore the sensitivity of cluster structure to different
principal components. These tools can be applied quite broadly to many multivariate data analysis
problems.

The manual tour is constrained in the sense that the effect of one variable is dependent on the
contributions of other variables in the manip space. However, this can be useful to simplify a projection
by removing variables without affecting the visible structure. Defining a manual rotation in high
dimensions is possible using Givens rotations and Householder reflections as outlined in Buja et al.
(2005). This would provide more flexible manual rotation, but more difficult for a user because they
have the choice (too much choice) of which directions to move.

Another future research topic could be to extend the algorithm for use on 3D projections. With
the current popularity and availability of 3D virtual displays, this may benefit the detection and
understanding of the higher dimensional structure, or enable the examination of functions.

Having a graphical user interface would be useful for making it easier and more accessible to
a general audience. This is possible to implement using shiny (Chang et al., 2020). The primary
purposes of the interface would be to allow the user to interactively change the manip variable easily,
and the interpolation step for more or less detailed views.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/jetcluster_manualtour_pc1.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/jetcluster_manualtour_pc2.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/jetcluster_manualtour_pc3.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/jetcluster_manualtour_pc4.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc1.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc2.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc3.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc4.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc5.gif
https://github.com/nspyrison/spinifex_paper/blob/master/paper/gifs/discluster_manualtour_pc6.gif
https://CRAN.R-project.org/package=shiny


CONTRIBUTED RESEARCH ARTICLES 252

PC1
PC2

PC3
PC4

PC1PC2PC3
PC4

PC1PC2PC3

PC4

PC1PC2PC3

PC4
PC1

PC2
PC3

PC4

PC1
PC2

PC3
PC4 PC1

PC2

PC3 PC4 PC1

PC2

PC3 PC4
PC1

PC2

PC3
PC4

PC1

PC2

PC3
PC4

PC1

PC2

PC3
PC4

PC1

PC2

PC3PC4
PC1

PC2

PC3 PC4 PC1
PC2

PC3
PC4

PC1
PC2

PC3
PC4

frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

Figure 5: Snapshots of a radial manual tour of PC4 within the jet cluster, with color indicating
experiment type: ATLAS7new (green) and ATLAS7old (orange). When PC4 is removed from the
projection (frame 10) there is little difference between the groups, suggesting that PC4 is important for
distinguishing the experiments.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 253

PC1
PC2

PC3
PC4

PC1
PC2

PC3
PC4

PC1
PC2

PC3 PC4

PC1
PC2

PC3 PC4
PC1

PC2

PC3 PC4

PC1
PC2

PC3 PC4
PC1

PC2

PC3 PC4
PC1

PC2
PC3

PC4
PC1

PC2
PC3

PC4
PC1

PC2PC3

PC4

PC1
PC2 PC3

PC4
PC1

PC2 PC3

PC4
PC1

PC2PC3

PC4
PC1

PC2
PC3

PC4
PC1

PC2
PC3

PC4

frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

Figure 6: Snapshots of a radial manual tour of PC3 within the jet cluster, with color indicating
experiment type: ATLAS7new (green) and ATLAS7old (orange). When the contribution from PC3 is
changed there is little change to the structure of the two groups, suggesting that PC3 is not important
for distinguishing the experiments.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 254

PC1
PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3
PC4

PC5

PC6

PC1PC2
PC3
PC4

PC5

PC6

PC1PC2
PC3PC4

PC5

PC6

PC1PC2
PC3PC4

PC5

PC6

PC1PC2
PC3PC4

PC5

PC6

PC1PC2
PC3
PC4

PC5

PC6

PC1
PC2 PC3

PC4
PC5

PC6

PC1
PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6

PC1
PC2 PC3

PC4PC5
PC6 PC1

PC2 PC3

PC4PC5
PC6 PC1

PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

Figure 7: Snapshots of a radial manual tour exploring the sensitivity PC6 has on the structure of the
DIS cluster, with color indicating experiment type: DIS HERA1+2 (green), dimuon SIDIS (purple), and
charm SIDIS (orange). DIS HERA1+2 is distributed in a cross-shaped plane, charm SIDIS occupies the
center of this cross, and dimuon SIDIS is a linear cluster crossing DIS HERA1+2. As the contribution
of PC6 is increased, DIS HERA1+2 becomes almost singular in one direction (frame 5), indicating that
this experiment has very little variability in the direction of PC6.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 255

PC1
PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3
PC4

PC5

PC6
PC1

PC2 PC3
PC4

PC5

PC6
PC1

PC2 PC3
PC4

PC5
PC6 PC1

PC2 PC3
PC4

PC5
PC6

PC1

PC2 PC3
PC4

PC5
PC6 PC1

PC2 PC3
PC4

PC5

PC6
PC1

PC2 PC3
PC4

PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6
PC1

PC2
PC3

PC4PC5

PC6

PC1PC2
PC3

PC4PC5

PC6

PC1PC2
PC3

PC4PC5

PC6

PC1
PC2 PC3

PC4PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6
PC1

PC2 PC3

PC4
PC5

PC6

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1frame: 1 frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2frame: 2 frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3frame: 3 frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4frame: 4 frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5frame: 5

frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6frame: 6 frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7frame: 7 frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8frame: 8 frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9frame: 9 frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10frame: 10

frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11frame: 11 frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12frame: 12 frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13frame: 13 frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14frame: 14 frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15frame: 15

Figure 8: Snapshots of a radial manual tour exploring the sensitivity PC2 to the structure of the
DIS cluster, with color indicating experiment type: DIS HERA1+2 (green), dimuon SIDIS (purple),
and charm SIDIS (orange). As contribution from PC2 is decreased, dimuon SIDIS becomes more
distinguishable from the other two clusters (frames 10-14), indicating that in its absence PC2 is
important.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 256

Acknowledgments

This article was created in R, using knitr (Xie, 2020) and rmarkdown (Allaire et al., 2020), with code gen-
erating the examples inline. The source files for this article be found at github.com/nspyrison/spinifex_paper/.
The animated gifs can also be viewed at this site, and also in the supplementary material for this paper.
The source code for the spinifex package can be found at github.com/nspyrison/spinifex/.

Bibliography
J. J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang,

and R. Iannone. rmarkdown: Dynamic documents for r, 2020. URL https://github.com/rstudio/
rmarkdown. [p256]

D. Asimov. The grand tour: a tool for viewing multidimensional data. SIAM journal on scientific and
statistical computing, 6(1):128–143, 1985. doi: https://doi.org/10.1137/0906011. [p243]

A. Buja, D. Cook, D. Asimov, and C. Hurley. Computational methods for high-dimensional rotations
in data visualization. In Handbook of Statistics, volume 24, pages 391–413. Elsevier, 2005. ISBN
978-0-444-51141-6. doi: 10.1016/S0169-7161(04)24014-7. URL http://linkinghub.elsevier.com/
retrieve/pii/S0169716104240147. [p251]

W. Chang, J. Cheng, J. J. Allaire, Y. Xie, and J. McPherson. shiny: Web application framework for r,
2020. URL https://CRAN.R-project.org/package=shiny. [p251]

D. Cook and A. Buja. Manual controls for high-dimensional data projections. Journal of Computational
and Graphical Statistics, 6(4):464–480, 1997. ISSN 1061-8600. doi: 10.2307/1390747. URL http:
//www.jstor.org/stable/1390747. [p243]

D. Cook, A. Buja, J. Cabrera, and C. Hurley. Grand tour and projection pursuit. Journal of Computational
and Graphical Statistics, 4(3):155, 1995-09. ISSN 10618600. doi: 10.2307/1390844. URL https:
//www.jstor.org/stable/1390844?origin=crossref. [p243]

D. Cook, U. Laa, and G. Valencia. Dynamical projections for the visualization of PDFSense data. Eur.
Phys. J. C, 78(9):742, 2018. doi: 10.1140/epjc/s10052-018-6205-2. [p250, 251]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. science, 220(4598):
671–680, 1983. doi: 10.1126/science.220.4598.671. [p243]

A. A. Lubischew. On the use of discriminant functions in taxonomy. Biometrics, pages 455–477, 1962.
doi: 10.2307/2527894. [p244]

T. L. Pedersen and D. Robinson. gganimate: A grammar of animated graphics, 2020. URL https:
//CRAN.R-project.org/package=gganimate. [p243]

O. Rodrigues. Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace:
et de la variation des cordonnées provenant de ces déplacements considérés indépendamment des
causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, 5:380–440, 1840. [p245]

C. Sievert. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC,
2020. ISBN 978-1-138-33145-7. URL https://plotly-r.com. [p243]

D. F. Swayne, D. T. Lang, A. Buja, and D. Cook. GGobi: evolving from XGobi into an extensible
framework for interactive data visualization. Computational Statistics & Data Analysis, 43(4):423–444,
2003-08-28. ISSN 0167-9473. doi: 10.1016/S0167-9473(02)00286-4. URL http://www.sciencedirect.
com/science/article/pii/S0167947302002864. [p251]

B.-T. Wang, T. J. Hobbs, S. Doyle, J. Gao, T.-J. Hou, P. M. Nadolsky, and F. I. Olness. Mapping the
sensitivity of hadronic experiments to nucleon structure. Physical Review D, 98(9):094030, 2018. doi:
10.1103/PhysRevD.98.094030. [p243, 250]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p244]

H. Wickham, D. Cook, H. Hofmann, and A. Buja. tourr: An r package for exploring multivariate data
with projections. Journal of Statistical Software, 40(2), 2011. ISSN 1548-7660. doi: 10.18637/jss.v040.i02.
URL http://www.jstatsoft.org/v40/i02/. [p243]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://github.com/nspyrison/spinifex_paper/
https://github.com/nspyrison/spinifex/
https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
http://linkinghub.elsevier.com/retrieve/pii/S0169716104240147
http://linkinghub.elsevier.com/retrieve/pii/S0169716104240147
https://CRAN.R-project.org/package=shiny
http://www.jstor.org/stable/1390747
http://www.jstor.org/stable/1390747
https://www.jstor.org/stable/1390844?origin=crossref
https://www.jstor.org/stable/1390844?origin=crossref
https://CRAN.R-project.org/package=gganimate
https://CRAN.R-project.org/package=gganimate
https://plotly-r.com
http://www.sciencedirect.com/science/article/pii/S0167947302002864
http://www.sciencedirect.com/science/article/pii/S0167947302002864
https://ggplot2.tidyverse.org
http://www.jstatsoft.org/v40/i02/


CONTRIBUTED RESEARCH ARTICLES 257

Y. Xie. knitr: A general-purpose package for dynamic report generation in r, 2020. URL https:
//yihui.org/knitr/. [p256]

Nicholas Spyrison
Monash University
Faculty of Information Technology

nicholas.spyrison@monash.edu

Dianne Cook
Monash University
Department of Econometrics and Business Statistics

dicook@monash.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://yihui.org/knitr/
https://yihui.org/knitr/
mailto:nicholas.spyrison@monash.edu
mailto:dicook@monash.edu


CONTRIBUTED RESEARCH ARTICLES 258

ari: The Automated R Instructor
by Sean Kross, Jeffrey T. Leek, John Muschelli

Abstract We present the ari package for automatically generating technology-focused educational
videos. The goal of the package is to create reproducible videos, with the ability to change and
update video content seamlessly. We present several examples of generating videos including using R
Markdown slide decks, PowerPoint slides, or simple images as source material. We also discuss how
ari can help instructors reach new audiences through programmatically translating materials into
other languages.

Introduction

Videos are a crucial way people learn and they are pervasive in online education platforms (Hsin and
Cigas, 2013; Hartsell and Yuen, 2006). Producing educational videos with a lecturer speaking over
slides takes time, energy, and usually video editing skills. Maintaining the accuracy and relevance
of lecture videos focused on technical subjects like computer programming or data science can often
require remaking an entire video, requiring extensive editing and splicing of new segments. We
present ari, the Automated R Instructor as a tool to address these issues by creating reproducible
presentations and videos that can be automatically generated from plain text files or similar artifacts.
By using ari, we provide a tool for users to rapidly create and update video content.

In its simplest form a lecture video is comprised of visual content (e.g. slides and figures) and
a spoken explanation of the visual content. Instead of a human lecturer, the ari package uses a
text-to-speech system to synthesize spoken audio for a lecture. Modern text-to-speech systems that
take advantage of recent advancements in artificial intelligence research are available from Google,
Microsoft, and Amazon. Many of these synthesizers make use of deep learning methods, such as
WaveNet (Van Den Oord et al., 2016) and have interfaces in R (Edmondson, 2019; Muschelli, 2019a;
Leeper, 2017). Currently in ari, synthesis of the the audio can be rendered using any of these services
through the text2speech package (Muschelli, 2019b). The default is Amazon Polly, which has text-to-
speech voice generation in over twenty one languages, implemented in the aws.polly package (Leeper,
2017). In addition to multiple languages, the speech generation services provide voices with several
pitches representing different genders within the same language. We present the ari package with
reproducible use case examples and the video outputs with different voices in multiple languages.

The ari package relies on the tuneR package for splitting and combining audio files appropriately
so that lecture narration is synced with each slide (Ligges et al., 2018). Once the audio is generated,
it is synced with images to make a lecture video. Multiple open source tools for video editing and
splicing exist; ari takes advantage of the FFmpeg (http://www.ffmpeg.org/) software, a command-line
interface to the libav library. These powerful tools have been thoroughly tested with a development
history spanning almost 20 years. ari has been built with presets for FFmpeg which allow output videos
to be compatible with multiple platforms, including the YouTube and Coursera players. These presets
include specifying the bitrate, audio and video codecs, and the output video format. The numerous
additional video specifications for customization can be applied to command-line arguments FFmpeg
through ari.

We have developed a workflow with ari as the centerpiece for automatically generating educational
videos. The narration script for lecture videos is stored in a plain text format, so that it can be
synthesized into audio files via text-to-speech services. By storing lecture narration in plain text it
can be updated, tracked, and collaboratively or automatically updated with version control software
like Git and GitHub. If the figures in the lecture slides are created in a reproducible framework, such
as generated using R code, the entire video can be reproducibly created and automatically updated.
Thus, ari is the Automated R Instructor. We will provide examples of creating videos based on the
following sets of source files: a slide deck built with R Markdown, a set of images and a script, or a
presentation made with Google Slides or PowerPoint. The overview of the processes demonstrated
in this paper are seen in Figure 1. We will also demonstrate the ariExtra package, which contains
functions that connect ari to applications outside of the R ecosystem (Muschelli, 2020).

Configuring Ari

Ari relies on several software packages including FFmpeg, one of the most popular libraries for
processing audio, video, and image files. Configuring FFmpeg can be challenging, therefore we
have provided a Docker image so that Ari users can start producing videos quickly. A guide to
getting started with Docker and using our Docker image is included with Ari as a vignette which can
be accessed via vignette("Simple-Ari-Configuration-with-Docker"). Users who are interested in

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ari
https://cloud.google.com/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://aws.amazon.com/polly/
https://CRAN.R-project.org/package=text2speech
https://aws.amazon.com/polly/
https://CRAN.R-project.org/package=aws.polly
https://CRAN.R-project.org/package=tuneR
http://www.ffmpeg.org/
https://CRAN.R-project.org/package=ariExtra


CONTRIBUTED RESEARCH ARTICLES 259

PNGs + Script

Rmd
+ 

Script

PowerPoint
 

Speaker 
Notes

Ari Video

YouTube

Coursera

Figure 1: Ari is designed to fit into several existing workflows for creating lectures and presentations.
Videos can be created with Ari from a series of images and a narrative script, from an R Markdown
document, or from a PowerPoint presentation with speaker notes. Ari is pre-configured so that videos
are ready to be uploaded to popular platforms like YouTube or Coursera.

configuring Ari on their own may find the Dockerfile associated with the guide useful, and it is being
actively developed at https://github.com/seankross/ari-on-docker.

Making videos with ari: ari_stitch

The main workhorse of ari is the ari_stitch function. This function requires an ordered set of images
and an ordered set of audio objects, either paths to wav files or tuneR Wave objects, that correspond to
each image. The ari_stitch function sequentially “stitches” each image in the video for the duration
of its corresponding audio object using FFmpeg. FFmpeg must be installed so that ari can combine the
audio and images, much like packages such as animation which have a similar requirement (Xie, 2013;
Xie et al., 2018b). Moreover, on shinyapps.io, a dependency on the animation package will trigger an
installation of FFmpeg so ari can be used on shinyapps.io. In the example below, 2 images (packaged
with ari) are overlaid with white noise for demonstration. This example also allows users to check if
the output of FFmpeg works with a desired video player.

library(tuneR)
library(ari)
result <- ari_stitch(
ari_example(c("mab1.png", "mab2.png")),
list(noise(), noise()),
output = "noise.mp4"

)
isTRUE(result)

[1] TRUE

The output indicates whether the video was successfully created, but additional attributes are
available, such as the path of the output file:

attributes(result)$outfile

[1] "noise.mp4"

The video for this output can be seen at https://youtu.be/3kgaYf-EV90.

Synthesizer authentication

The above example uses tuneR::noise() to generate audio and to show that any audio object can be
used with ari. In most cases however, ari is most useful when combined with synthesizing audio using

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/seankross/ari-on-docker
https://CRAN.R-project.org/package=animation
https://www.shinyapps.io/
https://www.shinyapps.io/
https://youtu.be/3kgaYf-EV90


CONTRIBUTED RESEARCH ARTICLES 260

a text-to-speech system. Though one can generate the spoken audio in many ways, such as fitting a
custom deep learning model, we will focus on using the aforementioned services (e.g. Amazon Polly)
as they have straightforward public web APIs. One obstacle in using such services is that users must
go through steps to provide authentication, whereas most of these APIs and the associated R packages
do not allow for interactive authentication such as OAuth.

The text2speech package provides a unified interface to these 3 text-to-speech services, and we
will focus on Amazon Polly and its authentication requirements. Polly is authenticated using the
aws.signature package (Leeper, 2019). The aws.signature documentation provides options and steps
to create the relevant credentials; we have also provided an additional tutorial. Essentially, the user
must sign up for the service and retrieve public and private API keys and put them into their R profile
or other areas accessible to R. Running text2speech::tts_auth(service = "amazon") will indicate if
authentication was successful (if using a different service, change the service argument). NB: The
APIs are generally paid services, but many have free tiers or limits, such as Amazon Polly’s free tier
for the first year (https://aws.amazon.com/polly/pricing/).

Creating speech from text: ari_spin

After Polly has been authenticated, videos can be created using the ari_spin function with an ordered
set of images and a corresponding ordered set of text strings. This text is the “script” that is spoken
over the images to create the output video. The number of elements in the text needs to be equal
to the number of images. Let us take a part of Mercutio’s speech from Shakespeare’s Romeo and
Juliet (Shakespeare, 2003) and overlay it on two images from the Wikipedia page about Mercutio
(https://en.wikipedia.org/wiki/Mercutio):

speech <- c(
"I will now perform part of Mercutio's speech from Shakespeare's Romeo and Juliet.",
"O, then, I see Queen Mab hath been with you.
She is the fairies' midwife, and she comes
In shape no bigger than an agate-stone
On the fore-finger of an alderman,
Drawn with a team of little atomies
Athwart men's noses as they lies asleep;"

)
mercutio_file <- "death_of_mercutio.png"
mercutio_file2 <- "mercutio_actor.png"

shakespeare_result <- ari_spin(
c(mercutio_file, mercutio_file2),
speech,
output = "romeo.mp4", voice = "Joanna"

)
isTRUE(shakespeare_result)

[1] TRUE

The speech output can be seen at https://youtu.be/SFhvM9gI0kE.
We chose the voice “Joanna” which is designated as a female sounding US-English speaker for the
script. Each voice is language-dependent; we can see the available voices for English for Amazon
Polly at https://docs.aws.amazon.com/polly/latest/dg/SupportedLanguage.html.

Though the voice generation is relatively clear, we chose a Shakespearean example to demonstrate
the influence and production value of the variety of dialects available from these text-to-speech
services. Compare the video of “Joanna” to the same video featuring “Brian” who “speaks” with a
British English dialect:

gb_result <- ari_spin(
c(mercutio_file, mercutio_file2),
speech,
output = "romeo_gb.mp4", voice = "Brian"

)
isTRUE(gb_result)

[1] TRUE

The resulting video can be seen at https://youtu.be/fSS0JSb4VxM.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=aws.signature
http://seankross.com/2017/05/02/Access-Amazon-Web-Services-in-R.html
https://aws.amazon.com/polly/pricing/
https://en.wikipedia.org/wiki/Mercutio
https://youtu.be/SFhvM9gI0kE
https://docs.aws.amazon.com/polly/latest/dg/SupportedLanguage.html
https://youtu.be/fSS0JSb4VxM


CONTRIBUTED RESEARCH ARTICLES 261

The output video format is MP4 by default, but several formats can be specified via specifying
the appropriate “muxer” for FFmpeg (see the function ffmpeg_muxers). Supported codecs can be
founded using the functions ffmpeg_audio_codecs and ffmpeg_video_codecs. Additional options
can be passed to FFmpeg from ari_stitch and ari_spin to customize the video to the necessary
specifications.

We now discuss the number of image and script inputs that ari is designed to work with, including
text files and a series of PNG images, presentations made with Google Slides or PowerPoint with
the script written in the speaker notes section, or an HTML slide presentation created from an R
Markdown file, where the script is written in the HTML comments.

Creating videos from R Markdown documents

Many R users have experience creating slide decks with R Markdown, for example using the rmark-
down or xaringan packages (Allaire et al., 2019; Xie et al., 2018a; Xie, 2018). In ari, the HTML slides
are rendered using webshot (Chang, 2018) and the script is located in HTML comments (i.e. between
<!-- and -->). For example, in the file ari_comments.Rmd included in ari, which is an ioslides type
of R Markdown slide deck, we have the last slide:

x <- readLines(ari_example("ari_comments.Rmd"))
tail(x[x != ""], 4)
\end{Sinput}
\begin{Soutput}
[1] "## Conclusion"
[2] "<!--"
[3] "Thank you for watching this video and good luck using Ari!"
[4] "-->"

The first words spoken on this example slide are "Thank you". This setup allows for one plain text,
version-controllable, integrated document that can reproducibly generate a video. We believe these
features allow creators to make agile videos, that can easily be updated with new material or changed
when errors or typos are found. Moreover, this framework provides an opportunity to translate videos
into multiple languages, a feature that we will discuss in the future directions.

Using ari_narrate, users can create videos from R Markdown documents that create slide decks.
An R Markdown file can be passed in, and the output will be created using the render function from
rmarkdown (Allaire et al., 2019). If the slides are already rendered, the user can pass these slides and
the original document, where the script is extracted. Passing rendered slides allows with the option
for a custom rendering script. Here we create the video for ari_comments.Rmd, where the slides are
rendered inside ari_narrate:

# Create a video from an R Markdown file with comments and slides
res <- ari_narrate(
script = ari_example("ari_comments.Rmd"),
voice = "Kendra",
capture_method = "iterative"

)

The output video is located at https://youtu.be/rv9fg_qsqc0. In our experience with several
users we have found that some HTML slides take more or less time to render when using webshot;
for example they may be tinted with gray because they are in the middle of a slide transition when
the image of the slide is captured. Therefore we provide the delay argument in ari_narrate which is
passed to webshot. This can resolve these issues by allowing more time for the page to fully render,
however this means it may take more time to create each video. We also provide the argument
capture_method to allow for finely-tuned control of webshot. When capture_method = "vectorized",
webshot is run on the entire slide deck in a faster process, however we have experienced slide render-
ing issues with this setting depending on the configuration of an individual’s computer. However
when capture_method = "iterative", each slide is rendered individually in webshot, which solves
many rendering issues, however it causes videos to be rendered more slowly.
In the future, other HTML headless rendering engines (webshot uses PhantomJS) may be used if they
achieve better performance, but we have found webshot to work well in most of our applications.

With respect to accessibility, ari encourages video creators to type out a script by design. This
provides an effortless source of subtitles, rather than relying on other services such as YouTube to
provide speech-to-text subtitles. When using ari_spin, if the subtitles argument is TRUE, then an
SRT file for subtitles will be created with the video.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=xaringan
https://CRAN.R-project.org/package=webshot
https://youtu.be/rv9fg_qsqc0


CONTRIBUTED RESEARCH ARTICLES 262

One issue with synthesis of technical information is that changes to the script are required for
Amazon Polly or other services to provide a correct pronunciation. For example, if you want the
service to say “RStudio” or “ggplot2”, the phrases “R Studio” or “g g plot 2” must be written exactly
that way in the script. These phrases will then appear in an SRT subtitle file, which may be confusing
to a viewer. Thus, some post-processing of the SRT file may be needed.

Creating videos from other documents

We created the ariExtra (https://github.com/muschellij2/ariExtra) package to augment the core
functionality of ari by extending it to software applications outside of the R ecosystem. These
extensions require many additional dependencies, and considering the significant amount of setup
already required for ari, we believed that this additional functionality should be in a separate package.

To create a video from a presentation made with Google Slides or PowerPoint, the slides should
be converted to a set of images. We recommend using the PNG format for these images. To get
the script for the video, we suggest putting the script for each slide in the speaker notes section of
that slide. Several of the following features for video generation are in our package ariExtra. The
speaker notes of slides can be extracted using rgoogleslides (Noorazman, 2018) for Google Slides via
the API or using readOffice/officer (Gohel, 2019; Ewing, 2017) to read from PowerPoint documents.
Google Slides can be downloaded as a PDF and converted to PNGs using the pdftools package (Ooms,
2019). The ariExtra package also has a pptx_notes function for reading PowerPoint notes. Converting
PowerPoint files to PDF can be done using LibreOffice and the docxtractr package (Rudis and Muir,
2019) which contains the necessary wrapper functions.

To demonstrate this, we use an example PowerPoint is located on Figshare (https://figshare.
com/articles/Example_PowerPoint_for_ari/8865230). We can convert the PowerPoint to a PDF,
then to a set of PNG images, then we extract the speaker notes.

pptx <- "ari.pptx"
download.file(paste0(
"https://s3-eu-west-1.amazonaws.com/",
"pfigshare-u-files/16252631/ari.pptx"

),
destfile = pptx
)
pdf <- docxtractr::convert_to_pdf(pptx) # >= 0.6.2
pngs <- pdftools::pdf_convert(pdf, dpi = 300)
notes <- ariExtra::pptx_notes(pptx)
notes

[1] "Sometimes it’s hard for an instructor to take the time to record their lectures.
For example, I’m in a coffee shop and it may be loud."

[2] "Here is an example of a plot with really small axes. We plot the x versus the y
-variables and a smoother between them."

The ariExtra package also can combine these processes and take multiple input types (Google
Slides, PDFs, PPTX) and harmonize the output. The pptx_to_ari function combines the above steps:

doc <- ariExtra::pptx_to_ari(pptx)

Converting page 1 to /var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/
/Rtmpo6aD9u/filede6236136195.png... done!
Converting page 2 to /var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/
/Rtmpo6aD9u/filede62326b98ef.png... done!

doc[c("images", "script")]

$images
[1] "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/
Rtmpo6aD9u/filede6236058cc5_files/slide_1.png"
[2] "/private/var/folders/1s/wrtqcpxn685_zk570bnx9_rr0000gr/T/
Rtmpo6aD9u/filede6236058cc5_files/slide_2.png"
$script
[1] "Sometimes it’s hard for an instructor to take the time to record their lectures.
For example, I’m in a coffee shop and it may be loud."

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/muschellij2/ariExtra
https://CRAN.R-project.org/package=rgoogleslides
https://CRAN.R-project.org/package=readOffice
https://CRAN.R-project.org/package=officer
https://CRAN.R-project.org/package=pdftools
https://CRAN.R-project.org/package=docxtractr
https://figshare.com/articles/Example_PowerPoint_for_ari/8865230
https://figshare.com/articles/Example_PowerPoint_for_ari/8865230


CONTRIBUTED RESEARCH ARTICLES 263

[2] "Here is an example of a plot with really small axes. We plot the x versus the
y-variables and a smoother between them."

This output can then be passed to ari_spin.

We will now demonstrate rendering the video with the “Kimberly” voice while using the divisible_height
argument to forcibly scale the height of the images to be divisible by 2. This is required by the x264
(default) codec which we have specified as a preset:

pptx_result <- ari_spin(pngs, notes,
output = "pptx.mp4", voice = "Kimberly",
divisible_height = TRUE, subtitles = TRUE

)
isTRUE(pptx_result)

You can see the output at https://youtu.be/TBb3Am6xsQw. Here we can see the first few lines of
the subtitle file:

[1] "1"
[2] "00:00:00,000 --> 00:00:02,025"
[3] "Sometimes it’s hard for an instructor to"
[4] "2"
[5] "00:00:02,025 --> 00:00:04,005"
[6] "take the time to record their lectures."

For Google Slides, the slide deck can be downloaded as a PowerPoint and the previous steps can
be used, however it can also be downloaded directly as a PDF. We will use the same presentation, but
uploaded to Google Slides. The ariExtra package has the function gs_to_ari to wrap this functionality
(as long as link sharing is turned on), where we can pass the Google identifier:

gs_doc <- ariExtra::gs_to_ari("14gd2DiOCVKRNpFfLrryrGG7D3S8pu9aZ")
\end{Sinput}
\begin{Soutput}
Converting page 1 to
/var/folders/zw/l4fv__6n4tnbk3xb31dnbt5m0000gn/T//RtmpphWBAj/filebd69651ed561.png...
done!
Converting page 2 to
/var/folders/zw/l4fv__6n4tnbk3xb31dnbt5m0000gn/T//RtmpphWBAj/filebd694b4b0724.png...
done!

Note, as Google provides a PDF version of the slides, this obviates the LibreOffice dependency.

Alternatively, the notes can be extracted using rgoogleslides via the Google Slides API, however
this requires authentication so we will omit it here. Thus, we should be able to create videos using R
Markdown, Google Slides, or PowerPoint presentations in an automatic fashion.

Summary

The ari package combines multiple open-source tools and APIs to create reproducible workflows
for creating videos. These videos can be created using R Markdown documents, Google Slides,
PowerPoint presentations, or simply a series of images. The audio overlaid on the images can be
separate or contained within the storage of the images. These workflows can then be reproduced in the
future and easily updated. As the current voice synthesis options are somewhat limited in the tenacity
and inflection given, we believe that educational and informational videos are the most applicable
area.

Future directions

The ari package is already being used to build data science curricula (Kross and Guo, 2019) and we
look forward to collaborating with video creators to augment ari according to their changing needs. In
the following section we outline possible directions for the future of the project.

Since ari is designed for teaching technical content, we plan to provide better support for the
pronunciation of technical terms like the names of popular software tools. These names are usually not
pronounced correctly by text-to-speech services because they are not words contained in the training
data used in the deep learning models that these services are built upon. To address this concern we

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://youtu.be/TBb3Am6xsQw


CONTRIBUTED RESEARCH ARTICLES 264

plan to compile a dictionary of commonly used technical terms and the phonetic phrasing and spelling
of these terms that are required to achieve the correct pronunciation from text-to-speech services.

In addition to still images and synthesized voices, we would like to develop new technologies
for incorporating other automatically generated videos into lectures generated by ari. As computer
programming, statistics, and data science instructors we often rely on live coding (Chen and Guo,
2019) to demonstrate software tools to our students. Live coding videos suffer from many of the same
problems as other kinds of technical videos as we addressed in the introduction. Therefore we plan to
build a system for automating the creation of live coding videos. These videos would also be created
using plain text documents like R Markdown. They would integrate synthesized narration with code
chunks that would be displayed and executed according to specialized commands that would specify
when code should be executed in an IDE like RStudio. These commands could also control which
panes and tabs of the IDE are visible or emphasized.

As programmatic video creation software improves, we plan to extend ari so it can expand
its compatibility with different technologies. For example we believe the heavy reliance on an
FFmpeg installation can be mitigated in the future with advances in the av package. Though the av
package has powerful functionality and is currently porting more from libav and therefore FFmpeg,
it currently does not have the capabilities required for ari. Although third party installation from
https://ffmpeg.org/ can be burdensome to a user, package managers such as brew for OSX and
choco for Windows provide an easier installation and configuration experience.

Although we rely on Amazon Polly for voice synthesis, other packages provide voice synthesis,
such as mscstts for Microsoft and googleLanguageR for Google. We created the text2speech package
to harmonize these synthesis options for ari. Thus, switching from one voice generation service to
another simply involves switching the service and voice arguments in ari, assuming the service is
properly authenticated. This ease of switching allows researchers to compare and test which voices
and services are most effective at delivering content.

We see significant potential in how ari could expand global learning opportunities. Video narration
scripts can be automatically translated into other languages with services like the Google Translation
API, where googleLanguageR provides an interface. Amazon Polly can speak languages other
than English, meaning that one can write a lecture once and generate lecture videos in multiple
languages. Therefore this workflow can greatly expand the potential audience for educational videos
with relatively little additional effort from lecture creators. We plan to flesh out these workflows so
that video creators can manage videos in multiple languages. We hope to add functionality so that
communities of learners with language expertise can easily suggest modifications to automatically
translated videos, and tooling so suggestions can be incorporated quickly.

Bibliography
J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang, and

R. Iannone. rmarkdown: Dynamic Documents for R, 2019. URL https://rmarkdown.rstudio.com. R
package version 1.12. [p261]

W. Chang. webshot: Take Screenshots of Web Pages, 2018. URL https://CRAN.R-project.org/package=
webshot. R package version 0.5.1. [p261]

C. Chen and P. J. Guo. Improv: Teaching programming at scale via live coding. In Proceedings of the
Sixth Annual ACM Conference on Learning at Scale, L@S ’19, New York, NY, USA, 2019. ACM. URL
https://doi.org/10.1145/3330430.3333627. [p264]

M. Edmondson. googleLanguageR: Call Google’s ’Natural Language’
API, ’Cloud Translation’ API, ’Cloud Speech’ API and ’Cloud Text-to-
Speech’ API, 2019. http://code.markedmondson.me/googleLanguageR/,
https://github.com/ropensci/googleLanguageR. [p258]

M. Ewing. readOffice: Read Text Out of Modern Office Files, 2017. URL https://CRAN.R-project.org/
package=readOffice. R package version 0.2.2. [p262]

D. Gohel. officer: Manipulation of Microsoft Word and PowerPoint Documents, 2019. URL https://CRAN.R-
project.org/package=officer. R package version 0.3.5. [p262]

T. Hartsell and S. C.-Y. Yuen. Video streaming in online learning. AACE Journal, 14(1):31–43, 2006.
[p258]

W.-J. Hsin and J. Cigas. Short videos improve student learning in online education. Journal of Computing
Sciences in Colleges, 28(5):253–259, 2013. [p258]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://ffmpeg.org/
https://CRAN.R-project.org/package=mscstts
https://CRAN.R-project.org/package=googleLanguageR
https://cloud.google.com/translate/docs/
https://cloud.google.com/translate/docs/
https://rmarkdown.rstudio.com
https://CRAN.R-project.org/package=webshot
https://CRAN.R-project.org/package=webshot
https://doi.org/10.1145/3330430.3333627
https://CRAN.R-project.org/package=readOffice
https://CRAN.R-project.org/package=readOffice
https://CRAN.R-project.org/package=officer
https://CRAN.R-project.org/package=officer


CONTRIBUTED RESEARCH ARTICLES 265

S. Kross and P. J. Guo. End-user programmers repurposing end-user programming tools to foster
diversity in adult end-user programming education. In Proceedings of VL/HCC 2019: IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC ’19, 2019. ISBN 978-1-4503-5886-6.
[p263]

T. J. Leeper. aws.polly: Client for AWS Polly, 2017. R package version 0.1.5. [p258]

T. J. Leeper. aws.signature: Amazon Web Services Request Signatures, 2019. R package version 0.5.1. [p260]

U. Ligges, S. Krey, O. Mersmann, and S. Schnackenberg. tuneR: Analysis of Music and Speech, 2018. URL
https://CRAN.R-project.org/package=tuneR. [p258]

J. Muschelli. mscstts: R Client for the Microsoft Cognitive Services ’Text-to-Speech’ REST API, 2019a. URL
https://CRAN.R-project.org/package=mscstts. R package version 0.5.1. [p258]

J. Muschelli. text2speech: Text to Speech, 2019b. URL https://github.com/muschellij2/text2speech.
R package version 0.2.4. [p258]

J. Muschelli. ariExtra: Tools for Creating Automated Courses, 2020. URL https://CRAN.R-project.org/
package=ariExtra. R package version 0.2.7. [p258]

H. B. Noorazman. rgoogleslides: R Interface to Google Slides, 2018. URL https://CRAN.R-project.org/
package=rgoogleslides. R package version 0.3.1. [p262]

J. Ooms. pdftools: Text Extraction, Rendering and Converting of PDF Documents, 2019. URL https:
//CRAN.R-project.org/package=pdftools. R package version 2.2. [p262]

B. Rudis and C. Muir. docxtractr: Extract Data Tables and Comments from Microsoft Word Documents, 2019.
URL http://gitlab.com/hrbrmstr/docxtractr. R package version 0.6.2. [p262]

W. Shakespeare. Romeo and Juliet. Cambridge University Press, 2003. [p260]

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. W.
Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. SSW, 125, 2016. [p258]

Y. Xie. animation: An R package for creating animations and demonstrating statistical methods. Journal
of Statistical Software, 53(1):1–27, 2013. URL http://www.jstatsoft.org/v53/i01/. [p259]

Y. Xie. xaringan: Presentation Ninja, 2018. URL https://CRAN.R-project.org/package=xaringan. R
package version 0.8. [p261]

Y. Xie, J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC, Boca
Raton, Florida, 2018a. URL https://bookdown.org/yihui/rmarkdown. ISBN 9781138359338. [p261]

Y. Xie, C. Mueller, L. Yu, and W. Zhu. animation: A Gallery of Animations in Statistics and Utilities to
Create Animations, 2018b. URL https://yihui.name/animation. R package version 2.6. [p259]

Sean Kross
Department of Cognitive Science, University of California, San Diego
9500 Gilman Dr.
La Jolla, CA 92093
seankross@ucsd.edu

Jeffrey T. Leek
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
615 N Wolfe Street
Baltimore, MD 21231
jtleek@jhu.edu

John Muschelli
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
615 N Wolfe Street
Baltimore, MD 21231
jmusche1@jhu.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tuneR
https://CRAN.R-project.org/package=mscstts
https://github.com/muschellij2/text2speech
https://CRAN.R-project.org/package=ariExtra
https://CRAN.R-project.org/package=ariExtra
https://CRAN.R-project.org/package=rgoogleslides
https://CRAN.R-project.org/package=rgoogleslides
https://CRAN.R-project.org/package=pdftools
https://CRAN.R-project.org/package=pdftools
http://gitlab.com/hrbrmstr/docxtractr
http://www.jstatsoft.org/v53/i01/
https://CRAN.R-project.org/package=xaringan
https://bookdown.org/yihui/rmarkdown
https://yihui.name/animation
mailto:seankross@ucsd.edu
mailto:jtleek@jhu.edu
mailto:jmusche1@jhu.edu


CONTRIBUTED RESEARCH ARTICLES 266

CopulaCenR: Copula based Regression
Models for Bivariate Censored Data in R
by Tao Sun and Ying Ding

Abstract Bivariate time-to-event data frequently arise in research areas such as clinical trials and
epidemiological studies, where the occurrence of two events are correlated. In many cases, the
exact event times are unknown due to censoring. The copula model is a popular approach for
modeling correlated bivariate censored data, in which the two marginal distributions and the between-
margin dependence are modeled separately. This article presents the R package CopulaCenR, which
is designed for modeling and testing bivariate data under right or (general) interval censoring in
a regression setting. It provides a variety of Archimedean copula functions including a flexible
two-parameter copula and different types of regression models (parametric and semiparametric)
for marginal distributions. In particular, it implements a semiparametric transformation model for
the margins with proportional hazards and proportional odds models being its special cases. The
numerical optimization is based on a novel two-step algorithm. For the regression parameters, three
likelihood-based tests (Wald, generalized score and likelihood ratio tests) are also provided. We use
two real data examples to illustrate the key functions in CopulaCenR.

Introduction

Bivariate data arise frequently in many research areas such as health, epidemiology, and economics.
For example, bivariate time-to-event endpoints are often used in clinical trials studying bilateral
diseases (e.g., eye diseases) or complex diseases (e.g., cancer and psychiatric disorders). The two
events are correlated as they come from the same subject. In many situations, the two event times
cannot be precisely observed, leading to bivariate censored data. Specifically, bivariate right-censored
data occur when the study ends prior to the occurrence of one or both events. An example of such
data comes from a clinical study assessing the treatment effect on preventing blindness in Diabetic
Retinopathy patients where each patient had one eye randomized to the treatment and the other
eye received no treatment (Huster et al., 1989), and the time-to-blindness are bivariate and right-
censored. We will illustrate the analysis of this study in Section 4. In another situation, bivariate
interval-censored data occur when the status of both events are periodically examined at intermittent
assessment times. In this case, the right censoring could also happen if the event still does not occur at
the last assessment time. A special case of interval-censored data is the current status data if there
is only one assessment time and the event is only known to occur or not by its assessment time. An
example of bivariate interval-censored data will be demonstrated in Section 4, which came from a
clinical trial studying the progression of a bilateral eye disease, Age-related Macular Degeneration
(AMD), where the progression time to late-AMD are interval or right censored (AREDS Group, 1999).
More examples can be found in books Hougaard (2000) and Sun (2007).

The development of our package is motivated by researches that are interested in (1) discovering
covariates that are significantly associated with the bivariate censored outcomes, and (2) characterizing
the joint and conditional risks of two events. For the bivariate events, the joint and conditional
risks could be clinically more important than the marginal risk (of a single event). For example,
the joint 5-year progression-free probability for both eyes helps identify patients with a high risk of
progressing to late-AMD. For another example, for patients having one eye already progressed, the
conditional 5-year progression-free probability for the non-progressed eye (given its fellow eye already
progressed) provides important information for both clinicians and the patient since patients with
both eyes progressed to the late stage of the disease may lose the ability to live independently.

There are three major approaches to fit regression models for bivariate censored data. The simplest
way is to fit a marginal model and estimate the variance-covariance by a robust sandwich estimator
(for example, Wei et al., 1989). This approach takes a working independence assumption, and
thus cannot generate joint or conditional distributions. The second approach is based on frailty
models (for example, Oakes, 1982), which are essentially mixed effects models and account for
the dependence between two events by a latent frailty variable. However, the covariate effects in
frailty models are usually interpreted on a conditional level (by conditioning on the frailty term),
which is not straightforward. The third approach is to use copula models (for example, Clayton,
1978). Unlike the marginal or frailty approaches, the copula approach models the joint survival
distribution by directly connecting the two marginal distributions through a copula function. One
unique advantage of the copula is that it separately models the marginal distributions and the
dependence parameter(s), allowing flexibility in marginal models and straightforward interpretation

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 267

for covariate effects. Moreover, the challenge from censoring can be naturally handled through the
marginal distributions within the copula function. Besides, the joint and conditional distributions can
be obtained based on the copula model.

Along with these three major approaches, multiple endeavors have been devoted to the develop-
ment of software, mostly R (R Core Team, 2019) packages, to build regression models for bivariate
censored data. For bivariate right-censored data, the survival (Therneau, 2018b) package can fit para-
metric or semiparametric Cox (Cox, 1972) marginal and frailty models. Also, packages such as parfm
(Munda et al., 2012) and frailtypack (Rondeau et al., 2012) implement proportional hazards (PH)
frailty models under the parametric and semiparametric settings. Other R packages such as coxme
(Therneau, 2018a) and phmm (Donohue and Xu, 2019) also fit PH frailty models for right-censored
data. For bivariate interval-censored data, the survival and frailtypack packages provide marginal
and frailty models under the parametric or semiparametric (Cox PH) situation, respectively. The C++
program IntCens (codes located under https://dlin.web.unc.edu/software/intcens/) implements
a class of semiparametric frailty models, including both PH and proportional odds (PO) models.

To the best of our knowledge, there exists no R package for fitting copula-based regression models
for both bivariate right-censored and interval-censored data. The existing copula packages for bivari-
ate data handle either the non-censoring (i.e., complete data) or the right-censoring situation. In the
non-censoring situation, the package copula (Hofert et al., 2018) by Yan (2007) and Kojadinovic and
Yan (2010) implements multivariate copula models without covariates for complete data and obtains
the maximum likelihood estimator for the copula dependence parameter. It gives useful codes for
implementing regression models in bivariate complete data in the appendix of Yan (2007). It also
provides copula goodness-of-fit tests for model selection purpose. The package VineCopula (Schep-
smeier et al., 2018) can also model bivariate or multivariate complete data without covariates through
the vine copula models (Aas et al., 2009). Packages such as CopulaRegression (Nicole Kraemer, 2014)
and gcmr (Masarotto and Varin, 2017) can provide copula-based regression models with parametric
margins for bivariate or multivariate complete data and provide maximum likelihood estimators
for model parameters. The package gamCopula (Nagler and Vatter, 2020) implements a generalized
additive model that can take into account the effect of the predictors on the dependence structure of
bivariate and vine copula models (Vatter and Chavez-Demoulin, 2015). For the right-censoring situa-
tion, the Copula.surv package (Emura, 2018) can estimate the Clayton copula dependence parameter
in bivariate right-censored data without covariates and also perform a goodness-of-fit test for a fitted
Clayton model (Emura et al., 2010). The Sunclarco package (Prenen et al., 2017b) provides Clayton
or Gumbel copula-based regression models with parametric (Weibull and piecewise constant) or
Cox semiparametric margins for multivariate right-censored data (Prenen et al., 2017a). The package
GJRM (Marra and Radice, 2020) can fit both marginal and copula regression models in complete and
right-censored data (Marra and Radice, 2017; Marra et al., 2017; Marra and Radice, 2019). By far, there
is no copula-based R package for bivariate interval-censored data.

We develop the CopulaCenR package, which fits copula-based regression models for both bivari-
ate right-censored and interval-censored data. The package is available from the Comprehensive R
Archive Network (CRAN) at https://CRAN.R-project.org/package=CopulaCenR. The main advan-
tage of CopulaCenR relies on the diverse choice of copula and marginal models for both bivariate
right-censored and interval-censored data. Specifically, it provides a class of Archimedean copulas
that correspond to a variety of dependence structures, as illustrated in Table 1. In particular, in addi-
tion to these frequently used one-parameter Archimedean copulas, a two-parameter copula function
(Copula2) is also included. This Copula2 has more flexibility in modeling dependence structure, as we
show in Section 2. Furthermore, CopulaCenR implements a list of parametric and semiparametric
marginal regression models, as illustrated in Table 2. For parameter estimation, the package utilizes a
novel two-step procedure that is computationally stable and efficient. For the inference of regression
parameters, three likelihood-based tests such as Wald, generalized score and likelihood ratio tests are
provided.

We will describe the major features of CopulaCenR in Section 2 and presents the model and
estimation procedure in Section 3. We will demonstrate two real data examples in Section 4 using the
version 1.1.2 of CopulaCenR. Finally, we will conclude and discuss in Section 5.

Package Features

The most popular copula family for bivariate censored data is the Archimedean copula family, which
has an explicit form of

Cη(u, v) = φη{φ−1
η (u) + φ−1

η (v)},
where u and v are two uniformly distributed margins; φη is the generator function, which is a continu-
ous, strictly decreasing and convex function; φ−1

η is the inverse of φη . One generator function uniquely

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=parfm
https://CRAN.R-project.org/package=frailtypack
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=phmm
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=frailtypack
https://dlin.web.unc.edu/software/intcens/
https://CRAN.R-project.org/package=copula
https://CRAN.R-project.org/package=VineCopula
https://CRAN.R-project.org/package=CopulaRegression
https://CRAN.R-project.org/package=gcmr
https://CRAN.R-project.org/package=gamCopula
https://CRAN.R-project.org/package=Copula.surv
https://CRAN.R-project.org/package=Sunclarco
https://CRAN.R-project.org/package=GJRM
https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 268

determines an Archimedean copula. The copula parameter η has a one-to-one correspondence with
the popular dependence measure Kendall’s τ. Another property of the copula is the tail dependence
(i.e., τL and τU for lower and upper tail dependence), which measure the dependence between two
margins in the lower and upper tails. More details about Archimedean copulas can be found in Nelsen
(2006).

Table 1 lists six Archimedean family copula models that are implemented in CopulaCenR. Two
most frequently used Archimedean copulas are Clayton (Clayton, 1978) and Gumbel (Gumbel, 1960)
models, which account for the lower or upper tail dependence between two margins using a single
parameter η. Other Archimedean copulas, such as Frank (Frank, 1979), Joe (Joe, 1993) and Ali-Mikhail-
Haq (AMH) (Ali et al., 1978), are also one-parameter copulas. In addition to these five copulas, we also
include a flexible two-parameter Archimedean copula model (Joe and Hu, 1996; Joe, 1997), namely,
Copula2 (also called the “BB1" family), which is formulated as

Cα,κ(u, v) = [1 + {(u−1/κ − 1)1/α + (v−1/κ − 1)1/α}α]−κ , α ∈ (0, 1], κ ∈ (0, ∞). (1)

The two dependence parameters (α and κ) are explicitly connected to Kendall’s τ with τ = 1 −
2ακ/(2κ + 1), and they account for the correlation between u and v at upper and lower tails. In
particular, when α = 1, Copula2 becomes the Clayton copula, and when κ → ∞, it becomes the
Gumbel copula. Thus, the two-parameter copula model provides more flexibility in modeling the
between-margin dependence than the one-parameter copulas such as Clayton or Gumbel (Joe, 2014).
Figure 1 illustrates the scatter plots of bivariate event times generated from the six copula models in
Table 1.

Family Parameter Space Generator φη(t), t ∈ [0, ∞) Generator Inverse φ−1
η (s), s ∈ (0, 1] τL τU Kendall’s τ

Clayton η > 0 (1 + t)−1/η s−η − 1 2−1/η 0 η/(2 + η)
Gumbel η ≥ 1 exp(−t1/η) (− log s)η 0 2− 21/η 1− 1/η
Frank η ≥ 0 −η−1 log{1 + e−t(e−η − 1)} − log{(e−ηs − 1)/(e−η − 1)} 0 0 1 + 4{D1(η)− 1}/η
AMH η ∈ [0, 1) (1− η)/(et − η) log[{1 + η(s− 1)}/s] 0 0 1− 2{(1− η)2 log(1− η) + η}/(3η2)
Joe η ≥ 1 1− (1− e−t)1/η − log{1− (1− s)η} 0 2− 21/η 1− 4 ∑∞

k=1 1/{k(ηk + 2)[η(k− 1) + 2]}
Copula2 α ∈ (0, 1], κ > 0 {1/(1 + tα)}κ (s−1/κ − 1)1/α 2−ακ 2− 2α 1− 2ακ/(2κ + 1)

τL and τU are the lower and upper tail dependence measures.

D1(·) is the Debye function written as D1(η) =
1
η
∫ η

0
t

et−1
dt.

Table 1: Summary of implemented Archimedean copula families.

Figure 1: Scatter plots of bivariate event times generated from various copula models.

To fit a copula-based regression model, one also needs to choose a regression model for the
margins. Table 2 lists the available marginal models in CopulaCenR. For bivariate right-censored data,
users can fit either a parametric marginal model via the function rc_par_copula or a semiparametric
Cox PH model via the function rc_spCox_copula (Sun et al., 2019). Specifically, the parametric
models incorporate both the PH (e.g., Weibull, Gompertz) and the PO (e.g., Loglogistic) models. For

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 269

bivariate interval-censored data, one can choose to fit a parametric marginal model via the function
ic_par_copula. Moreover, the package can also fit a semiparametric transformation model via the
function ic_spTran_copula. It contains a variety of marginal models including the PH and PO models,
as we explain in Section 3.3. A novel two-step sieve estimation procedure is implemented (Sun and
Ding, 2019).

Type Models Survival Distributions S(t) Corresponding R Functions

Parametric
Weibull exp{−(t/λ)keZ>β}

rc_par_copula, ic_par_copulaGompertz exp{− b
a (e

at − 1)eZ>β}
Loglogistic {1 + (t/λ)keZ>β}−1

Semiparametric Cox exp{−Λ(t)eZ>β} rc_spCox_copula

Transformation exp[−G{Λ(t)eZ>β}] ic_spTran_copula

Table 2: Summary of implemented marginal models.

For the inference of the covariate effects, three types of likelihood-based tests are implemented
in CopulaCenR: the Wald test (built within rc_par_copula, rc_spCox_copula, ic_par_copula, and
ic_spTran_copula), the generalized score test (score_copula) and the likelihood-ratio test (lrt_copula).

After a copula model being fitted, fitted values (i.e., linear predictors, survival probabilities) can be
extracted by the general S3 function fitted. For new observations, the linear predictors and survival
probabilities can be obtained using the function predict. Moreover, the user can plot three types
of distributions (joint, conditional and marginal) using the general functions plot and lines. In
particular, an interactive 3D contour will be plotted to visualize the joint distribution.

Besides, the package provides a bivariate event time generating function data_sim_copula, which
can generate random bivariate event times based on a specified copula function, a marginal distribu-
tion, and covariate values.

In summary, the key functions of CopulaCenR are

• rc_par_copula: for fitting parametric regression models to bivariate right-censored data;

• rc_spCox_copula: for fitting a semiparametric Cox regression model to bivariate right-censored
data;

• ic_par_copula: for fitting parametric regression models to bivariate interval-censored data;

• ic_spTran_copula: for fitting a semiparametric transformation model to bivariate interval-
censored data;

• score_copula: for performing the generalized score test on covariate effects;

• lrt_copula: for performing the likelihood ratio test (LRT) on covariate effects between two
nested models;

• tau_copula: for calculating Kendall’s τ from copula parameter estimates;

• plot,lines: S3 methods for plotting joint, conditional and marginal distributions based on a
fitted copula model;

• fitted,predict: S3 methods for extracting fitted values and predicting new observations;

• summary,print,coef,logLik,AIC,BIC: other S3 functions for a fitted object;

• data_sim_copula: for generating bivariate event times through a specified copula model and
marginal distributions.

We use two real data examples to illustrate the implementation of these functions in Section 4.

Methods

Copula model for bivariate censored data

Let (T1, T2) be the true bivariate event times, with marginal survival functions Sj(tj) = Pr(Tj > tj), j =
1, 2, and joint survival function S(t1, t2) = Pr(T1 > t1, T2 > t2). Assume there are n independent
subjects in a study. When (T1, T2) are subject to right-censoring, for subject i = 1 · · · n, we observe
Di = {(Yij, ∆ij, Zij) : Yij = min(Tij, Cij), ∆ij = I(Tij ≤ Cij), j = 1, 2}, where Cij is the censoring
time of Tij, ∆ij is the censoring indicator and Zij is the covariate vector. When (T1, T2) are under
interval-censoring, we observe Di = {(Lij, Rij, Zij), j = 1, 2} for subject i, where (Lij, Rij] is the time
interval that Tij lies in and Zij is the covariate vector.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR
https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 270

By the Sklar’s theorem (Sklar, 1959), so long as the marginal survival functions Sj are continuous,
there exists a unique function Cη that connects two marginal survival functions into the joint survival
function: S(t1, t2) = Cη{S1(t1), S2(t2)}, t1, t2 ≥ 0. Here, the function Cη is called a copula and its
parameter η measures the dependence between the two margins. A signature feature of the copula is
that it allows the dependence to be modeled separately from the marginal distributions.

Joint likelihood functions for bivariate censored data

In this section, we present the joint likelihood functions for bivariate right-censored data and bivariate
interval-censored data, respectively.

Define the density function for copula Cη(u, v) as cη(u, v) = ∂2Cη(u, v)/∂u∂v. Let f (t1, t2) =

∂2S(t1, t2)/∂t1∂t2 = cη{S1(t1), S2(t2)} f1(t1) f2(t2) denote the corresponding density function of
S(t1, t2). Denote by θ = (β> = (β>1 , β>2 ), η, S01, S02)

> all the unknown parameters in S(t1, t2), where
β j is the regression coefficient vector and S0j is the baseline survival function for the jth margin. Then,
the joint likelihood for the observed data D = {Di}n

i=1 can be written as

Ln(θ|D) =
n

∏
i=1

f (yi1, yi2|Zi1, Zi2)
δi1δi2 ×

[
− ∂S(yi1, yi2|Zi1, Zi2)

∂yi1

]δi1(1−δi2)

×
[
− ∂S(yi1, yi2|Zi1, Zi2)

∂yi2

](1−δi1)δi2

× S(yi1, yi2|Zi1, Zi2)
(1−δi1)(1−δi2)

=
n

∏
i=1

[
cη{S1(yi1|Zi1), S2(yi2|Zi2)} f1(yi1|Zi1) f2(yi2|Zi2)

]δi1δi2

×
[
− ∂ Cη{S1(yi1|Zi1), S2(yi2|Zi2)}

∂yi1

]δi1(1−δi2)

×
[
− ∂ Cη{S1(yi1|Zi1), S2(yi2|Zi2)}

∂yi2

](1−δi1)δi2

× Cη{S1(yi1|Zi1), S2(yi2|Zi2)}(1−δi1)(1−δi2),

(2)

where (δi1, δi2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.
Similarly, using the notation introduced in Section 3.1, the joint likelihood function for bivariate

interval-censored data from n subjects can be written as

Ln(θ|D) =
n

∏
i=1

Pr(Li1 < Ti1 ≤ Ri1, Li2 < Ti2 ≤ Ri2|Zi1, Zi2)

=
n

∏
i=1

[
Pr(Ti1 > Li1, Ti2 > Li2|Zi1, Zi2)− Pr(Ti1 > Li1, Ti2 > Ri2|Zi1, Zi2)

−Pr(Ti1 > Ri1, Ti2 > Li2|Zi1, Zi2) + Pr(Ti1 > Ri1, Ti2 > Ri2|Zi1, Zi2)

]
=

n

∏
i=1

[
Cη{S1(Li1|Zi1), S2(Li2|Zi2)} − Cη{S1(Li1|Zi1), S2(Ri2|Zi2)}

−Cη{S1(Ri1|Zi1), S2(Li2|Zi2)}+ Cη{S1(Ri1|Zi1), S2(Ri2|Zi2)}
]

. (3)

The right interval Rij can take values in (0, ∞]. For a given subject i, if Rij = ∞ (i.e., Tij is right-
censored), then any term involving Rij becomes 0 and the joint survival function for subject i reduces
to only one (if both Ri1 and Ri2 are ∞) or two (if one Rij is ∞) terms. The special case of bivariate
current status data (i.e., only one assessment time for each subject) can also fit into this framework,
where for each Tij, either Lij = 0 (Tij is smaller than the assessment time, which is Rij in this case) or
Rij = ∞ (Tij is greater than the assessment time, which is Lij in this case). Therefore, the likelihood
function (3) can handle the bivariate data under general interval-censoring.

Marginal models

We implement several popular parametric marginal models in CopulaCenR, as shown in Table 2. For
example, the marginal Weibull survival distribution can be written as

Sj(tj|Zj) = exp{−(tj/λj)
k j eZ>j β j}, j = 1, 2,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 271

where λj and kj are the scale and shape parameters of the baseline Weibull distribution, and β j are the
covariate effects. The model follows the PH assumption. In this case, the parameter set θ becomes
(β>, η, λ1, k1, λ2, k2)

>. Other parametric distributions including Gompertz and Loglogistic are also
implemented in the package.

More generally, we implement the semiparametric Cox PH marginal model for bivariate right-
censored data. The model does not specify the marginal distribution for the baseline hazards function.
Instead, the baseline hazards are treated as piecewise constants between all uncensored event times as
suggested by Breslow (1972). The model is expressed as

Sj(tj|Zj) = exp{−Λj(tj)e
Z>j β j}, j = 1, 2,

in which the Breslow baseline cumulative hazard function Λj(t) is given by

Λj(t) =
n

∑
i=1

I(Yij ≤ t)δij

∑k∈Rij
exp Z>k β j

,

where Rij = {k : Yk ≥ Yij} denotes the at-risk set at time Yij.

We also consider a class of semiparametric linear transformation models for the marginal distribu-
tion of the interval-censored data. The model is expressed as:

Sj(tj|Zj) = exp[−Gj{Λj(tj)e
Z>j β j}], j = 1, 2. (4)

Λj(·) is an unknown and non-decreasing function of t, which is not necessarily the baseline cumulative
hazards function. In CopulaCenR, we approximate Λj in a sieve space constructed by Bernstein
polynomials. A Bernstein basis polynomial with degree m is expressed as:

Bk(t, m, l, u) =
(

m
k

)
(

t− l
u− l

)k(1− t− l
u− l

)m−k, k = 0, ..., m, (5)

where l and u are the lower and upper bounds of all observed times. One big advantage of Bernstein
polynomials is that they do not require the specification of interior knots, as seen from (5), making
them easy to work with. More details can be found in Sun and Ding (2019).

In model (4), Gj(·) is a pre-specified strictly increasing function, such as the Box-Cox and the
logarithmic transformation functions. The package uses a G(·) function as specified in Zhou et al.
(2017):

Gj(x) =


(1+x)r−1

r , 0 < r ≤ 2,

log{1+(r−2)x}
r−2 , r > 2.

(6)

Note that the model (4) contains a class of survival models. For example, when G(x) = x at
r = 1, the marginal function Sj(t|Z) becomes exp{−Λj(t)eZ>β j}, which is essentially a PH model.

Likewise, when Gj(x) = log(1 + x) at r = 3, Sj(t|Z) becomes {1 + Λj(t)eZ>β j}−1, which is a PO
model. In practice, the value of r can be either selected according to model AIC or treated unknown
and estimated together with other model parameters.

Two-step estimation procedure

In this section, we illustrate the estimation procedure for the unknown parameter θ. For simplicity,
we use the general notation θ = (β>1 , β>2 , η, S01, S02)

> throughout this section. In principle, we can
maximize the joint log-likelihood function based on formula (2) or (3) directly, written as ln(θ|D) =
log Ln(θ|D) = ∑n

i=1 log L(θ|Di). Due to the complex structure of the log-likelihood function, we
implement a novel two-step estimation procedure, which is proven to be computationally more stable
and efficient than the one-step procedure, as shown in Sun et al. (2019) and Sun and Ding (2019).
Essentially, the two-step procedure implements an extra step to obtain appropriate initial values for all
the unknown parameters. The estimation procedure is described below:

1. Obtain initial estimates of θn:

(a) (β̂
(1)
jn , Ŝ(1)

0j ) = arg max
(β j ,S0j)

ljn(β j, S0j), where ljn denotes the log-likelihood for the marginal

model, j = 1, 2;

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 272

(b) η̂
(1)
n = arg max

(η)

ln{β̂(1)n = (β̂
(1)
1n , β̂

(1)
2n ), η, Ŝ(1)

01 , Ŝ(1)
02 }, where β̂

(1)
jn and Ŝ(1)

0j are the initial

estimates from (a), and ln is the joint log-likelihood.

2. Simultaneously maximize the joint log-likelihood to get final estimates:

θ̂n = (β̂n, η̂n, Ŝ01, Ŝ02) = arg max
(β,η,S01,S02)

ln(β, η, S01, S02) with initial values (β̂
(1)
n , η̂

(1)
n , Ŝ(1)

01 , Ŝ(1)
02 ) ob-

tained from step 1(a) and 1(b).

[Remark 1.] In the case of semiparametric Cox PH margins (with the Breslow baseline cumulative
hazard estimator), although the maximum likelihood estimators from step 2 are consistent and asymp-
totically normal, the Hessian matrix cannot be directly used for estimating the variance-covariance
matrix of (β̂, η̂) (Sun et al., 2019). Therefore, the bootstrap procedure is implemented in the package
for producing a valid variance-covariance estimator.

[Remark 2.] In the case of semiparametric transformation model margins (with the use of Bernstein
polynomials), the two-step estimation procedure becomes a two-step “sieve” estimation procedure.
Sun and Ding (2019) rigorously proved the asymptotic properties of the sieve maximum likelihood
estimators.

The main model-fitting functions (rc_par_copula, rc_spCox_copula, ic_par_copula and
ic_spTran_copula) provide a built-in optimization option, which is a wrapper to the optimization
routines optim and nlm in R.

Likelihood-based tests for covariate effects

We now separate β into two parts: βg and βng, where βg is the parameter set of interest for hypothesis
testing and βng denotes the rest of the regression coefficients. In certain cases, βg can be the entire
regression parameter β. The package implements three likelihood-based tests including the Wald
test, the generalized score test (Cox and Hinkley, 1979) and the likelihood ratio test, which are
asymptotically equivalent and follow the chi-squared distribution with d f = dim(βg). In particular,
the generalized score test is usually faster than the other two tests for large-scale testings such as
the genome-wide association study (GWAS) (Sun et al., 2019; Sun and Ding, 2019). Due to the
complex structure of the joint log-likelihood, instead of analytically deriving the first and second order
derivatives, we use the Richardson’s extrapolation (Lindfield et al., 1989) to approximate the score
function and observed Fisher information numerically.

Examples

Bivariate event time generation

The package CopulaCenR provides a user-friendly function data_sim_copula for generating random
bivariate event times based on a specified copula model, marginal distributions and covariate values.
The arguments n, copula, and eta assign the sample size, the copula type, and the dependence
parameter value. For marginal distributions, the argument dist can be one of the three parametric
distributions in Table 2 (i.e., Weibull, Loglogistic and Gompertz), and their distribution parameters
are given through baseline. For Weibull and Loglogistic, the baseline parameters are λ (scale) and
k (shape); whereas a (shape) and b (rate) for the Gompertz distribution. In this current version, we
assume that the two margins share the same set of covariates and effects, which are assigned by
var_list and COV_beta, respectively. Lastly, x1 and x2 input a data frame of covariate values for the
two margins, respectively. Figure 2 illustrates a scatter plot of 500 simulated bivariate event times
from a Clayton model with Weibull margins, as demonstrated in the code below.

library(CopulaCenR)
set.seed(1)
dat <- data_sim_copula(n = 500, copula = "Clayton", eta = 3, dist = "Weibull",

baseline = c(0.1,2), var_list = c("var1", "var2"), COV_beta = c(0.1, 0.1),
x1 = cbind(rnorm(500, 6, 2), rbinom(500, 1, 0.5)),
x2 = cbind(rnorm(500, 6, 2), rbinom(500, 1, 0.5)))

head(dat)

id ind var1 var2 time
1 1 6.130533 1 8.062168
1 2 6.154606 1 7.472649

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 273

2 1 8.070653 1 6.317247
2 2 5.406263 1 5.904064
3 1 10.520432 1 4.195788
3 2 3.633516 1 4.771523

plot(x = dat$time[dat$ind == 1], y = dat$time[dat$ind == 2],
xlab = expression(t[1]), ylab = expression(t[2]), cex.axis = 1, cex.lab = 1.3)

Figure 2: Simulated bivariate event times from the Clayton copula with Weibull margins.

Fitting copula models for bivariate right-censored data

The bivariate right-censored input dataset shall be a data frame including the covariates and four
additional key input columns:

• id: the subject/cluster id,

• ind: the margin indicator (1, 2),

• obs_time: the exact observed time,

• status: censoring indicator (1 for event, 0 for right-censoring).

We use the DRS (Diabetic Retinopathy Study) data as an example. The DRS data contain bivariate
right-censored time to blindness from 197 diabetic retinopathy patients. These patients were from
a 50% random sample of the patients with "high-risk" diabetic retinopathy as defined by the DRS
(Huster et al., 1989). Each patient had one eye randomized to one of the two laser treatments and the
other eye received no treatment. For each eye, the event of interest was the time from initiation of
treatment to the time to blindness in months. Censoring was caused by death, dropout, or end of the
study. The data can be loaded by

data("DRS", package = "CopulaCenR")
head(DRS)

id ind obs_time status treat age type
5 1 46.23 0 0 28 2
5 2 46.23 0 2 28 2
14 1 42.50 0 2 12 1
14 2 31.30 1 0 12 1
16 1 42.27 0 1 9 1
16 2 42.27 0 0 9 1

There are three covariates: treat is treatment with 0 for no treatment, 1 for xenon laser treatment
and 2 for argon laser treatment; age is the age at diagnosis of diabetes; type is the type of diabetes
with 1 for juvenile (age ≤ 20 at diagnosis) and 2 for adult. The primary question of the DRS study was
to assess the treatment effectiveness while accommodating the dependence between two eyes.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 274

We now demonstrate how to fit a Clayton copula model with Weibull margins to the DRS data
using the function rc_par_copula. We are interested in the treatment effect, as indicated in argument
var_list. The arguments copula and m.dis specify the fitted copula model and marginal baseline
distributions. The default optimization method is BFGS (Nash, 1990). Other optimization methods and
control parameters can also be applied (see ?optim).

library(CopulaCenR)
clayton_wb <- rc_par_copula(data = DRS, var_list = "treat", copula = "Clayton",

m.dist = "Weibull", method = "BFGS")

summary(clayton_wb)

Copula: Clayton
Margin: Weibull

estimate SE stat pvalue
lambda 90.6440318 13.1887218 47.2360 6.293e-12 ***
k 0.8062766 0.0586207 189.1758 < 2.2e-16 ***
treat1 -0.5714498 0.1997080 8.1878 0.004217 **
treat2 0.0052997 0.1739106 0.0009 0.975689
eta 0.6205855 0.2610638 5.6508 0.017447 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(The Wald tests are testing whether each coefficient is 0)

Final llk: -839.7212
Convergence is completed successfully

The estimation and Wald test results suggest the xenon treatment significantly reduced the risk
of blindness compared to controls (p = 0.004217 for treat1). We also compared our estimates with
previous findings in Huster et al. (1989). Due to the differences in the model parameterization, we first
transformed our estimates into comparable forms. Specifically, the xenon treatment effect in Huster
et al. (1989) can be expressed as −k log(λ) + treat1 = −4.20 and similarly the argon treatment effect is
−k log(λ) + treat2 = −3.63, which are consistent with the reported estimates (−4.20,−3.42) in the
Table 2 (page 151) of Huster et al. (1989). The AIC and BIC of this model can be obtained from the S3
methods AIC and BIC.

AIC(clayton_wb)

1689.442

BIC(clayton_wb)

1705.858

After the model is fitted, Kendall’s τ can be estimated through the function tau_copula.

tau_copula(eta = as.numeric(coef(clayton_wb)["eta"]), copula = "Clayton")

0.2368118

The fitted values (i.e., linear predictors and survival probabilities) can be extracted through the
function fitted. As the model is a PH model, the linear predictors (type is “lp”) are the estimated log
proportional hazards.

fit1 <- fitted(clayton_wb, type = "lp")
fit1[1:3, ]

id lp1 lp2
5 0.000000000 0.005299655
14 0.005299655 0.000000000
16 -0.571449835 0.000000000

When type is “survival”, the fitted outputs are marginal (S1,S2) and joint (S12) survival probabili-
ties at the observed times (t1,t2).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 275

fit2 <- fitted(clayton_wb, type = "survival")
fit2[1:3, ]

id t1 t2 S1 S2 S12
5 46.23 46.23 0.5592967 0.5575724 0.3643588
14 42.50 31.30 0.5793467 0.6542323 0.4234880
16 42.27 42.27 0.7369175 0.5823995 0.4655204

Similarly, the predict function provides predictions for new observations with covariates. Its
outputs can be either linear predictors or survival probabilities (at specified times). The following
newdata1 example contains two subjects under different treatments.

newdata1 <- data.frame(id = rep(1:2, each=2), ind = rep(c(1,2),2),
time = rep(40,4), treat = factor(c(0,1,0,2)))

newdata1

id ind time treat
1 1 40 0
1 2 40 1
2 1 40 0
2 2 40 2

predict(clayton_wb, newdata = newdata1, type = "lp")

id lp1 lp2
1 0 -0.571449835
2 0 0.005299655

predict(clayton_wb, newdata = newdata1, type = "survival")

id t1 t2 S1 S2 S12
1 40 40 0.5962669 0.7467754 0.4799705
2 40 40 0.5962669 0.5946309 0.4024998

Fitting copula models for bivariate interval-censored data

The bivariate interval-censored input dataset shall be a data frame including the covariates and five
key input columns:

• id: the subject/cluster id,

• ind: the margin indicator (1 or 2),

• Left: the left bound of the observed interval,

• Right: the right bound of the observed interval (can take “Inf”),

• status: the censoring indicator (1 for left- or interval-censoring, 0 for right-censoring).

We use the AREDS (Age-Related Eye Disease Study) data as an example. The event of interest is
the AMD (Age-related Macular Degeneration) disease, which is a leading cause of blindness in the
developed world (Swaroop et al., 2009). It is known as a polygenic, progressive and neurodegenerative
disorder. The AREDS study is a multi-center randomized clinical trial studying the development
and progression of AMD, sponsored by the National Eye Institute (AREDS Group, 1999). Due to
intermittent assessment times (every 6 months up to the first 6 years and every 1 year since after), the
exact time when each eye progressed to late-AMD was only known to lie in a certain interval. As a
result, the outcome data are bivariate interval-censored. The package includes a subset data of 629
Caucasian participants from AREDS who had at least one eye in moderate AMD stage at baseline. The
data can be loaded by

data("AREDS", package = "CopulaCenR")
head(AREDS)

id ind Left Right status SevScaleBL ENROLLAGE rs2284665
1 1 0.0 2.0 1 6 67.0 1
1 2 0.0 2.0 1 8 67.0 1
2 1 0.0 2.0 1 7 68.0 0
2 2 5.9 9.3 1 4 68.0 0

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 276

3 1 8.0 9.1 1 7 64.9 0
3 2 10.0 Inf 0 7 64.9 0

Out of these 629 subjects, 273 subjects developed late-AMD in both eyes during the study and
the times to late-AMD were interval-censored; 138 subjects developed late-AMD in one eye (interval-
censored) and did not develop late-AMD before the end of the study (right-censored); the rest 218
subjects were right-censored for late-AMD in both eyes.

There are three continuous covariates: SevScaleBL for baseline AMD severity score (a value
between 1 and 8 with a higher value indicating more severe AMD), ENROLLAGE for baseline age and
rs2284665 for a genetic variant (0, 1, 2 for GG, GT, TT) that might be associated with AMD progression.
The two clinical covariates SevScaleBL and ENROLLAGE are well-known risk factors of AMD. Thus, our
primary interest is to find out whether the genetic variant rs2284665 is significantly associated with
AMD progression.

We fit a two-parameter copula semiparametric transformation model for the AREDS data through
the function ic_spTran_copula. The arguments l and u are the range of event times, which need to be
pre-specified by the user. In practice, l and u can be set as the minimum and maximum of observed
times. The argument m corresponds to the degree of Bernstein polynomials (as shown in formula 5),
with the default value m = 3. The argument r specifies the form of marginal transformation model (as
shown in formula 6). In practice, the values of m and r can be chosen based on the smallest AIC for a
list of fitted models with different values.

We now demonstrate how to fit a two-parameter copula semiparametric model to the AREDS data.
We chose the range of event times as l = 0 and u = 15, use the default Bernstein polynomial degree as
m = 3 and assume PO for the margins (i.e., r = 3).

library(CopulaCenR)
copula2_sp <- ic_spTran_copula(data = AREDS, copula = "Copula2",

var_list = c("ENROLLAGE","rs2284665","SevScaleBL"),
l = 0, u = 15, m = 3, r = 3)

summary(copula2_sp)

Copula: Copula2
Margin: semiparametric

estimate SE stat pvalue
ENROLLAGE 0.042610 0.012271 12.057 0.0005159 ***
rs2284665 0.397712 0.091180 19.026 1.290e-05 ***
SevScaleBL 0.722681 0.053258 184.132 < 2.2e-16 ***
alpha 0.930508 0.058714 251.167 < 2.2e-16 ***
kappa 0.974037 0.226081 18.562 1.645e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(The Wald tests are testing whether each coefficient is 0)

Final llk: -2104.178
Convergence is completed successfully

From the output, the estimated odds ratio for the genetic variant rs2284665 is exp(0.397712) = 1.49
with a p-value 1.29× 10−5, implying it has a “harmful” effect for AMD patients by having more copies
of its minor allele T. The AIC and BIC values are 4226.356 and 4266.353, respectively.

AIC(copula2_sp)

4226.356

BIC(copula2_sp)

4266.353

Also, the estimated Kendall’s τ is 0.38, suggesting moderate dependence in AMD progression
between two eyes.

tau_copula(eta = as.numeric(coef(copula2_sp)[c("alpha","kappa")]),
copula = "Copula2")

0.3851248

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 277

Furthermore, we can test the effect of rs2284665 by the generalized score test. We first fit a null
model without rs2284665 and then test its effect using the function score_copula.

copula2_sp_null <- ic_spTran_copula(data = AREDS, copula = "Copula2",
var_list = c("ENROLLAGE","SevScaleBL"),
l = 0, u = 15, m = 3, r = 3)

score_copula(object = copula2_sp_null, var_score = "rs2284665")

stat pvalue
1.943163e+01 1.042661e-05

The LRT can also be performed by applying two nested models to the function lrt_copula.

lrt_copula(model1 = copula2_sp, model2 = copula2_sp_null)

stat pvalue
9.543119588 0.002007003

The following codes plot the 3D joint survival probabilities for the three subjects in newdata2,
which have the same SevScaleBL = 3 in both eyes and ENROLLAGE = 60, but vary in the genotype
of rs2284665. In the plot function, the argument class specifies the plot type, which can be one of
“joint”, “conditional” and “marginal”. When class = "joint", it generates a 3D interactive contour
that can be manually rotated for the desired visualization. Figure 3 is a snapshot of 3D contours for
the three subjects in newdata2.

newdata2 <- data.frame(id = rep(1:3, each=2), ind = rep(c(1,2),3),
SevScaleBL = rep(3,6), ENROLLAGE = rep(60,6),
rs2284665 = c(0,0,1,1,2,2))

newdata2

id ind SevScaleBL ENROLLAGE rs2284665
1 1 3 60 0
1 2 3 60 0
2 1 3 60 1
2 2 3 60 1
3 1 3 60 2
3 2 3 60 2

plot(x = copula2_sp, class = "joint", newdata = newdata2)

Figure 3: Estimated joint progression-free probability contours for subjects with different genotypes
of rs2284665 (age 60 and severity score 3 in both eyes).

Similarly, the conditional survival probabilities (Figure 4) can be obtained for the left eyes from
the same three subjects, given their right eyes (i.e., cond_margin = 2) had progressed (to late-AMD) at
year 5 (i.e., cond_time = 5).

plot(x = copula2_sp, class = "conditional", newdata = newdata2,
cond_margin = 2, cond_time = 5, ylim = c(0.25,1),
ylab = "Conditional Survival Probability")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 278

Figure 4: Estimated conditional progression-free probability of remaining years (after year 5) for the
left eye, given the right eye has progressed by year 5, for subjects with different genotypes of rs2284665
(age 60 and severity score 3 in both eyes).

Likewise, we can also obtain the eye-level marginal survival probabilities (i.e., plot_margin = 1
for the left eyes) for the same three subjects, as illustrated in Figure 5.

plot(x = copula2_sp, class = "marginal", newdata = newdata2,
plot_margin = 1, ylim = c(0.6,1), ylab = "Marginal Survival Probability")

Figure 5: Estimated marginal progression-free probability for one eye from subjects with different
genotypes of rs2284665 (age 60 and severity score 3 in both eyes).

Summary

This paper presents the R package CopulaCenR for implementing copula-based regression models in
bivariate censored data, including both bivariate right-censored data and bivariate interval-censored
data. A variety of Archimedean copulas, including a flexible two-parameter copula, are built in the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR


CONTRIBUTED RESEARCH ARTICLES 279

package to accommodate different dependence structures. Moreover, the package can fit various
parametric and semiparametric regression models for the two margins within the copula function. In
particular, a general semiparametric transformation model with PH and PO models being its special
cases is implemented for the margins in this package. For parameter estimation, a novel two-step
procedure is adopted to guarantee stable and fast computation. For the inference of covariate effects,
all three likelihood-based tests are provided. Lastly, two real data examples are given to demonstrate
the key features and capabilities of this package.

One future extension of this package is to allow multivariate copula functions for handling
multivariate censored events. Another important research extension is to add goodness-of-fit tests,
which is critical for choosing a proper copula model. However, there are limited works in testing copula
models in bivariate censored data, especially in bivariate interval-censored data under the regression
setting. The current literature (e.g., Shih, 1998; Andersen et al., 2010; Emura et al., 2010; Wang, 2010)
only focus on testing copulas in bivariate right-censored data without covariates. We are currently
investigating these directions and plan to incorporate them in a future version of CopulaCenR.

Acknowledgments

The Authors are grateful to Dr. Wei Chen for providing valuable suggestions about package develop-
ment and the AREDS data analysis.

Bibliography
K. Aas, C. Czado, A. Frigessi, and H. Bakken. Pair-copula constructions of multiple dependence.

Insurance: Mathematics and Economics, 44(2):182 – 198, 2009. URL https://doi.org/10.1016/j.
insmatheco.2007.02.001. [p267]

M. M. Ali, N. N. Mikhail, and M. S. Haq. A class of bivariate distributions including the bivariate
logistic. Journal of Multivariate Analysis, 8(3):405–412, 1978. URL https://doi.org/10.1016/0047-
259X(78)90063-5. [p268]

P. K. Andersen, C. T. Ekstrom, J. P. Klein, Y. Shu, and M.-J. Zhang. A class of goodness of fit tests
for a copula based on bivariate right-censored data. Biometrical Journal, 47(6):815–824, 2010. URL
https://doi.org/10.1002/bimj.200410163. [p279]

AREDS Group. The Age-Related Eye Disease Study (AREDS): Design implications. AREDS report no.
1. Controlled Clinical Trials, 20(6):573–600, 1999. URL https://doi.org/10.1016/s0197-2456(99)
00031-8. [p266, 275]

N. E. Breslow. Discussion of the paper by D. R. Cox. Journal of the Royal Statistical Society: Series B, 34:
216–217, 1972. URL https://doi.org/10.2307/1403236. [p271]

D. G. Clayton. A model for association in bivariate life tables and application in epidemiological
studies of familial tendency in chronic disease incidence. Biometrika, 65(1):141–151, 1978. URL
https://doi.org/10.2307/2335289. [p266, 268]

D. Cox. Regression models and life-tables. Journal of the Royal Statistical Society: Series B, 34(2):187–220,
1972. URL https://www.jstor.org/stable/2985181. [p267]

D. R. Cox and D. V. Hinkley. Theoretical Statistics. Chapman and Hall/CRC, 1979. URL https:
//doi.org/10.1201/b14832. [p272]

M. C. Donohue and R. Xu. phmm: Proportional Hazards Mixed-effects Models, 2019. URL https:
//CRAN.R-project.org/package=phmm. R package version 0.7-11. [p267]

T. Emura. Copula.surv: Association Analysis of Bivariate Survival Data Based on Copulas, 2018. URL
https://CRAN.R-project.org/package=Copula.surv. R package version 1.0. [p267]

T. Emura, C. W. Lin, and W. Wang. A goodness-of-fit test for archimedean copula models in the
presence of right censoring. Computational Statistics & Data Analysis, 54(12):3033–3043, 2010. URL
https://doi.org/10.1016/j.csda.2010.03.013. [p267, 279]

M. J. Frank. On the simultaneous associativity of f ( x , y ) and x + y - f ( x , y ). Aequationes Mathematicae,
19(1):194–226, 1979. URL https://doi.org/10.1007/BF02189866. [p268]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=CopulaCenR
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1016/j.insmatheco.2007.02.001
https://doi.org/10.1016/0047-259X(78)90063-5
https://doi.org/10.1016/0047-259X(78)90063-5
https://doi.org/10.1002/bimj.200410163
https://doi.org/10.1016/s0197-2456(99)00031-8
https://doi.org/10.1016/s0197-2456(99)00031-8
https://doi.org/10.2307/1403236
https://doi.org/10.2307/2335289
https://www.jstor.org/stable/2985181
https://doi.org/10.1201/b14832
https://doi.org/10.1201/b14832
https://CRAN.R-project.org/package=phmm
https://CRAN.R-project.org/package=phmm
https://CRAN.R-project.org/package=Copula.surv
https://doi.org/10.1016/j.csda.2010.03.013
https://doi.org/10.1007/BF02189866


CONTRIBUTED RESEARCH ARTICLES 280

E. J. Gumbel. Bivariate exponential distributions. Journal of the American Statistical Association, 55(292):
698–707, 1960. URL https://doi.org/10.2307/2281591. [p268]

M. Hofert, I. Kojadinovic, M. Maechler, and J. Yan. copula: Multivariate Dependence with Copulas, 2018.
URL https://CRAN.R-project.org/package=copula. R package version 0.999-19. [p267]

P. Hougaard. Analysis of Multivariate Survival Data. Springer-Verlag, New York, 2000. URL https:
//doi.org/10.1002/sim.938. [p266]

W. J. Huster, R. Brookmeyer, and S. G. Self. Modelling paired survival data with covariates. Biometrics,
45(1):145–156, 1989. URL https://doi.org/10.2307/2532041. [p266, 273, 274]

H. Joe. Parametric families of multivariate distributions with given margins. Journal of Multivariate
Analysis, 46(2):262–282, 1993. URL https://doi.org/10.1006/jmva.1993.1061. [p268]

H. Joe. Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall, London, 1997. URL
https://doi.org/10.1201/9780367803896. [p268]

H. Joe. Dependence modeling with copulas. CRC press, 2014. URL https://doi.org/10.1201/b17116.
[p268]

H. Joe and T. Hu. Multivariate distributions from mixtures of max-infinitely divisible distributions.
Journal of multivariate analysis, 57(2):240–265, 1996. URL https://doi.org/10.1006/jmva.1996.0032.
[p268]

I. Kojadinovic and J. Yan. Modeling multivariate distributions with continuous margins using the
copula R package. Journal of Statistical Software, 34(9):1–20, 2010. URL https://doi.org/10.18637/
jss.v034.i09. [p267]

G. Lindfield et al. Microcomputers in Numerical Analysis. Halsted Press, 1989. URL https://doi.org/
10.1112/S002557930001319X. [p272]

G. Marra and R. Radice. Bivariate copula additive models for location, scale and shape. Computational
Statistics & Data Analysis, 112:99–113, 2017. URL https://doi.org/10.1016/j.csda.2017.03.004.
[p267]

G. Marra and R. Radice. Copula link-based additive models for right-censored event time data. Journal
of the American Statistical Association, pages 1–20, 2019. URL https://doi.org/10.1080/01621459.
2019.1593178. [p267]

G. Marra and R. Radice. GJRM: Generalised Joint Regression Modelling, 2020. URL https://CRAN.R-
project.org/package=GJRM. R package version 0.2-2. [p267]

G. Marra, R. Radice, T. Bärnighausen, S. N. Wood, and M. E. McGovern. A simultaneous equation
approach to estimating HIV prevalence with nonignorable missing responses. Journal of the Ameri-
can Statistical Association, 112(518):484–496, 2017. URL https://doi.org/10.1080/01621459.2016.
1224713. [p267]

G. Masarotto and C. Varin. Gaussian copula regression in R. Journal of Statistical Software, 77(8):1–26,
2017. URL https://doi.org/10.18637/jss.v077.i08. [p267]

M. Munda, F. Rotolo, and C. Legrand. parfm: Parametric frailty models in R. Journal of Statistical
Software, 51(11):1–20, 2012. URL https://doi.org/10.18637/jss.v051.i11. [p267]

T. Nagler and T. Vatter. gamCopula: Generalized Additive Models for Bivariate Conditional Dependence
Structures and Vine Copulas, 2020. URL https://CRAN.R-project.org/package=gamCopula. R pack-
age version 0.0-7. [p267]

J. Nash. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. Taylor &
Francis, 1990. URL https://doi.org/10.2307/3314683. [p274]

R. B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York, 2006. URL https://doi.org/10.
1007/0-387-28678-0. [p268]

D. S. Nicole Kraemer. Bivariate Copula Based Regression Models, 2014. URL https://cran.r-project.
org/web/packages/CopulaRegression/. R package version 0.1-5. [p267]

D. Oakes. A model for association in bivariate survival data. Journal of the Royal Statistical Society:
Series B, 44(3):414–422, 1982. URL https://www.jstor.org/stable/2345500. [p266]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.2307/2281591
https://CRAN.R-project.org/package=copula
https://doi.org/10.1002/sim.938
https://doi.org/10.1002/sim.938
https://doi.org/10.2307/2532041
https://doi.org/10.1006/jmva.1993.1061
https://doi.org/10.1201/9780367803896
https://doi.org/10.1201/b17116
https://doi.org/10.1006/jmva.1996.0032
https://doi.org/10.18637/jss.v034.i09
https://doi.org/10.18637/jss.v034.i09
https://doi.org/10.1112/S002557930001319X
https://doi.org/10.1112/S002557930001319X
https://doi.org/10.1016/j.csda.2017.03.004
https://doi.org/10.1080/01621459.2019.1593178
https://doi.org/10.1080/01621459.2019.1593178
https://CRAN.R-project.org/package=GJRM
https://CRAN.R-project.org/package=GJRM
https://doi.org/10.1080/01621459.2016.1224713
https://doi.org/10.1080/01621459.2016.1224713
https://doi.org/10.18637/jss.v077.i08
https://doi.org/10.18637/jss.v051.i11
https://CRAN.R-project.org/package=gamCopula
https://doi.org/10.2307/3314683
https://doi.org/10.1007/0-387-28678-0
https://doi.org/10.1007/0-387-28678-0
https://cran.r-project.org/web/packages/CopulaRegression/
https://cran.r-project.org/web/packages/CopulaRegression/
https://www.jstor.org/stable/2345500


CONTRIBUTED RESEARCH ARTICLES 281

L. Prenen, R. Braekers, and L. Duchateau. Extending the Archimedean copula methodology to model
multivariate survival data grouped in clusters of variable size. Journal of the Royal Statistical Society:
Series B, 79(2):483–505, 2017a. URL https://doi.org/10.1111/rssb.12174. [p267]

L. Prenen, R. Braekers, L. Duchateau, and E. D. Troyer. Sunclarco: Survival Analysis using Copulas,
2017b. URL https://CRAN.R-project.org/package=Sunclarco. R package version 1.0.0. [p267]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2019. URL http://www.R-project.org/. [p267]

V. Rondeau, Y. Marzroui, and J. Gonzalez. frailtypack: An R package for the analysis of correlated
survival data with frailty models using penalized likelihood estimation or parametrical estimation.
Journal of Statistical Software, 47(4):1–28, 2012. URL https://doi.org/10.18637/jss.v047.i04.
[p267]

U. Schepsmeier, J. Stoeber, E. C. Brechmann, B. Graeler, T. Nagler, T. Erhardt, C. Almeida, A. Min,
C. Czado, M. Hofmann, et al. VineCopula: Statistical Inference of Vine Copulas, 2018. URL https:
//CRAN.R-project.org/package=VineCopula. R package version 2.1.8. [p267]

J. H. Shih. A goodness-of-fit test for association in a bivariate survival model. Biometrika, 85(1):189–200,
1998. URL https://doi.org/10.1093/biomet/85.1.189. [p279]

A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique
de l’Université de Paris, 8:229–231, 1959. URL https://doi.org/10.12691/ijefm-3-2-3. [p270]

J. Sun. The Statistical Analysis of Interval-Censored Failure Time Data. Springer Science & Business Media,
2007. URL https://doi.org/10.1007/0-387-37119-2. [p266]

T. Sun and Y. Ding. Copula-based semiparametric regression method for bivariate data under general
interval censoring. Biostatistics, 2019. URL https://doi.org/10.1093/biostatistics/kxz032.
[p269, 271, 272]

T. Sun, Y. Liu, R. J. Cook, W. Chen, and Y. Ding. Copula-based score test for bivariate time-to-event
data, with application to a genetic study of AMD progression. Lifetime Data Analysis, 25(3):546–568,
2019. URL https://doi.org/10.1007/s10985-018-09459-5. [p268, 271, 272]

A. Swaroop, E. Y. Chew, G. R. Abecasis, et al. Unraveling a multifactorial late-onset disease: from
genetic susceptibility to disease mechanisms for Age-related Macular Degeneration. Annual Review
of Genomics and Human Genetics, 10:19–43, 2009. URL https://doi.org/10.1146/annurev.genom.9.
081307.164350. [p275]

T. M. Therneau. coxme: Mixed Effects Cox Models, 2018a. URL https://CRAN.R-project.org/package=
coxme. R package version 2.2-10. [p267]

T. M. Therneau. survival: A Package for Survival Analysis in S, 2018b. URL https://CRAN.R-project.
org/package=survival. R package version 2.43-3. [p267]

T. Vatter and V. Chavez-Demoulin. Generalized additive models for conditional dependence structures.
Journal of Multivariate Analysis, 141:147–167, 2015. URL https://doi.org/10.1016/j.jmva.2015.
07.003. [p267]

A. Wang. Goodness-of-fit tests for Archimedean copula models. Statistica Sinica, 20:441–453, 2010.
URL https://www.jstor.org/stable/24309000. [p279]

L. J. Wei, D. Lin, and L. Weissfeld. Regression analysis of multivariate incomplete failure time data by
modeling marginal distributions. Journal of the American Statistical Association, 84(408):1065–1073,
1989. URL https://doi.org/10.2307/2290084. [p266]

J. Yan. Enjoy the joy of copulas: With a package copula. Journal of Statistical Software, 21(4):1–21, 2007.
URL https://doi.org/10.18637/jss.v021.i04. [p267]

Q. Zhou, T. Hu, and J. Sun. A sieve semiparametric maximum likelihood approach for regression
analysis of bivariate interval-censored failure time data. Journal of the American Statistical Association,
112(518):664–672, 2017. URL https://doi.org/10.1080/01621459.2016.1158113. [p271]

Tao Sun
School of Statistics
Renmin University of China

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1111/rssb.12174
https://CRAN.R-project.org/package=Sunclarco
http://www.R-project.org/
https://doi.org/10.18637/jss.v047.i04
https://CRAN.R-project.org/package=VineCopula
https://CRAN.R-project.org/package=VineCopula
https://doi.org/10.1093/biomet/85.1.189
https://doi.org/10.12691/ijefm-3-2-3
https://doi.org/10.1007/0-387-37119-2
https://doi.org/10.1093/biostatistics/kxz032
https://doi.org/10.1007/s10985-018-09459-5
https://doi.org/10.1146/annurev.genom.9.081307.164350
https://doi.org/10.1146/annurev.genom.9.081307.164350
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://doi.org/10.1016/j.jmva.2015.07.003
https://doi.org/10.1016/j.jmva.2015.07.003
https://www.jstor.org/stable/24309000
https://doi.org/10.2307/2290084
https://doi.org/10.18637/jss.v021.i04
https://doi.org/10.1080/01621459.2016.1158113


CONTRIBUTED RESEARCH ARTICLES 282

59 Zhongguancun Street
Beijing, China
Department of Biostatistics
University of Pittsburgh
Pittsburgh, U.S.A.
ORCiD: 0000-0003-4447-3005
tao.sun@pitt.edu

Ying Ding
Department of Biostatistics
University of Pittsburgh
130 De Soto Street
Pittsburgh, U.S.A.
ORCiD: 0000-0003-1352-1000
yingding@pitt.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:tao.sun@pitt.edu
mailto:yingding@pitt.edu


CONTRIBUTED RESEARCH ARTICLES 283

mistr: A Computational Framework for
Mixture and Composite Distributions
by Lukas Sablica and Kurt Hornik

Abstract Finite mixtures and composite distributions allow to model the probabilistic representation
of data with more generality than simple distributions and are useful to consider in a wide range
of applications. The R package mistr provides an extensible computational framework for creating,
transforming, and evaluating these models, together with multiple methods for their visualization
and description. In this paper we present the main computational framework of the package and
illustrate its application. In addition, we provide and show functions for data modeling using two
specific composite distributions as well as a numerical example where a composite distribution is
estimated to describe the log-returns of selected stocks.

Introduction

During the history of financial mathematics mankind has developed many useful theories how to
describe financial markets. While the models in asset pricing are generally covered by the central limit
theorem (CLT) arguments, these arguments do not cover the tail behaviour and thus are usually not
appropriate in the risk management with its focus on the tails of the distribution. A simple illustration
might be the log-returns distribution of the German multinational software corporation SAP. Clearly,
the tails are much heavier than in the case of normal distribution with the same mean and standard
deviation. This behavior can be frequently found in a number of financial assets.

−0.06 −0.02 0.02 0.06

0
5

10
20

30

Density of SAP log−returns 
     and normal distribution 

SAP
Normal

−3 −2 −1 0 1 2 3

−
0.

15
−

0.
05

0.
05

Normal Q−Q Plot

Figure 1: Left: Densities of the normal distribution and daily SAP log-returns from January 2007 to
October 2017. Right: Quantile-quantile plot of the normal distribution against SAP log-returns.

A more interesting result can be seen from the quantile-quantile plot. While the normal distribution
fails in the tails, it excels in the center. This suggests to use a more suitable distribution which can
catch the fat tails presented above, yet follows a normal distribution in the center.

A simple answer to this idea is the concept of composite distributions (also known as spliced
distributions) and mixture models, where one assumes that the distribution is a finite mixture of
component distributions defined as

F(x) =
n

∑
i=1

wiFi (x|Bi) , f (x) =
n

∑
i=1

wi
Fi (Bi)

1Bi (x) fi(x) (1)

and

F(x) =
n

∑
i=1

wiFi (x) , f (x) =
n

∑
i=1

wi fi (x) , (2)

respectively, where w1, w2, . . . , wn are positive weights that sum up to one, B1, B2, . . . , Bn are Borel sets
giving a disjoint partition of the support, 1Bi is the indicator function of a set Bi, and F1, F2, . . . , Fn are
the probability distributions over R with Fi(Bi) > 0 for all i = 1, 2, . . . , n. Obviously, the composite
models are a specific case of the mixture models, where the corresponding probability distribution

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://en.wikipedia.org/wiki/SAP_SE


CONTRIBUTED RESEARCH ARTICLES 284

functions are truncated to some disjoint support. For the presented data, a three-component composite
model with the first and third component being some heavy-tailed distribution and its negative
transform, respectively, is clearly something that might be appropriate. Note that this also suggests
the need of a transformation framework that would be able to perform monotonic transformations on
the random variables that represent these exceedance distributions. This innovation is motivated by
the fact that even though most of the extreme value distributions belong to the location-scale family,
without a decreasing transformation these distributions cannot be used for modeling of heavy left
tails.

Moreover, composite models have gained a fair amount of attention in actuarial loss modeling.
Most frequently one employs models composed of two components, where the first is based on the log-
normal distribution and defined on the positive reals, and the second distribution is chosen according
to the data set to model extreme measurements. Common choices for these tail-modeling distributions
are, for instance, the generalized Pareto distribution or the Burr distribution. Such models have been
proposed by various authors, for more details see Nadarajah and Bakar (2013), Cooray and Ananda
(2005) and Scollnik (2007).

To offer a general framework for univariate distributions and for mixtures in general, package
mistr is specifically designed to create such models, evaluate or even fit them. This article introduces
mistr and illustrates with several examples how these distributions can be created and used.

Distributions in R

R currently employs the naming convention [prefix][name], where [name] cor-
responds to the name of the desired distribution and [prefix] is one of ‘p’, ‘d’, ‘q’
or ‘r’, indicating, respectively, the distribution, density and quantile functions,
or random number generation. However, there are many of restrictions in
this concept. What would be desirable is that one would be able to treat a
distribution as a variable and so to be able to send it to a function or perform
transformations on the random variable it represents.

Naturally, one way to do this is by using the object oriented system in R.
To even improve this idea, one can use some favored dispatching mechanism,
like S3 or S4, to let the computer decide how to handle the corresponding
distribution correctly and which functions to use. In particular, the prefixes p,
d, q, and r can still be just smartly evaluated as generic functions with appropriate methods. Moreover,
with such a system we can add other useful calls and so take the distribution operations to the next
level, such as monotonic transformation of a distribution. Additionally, once these objects containing
all necessary information about the distributions are defined, they can be then reused for the purpose
of the mixture and composite distributions.

This approach has already been used in the package distr (Ruckdeschel et al., 2006), which provides
a conceptual treatment of distributions by means of S4 classes. A parent class Distribution allows to
create objects and contains a slot for parameters as well as for the four methods mentioned above,
p(), d(), q(), and r(). While distr provides several classes for distributions and finite mixtures in
general, like many similar packages, to the best of our knowledge it does not contain any generating
functions for the composite distributions. In particular, the only packages available for composite
models are CompLognormal (Nadarajah and Bakar, 2013), evmix (Hu and Scarrott, 2018), OpVar
(Zou et al., 2018), ReIns (Reynkens and Verbelen, 2018) and gendist (Bakar et al., 2016), which do
not offer a general framework for composite models with more than two components. Whereas distr
provides an impressive functionality-rich and extensible framework implemented in S4, we decided
after careful deliberation to realize mistr based on a self-contained, light-weight framework using S3.
This offers to adjust the representations and settings of the distributions exactly to the required needs
by either mixture or composite models.

The framework provided by package mistr currently supports all distributions that are included
in the stats package and, in addition, it offers some extreme value distributions like generalized Pareto,
Pareto, Frechet, and Burr. In case that the user would like to use a distribution that is not directly
supported by the framework, a new distribution can be implemented in a very simple way. This
procedure is documented in detail in the Extensions vignette of the package.

As was already mentioned, the objects in R that represent a distribution need to contain all the
necessary information. This is, of course, for the purpose of evaluating the distribution function or
quantile function at suitable points just the knowledge of the parameters. Since the framework we
propose is beyond a simple distribution evaluation, the representation is a little bit more complex. A
simple random variable or a distribution is in our framework represented by the distribution family
which the distribution follows, together with the proper parameters and some additional information

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mistr
https://CRAN.R-project.org/package=distr
https://CRAN.R-project.org/package=CompLognormal
https://CRAN.R-project.org/package=evmix
https://CRAN.R-project.org/package=OpVar
https://CRAN.R-project.org/package=ReIns
https://CRAN.R-project.org/package=gendist
https://cran.r-project.org/web/packages/mistr/vignettes/mistr-extensions.pdf


CONTRIBUTED RESEARCH ARTICLES 285

that corresponds to the distribution. This information is either stored as a type of class or as attributes
in a list. The framework then uses the S3 dispatching mechanism to use this information, and hence
it works with the distribution. Such a representation allows to go beyond the simple p, d, q, and r
evaluation and enables to define new and more complicated functions.

An example is the left-hand limit of the cumulative distribution function. It might not look
of crucial importance to be able to evaluate F(x−) = P(X < x), but this function plays a huge
role in the transformations and composite distributions. Of course, this function differs from the
standard distribution function only if it is applied to a distribution with a positive probability mass
in the point of interest. For this reason we simply characterize the (“pseudo”) support by the three
parameters “from”, “to” and “by”. While the parameters “from” and “to” specify the range in which
the distribution takes positive values, the parameter “by”, which is only a part of the lattice-valued
distributions, describes the deterministic step in the support and for most known discrete distributions
is equal to one, since they have support just on the integers. It might of course differ for some
distributions, which have support only on even numbers, or some scaled distributions. It is essential
that this parametrization allows to perfectly define the support of a distribution, and hence allows to
do more complicated operations and calculations, e.g., the left-hand limit of the distribution function.
In the case the user would like a distribution with no equally distanced outcomes, one can perform a
non-linear transformation, which will be dealt with in the next chapter.

Combining distributions

Having the framework defined for the simple distributions, it is desired to combine these objects in
order to define a larger class of distributions. The framework currently supports the mixture and
composite models given in, respectively, (2) and (1).

Following the definition of the composite models in the univariate case, the interval representation
of the truncation allows to use a sequence of breakpoints

−∞ = β0 < β1 ≤ β2 ≤ · · · ≤ βn−1 < βn = ∞

to fully characterize the partitions B1, B2, . . . , Bn. Note that if Fi is continuous, to ensure that the
interval has positive probability we must take βi−1 < βi.

This allows to define λ1 = 0 and for all i = 2, . . . , n,

λi =

{
Fi(βi−1) if βi−1 /∈ Bi,

Fi(βi−1−) otherwise,

where as before Fi(βi−1−) is the left-hand limit P(Xi < x), and for all i = 1, 2, . . . , n− 1,

ρi =

{
Fi(βi) if βi ∈ Bi,

Fi(βi− ) otherwise,

with ρn = 1. Then for any x ∈ Bi

Fi ((−∞, x] ∩ Bi) =

{
Fi (x)− Fi (βi−1) if βi−1 /∈ Bi,

Fi (x)− Fi (βi−1−) if βi−1 ∈ Bi.

This means that for every x ∈ Bi we can write the distribution as Fi ((−∞, x] ∩ Bi) = Fi (x)− λi.

The straightforward implication of the above equations is that supx∈Bi
Fi (x) = ρi. Thus,

Fi (Bi) = ρi − λi.

Hence, if we define pi = ∑j:j≤i wi the composite distribution satisfies

F(x) = pi−1 + wi
Fi(x)− λi

Fi(Bi)
= pi−1 + wi

Fi(x)− λi
ρi − λi

, ∀x ∈ Bi

and, in addition,
pi−1 ≤ F(x) ≤ pi, ∀x ∈ Bi and sup

x∈Bi

F(x) = pi.

If we take some p ∈ (0, 1), then since ∑i pi = 1, there exists i such that pi−1 < p < pi or p = pi.
From this it follows that

F(x) ≥ p⇔ Fi(x) ≥ λi +
p− pi

wi
(ρi − λi) ,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 286

which implies

F−1(p) = F−1
i

(
λi +

p− pi
wi

(ρi − λi)

)
, for pi−1 < p ≤ pi.

Using the quantile transformation method and the above quantile function we can easily simulate
from our composite distribution.

Therefore, to fully specify a composite distribution, in addition to the mixture specifications, one
needs to set the values that correspond to the breakpoints, which split R into disjoint partitions.
Moreover, if at least one distribution is not absolutely continuous, it might be desired to specify to
which adjacent interval should the breakpoint be included.

Computational framework

The objects representing a simple distribution can be created very easily. The creator functions follow a
standard naming convention from R where the “dist” suffix is appended to the name of a distribution,
and the parameters are entered as arguments. Thus, an object representing normal distribution with
mean equal to 1 and standard deviation equal to 3 can be created as follows:

N <- normdist(mean = 1, sd = 3)
N

#> Distribution Parameters
#> Normal mean = 1, sd = 3

Once the objects are created, they can be used for evaluation of various functions. The most
commonly employed functions clearly will be the methods for print() already demonstrated, and the
methods for the functions p(), d(), q() and r(). These can be easily evaluated as

d(N, c(1, 2, 3))

#> [1] 0.1329808 0.1257944 0.1064827

p(N, c(1, 2, 3))

#> [1] 0.5000000 0.6305587 0.7475075

q(N, c(0.1, 0.2, 0.3))

#> [1] -2.8446547 -1.5248637 -0.5732015

r(N, 3)

#> [1] 1.8144430 -2.6908086 0.2704776

Additional important functions provided by mistr are plim() and qlim(), which implement,
respectively, the already mentioned left-hand limit of the cumulative distribution function F(x−) =
P(X < x) and its pseudoinverse

Q(p+) = inf {x ∈ R : p < P (X ≤ x)} .

Note that the function qlim() plays a very important role when dealing with the transformations, and
just as plim(), in the case of continuous distributions it simplifies to q(). Clearly if −X has a positive
probability mass at x, then

q = P(−X ≤ x) = 1− P(X < −x)⇒ −QX(1− q+) = x.

B <- binomdist(size = 12, prob = 0.3)
plim(B, c(-3, 0, 3, 12))

#> [1] 0.0000000 0.0000000 0.2528153 0.9999995

qlim(B, plim(B, c(0, 3, 7, 12)))

#> [1] 0 3 7 12

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 287

Adding transformation

Once the objects that represent a single distribution are created, we can use this representation to go
beyond the scope of a simple distribution function evaluation. The knowledge of the distributions class
and support range that is stored inside the object opens the doors for more complicated operations.
One such an operation is the ability to perform monotone transformations of random variables.

The transformation framework currently allows for all standard monotone transformations like
addition, subtraction, multiplication, division, logarithm, exponential and monotonic power trans-
formations, where in case of binary operators a numeric value must be used as the second operand.
Moreover, it is provided with the knowledge of invariant and direct transformations that correspond
to the distributions it offers. This information is stored as a generic function that directly dispatches
on the class of distribution family and not on the class univdist to prevent losing any information
about the distribution. An example might be the exponential distribution where a multiplication with
a positive scalar rather keeps the family and changes the parameters. On the other hand, a positive
power transformation will directly create a Weibull distribution with appropriate parameters.

E <- expdist(2)

E * 2

#> Distribution Parameters
#> Exponential rate = 1

E^2

#> Distribution Parameters
#> Weibull shape = 0.5, scale = 0.25

If the transformation is necessary and continuous on the support of the distribution, the transfor-
mation dispatches on the class univdist . For any untransformed distribution, this function will change
the whole class and the class of the distribution family is removed since the random variable does
not follow the distribution anymore. However, the information is stored for the case the distribution
would need to untransform itself later. The function then builds an expression for the transformation
and inverse transformation, along with a print expression and an expression for the derivative of
the inverse transformation. Besides these list members, also a history member is stored, a list that
records the information about the old transformations and becomes really handy when it comes to
an inverse transformation of the previous one, or updating a transformation. A simple example of a
transformation and update follows.

E2 <- E * -2
E3 <- E2 * 5
E3

#> Trafo Distribution Parameters
#> -10 * X Exponential rate = 2

The next example uses the normal distribution that we created in the last chapter.

Norm_trafo <- (N - 1)^(1/3)
Norm_trafo

#> Trafo Distribution Parameters
#> X^(1/3) Normal mean = 0, sd = 3

Note that the X− 1 transformation is not displayed in the Trafo column as it is an invariant transfor-
mation that rather changed the parameter mean from 1 to 0.

The methods that evaluate the transformed distribution are called in the same fashion as the non-
transformed distributions. Additionally, the new pseudo description of the support can be returned
using sudo_support(), which gives two numeric values (“From” and “To”) describing the range of
the support.

Binom_trafo <- -3 * log(B + 4)

q(Binom_trafo, c(0.05, 0.5, 0.95))

#> [1] -6.907755 -6.238325 -4.828314

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 288

plim(Binom_trafo, c(-6, -5, 0))

#> [1] 0.5074842 0.9149750 1.0000000

sudo_support(Binom_trafo)

#> From To
#> -8.317766 -4.158883

Visualization

In addition, the plot() and autoplot() generics can be called. These methods are offered for any
distribution object in the mistr package and return the plot of PDF or PMF and CDF of a given object.
The function uses the introduced d() and p() functions to evaluate the required values. While the
plot() methods offer a plot constructed using base plotting, the autoplot() offers an alternative plot
that is created using the ggplot2 package (Wickham, 2016).

par(mai = c(0.4, 0.4, 0.2, 0.2))
plot(Norm_trafo, xlim1 = c(-2.5, 2.5), ylab1 = "", cex.axis = 0.75)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PDF

P
(X

 =
 x

)

Figure 2: CDF (left) and PDF (right) plot of the Norm_trafo object using plot().

library(ggplot2)
autoplot(Norm_trafo, xlim1 = c(-2.5, 2.5))

0.00

0.25

0.50

0.75

1.00

−2 −1 0 1 2

CDF

0.0

0.1

0.2

0.3

0.4

0.5

−2 −1 0 1 2

PDF

Figure 3: CDF (left) and PDF (right) plot of the Norm_trafo object using autoplot().

Other plot functions offered for the mistr distribution objects are QQplot() and QQplotgg(). The
methods for this functions graphically compare the empirical quantiles of two data sets, or quantiles
of two distribution objects, or quantiles of a distribution with the empirical quantiles of a sample. If

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 289

quantiles of a continuous distribution are compared with a sample, a pointwise asymptotic confidence
bound for this data is offered. This confidence “envelope” is based on the asymptotic results of the
order statistics. For a distribution F as the number of observations n tends to infinity, the pth sample
quantile is asymptotically distributed as

X([np]) ∼ AN

(
F−1 (p) ,

p(1− p)

n
[

f
(

F−1 (p)
)]2
)

,

where f (x) and F−1(p) are the density function and quantile function associated with F(x), respec-
tively. More details can be found on the order statistics Wikipedia page or in Wilks (1948), for example.
For alternative bounds see Almeida et al. (2018).

QQplotgg(Norm_trafo, r(Norm_trafo, 1000), conf = 0.99, ylab = NULL, xlab = NULL)

−2.5

0.0

2.5

−2 −1 0 1 2

Q−Q plot

Figure 4: Q-Q plot of the Norm_trafo object against normally distributed sample with 99% confidence
bound.

Combining objects

Mixtures

Mixture distributions are fully specified by the components Fi(x) (i.e., the distributions) and by the
weights wi that correspond to these components. Function mixdist() allows to create mixtures by
specifying these characterizations. This can be done in two ways. First, the user may specify the
distribution names (names from [prefix][name] functions), the list of appropriate parameters of these
distributions, and a sequence of weights. An example of such a call follows.

mixdist(c("norm", "unif"), list(c(2, 2), c(1, 5)), weights = c(0.5, 0.5))

#> Mixture distribution with:
#>
#> Distribution Parameters Weight
#> 1 Normal mean = 2, sd = 2 0.5
#> 2 Uniform min = 1, max = 5 0.5

Another way is to use the objects that have already been defined. Since the parameters are already
stored inside the object, all the function requires are the objects and the weights. This also allows
to use transformed distributions from the last chapter or more complicated objects, which will be
presented later. This means that the transformed normal and binomial distributions together with an
exponential distribution can be reused for mixture distribution as:

M <- mixdist(Norm_trafo, Binom_trafo, expdist(0.5), weights = c(0.4, 0.2, 0.4))

The information about the mixture can be accessed via multiple S3 methods. The components can
be extracted using square brackets [], the weights can be obtained using weights(), and just as with
standard distributions, the parameters are obtainable using parameters().

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://en.wikipedia.org/wiki/Order_statistic


CONTRIBUTED RESEARCH ARTICLES 290

Other interesting methods are those for q and qlim and mixdist objects. While finding the CDF
and PDF of the mixture model is straightforward, an explicit general expression for quantile function
of the mixture model is not available. However, it can be found numerically as a solution of a unit-root
problem:

n

∑
i=1

wiFi (Q(p))− p = 0.

What is more, one can show that the quantile of a mixture distribution Q(p) can always be found
within the range of its components quantiles, and hence

min
i∈{1,...,n}

Qi(p) ≤ Q(p) ≤ max
i∈{1,...,n}

Qi(p),

where Qi(·) is the quantile function of the i-th component. This specifies the needed interval for the
root finder that will then iteratively find the solution. Additionally, further problems are solved to
return the correct values. To show how this algorithm works we perform a simple test and create a
fully discrete mixture for which a decreasing transformation is applied. As the following plot reveals,
all the values are calculated correctly.

DM <- mixdist(3 * binomdist(12, 0.4), -2*poisdist(2) + 12, weights=c(0.5, 0.5))
y <- c(0.05, 0.4, p(-DM, c(-5, -10, -15)), 0.95)
x <- q(-DM, y)
autoplot(-DM, which = "cdf", only_mix = TRUE, xlim1 = c(-37, 0)) +

annotate("point", x, y, col = "white")

0.00

0.25

0.50

0.75

1.00

−30 −20 −10 0

CDF

Figure 5: CDF plot of the -DM object with calculated quantiles annotated with white dots.

Finally, since inverse transform sampling is not efficient for mixture distributions, it can be
replaced by first sampling according to the weights wi and then, conditionally on that, by drawing
from the selected component, similarly as in the actuar package (Dutang et al., 2008). This approach is
implemented in the corresponding method of the r() function. This allows to draw from a mixture
much faster than the inverse quantile transform method and can also be reused later for composite
distributions. Besides the quantile function and other main functions for evaluation, one can call other
generic functions that are designed for the class mixdist , e.g. sudo_support().

sudo_support(M)

#> From To
#> -Inf Inf

Since the mixture models are in fact distributions, one can perform transformations of mixture
random variables as well. It is easy to show that a transformation of a mixture random variable is
the same as if we applied the same transformation to all of its components. In addition, since the
support of the components is a subset of the mixture’s support, if the framework allows to transform
the mixture, then it does the components as well. Now using the mixture we created, we can perform
a decreasing non-linear transformation. An example of r() and autoplot() follows.

M_trans <- -2 * (M)^(1/3)
r(M_trans, 4)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=actuar


CONTRIBUTED RESEARCH ARTICLES 291

#> [1] 1.757693 2.247355 2.387137 -1.986538

autoplot(M_trans)

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4

CDF

0.0

0.2

0.4

0.6

−4 −2 0 2 4

PDF

Figure 6: CDF (left) and PDF (right) plot of the M_trans object.

Composite distributions

Function compdist() creates composite distributions, which like mixture distributions can be done in
two ways. Either one can directly use the objects or let the function create these objects by specifying the
sequence of names and a list of parameters. In the following example, we will directly proceed with the
first method where we define some objects inside the compdist() call to create a composite distribution.
Besides these objects one needs to set the sequences of weights and breakpoints. Additionally, one
may determine for each breakpoint to which partition should the breakpoint be included. This can be
set by the argument break.spec with values ‘R’ or ‘L’, where ‘R’ and ‘L’ stand for right (i.e., include
breakpoint to the interval on the right of the breakpoint) and left (i.e., include to the interval on the
left), respectively. If this argument is not stated, the algorithm will by default set all intervals to
be left-closed, i.e., right-open. This can be nicely seen from the following example where a linearly
transformed Pareto distribution and a geometric distribution are combined with a normal distribution
into a composite model.

C <- compdist(-paretodist(1, 1), normdist(0, 2), geomdist(0.3) + 2,
weights = c(0.15, 0.7, 0.15), breakpoints = c(-3, 3),
break.spec = c("L", "R"))

C

#> Composite distribution with:
#>
#> Trafo Distribution Parameters Weight Truncation
#> 1 -X Pareto scale = 1, shape = 1 0.15 (-Inf,-3]
#> 2 none Normal mean = 0, sd = 2 0.70 (-3,3)
#> 3 X + 2 Geometric prob = 0.3 0.15 [3,Inf)

The argument break.spec is set to (“L”, “R”), and thus the breakpoint −3 belongs to the first partition
while the second breakpoint is affiliated to the partition on the right. This can be observed from
the print of the distribution, more precisely from the Truncation column, where the parentheses are
printed according to this argument.

The package also permits to use the same breakpoint twice. This possibility allows to define a
partition on a singleton, and hence to create a mass of probability. If this feature is used, the break.spec
needs to be specified with “R” and “L”, for the first and second identical breakpoint, respectively,
or not set at all. If the break.spec is not used, the source code will change break.spec such that this
single point with probability mass is a closed set. This feature can become particularly useful when
the user wants to create a distribution that is, for example, absolutely continuous on both the negative
and positive reals and has positive mass at zero.

C2 <- compdist(-expdist(2), poisdist(), expdist(2),
weights = c(0.25, 0.5, 0.25), breakpoints = c(0, 0))

C2

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 292

#> Composite distribution with:
#>
#> Trafo Distribution Parameters Weight Truncation
#> 1 -X Exponential rate = 2 0.25 (-Inf,0)
#> 2 none Poisson lambda = 1 0.50 [0,0]
#> 3 none Exponential rate = 2 0.25 (0,Inf)

Note that the distribution assigned to this singleton has to be a discrete distribution with support on
that point, otherwise the interval will have zero probability.

As for any distribution, the framework offers many methods that can be used to obtain additional
information or evaluate the composite distribution. One can extract the parameters, weights, or the
support in the same manner as with mixture distributions. In addition, calling breakpoints() extracts
the splicing points. Finally, there are methods for plot() and autoplot() where the components are
shown by default, which again can be turned off using the only_mix = TRUE argument.

par(mai = c(0.4, 0.4, 0.2, 0.2))
plot(C, xlim1 = c(-15, 15), ylab1 = "", cex.axis = 0.75, mtext_cex = 0.75)

−15 −10 −5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 CDF

15% 85%
−15 −10 −5 0 5 10 15

0.
00

0.
05

0.
10

0.
15

PDF
P

(X
 =

 x
)

15% 85%

Figure 7: CDF (left) and PDF (right) plot of the C object using plot().

autoplot(C2, text_ylim = 0.01)

0.00

0.25

0.50

0.75

1.00

−1 0 1

CDF

25%−75%0.0

0.1

0.2

0.3

0.4

0.5

−1 0 1

PDF

Figure 8: CDF (left) and PDF (right) plot of the C2 object using autoplot().

Analogously to the mixture distributions, the framework also supports the transformations of
composite random variables. Thus, using the composite distribution we defined, we propose an
example of a linear transformation.

C_trans <- -0.5 * (C + 7)

Even with such a distribution, the user still can evaluate all functions “of interest”. To support
this, an example follows where the function q() and r() are used, and the functions p() and d() are
represented graphically using the autoplot() method.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 293

q(C_trans, c(0.075, 0.5, 0.7, 0.9))

#> [1] -5.500000 -3.500000 -2.833235 -1.250000

r(C_trans, 4)

#> [1] -4.635072 -3.161199 -5.500000 -4.817573

autoplot(C_trans, xlim1 = c(-10,5))

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5

CDF

15% 85%0.0

0.1

0.2

0.3

−10 −5 0 5

PDF

Figure 9: CDF (left) and PDF (right) plot of the C_trans object using autoplot().

Combining mixture and composite distributions

A significant advantage of object oriented programming is that the dispatching mechanism automati-
cally knows how to treat a given object. This allows to combine mixture and composite models into
more complicated mixtures and composite distributions. Therefore, we can take the transformed
mixture and the transformed composite distribution that we created in the last chapter to compose a
composite distribution with these distributions as components. What is more, we can perform further
transformations of such a distribution.

C3 <- compdist(M_trans - 3, C_trans, weights = c(0.5, 0.5), breakpoints = -4.5)
C3_trans <- -2 * C3 + 2

Thus, the object C3_trans is a transformed composite distribution that contains a transformed
mixture and a transformed composite distribution, from which both additionally contain many
transformed and untransformed distributions. Even in such complex models, the user may evaluate
the most complicated functions like plim() and qlim(). The functions d() and p() can be again best
represented graphically, where both distributions can easily be recognized from previous chapters.

autoplot(C3_trans, xlim1 = c(0,20), text_ylim = 0.01, grey = TRUE)

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20

CDF

50%0.0

0.1

0.2

0 5 10 15 20

PDF

Figure 10: CDF (left) and PDF (right) plot of the C3_trans object.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 294

plim(C3_trans, c(6, 10, 12))

#> [1] 0.09667553 0.42195189 0.62458021

qlim(C3_trans, c(0.3, 0.5, 0.7))

#> [1] 8.785363 11.000000 12.327907

As the print() output for such a hierarchical distribution does not contain lot of information,
one can alternatively use summary() for which the package provides methods, which are particularly
useful for the hierarchical distributions. The printed result of this call consists of all the necessary
information, and much more as well. Nevertheless, since the result of summary() on the C3_trans
object is two pages long, the demonstration is left to the reader.

To finish this chapter and to show that the user may go even further, we present an example where
we combine the last object with another distribution from this chapter into a mixture distribution. The
distribution is directly plotted using autoplot().

autoplot(mixdist( C3_trans, C2 + 5, weights = c(0.7, 0.3)), xlim1 = c(0, 15))

0.00

0.25

0.50

0.75

1.00

0 5 10 15

CDF

0.00

0.05

0.10

0.15

0.20

0 5 10 15

PDF

Figure 11: CDF (left) and PDF (right) plot of the mixture distribution with components C3_trans and
C2 + 5.

Data modeling

While the previous chapters were aimed at showing the “muscles” (i.e., generality) of the framework,
in this last chapter we will focus on examples using real data. In particular, we will present a simple
fitting for two specific composite distributions.

As motivated in the introduction, the models in financial and actuarial mathematics suggest
employing distributions which can capture the wide variety of behaviors in tails while still following
the normal distribution in the center. In the two-tailed case, this suggests to use a three components
composite distribution, where the first and third component will be used to model the extreme cases,
i.e., the tails, and the second component will try to catch the center of the empirical distribution.

The first model offered by mistr is the Pareto-Normal-Pareto (PNP) model. This means that a −X
transformation of a Pareto random variable will be used for the left tail, normal distribution for the
center and again Pareto for the right tail. From this it follows that the PDF of the model can be written
as:

f (x) =


w1

f−P(x)
F−P(β1)

if −∞ < x < β1,

w2
fN(x)

FN(β2)−FN(β1)
if β1 ≤ x < β2,

w3
fP(x)

1−FP(β2)
if β2 ≤ x < ∞,

where fP(x) = f−P(−x) and FP(x) = 1 − (K/x)α are the density and distribution function of a
Pareto distribution with F−P(x) = 1− FP(−x). fN(x) and FN(x) are the PDF and CDF of the normal
distribution, respectively.

If we follow the properties of a Pareto distribution, the conditional probability distribution of
a Pareto-distributed random variable, given that the event is greater than or equal to γ > K, is
again a Pareto distribution with parameters γ and α. This means that the conditional distribution
fP(x|K, α)/(1− FP(β2|K, α)) = fP(x|β2, α) if β2 > K. On the other hand, if β2 < K the distribution

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 295

cannot be continuous as the support of a Pareto distribution starts at K. The same can be shown for
the transformed distribution and hence we can rewrite the PDF as

f (x) =


w1 f−P(x| − β1, α1) if −∞ < x < β1,

w2
fN(x|µ,σ)

FN(β2|µ,σ)−FN(β1|µ,σ) if β1 ≤ x < β2,
w3 fP(x|β2, α2) if β2 ≤ x < ∞,

where
β1 < 0 < β2,

α1, α2 > 0.

The condition β1 < 0 < β2 follows from the fact that the scale parameter has to be positive. Thus,
such a model can be fully used only with demeaned data sample or with data with a mean close to
zero. This is of course not a problem for stock returns, which are the aim of this chapter. What is more,
one can show that the density is continuous if for the shape parameters it holds that

α1 = −β1
w2 fN(β1|µ, σ)

w1 (FN(β2|µ, σ)− FN(β1|µ, σ))
,

α2 = β2
w2 fN(β2|µ, σ)

w3 (FN(β2|µ, σ)− FN(β1|µ, σ))
.

This condition is not only natural when modelling the real data, it additionally solves the possible
instability effects at estimation once observations come to lie close to breakpoints. Due to the fact that
a composite distribution can be represented as a mixture of truncated distributions that are truncated
to a disjoint support, the weight of each component can be estimated as the proportion of points that
correspond to each of the truncated regions. Obviously, this condition ensures that the empirical and
estimated CDF match on each of the breakpoints. Thus, conditionally on the fact that the breakpoints
are known, similarly as in Reynkens et al. (2017), the weights can be computed as

w1 =
∑n

i=1 1{xi<β1}
n

, w2 =
∑n

i=1 1{β1≤xi<β2}
n

, w3 =
∑n

i=1 1{β2≤xi}
n

,

where 1{·} is the indicator function and xi is the i-th data value. These conditions decrease the number
of parameters from 11 to 4 and imply the density function of the form:

f (x|β1, β2, µ, σ).

This model is offered by the function PNP_fit() which takes the data and a named vector of
starting values with names break1, break2, mean, and sd and returns a list of class comp_fit . Other
arguments are passed to the optimizer which then maximizes the likelihood of the above specified
model. The optimization is handled by the mle2() function from bbmle package (Ben Bolker and
R Development Core Team, 2017). To demonstrate this, we will take the same data we used in the
introduction to fit a PNP model with the default starting values.

PNP_model <- PNP_fit(stocks$SAP)

PNP_model

#> Fitted composite Pareto-Normal-Pareto distribution:
#>
#> Breakpoints: -0.019304 0.020518
#> Weights: 0.092443 0.82135 0.086207
#>
#> Parameters:
#> scale1 shape1 mean sd scale2 shape2
#> 0.019304 1.773598 0.000961 0.012950 0.020518 2.198590
#>
#> Log-likelihood: 7400.117, Average log-likelihood: 2.7146

If the fitted object is printed, the function prints all the parameters together with the log-likelihood
that was achieved by the optimization. In addition, the average log-likelihood is printed, which is
just the log-likelihood divided by the size of the data set. The user can extract parameters using
parameters(), weights using weights(), and breakpoints using breakpoints(). The distribution()
function can be used to extract the distribution with fitted parameters that can be used for evaluation.

Finally, again plot() and autoplot() methods are offered, which give a Q-Q plot of the fitted
distribution and the data, and the CDF and PDF plot of the fitted distribution, which overlap with
the empirical CDF and PDF of the data set. Again, the which argument can extract the proposed plots
separately (i.e., which = "pdf"). Other arguments are passed to the the plot calls.

plot(PNP_model, ylab1 = "", ylab2 = "")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=bbmle


CONTRIBUTED RESEARCH ARTICLES 296

−0.6 −0.4 −0.2 0.0 0.2

−
1.

5
−

0.
5

0.
5

Q−Q plot

−0.06 −0.02 0.02

0.
0

0.
4

0.
8

CDF

9.24% 91.38%
−0.06 −0.02 0.02

0
10

20
30

PDF

9.24% 91.38%

Figure 12: Q-Q (up), CDF (bottom left) and PDF (bottom right) plot of the fitted PNP model overlapped
with empirical results indicated by blue dots using plot().

The plots indicate an overall nice fit where all quantiles are in the confidence bound.

The second model offered is a similar distribution to the previous one, except we will replace the
Pareto distributions by the generalized Pareto distributions (GPD)

FGPD(x) =

1−
(

1 + ξ x−θ
γ

)−1/ξ
if ξ 6= 0,

1− exp
(
− x−θ

γ

)
if ξ = 0.

This means that the PDF of this model can be written as:

f (x) =


w1

f−GPD(x)
F−GPD(β1)

if −∞ < x < β1,

w2
fN(x)

FN(β2)−FN(β1)
if β1 ≤ x < β2,

w3
fGPD(x)

1−FGPD(β2)
if β2 ≤ x < ∞.

The same way as in the PNP model, the scale parameters can be eliminated by the continuity
conditions, weights by the above mentioned condition and in addition, under current settings and the
continuity conditions, the value of the conditional GPD distribution depends on the location parameter
only through the conditions −β1 ≥ θ1 and β2 ≥ θ2. This suggests to choose without any loss in the
model −β1 = θ1 and β2 = θ2. This PDF is then fully characterized by

f (x|β1, β2, µ, σ, ξ1, ξ2),

where the only restriction on the parameters is −∞ < β1 < β2 < ∞.

These conditions decrease the number of parameters from 13 to 6. What is more, the function
GNG_fit() contains the argument break_fix, which fixes the breakpoints from the vector of starting
values, and so decreases the number of parameters to 4 if TRUE is assigned. In this case, the breakpoints
are fixed and weights are computed before the optimization. The function GNG_fit() takes the data,
the named vector of starting values with names break1, break2, mean, sd, shape1 and shape2, the
break_fix argument and the argument midd, which is by default set to be equal to the mean of the
data. The midd value is used to split R into two sub-intervals and then the first breakpoint is optimized
on the left of the midd value and the second breakpoint on the right.

The function returns a list of class comp_fit . The results can be then extracted, printed or visualized
in the same way as the results of PNP_fit().

GNG_model <- GNG_fit(stocks$SAP)

GNG_model

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 297

#> Fitted composite GPD-Normal-GPD distribution:
#>
#> Breakpoints: -0.019414 0.019353
#> Weights: 0.091343 0.812546 0.096112
#>
#> Parameters:
#> loc1 scale1 shape1 mean sd loc2 scale2 shape2
#> 0.019414 0.013439 0.150141 0.000907 0.011696 0.019353 0.010842 0.096832
#>
#> Log-likelihood: 7423.245, Average log-likelihood: 2.7231

autoplot(GNG_model)

−0.2

−0.1

0.0

0.1

−0.1 0.0 0.1

Q−Q plot

0.00

0.25

0.50

0.75

1.00

−0.050 −0.025 0.000 0.025 0.050

CDF

9.13% 90.39%0

10

20

30

−0.050 −0.025 0.000 0.025 0.050

PDF

Figure 13: Q-Q (up), CDF (bottom left) and PDF (bottom right) plot of the fitted GNG model over-
lapped with empirical results indicated by yellow dots and dashes using autoplot().

The log-likelihood has increased to 7423.2 with the average of 2.723 per data-point. In this model,
the generalized Pareto distribution explains the first 9.1% from the left tail and the last 9.6% from
the right tail. Since the GPD generalizes the Pareto distribution, the higher likelihood is a reasonable
result. Moreover, the QQ-plot suggests an almost perfect fit.

The result of these estimations is a proper continuous parametric set-up that describes the dis-
tribution of the data. What is more, the distribution has been fitted as a whole with respect to the
continuity conditions. This means that the tails take into account the whole distribution, which allows
to calculate the risk measures with an even higher precision as when only the tails are modeled.

Risk measures

Package mistr provides a function risk() which can be used for rapid calculations of point estimates
of prescribed quantiles, expected shortfalls and expectiles (in the following table denoted as VaR,
ES and Exp, respectively). For more details on these measures see McNeil et al. (2015). As input
parameters this function needs the output of the function PNP_fit() or GNG_fit() and a vector of the
desired levels. As an example we illustrate this function on our fitted object.

risk(GNG_model, c(0.02, 0.05, 0.07, 0.1, 0.2, 0.3))

#> level VaR ES Exp
#> 1 0.02 0.042341368 0.06220519 0.032240507
#> 2 0.05 0.027889909 0.04520065 0.021949976
#> 3 0.07 0.023062791 0.03952074 0.018526202

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 298

#> 4 0.10 0.018245509 0.03380624 0.015091608
#> 5 0.20 0.010642738 0.02386181 0.008851640
#> 6 0.30 0.006167236 0.01867190 0.005168659

These results can be also visualized if arguments plot or ggplot are set to TRUE.

Summary

We introduced a new extensible framework for mixture and composite distributions in R via the mistr
package. It offers creation and manipulation of simple distributions which can be combined into more
complicated distributions to offer more generality in the current data modeling. Furthermore, the
framework provides multiple methods specifically designed to describe and visualize the distributions
or functions capable of fitting the two pre-defined composite distributions introduced in the last
chapter.

The package is additionally equipped with the possibility to extend the current list of known
distributions and monotone transformations by letting the user add these in a very simple way. This
procedure is documented in detail in the Extensions vignette. Finally, we will keep adding multiple
extensions and distributions to extend the generality even more.

Bibliography
A. Almeida, A. Loy, and H. Hofmann. ggplot2 Compatible Quantile-Quantile Plots in R. The R Journal,

10(2):248–261, 2018. URL https://doi.org/10.32614/RJ-2018-051. [p289]

S. Bakar, S. Nadarajah, Z. Kamarul Adzhar, and I. Mohamed. Gendist: An r package for generated
probability distribution models. P L o S One, 11(6), 6 2016. ISSN 1932-6203. URL https://doi.org/
10.1371/journal.pone.0156537. [p284]

Ben Bolker and R Development Core Team. bbmle: Tools for General Maximum Likelihood Estimation,
2017. URL https://CRAN.R-project.org/package=bbmle. R package version 1.0.20. [p295]

K. Cooray and M. M. Ananda. Modeling actuarial data with a composite lognormal-pareto
model. Scandinavian Actuarial Journal, 2005(5):321–334, 2005. URL https://doi.org/10.1080/
03461230510009763. [p284]

C. Dutang, V. Goulet, and M. Pigeon. actuar: An r package for actuarial science. Journal of Statistical
Software, Articles, 25(7):1–37, 2008. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v025.i07.
[p290]

Y. Hu and C. Scarrott. evmix: An r package for extreme value mixture modeling, threshold estimation
and boundary corrected kernel density estimation. Journal of Statistical Software, Articles, 84(5):1–27,
2018. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v084.i05. [p284]

A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools.
Princeton University Press, Princeton, NJ, USA, 2015. ISBN 0691166277, 9780691166278. [p297]

S. Nadarajah and S. A. A. Bakar. CompLognormal: An R Package for Composite Lognormal Distribu-
tions. The R Journal, 5(2):97–103, 2013. URL https://doi.org/10.32614/RJ-2013-030. [p284]

T. Reynkens and R. Verbelen. ReIns: Functions from "Reinsurance: Actuarial and Statistical Aspects", 2018.
URL https://CRAN.R-project.org/package=ReIns. R package version 1.0.8. [p284]

T. Reynkens, R. Verbelen, J. Beirlant, and K. Antonio. Modelling censored losses using splicing: A
global fit strategy with mixed erlang and extreme value distributions. Insurance: Mathematics and
Economics, 77:65–77, 2017. URL https://doi.org/10.1016/j.insmatheco.2017.08.005. [p295]

P. Ruckdeschel, M. Kohl, T. Stabla, and F. Camphausen. S4 classes for distributions. R News, 6(2):2–6,
May 2006. [p284]

D. P. M. Scollnik. On composite lognormal-pareto models. Scandinavian Actuarial Journal, 2007(1):
20–33, 2007. URL https://doi.org/10.1080/03461230601110447. [p284]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p288]

S. S. Wilks. Order statistics. Bulletin of the American Mathematical Society, 54(1):6–50, 1948. [p289]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://cran.r-project.org/web/packages/mistr/vignettes/mistr-extensions.pdf
https://doi.org/10.32614/RJ-2018-051
https://doi.org/10.1371/journal.pone.0156537
https://doi.org/10.1371/journal.pone.0156537
https://CRAN.R-project.org/package=bbmle
https://doi.org/10.1080/03461230510009763
https://doi.org/10.1080/03461230510009763
https://doi.org/10.18637/jss.v025.i07
https://doi.org/10.18637/jss.v084.i05
https://doi.org/10.32614/RJ-2013-030
https://CRAN.R-project.org/package=ReIns
https://doi.org/10.1016/j.insmatheco.2017.08.005
https://doi.org/10.1080/03461230601110447
https://ggplot2.tidyverse.org


CONTRIBUTED RESEARCH ARTICLES 299

C. Zou, M. Pfeuffer, M. Fischer, K. Dehler, N. Derfuss, B. Graswald, L. Moestel, J. Wang, and L. Wicht.
OpVaR: Statistical Methods for Modeling Operational Risk, 2018. URL https://CRAN.R-project.org/
package=OpVaR. R package version 1.0.5. [p284]

Lukas Sablica
Institute for Statistics and Mathematics
Vienna University of Economics and Business
Austria
https://www.wu.ac.at/en/statmath
ORCiD: 0000-0001-9166-4563
lsablica@wu.ac.at

Kurt Hornik
Institute for Statistics and Mathematics
Vienna University of Economics and Business
Austria
https://www.wu.ac.at/en/statmath
ORCiD: 0000-0003-4198-9911
Kurt.Hornik@wu.ac.at

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=OpVaR
https://CRAN.R-project.org/package=OpVaR
https://www.wu.ac.at/en/statmath
mailto:lsablica@wu.ac.at
https://www.wu.ac.at/en/statmath
mailto:Kurt.Hornik@wu.ac.at


CONTRIBUTED RESEARCH ARTICLES 300

difNLR: Generalized Logistic Regression
Models for DIF and DDF Detection
by Adéla Hladká, Patrícia Martinková

Abstract Differential item functioning (DIF) and differential distractor functioning (DDF) are impor-
tant topics in psychometrics, pointing to potential unfairness in items with respect to minorities or
different social groups. Various methods have been proposed to detect these issues. The difNLR
R package extends DIF methods currently provided in other packages by offering approaches based
on generalized logistic regression models that account for possible guessing or inattention, and by pro-
viding methods to detect DIF and DDF among ordinal and nominal data. In the current paper, we
describe implementation of the main functions of the difNLR package, from data generation, through
the model fitting and hypothesis testing, to graphical representation of the results. Finally, we provide
a real data example to bring the concepts together.

Introduction

Differential item functioning (DIF) is a phenomenon studied in the field of psychometrics which
occurs when two subjects with the same ability or knowledge but from different social groups have
a different probability of answering a specific test item correctly. DIF may signal bias and therefore
potential unfairness of the measurement, so, DIF analysis should be used routinely in development
and validation of educational and psychological tests (Martinková et al., 2017).

In recent decades, various methods for DIF detection have been proposed by many different
authors and examples of their (non-exhaustive) overviews can be found in Penfield and Camilli (2006)
or Magis et al. (2010). Generally, DIF detection methods can be classified into two groups – those
based on item response theory (IRT) models and those based on other approaches (referenced here
as non-IRT). IRT models assume that ability is latent and needs to be estimated, whereas non-IRT
methods use the total test score (or its standardization) for an approximation of ability level. IRT
models can be found more conceptually and computationally challenging, while non-IRT methods are
in general easier to implement and interpret.

Another distinction of DIF detection methods can be made with respect to the nature of the DIF
that can be detected. Some methods, such as the Mantel-Haenszel test (Mantel and Haenszel, 1959) or
IRT methods using the Rasch model (Rasch, 1993), can only detect so-called uniform DIF, a situation
whereby an item is consistently advantageous to one group across all levels of ability. Other methods,
for instance logistic regression (Swaminathan and Rogers, 1990) or methods using a 2 parameter
logistic (2PL) IRT model, can also detect a non-uniform DIF, a situation when an item is advantageous
to one group for some parts of ability levels while for other parts of ability levels the other group is
in a more favourable position. DIF can be described as a difference in item parameters between the two
groups. Uniform DIF can be then viewed as the difference in item difficulties (location of the inflexion
point in the item characteristic curve) whereas non-uniform DIF also comprises a difference in item
discrimination (slope at the inflexion point in the item characteristic curve). Most methods for DIF
detection, with the important exception of methods based on 3PL and 4PL IRT models, are limited to
testing differences in difficulty and discrimination and do not account for the possibility that an item
can be guessed without necessary knowledge or incorrectly answered due to inattention, let alone
the possibility to test for differences in related parameters.

There are several packages on the Comprehensive R Archive Network (CRAN, https://CRAN.
Rproject.org/) which implement various methods for DIF detection. The difR package (Magis et al.,
2010) includes a number of DIF detection methods among dichotomous items, inclusive of non-IRT
methods as well as those based on IRT models. The DIFlasso (Schauberger, 2017) and DIFboost
(Schauberger, 2016) packages implement penalty approach and boosting techniques in the IRT Rasch
model. The GDINA package (Ma and de la Torre, 2019) offers the implementation of generalized
deterministic inputs, noisy, and gate model. The mirt package (Chalmers, 2012) provides DIF detection
based on various IRT models including those for dichotomous as well as ordinal or nominal items.
The lordif package (Choi et al., 2016) brings an iterative method based on a mixture of ordinal logistic
regression and an IRT approach for DIF detection. Finally, the psychotree package (Strobl et al.,
2015) offers a method build on model-based recursive partitioning to detect latent groups of subjects
exhibiting uniform DIF under the Rasch model. Mentioned packages do not allow for detecting
differences in guessing and inattention, do not offer possibility of various matching criteria, and/or
they assume IRT models which may become computationally demanding.

A potential gap in DIF methodology can be filled by generalizations of logistic regression models

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.Rproject.org/
https://CRAN.Rproject.org/
https://CRAN.R-project.org/package=difR
https://CRAN.R-project.org/package=DIFlasso
https://CRAN.R-project.org/package=DIFboost
https://CRAN.R-project.org/package=GDINA
https://CRAN.R-project.org/package=mirt
https://CRAN.R-project.org/package=lordif
https://CRAN.R-project.org/package=psychotree


CONTRIBUTED RESEARCH ARTICLES 301

implemented within the difNLR package described here. These nonlinear extensions include estima-
tions of pseudo-guessing parameters as proposed by Drabinová and Martinková (2017). However,
the difNLR package goes further by introducing a wide range of nonlinear regression models which
cover both guessing and the possibility of inattention and allow for the testing of group differences
in these parameters or their combinations. Moreover, in the case of ordinal data from rating scales
or items allowing for partial credit, the difNLR package is able to detect differential use of the scale
among groups by adjacent category logit or cumulative logit models. Finally, in the case of nominal
data from multiple choice items, the package offers a multinomial model to test for so-called differen-
tial distractor functioning (DDF, Green et al., 1989), a situation when respondents with the same ability
or knowledge but from different social groups are attracted differently by offered distractors (incorrect
option choices). In addition, the difNLR package provides features such as item purification (see e.g.,
Lord, 1980) or corrections for multiple comparisons (see e.g., Kim and Oshima, 2013).

This paper gives a detailed description of the difNLR package with functional examples, from data
generation, through the model fitting, to interpretation of the results and their graphical representation,
while separate parts are dedicated to features and troubleshooting. To bring the concepts together, we
conclude by illustrative real data example connecting the usage of the main functions of the package.

The main advantage of non-IRT DIF detection methods implemented within the difNLR package is
their flexibility with respect to the issue of guessing or inattention, while they retain pleasant properties
such as low ratio of convergence issues when compared to IRT models (Drabinová and Martinková,
2017). In addition to that, the difNLR provides DIF and DDF detection methods among ordinal and
nominal data and thus offers a wide range of techniques to deal with an important topic of detecting
potentially unfair items. For users who are new to R, interactive implementation of difNLR functions
within the ShinyItemAnalysis package (Martinková and Drabinová, 2018) with toy datasets may be
helpful.

Generalized logistic models for DIF and DDF detection

The class of generalized logistic models described here includes nonlinear regression models for DIF
detection in dichotomously scored items, cumulative logit and adjacent category logit models for DIF
detection in ordinal items, and a multinomial model for DDF detection in the case when items are
nominal (e.g., multiple-choice).

Nonlinear regression models for binary items

Nonlinear regression models for DIF detection among binary items are extensions of the logistic
regression method (Swaminathan and Rogers, 1990). These extensions account for the possibility
that an item can be guessed, in other words correctly answered without possessing the necessary
knowledge, i.e., lower asymptote of the item characteristic curve can be larger than zero (Drabinová
and Martinková, 2017). Similarly, these models account for a situation when an item is incorrectly
answered by a person with high ability, e.g., due to inattention or lack of time, i.e., upper asymptote
of the item characteristic curve can be lower than one.

The probability of a correct answer on item i by person p is then given by

P(Yip = 1|Xp, Gp) = ciGp + (diGp − ciGp )
eaiGp (Xp−biGp )

1 + eaiGp (Xp−biGp )
, (1)

where Xp is a variable describing observed knowledge or ability of person p and Gp stands for their
membership to social group (Gp = 1 for focal group, usually seen as the disadvantaged one, Gp = 0
for the reference group). Terms aiGp , biGp ∈ R, and ciGp , diGp ∈ [0, 1] represent discrimination, difficulty,
probability of guessing, and a parameter related to the probability of inattention in item i, while
they can differ for the reference and the focal group (denoted by the index Gp). Further, we use
parametrization aiGp = ai + aiDIFGp, where aiDIF is a difference between the focal and the reference
group in discrimination (analogously for other parameters). In other words, ai0 = ai for the reference
group and ai1 = ai + aiDIF for the focal group. Thus, there are eight parameters for each item in total.
For simplicity of the formulas, we stick with the notation of aiGp , biGp , ciGp , and diGp .

The class of models determined by equation (1) contains a wide range of methods for DIF detection.
For instance, with diGp = 1, we get a nonlinear model for the detection of DIF allowing for differential
guessing in groups as presented by Drabinová and Martinková (2017). Assuming moreover ciGp = 0,
one can obtain a classical logistic regression model for the detection of uniform and non-uniform DIF
as proposed by Swaminathan and Rogers (1990).

In contrast to IRT models, model (1) assumes that knowledge Xp is represented by the total test

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=difNLR
https://CRAN.R-project.org/package=ShinyItemAnalysis


CONTRIBUTED RESEARCH ARTICLES 302

score or its standardized form (Z-score) and thus the described method belongs to the class of non-IRT
approaches. As such, model (1) can be seen as a proxy to the 4PL IRT model for DIF detection.
While estimation of the asymptote parameters is notoriously challenging in IRT models, it was shown
that generalized logistic models require a smaller sample size to be fitted while they keep pleasant
properties in terms of power and rejection rates (Drabinová and Martinková, 2017).

The difNLR package offers two approaches to estimate parameters of model (1). The first option
is the nonlinear least squares method (Dennis et al., 1981; Ritz and Streibig, 2008), that is, minimization
of the residual sums of squares (RSS) for item i with respect to item parameters:

RSS(aigp , bigp , cigp , digp ) =
n

∑
p=1

{
yip − cigp −

(digp − cigp )

1 + e−aigp (xp−bigp )

}2

,

where n denotes number of respondents, yip is the response of respondent p to the item i, xp is their
(standardized) test score, and gp is their group membership. The second option is the maximum
likelihood method. Likelihood function of item i

L(aigp , bigp , cigp , digp ) =
n

∏
p=1

{
cigp +

digp − cigp

1 + e−aigp (xp−bigp )

}yip
{

1− cigp −
digp − cigp

1 + e−aigp (xp−bigp )

}1−yip

is maximized with respect to item parameters.

Regression models for ordinal and nominal items

The logistic regression procedure which estimates the probability of the correct answer can be extended
to estimate the probability of partial credit scores or option choices. When the responses are ordinal,
DIF detection can be performed using the cumulative logit regression model (see e.g., Agresti, 2010,
Chapter 3). For K + 1 outcome categories, i.e., Y ∈ {0, 1, . . . , K}, the cumulative probability is

P(Yip ≥ k|Xp, Gp) =
eaiGp (Xp−bikGp )

1 + eaiGp (Xp−bikGp )
, (2)

for k = 1, . . . , K, where P(Yip ≥ 0|Xp, Gp) = 1 and bikGp = bik + biDIFGp. The parameter biDIF can
be interpreted as the difference in difficulty of item i between the reference and the focal group.
The parameter bik can be seen as category k specific difficulty of item i which is the same for both
groups. The category probability is then given by

P(Yip = k|Xp, Gp) = P(Yip ≥ k|Xp, Gp)− P(Yip ≥ k + 1|Xp, Gp),

for categories k = 0, . . . , K− 1 while P(Yip = K|Xp, Gp) = P(Yip ≥ K|Xp, Gp). Again, knowledge is
represented by observed (standardized) total test score Xp and therefore model (2) can be seen as
a proxy to a graded response IRT model (Samejima, 1969).

Another approach for DIF detection in ordinal data is the adjacent category logit model (see e.g.,
Agresti, 2010, Chapter 4), which for K + 1 outcome categories is given by

log
P(Yip = k|Xp, Gp)

P(Yip = k− 1|Xp, Gp)
= aiGp (Xp − bikGp ),

where k = 1, . . . , K and bikGp = bik + biDIFGp. The category probability takes the following form:

P(Yip = k|Xp, Gp) =
e∑k

l=0 aiGp (Xp−bilGp )

∑K
j=0 e∑

j
l=0 aiGp (Xp−bilGp )

, (3)

where k = 1, . . . , K and parameters for k = 0 are set to zero, i.e., aiGp (Xp − bi0Gp ) = 0 and hence
P(Yip = 0|Xp, Gp) =

1

∑K
j=0 e

∑
j
l=0 aiGp (Xp−bilGp )

. As such, an adjacent category logit model (3) can be seen as

a proxy to the rating scale IRT model (Andrich, 1978). Both models, cumulative logit and adjacent
category logit, are estimated by iteratively re-weighted least squares.

When responses are nominal (e.g., multiple choice), DDF detection can be performed with the multi-
nomial model. Considering that k = 0, . . . , K possible option choices are offered, with k = 0 being

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 303

the correct answer and other ones distractors, the probability of choosing distractor k is given by

P(Yip = k|Xp, Gp) =
eaikGp (Xp−bikGp )

∑K
l=0 eailGp (Xp−bilGp )

, (4)

while for the correct answer k = 0 the parameters are set to zero, i.e., ai0Gp (Xp − bi0Gp ) = 0 and thus
P(Yip = 0|Xp, Gp) =

1

∑K
l=0 e

ailGp (Xp−bilGp ) . In contrast to ordinal models (2) and (3), discrimination aikGp

and difficulty bikGp are category-specific and they may vary between groups. The parameters are
estimated via neural networks.

Implementation in examples

The difNLR package provides implementation of the methods to detect DIF and DDF based on general-
ized logistic models. Specifically, a nonlinear regression model (1), cumulative logit model (2), adjacent
category model (3), and multinomial model (4) are available within functions difNLR(), difORD(),
and ddfMLR() (see Table 1). All three functions were designed to correspond to one of the most widely
used R packages for DIF detection – difR (Magis et al., 2010).

Function Description

difNLR() Performs DIF detection procedure for dichotomous data based on a nonlinear
regression model (generalized logistic regression) and either likelihood-ratio
or F test of the submodel.

difORD() Performs DIF detection procedure for ordinal data based on either an adjacent
category logit model or a cumulative logit model and likelihood ratio test
of the submodel.

ddfMLR() Performs DDF detection procedure for nominal data based on a multinomial
log-linear regression model and likelihood ratio test of the submodel.

Table 1: DIF and DDF detection methods available in the difNLR package.

DIF detection

In this part, we discuss implementation and usage of the difNLR() function which offers a wide range
of methods for DIF detection among dichotomous data based on a generalized logistic regression
model (1). The full syntax of the difNLR() function is

difNLR(
Data, group, focal.name, model, constraints,
type = "all", method = "nls", match = "zscore",
anchor = NULL, purify = FALSE, nrIter = 10,
test = "LR", alpha = 0.05, p.adjust.method = "none",
start, initboot = TRUE, nrBo = 20

)

To detect DIF using the difNLR() function, the user always needs to provide four pieces of information:
1. the binary data set, 2. the group membership vector, 3. the indication of the focal group, and
4. the model.

Data. Data is a matrix or a data.frame with rows representing dichotomously scored respondents’
answers (1 correct, 0 incorrect) and columns which correspond to the items. In addition, Data may
contain the vector of group membership. If so, the group is a column identifier of the Data. Otherwise,
the group must be a dichotomous vector of the same length as the number of rows (respondents)
in Data. The name of the focal group is specified in focal.name argument.

Data generation. To run a simulation study or to create an illustrative example, the difNLR
package contains a data generator genNLR(), which can be used to generate dichotomous, ordinal, or
nominal data. The type of items to be generated can be specified via itemtype argument: itemtype =
"dich" for dichotomous items, "ordinal" for ordinal items, and "nominal" for nominal items.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 304

For the generation of dichotomous items, discrimination and difficulty parameters need to be
specified within a and b arguments in the form of matrices with two columns. The first column stands
for the reference group and the second one for the focal group. Each row of matrices corresponds to
one item. Additionally, one can provide guessing and inattention parameters via arguments c and d
in the same way as for discriminations and difficulties. By default, values of guessing parameters are
set to 0 in both groups, and the values of inattention parameters to 1 in both groups.

Distribution of the underlying latent trait is considered to be Gaussian. The user can specify its
mean and standard deviation via arguments mu and sigma respectively. By default, mean is 0 and
standard deviation is 1 and they are the same for both groups.

Furthermore, the user needs to provide a sample size (N) and the ratio of respondents in the refer-
ence and focal group (ratio). The latent trait for both groups is then generated and together with item
parameters is used to generate item data. Output of the genNLR() function is a data.frame with items
represented by columns and responses to them represented by rows. The last column is a group
indicator, where 0 stands for a focal group and 1 indicates a reference group.

To illustrate generation of dichotomously scored items and to exemplify basic DIF detection
with a difNLR() function, we create an example dataset. We choose discrimination a, difficulty b,
guessing c, and inattention d parameters for 15 items. Parameters are then set the same for both
groups.

# discrimination
a <- matrix(rep(c(1.00, 1.12, 1.45, 1.25, 1.32, 1.38, 1.44, 0.89, 1.15,

1.30, 1.29, 1.46, 1.16, 1.26, 0.98), 2), ncol = 2)
# difficulty
b <- matrix(rep(c(1.34, 0.06, 1.62, 0.24, -1.45, -0.10, 1.76, 1.96, -1.53,

-0.44, -1.67, 1.91, 1.62, 1.79, -0.21), 2), ncol = 2)
# guessing
c <- matrix(rep(c(0.00, 0.00, 0.00, 0.00, 0.00, 0.17, 0.18, 0.05, 0.10,

0.11, 0.15, 0.20, 0.21, 0.23, 0.24), 2), ncol = 2)
# inattention
d <- matrix(rep(c(1.00, 1.00, 1.00, 0.92, 0.87, 1.00, 1.00, 0.88, 0.93,

0.94, 0.81, 0.98, 0.87, 0.96, 0.85), 2), ncol = 2)

For items 5, 8, 11, and 15, we introduce DIF caused by various sources: In item 5, DIF is caused
by a difference in difficulty; in item 8 by discrimination; in item 11, the reference and focal groups
differ in inattention, and in item 15 in guessing.

b[5, 2] <- b[5, 2] + 1
a[8, 2] <- a[8, 2] + 1
d[11, 2] <- 1
c[15, 2] <- 0

We generate dichotomous data with 500 observations in the reference group and 500 in the focal group.
We assume that an underlying latent trait comes from a standard normal distribution for both groups
(default setting). The output is a data.frame where the first 15 columns are dichotomously scored
answers of 1,000 respondents and the last column is a group membership variable.

set.seed(42)
df <- genNLR(N = 1000, a = a, b = b, c = c, d = d)
head(df[, c(1:5, 16)])
Item1 Item2 Item3 Item4 Item5 group

1 0 1 1 1 1 0
2 0 1 1 0 1 0
3 0 1 0 0 1 0
4 1 1 1 0 1 0
5 1 1 0 1 1 0
6 0 1 0 0 1 0

DataDIF <- df[, 1:15]
groupDIF <- df[, 16]

Model. The last necessary input of the difNLR() function is specification of the model to be
estimated. This can be made by model argument. There are several predefined models, all of them
based on the 4PL model stated in equation (1) (see Table 2).

We are now able to perform the basic DIF detection with a 4PL model for all the items on a gener-
ated example dataset DataDIF.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 305

Model annotation Description

"4PL" 4PL model
"4PLcdg", "4PLc" 4PL model with an inattention parameter set equal for the two groups
"4PLcgd", "4PLd" 4PL model with a guessing parameter set equal for the two groups
"4PLcgdg" 4PL model with a guessing and an inattention parameters set equal

for the two groups
"3PLd" 3PL model with an inattention parameter and c = 0
"3PLc", "3PL" 3PL model with a guessing parameter and d = 1
"3PLdg" 3PL model with an inattention parameter set equal for the two groups
"3PLcg" 3PL model with a guessing parameter set equal for the two groups
"2PL" Logistic regression model, i.e. c = 0 and d = 1
"1PL" 1PL model with a discrimination parameter set equal for the two

groups
"Rasch" 1PL model with a discrimination parameter fixed on value of 1

for the two groups

Table 2: Predefined models for the model argument in the difNLR() function.

(fit1 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = "4PL"))
Detection of all types of differential item functioning
using generalized logistic regression model

Generalized logistic regression likelihood ratio chi-square statistics
based on 4PL model

Parameters were estimated with nonlinear least squares

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 6.2044 0.1844
Item2 0.2802 0.9911
Item3 2.7038 0.6086
Item4 5.8271 0.2124
Item5 48.0052 0.0000 ***
Item6 7.2060 0.1254
Item7 3.2390 0.5187
Item8 16.8991 0.0020 **
Item9 2.1595 0.7064
Item10 4.6866 0.3210
Item11 69.5328 0.0000 ***
Item12 8.1931 0.0848 .
Item13 2.5850 0.6295
Item14 2.9478 0.5666
Item15 20.6589 0.0004 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Detection thresholds: 9.4877 (significance level: 0.05)

Items detected as DIF items:
Item5
Item8
Item11
Item15

The output returns values of the test statistics for DIF detection, corresponding p-values, and set
of items which are detected as functioning differently. All items (5, 8, 11, and 15) are correctly identified.

Estimates of parameters can be viewed with coef() method. Method coef() returns a list of pa-
rameters, which can be simplified to a matrix by setting simplify = TRUE. Each row then corresponds

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 306

to one item and columns indicate parameters of the estimated model.

round(coef(fit1, simplify = TRUE), 3)
a b c d aDif bDif cDif dDif

Item1 1.484 1.294 0.049 1.000 0.000 0.000 0.000 0.000
Item2 1.176 0.153 0.000 1.000 0.000 0.000 0.000 0.000
Item3 1.281 1.766 0.001 1.000 0.000 0.000 0.000 0.000
Item4 1.450 0.421 0.000 1.000 0.000 0.000 0.000 0.000
Item5 1.965 -1.147 0.000 0.868 -0.408 0.769 0.023 -0.006
Item6 1.458 -0.527 0.000 0.954 0.000 0.000 0.000 0.000
Item7 0.888 1.392 0.000 1.000 0.000 0.000 0.000 0.000
Item8 1.162 1.407 0.000 0.866 -0.117 0.974 0.007 0.134
Item9 1.482 -1.337 0.000 0.928 0.000 0.000 0.000 0.000
Item10 1.375 -0.570 0.007 0.967 0.000 0.000 0.000 0.000
Item11 1.071 -1.027 0.000 0.969 1.173 -0.499 0.000 0.011
Item12 1.051 1.560 0.080 1.000 0.000 0.000 0.000 0.000
Item13 1.009 1.348 0.084 1.000 0.000 0.000 0.000 0.000
Item14 1.093 1.659 0.141 1.000 0.000 0.000 0.000 0.000
Item15 0.875 -0.565 0.000 0.945 0.205 0.348 0.000 -0.142

The user can also print standard errors of the estimates using an option SE = TRUE. For example,
estimated difference in difficulty between the reference and the focal groups in item 5 is 0.769 with stan-
dard error of 0.483.

round(coef(fit1, SE = TRUE)[[5]], 3)
a b c d aDif bDif cDif dDif

estimate 1.965 -1.147 0.000 0.868 -0.408 0.769 0.023 -0.006
SE 0.844 0.404 0.307 0.044 1.045 0.483 0.345 0.093

The difNLR() function provides a visual representation of the item characteristic curves using
the ggplot2 package (Wickham, 2016) and its graphical environment. Curves are always based
on results of a DIF detection procedure – when an item displays DIF, two curves are plotted, one
for the reference and one for the focal group. Curves are accompanied by points representing empirical
probabilities, i.e., proportions of correct answers with respect to the ability level and group membership.
Size of the points is determined by the number of respondents at this ability level. Characteristic
curves may simply be rendered with method plot() and by specifying items to be plotted. We show
here characteristic curves for DIF items only (Figure 1).

plot(fit1, item = fit1$DIFitems)

Figure 1: Characteristic curves of DIF items.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 307

Besides predefined models (see Table 2), all parameters of the model can be further constrained
using argument constraints specifying which parameters should be set equally for the two groups.
For example, choice "ac" in 4PL model means that discrimination parameter a and pseudo-guessing
parameter c are set equally for the two groups while the remaining parameters (b and d) are not.
In addition, both arguments model and constraints are item-specific, meaning that a single value
for all items can be introduced as well as a vector specifying the setting for each item. While the model
specification can be challenging, this offers a wide range of models for DIF detection which goes hand
in hand with the complexity of the offered method.

Furthermore, via type argument one can specify which type of DIF to test. Default option type =
"all" allows one to test the difference in any parameter which is not constrained to be the same for both
groups. Uniform DIF (difference in difficulty b only) can be tested by setting type = "udif", while
nonuniform DIF (difference also in discrimination a) by setting type = "nudif". With the argument
type = "both", the differences in both parameters (a and b) are tested. Moreover, to identify DIF
in more detail, one can determine in which parameters the difference should be tested. The argument
type is also item-specific.

# item-specific model
model <- c("1PL", rep("2PL", 2), rep("3PL", 2), rep("3PLd", 2), rep("4PL", 8))
fit2 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model, type = "all")
fit2$DIFitems
[1] 5 8 11 15
# item-specific type
type <- rep("all", 15)
type[5] <- "b"; type[8] <- "a"; type[11] <- "c"; type[15] <- "d"
fit3 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model, type = type)
fit3$DIFitems
[1] 5
# item-specific constraints
constraints <- rep(NA, 15)
constraints[5] <- "ac"; constraints[8] <- "bcd";
constraints[11] <- "abd"; constraints[15] <- "abc"
fit4 <- difNLR(DataDIF, groupDIF, focal.name = 1, model = model,

constraints = constraints, type = type)
fit4$DIFitems
[1] 5 8 11 15

In fit2 we allowed different models for items. In fit3, when items were intended to function
differently, we tested only the difference in those parameters which were selected to be a source of DIF
when we generated data, while using the same item-specific models as for fit2. Finally, in items which
were intended to function differently we constrained all other parameters to be the same for both
groups in fit4. As expected, models fit2 and fit4 correctly identified all DIF items, while fit3
detected only item 5.

The difNLR() function offers two techniques to estimate parameters of a generalized logistic
regression model (1). With a default option method = "nls", nonlinear least square estimation is
applied using a nls() function from the stats package. With an option method = "likelihood",
the maximum likelihood method is used via an optim() function again from the stats package.
Moreover, with an argument test, the user can specify what test of a submodel should be used to
analyze DIF. The default option is the likelihood-ratio test.

Fit of selected models can be examined using information criteria, specifically Akaike’s criterion
(AIC, Akaike, 1974) and Schwarz’s Bayesian criterion (BIC, Schwarz et al., 1978).

df <- data.frame(AIC = c(AIC(fit2), AIC(fit3), AIC(fit4)),
BIC = c(BIC(fit2), BIC(fit3), BIC(fit4)),
Fit = paste0("fit", rep(2:4, each = 15)),
Item = as.factor(rep(1:15, 3)))

ggplot(df, aes(x = Item, y = AIC, col = Fit)) +
geom_point(size = 3) +
scale_color_manual(values = c("#b94685", "#ffbe33", "#61b8ea"))

ggplot(df, aes(x = Item, y = BIC, col = Fit)) +
geom_point(size = 3) +
scale_color_manual(values = c("#b94685", "#ffbe33", "#61b8ea"))

While there is, not surprisingly, no difference between information criteria of the three models for non-
DIF items, a distinction may be observed in DIF items. AIC suggests that model fit3 fits best to items

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=stats


CONTRIBUTED RESEARCH ARTICLES 308

(a) AIC. (b) BIC.

Figure 2: Information criteria for item models.

8 and 11 and model fit4 to items 5 and 15, while BIC indicates that for item 8 model fit4 is the most
suitable. However the differences are small (Figure 2). Fit measures can also be displayed for specific
items.

logLik(fit3, item = 8)
'log Lik.' -312.7227 (df=7)
logLik(fit4, item = 8)
'log Lik.' -316.4998 (df=5)

Fitted values and residuals can be standardly calculated with methods fitted() and residuals(),
again for all items or for those specified via item argument. This also holds for predicted values
and method predict(). Predictions for any new respondents can be obtained by group and match
arguments representing group membership and the value of matching criterion (e.g., standardized
total score) of the new respondent. For example, with fit1 in item 5, new respondents with average
performance (match = 0) have approximately a 22% lower probability of a correct answer if they come
from a focal rather than reference group.

predict(fit1, item = 5, group = c(0, 1), match = 0)
item match group prob

1 Item5 0 0 0.7851739
2 Item5 0 1 0.5624883

This can also be observed when comparing item characteristic curves for the reference and the focal
group in item 5 (see upper left Figure 1).

DIF detection among ordinal data

Here we show implementation and usage of the difORD() function which offers two models – cumula-
tive logit model (2) and adjacent category logit model (3) to detect DIF among ordinal data. The full
syntax of the difORD() function is

difORD(
Data, group, focal.name, model = "adjacent",
type = "both", match = "zscore",
anchor = NULL, purify = FALSE, nrIter = 10, p.adjust.method = "none",
parametrization = "irt", alpha = 0.05

)

To detect DIF among ordinal data using the difORD() function, the user needs to provide four pieces
of information: 1. the ordinal data set, 2. the group membership vector, 3. the indication of the focal
group, and 4. the model to be fitted.

Data. Data takes a similar format as used for the difNLR() function, however, rows represent
ordinally scored respondents’ answers instead of dichotomous. Specifications of group and focal.name
remain the same.

Data generation. Data generator genNLR() is able to generate ordinal data using an adjacent
category logit model (3) by setting itemtype = "ordinal". For polytomous items (ordinal or nominal),

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 309

a and b have the form of matrices as well as for dichotomous data but each column now represents
parameters of partial scores (or distractors). For example, to generate an item with 4 partial scores
(i.e., 0-3), the user needs to provide 3 sets of discrimination and difficulty parameters. The parameters
for minimal partial scores (i.e., 0; or correct answer in the case of nominal data) do not need to be
specified because their probabilities are calculated as a complement to the sums of the partial scores
probabilities. Guessing and inattention parameters are disregarded.

To illustrate usage of the difORD() function, we created an example ordinal dataset with 5 items,
each scored with a range of 0-4. We first generated discrimination parameters a and difficulties b
from a uniform distribution for partial scores k = 1, . . . , 4 for each item. In an adjacent category logit
model (3), parameter bik corresponds to an ability level for which the response categories k and k− 1
intersect in item i. For this reason and to create well-functioning items, parameters bik are sorted so
that bik < bik+1. The parameters are set the same for both the reference and focal group.

set.seed(42)
# discrimination
a <- matrix(rep(runif(5, 0.25, 1), 8), ncol = 8)
# difficulty
b <- t(sapply(1:5, function(i) rep(sort(runif(4, -1, 1)), 2)))

For the first two items we introduce uniform and non-uniform DIF respectively.

b[1, 5:8] <- b[1, 5:8] + 0.1
a[2, 5:8] <- a[2, 5:8] - 0.2

Using parameters a and b of an adjacent category logit model, we generated ordinal data with a total
sample size of 1,000 (500 observations per group). The first 5 columns of dataset DataORD represent
ordinally scored items, while the last column represents a group membership variable.

DataORD <- genNLR(N = 1000, itemtype = "ordinal", a = a, b = b)
summary(DataORD)
Item1 Item2 Item3 Item4 Item5 group
0:488 0:376 0:417 0:530 0:556 Min. :0.0
1:229 1:237 1:331 1:226 1:253 1st Qu.:0.0
2:150 2:195 2:170 2:129 2:123 Median :0.5
3: 93 3:114 3: 71 3: 83 3: 47 Mean :0.5
4: 40 4: 78 4: 11 4: 32 4: 21 3rd Qu.:1.0

Max. :1.0

Model. The last input of the difORD() function which needs to be specified is model. It offers
two possibilities. With an option model = "cumulative" a cumulative logit model (2) is fitted, while
with an option model = "adjacent" (default) DIF detection is performed using an adjacent category
logit model (3). The parameters for both models are estimated via vgam() function from the VGAM
package (Yee, 2010).

DIF detection with cumulative logit model. In this part we exemplify usage of the difORD()
function to fit a cumulative logit model for DIF detection among ordinal data. The group argument
is introduced here by specifying the name of the group membership variable in DataORD dataset, i.e.,
group = "group". Knowledge is represented by observed standardized total score, i.e., standardized
sum of all item scores.

(fit5 <- difORD(DataORD, group = "group", focal.name = 1, model = "cumulative"))
Detection of both types of Differential Item
Functioning for ordinal data using cumulative logit
regression model

Likelihood-ratio Chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 7.4263 0.0244 *
Item2 13.4267 0.0012 **
Item3 0.6805 0.7116
Item4 5.6662 0.0588 .

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=VGAM


CONTRIBUTED RESEARCH ARTICLES 310

Item5 2.7916 0.2476

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Items detected as DIF items:
Item1
Item2

Output provides test statistics for the likelihood ratio test, corresponding p-values, and the set of items
which were detected as functioning differently. Items 1 and 2 are correctly identified as DIF items.

Similarly as for the difNLR() function, characteristic curves can be imaged with the plot()
method. Besides characteristic curves, the method plot() for the cumulative logit model also offers
the plot of cumulative probabilities. This can be achieved using plot.type = "cumulative", while
with plot.type = "category" characteristic curves are shown. The plot of cumulative probabilities
shows only 4 partial scores and does not show the cumulative probability of P(Yip ≥ 0) since it is
always equal to 1. Note that category probability of the highest score corresponds to its cumulative
probability (Figure 3).

plot(fit5, item = "Item1", plot.type = "cumulative")
plot(fit5, item = "Item1", plot.type = "category")

Figure 3: Cumulative probabilities and characteristic curves of item 1 with a cumulative logit model.

Similarly to the difNLR() function, difORD() offers fit measures provided by AIC(), BIC(), and
logLik() S3 methods, and method coef() to print the estimated parameters of the fitted model.

DIF detection with adjacent logit model. We illustrate here the fitting of an adjacent category
logit model for DIF detection using the difORD() function. The group argument is now introduced
by specifying the identifier of a group membership variable in Data (i.e., group = 6).

(fit6 <- difORD(DataORD, group = 6, focal.name = 1, model = "adjacent"))
Detection of both types of Differential Item
Functioning for ordinal data using adjacent category
logit model

Likelihood-ratio Chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 8.9024 0.0117 *
Item2 12.9198 0.0016 **
Item3 1.0313 0.5971
Item4 4.3545 0.1134
Item5 2.3809 0.3041

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Items detected as DIF items:
Item1
Item2

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 311

Output again provides test statistics for the likelihood ratio test, corresponding p-values, and the set
of items which were detected as functioning differently. Items 1 and 2 are correctly identified as DIF
items. Characteristic curves can again be rendered using the plot() method (Figure 4).

plot(fit6, item = fit6$DIFitems)

Figure 4: Characteristic curves of DIF items with an adjacent category logit model.

Function difORD() offers the possibility to specify parametrization of regression coefficients
with an argument parametrization. By default, IRT parametrization as stated in (2) and (3) is utilized
using parametrization = "irt", but also classical intercept-slope parametrization (parametrization
= "classic") with the effect of group membership and its interaction with matching criterion as co-
variates may be applied, i.e., b0kGp + b1Gp Xp instead of aiGp (Xp− bikGp )). The DIF detection is the same
as with IRT parametrization, the only difference can be found in parameter estimates:

fit6a <- difORD(DataORD, group = 6, focal.name = 1, model = "adjacent",
parametrization = "classic")

# coefficients with IRT parametrization
round(coef(fit6)[[1]], 3)

b1 b2 b3 b4 a bDIF1 bDIF2 bDIF3 bDIF4 aDIF
0.013 0.603 1.500 2.500 1.776 -0.042 -0.121 -0.240 -0.374 0.273
# coefficients with classical intercept-slope parametrization
round(coef(fit6a)[[1]], 3)
(Intercept):1 (Intercept):2 (Intercept):3 (Intercept):4 x group x:group

-0.023 -1.070 -2.664 -4.441 1.776 0.082 0.273

Note that estimated discrimination for the reference group (parameter a) corresponds to the effect
of matching criterion x, and in both cases their value is 1.776 for item 1. The same holds for the dif-
ference in discrimination and the effect of interaction between the matching criterion and group
membership.

DDF detection among nominal data

Function ddfMLR() offers DDF detection among nominal data with the multinomial model (4). Here
we illustrate its implementation and usage on a generated example. The full syntax of the ddfMLR()
function is:

ddfMLR(
Data, group, focal.name, key,
type = "both", match = "zscore",
anchor = NULL, purify = FALSE, nrIter = 10, p.adjust.method = "none",
parametrization = "irt", alpha = 0.05

)

To detect DDF among nominal data using the ddfMLR() function, the user needs to provide four pieces
of information: 1. the unscored data set, 2. the key of correct answers, 3. the group membership vector,
and 4. the indication of the focal group. The parameters are estimated via multinom() function from
the nnet package (Venables and Ripley, 2002).

Data. The format of Data argument is similar to previously described functions. However, rows
here represent respondents’ unscored answers (e.g., in ABCD format). The group and focal.name is
specified as in difNLR() or difORD() functions.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=nnet


CONTRIBUTED RESEARCH ARTICLES 312

Data generation. Data generator genNLR() can be used to generate nominal data using a multi-
nomial model (4) by setting itemtype = "nominal". Specification of arguments a and b is the same
as for ordinal items, however, it now represents parameters for distractors (incorrect answers).

To create an illustrative example dataset of nominal data, we must first generate discrimination a
and difficulty b parameters from a uniform distribution for distractors of 10 items. The parameters
are set the same for the reference and the focal group. For the first 5 items, we consider only two
distractors (i.e., three item choices in total). For the last 5 items, we consider three distractors (i.e., four
item choices in total).

set.seed(42)
# discrimination
a <- matrix(rep(runif(30, -2, -0.5), 2), ncol = 6)
a[1:5, c(3, 6)] <- NA
# difficulty
b <- matrix(rep(runif(30, -3, 1), 2), ncol = 6)
b[1:5, c(3, 6)] <- NA

For item 1, we introduce DDF by difference in discrimination and for item 6 by difference in difficulty.

a[1, 4] <- a[1, 1] - 1; a[1, 5] <- a[1, 2] + 1
b[6, 4] <- b[6, 1] - 1; b[6, 5] <- b[6, 2] - 1.5

Finally, we generate nominal data with 500 observations in each group, i.e. 1,000 in total. The first 10
columns of the generated dataset DataDDF represent the unscored answers of respondents and the last
column describes a group membership variable.

DataDDF <- genNLR(N = 1000, itemtype = "nominal", a = a, b = b)
head(DataDDF)
Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 group

1 B B C A C B B D B B 0
2 C A B A C C B B C C 0
3 B C C B C C B C B D 0
4 B A C A C B A B B B 0
5 B B C B C B A C A B 0
6 B A A A A B B A A A 0

The correct answers in the generated dataset are denoted by A for each item; the key is hence a vector
of As with a length of 10.

Now we have all the necessary inputs to fit a multinomial model (4) using the ddfMLR() function.
The group argument is introduced here by specifying the name of group membership variable in Data
(i.e., group = "group"). For the generated data, the total score is calculated as number of correct answers
(i.e., number of As on a given row) and the matching criterion is then its standardized value (Z-score).

(fit7 <- ddfMLR(DataDDF, group = "group", focal.name = 1, key = rep("A", 10)))
Detection of both types of Differential Distractor
Functioning using multinomial log-linear regression model

Likelihood-ratio chi-square statistics

Item purification was not applied
No p-value adjustment for multiple comparisons

Chisq-value P-value
Item1 29.5508 0.0000 ***
Item2 1.1136 0.8921
Item3 1.0362 0.9043
Item4 4.1345 0.3881
Item5 7.4608 0.1134
Item6 47.0701 0.0000 ***
Item7 1.3285 0.9701
Item8 2.3629 0.8835
Item9 10.4472 0.1070
Item10 3.5602 0.7359

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 313

Items detected as DDF items:
Item1
Item6

The output again summarizes the statistics of likelihood ratio test of a submodel, corresponding
p-values, and the set of items identified as DDF. As expected, items 1 and 6 are detected as DDF.

Their characteristic curves can be displayed with a plot() method while the name of the reference
and focal group can be modified via group.names argument (Figure 5). This option is also available
for functions difNLR() and difORD() and their plotting methods.

plot(fit7, item = fit7$DDFitems, group.names = c("Group 1", "Group 2"))

Figure 5: Characteristic curves of DDF items with a multinomial model.

Similarly as for difNLR() and difORD(), item fit measures are offered via AIC(), BIC(), and
logLik() S3 methods. Parameter estimates can be obtained using the method coef().

Further features

The difNLR covers user-friendly features that are common in standard DIF software – various
matching criteria, anchor items, item purification, and p-value adjustments. These features are
available for all main functions – difNLR(), difORD(), and ddfMLR().

Matching criterion. The models covered in the difNLR package are extensions of the logistic
regression model described by Swaminathan and Rogers (1990) who considered the total test score as
an observed ability Xp. While this approach is well rooted in the psychometric research, note that it
may lead to contradictions, e.g. when a nonzero item score is predicted for a respondent with a zero
total test score. In the difNLR package, the default observed ability considered in all three main
functions is the standardized total score. However, this estimate can be changed using the match
argument. Besides default option "zscore" (standardized total score), it can also be the total test score
(match = "score") or any numeric vector of the same length as the number of respondents. It is hence
possible to use, for instance, latent trait estimates provided by some IRT models, or to use a pre-test
score instead of the total score of the current test to be examined and analyze DIF in the context of item
validity.

Anchor items and item purification. Including DIF items into the calculation of matching
criterion can lead to a potential bias and misidentification of DIF and non-DIF items. With an
argument anchor, one can specify which items are supposed to be used for the calculation of matching
criterion.

In the following examples, we go back to our generated dichotomous dataset DataDIF and
the difNLR() function. For illustration, we take only items 1-6 and we apply some features with the 4PL
model. Matching criterion is now calculated as a total test score based on items 1-6. Similar examples
can also be illustrated with functions difORD() and ddfMLR().

We start with not specifying the anchor items. This indicates that any item can be considered as
DIF one.

fit8a <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1, match = "score",
model = "4PL", type = "all")

fit8a$DIFitems
[1] 5 6

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 314

Initial fit fit8a detected items 5 a 6 as functioning differently. Now we can set all items excluding
these two as the anchors.

fit8b <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1, match = "score",
model = "4PL", type = "all", anchor = 1:4)

fit8b$DIFitems
[1] 5

With a test score based only on DIF-free items 1-4 (i.e., excluding potentially unfair items 5 and 6
detected in previous run from calculation of the total score), we detected only item 5 as functioning
differently. We could again fit the model excluding only item 5 from calculation of matching criterion.

The process of including and omitting DIF and potentially unfair items could be demanding and
time consuming. However, this process can be applied iteratively and automatically. This procedure
is called item purification (Lord, 1980; Marco, 1977) and it has been shown that it can improve DIF
detection. Item purification can be accessed with a purify argument. This can only be done when
the matching criterion is either the total score or Z-score. The maximal number of iterations is
determined by the nrIter argument, where the default value is 10.

fit9 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1, match = "score",
model = "4PL", type = "all", purify = TRUE)

Item purification was run with 2 iterations plus one initial step. The process of including and excluding
items into the calculation of matching criterion can be found in the difPur element of the output.

fit9$difPur
Item1 Item2 Item3 Item4 Item5 Item6

Step0 0 0 0 0 1 1
Step1 0 0 0 0 1 0
Step2 0 0 0 0 1 0

In the initial step, items 5 and 6 were identified as DIF as it was shown with fit8a. The matching
criterion was then calculated as the sum of the correct answers in items 1-4 as demonstrated by fit8b.
In the next step, only item 5 was identified as DIF and the matching criterion was based on items 1-4
and 6. The result of the DIF detection procedure was the same in the next step and the item purification
process thus ended.

Multiple comparison corrections. As the DIF detection procedure is done item by item, correc-
tions for multiple comparisons may be considered (see Kim and Oshima, 2013). For example, applying
Holm’s adjustment (Holm, 1979) results in item 5 being detected as DIF.

fit10 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1, match = "score",
model = "4PL", type = "all", p.adjust.method = "holm")

fit10$DIFitems
[1] 5

And of course, item purification and multiple comparison corrections can be combined in a way that
the p-value adjustment is applied for a final run of the item purification.

fit11 <- difNLR(DataDIF[, 1:6], groupDIF, focal.name = 1, match = "score",
model = "4PL", type = "all", p.adjust.method = "holm",
purify = TRUE)

fit11$DIFitems
[1] 5

While all three approaches correctly identify item 5 as a DIF item, the significance level varies:

round(fit9$pval, 3)
[1] 0.144 0.974 0.244 0.507 0.000 0.126
round(fit10$adj.pval, 3)
[1] 1.000 1.000 1.000 0.747 0.000 0.137
round(fit11$adj.pval, 3)
[1] 0.629 1.000 0.733 1.000 0.000 0.629

Troubleshooting

In this section, we focus on several issues which can be encountered when fitting generalized logistic
regression models and using the features offered in the difNLR package.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 315

Convergence issues. First, there is no guarantee that the estimation process in the difNLR()
function will always end successfully. For instance, in the case of a small sample size, convergence
issues may appear.

The easiest way to fix such issues is to specify different starting values. Various starting values can
be applied via a start argument as a list with named numeric vectors as its elements. Each element
needs to include values for the parameters a, b, c, and d of the reference group and the differences
between reference and focal groups denoted by aDif, bDif, cDif, and dDif. However, there is no
need to determine initial values manually. In the instance of convergence issues, the initial values are
by default automatically re-calculated based on bootstrapped samples and applied only to models that
failed to converge. This is also performed when starting values were initially introduced via a start
argument. This feature can be turned off by setting initboot = FALSE. In such a case, no estimates are
obtained for items that failed to converge. To demonstrate described situations, we now use a sample
of our original simulated data set.

# sampled data
set.seed(42)
sam <- sample(1:1000, 420)
# using re-calculation of starting values
fit12a <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1, model = "4PL",

type = "all")
Starting values were calculated based on bootstraped samples.

# turn off option of re-calculating starting values
fit12b <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1, model = "4PL",

type = "all", initboot = FALSE)
Warning message:
Convergence failure in item 3
Convergence failure in item 14

With an option initboot = TRUE in fit12a, starting values were re-calculated and no convergence
issue occurred. When setting initboot = FALSE in fit12b we observed convergence failures in items
3 and 14.

The re-calculation process is by default performed up to twenty times, but the number of runs can
be increased via the nrBo argument.

Another option is to apply the maximum likelihood method instead of nonlinear least squares
to estimate parameters.

fit13 <- difNLR(DataDIF[sam, ], groupDIF[sam], focal.name = 1, model = "4PL",
type = "all", method = "likelihood")

There is no convergence issue in fit13 using the maximum likelihood estimation in contrast to fit12b
and nonlinear least squares option.

Item purification. Issues may also occur when applying an item purification process. Although
this is rare in practice, there is no guarantee that the process will end successfully. This can be observed,
for instance, when we use DataDIF with the first 12 items only.

fit14 <- difNLR(DataDIF[, 1:12], groupDIF, focal.name = 1, model = "4PL",
type = "all", purify = TRUE)

Warning message:
Item purification process not converged after 10 iterations.
Results are based on the last iteration of the item purification.

The maximum number of item purification iterations can be increased via the nrIter argument.
However, in our example this would not necessarily lead to success as the process was not able to
decide whether or not to include item 1 in the calculation of matching criterion.

fit14$difPur
Item1 Item2 Item3 Item4 Item5 Item6 Item7 Item8 Item9 Item10 Item11 Item12

Step0 0 0 0 0 1 0 0 1 0 0 1 0
Step1 1 0 0 0 1 0 0 1 0 0 1 0
Step2 0 0 0 0 1 0 0 1 0 0 1 0
Step3 1 0 0 0 1 0 0 1 0 0 1 0
Step4 0 0 0 0 1 0 0 1 0 0 1 0
Step5 1 0 0 0 1 0 0 1 0 0 1 0
Step6 0 0 0 0 1 0 0 1 0 0 1 0

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 316

Step7 1 0 0 0 1 0 0 1 0 0 1 0
Step8 0 0 0 0 1 0 0 1 0 0 1 0
Step9 1 0 0 0 1 0 0 1 0 0 1 0
Step10 0 0 0 0 1 0 0 1 0 0 1 0

In this context, we advise considering such items as DIF to be on the safe side. As a general rule,
any suspicious item should be reviewed by content experts. Not every DIF item is necessarily unfair,
however even in such a case, understanding the reasons behind DIF may inform educators and help
provide the best assessment and learning experience to all individuals involved.

Real data example

To illustrate the work with the difNLR package, we present a real data example from a study ex-
ploring the effect of student tracking on gains in learning competence (Martinková et al., 2020).
The LearningToLearn dataset presented here is available in the ShinyItemAnalysis package (Mar-
tinková and Hladká, 2020). It contains dichotomously scored responses of 782 students in total; 391
from a basic school (BS) track and 391 from a selective academic school (AS) track, whereas each
student answered exactly the same test questions in Grade 6 and Grade 9. The sample was created
from a larger dataset of 2,917 + 1,322 students using propensity score matching with the aim of ob-
taining similar baseline achievement and socio-economic characteristics of the students in both tracks.
In addition, the matching algorithm required an exact match of the LtL total score in Grade 6 (i.e.,
exactly the same total score value in each matched pair of BS and AS students).

We demonstrate the three main functions of the difNLR package using items from the most
difficult subscale 6, called Mathematical concepts, which consists of 8 multiple-choice items (6A, 6B,
. . . , 6H) with four response options. We first test for DIF in Grade 6 using the difNLR() function to
provide a detailed analysis of between-group differences on the baseline. Then, to get a more detailed
insight into the differences in student gains after three years of education in two different tracks, we
perform an analysis of the differential item functioning in change (DIF-C; Martinková et al., 2020)
using student item responses in Grade 9 and then also using the nominal and ordinal data of item
changes from Grade 6 to Grade 9.

To identify items functioning differently on the baseline, we use a reduced dataset LtL6_gr6 which
includes only student responses to eight subscale 6 items collected in Grade 6 and a group membership
variable track. We further use a standardized total test score achieved in Grade 6 as an estimate
of the students’ ability.

data("LearningToLearn", package = "ShinyItemAnalysis")
# dichotomous items for Grade 6
LtL6_gr6 <- LearningToLearn[, c("track", paste0("Item6", LETTERS[1:8], "_6"))]
head(LtL6_gr6)

track Item6A_6 Item6B_6 Item6C_6 Item6D_6 Item6E_6 Item6F_6 Item6G_6 Item6H_6
3453 AS 0 0 0 0 0 0 0 1
3456 AS 0 0 0 1 1 1 0 0
3458 AS 0 0 0 0 0 1 0 1
3464 AS 0 0 0 1 0 0 0 1
3474 AS 0 1 0 0 1 1 0 1
3491 AS 0 0 1 0 0 1 0 0
# standardized total score achieved in Grade 6
zscore6 <- LearningToLearn$score_6

Martinková et al. (2020) hypothesized that, on the baseline, DIF found in this difficult subscale may
possibly be caused by differences in guessing. To test this hypothesis, we can use the 3PL generalized
logistic model which allows for detecting group differences in item difficulty, item discrimination, as
well as the probability of guessing.

fitex1 <- difNLR(Data = LtL6_gr6, group = "track", focal.name = "AS", model = "3PL",
match = zscore6)

fitex1$DIFitems
[1] 8

Using the 3PL model, the eighth item (i.e., item 6H) was identified as DIF, while this DIF may have
been caused by difference in any of the three item parameters.

In this eighth item (ninth column in the LtL_gr6 dataset), we now test a more specific hypothesis
that DIF is caused by differences in guessing . This can be done by adding type = "c".

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 317

fitex2 <- difNLR(Data = LtL6_gr6[, c(1, 9)], group = "track", focal.name = "AS",
model = "3PL", type = "c", match = zscore6)

fitex2$DIFitems
[1] 1

When specifically analyzing differences in the pseudo-guessing parameter c, we again detected
a significant DIF in this item (6H). According to the model, for BS the estimated probability of guessing
was close to 0.25, which is to be expected in multiple-choice items providing four response options.
In contrast, for AS the probability of guessing was close to 0 (Figure 6).

plot(fitex2, item = fitex2$DIFitems)

Figure 6: Characteristic curves of item 6H with DIF caused by differences in guessing between tracks
in Grade 6.

We further perform DIF-C analysis to get a more detailed insight into the differences between
AS and BS students in item gains. In contrast to DIF analysis, we use pre-test achievement in DIF-C
analysis as the matching criterion while testing for group differences in the post-test, or in changes
from pre-test to post-test.

In what follows, we demonstrate use of the difNLR(), difORD(), and ddfMLR() functions to provide
evidence of DIF-C as described above. We first create a dataset LtL6_gr9 which consists of student
responses in Grade 9 to subscale 6 items and the track variable.

# dichotomous items for Grade 9
LtL6_gr9 <- LearningToLearn[, c("track", paste0("Item6", LETTERS[1:8], "_9"))]
head(LtL6_gr9)

track Item6A_9 Item6B_9 Item6C_9 Item6D_9 Item6E_9 Item6F_9 Item6G_9 Item6H_9
3453 AS 1 0 0 1 0 1 0 1
3456 AS 1 1 1 1 1 1 1 1
3458 AS 1 1 0 1 1 1 0 0
3464 AS 0 0 0 0 1 0 0 1
3474 AS 1 1 0 1 0 1 0 0
3491 AS 1 1 0 1 1 1 0 1

We then use the standardized total score achieved in Grade 6 as an estimate of baseline ability to
explore the functioning of items in Grade 9 and the possible differences in their parameters between BS
and AS tracks. We next use the 3PL generalized logistic regression model and the difNLR() function,
as in the previous example.

fitex3 <- difNLR(Data = LtL6_gr9, group = "track", focal.name = "AS", model = "3PL",
match = zscore6)

fitex3$DIFitems
[1] 1 2

The first two easier items of the subscale (i.e., items 6A and 6B) were identified as functioning
differently in Grade 9 when accounting for the standardized total score in Grade 6. The differences
between tracks can be illustrated by comparing the probabilities of answering item 6A correctly
in Grade 9 by students with various baseline abilities: A low-performing student, average-performing
student, and student performing above average, specifically, students with standardized total scores
in Grade 6 equal to -1, 0, and 1. Method predict() also offers calculation of confidence intervals using
delta method approach. Note that applying delta method in this case can result in confidence intervals
slightly exceeding probability bounds 0 and 1.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 318

predict(
fitex3,
match = rep(c(-1, 0, 1), 2),
group = rep(c(0, 1), each = 3),
item = 1,
interval = "confidence"

)
item match group prob lwr.conf upr.conf

1 Item6A_9 -1 0 0.6785773 0.6188773 0.7382773
2 Item6A_9 0 0 0.7773050 0.7269066 0.8277034
3 Item6A_9 1 0 0.8781427 0.8114574 0.9448280
4 Item6A_9 -1 1 0.7802955 0.7187001 0.8418909
5 Item6A_9 0 1 0.8431045 0.7869886 0.8992204
6 Item6A_9 1 1 0.9290780 0.8549489 1.0032071

A low-performing student in Grade 6 from BS track has around 10% lower probability of answering
item 6A correctly in Grade 9 than a student with the same baseline ability level but from AS track
(68%, 95% CI = [62, 74] vs. 78% [72, 84]). Similarly, the probability is 78% [73, 83] vs. 84% [79, 90]
for average-performing students and 88% [81, 94] vs. 93% [85, 100] for those performing above average
in Grade 6. Note that confidence intervals may overlap even in case when differential item functioning
is significant among the two groups.

A second method for testing DIF-C proposed in Martinková et al. (2020) is based upon a multi-
nomial model (4). To demonstrate the usage of ddfMLR() we use a restricted dataset of variables
combining information about responses in Grades 6 and 9 into four response patterns: "00" indicating
that the student did not answer correctly in either of the grades (did not improve); "10" meaning that
the student answered correctly in Grade 6 but incorrectly in Grade 9 (deteriorated); "01" standing
for a situation where the student answered incorrectly in Grade 6 but correctly in Grade 9 (improved);
"11" describing the case where the student answered correctly in both grades (did not deteriorate).
These variables denoted as "changes" can be extracted directly from the LearningToLearn dataset.

# nominal data for changes between 6th and 9th grade
LtL6_change <- LearningToLearn[, c("track", paste0("Item6", LETTERS[1:8], "_changes"))]
summary(LtL6_change[, 1:4])
track Item6A_changes Item6B_changes Item6C_changes
BS:391 00:113 00:186 00:465
AS:391 10: 33 10: 33 10: 36

01:431 01:414 01:252
11:205 11:149 11: 29

We then fit a multinomial model (4) with the ddfMLR() function on LtL6_change data, again using
the standardized total score achieved in Grade 6 as an estimate of a student’s baseline ability, and
by using the vector of patterns "11" as the argument key.

fitex4 <- ddfMLR(Data = LtL6_change, group = "track", focal.name = "AS",
key = rep("11", 8), match = zscore6)

fitex4$DDFitems
[1] 2 5

Using the multinomial model, we identified items 2 and 5 (i.e., items 6B and 6E) as DIF-C items. In both
items, the AS track was favoured in patterns "01" and "11", meaning that AS students had a higher
probability of improving (pattern "01") or not deteriorating (pattern "11") than students with the same
baseline standardized total score from the BS track. On the contrary, students with the same baseline
standardized total score had a higher probability of not improving (pattern "00") or even deteriorating
(pattern "10") in the BS track than in the AS track (Figure 7).

plot(fitex4, item = fitex4$DDFitems)

Finally, we introduce a third method for testing DIF-C using ordinal regression models. For this
purpose, we create an ordinal dataset combining information about student responses in Grade 6 and
Grade 9 into three categories: Score "0" means that the student deteriorated, i.e., answered correctly
in Grade 6 but incorrectly in Grade 9; score "1" indicates no change in the accuracy of the answer,
i.e., either correct or incorrect in both grades; and the best score "2" stands for improvement, i.e.,
the student did not answer correctly in Grade 6 but answered correctly in Grade 9.

# ordinal data for change between Grade 6 and 9
LtL6_change_ord <- data.frame(
track = LtL6_change$track,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 319

Figure 7: Characteristic curves of DIF-C items 6B and 6E using nominal data and multinomial model.

sapply(LtL6_change[, -1],
function(x) as.factor(ifelse(x == "10", 0, ifelse(x == "01", 2, 1))))

)
summary(LtL6_change_ord[, 1:4])
track Item6A_changes Item6B_changes Item6C_changes
BS:391 0: 33 0: 33 0: 36
AS:391 1:318 1:335 1:494

2:431 2:414 2:252

We then fit an adjacent category logit model (2), as we are mainly interested in the baseline ability
needed to move from one ordinal category into the next one.

fitex5 <- difORD(Data = LtL6_change_ord, group = "track", focal.name = "AS",
model = "adjacent", match = zscore6)

fitex5$DIFitems
[1] 2 4 5

Using the ordinal model, we identified items 2, 4, and 5 (i.e., items 6B, 6D, and 6E) as functioning
differently. In all the items, AS track was favoured in the improvement category "2", while BS
students had a higher probability of deteriorating (category "0") and no change (category "1") when
compared to AS students with the same baseline ability. The probability of belonging to category
"2" was decreasing with an increasing baseline ability in items 6B and 6D, which is reasonable since
the students with a higher baseline ability were more likely to have already answered these items
correctly while in Grade 6. On the contrary, the probability of falling into the deteriorating category
"0" was slightly increasing with baseline ability in these items, which can be explained as a tendency
for over-thinking or inattention in very well-performing students. Trends were different in item 6E,
where category probabilities seemed to be stable for all baseline ability levels, however, differences
between the BS and AS track remained the same as for items 6B and 6D, favouring the AS track
in the improving category "2" (Figure 8).

plot(fit5, item = fit5$DIFitems)

Figure 8: Characteristic curves of DIF-C items 6B, 6D, and 6E using ordinal data and adjacent category
logit model.

All three approaches, using functions difNLR(), difORD(), and ddfMLR() jointly confirmed DIF-C
in item 6B. Conclusions regarding other items were somewhat ambiguous, nevertheless, this is to be

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 320

expected given the fact that each approach used different data (binary, nominal, and ordinal) which
contained slightly different information.

Similar analysis can be conducted using an interactive environment of the ShinyItemAnalysis
application (Martinková and Drabinová, 2018) which offers complex psychometric analysis including
some functionalities implemented via difNLR package (see Figure 9). The datasets used in the real
data example are included in the application; moreover, the user may upload and analyze interactively
their own datasets as well.

Generalized logistic regression
Generalized logistic regression models are extensions of logistic regression method which account for possibility of guessing by allowing for nonzero lower asymptote - pseudo-
guessing  (Drabinova & Martinkova, 2017) or upper asymptote lower than one - inattention . Similarly to logistic regression, its extensions also provide detection of uniform and
non-uniform DIF by letting the difficulty parameter  (uniform) and the discrimination parameter  (non-uniform) differ for groups and by testing for difference in their values.
Moreover, these extensions allow for testing differences in pseudo-guessing and inattention parameters and they can be seen as proxies of 3PL and 4PL IRT models for DIF
detection.

Method specification
Here you can specify the assumed model. In 3PL and 4PL models, the abbreviations  or  mean that parameters  or  are assumed to be the same for both groups, otherwise
they are allowed to differ. With type you can specify the type of DIF to be tested by choosing the parameters in which difference between groups should be tested. You can also
select correction method for multiple comparison or item purification.

Finally, you may change the DIF matching variable. While matching on standardized total score is typical, upload of other DIF matching variable is possible in section Data. Using
a pre-test (standardized) total score allows for testing differential item functioning in change (DIF-C) to provide proofs of instructional sensitivity (Martinkova et al., 2020), also see
Learning To Learn 9 toy dataset. For selected item you can display plot of its characteristic curves and table of its estimated parameters with standard errors.

Plot with estimated DIF generalized logistic curve
Points represent proportion of correct answer (empirical probabilities) with respect to the DIF matching variable. Their size is determined by count of respondents who achieved
given level of DIF matching variable with respect to the group membership.

  Download figureDownload figure

Equation

Summary Items

c d

b a

cg dg c d

Model Type
a

b

c

d

Correction method

Item purification

DIF matching variable Item
1 4129

1 5 10 14 19 23 28 32 37 41


3PLc None Standardized uploaded

  

Hits:17943
ShinyItemAnalysis Test and item analysis | Version 1.3.3
© 2020 ShinyItemAnalysis

  ShinyItemAnalysis ShinyItemAnalysis Test and item analysisTest and item analysis

DataData Summary Summary Reliability Reliability Validity Validity Item analysis Item analysis Regression Regression IRT models IRT models DIF/Fairness DIF/Fairness ReportsReports   

Description

About DIF and DDF

Total scores, matching variables

Dichotomous methods

Delta plot

Mantel-Haenszel

Logistic regression

Generalized logistic

IRT Lord

IRT Raju

SIBTEST

Method comparison

Polytomous methods

Cumulative logit

Adjacent category logit

Multinomial

Figure 9: Generalized logistic model for DIF detection using ShinyItemAnalysis.

Summary

This article introduced the R package difNLR version 1.3.5 for DIF and DDF detection with extensions
of a logistic regression model. The release version of the difNLR package is hosted on CRAN and
the newest development version on GitHub, which can be accessed by devtools::install_github("
adelahladka/difNLR"). The current paper offered a description of the implementation of its three
main functions difNLR(), difORD(), and ddfMLR() using simulated examples as well as a real data
example with a longitudinal dataset LearningToLearn from the ShinyItemAnalysis package.

While the difR package already offers a classical logistic regression model for DIF detection via its
function difLogistic(), the difNLR offers a wide range of methods based on extensions of the original
model. The package is user-friendly since its model-fitting functions were designed to behave like
the analogous functions in the difR package. Hence users who are already proficient in DIF detection
among dichotomous items using R will find it easy to follow DIF and DDF detection via difNLR.
In addition, the difNLR package offers various S3 methods, including graphical representation

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 321

of characteristic curves using the ggplot2 environment, various fit measures, extraction of fitted values
and residuals as well as a prediction for a generalized logistic model.

Described models are also accessible via shiny application ShinyItemAnalysis which provides
not only an interactive environment with a number of toy datasets including the real dataset analyzed
here, but also a selected R code which can serve as a springboard for those new to R.

Future plans for the difNLR package include extensions of its functionality. In the difNLR()
function, this comprises more options for estimation algorithms, as well as fine-tuning of the starting
values to prevent convergence issues and to improve accuracy of the nonlinear models. We also plan
to implement methods to extract fitted values and residuals for the difORD() and ddfMLR() functions
together with their prediction via predict() method. Further, we would like to offer confidence and
prediction intervals and their graphical representation for all three main functions. Finally, considered
extensions include generalizations for longitudinal data with more time points.

In summary, the difNLR package provides various methods for DIF and DDF detection and
can thus serve as a complex tool for detection of between-group differences in various contexts
of educational and psychological tests and their items.

Acknowledgments

We gratefully thank Jon Kern, Eva Potužníková, Michal Kulich, and anonymous reviewers for helpful
comments to previous versions of this manuscript. We also thank Jan Netík for computational
assistance. The work was supported by the long-term strategic development financing of the Institute
of Computer Science (Czech Republic RVO 67985807).

Bibliography
A. Agresti. Analysis of ordinal categorical data. John Wiley & Sons, second edition, 2010. URL https:

//doi.org/10.1002/9780470594001. [p302]

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974. URL https://doi.org/10.1109/TAC.1974.1100705. [p307]

D. Andrich. A rating formulation for ordered response categories. Psychometrika, 43(4):561–573, 1978.
URL https://doi.org/10.1007/BF02293814. [p302]

R. P. Chalmers. mirt: A multidimensional item response theory package for the R environment. Journal
of Statistical Software, 48(6):1–29, 2012. URL https://doi.org/10.18637/jss.v048.i06. [p300]

S. W. Choi, with contributions from Laura E. Gibbons, and P. K. Crane. lordif: Logistic ordinal regression
differential item functioning using IRT, 2016. URL https://CRAN.R-project.org/package=lordif. R
package version 0.3-3. [p300]

J. E. J. Dennis, D. M. Gay, and R. E. Welsch. An adaptive nonlinear least-squares algorithm. Transac-
tions on Mathematical Software, 7(3):348–368, 1981. URL https://doi.org/10.1145/355958.355965.
[p302]

A. Drabinová and P. Martinková. Detection of differential item functioning with nonlinear regression:
A non-IRT approach accounting for guessing. Journal of Educational Measurement, 54(4):498–517,
2017. URL https://doi.org/10.1111/jedm.12158. [p301, 302]

B. F. Green, C. R. Crone, and V. G. Folk. A method for studying differential distractor functioning.
Journal of Educational Measurement, 26(2):147–160, 1989. URL https://doi.org/10.1111/j.1745-
3984.1989.tb00325.x. [p301]

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:
65–70, 1979. [p314]

J. Kim and T. Oshima. Effect of multiple testing adjustment in differential item functioning detection.
Educational and Psychological Measurement, 73(3):458–470, 2013. URL https://doi.org/10.1177/
0013164412467033. [p301, 314]

F. M. Lord. Applications of item response theory to practical testing problems. Routledge, New York, NY,
first edition, 1980. [p301, 314]

W. Ma and J. de la Torre. GDINA: The generalized DINA model framework, 2019. URL https://CRAN.R-
project.org/package=GDINA. R package version 2.7. [p300]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1002/9780470594001
https://doi.org/10.1002/9780470594001
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/BF02293814
https://doi.org/10.18637/jss.v048.i06
https://CRAN.R-project.org/package=lordif
https://doi.org/10.1145/355958.355965
https://doi.org/10.1111/jedm.12158
https://doi.org/10.1111/j.1745-3984.1989.tb00325.x
https://doi.org/10.1111/j.1745-3984.1989.tb00325.x
https://doi.org/10.1177/0013164412467033
https://doi.org/10.1177/0013164412467033
https://CRAN.R-project.org/package=GDINA
https://CRAN.R-project.org/package=GDINA


CONTRIBUTED RESEARCH ARTICLES 322

D. Magis, S. Beland, F. Tuerlinckx, and P. De Boeck. A general framework and an R package for the
detection of dichotomous differential item functioning. Behavior Research Methods, 42:847–862, 2010.
URL https://doi.org/10.3758/BRM.42.3.847. [p300, 303]

N. Mantel and W. Haenszel. Statistical aspects of the analysis of data from retrospective studies. Journal
of the National Cancer Institute, 22(4):719–748, 1959. URL https://doi.org/10.1093/jnci/22.4.719.
[p300]

G. L. Marco. Item characteristic curve solutions to three intractable testing problems. Journal of
Educational Measurement, 14(2):139–160, 1977. URL https://doi.org/10.1111/j.1745-3984.1977.
tb00033.x. [p314]

P. Martinková, A. Drabinová, Y.-L. Liaw, E. A. Sanders, J. L. McFarland, and R. M. Price. Checking
equity: Why differential item functioning analysis should be a routine part of developing conceptual
assessments. CBE-Life Sciences Education, 16(2):rm2, 2017. URL https://doi.org/10.1187/cbe.16-
10-0307. [p300]

P. Martinková, A. Hladká, and E. Potužníková. Is academic tracking related to gains in learning
competence? Using propensity score matching and differential item change functioning analysis
for better understanding of tracking implications. Learning and Instruction, 66:101286, 2020. URL
https://doi.org/10.1016/j.learninstruc.2019.101286. [p316, 318]

P. Martinková and A. Drabinová. ShinyItemAnalysis for teaching psychometrics and to enforce routine
analysis of educational tests. The R Journal, 10(2):503–515, 2018. URL https://doi.org/10.32614/
RJ-2018-074. [p301, 320]

P. Martinková and A. Hladká. ShinyItemAnalysis: Test and item analysis via shiny, 2020. URL https:
//CRAN.R-project.org/package=ShinyItemAnalysis. R package version 1.3.3. [p316]

R. D. Penfield and G. Camilli. Differential item functioning and item bias. In C. R. Rao and S. Sinharay,
editors, Psychometrics, volume 26 of Handbook of Statistics, pages 125–167. Elsevier, 2006. URL
https://doi.org/10.1016/S0169-7161(06)26005-X. [p300]

G. Rasch. Probabilistic models for some intelligence and attainment tests. MESA Press, 1993. [p300]

C. Ritz and J. C. Streibig. Nonlinear regression with R. Springer, New York, NY, 2008. URL https:
//doi.org/10.1007/978-0-387-09616-2. [p302]

F. Samejima. Estimation of latent ability using a response pattern of graded scores. Psychometrika, 34
(Suppl 1), 1969. URL https://doi.org/10.1007/BF03372160. [p302]

G. Schauberger. DIFboost: Detection of differential item functioning (DIF) in Rasch models by boosting
techniques, 2016. URL https://CRAN.R-project.org/package=DIFboost. R package version 0.2.
[p300]

G. Schauberger. DIFlasso: A penalty approach to differential item functioning in Rasch models, 2017. URL
https://CRAN.R-project.org/package=DIFlasso. R package version 1.0-3. [p300]

G. Schwarz et al. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.
URL https://doi.org/10.1214/aos/1176344136. [p307]

C. Strobl, J. Kopf, and A. Zeileis. Rasch trees: A new method for detecting differential item functioning
in the Rasch model. Psychometrika, 80(2):289–316, 2015. URL https://doi.org/10.1007/s11336-
013-9388-3. [p300]

H. Swaminathan and H. J. Rogers. Detecting differential item functioning using logistic regression
procedures. Journal of Educational Measurement, 27(4):361–370, 1990. URL https://doi.org/10.
1111/j.1745-3984.1990.tb00754.x. [p300, 301, 313]

W. N. Venables and B. D. Ripley. Modern applied statistics with S. Springer, New York, fourth edition,
2002. URL https://doi.org/10.1007/978-0-387-21706-2. [p311]

H. Wickham. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, second edition, 2016.
URL https://ggplot2.tidyverse.org. [p306]

T. Yee. The VGAM package for categorical data analysis. Journal of Statistical Software, 32(10):1–34,
2010. URL https://doi.org/10.18637/jss.v032.i10. [p309]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.3758/BRM.42.3.847
https://doi.org/10.1093/jnci/22.4.719
https://doi.org/10.1111/j.1745-3984.1977.tb00033.x
https://doi.org/10.1111/j.1745-3984.1977.tb00033.x
https://doi.org/10.1187/cbe.16-10-0307
https://doi.org/10.1187/cbe.16-10-0307
https://doi.org/10.1016/j.learninstruc.2019.101286
https://doi.org/10.32614/RJ-2018-074
https://doi.org/10.32614/RJ-2018-074
https://CRAN.R-project.org/package=ShinyItemAnalysis
https://CRAN.R-project.org/package=ShinyItemAnalysis
https://doi.org/10.1016/S0169-7161(06)26005-X
https://doi.org/10.1007/978-0-387-09616-2
https://doi.org/10.1007/978-0-387-09616-2
https://doi.org/10.1007/BF03372160
https://CRAN.R-project.org/package=DIFboost
https://CRAN.R-project.org/package=DIFlasso
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1007/s11336-013-9388-3
https://doi.org/10.1007/s11336-013-9388-3
https://doi.org/10.1111/j.1745-3984.1990.tb00754.x
https://doi.org/10.1111/j.1745-3984.1990.tb00754.x
https://doi.org/10.1007/978-0-387-21706-2
https://ggplot2.tidyverse.org
https://doi.org/10.18637/jss.v032.i10


CONTRIBUTED RESEARCH ARTICLES 323

Adéla Hladká
Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences
Pod Vodárenskou věží 271/2, Prague, 182 07
and
Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University
Sokolovská 83, Prague, 186 75
Czech Republic
ORCiD: 0000-0002-9112-1208
hladka@cs.cas.cz

Patrícia Martinková
Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences
Pod Vodárenskou věží 271/2, Prague, 182 07
and
Institute for Research and Development of Education, Faculty of Education, Charles University
Myslíkova 7, Prague, 110 00
Czech Republic
ORCiD: 0000-0003-4754-8543
martinkova@cs.cas.cz

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:hladka@cs.cas.cz
mailto:martinkova@cs.cas.cz


CONTRIBUTED RESEARCH ARTICLES 324

BayesMallows: An R Package for the
Bayesian Mallows Model
by Øystein Sørensen, Marta Crispino, Qinghua Liu, and Valeria Vitelli

Abstract BayesMallows is an R package for analyzing preference data in the form of rankings with
the Mallows rank model, and its finite mixture extension, in a Bayesian framework. The model is
grounded on the idea that the probability density of an observed ranking decreases exponentially with
the distance to the location parameter. It is the first Bayesian implementation that allows wide choices
of distances, and it works well with a large amount of items to be ranked. BayesMallows handles
non-standard data: partial rankings and pairwise comparisons, even in cases including non-transitive
preference patterns. The Bayesian paradigm allows coherent quantification of posterior uncertainties
of estimates of any quantity of interest. These posteriors are fully available to the user, and the package
comes with convienient tools for summarizing and visualizing the posterior distributions.

Introduction

Preference data are usually collected when individuals are asked to rank a set of items according to a
certain preference criterion. The booming of internet-related activities and applications in recent years
has led to a rapid increase of the amount of data that have ranks as their natural scale, however often
in the form of partial or indirect rankings (pairwise preferences, ratings, clicks). The amount of readily
available software handling preference data has consequently increased consistently in the last decade
or so, but not many packages are flexible enough to handle all types of data mentioned above. The
typical tasks when analyzing preference data are rank aggregation, classification or clustering, and
prediction, where the latter task refers to the estimation of the individual rankings of the assessors
when completely or partially missing. These tasks can be addressed either via model-based inference
or via heuristic machine learning algorithms, with or without uncertainty quantification. However,
very few methods allow handling diverse data types, combining several inferential tasks with proper
propagation of the uncertainties, while also providing individualized predictions. Our proposal
goes exactly in this direction, thus making the scopes of BayesMallows broad when it comes to data
handling and individual-level inference.

The R package BayesMallows is the first software conceived to answer the needs mentioned
above in a unified framework: it implements full Bayesian inference for ranking data, and performs
all of the tasks above in the framework of the Bayesian Mallows model (BMM) (Mallows, 1957; Vitelli
et al., 2018). More specifically, BayesMallows allows for data in the forms of complete rankings,
partial rankings, as well as pairwise comparisons, including the case where some comparisons are
inconsistent. In these situations, it provides all Bayesian inferential tools for rank modeling with
the BMM: it performs rank aggregation (estimation of a consensus ranking of the items), it can
cluster together the assessors providing similar preferences (estimating both cluster specific model
parameters, and individual cluster assignments, with uncertainty), it performs data augmentation for
estimating the latent assessor-specific full ranking of the items in all missing data situations (partial
rankings, pairwise preferences). The latter in particular, i.e., the possibility of predicting individual
preferences for unranked items, enables the model to be used as a probabilistic recommender system.
BayesMallows also enlarges the pool of distances that can be used in the Mallows model, and it
supports the rank distances most used in the literature: Spearman’s footrule (henceforth footrule),
Spearman’s rank correlation (henceforth Spearman), Cayley, Hamming, Kendall, and Ulam distances
(we refer to Diaconis, 1988; Marden, 1995, for details on these). Finally, BayesMallows implements the
Iterative Proportional Fitting Procedure (IPFP) algorithm for computing the partition function for the
Mallows model (MM) (Mukherjee, 2016) and the importance sampling algorithm described in Vitelli
et al. (2018). In addition to being used in the MM, these functions may be of interest in their own right.

Comparing with other available inferential software, we notice that not many packages allow for
such flexibility, very few in combination with full Bayesian inference, and none when using the MM as
outlined in Section 4 below. Often machine learning approaches focus on either rank aggregation (i.e.,
consensus estimation), or individual rank prediction, while BayesMallows handles both. Since the
BMM is fully Bayesian, all posterior quantities of interest are automatically available from BayesMal-
lows for the first time for the MM. In addition, the package also has tools for visualizing posterior
distributions, and hence, posterior quantities as well as their associated uncertainties. Uncertainty
quantification is often critical in real applications: for recommender systems, the model should not
spam the users with very uncertain recommendations; when performing subtype identification for
cancer patients, a very uncertain cluster assignment might have serious consequences for the clinical

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=BayesMallows


CONTRIBUTED RESEARCH ARTICLES 325

practice, for example in treatment choice. The package also works well with a fairly large number of
items, thanks to computational approximations and efficient programming. In conclusion, BayesMal-
lows provides the first fully probabilistic inferential tool for the MM with many different distances. It
is flexible in the types of data it handles, and computationally efficient. We therefore think that this
package will gain popularity, and prove its usefulness in many practical situations, many of which we
probably cannot foresee now.

The paper is organized as follows. The BMM for ranking data is briefly reviewed in Section 2,
as well as its model extensions to different data types and to mixtures. Section 3 includes details on
the implementation of the inferential procedure. For a thorough discussion of both the model and its
implementation we refer interested readers to Vitelli et al. (2018). An overview of existing R packages
implementing the Mallows model (MM) is given in Section 4. The use of the BayesMallows package
is presented, in the form of three case studies, in Sections 5, 6, and 7. Section 8 concludes the paper,
also discussing model extensions that will come with new releases of the package.

Background: the Bayesian Mallows model for rankings

In this section we give the background for understanding the functions in the BayesMallows package.
More details can be found in Vitelli et al. (2018) and Liu et al. (2019). The section is organized as
follows: we first clarify the notations that we will use throughout the paper (Section 2.1). We then
briefly describe the BMM for complete ranking data (Section 2.2), also focusing on the relevance of the
choice of distance (Section 2.3). The last two sections focus on model extensions: partial and pairwise
data (Section 2.4), non-transitive pairwise comparisons (Section 2.5), and mixtures (Section 2.6).

Notation

Let us denote with A = {A1, ..., An} the finite set of labeled items to be ranked, and with Pn the space
of n-dimensional permutations. A complete ranking of n items is then a mapping R : A → Pn that
attributes a rank Ri ∈ {1, ..., n} to each item, according to some criterion. We here denote a generic
complete ranking by R = (R1, ..., Rn), where Ri is the rank assigned to item Ai. Given a pair of
items {Ai, Ak}, we denote a pairwise preference between them as (Ai ≺ Ak), meaning that item Ai is
preferred to item Ak. Note the intimate relation that exists between a ranking and pairwise preferences.
Given a full ranking R ∈ Pn, it is immediate to evince all the possible n (n− 1) /2 pairwise preferences
between the items taken in pairs, since the item in the pair having the lower rank is the preferred one:

(At1 ≺ At2 ) ⇐⇒ Rt1 < Rt2 , t1, t2 = 1, ..., n, t1 6= t2.

Conversely, obtaining a full ranking from a set of pairwise preferences is not straightforward. Pairwise
preference data are typically incomplete, meaning that not all pairwise preferences necessary to
determine each individual ranking are present. They can contain non-transitive patterns, that is, one
or more pairwise preferences contradict what is implied by other pairwise preferences. In this package
we can handle partial and possibly non-transitive pairwise preferences.

The BMM for Complete Rankings

The MM for ranking data (Mallows, 1957) specifies the probability density for a ranking r ∈ Pn as
follows

P (r|α, ρ) =
1

Zn (α)
exp

[
− α

n
d (r, ρ)

]
1Pn (r) (1)

where ρ ∈ Pn is the location parameter representing the consensus ranking, α ≥ 0 is the scale
parameter (precision), Zn (α) is the normalizing function (or partition function), d (·, ·) is a right-
invariant distance among rankings (Diaconis, 1988), and 1Pn (r) is an indicator function for the set Pn
which equals one when r ∈ Pn and zero otherwise.

In the complete data case, N assessors have provided complete rankings of the n items in A
according to some criterion, yielding the permutation Rj =

(
R1j, . . . , Rnj

)
for assessor j, j = 1, . . . , N.

The likelihood of the N observed rankings R1, . . . , RN , assumed conditionally independent given α
and ρ, is

P (R1, . . . , RN |α, ρ) =
1

Zn (α)
N exp

− α

n

N

∑
j=1

d
(

Rj, ρ
) N

∏
j=1

1Pn

(
Rj

)
. (2)

According to the BMM introduced in Vitelli et al. (2018), prior distributions have to be elicited on

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 326

every parameter of interest. A truncated exponential prior distribution was specified for α

π (α|λ) =
λ exp (−λα) 1[0,αmax] (α)

1− exp (−λαmax)
, (3)

where λ is a rate parameter, small enough to ensure good prior dispersion, and αmax is a cutoff, large
enough to cover reasonable α values. A uniform prior π (ρ) on Pn was assumed for ρ. It follows that
the posterior distribution for α and ρ is

P (α, ρ|R1, . . . , RN) ∝
1Pn (ρ)

Zn (α)
N exp

− α

n

N

∑
j=1

d
(

Rj, ρ
)
− λα

 1[0,αmax] (α) . (4)

Inference on the model parameters is based on a Metropolis-Hastings (M-H) Markov Chain Monte
Carlo (MCMC) algorithm, described in Vitelli et al. (2018). Some details relevant for a correct use of
this package are also given in Section 3.1.

Distance measures and partition function

The partition function Zn (α) in (1), (2) and (4) does not depend on the latent consensus ranking ρ
when the distance d (·, ·) is right-invariant, meaning that it is unaffected by a relabelling of the items
(Diaconis, 1988). Right-invariant distances play an important role in the MM, and BayesMallows
only handles right-invariant distances. The choice of distance affects the model fit to the data and
the results of the analysis, and is crucial also because of its role in the partition function computation.
Some right-invariant distances allow for analytical computation of the partition function, and for this
reason they have become quite popular. In particular, the MM with Kendall (Meilǎ and Chen, 2010; Lu
and Boutilier, 2014), Hamming (Irurozki et al., 2014) and Cayley (Irurozki et al., 2016b) distances have
a closed form of Zn (α) due to Fligner and Verducci (1986). There are however important and natural
right-invariant distances for which the computation of the partition function is NP-hard, in particular
the footrule (l1) and the Spearman (l2) distances. For precise definitions of all distances involved in the
MM we refer to Marden (1995). BayesMallows handles the footrule, Spearman, Cayley, Hamming,
Kendall, and Ulam distances.

Partial rankings and transitive pairwise comparisons

When complete rankings of all items are not readily available, the BMM can still be used by applying
data augmentation techniques. Partial rankings can occur because ranks are missing at random,
because the assessors have only ranked their top-k items, or because they have been presented with
a subset of items. In more complex situations, data do not include ranks at all, but the assessors
have only compared pairs of items and given a preference between the two. The Bayesian data
augmentation scheme can still be used to handle such pairwise comparison data, thus providing a
solution that is fully integrated into the Bayesian inferential framework. The following paragraphs
provide a summary of Sections 4.1 and 4.2 of Vitelli et al. (2018), which we refer to for details.

Let us start by considering the case of top-k rankings. Suppose that each assessor j has chosen a
set of preferred items Aj ⊆ A, which were given ranks from 1 to nj = |Aj|. Now Rij ∈ {1, . . . , nj}
if Ai ∈ Aj, while for Ai ∈ Ac

j , Rij is unknown, except for the constraint Rij > nj, j = 1, . . . , N. The

augmented data vectors R̃1, . . . , R̃N are introduced in the model to include the missing ranks, which
are estimated as latent parameters. Let Sj = {R̃j ∈ Pn : R̃ij = Rij if Ai ∈ Aj}, j = 1, . . . , N be the set
of possible augmented random vectors, including the ranks of the observed top-nj items together with
the unobserved ranks, which are assigned a uniform prior on the permutations of {nj + 1, . . . , n}. The
goal is to sample from the posterior distribution

P (α, ρ|R1, . . . , RN) = ∑
R̃1∈S1

· · · ∑
R̃N∈SN

P
(
α, ρ, R̃1, . . . , R̃N |R1, . . . , RN

)
. (5)

The augmentation scheme amounts to alternating between sampling α and ρ given the current values
of the augmented ranks using the posterior given in (4), and sampling the augmented ranks given
the current values of α and ρ. For the latter task, once α, ρ and the observed ranks R1, . . . , RN are
fixed, one can see that R̃1, . . . , R̃N are conditionally independent, and that each R̃j only depends
on the corresponding Rj. As a consequence, the update of new augmented vectors is performed
independently, for each j = 1, . . . , N.

The above procedure can also handle more general situations where missing rankings are not
necessarily the bottom ones, and where each assessor is asked to provide the mutual ranking of some

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 327

possibly random subset Aj ⊆ A consisting of nj ≤ n items. Note that the only difference from the
previous formulation is that each latent rank vector R̃j takes values in the set

Sj =
{

R̃j ∈ Pn :
(

Ri1 j < Ri2 j

)
∧
(

Ai1 , Ai2 ∈ Aj

)
⇒ R̃i1 j < R̃i2 j

}
.

Also in this case the prior for R̃j is assumed uniform on Sj.

In the case of pairwise comparison data, let us call Bj the set of all pairwise preferences stated by
assessor j, and let Aj be the set of items appearing at least once in Bj. Note that the items in Aj are
not necessarily fixed to a given rank but may only be given some partial ordering. For the time being,
we assume that the observed pairwise orderings in Bj are transitive, i.e., mutually compatible, and

define by tc
(
Bj

)
the transitive closure of Bj, which contains all pairwise orderings of the elements in

Aj induced by Bj. The model formulation remains the same as in the case of partial rankings, with
the prior for the augmented data vectors R̃1, . . . , R̃N being uniform on the set Sj of rankings that are
compatible with the observed data.

Non-transitive pairwise comparisons

It can happen in real applications that individual pairwise comparison data are non-transitive, that
is, they may contain a pattern of the form x ≺ y , y ≺ z but z ≺ x. This is typically the case of data
collected from internet user activities, when the pool of items is very large: non-transitive patterns
can arise for instance due to assessors’ inattentiveness, uncertainty in their preferences, and actual
confusion, even when one specific criterion for ranking is used. Another frequent situation is when
the number of items is not very large, but the items are perceived as very similar by the assessors. This
setting is discussed in Crispino et al. (2019), where the model for transitive pairwise comparisons of
Section 2.4 is generalized to handle situations where non-transitivities in the data occur. Note that
the kind of non-transitivity that is considered in Crispino et al. (2019) considers only the individual
level preferences. A different type of non-transitivity, which we do not consider here, arises when
aggregating preferences across assessors, as under Condorcet (Marquis of Condorcet, 1785) or Borda
(de Borda, 1781) voting rules.

The key ingredient of this generalization consists of adding one layer of latent variables to the
model hierarchy, accounting for the fact that assessors can make mistakes. The main assumption
is that the assessor makes pairwise comparisons based on her latent full rankings R̃. A mistake is
defined as an inconsistency between one of the assessor’s pairwise comparisons and R̃. Suppose each
assessor j = 1, . . . , N has assessed Mj pairwise comparisons, collected in the set Bj, and assume the
existence of latent ranking vectors R̃j, j = 1, . . . , N. Differently from Section 2.4, since Bj is allowed
to contain non-transitive pairwise preferences, the transitive closure of Bj is not defined, and the
posterior density (5) cannot be evaluated. In this case, the posterior takes the form,

P (α, ρ|B1, ...,BN) = ∑
R̃1∈Pn

· · · ∑
R̃N∈Pn

P
(
α, ρ, R̃1, ..., R̃N |B1, ...,BN

)
=

= ∑
R̃1∈Pn

· · · ∑
R̃N∈Pn

P(α, ρ|R̃1, ..., R̃N)P
(

R̃1, ..., R̃N |B1, ...,BN
) (6)

where the term P
(

R̃1, ..., R̃N |B1, ...,BN
)

models the presence of mistakes in the data, while in the case
of transitive pair comparisons it was implicitly assumed equal to 1 if each augmented ranking R̃j was
compatible with the partial information contained in Bj, and 0 otherwise.

Two models for (6) are considered in Crispino et al. (2019): the Bernoulli model, which accounts
for random mistakes, and the Logistic model, which lets the probability of making a mistake depend
on the similarity of the items being compared. The Bernoulli model states that:

P
(

R̃1, ..., R̃N |θ,B1, ...,BN
)

∝ θM (1− θ)∑j Mj−M , θ ∈ [0, 0.5) (7)

where M counts the number of times the observed preferences contradict what is implied by the
ranking R̃j, Mj is the number of pairwise comparisons reported by assessor j, and the parameter θ is
the probability of making a mistake in a single pairwise preference. θ is a priori assigned a truncated
Beta distribution on the interval [0, 0.5) with given hyper-parameters κ1 and κ2, conjugate to the
Bernoulli model (7). The Logistic model is a generalization of (7) where, instead of assigning a constant
value θ to the probability of making a mistake, it depends on the distance between the ranks of the
two items under comparison. In Crispino et al. (2019) the Logistic model gave results very similar
to the Bernoulli model, and currently only the Bernoulli model is available in BayesMallows. The
sampling scheme is similar to the one used for the case of transitive pairwise preferences, apart from
an additional step for updating θ, and the augmentation scheme for R̃j, which is slightly different. We

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 328

refer to Crispino et al. (2019) for details.

Clustering

The assumption, implicit in the discussion so far, that there exists a unique consensus ranking shared
by all assessors is unrealistic in most real applications: the BMM thus handles the case where the
rankings provided by all assessors can be modeled as a finite mixture of MMs. In the following brief
discussion we assume that the data consist of complete rankings, but BayesMallows can fit a mixture
based on any kinds of preference data described so far. See Section 4.3 of Vitelli et al. (2018) for details.

Let z1, . . . , zN ∈ {1, . . . , C} assign each assessor to one of C clusters, and let the rankings within
each cluster c ∈ {1, . . . , C} be described by an MM with parameters αc and ρc. The likelihood of the
observed rankings R1, . . . , RN is given by

P
(

R1, . . . , RN

∣∣∣ {ρc, αc}c=1,...,C ,
{

zj

}
j=1,...,N

)
=

N

∏
j=1

1Pn

(
Rj

)
Zn

(
αzj

) exp
[
−

αzj

n
d
(

Rj, ρzj

)]
,

where conditional independence is assumed across the clusters. We also assume independent truncated
exponential priors for the scale parameters and independent uniform priors for the consensus rankings.
The cluster labels z1, . . . , zN are a priori assumed conditionally independent given the clusters mixing
parameters τ1, ..., τC, and are assigned a uniform multinomial. Finally τ1, . . . , τC (with τc ≥ 0, c =

1, . . . , C and ∑C
c=1 τc = 1) are assigned the standard symmetric Dirichlet prior of parameter Ψ, thus

implying a conjugate scheme. The posterior density is then given by

P
(
{ρc, αc, τc}C

c=1 ,
{

zj

}N

j=1

∣∣∣R1, . . . , RN

)
∝

[
C

∏
c=1

e−λαc τΨ−1
c

]  N

∏
j=1

τzj e
−

αzj
n d
(

Rj ,ρzj

)
Zn

(
αzj

)
 . (8)

Computational considerations

In this section we briefly give some additional details regarding the implementation of the models
described in Section 2. The BMM implementation is thoroughly described in Vitelli et al. (2018).

Details on the MCMC procedures

In order to obtain samples from the posterior density of equation (4), BayesMallows implements
an MCMC scheme iterating between (i) updating ρ and (ii) updating α (Algorithm 1 of Vitelli et al.,
2018). The leap-and-shift proposal distribution, which is basically a random local perturbation of
width L of a given ranking, is used for updating ρ in step (i). The L parameter of the leap-and-shift
proposal controls how far the proposed ranking is from the current one, and it is therefore linked to
the acceptance rate. The recommendation given in Vitelli et al. (2018) is to set it to L = n/5, which
is also the default value in BayesMallows, but the user is allowed to choose a different value. For
updating α in step (ii), a log-normal density is used as proposal, and its variance σ2

α can be tuned to
obtain a desired acceptance rate.

As mentioned in Section 2.4, the MCMC procedure for sampling from the posterior densities
corresponding to the partial data cases (Algorithm 3 of Vitelli et al., 2018) has an additional M-H step

to account for the update of the augmented data rankings
{

R̃j

}N

j=1
. In the case of partial rankings,

for updating the augmented data R̃j, j = 1, ..., N we use a uniform proposal on the set of rankings
compatible with the partial data, Sj. In the case of pairwise preferences, due to the increased sparsity
in the data, we instead implemented a modified parameter-free leap-and-shift proposal distribution,
which proposes a new augmented ranking by locally permuting the ranks in R̃j within the constraints
given by Bj (Vitelli et al., 2018, Section 4.2). The generalization to non-transitive pairwise comparisons,
outlined in Section 4 of Crispino et al. (2019), requires further considerations. First, in the M-H step
for updating the augmented data rankings, the modified parameter-free leap-and-shift proposal has
to be replaced by a Swap proposal, whose tuning parameter L? is the maximum allowed distance
between the ranks of the swapped items. Second, the Bernoulli model for mistakes makes it necessary
to add a a Gibbs step for the update of θ. The MCMC algorithm for sampling from the mixture model
posterior (8) (Algorithm 2 of Vitelli et al., 2018) alternates between updating {ρc, αc}C

c=1 in an M-H

step, and
{

τc, zj

}C,N

c=1,j=1
in a Gibbs sampling step, in addition to the necessary M-H steps for data

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 329

50 items 200 items 400 items

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

1250

1500

1750

2000

400

500

600

700

800

25

50

75

100

125

150

α

lo
g(

Z
) Exact

IPFP

IS

Figure 1: Estimates of the log partition function for the BMM with footrule distance computed using
exact calculation (only in the case of 50 items), asymptotic estimation with the IPFP algorithm, and
Monte Carlo simulation with the IS algorithm. Exact and IS estimates are perfectly overlapping in the
case of 50 items. The bias of the IPFP estimates decreases when the number of items increases.

augmentation or estimation of error models, as outlined above.

Partition Function

When the distance in the BMM is footrule or Spearman, the partition function Zn (·) does not have a
closed form. In these situations BayesMallows allows for three different choices, which the user may
employ depending on the value of n: (a) exact calculation, (b) Importance Sampling (IS), and (c) the
asymptotic approximation due to Mukherjee (2016).

The package contains integer sequences for exact calculation of the partition function with footrule
distance for up to n = 50 items, and with the Spearman distance for up to n = 14 items (see Vitelli
et al., 2018, Section 2.1). These sequences are downloaded from the On-Line Encyclopedia of Integer
Sequences (Sloane, 2017).

The IS procedure can be used to compute an off-line approximation Ẑn (α) of Zn (α) for the specific
value of n which is needed in the application at hand. The IS estimate Ẑn (α) is computed on a grid of
α values provided by the user, and then a smooth estimate obtained via a polynomial fit is returned to
the user, who can also select the degree of the polynomial function. Finally, the user should set the
number K of IS iterations, and we refer to Vitelli et al. (2018) for guidelines on how to select a large
enough value for K. The procedure might be time-consuming, depending on K, n, and on how the
grid for α is specified. In our experience, values of n larger than approximately 100 might require K to
be as large as 108 in order for the IS to provide a good estimate, and hence a long computing time.

The IPFP algorithm (Mukherjee, 2016, Theorem 1.8) yields a numeric evaluation of Zlim (·), the
asymptotic approximation to Zn(·). In this case the user needs to specify two parameters: the number
of iterations m to use in the IPFP, and the number of grid points K of the grid approximating the
continuous domain where the limit is computed. Values of m and K have been suggested by Mukherjee
(2016), and we refer to the Supplementary Material of Vitelli et al. (2018) for more details.

A simulation experiment was conducted comparing the methods for estimating log (Z (α)) with
footrule distance for α = 0.1, 0.2, . . . , 20. Let log (Z (α))K denote the IS estimate obtained with K
iterations, and define the absolute relative difference between two IS estimates obtained with K2 and
K1 iterations as

ρ(K2, K1) = maxα

{∣∣log(Z(α))K2 − log(Z(α))K1
∣∣∣∣log(Z(α))K1

∣∣
}

.

The IS algorithm was run with 105, 106, and 107 iterations, and we obtained ρ
(
106, 105) < 0.3% and

ρ
(
107, 106) < 0.15%, suggesting that using K = 107 yields low Monte Carlo variation over this range

of α. The IPFP algorithm was used to estimate log (Zlim (α)), with K = 103 and m = 103. The results
are summarized in Figure 1, in which also exact computation is included in the case of 50 items. With
50 items, the IS estimate perfectly overlaps the exact estimate, while the asymptotic estimate has a bias
that increases with increasing α. As expected, the bias of the asymptotic estimate decreases when the
number of items increases, as this brings it closer to the asymptotic limit.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 330

Sampling from the Bayesian Mallows Model

To obtain random samples from the MM with Cayley, Hamming, Kendall, or Ulam distance and fixed
α and ρ, we suggest using the PerMallows (Irurozki et al., 2016a) package, which is optimized for this
task. We instead provide a procedure for sampling from the MM with footrule and Spearman. The
procedure to generate a random sample of size N from the MM is straightforward, and described in
Appendix C of Vitelli et al. (2018). Basically we run a Metropolis-Hastings algorithm with fixed ρ and
α and accept/reject the sample based on its acceptance probability. We then take N rankings with a
large enough interval between each of them to achieve independence.

Packages implementing the Mallows model

This section gives an overview of existing packages for fitting the MM.

• PerMallows is the package that comes closest in functionality to BayesMallows. It contains
functions for learning and sampling from the frequentist versions of the MM and generalized
Mallows model (GMM) (Fligner and Verducci, 1986). Compared to BayesMallows, it lacks
support for footrule or Spearman distance, it is not Bayesian, and does not compute uncertainty
ranges for the estimated parameters. In addition PerMallows handles only complete rankings,
and does not provide functionality for computation of mixture models. According to Irurozki
et al. (2016a, Table 1), computing the maximum likelihood estimates (MLE) of α and ρ using
the function lmm is possible when n < 80 for Kendall, n < 250 for Cayley, n < 90 for Hamming
and n < 100 for Ulam. Our experiments suggest that these estimates are conservative, and that
even larger numbers of items are fit rapidly. Hence, PerMallows seems to be a good choice
for modeling with complete data without clusters, when the supported distance measures
are appropriate and uncertainty estimates are not sought. PerMallows also has very efficient
functions for sampling from the MM with Cayley, Hamming, Kendall, and Ulam distances.

• pmr (Lee and Yu, 2013) provides summary statistics, visualization, and model fitting tools for
complete ranking data in the MM, as well as other models. The function dbm returns the MLE
of α together with its variance. The MLE of ρ, however, is not returned, but printed to the
console, and no uncertainty estimates are given. Internally, dbm generates a matrix of size n!× n
containing all possible permutations of the n items. As a result, it quickly runs into memory
issues. In our tests, pmr was not able to handle a ranking dataset with n = 10 items.

• rankdist (Qian, 2018) implements distance-based probability models for ranking data as de-
scribed in Alvo and Yu (2014), returning MLEs for α and ρ, but no uncertainty estimates. The
package handles a large number of distances and supports mixture models, but in our experi-
ments a warning was issued when using mixtures with all distances except Kendall. rankdist
also implements the GMM (Fligner and Verducci, 1986). However, for Cayley, footrule, Ham-
ming, and Spearman distances, it generates an n!× n matrix internally, causing our R session
to crash with n ≥ 10 items, hence limiting its applicability. For Kendall, on the other hand,
rankdist appears to work fine both with a large number of items, and with mixtures.

BayesMallows provides many new functionalities not implemented in these packages, as will be
illustrated in the use cases of the following three sections.

Analysis of complete rankings with BayesMallows

We illustrate the case of complete rankings with the potato datasets described in Liu et al. (2019,
Section 4). In short, a bag of 20 potatoes was bought, and 12 assessors were asked to rank the potatoes
by weight, first by visual inspection, and next by holding the potatoes in hand. These datasets are
available in BayesMallows as matrices with names potato_weighing and potato_visual, respectively.
The true ranking of the potatoes’ weights is available in the vector potato_true_ranking. In general,
compute_mallows expects ranking datasets to have one row for each assessor and one column for each
item. Each row has to be a proper permutation, possibly with missing values. We are interested in the
posterior distribution of both the level of agreement between assessors, as described by α, and in the
latent ranking of the potatoes, as described by ρ. We refer to the attached replication script for random
number seeds for exact reproducibility.

First, we do a test run to check convergence of the MCMC algorithm, and then get trace plots with
assess_convergence.

bmm_test <- compute_mallows(potato_visual)
assess_convergence(bmm_test)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=PerMallows
https://CRAN.R-project.org/package=pmr
https://CRAN.R-project.org/package=rankdist


CONTRIBUTED RESEARCH ARTICLES 331

0

5

10

0 500 1000 1500 2000
Iteration

α

(a) Trace of α.

5

10

15

20

0 500 1000 1500 2000
Iteration

ρ

P1

P2

P3

P4

P5

(b) Trace of ρ.

Figure 2: Trace plots of α and ρ for the MCMC algorithm with the potato_visual dataset. The plots
indicating good mixing for both parameters after about 500 iterations.

0.0

0.2

0.4

9 11 13
α

P
os

te
rio

r 
de

ns
ity

Figure 3: Posterior distribution of α with the potato_visual dataset. The posterior mass is symmetri-
cally centered between 9 and 13, with a mean around 11.

By default, assess_convergence returns a trace plot for α, shown in Figure 2a. The algorithm seems
to be mixing well after around 500 iterations. Next, we study the convergence of ρ. To avoid overly
complex plots, we pick potatoes 1− 5 by specifying this in the items argument.

assess_convergence(bmm_test, parameter = "rho", items = 1:5)

The corresponding plot is shown in Figure 2b, illustrating that the MCMC algorithm seems to have
converged after around 1,000 iterations.

From the trace plots, we decide to discard the first 1,000 MCMC samples as burn-in. We rerun the
algorithm to get 500,000 samples after burn-in. The object bmm_visual has S3 class "BayesMallows", so
we plot the posterior distribution of α with plot.BayesMallows.

bmm_visual <- compute_mallows(potato_visual, nmc = 501000)
bmm_visual$burnin <- 1000 # Set burn-in to 1000
plot(bmm_visual) # Use S3 method for plotting

The plot is shown in Figure 3. We can also get posterior credible intervals for α using
compute_posterior_intervals, which returns both highest posterior density intervals (HPDI) and
central intervals in a tibble (Müller and Wickham, 2018). BayesMallows uses tibbles rather than
data.frames, but both are accepted as function inputs. We refer to tibbles as dataframes henceforth.

compute_posterior_intervals(bmm_visual, decimals = 1L)

# A tibble: 1 x 6
parameter mean median conf_level hpdi central_interval
<ch <dbl> <dbl> <ch <ch <chr>

1 alpha 10.9 10.9 95 % [9.4,12.3] [9.5,12.3]

Next, we can go on to study the posterior distribution of ρ.

plot(bmm_visual, parameter = "rho", items = 1:20)

If the items argument is not provided, and the number of items exceeds five, five items are picked at
random for plotting. To show all potatoes, we explicitly set items = 1:20. The corresponding plots
are shown in Figure 4.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 332

P16 P17 P18 P19 P20

P11 P12 P13 P14 P15

P6 P7 P8 P9 P10

P1 P2 P3 P4 P5

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

rank

P
os

te
rio

r 
pr

ob
ab

ili
ty

Figure 4: Posterior distribution of latent ranks ρ with the potato_visual dataset. Most potatoes have
highly peaked posterior distributions, indicating low uncertainty about their ranking.

Jumping over the scale parameter

Updating α in every step of the MCMC algorithm may not be necessary, as the number of posterior
samples typically is more than large enough to obtain good estimates of its posterior distribution. With
the alpha_jump argument, we can tell the MCMC algorithm to update α only every alpha_jump-th
iteration. To update α every 10th update of ρ, we do

bmm <- compute_mallows(potato_visual, nmc = 501000, alpha_jump = 10)

On a MacBook Pro 2.2 GHz Intel Core i7 running R version 3.5.1, the above call ran in 2.0 seconds
on average over 1,000 replications using microbenchmark (Mersmann, 2018), while it took 4.2 sec-
onds using the default value alpha_jump = 1, i.e., updating α less frequently more than halved the
computing time.

Other distance metrics

By default, compute_mallows uses the footrule distance, but the user can also choose to use Cayley,
Kendall, Hamming, Spearman, or Ulam distance. Running the same analysis of the potato data with
Spearman distance is done with the command

bmm <- compute_mallows(potato_visual, metric = "spearman", nmc = 501000)

For the particular case of Spearman distance, BayesMallows only has integer sequences for computing
the exact partition function with 14 or fewer items. In this case a precomputed importance sampling
estimate is part of the package, and used instead.

Analysis of preference data with BayesMallows

Unless the argument error_model to compute_mallows is set, pairwise preference data are assumed to
be consistent within each assessor. These data should be provided in a dataframe with the following
three columns, with one row per pairwise comparison.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark


CONTRIBUTED RESEARCH ARTICLES 333

• assessor is an identifier for the assessor; either a numeric vector containing the assessor index,
or a character vector containing the unique name of the assessor.

• bottom_item is a numeric vector containing the index of the item that was disfavored in each
pairwise comparison.

• top_item is a numeric vector containing the index of the item that was preferred in each pairwise
comparison.

A dataframe with this structure can be given in the preferences argument to compute_mallows.
compute_mallows will generate the full set of implied rankings for each assessor using the function
generate_transitive_closure, as well as an initial ranking matrix consistent with the pairwise
preferences, using the function generate_initial_ranking.

We illustrate with the beach preference data containing stated pairwise preferences between
random subsets of 15 images of beaches, by 60 assessors (Vitelli et al., 2018, Section 6.2). This dataset is
provided in the dataframe beach_preferences.

Transitive closure and initial ranking

We start by generating the transitive closure implied by the pairwise preferences.

beach_tc <- generate_transitive_closure(beach_preferences)

The dataframe beach_tc contains all the pairwise preferences in beach_preferences, with all the
implied pairwise preferences in addition. The latter are preferences that were not specifically stated
by the assessor, but instead are implied by the stated preferences. As a consequence, the dataframe
beach_tc has 2921 rows, while beach_preferences has 1442 rows. Initial rankings, i.e., a set of full
rankings for each assessor that are consistent with the implied pairwise preferences are then generated,
and we set the column names of the initial ranking matrix to "Beach 1", "Beach 2", ..., "Beach 15" in
order have these names appear as labels in plots and output.

beach_init_rank <- generate_initial_ranking(beach_tc)
colnames(beach_init_rank) <- paste("Beach", 1:ncol(beach_init_rank))

If we had not generated the transitive closure and the initial ranking, compute_mallows would do this
for us, but when calling compute_mallows repeatedly, it may save time to have these precomputed and
saved for future re-use. In order to save time in the case of big datasets, the functions for generating
transitive closures and initial rankings from transitive closures can all be run in parallel, as shown in
the examples to the compute_mallows function. The key to the parallelization is that each assessor’s
preferences can be handled independently of the others, and this can speed up the process considerably
with large dataset.

As an example, let us look at all preferences stated by assessor 1 involving beach 2. We use filter
from dplyr (Wickham et al., 2018) to obtain the right set of rows.

library("dplyr")
# All preferences stated by assessor 1 involving item 2
filter(beach_preferences, assessor == 1, bottom_item == 2 | top_item == 2)

# A tibble: 1 x 3
assessor bottom_item top_item

<dbl> <dbl> <dbl>
1 1 2 15

Assessor 1 has performed only one direct comparison involving beach 2, in which the assessor stated
that beach 15 is preferred to beach 2. The implied orderings, on the other hand, contain two preferences
involving beach 2:

# All implied orderings for assessor 1 involving item 2
filter(beach_tc, assessor == 1, bottom_item == 2 | top_item == 2)

assessor bottom_item top_item
1 1 2 6
2 1 2 15

In addition to the statement that beach 15 is preferred to beach 2, all the other orderings stated by
assessor 1 imply that this assessor prefers beach 6 to beach 2.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr


CONTRIBUTED RESEARCH ARTICLES 334

Assessor 1

0 500 1000 1500 2000

4

8

12

Iteration

R
til

de
Beach 2

Beach 6

Beach 15

(a) Beaches 2, 6, and 15 for assessor 1. The ordering of
the traces is always consistent with the constraints set
by assessor 1’s preferences.

Assessor 2

0 500 1000 1500 2000

2.5

5.0

7.5

10.0

12.5

Iteration

R
til

de Beach 1

Beach 15

(b) Beaches 1 and 15 for assessor 2. No orderings be-
tween beaches 1 and 15 are implied by assessor 1’s pref-
erences, and the traces are hence free to cross.

Figure 5: Trace plots of augmented ranks R̃

Convergence diagnostics

As with the potato data, we can do a test run to assess the convergence of the MCMC algorithm.
However, this time we provide the initial rankings beach_init_rank to the rankings argument and the
transitive closure beach_tc to the preferences argument of compute_mallows. We also set save_aug
= TRUE to save the augmented rankings in each MCMC step, hence letting us assess the convergence
of the augmented rankings.

bmm_test <- compute_mallows(rankings = beach_init_rank,
preferences = beach_tc, save_aug = TRUE)

Running assess_convergence for α and ρ shows good convergence after 1000 iterations (not
shown). To check the convergence of the data augmentation scheme, we need to set parameter =
"Rtilde", and also specify which items and assessors to plot. Let us start by considering items 2, 6,
and 15 for assessor 1, which we studied above.

assess_convergence(bmm_test, parameter = "Rtilde",
items = c(2, 6, 15), assessors = 1)

The resulting plot is shown in Figure 5a. It illustrates how the augmented rankings vary, while also
obeying their implied ordering.

By further investigation of beach_tc, we would find that no orderings are implied between beach
1 and beach 15 for assessor 2. With the following command, we create trace plots to confirm this:

assess_convergence(bmm_test, parameter = "Rtilde",
items = c(1, 15), assessors = 2)

The resulting plot is shown in Figure 5b. As expected, the traces of the augmented rankings for beach
1 and 15 for assessor 2 do cross each other, since no ordering is implied between them. Ideally, we
should look at trace plots for augmented ranks for more assessors to be sure that the algorithm is close
to convergence. We can plot assessors 1-8 by setting assessors = 1:8. We also quite arbitrarily pick
items 13-15, but the same procedure can be repeated for other items.

assess_convergence(bmm_test, parameter = "Rtilde",
items = 13:15, assessors = 1:8)

The resulting plot is shown in Figure 6, indicating good mixing.

Posterior distributions

Based on the convergence diagnostics, and being fairly conservative, we discard the first 2,000 MCMC
iterations as burn-in, and take 100,000 additional samples.

bmm_beaches <- compute_mallows(rankings = beach_init_rank, preferences = beach_tc,
nmc = 102000, save_aug = TRUE)

bmm_beaches$burnin <- 2000

The posterior distributions of α and ρ can be studied as shown in the previous sections. Posterior
intervals for the latent rankings of each beach are obtained with compute_posterior_intervals:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 335

Assessor 7 Assessor 8

Assessor 4 Assessor 5 Assessor 6

Assessor 1 Assessor 2 Assessor 3

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000

4

8

12

4

8

12

4

8

12

Iteration

R
til

de

Beach 13

Beach 14

Beach 15

Figure 6: Trace plots of augmented ranks R̃ for beaches 13-15 and assessors 1-8, indicating that the
MCMC algorithm obtains good mixing after a low number of iterations.

compute_posterior_intervals(bmm_beaches, parameter = "rho")

# A tibble: 15 x 7
item parameter mean median conf_level hpdi central_interval
<fct> <chr> <dbl> <dbl> <chr> <chr> <chr>

1 Beach 1 rho 7 7 95 % [7] [6,7]
2 Beach 2 rho 15 15 95 % [15] [15]
3 Beach 3 rho 3 3 95 % [3,4] [3,4]
4 Beach 4 rho 12 12 95 % [11,13] [11,14]
5 Beach 5 rho 9 9 95 % [8,10] [8,10]
6 Beach 6 rho 2 2 95 % [1,2] [1,2]
7 Beach 7 rho 9 8 95 % [8,10] [8,10]
8 Beach 8 rho 12 11 95 % [11,13] [11,14]
9 Beach 9 rho 1 1 95 % [1,2] [1,2]
10 Beach 10 rho 6 6 95 % [5,6] [5,7]
11 Beach 11 rho 4 4 95 % [3,4] [3,5]
12 Beach 12 rho 13 13 95 % [12,14] [12,14]
13 Beach 13 rho 10 10 95 % [8,10] [8,10]
14 Beach 14 rho 13 14 95 % [12,14] [11,14]
15 Beach 15 rho 5 5 95 % [5,6] [4,6]

We can also rank the beaches according to their cumulative probability (CP) consensus (Vitelli et al.,
2018, Section 5.1) and their maximum posterior (MAP) rankings. This is done with the function
compute_consensus, and the following call returns the CP consensus:

compute_consensus(bmm_beaches, type = "CP")

# A tibble: 15 x 3
ranking item cumprob

<dbl> <chr> <dbl>
1 1 Beach 9 0.896
2 2 Beach 6 1
3 3 Beach 3 0.738

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 336

Beach 2

Beach 14

Beach 12

Beach 4

Beach 8

Beach 13

Beach 5

Beach 7

Beach 1

Beach 10

Beach 15

Beach 11

Beach 3

Beach 6

Beach 9

ρ

Ite
m

0 20 40 60
Assessor

0.00

0.25

0.50

0.75

1.00

Figure 7: Probability of being ranked top-3 for each beach in the beach preference example (left) and
the probability that each assessor ranks the given beach among top-3 (right). Beaches 6 and 9 are most
popular overall, but the assessor differ considerably in their preference for these beaches, as can be
seen by the varying pattern of light and dark blue.

4 4 Beach 11 0.966
5 5 Beach 15 0.953
6 6 Beach 10 0.971
7 7 Beach 1 1
8 8 Beach 7 0.528
9 9 Beach 5 0.887
10 10 Beach 13 1.00
11 11 Beach 8 0.508
12 12 Beach 4 0.717
13 13 Beach 12 0.643
14 14 Beach 14 0.988
15 15 Beach 2 1

The column cumprob shows the probability of having the given rank or lower. Looking at the second
row, for example, this means that beach 6 has probability 1 of having latent ranking 2 or lower. Next,
beach 3 has probability 0.738 of having latent rank 3 or lower. This is an example of how the Bayesian
framework can be used to not only rank items, but also to give posterior assessments of the uncertainty
of the rankings. The MAP consensus is obtained similarly, by setting type = "MAP".

Keeping in mind that the ranking of beaches is based on sparse pairwise preferences, we can also
ask: for beach i, what is the probability of being ranked top-k by assessor j, and what is the probability
of having latent rank among the top-k. The function plot_top_k plots these probabilities. By default,
it sets k = 3, so a heatplot of the probability of being ranked top-3 is obtained with the call:

plot_top_k(bmm_beaches)

The plot is shown in Figure 7. The left part of the plot shows the beaches ranked according to their CP
consensus, and the probability P(ρi) ≤ 3 for each beach i. The right part of the plot shows, for each
beach as indicated on the left axis, the probability that assessor j ranks the beach among top-3. For
example, we see that assessor 1 has a very low probability of ranking beach 9 among her top-3, while
assessor 3 has a very high probability of doing this. The function predict_top_k returns a dataframe
with all the underlying probabilities. For example, in order to find all the beaches that are among the
top-3 of assessors 1-5 with more than 90 % probability, we would do:

predict_top_k(bmm_beaches) %>%
filter(prob > 0.9, assessor %in% 1:5)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 337

# A tibble: 6 x 3
# Groups: assessor [4]
assessor item prob

<dbl> <chr> <dbl>
1 1 Beach 11 0.955
2 1 Beach 6 0.997
3 3 Beach 6 0.997
4 3 Beach 9 1
5 4 Beach 9 1.00
6 5 Beach 6 0.979

Note that assessor 2 does not appear in this table, i.e., there are no beaches for which we are at least 90
% certain that the beach is among assessor 2’s top-3.

Clustering with BayesMallows

BayesMallows comes with a set of sushi preference data, in which 5,000 assessors each have ranked a
set of 10 types of sushi (Kamishima, 2003). It is interesting to see if we can find subsets of assessors
with similar preferences. The sushi dataset was analyzed with the BMM by Vitelli et al. (2018), but the
results in that paper differ somewhat from those obtained here, due to a bug in the function that was
used to sample cluster probabilities from the Dirichlet distribution.

Computing mixtures of Mallows distributions

The function compute_mallows_mixtures computes multiple Mallows models with different numbers
of mixture components. It returns a list of models of class BayesMallowsMixtures, in which each list
element contains a model with a given number of mixture components. Its arguments are n_clusters,
which specifies the number of mixture components to compute, an optional parameter cl which can
be set to the return value of the makeCluster function in the parallel package, and an ellipsis (...) for
passing on arguments to compute_mallows.

Hypothesizing that we may not need more than 10 clusters to find a useful partitioning of the
assessors, we start by doing test runs with 1, 4, 7, and 10 mixture components in order to assess
convergence. We set the number of Monte Carlo samples to 5,000, and since this is a test run, we do
not save cluster assignments nor within-cluster distances from each MCMC iteration and hence set
save_clus = FALSE and include_wcd = FALSE. We also run the computations in parallel on four cores,
one for each mixture component.

library("parallel")
cl <- makeCluster(4)
bmm <- compute_mallows_mixtures(n_clusters = c(1, 4, 7, 10),

rankings = sushi_rankings, nmc = 5000,
save_clus = FALSE, include_wcd = FALSE, cl = cl)

stopCluster(cl)

Convergence diagnostics

The function assess_convergence automatically creates a grid plot when given an object of class
BayesMallowsMixtures, so we can check the convergence of α with the command

assess_convergence(bmm)

The resulting plot is given in Figure 8a, showing that all the chains seem to be close to convergence
quite quickly. We can also make sure that the posterior distributions of the cluster probabilities τc,
(c = 1, . . . , C) have converged properly, by setting parameter = "cluster_probs".

assess_convergence(bmm, parameter = "cluster_probs")

The trace plots for each number of mixture components are shown in Figure 8b. Note that with
only one cluster, the cluster probability is fixed at the value 1, while for other number of mixture
components, the chains seem to be mixing well.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=parallel


CONTRIBUTED RESEARCH ARTICLES 338

7 clusters 10 clusters

1 cluster 4 clusters

0 10002000300040005000 0 10002000300040005000

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

1.0

1.2

1.4

1.6

1.8

1

2

3

4

Iteration

α

(a) Trace of α.

7 clusters 10 clusters

1 cluster 4 clusters

0 10002000300040005000 0 10002000300040005000

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.950

0.975

1.000

1.025

1.050

0.0

0.2

0.4

0.6

Iteration

τ c

(b) Trace of τc.

Figure 8: Trace plot of α and τc for the sushi dataset with 1, 4, 7, and 10 mixture components,
respectively. Both trace plots indicate good mixing after a few thousand iterations.

90000

100000

110000

120000

1 2 3 4 5 6 7 8 9 10
Number of clusters

W
ith

in
−

cl
us

te
r 

su
m

 o
f d

is
ta

nc
es

Figure 9: Elbow plot for the sushi mixture models. While it is not entirely clear where the elbow
occurs, we choose the mixture distribution with five clusters.

Deciding on the number of mixtures

Given the convergence assessment of the previous section, we are fairly confident that a burn-in of
5,000 is sufficient. We run 95,000 additional iterations, and try from 1 to 10 mixture components. Our
goal is now to determine the number of mixture components to use, and in order to create an elbow
plot, we set include_wcd = TRUE to compute the within-cluster distances in each step of the MCMC
algorithm. Since the posterior distributions of ρc (c = 1, . . . , C) are highly peaked, we save some
memory by only saving every 10th value of ρ by setting rho_thinning = 10.

cl <- makeCluster(4)
bmm <- compute_mallows_mixtures(n_clusters = 1:10, rankings = sushi_rankings,

nmc = 100000, rho_thinning = 10, save_clus = FALSE,
include_wcd = TRUE, cl = cl)

stopCluster(cl)
plot_elbow(bmm, burnin = 5000) # Create elbow plot

The resulting elbow plot is a notched boxplot (Mcgill et al., 1978; Wickham, 2016) shown in Figure 9, for
which the barely visible upper and lower whiskers represent approximate 95 % confidence intervals.
Although not clear-cut, we see that the within-cluster sum of distances levels off at around 5 clusters,
and hence we choose to use 5 clusters in our model.

Posterior distributions

Having chosen 5 mixture components, we go on to fit a final model, still running 95,000 iterations
after burnin. This time we call compute_mallows and set n_clusters = 5. We also set save_clus =

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 339

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Assessors (1 − 5000)

0.00

0.25

0.50

0.75

Figure 10: Posterior probabilities of assignment to each cluster for each of the 5000 assessors in the
sushi dataset. The scale to the right shows the color coding of probabilities. The blocks of light colors
along the anti-diagonal show the clusters to which the assessors were assigned. Darker colors within
these blocks indicate assessors whose cluster assignment is uncertain.

TRUE and clus_thin = 10 to save the cluster assignments of each assessor in every 10th iteration, and
rho_thinning = 10 to save the estimated latent rank every 10th iteration.

bmm <- compute_mallows(rankings = sushi_rankings, n_clusters = 5, save_clus = TRUE,
clus_thin = 10, nmc = 100000, rho_thinning = 10)

bmm$burnin <- 5000

We can plot the posterior distributions of α and ρ in each cluster using plot.BayesMallows as shown
preivously for the potato data. We can also show the posterior distributions of the cluster probabilities,
using:

plot(bmm, parameter = "cluster_probs")

Using the argument parameter = "cluster_assignment", we can visualize the posterior probability
for each assessor of belonging to each cluster:

plot(bmm, parameter = "cluster_assignment")

The resulting plot is shown in Figure 10. The underlying numbers can be obtained using the function
assign_cluster.

We can find clusterwise consensus rankings using compute_consensus. The following call finds
the CP consensuses, and then uses select from dplyr and spread from tidyr (Wickham and Henry,
2018) to create one column for each cluster. The result is shown in Table 1.

library("tidyr")
compute_consensus(bmm) %>%

select(-cumprob) %>%
spread(key = cluster, value = item)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 shrimp fatty tuna fatty tuna fatty tuna fatty tuna
2 sea eel sea urchin sea eel tuna sea urchin
3 egg salmon roe tuna shrimp shrimp
4 squid sea eel shrimp tuna roll tuna
5 salmon roe tuna tuna roll squid salmon roe
6 fatty tuna shrimp squid salmon roe squid
7 tuna tuna roll egg egg tuna roll
8 tuna roll squid cucumber roll cucumber roll sea eel
9 cucumber roll egg salmon roe sea eel egg

10 sea urchin cucumber roll sea urchin sea urchin cucumber roll

Table 1: CP consensus for each of the clusters found for sushi data.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyr


CONTRIBUTED RESEARCH ARTICLES 340

Note that for estimating cluster specific parameters, label switching is a potential problem that
needs to be handled. BayesMallows ignores label switching issues inside the MCMC, because it has
been shown that this approach is better for ensuring full convergence of the chain (Jasra et al., 2005;
Celeux et al., 2000). MCMC iterations can be re-ordered after convergence is achieved, for example
by using the implementation of Stephens’ algorithm (Stephens, 2000) provided by the R package
label.switching (Papastamoulis, 2016). A full example of how to assess label switching after running
compute_mallows is provided by running the following command:

help("label_switching")

For the sushi data analyzed in this section, no label switching is detected by Stephen’s algorithm.

Discussion

In this paper we discussed the methodological background and computational strategies for the
BayesMallows package, implementing the inferential framework for the analysis of preference data
based on the Bayesian Mallows model, as introduced in Vitelli et al. (2018). The package aims at
providing a general probabilistic tool, capable of performing various inferential tasks (estimation,
classification, prediction) with a proper uncertainty quantification. Moreover, the package widens the
applicability of the Mallows model, by providing reliable algorithms for approximating the associated
partition function, which has been the bottleneck for a successful use of this general and flexible model
so far. Finally, it handles a variety of preference data types (partial rankings, pairwise preferences),
and it could possibly handle many others which can lie in the above mentioned categories (noisy
continuous measurements, clicking data, ratings).

One of the most important features of the BayesMallows package is that, despite implementing a
Bayesian model, and thus relying on MCMC algorithms, its efficient implementation makes it possible
to manage large datasets. The package can easily handle up to hundreds of items, and thousands of
assessors; an example is the Movielens data analyzed in Section 6.4 of (Vitelli et al., 2018). By using
the log-sum-exp trick, the implementation of the importance sampler is able to handle at least ten
thousand items without numerical overflow. We believe that all these features make the package a
unique resource for fitting the Mallows model to large data, with the benefits of a fully probabilistic
interpretation.

Nonetheless, we also recognize that the BayesMallows package can open the way for further
generalizations. The Bayesian Mallows model for time-varying rankings that has been introduced
in Asfaw et al. (2017) will be considered for a future release. Some further extensions which we
might consider to implement in the BayesMallows in the future include: fitting an infinite mixture of
Mallows models for automatically performing model selection; allowing for a non-uniform prior for ρ;
performing automatic item selection; estimating the assessors’ quality as rankers; and finally including
covariates, both on the assessors and on the items. In addition, since the data augmentation steps in
the MCMC algorithm are independent across assessors, potential speedup in the case of missing data
or pairwise preferences can be obtained by updating the augmented data in parallel, and this is likely
to be part of a future package update.

Acknowledgments

The authors would like to thank Arnoldo Frigessi and Elja Arjas for fruitful discussions.

Bibliography
M. Alvo and P. L. Yu. Statistical Methods for Ranking Data. Frontiers in Probability and the Statistical

Sciences. Springer, New York, NY, USA, 2014. URL https://doi.org/10.1007/978-1-4939-1471-5.
[p330]

D. Asfaw, V. Vitelli, Ø. Sørensen, E. Arjas, and A. Frigessi. Time-varying rankings with the Bayesian
Mallows model. Stat, 6(1):14–30, 2017. URL https://doi.org/10.1002/sta4.132. [p340]

G. Celeux, M. Hurn, and C. Robert. Computational and inferential difficulties with mixture posterior
distribution. Journal of the American Statistical Association, 95(451):957–970, 2000. URL https:
//doi.org/10.2307/2669477. [p340]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=label.switching
https://doi.org/10.1007/978-1-4939-1471-5
https://doi.org/10.1002/sta4.132
https://doi.org/10.2307/2669477
https://doi.org/10.2307/2669477


CONTRIBUTED RESEARCH ARTICLES 341

M. Crispino, E. Arjas, V. Vitelli, N. Barrett, and A. Frigessi. A Bayesian Mallows approach to nontran-
sitive pair comparison data: How human are sounds? The Annals of Applied Statistics, 13(1):492–519,
Mar. 2019. URL https://doi.org/10.1214/18-aoas1203. [p327, 328]

J. C. de Borda. Mémoire sur les élections au scrutin, histoire de l’académie royale des sciences. Paris,
France, 1781. [p327]

P. Diaconis. Group Representations in Probability and Statistics, volume 11 of Lecture Notes - Monograph
Series. Institute of Mathematical Statistics, Hayward, CA, USA, 1988. [p324, 325, 326]

M. A. Fligner and J. S. Verducci. Distance based ranking models. Journal of the Royal Statistical
Society: Series B (Methodological), 48(3):359–369, July 1986. URL https://doi.org/10.1111/j.2517-
6161.1986.tb01420.x. [p326, 330]

E. Irurozki, B. Calvo, and A. Lozano. Sampling and learning the Mallows and weighted Mallows
models under the Hamming distance. Technical Report, 2014. URL https://addi.ehu.es/handle/
10810/11240. [p326]

E. Irurozki, B. Calvo, and J. A. Lozano. PerMallows: An R Package for Mallows and Generalized
Mallows Models. Journal of Statistical Software, 71(12), 2016a. URL https://doi.org/10.18637/jss.
v071.i12. [p330]

E. Irurozki, B. Calvo, and J. A. Lozano. Sampling and learning Mallows and generalized Mallows
models under the Cayley distance. Methodology and Computing in Applied Probability, 20(1):1–35, June
2016b. URL https://doi.org/10.1007/s11009-016-9506-7. [p326]

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 20(1):50–67, Feb. 2005. URL
https://doi.org/10.1214/088342305000000016. [p340]

T. Kamishima. Nantonac collaborative filtering: Recommendation based on order responses. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pages 583–588, New York, NY, USA, 2003. ACM. ISBN 1-58113-737-0. URL
https://doi.org/10.1145/956750.956823. [p337]

P. H. Lee and P. L. Yu. An R package for analyzing and modeling ranking data. BMC Medical
Research Methodology, 13(1):65, May 2013. ISSN 1471-2288. doi: 10.1186/1471-2288-13-65. URL
https://doi.org/10.1186/1471-2288-13-65. [p330]

Q. Liu, M. Crispino, I. Scheel, V. Vitelli, and A. Frigessi. Model-based learning from preference data.
Annual Review of Statistics and Its Application, 6(1):329–354, 2019. URL https://doi.org/10.1146/
annurev-statistics-031017-100213. [p325, 330]

T. Lu and C. Boutilier. Effective sampling and learning for Mallows models with pairwise-preference
data. Journal of Machine Learning Research, 15:3783–3829, 2014. [p326]

C. L. Mallows. Non-null ranking models. i. Biometrika, 44(1-2):114–130, 1957. URL https://doi.org/
10.1093/biomet/44.1-2.114. [p324, 325]

J. I. Marden. Analyzing and Modeling Rank Data, volume 64 of Monographs on Statistics and Applied
Probability. Chapman & Hall, Cambridge, MA, USA, 1995. [p324, 326]

M. J. A. N. d. C. Marquis of Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Paris: De l’imprimerie royale, 1785. [p327]

R. Mcgill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The American Statistician, 32(1):12–16,
1978. URL https://doi.org/10.1080/00031305.1978.10479236. [p338]

M. Meilǎ and H. Chen. Dirichlet process mixtures of generalized Mallows models. In Proceedings of
the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-10), pages
358–367, Corvallis, OR, USA, 2010. AUAI Press. [p326]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2018. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-6. [p332]

S. Mukherjee. Estimation in exponential families on permutations. The Annals of Statistics, 44(2):
853–875, 2016. URL https://doi.org/doi:10.1214/15-AOS1389. [p324, 329]

K. Müller and H. Wickham. tibble: Simple Data Frames, 2018. URL https://CRAN.R-project.org/
package=tibble. R package version 1.4.2. [p331]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1214/18-aoas1203
https://doi.org/10.1111/j.2517-6161.1986.tb01420.x
https://doi.org/10.1111/j.2517-6161.1986.tb01420.x
https://addi.ehu.es/handle/10810/11240
https://addi.ehu.es/handle/10810/11240
https://doi.org/10.18637/jss.v071.i12
https://doi.org/10.18637/jss.v071.i12
https://doi.org/10.1007/s11009-016-9506-7
https://doi.org/10.1214/088342305000000016
https://doi.org/10.1145/956750.956823
https://doi.org/10.1186/1471-2288-13-65
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1093/biomet/44.1-2.114
https://doi.org/10.1080/00031305.1978.10479236
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/doi:10.1214/15-AOS1389
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble


CONTRIBUTED RESEARCH ARTICLES 342

P. Papastamoulis. label.switching: An R package for dealing with the label switching problem in
MCMC outputs. Journal of Statistical Software, 69, 2016. URL https://doi.org/10.18637/jss.v069.
c01. [p340]

Z. Qian. rankdist: Distance Based Ranking Models, 2018. URL https://CRAN.R-project.org/package=
rankdist. R package version 1.1-3. [p330]

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2017. URL http://oeis.org. [p329]

M. Stephens. Dealing with label switching in mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 62(4):795–809, Nov. 2000. URL https://doi.org/10.1111/1467-
9868.00265. [p340]

V. Vitelli, Ø. Sørensen, M. Crispino, A. Frigessi, and E. Arjas. Probabilistic preference learning with
the Mallows rank model. Journal of Machine Learning Research, 18(1):5796–5844, Jan. 2018. [p324, 325,
326, 328, 329, 330, 333, 335, 337, 340]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL http://ggplot2.org. [p338]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.1. [p339]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2018. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.7. [p333]

Øystein Sørensen
Center for Lifespan Changes in Brain and Cognition
Department of Psychology
University of Oslo
ORCID: 0000-0003-0724-3542
oystein.sorensen@psykologi.uio.no

Marta Crispino
Univ. Grenoble Alpes, Inria, CNRS, LJK
38000 Grenoble, France
crispino.marta8@gmail.com

Qinghua Liu
Department of Mathematics
University of Oslo
qinghual@math.uio.no

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics
University of Oslo
OORCID: 0000-0002-6746-0453
valeria.vitelli@medisin.uio.no

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.18637/jss.v069.c01
https://doi.org/10.18637/jss.v069.c01
https://CRAN.R-project.org/package=rankdist
https://CRAN.R-project.org/package=rankdist
http://oeis.org
https://doi.org/10.1111/1467-9868.00265
https://doi.org/10.1111/1467-9868.00265
http://ggplot2.org
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
mailto:oystein.sorensen@psykologi.uio.no
mailto:crispino.marta8@gmail.com
mailto:qinghual@math.uio.no
mailto:valeria.vitelli@medisin.uio.no


CONTRIBUTED RESEARCH ARTICLES 343

Variable Importance Plots—An
Introduction to the vip Package
by Brandon M. Greenwell, Bradley C. Boehmke

Abstract In the era of “big data”, it is becoming more of a challenge to not only build state-of-the-art
predictive models, but also gain an understanding of what’s really going on in the data. For example,
it is often of interest to know which, if any, of the predictors in a fitted model are relatively influential
on the predicted outcome. Some modern algorithms—like random forests (RFs) and gradient boosted
decision trees (GBMs)—have a natural way of quantifying the importance or relative influence of
each feature. Other algorithms—like naive Bayes classifiers and support vector machines—are not
capable of doing so and model-agnostic approaches are generally used to measure each predictor’s
importance. Enter vip, an R package for constructing variable importance scores/plots for many
types of supervised learning algorithms using model-specific and novel model-agnostic approaches.
We’ll also discuss a novel way to display both feature importance and feature effects together using
sparklines , a very small line chart conveying the general shape or variation in some feature that can
be directly embedded in text or tables.

Introduction

Too often machine learning (ML) models are summarized using a single metric (e.g., cross-validated ac-
curacy) and then put into production. Although we often care about the predictions from these models,
it is becoming routine (and good practice) to also better understand the predictions! Understanding
how an ML model makes its predictions helps build trust in the model and is the fundamental idea of
the emerging field of interpretable machine learning (IML).1 For an in-depth discussion on IML, see
Molnar (2019b). In this paper, we focus on global methods for quantifying the importance2 of features
in an ML model; that is, methods that help us understand the global contribution each feature has to a
model’s predictions. Computing variable importance (VI) and communicating them through variable
importance plots (VIPs) is a fundamental component of IML and is the main topic of this paper.

While many of the procedures discussed in this paper apply to any model that makes predictions, it
should be noted that these methods heavily depend on the accuracy and importance of the fitted model;
hence, unimportant features may appear relatively important (albeit not predictive) in comparison to
the other included features. For this reason, we stress the usefulness of understanding the scale on
which VI scores are calculated and take that into account when assessing the importance of each feature
and communicating the results to others. Also, we should point out that this work focuses mostly on
post-hoc interpretability where a trained model is given and the goal is to understand what features
are driving the model’s predictions. Consequently, our work focuses on functional understanding
of the model in contrast to the lower-level mechanistic understanding (Montavon et al., 2018). That
is, we seek to explain the relationship between the model’s prediction behavior and features without
explaining the full internal representation of the model.3

VI scores and VIPs can be constructed for general ML models using a number of available
packages. The iml package (Molnar, 2019a) provides the FeatureImp() function which computes
feature importance for general prediction models using the permutation approach (discussed later). It
is written in R6 (Chang, 2019) and allows the user to specify a generic loss function or select one from a
pre-defined list (e.g., loss = "mse" for mean squared error). It also allows the user to specify whether
importance is measured as the difference or as the ratio of the original model error and the model error
after permutation. The user can also specify the number of repetitions used when permuting each
feature to help stabilize the variability in the procedure. The iml::FeatureImp() function can also be
run in parallel using any parallel backend supported by the foreach package (Revolution Analytics
and Weston).

The ingredients package (Biecek et al., 2019a) also provides permutation-based VI scores through
the feature_importance() function. (Note that this function recently replaced the now deprecated
DALEX function variable_importance() (Biecek, 2019).) Similar to iml::FeatureImp(), this function
allows the user to specify a loss function and how the importance scores are computed (e.g., using the

1Although “interpretability” is difficult to formally define in the context of ML, we follow Doshi-Velez and Kim
(2017) and describe “interpretable” as the “. . . ability to explain or to present in understandable terms to a human.”

2In this context “importance” can be defined in a number of different ways. In general, we can describe it as
the extent to which a feature has a "meaningful" impact on the predicted outcome . A more formal definition and
treatment can be found in van der Laan (2006).

3We refer the reader to Poulin et al. (2006), Caruana et al. (2015), Bibal and Frénay (2016), and Bau et al. (2017),
for discussions around model structure interpretation.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=iml
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=ingredients
https://CRAN.R-project.org/package=DALEX


CONTRIBUTED RESEARCH ARTICLES 344

difference or ratio). It also provides an option to sample the training data before shuffling the data to
compute importance (the default is to use n_sample = 1000), which can help speed up computation.

The mmpf package (Jones, 2018) also provides permutation-based VI scores via the
mmpf::permutationImportance() function. Similar to the iml and ingredients implementation, this
function is flexible enough to be applied to any class of ML models in R.

The varImp package (Probst, 2019) extends the permutation-based method for RFs in package
party (Hothorn et al., 2019) to arbitrary measures from the measures package (Probst, 2018). Addition-
ally, the functions in varImp include the option of using the conditional approach described in Strobl
et al. (2008) which is more reliable in the presence of correlated features. A number of other RF-specific
VI packages exist on CRAN, including, but not limited to, vita (Celik, 2015), rfVarImpOOB (Loecher,
2019), randomForestExplainer (Paluszynska et al., 2019), and tree.interpreter (Sun, 2019).4.

The caret package (Kuhn, 2020) includes a general varImp() function for computing model-specific
and filter-based VI scores. Filter-based approaches, which are described in Kuhn and Johnson (2013),
do not make use of the fitted model to measure VI. They also do not take into account the other
predictors in the model. For regression problems, a popular filter-based approach to measuring the
VI of a numeric predictor x is to first fit a flexible nonparametric model between x and the target Y;
for example, the locally-weighted polynomial regression (LOWESS) method developed by Cleveland
(1979). From this fit, a pseudo-R2 measure can be obtained from the resulting residuals and used as a
measure of VI. For categorical predictors, a different method based on standard statistical tests (e.g.,
t-tests and ANOVAs) can be employed; see Kuhn and Johnson (2013) for details. For classification
problems, an area under the ROC curve (AUC) statistic can be used to quantify predictor importance.
The AUC statistic is computed by using the predictor x as input to the ROC curve. If x can reasonably
separate the classes of Y, that is a clear indicator that x is an important predictor (in terms of class
separation) and this is captured in the corresponding AUC statistic. For problems with more than two
classes, extensions of the ROC curve or a one-vs-all approach can be used.

If you use the mlr interface for fitting ML models (Bischl et al., 2020), then you can use the
getFeatureImportance() function to extract model-specific VI scores from various tree-based models
(e.g., RFs and GBMs). Unlike caret, the model needs to be fit via the mlr interface; for instance, you
cannot use getFeatureImportance() on a ranger (Wright et al., 2020) model unless it was fit using
mlr.

While the iml and DALEX packages provide model-agnostic approaches to computing VI, caret,
and to some extent, mlr, provide model-specific approaches (e.g., using the absolute value of the
t-statistic for linear models) as well as less accurate filter-based approaches. Furthermore, each package
has a completely different interface (e.g., iml is written in R6). The vip package (Greenwell et al.,
2019) strives to provide a consistent interface to both model-specific and model-agnostic approaches
to feature importance that is simple to use. The three most important functions exported by vip are
described below:

• vi() computes VI scores using model-specific or model-agnostic approaches (the results are
always returned as a tibble (Müller and Wickham, 2019));

• vip() constructs VIPs using model-specific or model-agnostic approaches with ggplot2-style
graphics (Wickham et al., 2019);

• add_sparklines() adds a novel sparkline representation of feature effects (e.g., partial depen-
dence plots) to any VI table produced by vi().

There’s also a function called vint() (for variable interactions) but it is experimental and will not
be discussed here; the interested reader is pointed to Greenwell et al. (2018). Note that vi() is actually
a wrapper around four workhorse functions, vi_model(), vi_firm(), vi_permute(), and vi_shap(),
that compute various types of VI scores. The first computes model-specific VI scores, while the latter
three produce model-agnostic ones. The workhorse function that actually gets called is controlled by
the method argument in vi(); the default is method = "model" which corresponds to model-specific
VI (see ?vip::vi for details and links to further documentation).

Constructing VIPs in R

We’ll illustrate major concepts using the Friedman 1 benchmark problem described in Friedman (1991)
and Breiman (1996):

Yi = 10 sin (πX1iX2i) + 20 (X3i − 0.5)2 + 10X4i + 5X5i + εi, i = 1, 2, . . . , n, (1)

4These packages were discovered using pkgsearch’s ps() function (Csárdi and Salmon, 2019) with the key
phrases “variable importance” and “feature importance”.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=rfVarImpOOB
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=tree.interpreter
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=mlr
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=vip
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=pkgsearch


CONTRIBUTED RESEARCH ARTICLES 345

where εi
iid∼ N

(
0, σ2). Data from this model can be generated using the vip::gen_friedman(). By

default, the features consist of 10 independent variables uniformly distributed on the interval [0, 1];
however, only 5 out of these 10 are actually used in the true model. The code chunk below simulates
500 observations from the model in Equation (1) with σ = 1; see ?vip::gen_friedman for details.

trn <- vip::gen_friedman(500, sigma = 1, seed = 101) # simulate training data
tibble::as_tibble(trn) # inspect output

#> # A tibble: 500 x 11
#> y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 14.9 0.372 0.406 0.102 0.322 0.693 0.758 0.518 0.530 0.878 0.763
#> 2 15.3 0.0438 0.602 0.602 0.999 0.776 0.533 0.509 0.487 0.118 0.176
#> 3 15.1 0.710 0.362 0.254 0.548 0.0180 0.765 0.715 0.844 0.334 0.118
#> 4 10.7 0.658 0.291 0.542 0.327 0.230 0.301 0.177 0.346 0.474 0.283
#> 5 17.6 0.250 0.794 0.383 0.947 0.462 0.00487 0.270 0.114 0.489 0.311
#> 6 18.3 0.300 0.701 0.992 0.386 0.666 0.198 0.924 0.775 0.736 0.974
#> 7 14.6 0.585 0.365 0.283 0.488 0.845 0.466 0.715 0.202 0.905 0.640
#> 8 17.0 0.333 0.552 0.858 0.509 0.697 0.388 0.260 0.355 0.517 0.165
#> 9 8.54 0.622 0.118 0.490 0.390 0.468 0.360 0.572 0.891 0.682 0.717
#> 10 15.0 0.546 0.150 0.476 0.706 0.829 0.373 0.192 0.873 0.456 0.694
#> # ... with 490 more rows

From Equation (1), it should be clear that features X1–X5 are the most important! (The others don’t
influence Y at all.) Also, based on the form of the model, we’d expect X4 to be the most important
feature, probably followed by X1 and X2 (both comparably important), with X5 probably being less
important. The influence of X3 is harder to determine due to its quadratic nature, but it seems likely
that this nonlinearity will suppress the variable’s influence over its observed range (i.e., 0–1).

Model-specific VI

Some machine learning algorithms have their own way of quantifying the importance of each feature,
which we refer to as model-specific VI . We describe some of these in the subsections that follow.
One particular issue with model-specific VI scores is that they are not necessarily comparable across
different types of models. For example, directly comparing the impurity-based VI scores from tree-
based models to the the absolute value of the t-statistic in linear models.

Decision trees and tree ensembles

Decision trees probably offer the most natural model-specific approach to quantifying the importance
of each feature. In a binary decision tree, at each node t, a single predictor is used to partition the
data into two homogeneous groups. The chosen predictor is the one that maximizes some measure of
improvement it. The relative importance of predictor X is the sum of the squared improvements over
all internal nodes of the tree for which X was chosen as the partitioning variable; see Breiman et al.
(1984) for details. This idea also extends to ensembles of decision trees, such as RFs and GBMs. In
ensembles, the improvement score for each predictor is averaged across all the trees in the ensemble.
Fortunately, due to the stabilizing effect of averaging, the improvement-based VI metric is often more
reliable in large ensembles; see Hastie et al. (2009, p. 368).

RFs offer an additional method for computing VI scores. The idea is to use the leftover out-of-bag
(OOB) data to construct validation-set errors for each tree. Then, each predictor is randomly shuffled
in the OOB data and the error is computed again. The idea is that if variable X is important, then the
validation error will go up when X is perturbed in the OOB data. The difference in the two errors is
recorded for the OOB data then averaged across all trees in the forest. Note that both methods for
constructing VI scores can be unreliable in certain situations; for example, when the predictor variables
vary in their scale of measurement or their number of categories (Strobl et al., 2007), or when the
predictors are highly correlated (Strobl et al., 2008). The varImp package discussed earlier provides
methods to address these concerns for random forests in package party, with similar functionality
also built into the partykit package (Hothorn and Zeileis, 2019). The vip package also supports the
conditional importance described in (Strobl et al., 2008) for both party- and partykit-based RFs; see
?vip::vi_model for details. Later on, we’ll discuss a more general permutation method that can be
applied to any supervised learning model.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=partykit


CONTRIBUTED RESEARCH ARTICLES 346

To illustrate, we fit a CART-like regression tree, RF, and GBM to the simulated training data. (Note:
there are a number of different packages available for fitting these types of models, we just picked
popular implementations for illustration.)

# Load required packages
library(rpart) # for fitting CART-like decision trees
library(randomForest) # for fitting RFs
library(xgboost) # for fitting GBMs

# Fit a single regression tree
tree <- rpart(y ~ ., data = trn)

# Fit an RF
set.seed(101) # for reproducibility
rfo <- randomForest(y ~ ., data = trn, importance = TRUE)

# Fit a GBM
set.seed(102) # for reproducibility
bst <- xgboost(
data = data.matrix(subset(trn, select = -y)),
label = trn$y,
objective = "reg:squarederror",
nrounds = 100,
max_depth = 5,
eta = 0.3,
verbose = 0 # suppress printing

)

Each of the above packages include the ability to compute VI scores for all the features in the
model; however, the implementation is rather package-specific, as shown in the code chunk below.
The results are displayed in Figure 1 (the code to reproduce these plots has been omitted but can be
made available upon request).

# Extract VI scores from each model
vi_tree <- tree$variable.importance
vi_rfo <- rfo$variable.importance # or use `randomForest::importance(rfo)`
vi_bst <- xgb.importance(model = bst)

x10

x8

x9

x7

x6

x3

x5

x1

x2

x4

0 1000 2000 3000 4000
Importance

Single tree

x6

x7

x8

x10

x9

x3

x5

x1

x2

x4

0 20 40 60
Importance

Random forest

x8

x10

x7

x6

x9

x3

x5

x1

x2

x4

0.0 0.1 0.2 0.3 0.4
Importance

Gradient boosting

Figure 1: Model-specific VIPs for the three different tree-based models fit to the simulated Friedman
data.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 347

As we would expect, all three methods rank the variables x1–x5 as more important than the others.
While this is good news, it is unfortunate that we have to remember the different functions and ways
of extracting and plotting VI scores from various model fitting functions. This is one place where vip
can help. . . one function to rule them all! Once vip is loaded, we can use vi() to extract a tibble of VI
scores.5

# Load required packages
library(vip)

# Compute model-specific VI scores
vi(tree) # CART-like decision tree

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 4234.
#> 2 x2 2513.
#> 3 x1 2461.
#> 4 x5 1230.
#> 5 x3 688.
#> 6 x6 533.
#> 7 x7 357.
#> 8 x9 331.
#> 9 x8 276.
#> 10 x10 275.

vi(rfo) # RF

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 74.2
#> 2 x2 59.9
#> 3 x1 53.3
#> 4 x5 37.1
#> 5 x3 22.5
#> 6 x9 1.05
#> 7 x10 0.254
#> 8 x8 -0.408
#> 9 x7 -1.56
#> 10 x6 -2.00

vi(bst) # GBM

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 0.403
#> 2 x2 0.225
#> 3 x1 0.189
#> 4 x5 0.0894
#> 5 x3 0.0682
#> 6 x9 0.00802
#> 7 x6 0.00746
#> 8 x7 0.00400
#> 9 x10 0.00377
#> 10 x8 0.00262

Notice how the vi() function always returns a tibble6 with two columns: Variable and Importance
(the exceptions are coefficient-based models which also include a Sign column giving the sign of the
corresponding coefficient, and permutation importance involving multiple Monte Carlo simulations,

5In order to avoid deprecation warnings due to recent updates to tibble and ggplot2, the code examples in this
article are based on the latest development versions of both vip (version 0.2.2.9000) and pdp (version 0.7.0.9000);
the URL to the development version of each package is available on its associated CRAN landing page.

6Technically, it’s a tibble with an additional "vi" class.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 348

but more on that later). Also, by default, vi() always orders the VI scores from highest to lowest; this,
among other options, can be controlled by the user (see ?vip::vi for details). Plotting VI scores with
vip() is just as straightforward. For example, the following code can be used to reproduce Figure 1.

p1 <- vip(tree) + ggtitle("Single tree")
p2 <- vip(rfo) + ggtitle("Random forest")
p3 <- vip(bst) + ggtitle("Gradient boosting")

# Display plots in a grid (Figure 1)
grid.arrange(p1, p2, p3, nrow = 1)

Notice how the vip() function always returns a "ggplot" object (by default, this will be a bar
plot). For large models with many features, a Cleveland dot plot is more effective (in fact, a number of
useful plotting options can be fiddled with). Below we call vip() and change a few useful options (the
resulting plot is displayed in Figure 2). Note that we can also call vip() directly on a "vi" object if it’s
already been constructed.

# Construct VIP (Figure 2)
library(ggplot2) # for theme_light() function
vip(bst, num_features = 5, geom = "point", horizontal = FALSE,

aesthetics = list(color = "red", shape = 17, size = 5)) +
theme_light()

0.1

0.2

0.3

0.4

x3 x5 x1 x2 x4

Im
po

rt
an

ce

Figure 2: Illustrating various plotting options.

Linear models

In multiple linear regression, or linear models (LMs), the absolute value of the t-statistic (or some
other scaled variant of the estimated coefficients) is commonly used as a measure of VI.7 The same
idea also extends to generalized linear models (GLMs). In the code chunk below, we fit an LM to the
simulated Friedman data (trn) allowing for all main effects and two-way interactions, then use the
step() function to perform backward elimination. The resulting VIP is displayed in Figure 3.

# Fit a LM
linmod <- lm(y ~ .^2, data = trn)
backward <- step(linmod, direction = "backward", trace = 0)

# Extract VI scores
(vi_backward <- vi(backward))

#> # A tibble: 21 x 3
#> Variable Importance Sign
#> <chr> <dbl> <chr>
#> 1 x4 14.2 POS
#> 2 x2 7.31 POS

7Since this approach is biased towards large-scale features it is important to properly standardize the predictors
(before fitting the model) or the estimated coefficients.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 349

#> 3 x1 5.63 POS
#> 4 x5 5.21 POS
#> 5 x3:x5 2.46 POS
#> 6 x1:x10 2.41 NEG
#> 7 x2:x6 2.41 NEG
#> 8 x1:x5 2.37 NEG
#> 9 x10 2.21 POS
#> 10 x3:x4 2.01 NEG
#> # ... with 11 more rows

# Plot VI scores; by default, `vip()` displays the top ten features
pal <- palette.colors(2, palette = "Okabe-Ito") # colorblind friendly palette
vip(vi_backward, num_features = length(coef(backward)), # Figure 3

geom = "point", horizontal = FALSE, mapping = aes(color = Sign)) +
scale_color_manual(values = unname(pal)) +
theme_light() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

5

10

x6
x1

:x6 x9
x1

:x3 x3
x2

:x8 x8
x1

:x8 x7
x3

:x7
x8

:x9
x3

:x4 x1
0
x1

:x5
x2

:x6

x1
:x1

0
x3

:x5 x5 x1 x2 x4

Im
po

rt
an

ce Sign

NEG

POS

Figure 3: Example VIP from a linear model fit to the simulated Friedman data. The points are colored
according to the sign of the associated coefficient.

A major limitation of this approach is that a VI score is assigned to each term in the model, rather
than to each individual feature! We can solve this problem using one of the model-agnostic approaches
discussed later.

Multivariate adaptive regression splines (MARS), which were introduced in Friedman (1991), is
an automatic regression technique and can be seen as a generalization of LMs and GLMs. In the
MARS algorithm, the contribution (or VI score) for each predictor is determined using a generalized
cross-validation (GCV) statistic (though, other statistics can also be used; see ?vip::vi_model for
details). An example using the earth package (Milborrow, 2019) is given below (the results are plotted
in Figure 4):

# Load required packages
library(earth)

# Fit a MARS model
mars <- earth(y ~ ., data = trn, degree = 2, pmethod = "exhaustive")

# Extract VI scores
vi(mars, type = "gcv")

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 100
#> 2 x1 83.2
#> 3 x2 83.2
#> 4 x5 59.3
#> 5 x3 43.5

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=earth


CONTRIBUTED RESEARCH ARTICLES 350

#> 6 x6 0
#> 7 x7 0
#> 8 x8 0
#> 9 x9 0
#> 10 x10 0

# Plot VI scores (Figure 4)
vip(mars)

x10

x6

x7

x8

x9

x3

x5

x1

x2

x4

0 5 10 15
Importance

Figure 4: Example VIP from a MARS model fit to the simulated Friedman data.

To access VI scores directly in earth, you can use the earth::evimp() function.

Neural networks

For neural networks (NNs), two popular methods for constructing VI scores are the Garson algorithm
(Garson, 1991), later modified by Goh (1995), and the Olden algorithm (Olden et al., 2004). For
both algorithms, the basis of these VI scores is the network’s connection weights. The Garson
algorithm determines VI by identifying all weighted connections between the nodes of interest.
Olden’s algorithm, on the other hand, uses the products of the raw connection weights between each
input and output neuron and sums these products across all hidden neurons. This has been shown to
outperform the Garson method in various simulations. For DNNs, a similar method due to Gedeon
(1997) considers the weights connecting the input features to the first two hidden layers (for simplicity
and speed); but this method can be slow for large networks. We illustrate these two methods below
using vip() with the nnet package (Ripley, 2016) (see the results in Figure 5).

# Load required packages
library(nnet)

# Fit a neural network
set.seed(0803) # for reproducibility
nn <- nnet(y ~ ., data = trn, size = 7, decay = 0.1,

linout = TRUE, trace = FALSE)

# Construct VIPs
p1 <- vip(nn, type = "garson")
p2 <- vip(nn, type = "olden")

# Display plots in a grid (Figure 5)
grid.arrange(p1, p2, nrow = 1)

Model-agnostic VI

Model-agnostic interpretability separates interpretation from the model. Compared to model-specific
approaches, model-agnostic VI methods are more flexible and can be applied to any supervised

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=nnet


CONTRIBUTED RESEARCH ARTICLES 351

x9

x7

x8

x10

x6

x5

x4

x3

x1

x2

0.0 0.1 0.2
Importance

x7

x6

x9

x2

x10

x1

x8

x3

x5

x4

0 25 50 75 100
Importance

Figure 5: Example VIPs from a single-hidden-layer NN fit to the simulated Friedman data.

learning algorithm. In this section, we discuss model-agnostic methods for quantifying global feature
importance using three different approaches: 1) a simple variance-based approach, 2) permutation-
based feature importance, and 3) Shapley-based feature importance.

Variance-based methods

Our first model-agnostic method is based on a simple feature importance ranking measure (FIRM); for
details, see Greenwell et al. (2018), Zien et al. (2009), and Scholbeck et al. (2019). The specific approach
used here is based on quantifying the “flatness” of the effects of each feature.8 Feature effects can
be assessed using partial dependence plots (PDPs) (Friedman, 2001) or individual conditional expectation
(ICE) curves (Goldstein et al., 2015). PDPs and ICE curves help visualize the effect of low cardinality
subsets of the feature space on the estimated prediction surface (e.g., main effects and two/three-
way interaction effects.). They are also model-agnostic and can be constructed in the same way for
any supervised learning algorithm. Below, we fit a projection pursuit regression (PPR) model (see
?stats::ppr for details and references) and construct PDPs for each feature using the pdp package
Greenwell (2017). The results are displayed in Figure 6. Notice how the PDPs for the uninformative
features are relatively flat compared to the PDPs for features x1–x5!

10

20

30

0.00 0.25 0.50 0.75 1.00
x1

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x2

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x3

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x4

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x5

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x6

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x7

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x8

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x9

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x10

yh
at

Figure 6: PDPs of main effects in the PPR model fit to the simulated Friedman data.

Next, we compute PDP-based VI scores for the fitted PPR and NN models. The PDP method
constructs VI scores that quantify the relative “flatness” of each PDP (by default, this is defined by
computing the standard deviation of the y-axis values for each PDP). To use the PDP method, specify
method = "firm" in the call to vi() or vip() (or just use vi_firm() directly):

8A similar approach is taken in the vivo package (Kozak and Biecek, 2019).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=pdp
https://CRAN.R-project.org/package=vivo


CONTRIBUTED RESEARCH ARTICLES 352

# Fit a PPR model (nterms was chosen using the caret package with 5 repeats of
# 5-fold cross-validation)
pp <- ppr(y ~ ., data = trn, nterms = 11)

# Construct VIPs
p1 <- vip(pp, method = "firm") + ggtitle("PPR")
p2 <- vip(nn, method = "firm") + ggtitle("NN")

# Display plots in a grid (Figure 7)
grid.arrange(p1, p2, ncol = 2)

x7

x8

x9

x10

x6

x3

x5

x1

x2

x4

0 1 2 3
Importance

PPR

x7

x8

x10

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

NN

Figure 7: PDP-based feature importance for the PPR and NN models fit to the simulated Friedman
data.

In Figure 7 we display the PDP-based feature importance for the previously obtained PPR and NN
models. These VI scores essentially capture the variability in the partial dependence values for each
main effect.

The ICE curve method is similar to the PDP method, except that we measure the “flatness” of each
individual ICE curve and then aggregate the results (e.g., by averaging). If there are no (substantial)
interaction effects, using ICE curves will produce results similar to using PDPs (which are just averaged
ICE curves). However, if strong interaction effects are present, they can obfuscate the main effects and
render the PDP-based approach less useful (since the PDPs for important features can be relatively
flat when certain interactions are present; see Goldstein et al. (2015) for details). In fact, it is probably
safest to always use ICE curves when employing the FIRM method.

Below, we display the ICE curves for each feature in the fitted PPR model using the same y-axis
scale; see Figure 8. Again, there is a clear difference between the ICE curves for features x1–x5 and
x6–x10; the later being relatively flat by comparison. Also, notice how the ICE curves within each
feature are relatively parallel (if the ICE curves within each feature were perfectly parallel, the standard
deviation for each curve would be the same and the results will be identical to the PDP method). In
this example, the interaction term between x1 and x2 does not obfuscate the PDPs for the main effects
and the results are not much different.

Obtaining the ICE-based feature importance scores is also straightforward, just specify ice = TRUE
when using the FIRM approach. This is illustrated in the code chunk below and the results, which are
displayed in Figure 9, are similar to those obtained using the PDP method.

# Construct VIPs
p1 <- vip(pp, method = "firm", ice = TRUE) + ggtitle("PPR")
p2 <- vip(nn, method = "firm", ice = TRUE) + ggtitle("NN")

# Display plots in a grid (Figure 9)
grid.arrange(p1, p2, ncol = 2)

When using method = "firm", the feature effect values are stored in an attribute called "effects".
This is a convenience so that the feature effect plots (e.g., PDPs and ICE curves) can easily be re-
constructed and compared with the VI scores, as demonstrated in the example below (see Figure
10):

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 353

10

20

30

0.00 0.25 0.50 0.75 1.00
x1

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x2

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x3

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x4

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x5

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x6

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x7

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x8

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x9

yh
at

10

20

30

0.00 0.25 0.50 0.75 1.00
x10

yh
at

Figure 8: ICE curves for each feature in the PPR model fit to the simulated Friedman data. The red
curve represents the PDP (i.e., the averaged ICE curves).

x7

x10

x9

x6

x8

x3

x5

x2

x1

x4

0 1 2 3
Importance

PPR

x10

x8

x7

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

NN

Figure 9: ICE-based feature importance for the PPR and NN models fit to the simulated Friedman
data.

# Construct PDP-based VI scores
(vis <- vi(pp, method = "firm"))

#> # A tibble: 10 x 2
#> Variable Importance
#> <chr> <dbl>
#> 1 x4 2.93
#> 2 x2 2.05
#> 3 x1 2.04
#> 4 x5 1.53
#> 5 x3 1.38
#> 6 x6 0.183
#> 7 x10 0.139
#> 8 x9 0.113
#> 9 x8 0.0899
#> 10 x7 0.0558

# Reconstruct PDPs for all 10 features (Figure 10)
par(mfrow = c(2, 5))
for (name in paste0("x", 1:10)) {
plot(attr(vis, which = "effects")[[name]], type = "l", ylim = c(9, 19), las = 1)

}

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 354

0.0 0.4 0.8

10

12

14

16

18

x1

yh
at

0.0 0.4 0.8

10

12

14

16

18

x2

yh
at

0.0 0.4 0.8

10

12

14

16

18

x3

yh
at

0.0 0.4 0.8

10

12

14

16

18

x4

yh
at

0.0 0.4 0.8

10

12

14

16

18

x5

yh
at

0.0 0.4 0.8

10

12

14

16

18

x6

yh
at

0.0 0.4 0.8

10

12

14

16

18

x7

yh
at

0.0 0.4 0.8

10

12

14

16

18

x8

yh
at

0.0 0.4 0.8

10

12

14

16

18

x9

yh
at

0.0 0.4 0.8

10

12

14

16

18

x10

yh
at

Figure 10: PDPs for all ten features reconstructed from the pdp attribute of the vis object.

Permutation method

The permutation method exists in various forms and was made popular in Breiman (2001) for RFs,
before being generalized and extended in Fisher et al. (2018). The permutation approach used in
vip is quite simple and is outlined in Algorithm 2 below. The idea is that if we randomly permute
the values of an important feature in the training data, the training performance would degrade
(since permuting the values of a feature effectively destroys any relationship between that feature
and the target variable). This of course assumes that the model has been properly tuned (e.g., using
cross-validation) and is not over fitting. The permutation approach uses the difference between some
baseline performance measure (e.g., training R2, AUC, or RMSE) and the same performance measure
obtained after permuting the values of a particular feature in the training data (Note: the model is
NOT refit to the training data after randomly permuting the values of a feature). It is also important to
note that this method may not be appropriate when you have, for example, highly correlated features
(since permuting one feature at a time may lead to unlikely data instances).

Let X1, X2, . . . , Xj be the features of interest and letMorig be the baseline performance metric for
the trained model; for brevity, we’ll assume smaller is better (e.g., classification error or RMSE). The
permutation-based importance scores can be computed as follows:

1. For i = 1, 2, . . . , j:

(a) Permute the values of feature Xi in the training data.

(b) Recompute the performance metric on the permuted dataMperm.

(c) Record the difference from baseline using imp (Xi) =Mperm −Morig.

2. Return the VI scores imp (X1) , imp (X2) , . . . , imp
(
Xj
)
.

Algorithm 2: A simple algorithm for constructing permutation-based VI scores.

Algorithm 2 can be improved or modified in a number of ways. For instance, the process can
be repeated several times and the results averaged together. This helps to provide more stable VI
scores, and also the opportunity to measure their variability. Rather than taking the difference in
step (c), Molnar (2019b, sec. 5.5.4) argues that using the ratioMperm/Morig makes the importance
scores more comparable across different problems. It’s also possible to assign importance scores to
groups of features (e.g., by permuting more than one feature at a time); this would be useful if features
can be categorized into mutually exclusive groups, for instance, categorical features that have been
one-hot-encoded .

To use the permutation approach in vip, specify method = "permute" in the call to vi() or vip()
(or you can use vi_permute() directly). Note that using method = "permute" requires specifying a
few additional arguments (e.g., the training data, target name or vector of target values, a prediction
function, etc.); see ?vi_permute for details.

An example is given below for the previously fitted PPR and NN models. Here we use R2 (metric
= "rsquared") as the evaluation metric. The results, which are displayed in Figure 11, agree with

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 355

those obtained using the PDP- and ICE-based methods.

# Plot VI scores
set.seed(2021) # for reproducibility
p1 <- vip(pp, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict) + ggtitle("PPR")
p2 <- vip(nn, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict) + ggtitle("NN")

# Display plots in a grid (Figure 11)
grid.arrange(p1, p2, ncol = 2)

x7

x10

x9

x8

x6

x3

x5

x1

x2

x4

0.0 0.2 0.4 0.6
Importance

PPR

x7

x10

x9

x6

x8

x3

x5

x1

x2

x4

0.0 0.2 0.4
Importance

NN

Figure 11: Permutation-based feature importance for the PPR and NN models fit to the simulated
Friedman data.

The permutation approach introduces randomness into the procedure and therefore should be run
more than once if computationally feasible. The upside to performing multiple runs of Algorithm 2
is that it allows us to compute standard errors (among other metrics) for the estimated VI scores, as
illustrated in the example below; here we specify nsim = 10 to request that each feature be permuted
10 times and the results averaged together. (Additionally, if nsim >1, you can set geom = "boxplot" in
the call to vip() to construct boxplots of the raw permutation-based VI scores. This is useful if you
want to visualize the variability in each of the VI estimates; see Figure 12 for an example.)

# Use 10 Monte Carlo reps
set.seed(403) # for reproducibility
vis <- vi(pp, method = "permute", target = "y", metric = "rsquared",

pred_wrapper = predict, nsim = 15)
vip(vis, geom = "boxplot") # Figure 12

All available performance metrics for regression and classification can be listed using the list_metrics()
function, for example:

list_metrics()

#> Metric Description Task
#> 1 accuracy Classification accuracy Binary/multiclass classification
#> 2 error Misclassification error Binary/multiclass classification
#> 3 auc Area under (ROC) curve Binary classification
#> 4 logloss Log loss Binary classification
#> 5 mauc Multiclass area under (ROC) curve Multiclass classification
#> 6 mae Mean absolute error Regression
#> 7 mse Mean squared error Regression
#> 8 r2 R squared Regression
#> 9 rsquared R squared Regression
#> 10 rmse Root mean squared error Regression
#> 11 sse Sum of squared errors Regression

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 356

x10

x7

x9

x6

x8

x3

x5

x1

x2

x4

0.0 0.2 0.4 0.6
Importance

Figure 12: Boxplots of VI scores using the permutation method with 15 Monte Carlo repetitions.

We can also use a custom metric (i.e., loss function). Suppose for example you want to measure
importance using the mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣∣Yi − f̂ (Xi)
∣∣∣ , (2)

where f̂ (Xi) is the predicted value of Yi. A simple function implementing this metric is given
below (note that, according to the documentation in ?vi_permute, user-supplied metric functions
require two arguments: actual and predicted).

mae <- function(actual, predicted) {
mean(abs(actual - predicted))

}

To use this for computing permutation-based VI scores just pass it via the metric argument (be
warned, however, that the metric used for computing permutation importance should be the same as
the metric used to train and tune the model). Also, since this is a custom metric, we need to specify
whether a smaller value indicates better performance by setting smaller_is_better = TRUE. The
results, which are displayed in Figure 13, are similar to those in Figure 11, albeit a different scale.

# Construct VIP (Figure 13)
set.seed(2321) # for reproducibility
pfun <- function(object, newdata) predict(object, newdata = newdata)
vip(nn, method = "permute", target = "y", metric = mae,

smaller_is_better = TRUE, pred_wrapper = pfun) +
ggtitle("Custom loss function: MAE")

Although permutation importance is most naturally computed on the training data, it may also
be useful to do the shuffling and measure performance on new data! This is discussed in depth in
Molnar (2019b, sec. 5.2). For users interested in computing permutation importance using new data,
just supply it to the train argument in the call to vi(), vip(), or vi_permute(). For instance, suppose
we wanted to only use a fraction of the original training data to carry out the computations. In this
case, we could simply pass the sampled data to the train argument as follows:

# Construct VIP (Figure 14)
set.seed(2327) # for reproducibility
vip(nn, method = "permute", pred_wrapper = pfun, target = "y", metric = "rmse",

train = trn[sample(nrow(trn), size = 400), ]) + # sample 400 observations
ggtitle("Using a random subset of training data")

When using the permutation method with nsim >1, the default is to keep all the permutation
scores as an attribute called "raw_scores"; you can turn this behavior off by setting keep = FALSE in
the call to vi_permute(), vi(), or vip(). If keep = TRUE and nsim >1, you can request all permutation
scores to be plotted by setting all_permutation = TRUE in the call to vip(), as demonstrated in the
code chunk below (see Figure 15). This also let’s you visually inspect the variability in the permutation
scores within each feature.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 357

x9

x10

x6

x7

x8

x5

x3

x1

x2

x4

0.0 0.5 1.0 1.5 2.0 2.5
Importance

Custom loss function: MAE

Figure 13: Permutation-based VI scores for the NN model fit to the simulated Friedman data. In this
example, permutation importance is based on the MAE metric.

x9

x10

x7

x6

x8

x5

x3

x1

x2

x4

0 1 2 3
Importance

Using a random subset of training data

Figure 14: Permutation-based feature importance for the NN model fit to the simulated Friedman data.
In this example, permutation importance is based on a random sample of 400 training observations.

# Construct VIP (Figure 15)
set.seed(8264) # for reproducibility
vip(nn, method = "permute", pred_wrapper = pfun, target = "y", metric = "mae",

nsim = 10, geom = "point", all_permutations = TRUE, jitter = TRUE) +
ggtitle("Plotting all permutation scores")

Benchmarks

In this section, we compare the performance of four implementations of permutation-based VI scores:
iml::FeatureImp() (version 0.10.0), ingredients::feature_importance() (version 1.3.1),
mmpf::permutationImportance (version 0.0.5), and vip::vi() (version 0.2.2.9000).

We simulated 10,000 training observations from the Friedman 1 benchmark problem and trained a
random forest using the ranger package. For each implementation, we computed permutation-based
VI scores 100 times using the microbenchmark package (Mersmann, 2019). For this benchmark we
did not use any of the parallel processing capability available in the iml and vip implementations. The
results from microbenchmark are displayed in Figure 16 and summarized in the output below. In this
case, the vip package (version 0.2.2.9000) was the fastest, followed closely by ingredients and mmpf.
It should be noted, however, that the implementations in vip and iml can be parallelized. To the best
of our knowledge, this is not the case for ingredients or mmpf (although it would not be difficult to
write a simple parallel wrapper for either). The code used to generate these benchmarks can be found
at http://bit.ly/2TogXrq.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark
http://bit.ly/2TogXrq


CONTRIBUTED RESEARCH ARTICLES 358

x10

x7

x8

x6

x9

x5

x3

x1

x2

x4

0 1 2
Importance

Plotting all permutation scores

Figure 15: Permutation-based feature importance for the NN model fit to the simulated Friedman
data. In this example, all the permutation importance scores (points) are displayed for each feature
along with their average (bars).

iml

ingredients

mmpf

vip

10 20 30
Time [seconds]

Figure 16: Violin plots comparing the computation time from three different implementations of
permutation-based VI scores across 100 simulations.

Shapley method

Although vip focuses on global VI methods, it is becoming increasing popular to asses global impor-
tance by aggregating local VI measures; in particular, Shapley explanations (Štrumbelj and Kononenko,
2014). Using Shapley values (a method from coalitional game theory), the prediction for a single
instance x? can be explained by assuming that each feature value in x? is a “player” in a game with a
payout equal to the corresponding prediction f̂ (x?). Shapley values tell us how to fairly distribute
the “payout” (i.e., prediction) among the features. Shapley values have become popular due to the
attractive fairness properties they posses (Lundberg and Lee, 2017). The most popular implementation
is available in the Python shap package (Lundberg and Lee, 2017); although a number of implemen-
tations are now available in R; for example, iml, iBreakDown (Biecek et al., 2019b), and fastshap
(Greenwell, 2019).

Obtaining a global VI score from Shapley values requires aggregating the Shapley values for
each feature across the entire training set (or at least a reasonable sample thereof). In particular, we
use the mean of the absolute value of the individual Shapley values for each feature. Unfortunately,
Shapley values can be computationally expensive, and therefore this approach may not be feasible
for large training sets (say, >3000 observations). The fastshap package provides some relief by
exploiting a few computational tricks, including the option to perform computations in parallel
(see ?fastshap::explain for details). Also, fast and exact algorithms (Lundberg et al., 2019) can be
exploited for certain classes of models.

Starting with vip version 0.2.2.9000 you can now use method = "shap" in the call to vi() (or use
vi_shap() directly) to compute global Shapley-based VI scores using the method described above

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=iBreakDown
https://CRAN.R-project.org/package=fastshap


CONTRIBUTED RESEARCH ARTICLES 359

(provided you have the fastshap package installed)—see ?vip::vi_shap for details. To illustrate, we
compute Shapley-based VI scores from an xgboost model (Chen et al., 2019) using the Friedman data
from earlier; the results are displayed in Figure 17.9 (Note: specifying include_type = TRUE in the
call to vip() causes the type of VI computed to be displayed as part of the axis label.)

# Load required packages
library(xgboost)

# Feature matrix
X <- data.matrix(subset(trn, select = -y)) # matrix of feature values

# Fit an XGBoost model; hyperparameters were tuned using 5-fold CV
set.seed(859) # for reproducibility
bst <- xgboost(X, label = trn$y, nrounds = 338, max_depth = 3, eta = 0.1,

verbose = 0)

# Construct VIP (Figure 17)
vip(bst, method = "shap", train = X, exact = TRUE, include_type = TRUE)

x10

x8

x6

x7

x9

x3

x5

x1

x2

x4

0.0 0.5 1.0 1.5 2.0 2.5
Importance (mean(|Shapley value|))

Figure 17: Shapley-based VI scores from an XGBoost model fit to the simulated Friedman data.

Drawbacks of existing methods

As discussed in Hooker and Mentch (2019), permute-and-predict methods—like PDPs, ICE curves,
and permutation importance—can produce results that are highly misleading.10 For example, the
standard approach to computing permutation-based VI scores involves independently permuting
individual features. This implicitly makes the assumption that the observed features are statistically
independent. In practice, however, features are often not independent which can lead to nonsensical VI
scores. One way to mitigate this issue is to use the conditional approach described in Strobl et al. (2008);
Hooker and Mentch (2019) provides additional alternatives, such as permute-and-relearn importance .
Unfortunately, to the best of our knowledge, this approach is not yet available for general purpose. A
similar modification can be applied to PDPs (Parr and Wilson, 2019)11 which seems reasonable to use
in the FIRM approach when strong dependencies among the features are present (though, we have
not given this much thought or consideration).

We already mentioned that PDPs can be misleading in the presence of strong interaction effects.
This drawback, of course, equally applies to the FIRM approach using PDPs for computing VI scores.
As discussed earlier, this can be mitigated by using ICE curves instead. Another alternative would be
to use accumulated local effect (ALE) plots (Apley and Zhu, 2016) (though we haven’t really tested
this idea). Compared to PDPs, ALE plots have the advantage of being faster to compute and less
affected by strong dependencies among the features. The downside, however, is that ALE plots are

9Note that the exact = TRUE option is only available if you have fastshap version 0.0.4 or later
10It’s been argued that approximate Shapley values share the same drawback, however, Janzing et al. (2019)

makes a compelling case against those arguments.
11A basic R implementation is available at https://github.com/bgreenwell/rstratx.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=xgboost
https://github.com/bgreenwell/rstratx


CONTRIBUTED RESEARCH ARTICLES 360

more complicated to implement (hence, they are not currently available when using method = "firm").
ALE plots are available in the ALEPlot (Apley, 2018) and iml packages.

Hooker (2007) also argues that feature importance (which concern only main effects) can be
misleading in high dimensional settings, especially when there are strong dependencies and interaction
effects among the features, and suggests an approach based on a generalized functional ANOVA
decomposition—though, to our knowledge, this approach is not widely implemented in open source.

Use sparklines to characterize feature effects

Starting with vip 0.1.3, we have included a new function add_sparklines() for constructing HTML-
based VI tables; however, this feature requires the DT package (Xie et al., 2019). The primary difference
between vi() and add_sparklines() is that the latter includes an Effect column that displays a
sparkline representation of the partial dependence function for each feature. This is a concise way
to display both feature importance and feature effect information in a single (interactive) table. See
?vip::add_sparklines for details. We illustrate the basic use of add_sparklines() in the code chunk
below where we fit a ranger-based random forest using the mlr3 package (Lang et al., 2019).12

# Load required packages
library(mlr3)
library(mlr3learners)

# Fit a ranger-based random forest using the mlr3 package
set.seed(101)
task <- TaskRegr$new("friedman", backend = trn, target = "y")
lrnr <- lrn("regr.ranger", importance = "impurity")
lrnr$train(task)

# First, compute a tibble of VI scores using any method
var_imp <- vi(lrnr)

# Next, convert to an HTML-based data table with sparklines
add_sparklines(var_imp, fit = lrnr$model, train = trn) # Figure 18

Show 10  entries Search:

Showing 1 to 10 of 10 entries Previous 1 Next

Variable Importance Effect

1 x4 3801.341

2 x2 2456.534

3 x1 2048.462

4 x5 1492.825

5 x3 952.217

6 x8 380.200

7 x10 368.846

8 x6 354.177

9 x7 346.030

10 x9 338.066

Figure 18: Variable importance scores along with a sparkline representation of feature effects.

Ames housing example

For illustration, we’ll use the Ames housing data (Cock, 2011) which are available in the AmesHousing
package (Kuhn, 2017). These data describe the sale of individual residential properties in Ames, Iowa
from 2006–2010. The data set contains 2930 observations, 80 features (23 nominal, 23 ordinal, 14

12Note: Here we use the ... argument to pass the original training to pdp::partial(); this is to avoid conflicts
caused by mlr3’s data.table backend (Dowle and Srinivasan, 2019).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ALEPlot
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=data.table


CONTRIBUTED RESEARCH ARTICLES 361

discrete, and 20 continuous), and a continuous target giving the sale price of the home. The version
we’ll load is a cleaned up version of the original data set and treats all categorical variables as nominal
(see ?AmesHousing::make_ames for details).

Using the R package SuperLearner (Polley et al., 2019), we trained five models using 5-fold cross-
validation: a GBM using the xgboost package, an RF using the ranger package, a MARS model using
the earth package, a GLMNET model using the glmnet package (Friedman et al., 2019), and a support
vector regression model using the kernlab package (Karatzoglou et al., 2019). The magnitude of
the coefficients from the meta learner indicate which models contribute the most (if at all) to new
predictions.

# Load the Ames housing data
ames <- AmesHousing::make_ames()
X <- subset(ames, select = -Sale_Price)
y <- ames$Sale_Price

# Load required packages
library(SuperLearner)

# List of base learners
learners <- c("SL.xgboost", "SL.ranger", "SL.earth", "SL.glmnet", "SL.ksvm")

# Stack models
set.seed(840) # for reproducibility
ctrl <- SuperLearner.CV.control(V = 5L, shuffle = TRUE)
sl <- SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE,

cvControl = ctrl)
sl

#>
#> Call:
#> SuperLearner(Y = y, X = X, SL.library = learners, verbose = TRUE, cvControl = ctrl)
#>
#>
#>
#> Risk Coef
#> SL.xgboost_All 580713682 0.41384425
#> SL.ranger_All 666208088 0.08083034
#> SL.earth_All 553872844 0.50532541
#> SL.glmnet_All 908881559 0.00000000
#> SL.ksvm_All 6784289108 0.00000000

In the code chunks below we request permutation-based VI scores and a sparkline representation
of the PDPs for the top ten features. For this we need to define a couple of wrapper functions: one for
computing predictions (for the permutation VI scores), and one for computing averaged predictions
(for the PDPs).

# Prediction wrapper functions
imp_fun <- function(object, newdata) { # for permutation-based VI scores
predict(object, newdata = newdata)$pred

}
par_fun <- function(object, newdata) { # for PDPs
mean(predict(object, newdata = newdata)$pred)

}

To speed up the process, we perform the computations in parallel by setting parallel = TRUE in
the calls to vi() and add_sparklines(). Note that we first need to set up a parallel backend for this to
work. Both vip and pdp use plyr (Wickham, 2019)—which relies on foreach—so any parallel backend
supported by the foreach package should work. Below we use a socket approach with the doParallel
backend (Corporation and Weston, 2019) using a cluster of size five.

# Setup parallel backend
library(doParallel) # load the parallel backend
cl <- makeCluster(5) # use 5 workers
registerDoParallel(cl) # register the parallel backend

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=SuperLearner
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=doParallel


CONTRIBUTED RESEARCH ARTICLES 362

# Permutation-based feature importance
set.seed(278) # for reproducibility
var_imp <- vi(sl, method = "permute", train = X, target = y, metric = "rmse",

pred_wrapper = imp_fun, nsim = 5, parallel = TRUE)

# Add sparkline representation of feature effects (# Figure 19)
add_sparklines(var_imp[1L:10L, ], fit = sl, pred.fun = par_fun, train = X,

digits = 2, verbose = TRUE, trim.outliers = TRUE,
grid.resolution = 20, parallel = TRUE)

Show 10  entries Search:

Showing 1 to 10 of 10 entries Previous 1 Next

Variable Importance StDev Effect

1 Gr_Liv_Area 25635.72 850.88

2 Total_Bsmt_SF 13265.57 498.07

3 Year_Built 12304.25 333.00

4 Overall_Qual 10898.85 122.88

5 Mas_Vnr_Type 7945.17 1778.07

6 Year_Remod_Add 6615.39 227.31

7 Lot_Area 4144.14 189.51

8 Bsmt_Unf_SF 3679.64 150.87

9 Garage_Cars 2670.93 82.78

10 Fireplaces 1977.49 75.63

Figure 19: VIP with sparkline representation of feature effects for the top ten features from a Super
Learner fit to the Ames housing data.

# Shut down cluster
stopCluster(cl)

Summary

VIPs help to visualize the strength of the relationship between each feature and the predicted response,
while accounting for all the other features in the model. We’ve discussed two types of VI: model-
specific and model-agnostic, as well as some of their strengths and weaknesses. In this paper, we
showed how to construct VIPs for various types of “black box” models in R using the vip package.
We also briefly discussed related approaches available in a number of other R packages. Suggestions
to avoid high execution times were discussed and demonstrated via examples. This paper is based
on vip version 0.2.2.9000. In terms of future development, vip can be expanded in a number of
ways. For example, we plan to incorporate the option to compute group-based and conditional
permutation scores. Although not discussed in this paper, vip also includes a promising statistic
(similar to the variance-based VI scores previously discussed) for measuring the relative strength
of interaction between features. Although VIPs can help understand which features are driving
the model’s predictions, ML practitioners should be cognizant of the fact that none of the methods
discussed in this paper are uniformly best across all situations; they require an accurate model that
has been properly tuned, and should be checked for consistency with human domain knowledge.

Acknowledgments

The authors would like to thank the anonymous reviewers and the Editor for their helpful comments
and suggestions. We would also like to thank the members of the 84.51◦ Interpretable Machine
Learning Special Interest Group for their thoughtful discussions on the topics discussed herein.

Bibliography
D. Apley. ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots, 2018. URL

https://CRAN.R-project.org/package=ALEPlot. R package version 1.1. [p360]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ALEPlot


CONTRIBUTED RESEARCH ARTICLES 363

D. W. Apley and J. Zhu. Visualizing the effects of predictor variables in black box supervised learning
models, 2016. [p359]

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017. [p343]

A. Bibal and B. Frénay. Interpretability of machine learning models and representations: an introduc-
tion. In ESANN, 2016. [p343]

P. Biecek. DALEX: Descriptive mAchine Learning EXplanations, 2019. URL https://CRAN.R-project.
org/package=DALEX. R package version 0.4.9. [p343]

P. Biecek, H. Baniecki, and A. Izdebski. ingredients: Effects and Importances of Model Ingredients, 2019a.
URL https://CRAN.R-project.org/package=ingredients. R package version 0.5.0. [p343]

P. Biecek, A. Gosiewska, H. Baniecki, and A. Izdebski. iBreakDown: Model Agnostic Instance Level
Variable Attributions, 2019b. URL https://CRAN.R-project.org/package=iBreakDown. R package
version 0.9.9. [p358]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, Z. Jones, G. Casalicchio, M. Gallo, and P. Schratz.
mlr: Machine Learning in R, 2020. URL https://CRAN.R-project.org/package=mlr. R package
version 2.17.0. [p344]

L. Breiman. Bagging predictors. Machine Learning, 8(2):209–218, 1996. URL https://doi.org/10.
1023/A:1018054314350. [p344]

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. URL https://doi.org/10.1023/A:
1010933404324. [p354]

L. Breiman, J. Friedman, and R. A. O. Charles J. Stone. Classification and Regression Trees. The Wadsworth
and Brooks-Cole statistics-probability series. Taylor & Francis, 1984. ISBN 9780412048418. [p345]

R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad. Intelligible models for healthcare:
Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’15, pages 1721–1730, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN 9781450336642. URL https:
//doi.org/10.1145/2783258.2788613. [p343]

E. Celik. vita: Variable Importance Testing Approaches, 2015. URL https://CRAN.R-project.org/
package=vita. R package version 1.0.0. [p344]

W. Chang. R6: Encapsulated Classes with Reference Semantics, 2019. URL https://CRAN.R-project.org/
package=R6. R package version 2.4.1. [p343]

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou, M. Li,
J. Xie, M. Lin, Y. Geng, and Y. Li. xgboost: Extreme Gradient Boosting, 2019. URL https://CRAN.R-
project.org/package=xgboost. R package version 0.90.0.2. [p359]

W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
Statistical Association, 74(368):829–836, 1979. doi: https://doi.org/10.1080/01621459.1979.10481038.
[p344]

D. D. Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3):1–15, 2011. URL https://doi.org/10.1080/10691898.
2011.11889627. [p360]

M. Corporation and S. Weston. doParallel: Foreach Parallel Adaptor for the ’parallel’ Package, 2019. URL
https://CRAN.R-project.org/package=doParallel. R package version 1.0.15. [p361]

G. Csárdi and M. Salmon. pkgsearch: Search and Query CRAN R Packages, 2019. URL https://CRAN.R-
project.org/package=pkgsearch. R package version 3.0.2. [p344]

F. Doshi-Velez and B. Kim. Towards a rigorous science of interpretable machine learning, 2017. [p343]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame‘, 2019. URL https://CRAN.R-project.
org/package=data.table. R package version 1.12.8. [p360]

A. Fisher, C. Rudin, and F. Dominici. Model class reliance: Variable importance measures for any
machine learning model class, from the "rashomon" perspective. arXiv preprint arXiv:1801.01489,
2018. [p354]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=ingredients
https://CRAN.R-project.org/package=iBreakDown
https://CRAN.R-project.org/package=mlr
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/2783258.2788613
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=vita
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1080/10691898.2011.11889627
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=pkgsearch
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table


CONTRIBUTED RESEARCH ARTICLES 364

J. Friedman, T. Hastie, R. Tibshirani, B. Narasimhan, and N. Simon. glmnet: Lasso and Elastic-Net
Regularized Generalized Linear Models, 2019. URL https://CRAN.R-project.org/package=glmnet. R
package version 3.0-2. [p361]

J. H. Friedman. Multivariate adaptive regression splines. The Annals of Statistics, 19(1):1–67, 1991. URL
https://doi.org/10.1214/aos/1176347963. [p344, 349]

J. H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451. [p351]

D. G. Garson. Interpreting neural-network connection weights. Artificial Intelligence Expert, 6(4):46–51,
1991. [p350]

T. Gedeon. Data mining of inputs: Analysing magnitude and functional measures. International Journal
of Neural Systems, 24(2):123–140, 1997. URL https://doi.org/10.1007/s10994-006-6226-1. [p350]

A. Goh. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in
Engineering, 9(3):143–151, 1995. URL https://dx.doi.org/10.1016/0954-1810(94)00011-S. [p350]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visualizing statistical
learning with plots of individual conditional expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. URL https://doi.org/10.1080/10618600.2014.907095. [p351, 352]

B. Greenwell. fastshap: Fast Approximate Shapley Values, 2019. URL https://github.com/bgreenwell/
fastshap. R package version 0.0.3.9000. [p358]

B. Greenwell, B. Boehmke, and B. Gray. vip: Variable Importance Plots, 2019. URL https://github.com/
koalaverse/vip/. R package version 0.2.1. [p344]

B. M. Greenwell. pdp: An r package for constructing partial dependence plots. The R Journal, 9(1):
421–436, 2017. URL https://journal.r-project.org/archive/2017/RJ-2017-016/index.html.
[p351]

B. M. Greenwell, B. C. Boehmke, and A. J. McCarthy. A simple and effective model-based variable
importance measure. arXiv preprint arXiv:1805.04755, 2018. [p344, 351]

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and
Prediction, Second Edition. Springer Series in Statistics. Springer-Verlag, 2009. [p345]

G. Hooker. Generalized functional anova diagnostics for high-dimensional functions of dependent
variables. Journal of Computational and Graphical Statistics, 16(3):709–732, 2007. URL https://doi.
org/10.1198/106186007X237892. [p360]

G. Hooker and L. Mentch. Please stop permuting features: An explanation and alternatives, 2019.
[p359]

T. Hothorn and A. Zeileis. partykit: A Toolkit for Recursive Partytioning, 2019. URL https://CRAN.R-
project.org/package=partykit. R package version 1.2-5. [p345]

T. Hothorn, K. Hornik, C. Strobl, and A. Zeileis. party: A Laboratory for Recursive Partytioning, 2019.
URL https://CRAN.R-project.org/package=party. R package version 1.3-3. [p344]

D. Janzing, L. Minorics, and P. Blöbaum. Feature relevance quantification in explainable ai: A causal
problem, 2019. [p359]

Z. Jones. mmpf: Monte-Carlo Methods for Prediction Functions, 2018. URL https://CRAN.R-project.
org/package=mmpf. R package version 0.0.5. [p344]

A. Karatzoglou, A. Smola, and K. Hornik. kernlab: Kernel-Based Machine Learning Lab, 2019. URL
https://CRAN.R-project.org/package=kernlab. R package version 0.9-29. [p361]

A. Kozak and P. Biecek. vivo: Local Variable Importance via Oscillations of Ceteris Paribus Profiles, 2019.
URL https://CRAN.R-project.org/package=vivo. R package version 0.1.1. [p351]

M. Kuhn. AmesHousing: The Ames Iowa Housing Data, 2017. URL https://CRAN.R-project.org/
package=AmesHousing. R package version 0.0.3. [p360]

M. Kuhn. caret: Classification and Regression Training, 2020. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-85. [p344]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/s10994-006-6226-1
https://dx.doi.org/10.1016/0954-1810(94)00011-S
https://doi.org/10.1080/10618600.2014.907095
https://github.com/bgreenwell/fastshap
https://github.com/bgreenwell/fastshap
https://github.com/koalaverse/vip/
https://github.com/koalaverse/vip/
https://journal.r-project.org/archive/2017/RJ-2017-016/index.html
https://doi.org/10.1198/106186007X237892
https://doi.org/10.1198/106186007X237892
https://CRAN.R-project.org/package=partykit
https://CRAN.R-project.org/package=partykit
https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=mmpf
https://CRAN.R-project.org/package=kernlab
https://CRAN.R-project.org/package=vivo
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=AmesHousing
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret


CONTRIBUTED RESEARCH ARTICLES 365

M. Kuhn and K. Johnson. Applied Predictive Modeling. SpringerLink : Bücher. Springer New York, 2013.
ISBN 9781461468493. [p344]

M. Lang, B. Bischl, J. Richter, P. Schratz, and M. Binder. mlr3: Machine Learning in R - Next Generation,
2019. URL https://CRAN.R-project.org/package=mlr3. R package version 0.1.6. [p360]

M. Loecher. rfVarImpOOB: Unbiased Variable Importance for Random Forests, 2019. URL https://CRAN.R-
project.org/package=rfVarImpOOB. R package version 1.0. [p344]

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc.,
2017. URL http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-
predictions.pdf. [p358]

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb,
N. Bansal, and S.-I. Lee. Explainable ai for trees: From local explanations to global understanding.
arXiv preprint arXiv:1905.04610, 2019. [p358]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-7. [p357]

S. Milborrow. earth: Multivariate Adaptive Regression Splines, 2019. URL https://CRAN.R-project.org/
package=earth. R package version 5.1.2. [p349]

C. Molnar. iml: Interpretable Machine Learning, 2019a. URL https://CRAN.R-project.org/package=iml.
R package version 0.9.0. [p343]

C. Molnar. Interpretable Machine Learning. 2019b. https://christophm.github.io/interpretable-
ml-book/. [p343, 354, 356]

G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15, 2018. URL https://doi.org/10.1016/j.dsp.2017.10.
011. [p343]

K. Müller and H. Wickham. tibble: Simple Data Frames, 2019. URL https://CRAN.R-project.org/
package=tibble. R package version 2.1.3. [p344]

J. D. Olden, M. K. Joy, and R. G. Death. An accurate comparison of methods for quantifying variable
importance in artificial neural networks using simulated data. Ecological Modelling, 178(3):389–397,
2004. URL https://dx.doi.org/10.1016/j.ecolmodel.2004.03.013. [p350]

A. Paluszynska, P. Biecek, and Y. Jiang. randomForestExplainer: Explaining and Visualizing Ran-
dom Forests in Terms of Variable Importance, 2019. URL https://CRAN.R-project.org/package=
randomForestExplainer. R package version 0.10.0. [p344]

T. Parr and J. D. Wilson. Technical report: A stratification approach to partial dependence for
codependent variables, 2019. [p359]

E. Polley, E. LeDell, C. Kennedy, and M. van der Laan. SuperLearner: Super Learner Prediction, 2019.
URL https://CRAN.R-project.org/package=SuperLearner. R package version 2.0-26. [p361]

B. Poulin, R. Eisner, D. Szafron, P. Lu, R. Greiner, D. S. Wishart, A. Fyshe, B. Pearcy, C. MacDonell, and
J. Anvik. Visual explanation of evidence in additive classifiers. In Proceedings of the 18th Conference
on Innovative Applications of Artificial Intelligence - Volume 2, IAAI’06, pages 1822–1829. AAAI Press,
2006. [p343]

P. Probst. measures: Performance Measures for Statistical Learning, 2018. URL https://CRAN.R-project.
org/package=measures. R package version 0.2. [p344]

P. Probst. varImp: RF Variable Importance for Arbitrary Measures, 2019. URL https://CRAN.R-project.
org/package=varImp. R package version 0.3. [p344]

Revolution Analytics and S. Weston. foreach: Provides Foreach Looping Construct. [p343]

B. Ripley. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models, 2016. URL https:
//CRAN.R-project.org/package=nnet. R package version 7.3-12. [p350]

C. A. Scholbeck, C. Molnar, C. Heumann, B. Bischl, and G. Casalicchio. Sampling, intervention,
prediction, aggregation: A generalized framework for model agnostic interpretations. CoRR,
abs/1904.03959, 2019. URL http://arxiv.org/abs/1904.03959. [p351]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr3
https://CRAN.R-project.org/package=rfVarImpOOB
https://CRAN.R-project.org/package=rfVarImpOOB
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=earth
https://CRAN.R-project.org/package=earth
https://CRAN.R-project.org/package=iml
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://CRAN.R-project.org/package=tibble
https://CRAN.R-project.org/package=tibble
https://dx.doi.org/10.1016/j.ecolmodel.2004.03.013
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=randomForestExplainer
https://CRAN.R-project.org/package=SuperLearner
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=measures
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=varImp
https://CRAN.R-project.org/package=nnet
https://CRAN.R-project.org/package=nnet
http://arxiv.org/abs/1904.03959


CONTRIBUTED RESEARCH ARTICLES 366

C. Strobl, A.-L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance
measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(25), 2007. URL http:
//www.biomedcentral.com/1471-2105/8/25. [p345]

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for
random forests. BMC Bioinformatics, 9(1):307, 2008. URL https://doi.org/10.1186/1471-2105-9-
307. [p344, 345, 359]

Q. Sun. tree.interpreter: Random Forest Prediction Decomposition and Feature Importance Measure, 2019.
URL https://CRAN.R-project.org/package=tree.interpreter. R package version 0.1.0. [p344]

M. van der Laan. Statistical inference for variable importance. The International Journal of Biostatistics, 2
(1), 2006. URL https://doi.org/10.2202/1557-4679.1008. [p343]

H. Wickham. plyr: Tools for Splitting, Applying and Combining Data, 2019. URL https://CRAN.R-
project.org/package=plyr. R package version 1.8.5. [p361]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, and H. Yutani.
ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics, 2019. URL https://CRAN.R-
project.org/package=ggplot2. R package version 3.2.1. [p344]

M. N. Wright, S. Wager, and P. Probst. ranger: A Fast Implementation of Random Forests, 2020. URL
https://CRAN.R-project.org/package=ranger. R package version 0.12.1. [p344]

Y. Xie, J. Cheng, and X. Tan. DT: A Wrapper of the JavaScript Library ’DataTables’, 2019. URL https:
//CRAN.R-project.org/package=DT. R package version 0.11. [p360]

A. Zien, N. Kraemer, S. Sonnenburg, and G. Raetsch. The feature importance ranking measure, 2009.
[p351]

E. Štrumbelj and I. Kononenko. Explaining prediction models and individual predictions with feature
contributions. Knowledge and Information Systems, 31(3):647–665, 2014. URL https://doi.org/10.
1007/s10115-013-0679-x. [p358]

Brandon M. Greenwell
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
ORCiD—0000-0002-8120-0084
greenwell.brandon@gmail.com

Bradley C. Boehmke
University of Cincinnati
2925 Campus Green Dr
Cincinnati, OH 45221
United States of America
ORCiD—0000-0002-3611-8516
bradleyboehmke@gmail.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://www.biomedcentral.com/1471-2105/8/25
http://www.biomedcentral.com/1471-2105/8/25
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1186/1471-2105-9-307
https://CRAN.R-project.org/package=tree.interpreter
https://doi.org/10.2202/1557-4679.1008
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=plyr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ranger
https://CRAN.R-project.org/package=DT
https://CRAN.R-project.org/package=DT
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://orcid.org/0000-0002-8120-0084
mailto:greenwell.brandon@gmail.com
https://orcid.org/0000-0002-3611-8516
mailto:bradleyboehmke@gmail.com


CONTRIBUTED RESEARCH ARTICLES 367

SimilaR: R Code Clone and Plagiarism
Detection
by Maciej Bartoszuk and Marek Gagolewski

Abstract Third-party software for assuring source code quality is becoming increasingly popular.
Tools that evaluate the coverage of unit tests, perform static code analysis, or inspect run-time
memory use are crucial in the software development life cycle. More sophisticated methods allow
for performing meta-analyses of large software repositories, e.g., to discover abstract topics they
relate to or common design patterns applied by their developers. They may be useful in gaining a
better understanding of the component interdependencies, avoiding cloned code as well as detecting
plagiarism in programming classes.

A meaningful measure of similarity of computer programs often forms the basis of such tools.
While there are a few noteworthy instruments for similarity assessment, none of them turns out
particularly suitable for analysing R code chunks. Existing solutions rely on rather simple techniques
and heuristics and fail to provide a user with the kind of sensitivity and specificity required for
working with R scripts. In order to fill this gap, we propose a new algorithm based on a Program
Dependence Graph, implemented in the SimilaR package. It can serve as a tool not only for improving
R code quality but also for detecting plagiarism, even when it has been masked by applying some
obfuscation techniques or imputing dead code. We demonstrate its accuracy and efficiency in a
real-world case study.

Introduction

In recent years there has been a rise in the availability of tools related to code quality, including
inspecting run-time memory usage (Serebryany et al., 2012), evaluating unit tests coverage (Ammann
and Offutt, 2013), discovering abstract topics to which source code is related (Grant et al., 2012; Tian
et al., 2009; McBurney et al., 2014; Linstead et al., 2007; Maskeri et al., 2008), finding parts of code
related to a particular bug submission (Lukins et al., 2008), and checking for similarities between
programs. With regards to the latter, quantitative measures of similarity between source code chunks
play a key role in such practically important areas as software engineering, where encapsulating
duplicated code fragments into functions or methods is considered a good development practice or
in computing education, where any cases of plagiarism should be brought to a tutor’s attention, see
(Misic et al., 2016; Mohd Noor et al., 2017; Roy et al., 2009; Rattan et al., 2013; Ali et al., 2011; Hage
et al., 2011; Martins et al., 2014). Existing approaches towards code clone detection can be classified
based on the abstraction level at which they inspect programs’ listings.

• Textual – the most straightforward representation, where a listing is taken as-is, i.e., as raw
text. Typically, string distance metrics (like the Levenshtein one; see, e.g., van der Loo, 2014)
are applied to measure similarity between pairs of the entities tested. Then some (possibly
approximate) nearest neighbour search data structures seek matches within a larger code base.
Hash functions can be used for the same purpose, where fingerprints of code fragments might
make the comparison faster, see, e.g., (Johnson, 1993; Manber, 1994; Rieger, 2005). Another
noteworthy approach involves the use of Latent Semantic Analysis (Marcus and Maletic, 2001)
for finding natural clusters of code chunks.

• Lexical (token-based) – where a listing is transformed into tokens, which are generated by the
parser during the lexical analysis stage. This form is believed to be more robust than the textual
one, as it is invariant to particular coding styles (indentation, layout, comments, etc.). Typically,
algorithms to detect and analyse common token sub-sequences are used (Kamiya et al., 2002;
Ueda et al., 2002; Li et al., 2006; Wise, 1992; Prechelt et al., 2000; Hummel et al., 2011; Schleimer
et al., 2003).

• Syntactic – an approach based on abstract syntax trees (ASTs). Contrary to the previous repre-
sentation, which is “flat” by its nature, here the code is represented in a hierarchical manner.
This makes it possible to, for instance, distinguish between a top-level statement and a code
block that is executed within the else clause of an if-else construct. One way to quantify the
similarity of ASTs is to find common sub-trees. This might be an uneasy task, therefore, e.g.,
in (Baxter et al., 1998) a hash function is used to project a sub-tree into a discrete single value,
so that only the sub-trees in the same bucket are compared against each other. Another way
involves the computation of diverse tree metrics (based on node type count, their distribution,
connectivity, etc.) so that each AST is represented as a feature vector. Then the feature vectors

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 368

can be compared against each other directly in a pairwise fashion (Mayrand et al., 1996; Pate-
naude et al., 1999; Fu et al., 2017) or by means of some cluster analysis-based approach (Jiang
et al., 2007).

• Semantic – the most sophisticated representation involving a set of knowledge-based, language-
dependent transformations of a program’s abstract syntax tree. Usually, a data structure
commonly known as a Program Dependence Graph (PDG) is created, see below for more
details. In such a data structure, the particular order of (control- or data-) independent code
lines is negligible. A popular approach to measure similarity between a pair of PDGs concerns
searching for (sub)isomorphisms of the graphs, see (Komondoor and Horwitz, 2001; Liu et al.,
2006; Qu et al., 2014).

There are a few generally available software solutions whose purpose is to detect code clones,
e.g., MOSS (see http://theory.stanford.edu/~aiken/moss/ and Schleimer et al., 2003) and JPlag
(see http://jplag.de/ and Prechelt et al., 2000), see also (Misic et al., 2016; Vandana, 2018) for an
overview. These tools are quite generic, offering built-in support for popular programming languages
such as Java, C#, C++, C, or Python.

Unfortunately, there is no package of this kind that natively supports the R language, which is
the GNU version of S (see, e.g., Becker et al., 1998; Venables and Ripley, 2000). It is a serious gap: R
is amongst the most popular languages1, and its use has a long, successful track record, particularly
with respect to all broadly-conceived statistical computing, machine learning, and other data science
activities (Wickham and Grolemund, 2017). With some pre-processing, MOSS and JPlag can be applied
on R code chunks, but the accuracy of code clones detection is far from optimal. This is due to the fact
that, while at a first glance being an imperative language, R allows plenty typical functional constructs
(see the next section for more details and also, e.g., Chambers, 1998; Wickham, 2014; Chambers, 2008).
On the one hand, its syntax resembles that of the C language, with curly braces to denote a nested
code block and classical control-flow expressions such as if..else conditionals, or while and for (for
each) loops. On the other hand, R’s semantics is based on the functional Scheme language (Abelson
et al., 1996), which is derived from Lisp. Every expression (even one involving the execution of a
for loop) is in fact a call to a function or any combination thereof, and each function is a first-class
object that (as a rule of thumb) has no side effects. Moreover, users might choose to prefer applying
Map–Filter–Reduce-like expressions on container objects instead of the classical control-flow constructs
or even mix the two approaches. Also, the possibility of performing the so-called nonstandard evaluation
(metaprogramming) allows to change the meaning of certain expressions during run-time. For instance,
the popular forward-pipe operator, %>%, implemented in the magrittr (Bache and Wickham, 2014)
package, allows for converting a pipeline of function calls to a mutually nested series of calls.

In this paper we describe a new algorithm that aims to fill the aforementioned gap (based on
Bartoszuk, 2018). The method’s implementation is included in the SimilaR2 package. It transforms
the analysed code base into a Program Dependence Graph that takes into account the most common
R language features as well as the most popular development patterns in data science. Due to this,
the algorithm is able to detect cases of plagiarism quite accurately. Moreover, thanks to a novel,
polynomial-time approximate graph comparison algorithm, its implementation has relatively low
run-times. This enables to conduct an analysis of a software repository whose size is significant.

This paper is set out as follows. First we introduce the concept of a Program Dependence Graph
along with its R language-specific customisations. Then we depict a novel algorithm for quantifying
similarity of two graphs. Further on we provide some illustrative examples for the purpose of showing
the effects of applying particular alterations to a Program Dependence Graph. What is more, we
demonstrate the main features of the SimilaR package version 1.0.8. Then we perform an experiment
involving the comparison of the complete code-base of two CRAN packages.

Program Dependence Graph

A Program Dependence Graph (PDG) is a directed graph representing various relations between individ-
ual expressions in a source code chunk. As we mentioned in the introduction, it is among the most
sophisticated data structures used for the purpose of code clones detection. First proposed by Ferrante
et al. (1987), it forms the basis of many algorithms, see, e.g., (Liu et al., 2006; Qu et al., 2014; Gabel et al.,
2008; Krinke, 2001; Horwitz and Reps, 1991; Komondoor and Horwitz, 2001; Ghosh and Lee, 2018;
Nasirloo and Azimzadeh, 2018).

1For instance, the 2018 edition of the IEEE Spectrum ranking places R on the No. 7 spot, see http://spectrum.
ieee.org/at-work/innovation/the-2018-top-programming-languages.

2See https://CRAN.R-project.org/package=SimilaR. SimilaR can be downloaded from the Comprehensive
R Archive Network (CRAN) repository (Silge et al., 2018) and installed via a call to install.packages("SimilaR").

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://theory.stanford.edu/~aiken/moss/
http://jplag.de/
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=SimilaR
http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
http://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://CRAN.R-project.org/package=SimilaR


CONTRIBUTED RESEARCH ARTICLES 369

Abstract Syntax Tree. To create a PDG, we first need to construct an Abstract Syntax Tree (AST) of
a given program. In R, it is particularly easy to compute the AST corresponding to any expression,
due to its built-in support for reflection that facilitates metaprogramming. For instance, the parse()
function can be called to perform lexical analysis of a code fragment, yielding a sequence of language
objects. Moreover, a basic version of a function to print an AST takes just few lines of code:

R> show_ast <- function(x) {
+ as.list_deep <- function(x) # convert to a plain list (recursively)
+ { if (is.call(x)) lapply(as.list(x), as.list_deep) else x }
+ x <- substitute(x) # expression that generated the argument
+ str(as.list_deep(x)) # pretty-print
+ }

Let us visualise the AST corresponding to expression d <-sum((x-y)*(x-y)).

R> show_ast(d <- sum((x-y)*(x-y)))

List of 3
$ : symbol <-
$ : symbol d
$ :List of 2
..$ : symbol sum
..$ :List of 3
.. ..$ : symbol *
.. ..$ :List of 2
.. .. ..$ : symbol (
.. .. ..$ :List of 3
.. .. .. ..$ : symbol -
.. .. .. ..$ : symbol x
.. .. .. ..$ : symbol y
.. ..$ :List of 2
.. .. ..$ : symbol (
.. .. ..$ :List of 3
.. .. .. ..$ : symbol -
.. .. .. ..$ : symbol x
.. .. .. ..$ : symbol y

In R, both a constant (numeric, logical, string, etc.) and a symbol (name) constitute what we
call a simple expression. A compound expression is in turn a sequence of n + 1 expressions (simple or
compound ones) 〈 f , a1, . . . , an〉, n ≥ 0, which represents a call to f with arguments a1, . . . , an (which
we are typically used to denote as f (a1, . . . , an)).

The above AST can be written in the Polish (prefix) notation as

〈‘<-‘, d, 〈sum, 〈‘*‘, 〈‘-‘, x, y〉 , 〈‘-‘, x, y〉〉〉〉
Such a notation is used in Scheme and Lisp; we skipped a call to ‘(’ for readability, as (e) is equivalent
to e for each expression e. Alternatively, the above can be written as

‘<-’(d, sum(‘*‘(‘-‘(x, y), ‘-‘(x, y))))

in the “functional” form. Let us emphasise that even an application of a binary operator (here: <-, *,
and -) corresponds to some function call. Hence x-y is just a syntactic sugar for `-`(x,y). Moreover,
other expressions such as if..else and loops also correspond to some function calls. For example:

R> show_ast(for(i in 1:5) {
+ print("i = ", i)
+ if (i %% 2 == 0) print(":)") else print(":$")
+ })

List of 4
$ : symbol for
$ : symbol i
$ :List of 3
..$ : symbol :
..$ : num 1
..$ : num 5

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 370

$ :List of 3
..$ : symbol {
..$ :List of 3
.. ..$ : symbol print
.. ..$ : chr "i = "
.. ..$ : symbol i
..$ :List of 4
.. ..$ : symbol if
.. ..$ :List of 3
.. .. ..$ : symbol ==
.. .. ..$ :List of 3
.. .. .. ..$ : symbol %%
.. .. .. ..$ : symbol i
.. .. .. ..$ : num 2
.. .. ..$ : num 0
.. ..$ :List of 2
.. .. ..$ : symbol print
.. .. ..$ : chr ":)"
.. ..$ :List of 2
.. .. ..$ : symbol print
.. .. ..$ : chr ":$"

Vertex and edge types. The vertices of a PDG represent particular expressions, such as a variable
assignment, a function call or a loop header. Each vertex is assigned its own type, reflecting the kind
of expression it represents. The comprehensive list of vertex types for the R language code-base
used in SimilaR is given in Table 1. The number of distinct types is a kind of compromise between
the algorithm’s sensitivity and specificity. It was set empirically based on numerous experiments
(Bartoszuk, 2018).

We may also distinguish two types of edges: control dependency and data dependency ones. The
former represents the branches in a program’s control flow that result in a conditional execution of
expressions such as if-else-constructs or loops. A subgraph of a PDG consisting of all the vertices
and only the control dependency edges is called a Control Dependence Subgraph (CDS).

The latter edge vertex type is responsible for modelling data flow relations: there is an edge from a
vertex v to a vertex u, whenever a variable assigned in the expression corresponding to v is used in the

Id Color Type Description

0 Olive Entry marks the beginning of a function
1 Light yellow Header loop
2 – Next next
3 – Break break
4 Orange If a conditional expression
5 Light blue If_part an expression to execute conditionally
6 Gray assignment an assignment expression, e.g., name <- val
7 Violet parameter a function parameter
8 – oneBracketSingle an expression involving [i], e.g., vector[-1]
9 – oneBracketDouble an expression involving [i,j]

10 – oneBracketTripleOrMore an expression involving [i,j,k,. . .]
11 – twoBrackets an expression involving [[i]], e.g., list[["nameditem"]]
12 – dollar an expression involving $, e.g., df$column
13 – funNoArguments a function call with no actual parameters
14 Red funOneArgument a function call with one actual parameter
15 – funTwoArguments a function call with two actual parameters
16 – funThreeArguments a function call with three actual parameters
17 – funFourOrMoreArguments a function call with four or more actual parameters
18 – stopifnot a call to stopifnot()
19 – logicalOperator a logical operator-based expression, e.g., &, | or !
20 Green arithmeticOperator an arithmetic operator-based expression, e.g., +, - or *
21 Blue comparisonOperator a comparison operator-based expression, e.g., ==, <= or <
22 Green return a call to return()
23 Cyan colon a colon operator-based expression, e.g., from:to
24 Dark green symbol a symbol (name)
25 Dark green constant a constant value, e.g., 1, "string" or NA

Table 1: Assumed Program Dependence Graph vertex types for the R language.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 371

computation of the expression related to u. A spanning subgraph of a PDG that consists solely of the
data dependency edges is called a Data Dependence Subgraph (DDS).

Hence, a PDG of a function F() is a vertex- and edge-labelled directed graph F = (VF, EF, ζF, ξF),
where VF is the set of its vertices, EF ⊆ VF ×VF denotes the set of edges ((v, u) ∈ EF whenever there
is an edge from v to u), ζF : VF → {Entry, Header, . . . , constant} = {0, . . . , 25} gives the type of each
vertex and ξF : EF → {DATA, CONTROL}marks if an edge is a data- or control-dependency one. Note
that each PDG is rooted – there exists one and only one vertex v with indegree 0 and ζF(v) = Entry.

Example code chunks with the corresponding dependence graphs are depicted in Figures 1 and 2.
The meaning of vertex colors is explained in Table 1.

sum <- function(x)
{
s <- 0
m <- 1
for(i in x) {
s <- s + i
m <- m * i

}

if(s < 0) {
s <- -s
print("Negative s")

}
if(m < 0) {
m <- -m
print("Negative m")

}
return(s)

}

Entry

m < 0 

If

m ← -m

print
("Negative m")

s < 0

If

s ← -s
print

("Negative s")

s ← 0

x

m ← 1

return(s)

For

i : x

m ← m*i s ← s+i

Figure 1: An example function and the respective Control Dependence Subgraph.

sum <- function(x)
{

a <- 5
b <- 6
for(i in x)
{
c <- a + b - i

}
}

Entry

b ← 6 xa ← 5 F o r

i  :  x

c ← ab-i

ab ← a+b

Figure 2: An example function and the corresponding Program Dependence Graph; solid and dashed
arrows represent control and data dependency edges, respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 372

The most basic version of an algorithm to create a PDG based on an abstract syntax tree is
described in (Harrold et al., 1993). Let us note the fact that a CDS is a subgraph of an AST: it provides
the information about certain expressions being nested within other ones, e.g., that some assignment
is part (child) of a loop’s body. Additionally, an AST includes a list of local variables and links them
with expressions that rely on them. This is a crucial piece of information used to generate DDS.

Note that, however, a PDG created for the purpose of code clones detection cannot be treated as a
straightforward extension of a raw AST. The post-processing procedure should be carefully customised
taking into account the design patterns and coding practices of a particular programming language.
Hence, below we describe the most noteworthy program transforms employed in the SimilaR package
so that it is invariant to typical attacks, i.e., transforms changing the way the code is written yet not
affecting its meaning.

Unwinding nested function calls. As mentioned above, in R, as in any functional language,
functions play a key role. A code chunk can be thought of as a sequence of expressions, each of which
is composed of function calls. Base or external library functions are used as a program’s building
blocks and often very complex tasks can be written with only few lines of code.

For instance, given a matrix X ∈ Rd×n representing n vectors in Rd and a vector y ∈ Rd,
the closest vector in X to y with respect to the Euclidean metric can be determined by evaluat-
ing X[,which.min(apply((X-y)ˆ2,2,sum))]. This notation is very concise and we can come up with
many equivalent forms of this expression written in a much more loquacious fashion.

Therefore, in SimilaR, hierarchies of nested calls, no matter their depth, are always recursively
unwound by introducing as many auxiliary assignments as necessary. For instance, f(g(x)) is
decomposed as gx <- g(x); f(gx). This guarantees that all their possible variants are represented in
the same way in the PDG.

Forward-pipe operator, %>% Related to the above is the magrittr’s forward-pipe operator, %>%,
which has recently gained much popularity within the R users’ community. Even though the operator
is just a syntactic sugar for forwarding an object into the next function call/expression, at the time
of writing of this manuscript, the package has been used as a direct dependency by over 700 other
CRAN packages. Many consider it very convenient, as it mimics the “left-to-right” approach known
from object-orientated languages like Java, Python or C++. Instead of writing (from the inside and
out) f(g(x),y), with magrittr we can use the syntax x %>% g %>% f(y) (which would normally
be represented as x.g().f(y) in other languages). To assure proper similarity evaluation, SimilaR
unwinds such expressions in the same manner as nested function calls.

Calls within conditions in control-flow expressions. An expression serving as a Boolean
condition in an if or a while construct might be given as a composition of many function calls. The
same might be true for an expression generating the container to iterate over in a for loop. PDG
vertices representing such calls are placed on the same level as their corresponding control-flow
expressions so that they can be unwound just as any other function call.

Canonicalization of conditional statements. The following code chunk:

if (cond) {
return(A)

} else {
return(B)

}

is semantically equivalent to:

if (cond)
return(A)

return(B)

This exploits the fact that the code after the if statement is only executed whenever the logical
condition is false. To avoid generating very different control dependencies, we always unwind the
former to the latter by putting the code-richer branch outside of a conditional statement.

Tail call to return(). The return value that is generated by evaluating a sequence of expressions
wrapped inside curly braces (the `{`() function) is determined by the value of its last expression. If a
function’s body is comprised of such a code block, the call to return() is optional if it is used in the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 373

last expression. However, many users write it anyway. Therefore, a special vertex of type return()
have been introduced to mark an expression that generates the output of a function.

Map-like functions. Base R supports numerous Map-like operations that are available in many pro-
gramming languages. The aim of the members of the *apply() family (apply(), lapply(), sapply(),
etc.) is to perform a given operation on each element/slice of a given container. These are unwound as
an expression involving a for loop. For instance, a call to ret <-lapply(l,fun,...) can be written as

ret <- list(); for (el in l) ret[[length(ret)+1]] <- fun(el, ...)

Variable duplication. To prevent redundant assignments such as xcopy <-x made just in order to
refer to the original value under a new alias, a hierarchical variable dictionary is kept to generate data
dependency edges properly.

Memoization. In pure functional languages it is assumed that functions have no side effects, i.e.,
the same arguments are mapped to the same return value. In R it is of course not always technically
true (e.g., when the pseudo-random number generator is involved), but such an assumption turns out
to be helpful in our context. Therefore, if a function call instance is invoked more than once, its value
is memorised by introducing a new variable.

Dead code. Many plagiarism detection algorithms can be easily misled by adding random code
that does not affect the main computations. In SimilaR, such dead code is identified and removed. This
is done by iteratively deleting all vertices whose outdegree is zero (except those of type return).

To sum up, SimilaR guarantees that the Program Dependence Graph is the same regardless of
the order of independent function calls, unwinding nested function calls, the use of the forward-pipe
operator, etc. Hence, it is invariant to the most typical attacks. Moreover, it has been implemented in
such a way that new kinds of transformations can be easily added in the future, as the R development
practices and common program design patterns evolve.

Comparing Program Dependence Graphs

In our setting, code similarity assessment reduces to a comparison between a pair of Program Depen-
dence Graphs. In this section we are interested in an algorithm µ such that µ(F, G) ∈ [0, 1] represents
a similarity degree between two PDGs F and G. A similarity of 1 denotes that two PDGs are identical,
while 0 means that they are totally different. Alternatively, we might be interested in a non-symmetric
measure µ̃(F, G) ∈ [0, 1] representing the degree to which the source code of F is contained within G.

Ideally, an algorithm to compare two PDGs should enjoy the following properties:

• it should be flexible in the sense that introducing a “small difference” in one of the graphs should
not affect the estimated similarity degree significantly;

• it should be fast to execute so that computing numerous pairwise similarities can be performed
in a reasonable time span.

Due to the latter, we immediately lose our interest in all currently known exact algorithms to
find subgraph isomorphisms or maximum common subgraphs because of their exponential-time
complexity (the problems are NP-hard; see, e.g., Wegener, 2005). To recall, two graphs are isomorphic
whenever there exists a mapping between the two graphs’ vertices preserving the node adjacencies.

In the SimilaR package, we use a modified version (for increased flexibility and better perfor-
mance in the plagiarism detection problem) of an algorithm described in (Shervashidze et al., 2011),
which itself is based on the Weisfeiler–Lehman isomorphism test (Weisfeiler and Lehman, 1968) and
graphs kernels. Note that the base method has been successfully used in many applications, e.g., in
cheminformatics (Mapar, 2018) and programming autonomous robots (Luperto and Amigoni, 2019).

In each of the h iterations of the SimilaR algorithm, we assign new labels to the vertices of a PDG
based on their neighbours’ labels. While in the original algorithm (Shervashidze et al., 2011), two
vertices are considered diverse already when one of their neighbours has been assigned a different
label, here we might still be assigning the same label if the vertices’ adjacency differs only slightly. Our
approach turns out to be more robust (Bartoszuk, 2018) against minor code changes or some vertices
being missing in the graph.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 374

SimilaR algorithm at a glance. Before we describe every step of the algorithm in detail, let
us take a look at it from a bird’s-eye perspective. If we are to assign each vertex a new label that
is uniquely determined by their current type as well the labels allocated to their neighbours, two
identical graphs will always be coloured the same way, no matter how many times we reiterate the
labelling procedure. In particular, after h iterations, a vertex’s label depends on the types of vertices
whose distance from it is at most h.

We are of course interested in assigning equivalent labels to vertices in graphs that are not
necessarily identical, but still similar to each other. Otherwise, two vertices which have all but one
neighbour in common, would get distinct labels. After h iterations, all the vertices at distance at most
h would all already be assigned different colours. This would negatively affect the overall graph
similarity assessment.

In order to overcome this problem, we introduce the concept of vertex importance, which is based
upon the number of vertices that depend on a given node. Only important enough differences in the
vertex neighbourhoods will be considered as sufficient to trigger a different labelling. Then, after h
iterations, two vectors of label type counts can be compared with each other to arrive at a final graph
similarity degree.

SimilaR algorithm in detail. The following description of the SimilaR algorithm will be illus-
trated based on a comparison between two functions, clamp1() (whose PDG from now on we will
denote with F = (VF, EF, ζF, ξF), see Fig. 3) and standardise() (denoted G = (VG, EG, ζG, ξG), see
Fig. 4).

v Entry x min(x) max(x) - (1) < If If_part NULL - (2) /

raw δF(v) 7.80 3.04 1.35 1.12 0.93 0.65 0.30 0.20 0.10 0.21 0.10
normalised 0.49 0.19 0.09 0.07 0.06 0.04 0.02 0.01 0.01 0.01 0.01

Table 2: Vertex importance degrees in clamp1() (sum = 15.79, median = 0.04).

v Entry x sd(x) < If If_part NULL mean(x) - /

raw δG(v) 4.33 1.71 0.93 0.65 0.30 0.20 0.10 0.33 0.21 0.1
normalised 0.49 0.19 0.10 0.07 0.03 0.02 0.01 0.04 0.02 0.01

Table 3: Vertex importance degrees in standardise() (sum = 8.86, median = 0.03).

v Entry x min(x) max(x) - (1) < If If_part NULL - (2) /

ζF(v) 0 24 14 14 20 21 4 5 25 20 20

ζ1
F(v) 0 1 2 2 3 4 5 6 7 3 3

ζ2
F(v) 7 1 2 2 8 3 4 5 0 6 6

ζ3
F(v) 8 5 6 6 7 1 2 3 0 4 4

Table 4: clamp1(): Labels assigned to vertices in each iteration.

v Entry x sd(x) < If If_part NULL mean(x) - /

ζG(v) 0 24 14 21 4 5 25 14 20 20

ζ1
G(v) 0 1 2 4 5 6 7 2 3 3

ζ2
G(v) 7 1 9 3 4 5 0 2 6 6

ζ3
G(v) 12 9 10 1 2 3 0 11 4 4

Table 5: standardise(): Labels assigned to vertices in each iteration.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 375

R> clamp1 <- function(x)
+ {
+ if (max(x)-min(x) < 1e-5)
+ NULL
+ else
+ (x - min(x))/(max(x)-min(x))
+ }

Entry

max(x)

x

min(x)

If

If_part

NULL

- (1)

<
/

- (2)

Figure 3: The clamp1() function with the respective PDG.

R> standardise <- function(x)
+ {
+ if (sd(x) < 1e-5)
+ NULL
+ else
+ (x - mean(x))/sd(x)
+ }

Entry

mean(x)

x

sd(x) If

If_part

NULL

<
/

- 

Figure 4: The standardise() function with the respective PDG.

1. Vertex importance degrees. Firstly, each vertex in F is assigned an importance degree, δF :
VF → R+,

δF(v) = 0.1 + ∑
(v,u)∈EF

(
1 + 0.1IξF((v,u))=DATA

)
δF(u),

where Icond is an indicator function with value 1 if cond is true and 0 otherwise. In other words,
a vertex v with outdegree equal to 0 has importance δ(v) = 0.1. Otherwise, its importance
degree is set to δ(v) = 0.1 plus the sum of importances of its outgoing control-dependent
neighbours plus the sum of importances of its outgoing data-dependent neighbours multiplied
by 1.1.
Note that if F is an acyclic graph, then it has a topological ordering, i.e., an arrangement of the
vertices such that every edge is directed from earlier to later in the sequence. In such a case δF
is well-defined. Otherwise, we shall be computing the importance degrees in the depth-first
manner.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 376

Next, the importance degrees are normalised, δF(v) 7→ δF(v)/ ∑u∈VF
δF(u). Tables 2 and 3 give

the importance degrees of the vertices in the two graphs studied.

2. Vertex labels. Recall from the previous section that each vertex v ∈ VF, u ∈ VG has been
assigned a label, ζF(v), ζG(u) ∈ {0, . . . , 25}, based on the type of operation it represents (see
Tables 4 and 5).
In the i-th (out of h in total, here we fix h = 3; see Bartoszuk, 2018 for discussion) iteration of the
SimilaR algorithm, we assign new labels ζ i

F, ζ i
G according to the labels previously considered.

(a) Iteration i = 1. In the first iteration, the initial labels, ζF, ζG, are simply remapped to
consecutive integers. This yields ζ1

F and ζ1
G as given in Tables 4 and 5.

(b) Iterations i = 2 and i = 3. In subsequent iterations, we seek groups of similar vertices
so as to assign them the same label. Two vertices v, u ∈ VF ∪ VG are considered similar
(with no loss in generality, we are assuming v ∈ VF and u ∈ VG below), whenever they
have been assigned the same label in the previous iteration and have outgoing neighbours
with the same labels. However, for greater flexibility, we allow for the neighbourhoods to
differ slightly – unmatched neighbours of lesser importance degrees will not be considered
significant. Formally, v ∈ VF and u ∈ VG are similar, whenever ζ i−1

F (v) = ζ i−1
G (u) and:

∑
(v,w)∈EF ,ζ i−1

F (w) 6∈C(v,u)

δF(w) ≤ min{MF, MG},

where C(v, u) = {ζ i−1
F (w) : (v, w) ∈ EF} ∩ {ζ i−1

G (w) : (u, w) ∈ EG} denotes the multiset
of common neighbours’ vertex labels and MF and MG denote the medians of importance
degrees of vertices in F and G, respectively.
The above similarity relation in obviously reflexive and symmetric. When we compute its
transitive closure, we get an equivalence relation whose equivalence classes determine
sets of vertices that shall obtain identical labels.

For instance, let i = 2 and v be the Entry vertex in F and u be the Entry vertex in u. We
have ζ1

F(v) = ζ1
G(u) = 0. Outgoing neighbours of v have types: 1 (x), 3 (- (2)), 3 (/), 2

(min(x)), 2 (max(x)), 4 (<), 3 (- (1)) and 5 (If ). Neighbours of u are labelled as 1 (x), 3 (-), 2
(mean(x)), 3 (/), 2 (sd(x)), 4 (<), 5 (If ). Hence, v has one unmatched neighbour of type 3
(here: an arithmetic operation). However, as there are 3 such neighbours of v (importances:
0.01, 0.01, 0.06) and 2 of u (importances: 0.01, 0.02), we need a rule for determining the
left-out importance degree. Here, for greater algorithm’s flexibility, we always assume that
the unmatched importances are considered in an increasing order. Therefore, we get that
0.01 ≤ min{MF, MG} = min{0.04, 0.03} = 0.03 and thus v and u are considered similar.
As another example, let i = 3 and v be the x vertex in F and u be the x vertex in G. We
have ζ2

F(v) = ζ2
G(u) = 1. Their neighbours are: - (2) (importance=0.01; type=6), min(x)

(importance=0.09; type=2), max(x) (importance=0.07; type=2) and - (importance=0.02;
type=6), mean(x) (importance=0.04; type=2), sd(x) (importance=0.10; type=9). The sum of
the importance degrees of the unmatched neighbours is now equal to 0.07 + 0.10 > 0.03,
hence, u and v are not considered similar. They are also not in the transitive closure with
respect to the other similarities. Therefore, they will be assigned different labels.

3. Partial similarity degrees. Let m be the maximal integer label assigned above and Li
F =

(Li
F,1, . . . , Li

F,m) be a vector of label counts, where Li
F,j = |{v ∈ VF : ζ i

F(v) = j}|, see Table 6. We

define Li
G in much the same way, see Table 7. We introduce the following “partial” similarity

measures of the label sequences – the symmetric:

µ(Li
F, Li

G) = 1− ∑m
k=1 |Li

F,k − Li
G,k|

∑m
k=1 Li

F,k + ∑m
k=1 Li

G,k

and its nonsymmetric version:

µ̃(Li
F, Li

G) =
∑m

k=1 min(Li
F,k, Li

G,k)

∑m
k=1 Li

F,k
.

The partial similarities for i = 1, 2, 3 are given in Table 8.

4. Final similarity degrees. The overall similarity degree is defined as the arithmetic mean of the
h = 3 partial similarities (reported in Table 8):

µ(F, G) =
1
h

h

∑
i=1

µ(Li
F, Li

G) =
0.95 + 0.86 + 0.57

3
= 0.79, (1)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 377

j 0 1 2 3 4 5 6 7 8 9 10 11 12

L1
F,j 1 1 2 3 1 1 1 1 0 0 0 0 0

L2
F,j 1 1 2 1 1 1 2 1 1 0 0 0 0

L3
F,j 1 1 1 1 2 1 2 1 1 0 0 0 0

Table 6: clamp1(): Label counts in each iteration.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

L1
G,j 1 1 2 2 1 1 1 1 0 0 0 0 0

L2
G,j 1 1 1 1 1 1 2 1 0 1 0 0 0

L3
G,j 1 1 1 1 2 0 0 0 0 1 1 1 1

Table 7: standardise(): Label counts in each iteration.

i µ(Li
F, Li

G) µ̃(Li
F, Li

G) µ̃(Li
G, Li

F)

1 0.95 0.91 1.00
2 0.86 0.82 0.90
3 0.57 0.55 0.60

Final 0.79 0.76 0.83

Table 8: Similarity measures in each iteration.

We obtain its nonsymmetric versions in the same way:

µ̃(F, G) =
1
h

h

∑
i=1

µ̃(Li
F, Li

G) =
0.91 + 0.82 + 0.55

3
= 0.76,

µ̃(G, F) =
1
h

h

∑
i=1

µ̃(Li
G, Li

F) =
1.00 + 0.90 + 0.60

3
= 0.83.

(2)

Having discussed the algorithms behind the SimilaR package, let us proceed with the description
of its user interface.

Illustrative examples

The SimilaR package can be downloaded from CRAN and installed on the local system via a call to:

R> install.packages("SimilaR")

Here we are working with version 1.0.8 of the package.

Once the package is loaded and its namespace is attached by calling:

R> library("SimilaR")

two functions are made available to a user. SimilaR_fromTwoFunctions() is responsible for assessing
the similarity between a pair of function objects (R is a functional language, hence assuming that
functions constitute basic units of code seem natural). Moreover, SimilaR_fromDirectory(), which
we shall use in the next section, is a conveniently vectorised version of the former, performing the
comparison of all the scripts in a given directory.

Let us evaluate the similarity between the F = clamp1() and G = standardise() functions
defined above:

R> SimilaR_fromTwoFunctions(clamp1, standardise) # aggregation="sym"

name1 name2 SimilaR decision
1 clamp1 standardise 0.7954545 1

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 378

Here, SimilaR denotes the (symmetric) measure µ(F, G) ∈ [0, 1] as given by Eq. (1). decision uses
a built-in classifier model to assess whether such a similarity degree is considered significant (1) or not
(0).

To obtain the non-symmetric measures, µ̃(F, G) and µ̃(G, F) (see Eq. (2)), we pass aggregati-
on="both" as an argument:

R> SimilaR_fromTwoFunctions(clamp1, standardise, aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1 standardise 0.7575758 0.8333333 1

Example: clamp2(). Let us recall the source code of the clamp1() function:

R> clamp1

function(x)
{
if (max(x)-min(x) < 1e-5)
NULL

else
(x - min(x))/(max(x)-min(x))

}

By applying numerous transformations described above, we may arrive at its following version:

R> library("magrittr")
R> clamp2 <- function(y)
+ {
+ longName <- y # variable duplication
+ longName2 <- min
+ z <- { sum(longName**2) } # dead code
+ min_y <- longName %>% longName2 # forward-pipe
+ max_y <- y %>% max
+ max_y_min_y <- max_y-min_y # memoization
+ if(!(max_y_min_y >= 1e-5)) # canonicalization of the if statement
+ {
+ return(NULL)
+ }
+ ((y - min_y)/max_y_min_y) # tail call to return removed
+ }

SimilaR correctly identifies the two functions as equivalent:

R> SimilaR_fromTwoFunctions(clamp1, clamp2, aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1 clamp2 1 1 1

Example: A vectorised version of clamp1(). Let us now consider two different vectorised
versions of the clamp1() function for list-type inputs. The first one is based on a call to lapply(),
which takes care of applying a given anonymous function on each list member:

R> clamp1_vectorised1 <- function(x) {
+ x %>% lapply(function(y) {
+ if (max(y)-min(y) < 1e-5) {
+ {{{{NULL}}}}
+ } else {
+ {{{{(y - min(y))/(max(y)-min(y))}}}}
+ }
+ })
+ }

The second function unwinds the Map-like construct, adding a for-loop instead. It also relies on
some domain knowledge, namely, that a new list is pre-allocated with NULLs.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 379

R> clamp1_vectorised2 <- function(x) {
+ n <- length(x)
+ res <- vector("list", n) # NULLs
+ for (i in 1:n) { # assumed n>0
+ m <- min(x[[i]])
+ mm <- max(x[[i]])-m
+ if (mm >= 1e-5)
+ res[[i]] <- (x[[i]] - m)/mm
+ }
+ return(res)
+ }

Note that the function only works for non-empty input lists.

The pairwise comparison yields:

R> SimilaR_fromTwoFunctions(clamp1_vectorised1, clamp1_vectorised2,
+ aggregation="both")

name1 name2 SimilaR12 SimilaR21 decision
1 clamp1_vectorised1 clamp1_vectorised2 0.7833333 0.9215686 1

Which indicates a significant degree of similarity, which is indeed the case.

A case study

In the previous section we illustrated that SimilaR is easily able to identify the code chunks that can be
transformed onto each other. Now we shall demonstrate its usefulness in a real-world scenario: let us
compare the code-base of two R packages: nortest (Gross and Ligges, 2015) and DescTools (Signorell
et al., 2020). The former implements five significance tests for normality, while the latter advertises
itself as

A collection of miscellaneous basic statistic functions and convenience wrappers for efficiently
describing data. [. . . ] Many of the included functions can be found scattered in other packages
and other sources written partly by Titans of R. The reason for collecting them here, was primarily
to have them consolidated in ONE instead of dozens of packages (which themselves might depend
on other packages which are not needed at all), and to provide a common and consistent interface
as far as function and arguments naming, NA handling, recycling rules, etc. are concerned. [. . . ]
(DescTools package DESCRIPTION; Signorell et al., 2020)

1. Set-up. First we attach the required packages and set up the directory where we shall store the
data that we are going to feed the algorithm with at a later stage.

R> library("SimilaR")
R> dir_output <- tempfile("dir")
R> dir.create(dir_output)

2. Generate code-base. SimilaR does not offer direct support for comparing two R packages.
Therefore, below we export each package’s code-base to a single source file, getting rid of non-function
objects:

R> for (pkg in c("DescTools", "nortest"))
+ {
+ library(pkg, character.only=TRUE) # attach the package
+ env <- as.environment(paste0("package:", pkg)) # package's environment
+ fun_names <- ls(envir=env) # list of all exported objects
+ file_text <- character(0) # the to-be code-base (1 function == 1 string)
+ for (fun in fun_names)
+ {
+ f <- get(fun, env) # get function object
+ if (!is.function(f)) next
+
+ f_char <- paste0(deparse(f), collapse="\n") # extract source code

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=nortest
https://CRAN.R-project.org/package=DescTools


CONTRIBUTED RESEARCH ARTICLES 380

+ file_text[length(file_text)+1] <- sprintf("`%s`<-%s", fun, f_char)
+ }
+ file_name <- file.path(dir_output, paste0(pkg, ".R"))
+ writeLines(file_text, file_name) # write source file
+ cat(sprintf("%s: %d functions processed.\n", pkg, length(file_text)))
+ }

DescTools: 549 functions processed.
nortest: 5 functions processed.

Here the list of the objects exported by both packages is determined by querying their corre-
sponding package:DescTools and package:nortest environments. Moreover, a call to deparse() on
a function object gives a plain-text representation of its source code.

3. Run the algorithm. Now we ask the algorithm to fetch the two source files in the output
directory and execute all the pairwise comparisons between the functions defined therein.

R> time0 <- Sys.time()
R> results <- SimilaR_fromDirectory(dir_output,
+ fileTypes="file", aggregation="both")
R> print(Sys.time()-time0)

Time difference of 15.41459 secs

The above gives the time to execute all the 2745 pairwise comparisons on an Intel Core i7 laptop
with 16GB RAM, running the GNU/Linux 4.19.30-041930-generic SMP x86_64 kernel.

4. Report results. Let us inspect the top 10 results returned by the algorithm (in terms of overall
similarity).

R> print(head(results, 10))

For greater readability, the results are reported in Table 9.

Name1 (DescTools) Name2 (nortest) SimilaR12 SimilaR21 Decision

CramerVonMisesTest() cvm.test() 1.0000000 1.0000000 1
LillieTest() lillie.test() 1.0000000 1.0000000 1
PearsonTest() pearson.test() 1.0000000 1.0000000 1
ShapiroFranciaTest() sf.test() 1.0000000 1.0000000 1
CramerVonMisesTest() ad.test() 0.9451477 0.9105691 1

CramerVonMisesTest() lillie.test() 0.7299578 0.5339506 0
LillieTest() cvm.test() 0.5339506 0.7299578 0
LillieTest() ad.test() 0.5339506 0.7032520 0
Eps() sf.test() 0.5333333 0.6315789 0
ShapiroFranciaTest() ad.test() 0.7719298 0.3577236 0

Table 9: Similarity report (the top 10 results) for the comparison between the code-base of the
DescTools and nortest packages.

Discussion. We observe that 5 function pairs were marked as similar (Decision = 1). The top 4
results accurately indicate the corresponding normality tests from the two packages – their sources are
identical.

However, the 5th result is a false positive: CramerVonMisesTest() is reported as similar to ad.test(),
which implements the Anderson–Darling normality test. Let us “visually” compare their sources:

CramerVonMisesTest <- function(x) {
DNAME <- deparse(substitute(x))
x <- sort(x[complete.cases(x)])
n <- length(x)
if (n < 8)

stop("sample size must be greater than 7")

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 381

p <- pnorm((x - mean(x))/sd(x))
W~<- (1/(12 * n) + sum((p - (2 * seq(1:n) - 1)/(2 * n))^2))
WW <- (1 + 0.5/n) * W
if (WW < 0.0275) {

pval <- 1 - exp(-13.953 + 775.5 * WW - 12542.61 * WW^2)
}
else if (WW < 0.051) {

pval <- 1 - exp(-5.903 + 179.546 * WW - 1515.29 * WW^2)
}
else if (WW < 0.092) {

pval <- exp(0.886 - 31.62 * WW + 10.897 * WW^2)
}
else if (WW < 1.1) {

pval <- exp(1.111 - 34.242 * WW + 12.832 * WW^2)
}
else {

warning("p-value is smaller than 7.37e-10,
cannot be computed more accurately")

pval <- 7.37e-10
}
RVAL <- list(statistic = c(W = W), p.value = pval,

method = "Cramer-von Mises normality test",
data.name = DNAME)

class(RVAL) <- "htest"
return(RVAL)

}

ad.test <- function(x) {
DNAME <- deparse(substitute(x))
x <- sort(x[complete.cases(x)])
n <- length(x)
if (n < 8)

stop("sample size must be greater than 7")
logp1 <- pnorm((x - mean(x))/sd(x), log.p = TRUE)
logp2 <- pnorm(-(x - mean(x))/sd(x), log.p = TRUE)
h <- (2 * seq(1:n) - 1) * (logp1 + rev(logp2))
A~<- -n - mean(h)
AA <- (1 + 0.75/n + 2.25/n^2) * A
if (AA < 0.2) {

pval <- 1 - exp(-13.436 + 101.14 * AA - 223.73 * AA^2)
}
else if (AA < 0.34) {

pval <- 1 - exp(-8.318 + 42.796 * AA - 59.938 * AA^2)
}
else if (AA < 0.6) {

pval <- exp(0.9177 - 4.279 * AA - 1.38 * AA^2)
}
else if (AA < 10) {

pval <- exp(1.2937 - 5.709 * AA + 0.0186 * AA^2)
}
else pval <- 3.7e-24
RVAL <- list(statistic = c(A = A), p.value = pval,

method = "Anderson-Darling normality test",
data.name = DNAME)

class(RVAL) <- "htest"
return(RVAL)

}

Basically, the main difference between the two functions is in the numeric constants used, which
we know is a kind of detail purposefully ignored by SimilaR. Indeed, knowing that the Anderson–
Darling test is a generalisation of the Cramér–von Mises test (both of them are based on the L2-distance
between the empirical and true cumulative distribution function, the former is a weighted version of
the latter), makes the reported decision concerning the similarity judgement quite justified.

Interestingly, DescTools does provide the AndersonDarlingTest function, but this is a version of
the goodness-of-fit measure to test against any probability distribution provided. In other words, a

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 382

c.d.f. of a normal distribution is not hard-coded in its source, and thus is significantly different from
the code of ad.test().

It is also worth noting that there are no false positives in terms of statistical tool types – all the
functions deal with some form of goodness-of-fit testing and we recall that DescTools defines ca. 550
functions in total.

Discussion

We have introduced an algorithm to quantify the similarity between a pair of R source code chunks.
The method is based on carefully prepared Program Dependence Graphs, which assure that semantically
equivalent code pieces are represented in the same manner even if they are written in much different
ways. This makes the algorithm robust with respect to the most typical attacks. In a few illustrative
examples, we have demonstrated typical code alterations that the algorithm is invariant to, for instance,
aliasing of variables, changing the order of independent code lines, unwinding nested function calls,
etc.

In the presented case study we have analysed the similarities between the DescTools and nortest
packages. Recall that most of the cloned function pairs are correctly identified, proving the practical use-
fulness of the SimilaR package. The reported above-threshold similarity between CramerVonMisesTest()
and ad.test() is – strictly speaking – a false positive, nevertheless our tool correctly indicates that
the two functions have been implemented in much the same way. This might serve as a hint to
package developers that the two tests could be refactored so as to rely on a single internal function –
de-duplication is among the most popular ways to increase the broadly conceived quality of software
code.

On the other hand, the algorithm failed to match the very much-different (implementation-
wise) AndersonDarlingTest() (generic distribution) with its specific version of ad.test() (normal
distribution family). However, comparisons of such a kind, in order to be successful, would perhaps
require the use of an extensive knowledge-base and are of course beyond the scope of our tool.

Finally, let us note that due to the use of a new polynomial-time algorithm, assessing the similarity
of two Program Dependence Graphs is relatively fast. This makes SimilaR appropriate for mining
software repositories even of quite considerable sizes. However, some pre-filtering of function pairs
(e.g., based on cluster analysis) to avoid performing all the pairwise comparisons would make the
system even more efficient and scalable.

Future versions of the SimilaR package will be equipped with standalone routines aiming at
improving the quality and efficiency of R code, such as detecting dead or repeated code, measuring
cyclomatic complexity, checking if the program is well structured, etc.

Acknowledgements. The authors would like to thank the Reviewers for valuable feedback that
helped improve this manuscript.

Bibliography
H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer Programs. MIT

Press, 1996. [p368]

A. T. Ali, H. M. Abdulla, and V. Snasel. Overview and comparison of plagiarism detection tools. In
Proceedings of the Dateso 2011: Annual International Workshop on Databases, Texts, Specifications and
Objects, Dateso ’11, pages 161–172, 2011. [p367]

P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press, 2013. [p367]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-
project.org/package=magrittr. R package version 1.5. [p368]

M. Bartoszuk. A Source Code Similarity Assessment System for Functional Programming Languages Based
on Machine Learning and Data Aggregation Methods. PhD thesis, Warsaw University of Technology,
Warsaw, Poland, 2018. [p368, 370, 373, 376]

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax trees.
In Proceedings of the International Conference on Software Maintenance, ICSM ’98, pages 368–378, 1998.
[p367]

R. Becker, J. Chambers, and A. Wilks. The New S Language. Chapman & Hall, 1998. [p368]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr


CONTRIBUTED RESEARCH ARTICLES 383

J. Chambers. Programming with Data. Springer, 1998. [p368]

J. Chambers. Software for Data Analysis. Programming with R. Springer-Verlag, 2008. [p368]

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in op-
timization. ACM Transactions on Programming Languages and Systems, 9(3):319–349, 1987. URL
https://doi.org/10.1145/24039.24041. [p368]

D. Fu, Y. Xu, H. Yu, and B. Yang. WASTK: A weighted abstract syntax tree kernel method for source
code plagiarism detection. Scientific Programming, 2017:7809047, 2017. [p368]

M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages 321–330, 2008. URL https://doi.
org/10.1145/1368088.1368132. [p368]

A. Ghosh and Y. Lee. An Empirical Study of a Hybrid Code Clone Detection Approach on Java Byte
Code. GSTF Journal on Computing, 5(2):34–45, 2018. [p368]

S. Grant, J. R. Cordy, and D. B. Skillicorn. Using topic models to support software maintenance. In
2012 16th European Conference on Software Maintenance and Reengineering, pages 403–408, 2012. URL
https://doi.org/10.1109/CSMR.2012.51. [p367]

J. Gross and U. Ligges. nortest: Tests for Normality, 2015. URL https://cran.r-project.org/package=
nortest. R package version 1.0-4. [p379]

J. Hage, P. Rademaker, and N. van Vugt. Plagiarism Detection for Java: A Tool Comparison. In
Computer Science Education Research Conference, CSERC ’11, pages 33–46, 2011. [p367]

M. J. Harrold, B. Malloy, and G. Rothermel. Efficient construction of Program Dependence Graphs.
Technical report, ACM International Symposium on Software Testing and Analysis, 1993. [p372]

S. Horwitz and T. Reps. Efficient comparison of program slices. Acta Informatica, 28(8):713–732, 1991.
URL https://doi.org/10.1007/BF01261653. [p368]

B. Hummel, E. Juergens, and D. Steidl. Index-based model clone detection. In Proceedings of the 5th
International Workshop on Software Clones, IWSC ’11, pages 21–27, 2011. URL https://doi.org/10.
1145/1985404.1985409. [p367]

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-based detection of
code clones. In Proceedings of the 29th International Conference on Software Engineering, ICSE ’07, pages
96–105, 2007. URL https://doi.org/10.1109/ICSE.2007.30. [p368]

J. H. Johnson. Identifying redundancy in source code using fingerprints. In Proceedings of the 1993
Conference of the Centre for Advanced Studies on Collaborative Research: Software Engineering – Volume 1,
CASCON ’93, pages 171–183, 1993. [p367]

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions on Software Engineering, 28(7):654–670, 2002.
URL https://doi.org/10.1109/TSE.2002.1019480. [p367]

R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In Proceedings of
the 8th International Symposium on Static Analysis, SAS ’01, pages 40–56, 2001. [p368]

J. Krinke. Identifying similar code with program dependence graphs. In Proceedings of the Eighth
Working Conference on Reverse Engineering (WCRE’01), WCRE ’01, pages 301–307, 2001. [p368]

Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: finding copy-paste and related bugs in large-
scale software code. IEEE Transactions on Software Engineering, 32(3):176–192, 2006. URL https:
//doi.org/10.1109/TSE.2006.28. [p367]

E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. Mining concepts from code with prob-
abilistic topic models. In Proceedings of the Twenty-second IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 461–464, 2007. ISBN 978-1-59593-882-4. URL
https://doi.org/10.1145/1321631.1321709. [p367]

C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG: Detection of software plagiarism by program dependence
graph analysis. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 872–881, 2006. URL https://doi.org/10.1145/1150402.1150522.
[p368]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/1368088.1368132
https://doi.org/10.1145/1368088.1368132
https://doi.org/10.1109/CSMR.2012.51
https://cran.r-project.org/package=nortest
https://cran.r-project.org/package=nortest
https://doi.org/10.1007/BF01261653
https://doi.org/10.1145/1985404.1985409
https://doi.org/10.1145/1985404.1985409
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1145/1321631.1321709
https://doi.org/10.1145/1150402.1150522


CONTRIBUTED RESEARCH ARTICLES 384

S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Source code retrieval for bug localization using latent
Dirichlet allocation. In Proceedings of the 2008 15th Working Conference on Reverse Engineering, WCRE
’08, pages 155–164, 2008. ISBN 978-0-7695-3429-9. URL https://doi.org/10.1109/WCRE.2008.33.
[p367]

M. Luperto and F. Amigoni. Predicting the global structure of indoor environments: A constructive
machine learning approach. Autonomous Robots, 43(4):813–835, 2019. [p373]

U. Manber. Finding similar files in a large file system. In USENIX Winter 1994 Technical Conference,
pages 1–10, 1994. [p367]

P. Mapar. Machine learning for enzyme promiscuity. Master’s thesis, Aalto University, Finland, 2018.
[p373]

A. Marcus and J. I. Maletic. Identification of high-level concept clones in source code. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering, ASE ’01, pages 107–114,
2001. [p367]

V. T. Martins, D. Fonte, P. R. Henriques, and D. da Cruz. Plagiarism Detection: A Tool Survey
and Comparison. In M. J. V. Pereira et al., editors, 3rd Symposium on Languages, Applications and
Technologies, OpenAccess Series in Informatics (OASIcs), pages 143–158, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/OASIcs.SLATE.2014.143. [p367]

G. Maskeri, S. Sarkar, and K. Heafield. Mining business topics in source code using latent Dirichlet
allocation. In Proceedings of the 1st India Software Engineering Conference, ISEC ’08, pages 113–120,
2008. ISBN 978-1-59593-917-3. URL https://doi.org/10.1145/1342211.1342234. [p367]

J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the automatic detection of function clones in a
software system using metrics. In 1996 Proceedings of International Conference on Software Maintenance,
pages 244–253, 1996. URL https://doi.org/10.1109/ICSM.1996.565012. [p368]

P. W. McBurney, C. Liu, C. McMillan, and T. Weninger. Improving topic model source code summa-
rization. In Proc. 22nd International Conference on Program Comprehension, ICPC 2014, pages 291–294,
2014. ISBN 978-1-4503-2879-1. URL https://doi.org/10.1145/2597008.2597793. [p367]

M. Misic, Z. Siustran, and J. Protic. A comparison of software tools for plagiarism detection in
programming assignments. International Journal of Engineering Education, 32(2):738–748, 2016. [p367,
368]

A. Mohd Noor et al. Programming similarity checking system. Journal of Telecommunication, Electronic
and Computer Engineering, 9(3–5):89–94, 2017. [p367]

H. Nasirloo and F. Azimzadeh. Semantic code clone detection using abstract memory states and
program dependency graphs. In Proc. 4th International Conference on Web Research (ICWR), pages
19–27, 2018. [p368]

J. F. Patenaude, E. Merlo, M. Dagenais, and B. Lague. Extending software quality assessment techniques
to Java systems. In Proceedings Seventh International Workshop on Program Comprehension, pages 49–56,
1999. URL https://doi.org/10.1109/WPC.1999.777743. [p368]

L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: Finding plagiarisms among a set of programs.
Technical report, University of Karlsruhe, Department of Informatics, 2000. [p367, 368]

W. Qu, Y. Jia, and M. Jiang. Pattern mining of cloned codes in software systems. Information Sciences,
259:544–554, 2014. URL https://doi.org/10.1016/j.ins.2010.04.022. [p368]

D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic review. Information and
Software Technology, 55(7):1165–1199, 2013. URL https://doi.org/10.1016/j.infsof.2013.01.008.
[p367]

M. Rieger. Effective clone detection without language barriers. PhD thesis, University of Bern, Switzerland,
2005. [p367]

C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection techniques
and tools: A qualitative approach. Science of Computer Programming, 74(7):470–495, 2009. URL
https://doi.org/10.1016/j.scico.2009.02.007. [p367]

S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local algorithms for document fingerprinting.
In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD
’03, pages 76–85, 2003. URL https://doi.org/10.1145/872757.872770. [p367, 368]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1145/1342211.1342234
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1145/2597008.2597793
https://doi.org/10.1109/WPC.1999.777743
https://doi.org/10.1016/j.ins.2010.04.022
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1016/j.scico.2009.02.007
https://doi.org/10.1145/872757.872770


CONTRIBUTED RESEARCH ARTICLES 385

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast address sanity
checker. In Proc. USENIX Conference, USENIX ATC’12, page 28, USA, 2012. USENIX Association.
[p367]

N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler–
Lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561, 2011. [p373]

A. Signorell et al. DescTools: Tools for Descriptive Statistics, 2020. URL https://cran.r-project.org/
package=DescTools. R package version 0.99.37. [p379]

J. Silge, J. C. Nash, and S. Graves. Navigating the R Package Universe. The R Journal, 10(2):558–563,
2018. URL https://doi.org/10.32614/RJ-2018-058. [p368]

K. Tian, M. Revelle, and D. Poshyvanyk. Using latent Dirichlet allocation for automatic categorization
of software. In 2009 6th IEEE International Working Conference on Mining Software Repositories, pages
163–166, 2009. URL https://doi.org/10.1109/MSR.2009.5069496. [p367]

Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones using gap
locations. In Ninth Asia-Pacific Software Engineering Conference, 2002., pages 327–336, 2002. URL
https://doi.org/10.1109/APSEC.2002.1183002. [p367]

M. van der Loo. The stringdist package for approximate string matching. The R Journal, 6:111–122,
2014. [p367]

Vandana. A comparative study of plagiarism detection software. In 2018 5th International Symposium
on Emerging Trends and Technologies in Libraries and Information Services, pages 344–347. IEEE, 2018.
URL https://doi.org/10.1109/ETTLIS.2018.8485271. [p368]

W. Venables and B. Ripley. S Programming. Springer, 2000. [p368]

I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms. Springer, 2005. [p373]

B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968. [p373]

H. Wickham. Advanced R. Chapman & Hall/CRC, 2014. [p368]

H. Wickham and G. Grolemund. R for Data Science. O’Reilly, 2017. [p368]

M. J. Wise. Detection of similarities in student programs: YAP’ing may be preferable to Plague’ing.
ACM SIGCSE Bulletin, 24(1):268–271, 1992. URL https://doi.org/10.1145/135250.134564. [p367]

Maciej Bartoszuk
Faculty of Mathematics and Information Science,
Warsaw University of Technology
ul. Koszykowa 75, 00-662 Warsaw, Poland
https://bartoszuk.rexamine.com
https://orcid.org/0000-0001-6088-8273
m.bartoszuk@mini.pw.edu.pl

Marek Gagolewski
School of Information Technology,
Deakin University
Geelong, VIC, Australia
and
Faculty of Mathematics and Information Science,
Warsaw University of Technology
ul. Koszykowa 75, 00-662 Warsaw, Poland
https://www.gagolewski.com
https://orcid.org/0000-0003-0637-6028
m.gagolewski@deakin.edu.au

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://cran.r-project.org/package=DescTools
https://cran.r-project.org/package=DescTools
https://doi.org/10.32614/RJ-2018-058
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1109/APSEC.2002.1183002
https://doi.org/10.1109/ETTLIS.2018.8485271
https://doi.org/10.1145/135250.134564
https://bartoszuk.rexamine.com
https://orcid.org/0000-0001-6088-8273
mailto:m.bartoszuk@mini.pw.edu.pl
https://www.gagolewski.com
https://orcid.org/0000-0003-0637-6028
mailto:m.gagolewski@deakin.edu.au


CONTRIBUTED RESEARCH ARTICLES 386

Linear Fractional Stable Motion with the
rlfsm R Package
by Stepan Mazur and Dmitry Otryakhin

Abstract Linear fractional stable motion is a type of a stochastic integral driven by symmetric alpha-
stable Lévy motion. The integral could be considered as a non-Gaussian analogue of the fractional
Brownian motion. The present paper discusses R package rlfsm created for numerical procedures
with the linear fractional stable motion. It is a set of tools for simulation of these processes as well as
performing statistical inference and simulation studies on them. We introduce: tools that we developed
to work with that type of motions as well as methods and ideas underlying them. Also we perform
numerical experiments to show finite-sample behavior of certain estimators of the integral, and give
an idea of how to envelope workflow related to the linear fractional stable motion in S4 classes and
methods. Supplementary materials, including codes for numerical experiments, are available online.
rlfsm could be found on CRAN and gitlab.

Introduction

The linear fractional stable motion (shortly, lfsm) (Xt)t∈R on a filtered space (Ω,F , (Ft)t∈R, P) is
defined via

Xt =
∫

R

{
(t− s)H−1/α

+ − (−s)H−1/α
+

}
dLs, x+ := max{x, 0}, (1)

where Ls is a symmetric α-stable Lévy motion, α ∈ (0, 2), with the scaling parameter σ > 0 and
the self-similarity parameter H ∈ (0, 1). The lfsm is heavy-tailed process with infinite variance and
long-range dependence. A good overview on the role which this process plays in natural sciences is
done by Watkins et al. (2008). One could also find a review of stochastic properties of lfsm in Mazur
et al. (2020).

We proceed with introduction to existing software, with interest towards study of numerical
properties of statistical estimators for lfsm as the main motivation. So far, there is no standard
approach for software development to operating the general class of stochastic processes driven by
Lévy processes. Moreover, there was no systematic indexed and pier-reviewed software for simulating
sample paths of lfsm and related estimators prior to rlfsm. There is a particularly simple and useful
numerical algorithm for simulating lfsms developed by Stoev and Taqqu (2004). Other methods
for simulation of the processes can be found in (Wu et al., 2004) and (Biermé and Scheffler, 2008).
The paper (Stoev and Taqqu, 2004) contains a minimalistic implementation of lfsm generator as a
MATLAB function. However, some useful packages, that could be used in numerical routines with
Lévy-driven processes (e.g. to create lfsm generator and perform unit testing), exist and have been
implemented in R. For instance, R package somebm (Huang, 2013) contains functions for generation
of fractional Brownian motion (fBM). Currently archived by CRAN dvfBm (Coeurjolly, 2009) has
routines for generation of fBm and estimator of the Hurst parameter of the latter. stabledist (Wuertz
et al., 2016) and stable (Swihart et al., 2017) contain different functions for stable distributions and
random variables. A generator of random variables of the kind has been also implemented in MATLAB
(see the code in Chapter 1.7 in (Samorodnitsky and Taqqu, 1994)).

The paper is organized as follows. In Section 2 we present the simulation method for sample paths
of lfsm and its implementation in our path function. Then, we present functions for finite sample stud-
ies of statistical estimators, and some other functions. Section 3 describes implementations of the high-
and the low-frequency parameter estimators and discusses reasons behind their numerical behavior.
Finally, in Section 4 we suggest an object oriented system that simplifies software programming of
Lévy-driven integrals.

Basic R functions

Types of data we use

The latest version of the package (1.0.0) suggests that we work with two types of sample paths. In the
low-frequency setting we only use points spaced 1 temporal index apart from each other, X1, X2, . . . , Xn.
In the case of high-frequency, we use points with discretization equal to the length of the path vector,
X1/n, X2/n, . . . , X1. This division is dictated by two issues: 1) the same division in the setting of limit
theorems obtained by Mazur et al. (2020), and 2) the fact that there is no inference technique for an

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=rlfsm
https://CRAN.R-project.org/package=somebm
https://CRAN.R-project.org/package=stabledist
https://CRAN.R-project.org/package=stable


CONTRIBUTED RESEARCH ARTICLES 387

arbitrary mixture of the two frequencies. Consequently, temporal coordinates of low-frequency lfsm
coincide with point index (compare coordinates and point_num in the example in Section 2.2) which
varies from 0 to N. Analogously, in case of high-frequency scheme, temporal coordinates equal to
point indexes divided by the total number of sampled points. When after sampling the index set is
different from either (1, 2, . . . , N) or (1/n, 2/n, . . . , 1), rescaling in time should be performed using

the equality (aH Xt)t≥0
d
= (Xat)t≥0 with a > 0 provided that H is known or obtained via preliminary

estimation.

Simulation method for the linear fractional stable motion

In this section, we start with a discussion on the simulation method of the lfsm proposed by Stoev
and Taqqu (2004) which is implemented in R by us. In particular, simulation of sample paths is done
via Riemann-sum approximations of its symmetric α-stable stochastic integral representation while
Riemann-sums are computed efficiently by using the Fast Fourier Transform algorithm. In R, we
introduce path function that creates sample paths of the lfsm. The idea underlying this sample path
generator is that it should be always possible not only to obtain lfsm path, but also the underlying
Lévy motion, generated during the procedure, and since the core function of lfsm is deterministic
it should allow for lfsm path generation based on a given Lévy motion, and, in theory, otherwise
(not always). For this reason generators of both processes were separated into independent parts (see
Figure 1).

lfsm

Lévy motion

Only initial
parameters

Figure 1: Scheme of generating Lévy motion and lfsm by path. Black arrows: when the algorithm
initially is given the parameters, it generates Lévy motion, and then lfsm. Green arrows: when Lévy
motion is needed without lfsm in order to save processing time, the algorithm bypasses computing
of the later. Blue arrows: given a Lévy motion and some parameters, the generator computes the
corresponding lfsm.

The function path can be used by

path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,
levy_increments=NULL,seed=NULL)

Parameters N,m,M regard to the index of the process, or time, if applicable. m and M are the only means
to control precision of the integral computation. N is a number of points of the lfsm to generate. m is
a discretization parameter that corresponds to the number of points where Lévy motion is sampled
between two nearby indexes (e.g. N and N − 1). M is the truncation parameter, i.e. number of points
after which the integrated function is set to zero; freq stands for the frequency of the motion which
can take two values: ‘H’ for high-frequency and ‘L’ for the low-frequency setting. This is the switch
between the two data types. disable_X is needed to disable computation of X, the default value is
‘FALSE’, when it is ‘TRUE’, only a Lévy motion is returned, which in turn reduces the computation

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 388

time. seed is a parameter that performs seeding of the lfsm generator. Technically, in the path the
seed is set just before Lévy increments are generated. The path function returns a list containing the
lfsm, the underlying Lévy motion, the point number of the motions from 0 to N (point_num) and the
corresponding coordinate which depends on the frequency, the parameters (σ, α, H) that were used to
generate the lfsm, and the predefined frequency.

Generation of symmetric α-stable (sαs) random variables is powered by function rstable from
package stabledist with S0 parametrization based on the Zolotarev’s representation for an α-stable
distribution with some modifications. S0 is used in order to make sigma a scale parameter of the
motion and to get exempt from computing the normalization constant CH,α presented in Stoev and
Taqqu (2004) and is given by

CH,α :=
(∫

R

∣∣∣(1− s)H−1/α
+ − (−s)H−1/α

+

∣∣∣α ds
)1/α

.

The discrete convolution based algorithm and particularities of indexing

As it was mentioned in the beginning of Section 2.2, one of the features of path is the ability to operate
on a pair lfsm - Lévy motion and to switch between them. We recall that direct computation of the
sum approximating the integral in the definition of lfsm (1) would involve number of operations
proportional to NMm, which makes the method slow. Instead, the original algorithm by Stoev and
Taqqu (2004) suggests computing increments of lfsm with the help of

W(n) :=
mM

∑
j=1

aH,m(j)Zα(n− j), (2)

where W(mk) is a discretized and truncated version of the increments of the lfsm, and in the limit has
the same distribution as them

{W(mk), k = 1, . . . , N} d−−−−−−−→
m→∞;M→∞

{X(k)− X(k− 1), k = 1, . . . , N};

Zα(k) are i.i.d. sαs random variables that have indexes −mM, . . . , mN − 1 and scaling parameter
equal to 1, and

aH,m(j) := C−1
H,α(m, M)

(
(j/m)H−1/α − (j/m− 1)H−1/α

+

)
m−1/α, j ∈N

with

CH,α(m, M) := m−1

mM

∑
j=1

∣∣∣(j/m)H−1/α − (j/m− 1)H−1/α
+

∣∣∣α
1/α

.

-2 -1 0 1 2 3 4 5 index
7 9 1 3 8 2 6 8 Z

4 9 2 a
99 39 61 86 58 90 W(n)

Figure 2: Example of direct computation of sum of the form (2) for 2 vectors. a corresponds to the
kernel and Z- to the Lévy motion.

Let us consider an example which will recur and evolve throughout this section. Consider
computing sum (2) where m = 1, M = 3, and N = 6 (see Figure 2). The two rightmost cells for W(n)
are left empty because there is no sense in computing them without truncation of a.

A method based on the discrete convolution theorem is used to obtain W(mk). The theorem relies
on Discrete Fourier Transform (DFT), which needs to perform a number of operations proportional to
(mN + mM) log(mN + mM) instead of NMm. In order to understand how this method works, we
review several definitions and theorems.

Definition 2.1 For any sequence xn, n ∈N, Discrete-Time Fourier Transform (DTFT) is defined as

X = DTFT{xn}(ω) =
∞

∑
n=−∞

xn exp(−inω).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 389

The reverse transform, IDTFT, is defined as

xn = IDTFT{X} = 1
2π

∫ 2π

0
X(ω)eiωndω.

Definition 2.2 Discrete convolution of two infinite sequences {An}n∈N and {Bn}n∈N is

(A ∗ B)[n] :=
∞

∑
m=−∞

A[m]B[n−m].

There is a convolution theorem for discrete sequences which says that the discrete convolution of
two sequences is equal to the Inverse Discrete Fourier Transform (IDFT) of the multiplication of the
direct transforms of the sequences:

Theorem 2.3 For any discrete sequences xn and yn, n ∈N, it holds that

(x ∗ y)[n] = IDTFT[DTFT{xn}(·)×DTFT{yn}(·)].

Definition 2.4 Let xn, n ∈ N be a sequence. Then {xN}[n], n ∈ N is called N-periodic summation of the
sequence:

{xN}[n] := ∑
k∈N

x[n + kN].

It is straightforward that the periodic summation in the definition above has period N. In our case,
the latter theorem is applicable even though we will be interested in a finite sequence of length Ñ. The
sequence is padded with zeros to form an infinite one, and a periodic summation of a the length Ñ is
just a periodic extension of it.

… 0 0 4 9 2 0 0 0 … … 4 9 2 4 9 2 4 9 2 …

Figure 3: Example of periodic summation of a zero-padded finite sequence where the period equals to
the sequence length (N = Ñ).

DTFT is not directly useful for simulation purpose, that is why we need a special case of Theorem
2.3, Circular Convolution Theorem which reduces DTFT to DFT.

Definition 2.5 The DFT of a finite sequence xn of length N is defined as

Xk = DFTk(xn) :=
N−1

∑
n=0

xn exp(−2πikn/N).

The IDFT is

xn :=
1
N

N−1

∑
k=0

Xk exp(2πikn/N).

Theorem 2.6
(xN ∗ y)[n] = IDFT{DFT(xN)DFT(yN)}

Returning to the task of computing the sum in (2), we consider two vectors: a of length mM and
Z of length m(M + N). Here, we again index vectors starting with zero, not one. If we extend Z
periodically, pad a with zeros to make an infinite sequence, and compute (a ∗ Zm(N+M))[n], values
with indexes [mM; m(N + M)− 1] would coincide with the result of a convolution of a and Z. The
first mM values would be meaningless. This gives an idea how to use Circular Convolution Theorem
for computation of (2): instead of a ∗ Z we compute one period of (a ∗ Zm(N+M))[n] through the left
part of 2.6 and leave only meaningful values. Figure 4 illustrates the use of Circular Convolution
Theorem with periodic extensions of Z and padded a to compute (2). In this case results with indexes
-1 and -2 are meaningless and should be discarded.

Although the setup of the example as is on Figure 4 is fastest, it is impossible to use it directly,
because in some situations truncation parameter M is larger than N, the number of points of lfsm
sample path that is needed to be simulated. In this case path function performs an index shift using

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 390

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 index
7 9 1 3 8 2 6 8 Z

4 9 2 a
7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 Z_N
0 0 4 9 2 0 0 0 0 0 4 9 2 0 0 0 0 0 4 9 2 0 0 0 a_N

Figure 4: Example of transformation of vectors a and Z into sequences before computing their
convolution.

the following property:

(a ∗ xc)[n] :=
+∞

∑
k=−∞

a[k]· x[n− k− c]

=
+∞

∑
k=−∞

a[k]· x[ñ− k] = (a ∗ x)[ñ− c]

(3)

This property is illustrated by Figure 5, wherein sequence x[n] is shifted by 2 to the right, so c = 2.
Accordingly, the resulting convolution also gets shifted 2 notches to the right (compare Figures 5 and
2). In general, according to (3), when x[n] is shifted to assign index zero to the first value, the resulting
convolution sequence also starts from the first meaningful value. Thus, path always keeps the first
Nm as the result of convolution operation and discards the rest.

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 index
7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 7 9 1 3 8 2 6 8 Z_N
0 0 0 0 0 0 0 0 4 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 a_n

86 58 90 112 115 99 39 61 86 58 90 112 115 (a*Z_N)

Figure 5: Example of index shift in path function.

Examples

In the next example, we show how one can use the above function to generate a sample path and to
provide its visualization. Compare the procedure with the similar one from Section 4.1.

# Path generation
List<-path(N=2^10-600,m=256,M=600,alpha=1.8,H=0.8,

sigma=1,freq='L',disable_X=FALSE,seed=3)
str(List)

List of 7
$ point_num : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ coordinates : int [1:425] 0 1 2 3 4 5 6 7 8 9 ...
$ lfsm : num [1:425] 0 -1.3969 0.0159 1.6487 1.87 ...
$ levy_motion : num [1:425] 0 -21.8 28.3 42.1 38.1 ...
$ levy_increments: num [1:262144] -0.292 -0.708 -1.49 0.517 0.803 ...
$ pars : Named num [1:3] 1.8 0.8 1

..- attr(*, "names")= chr [1:3] "alpha" "H" "sigma"
$ frequency : chr "L"

# Normalized paths
Norm_lfsm<-List[['lfsm']]/max(abs(List[['lfsm']]))
Norm_oLm<-List[['levy_motion']]/max(abs(List[['levy_motion']]))

# Visualization of the paths
plot(Norm_lfsm, col=2, type="l", ylab="coordinate")
lines(Norm_oLm, col=3)
leg.txt <- c("lfsm", "oLm")
legend("topright", legend = leg.txt, col =c(2,3), pch=1)

The result of the chart rendering is shown on Figure 6. The following example shows how to
switch path function in order to alter between simulation of lfsm from scratch and computing based
on an existing sample path of the Lévy motion.

m<-256; M<-600; N<-2^12-M

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 391

0 100 200 300 400

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Index

co
or

di
na

te

lfsm
oLm

Figure 6: Plot of sample path and Lévy motion with seed=2

alpha<-1.8; H<-0.8; sigma<-1.8
seed<-2

# Creating Levy motion
levyIncrems<-path(N=N, m=m, M=M, alpha, H, sigma, freq='L',

disable_X=T, levy_increments=NULL, seed=seed)

# Creating lfsm based on the levy motion
lfsm_full<-path(m=m, M=M, alpha=alpha,

H=H, sigma=sigma, freq='L',
disable_X=F,
levy_increments=levyIncrems$levy_increments,
seed=seed)

sum(levyIncrems$levy_increments==
lfsm_full$levy_increments)==length(lfsm_full$levy_increments)

[1] TRUE

In the example the Lévy motion is generated without computing the lfsm, which was done by
setting disable_X=TRUE, and saved to variable levyIncrems. After that, path was given the obtained
Lévy increments and, basing on them, generated an lfsm path. As one can observe, the Lévy increments
from the both objects produced by path are identical. The same holds when we obtain an lfsm path
from the above procedure and one-step simulation of lfsm with seeding. These two facts are used in
automated tests provided for rlfsm package.

MCestimLFSM and numerical properties of statistical estimators

In order to study numerical properties of the estimation procedures developed in Mazur et al. (2020),
we created a technique, that could be used in solving this problem for any pair stochastic process
and an estimator. The approach was implemented in MCestimLFSM function (Figure 9). The main
motivation here is that for some estimators we have limit theorems, but we do not have theory which
describes estimator behavior when the length of a path is relatively small, and thus, for instance, we
cannot use closed-form expressions to obtain confidential intervals. In the following examples we
show how to use functions MCestimLFSM, PLot_vb, and Plot_dens for studying empirical variance,
bias and a density function of an estimator. In the first example, we study GenLowEstim estimator, and
its bias and variance dependencies on the length of the sample paths. In particular, one would be able
to determine starting from which path length the estimator loses significant bias influence.

library(rlfsm)
library(gridExtra)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 392

registerDoParallel()

m<-25; M<-55
p<-.4; p_prime<-.2
t1<-1; t2<-2
k<-2

NmonteC<-5e2
alpha<-1.8; H<-0.8; sigma<-0.3

S<-seq(from = 100, to = 2e3, by =50)
tilda_ests<-MCestimLFSM(s=S, fr='L', Nmc=NmonteC, m=m, M=M,

alpha=alpha,H=H,sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

# Structure of tilda_ests
names(tilda_ests)

[1] "data" "data_nor" "means" "sds" "biases" "Inference" "params" "freq"

# Structure of BSdM is as follows

head(round(tilda_ests$means,2))
alpha H sigma s

1 1.76 0.67 0.25 100
2 1.81 0.70 0.27 150
3 1.81 0.71 0.27 200
4 1.82 0.73 0.28 250
5 1.83 0.74 0.28 300
6 1.83 0.75 0.29 350

head(round(tilda_ests$biases,2))
alpha H sigma s

1 -0.04 -0.13 -0.05 100
2 0.01 -0.10 -0.03 150
3 0.01 -0.09 -0.03 200
4 0.02 -0.07 -0.02 250
5 0.03 -0.06 -0.02 300
6 0.03 -0.05 -0.01 350

head(round(tilda_ests$sds,2))
alpha H sigma s

1 0.19 0.23 0.09 100
2 0.14 0.20 0.08 150
3 0.13 0.19 0.08 200
4 0.13 0.19 0.07 250
5 0.10 0.17 0.06 300
6 0.11 0.17 0.06 350

Plot_vb(tilda_ests)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 393

variable: sigma

type: bias

variable: sigma

type: mean

variable: sigma

type: sd

variable: H

type: bias

variable: H

type: mean

variable: H

type: sd

variable: alpha

type: bias

variable: alpha

type: mean

variable: alpha

type: sd

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.20

0.000

0.025

0.050

0.075

0.0

0.5

1.0

1.5

0.0

0.2

0.4

0.6

0.8

0.0

0.1

0.2

0.3

−0.04

−0.02

0.00

0.02

−0.10

−0.05

0.00

−0.04

−0.02

0.00

s

va
lu

e

Figure 7: Variance and bias dependence on path length of tilde- estimators, described in Section 3.2.

Figure 7 shows that when (σ, α, H) = (0.3, 1.8, 0.8), estimator GenLowEstim could be considered
unbiased starting approximately from 1000 points.

The second example compares empirical standardized densities of estimates, obtained by GenLowEstim
with the limiting standard normal ones, Figure 8.

S<-c(1e2,1e3,1e4)
tilda_ests<-MCestimLFSM(s=S, fr='L', Nmc=NmonteC ,m=m, M=M,

alpha=alpha, H=H, sigma=sigma,
GenLowEstim,t1=t1,t2=t2,p=p)

l_plot<-Plot_dens(par_vec=c('sigma','alpha','H'), MC_data=tilda_ests,
Nnorm=1e7)

ggg<-grid.arrange(l_plot[[1]],l_plot[[2]],l_plot[[3]],nrow=1,ncol=3)

0.0

0.2

0.4

0.6

−2 0 2

sigma

de
ns

ity

n 100 1000 10000 true_normal

0.0

0.2

0.4

0.6

−2 0 2

alpha

de
ns

ity

n 100 1000 10000 true_normal

0.0

0.2

0.4

0.6

−2 0 2

H

de
ns

ity

n 100 1000 10000 true_normal

Figure 8: Empirical distributions of tilde- estimates, described in Section 3.2.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 394

In short, in these examples for different path lengths s, NmonteC lfsm paths are simulated. To each
path we apply tilde-statistic (see Section 3.2), therefore obtaining NmonteC estimates (σ̃low, α̃low, H̃low)
for every s, which in turn, are used to calculate biases, standard deviations, and density functions
(also, for each s separately).

MCestimLFSM architecture and optimization

It is important to notice that generation of lfsm is numerically heavy routine and also a large number
of estimates is needed to compare their empirical distributions with the limiting ones. The latter
task gave MCestimLFSM its name. Thus, in order to make computations feasible in terms of time and
memory use, the architecture of MCestimLFSM must be well-optimized. Apparently, a multi-core setup
is crucial for dealing with the task.

N
Monte Carlo

σ
est     

α
est     

H
est

Averages, 
variances, 
biases

N
Monte Carlo

σ
est_norm     

α
est_norm     

H
est_norm

N
Monte Carlo

Path 
vector 
length, 
s[i]

Inference 
procedure 
applied

lfsms

Empirical 
pdfs

Figure 9: Scheme of extracting estimator statistics by function MCestimLFSM for a chosen path length.

Having fixed a path length, the whole procedure behind MCestimLFSM could be split in two parts.
First, we need to obtain samples for each estimator. Second, we obtain statistics of these samples (see
Figure 9). Once finished, MCestimLFSM proceeds to the next length value until reaches the end of the
vector of lengths.

In the first part, we generate NMonte Carlo lfsm paths of the length s[i] via path_fast function.
To each of the paths we apply all the estimators to obtain H, α, and σ estimates. During this stage,
we use a foreach-based parallel loop, where each node simulates a path, computes and returns
the statistics removing the path from memory. path_fast is an unavailable for users version of
path with significantly reduced functionality for the sake of saving execution time. The further
desired enlargement of the node task by adding generation of the whole set of paths instead of just
one, making the loop over s[i] parallel, leads to extreme memory consumption as well as unequal
distribution of load among nodes. The number of numeric values in the set of paths equals to
NMonte Carlo × s[i]. Simulations, performed in Mazur et al. (2020) showed that normal distribution is
attained by estimators at s = 103. Given the fact that we need at least 105 Monte Carlo trials for a
neat histogram of a distribution, one can obtain the amount of memory required to store a matrix of
size NMonte Carlo × s[i], which makes 763Mb, while some estimators require 80Gb per node. That is
the reason why in the current version of MCestimLFSM the loop over s is sequential, and the one over
NmonteC is parallel.

During the second part, averages and standard deviations of the samples are computed, and sub-
sequently used to compute the standardized empirical distributions. So that, the three characteristics
naturally come together within the same numerical procedure. So far there is no empirical evidence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 395

that parallel execution in this section makes MCestimLFSM more efficient.

Such architecture is of great use when the number of nodes available for computations exceeds the
number of path length, and the length s[i] differs significantly from s[j] when i 6= j.

On some of the other basic functions

In this part, we will describe aspects of some of the other R functions implemented in the package.

Higher-order increments

These increments are the main building block for all statistics we use (see Section 3). They are
defined as k-th iterated increments of step r of a sample path. In particular, ∆n,1

i,1 X := X i
n
− X i−1

n
,

and ∆n,1
i,2 X := X i

n
− 2X i−1

n
+ X i−2

n
. In rlfsm, we built two functions for computation of objects of this

class- increment() and increments(). The former accepts a vector of points at which a user wants to
evaluate higher-order increments, and computes them using formula

∆n,r
i,k X :=

k

∑
j=0

(−1)j
(

k
j

)
X(i−rj)/n. (4)

Before evaluation of (4), the function checks the condition i < kr. Evaluation of the increments on a
sample path of length N takes (k + 1)(N− kr) operations- k + 1 sums for N− kr points. increments()
computes increments iteratively on the whole set of path points. The first iteration gives N − r
increments, the second- N − 2r and so on. Thus, the total number of performed operations is

k

∑
j=1

(N − jr) = kN − r(k + 1)k/2.

It is clear that increments() is faster on sample paths with large number of points, but slower when
the increment order is high. As we will show later, orders greater than∼ 10 are not usable for statistical
inference. That is the reason why in all statistics we use either increments() or its hidden “relatives”.

A visualization method for sample paths

We introduce a pair of functions which makes a panel plot of sample paths produced by processes with
different parameters. Path_array takes a set of α-H values, generates a path for each combination,
and stacks the paths together in a data frame. In the produced data frame all the paths are tagged
with α and H values. Plot_list_paths() takes the data frame as an argument and plots the sample
paths on different panels based on their (α, H) values. This functionality is powered by facet_wrap()
from ggplot2 (Wickham, 2016). For discontinuous paths Plot_list_paths() draws an overlapping
semitransparent line joining neighbouring points in order to highlight jumps.

l=list(H=c(0.2,0.5,0.8), alpha=c(0.5,1,1.5), freq="H")
arr<-Path_array(N=300, m=30, M=100, l=l, sigma=0.3)
head(arr)
n X alpha H freq

1 1 0.0000000 0.5 0.2 H
2 2 0.2329891 0.5 0.2 H
3 3 1.1218238 0.5 0.2 H
4 4 -6.1284620 0.5 0.2 H
5 5 -2.2450357 0.5 0.2 H
6 6 3.4979978 0.5 0.2 H

str(arr)
'data.frame': 2709 obs. of 5 variables:
$ n : num 1 2 3 4 5 6 7 8 9 10 ...
$ X : num 0 0.233 1.122 -6.128 -2.245 ...
$ alpha: Factor w/ 3 levels "0.5","1","1.5": 1 1 1 1 1 1 1 1 1 1 ...
$ H : Factor w/ 3 levels "0.2","0.5","0.8": 1 1 1 1 1 1 1 1 1 1 ...
$ freq : Factor w/ 1 level "H": 1 1 1 1 1 1 1 1 1 1 ...

Plot_list_paths(arr)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLES 396

H: 0.8

alpha: 0.5

H: 0.8

alpha: 1

H: 0.8

alpha: 1.5

H: 0.5

alpha: 0.5

H: 0.5

alpha: 1

H: 0.5

alpha: 1.5

H: 0.2

alpha: 0.5

H: 0.2

alpha: 1

H: 0.2

alpha: 1.5

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300
0

5

10

−0.8

−0.4

0.0

−0.5
−0.4
−0.3
−0.2
−0.1

0.0

−20

0

20

40

60

0

20

40

60

0.0

0.5

−1e+06

−5e+05

0e+00

−4000

−2000

0

0

10000

20000

30000

n

X

Figure 10: Graph rendered by Plot_list_paths

Parameter estimation of the linear fractional stable motion

In this section, we describe estimators for the parameters H, α, and σ that are obtained in the recent
paper by Mazur et al. (2020), and their implementation in R.

Parameter estimation in the continuous case

First, we consider the case H − 1/α > 0 which leads us to the important property that the lfsm
(Xt)t∈R is locally Hölder continuous of any order up to H − 1/α. Moreover, this condition implies the
following restrictions

α ∈ (1, 2) and H ∈ (1/2, 1) (5)

that allow us to use the law of large numbers in Theorem 1.1 of (Basse-O’Connor et al., 2017) when
p < 1, and the central limit theorem in Theorem 1.2 of (Basse-O’Connor et al., 2017) when p < 1/2,
k ≥ 2 and H < k− 1/α.

Now, we consider consistent estimators for the self-similarity parameter H in high- and low-
frequency setting, defined by

Ĥhigh(p, k)n :=
1
p

log2

∑n
i=2k

∣∣∣∆n,2
i,k X

∣∣∣p
∑n

i=2k

∣∣∣∆n,1
i,k X

∣∣∣p
 ,

Ĥlow(p, k)n :=
1
p

log2

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣p
∑n

i=2k

∣∣∣∆1
i,kX

∣∣∣p
 .

Both estimators for H are based upon a ratio statistic that compares power variations at two different
frequencies.

Let us define the following two statistics

Vhigh( f ; k, r)n :=
1
n

n

∑
i=rk

f
(

nH∆n,r
i,k X

)
Vlow( f ; k, r)n :=

1
n

n

∑
i=rk

f
(

nH∆r
i,kX

)
, (6)

where f : R→ R is a measurable function. Estimators for the stability index α of the driving stable

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 397

motion in high and low frequency setting are based on the empirical characteristic functions given by

ϕhigh(t; H, k)n := Vhigh(ψt; k)n and ϕlow(t; k)n := Vlow(ψt; k)n (7)

with ψt(x) := cos(tx), for two different values t1 and t2 such that t2 > t1 > 0. Let us note that the
empirical characteristic function ϕhigh(t; H, k)n depends on the parameter H while ϕlow(t; k)n does
not. Thus, we should infer the self-similarity parameter H by Ĥhigh(p, k)n and then we should use
the plug-in estimator ϕhigh(t; Ĥhigh(p, k)n, k)n to infer the stability index α in high-frequency setting.
Estimators for the parameter α are given by

α̂high :=
log | log ϕhigh(t2; Ĥhigh(p, k)n, k)n| − log | log ϕhigh(t1; Ĥhigh(p, k)n, k)n|

log t2 − log t1
,

α̂low :=
log | log ϕlow(t2; k)n| − log | log ϕlow(t1; k)n|

log t2 − log t1
.

Estimators for the scale parameter σ in high- and low-frequency are also based on the empirical
characteristic functions which are defined for one value of t > 0. Further, we define a function
hk,r : R→ R as follows:

hk,r(x) =
k

∑
j=0

(−1)j
(

k
j

)
(x− rj)H−1/α

+ , x ∈ R, (8)

where k, r ∈ N, and let ‖hk,r‖α
α :=

∫
R |hk,r(s)|αds. Let us note that the function hk,r depends on two

parameters α and H which need to be pre-estimated. Estimators for the parameter σ are expressed as

σ̂high :=
(
− log ϕhigh(t1; Ĥhigh(p, k)n, k)

)1/α̂high
/t1‖hk,1‖α̂high

,

σ̂low := (− log ϕlow(t1; k))1/α̂low /t1‖hk,1‖α̂low
.

Parameter estimation in the general case

Here, we consider general case when an explicit lower bound for α is unknown. First, we consider
estimators which are obtained in low frequency setting. Consistent estimator for parameter H for any
p ∈ (1, 1/2) is obtained by

Ĥlow(−p, k)n :=
1
p

log2

∑n
i=2k

∣∣∣∆2
i,kX

∣∣∣−p

∑n
i=2k

∣∣∣∆1
i,kX

∣∣∣−p

 .

Next, we consider two-step procedure to choose the order of increments k, since we should be in the
domain of attraction of Theorem 1.2 of (Basse-O’Connor et al., 2017) that requires k > H + 1/α. That’s
why we consider the preliminary estimator of α with k = 1 that is consistent given by

α̂0
low(t1, t2)n =

log | log ϕlow(t2; 1)n| − log | log ϕlow(t1; 1)n|
log t2 − log t1

.

Since we do not know if α̂0
low(t1, t2)n is in the domain of attraction, we define the estimator of the

parameter k as
k̂low(t1, t2)n := 2 + bα̂0

low(t1, t2)
−1
n c.

In the second step we use estimator k̂low := k̂low(t1, t2)n for the estimation of parameters H, α and σ.
In particular, we get the following consistent estimators

Ĥlow(−p, k̂low)n =
1
p

log2

∑n
i=2k̂low

∣∣∣∆2
i,k̂low

X
∣∣∣−p

∑n
i=2k̂low

∣∣∣∆1
i,k̂low

X
∣∣∣−p

 ,

α̃low(k̂low; t1, t2)n =
log | log ϕlow(t2; k̂low)n| − log | log ϕlow(t1; k̂low)n|

log t2 − log t1
,

σ̃low(k̂low; t1, t2)n =
(
− log ϕlow(t1; k̂low)

)1/α̃low
/t1‖hk̂low ,1‖α̃low .

Next, we consider two-stage estimation procedure in the general case in high-frequency setting
which is the same as in the low-frequency setting. For p ∈ (0, 1/2) we compute Ĥhigh(−p)n =

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 398

Ĥhigh(−p, 1)n and, therefore, we can define the preliminary estimator of α by

α̂0
high(p, p′)n = φ−1

Vhigh( f−p′ , Ĥhigh(−p)n)
p
n

Vhigh( f−p, Ĥhigh(−p)n)
p′
n


with

φ(α̂0
high(p, p′)n) :=

(
2/α̂0

high(p, p′)n

)p−p′
ap′
−pΓ(p′/α̂0

high(p, p′)n)p

ap
−p′Γ(p/α̂0

high(p, p′)n)p′

where p, p′ ∈ (0, 1/2) such that p 6= p′, and Vhigh( f−p, Ĥhigh(−p)n)n is given in formula (6) with
k = 1, f−p(x) = |x|−p and preliminary estimator Ĥhigh(−p)n for the parameter H. It is remarkable
that φ(·) is always invertible for all p 6= p′ (see Dang and Istas (2017)). Consequentially, we can define
the estimator of k in high-frequency setting by

k̂high := k̂high(p, p′)n = 2 + bα̂0
high(p, p′)−1

n c.

Thus, consistent estimators of H, α and σ, in high-frequency setting are given by

Ĥhigh(−p, k̂high)n =
1
p

log2


∑n

i=2k̂high

∣∣∣∣∆n,2
i,k̂high

X
∣∣∣∣−p

∑n
i=2k̂high

∣∣∣∣∆n,1
i,k̂high

X
∣∣∣∣−p

 ,

α̃high(k̂high; t1, t2)n = φ−1

Vhigh( f−p′ , Ĥhigh(−p, k̂high)n; k̂high)
p
n

Vhigh( f−p, Ĥhigh(−p, k̂high)n; k̂high)
p′
n

 ,

σ̃high(k̂high; p, p′)n =

(
α̃higha−pVhigh( f−p, Ĥhigh(−p)n)n

2Γ(p/α̃high)

)− 1
p

/‖hk̂high ,1‖α̃high .

Implementation in R

We introduce function ContinEstim for performing statistical inference according to Section 3.1 when
H − 1/α > 0.

ContinEstim(t1, t2, p, k, path, freq)

The function is basically comprised by simpler functions alpha_hat, H_hat and sigma_hat responsible
for retrieving the corresponding parameters. sigma_hat is called using tryCatch as the former may
return an error due to numerical integration in Norm_alpha.

General low-frequency estimation technique, described in Section 3.2 is implemented in GenLowEstim.

GenLowEstim(t1, t2, p, path, freq = "L")

This estimator first sets a preliminary k to be equal to 1, and uses it to compute preliminary parameters
H0 and α0. Using these H0 and α0, a new k is obtained through 2+floor(alpha_0(̂-1)), and then the
new k is used for the same estimation procedure as in ContinEstim. This approach induces an effect,
which does not exist in the case when ContinEstim is applied. When α is smaller than, or close to 2/N,
where N is the observed lfsm path length, the computational errors are more frequent. These extra
errors occur when the preliminary estimation of k appears to exceed N/2, making it impossible to
compute ∆2

i,k̂low
X in statistic Ĥlow(−p, k̂low)N . In case of other sample path realizations k < H + 1/α,

and it is still possible to obtain the estimates which happen to converge to the true value (Ĥ, α̂, σ̂),
because in this case one would be in the domain of attraction of Theorem 2.2 of (Mazur et al., 2020).
Though, the limiting distribution is not stable anymore, and the rate of convergence depends on α and
H. Real distributions of estimates in this case are left unexplored.

High-frequency estimator from the same section was implemented in GenHighEstim.

GenHighEstim(p, p_prime, path, freq, low_bound = 0.01, up_bound = 4)

Estimate deterioration

Although the general high- and low-frequency estimators presented in Section 3.2 have important ad-
vantages, namely closed form expressions for distribution functions and non-suboptimal convergence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 399

rates, they also reveal two drawbacks in performance. Due to condition and error handling, the time
performances of the general estimators are much worse than those of the continuous ones. On top
of that, the plug-in estimators (because of their nature) have much less probability of obtaining an
estimate at all. The main idea is as follows: the more statistics are used in a plug-in estimator, the higher
the probability to stumble upon a numerical error during the estimation procedure. We illustrate this
effect by the following experiment, wherein the general high- and low-frequency estimators are com-
pared to the corresponding continuous ones. For each pair from a set of parameters (H, α), NmonteC
sample paths of the both frequencies were generated, and to each of them the relevant procedures
ContinEstim, GenLowEstim and GenHighEstim were applied (see “Estimate deterioration experiment”
in the supplementary materials). Then, the rates of successful computation results were computed.
The result of estimation was considered “successful” if during the procedure all three parameters were
obtained, no error occurred, and the estimates are meaningful, namely (Ĥ, α̂) ∈ (0, 1)× (0, 2).

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 α 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 α

0.55 0.97 0.96 0.99 1.00 0.99 0.99 0.96 0.91 0.67 0.55 0.76 0.78 0.84 0.86 0.90 0.83 0.86 0.84 0.61

0.6 0.97 0.99 0.99 0.99 1.00 1.00 0.95 0.89 0.65 0.6 0.75 0.85 0.81 0.87 0.86 0.86 0.82 0.80 0.58

0.65 0.99 0.99 0.99 0.99 1.00 1.00 0.96 0.88 0.61 0.65 0.77 0.84 0.80 0.87 0.86 0.83 0.84 0.74 0.51

0.7 0.97 0.97 0.99 0.99 1.00 0.98 0.96 0.86 0.53 0.7 0.77 0.77 0.78 0.81 0.80 0.75 0.77 0.71 0.45

0.75 0.96 0.97 0.98 0.99 0.99 0.99 0.96 0.85 0.55 0.75 0.72 0.74 0.81 0.77 0.73 0.78 0.76 0.67 0.44

0.8 0.95 0.97 0.98 0.97 0.99 0.96 0.93 0.82 0.48 0.8 0.66 0.70 0.71 0.70 0.68 0.71 0.66 0.59 0.39

0.85 0.92 0.95 0.93 0.94 0.95 0.95 0.92 0.72 0.41 0.85 0.60 0.64 0.63 0.69 0.69 0.67 0.61 0.48 0.30

0.9 0.88 0.85 0.90 0.88 0.89 0.92 0.82 0.73 0.38 0.9 0.56 0.58 0.54 0.56 0.60 0.63 0.56 0.44 0.23

0.95 0.76 0.79 0.78 0.80 0.81 0.75 0.77 0.59 0.34 0.95 0.50 0.47 0.49 0.57 0.59 0.48 0.51 0.38 0.22

H
Continuous estimator, low frequency

H
General estimator, low frequency

(a) Comparison of success rates for ContinEstim and GenLowEstim. Low frequency case. Path length N=200,
number of sample paths NmonteC=300.

1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 α 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 α

0.55 0.93 0.94 0.91 0.98 0.96 0.93 0.81 0.64 0.56 0.55 0.54 0.47 0.42 0.29 0.22 0.22 0.14 0.13 0.11

0.60 0.91 0.96 0.97 0.94 0.93 0.87 0.77 0.69 0.45 0.60 0.52 0.49 0.35 0.29 0.18 0.19 0.10 0.11 0.10

0.65 0.92 0.96 0.95 0.95 0.89 0.87 0.81 0.64 0.47 0.65 0.49 0.40 0.31 0.25 0.18 0.13 0.11 0.09 0.08

0.70 0.95 0.96 0.97 0.95 0.92 0.85 0.75 0.64 0.41 0.70 0.53 0.37 0.33 0.23 0.14 0.12 0.08 0.07 0.06

0.75 0.92 0.96 0.93 0.92 0.87 0.82 0.75 0.56 0.36 0.75 0.42 0.35 0.29 0.19 0.13 0.12 0.11 0.03 0.05

0.80 0.94 0.93 0.92 0.93 0.88 0.81 0.74 0.57 0.44 0.80 0.36 0.27 0.20 0.18 0.08 0.10 0.05 0.03 0.03

0.85 0.91 0.90 0.93 0.88 0.81 0.81 0.72 0.54 0.29 0.85 0.29 0.23 0.21 0.13 0.07 0.06 0.05 0.02 0.02

0.90 0.87 0.85 0.87 0.81 0.76 0.69 0.62 0.51 0.28 0.90 0.27 0.19 0.12 0.14 0.06 0.03 0.03 0.02 0.02

0.95 0.82 0.75 0.75 0.68 0.64 0.59 0.46 0.38 0.18 0.95 0.23 0.12 0.09 0.07 0.05 0.04 0.01 0.01 0.01

H
Continuous estimator, high frequency

H
General estimator, high frequency

(b) Comparison of success rates for ContinEstim and GenHighEstim. High frequency case. Path length N=200,
number of sample paths NmonteC=300.

Figure 11: Comparison of success rates of estimators

This experiment shows (Figures 11a and 11b) that in both high- and low-frequency cases ContinEstim
gives much better precision than the corresponding general estimator. The outcome is rigorous in
low-frequency technique since ContinEstim and GenLowEstim have the same set of tuning parameters.
On the other hand, the high-frequency estimators have non-coinciding parameter sets, and thus,
without fine tuning, the result is merely intuitive. One could observe that in general estimation near
the boundaries of the interval (Ĥ, α̂) ∈ (0, 1)× (0, 2) produces more errors, which is partly due to the
fact that near the boundaries it is easier to obtain an estimate outside the interval. Such an estimate is
removed by Errfilter function in the experiment.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 400

Zones with different convergence regimes in the low-frequency case

In order to show how the general low-frequency estimation works in practice, we peform a nu-
merical experiment whose code could be found in section “Zones with different convergence” of
the accompanying .R file. We set a constant σ and choose two sets of parameters- one for α and
one for H. Then, for each combination of them a number Nmc = 500 of sample paths is created.
All path lengths are set to a constant N = 1000. To each path we apply several statistics. One of
them is k_new<-2+floor(alpha_0(̂-1)) where alpha_0 is obtained via alpha_hat with parameters
k=1, freq=‘L’ plugged-in. This provides us simulated distribution of k̂low (Figure 12). Also, we fix a set
k_ind = seq(1,8,by=1) and, given a path, for each of these k’s extract statistics ϕlow(t, k = kind)n and
α̂low(t1, t2; k = kind)n, see Figures 13 and 14.

Three regimes of performance of GenLowEstim (read, the general low-frequency estimator α̂low(k, t1, t2)n)
are observed. To a large extend, only parameter α determines which regime is in presence.

Due to small variance of α̂0
low(t1, t2)n (Figure 14), when α ∈ (1, 2) the estimation k̂low(t1 = 1, t2 =

2)n returns 2 except from the boundaries, where edge effects are observed. This results in the fact
that in cases when statistics k̂low(1, 2)n can be computed without stumbling on numerical errors
performances of GenLowEstim and low frequency ContinEstim are the same. At the same time, statistic
α̂low(k, t1, t2)n is not far from its limit value for k < 3, that’s why the parameter estimation of the LFSM
is technically possible by ContinEstim and GenLowEstim at such length of the sample path.

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13 1 2 3 4 5 6 7 8 9 13

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

0
100
200
300
400
500

k_new

co
un

t

Figure 12: Histograms of preliminary estimations of k, k̂low(1, 2)n. α’s are on vertical labels, H’s- on
horizontal.

When α is near 1 there is a transition between the regime with values of k̂low(1, 2)n concentrated at
point k = 2, and the regime where k̂low(1, 2)n is highly dispersed. This shift is characterized by only
two values of k̂low(1, 2)n: 2 and 3. Such behavior of the estimated order of increments is due to the fact
that when α−1 ∈ N

P
(

k̂low = 2 + α−1
)
→ λ and P

(
k̂low = 1 + α−1

)
→ 1− λ

for some constant λ ∈ (0, 1), see Mazur et al. (2020), Section 4.1. Surprisingly, λ is close to 0.5
throughout the whole set of H’s (Figure 12). There are no k̂low(1, 2)n higher than 3 observed because
the preliminary estimation of α is still quite precise as one can see from the middle row on Figure
14. After obtaining k̂low(1, 2)n equal to either 2 or 3, α̂low(k̂low(1, 2)n, t1, t2)n is computed again quite
precisely, but worse than in the continuous case.

At α < 1 α̂low(k, t1, t2)n has high variance regardless of what k is chosen, therefore different values

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 401

are obtained when computing k̂low(1, 2)n. These values plugged-in to α̂low(k, t1, t2)n produce again
very dispersed estimates of parameter α. This mechanism explains why α̃low has higher variance in
discontinuous case (H − 1/α < 0) than in continuous (see the numerical study in Section 5 in Mazur
et al. (2020)).

The way α̃low behaves could be explained using pic.(13), where ϕn and Vlow(ψt, k)n are plotted.
Cases wherein α̂low performs poorly coinside with ones wherein ϕn and Vlow(ψt, k)n are significantly
distant from each other, so convergence Vlow(ψt, k)n

a.s.−→ ϕn(t; k) isn’t observed at the given length
of sample paths, which ruins the whole idea of (σ, α) estimation. Of course, this effect doesn’t affect
H-estimation because it is based on ratio statistic, which has a different form.

●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●

●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●

●●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●●●

●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●

●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●

●●●● ●● ●●● ●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●

●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

−200

−150

−100

−50

0

k

Figure 13: Comparison of the real ϕn(t = 1; k) and the one estimated via Vlow(ψt=1, k)n on the
logarithmic scale. α’s are on vertical labels, H’s- on horizontal. The lower and upper box sides
correspond to the 25th and 75th percentiles.

●

●
●●
●●● ●●

●

●●

●

●●

●

●

●●●

●

● ●
● ●●

●

●

●●
●

●

●

●●●

●

●●● ●●●●

●●●
●
●●

●

●

●

●

●

●●●
●●●

●●
●

●

●

●
●

●●

●●●

●

●●●

●●●●

●●

●

●

●
●●

●

●

●

●
●

●
●●

●

●

●

●
●●●●●●
●●●

●
●

●●
●

●●

●●

●
●●●●
●●
●

●

●

●

●●● ●●
●●●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●●

●

●

●●

●

●

●

●

●
●
●●●●●●
●
●●●●●
●●

●●●●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●
●●

●

●
●

● ●
●

●

●●

●

●
●

●

●

●●●●●

●

●
●●
●
●●●
● ●

●●
●●

●

●

●

●●●

●
●

●

●

●

●

●●

●
●
●●

●●

●
●

●

●

●●

●

●

●

●

●
●

●●●●

●
●

●

●●

●

●

●

●●
●

●●●●

●

●●
●

● ●

●●

●

●

●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●●

●

●

●

●
●●

●

● ●

●

●●

●
●

●
●

●

●

●

●

● ●●

●
●

●

●

●

●

●●

●
●
●
●

●

●
●

●

●●
●

●
●
●

●●

●

●

●

●●

●●

●

●

●●●

●●●●●
●●●●●

●

●

●●●

●●●

●

●

●

●

●●●

●

●
●

●

●●

●●●●

●●

●●

●
●

●

●

● ●●

●●●

●
●

●

●

●●

●●●●

● ●

●

●●
●
●●
●●●●●●
●

●
●●●●●●●●

●

●● ●●●

●

●

●
●

●

● ●
●

●
●
●

●●

●

●● ●
●
●●●
●

●

●

●●

● ●

●●●●●●●●
●
● ●●●●

●

●●

●
●

●

●

●

●

●

●●

●●●

●●

●
●●●

●

● ●●

●

●

●

●

●
●●

●●

●●

●
●●

● ●

●

●
●●●

●

● ●

●

●

●
●

●

●●

●

●●

●●●

●

●
●

●

●

●

●●
●

●
●
●●

●●

●
●●

●

●

●●

●●

●

●
●

●
●
●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●●

●●●

●●

●
●

●●
●

●●●●

●

●

●●

●●

●●●

●

●●

●

●

●
●
●

●●●

●

●

●

●

●●●●●

●

●

●●●●●●●●

●

●●

●

●
●

●

●

●

●●

●●

●

●

●●

●●●

●

●●
●

●

●●●

●

●

●●
●
●●
●

●
●
●●
●

●

●●●●●●
●

●

●●●●●
●
●
●●●

●●

●

●●
●

●●●●
●

●

●

●●
●
●

●
●

●
●●●●

●

●
●●●

●

●●

●

●●● ●●●● ●●●●

●●
●
●
●
●●

●●

●●

●

●●●

●

●●●●

●

●
●

●●
●

●

●●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●
● ●

●

●

●

●

●

●

●

●

●

● ●●
●

●●●

●●
●

●

●

●

●●
●
●●

●
●●

●

●

●
●

●

●
●

●

●

●

●
●●●

●

●

●

●●●●●●●●

●

●

●●●

●

●

●

●
●

●

●
●

●

●
●

●●

●

●
●●●

●

●

●

●●

●
●

●
●

●

●●●
●●●
●●●

●●●●●●

●

●

●●●
●
●●●●●●

●●●●

●

●●●

●

●●

●

●

●●●

●●

●

●

●

●

●●

●

●●

●
●

●●●
●

●

●

●
●

●
●

●●●●●●●
●●●●
●●●●●●●
●●●●
●●
●
●●
●
●●●●●

●

●

●
●
●● ●●●●

●

●

●
●
●

●●
●

●
●●
●
●
●●

●

●●

●

●
●

●●

●

●

●●●
●

●

●●

●●
●
●

●

●●●

●●●

●

●

●●
●●
●●●●●●
●●

●

●●
●
●●●●
● ●●●● ●●●

●
●●
●
●●●
●
●●●●●●
●

●●
●

●

●

●
●

●

●●●●

●

●

● ●

●

●●

●

●
●
●

●●

0.3 0.5 0.7 0.9

0.2
0.6

1
1.4

1.8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

−2

−1

0

1

−2

−1

0

1

2

−1

0

1

2

−2
−1

0
1
2
3

−1
0
1
2
3

k

Figure 14: Convergence of α̂low(k, t1, t2)n to the real α (red line) for different k. α’s are on vertical labels,
H’s- on horizontal. The lower and upper box sides correspond to the 25th and 75th percentiles.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 402

S4 classes for Lèvy-driven motions

Here we describe a simple S4 system (a short introduction to S4 classes is given in Wickham (2014),
Chapter OO field guide) that could be used to simplify manipulations with the two types of obser-
vations of the linear fractional stable motion. Additionally, we present a possible way to extend the
system so that it encompasses more general stochastic processes. The system aims to be helpful in

• passing “attributes” (frequency, σ, α, H) from objects to functions automatically (without addi-
tional developer’s efforts).

• hiding complicated details of interfaces from users.

• using generics to protract functions on different objects by means of inheritance. For instance,
plotting function written for lfsm could be used for other types of stochastic integral.

Classes for simulated lfsm

Here we describe the least general classes- “SimulatedLfsmLow” and “SimulatedLfsmHigh”, objects
of which are obtained by simulating low- and high-frequency linear fractional stable motions. Figure

  

motion

High/Low
Frequency
indicator

Indicator of
motion class 

(lfsm)

coordinates True
H, α, σ

Levy_motion

Figure 15: Structure of the classes of simulated lfsm. Frequency indicator and indicator of process
type are included in the class name, whilst motion, coordinates, parameters for which the path was
simulated and the Lévy motion are written in the slots.

15 shows their internal structure. Roughly speaking, these classes were designed to contain mini-
mum information that could fully describe a simulated LFSM path. Indicators of frequency and a
process type are included in the name of a class, which is supposed to make a method dispatch more
straightforward, without additional condition blocks. Moreover, all generic functions distinct high-
and low-frequency schemes of all types with the help of class names. The same holds for motion types.
Parameters H, α, σ, as well as Lévy motion, coordinates and the lfsm itself are written in corresponding
slots.

Examples

In the following example we see how an instance of class “SimulatedLfsmLow” is created and then
plotting and inference is performed using generic functions plot and ContinInfer. First, we register
classes, methods and one generic from “S4 classes examples” in the supplementary materials.

N<-3000; m<-65; M<-300
sigma<-0.3; alpha<-1.8; H<-0.8
p<-.4; t1<-1; t2<-2; k<-2

# Make an object of S4 class SimulatedLfsmLow
List <- path(N,m,M,alpha,H,sigma,freq='L',disable_X=FALSE,seed=3)

# Make an object of parameters
prmts<-new("AlpaHSigma",alpha=List$pars[['alpha']],
H=List$pars[['H']],sigma=List$pars[['sigma']])
X_sim <- new("SimulatedLfsmLow", Process = List$lfsm,

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 403

coordinates = List$coordinates, pars = prmts,
levy_motion = List$levy_motion)

# structure of the instance
str(X_sim)

Formal class 'SimulatedLfsmLow' [package ".GlobalEnv"] with 4 slots
..@ pars :Formal class 'AlpaHSigma' [package ".GlobalEnv"] with 3 slots
.. .. ..@ alpha: num 1.8
.. .. ..@ H : num 1.8
.. .. ..@ sigma: num 1.8
..@ levy_motion: num [1:3497] 0 -15 -19.8 -21.2 -24.1 ...
..@ Process : num [1:3497] 0 -0.542 -0.912 -1.12 -1.276 ...
..@ coordinates: int [1:3497] 0 1 2 3 4 5 6 7 8 9 ...

# plot the motion
plot(X_sim)

−150

−100

−50

0

0 1000 2000 3000

lfs
m

H =  0.8 alpha =  1.8 sigma = 0.3

−1500

−1000

−500

0

500

0 1000 2000 3000

coordinates

le
vy

_m
ot

io
n

Figure 16: Output of plot method for simulated lfsm

ContinInfer(x=X_sim,t1=t1,t2=t2,k=k,p=p)

$alpha
[1] 1.870217

$H
[1] 0.8314528

$sigma
[1] 0.3227219

In this example, the plot function takes almost no effort, compared to the similar one from Section
2.2, which is due to the fact, that there has been a method defined for generic plot and object “Simu-
latedLfsmLow”. The last function, ContinInfer, is a generic which has a registered method for class
“StochasicProcLow”, general stochastic processes in low-frequency setting. Since “SimulatedLfsmLow”
inherits from “StochasicProcLow”, the generic dispatched this method and performed statistical
inference. ContinInfer was designed to perform inference according to Theorem 3.1 from (Mazur
et al., 2020) and is based on R function ContinInfer. One can see that plot (and, less obviously,
ContinInfer) used “Low” from the name of the class to perform computations.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 404

Acknowledgments

The authors acknowledge financial support from the project “Ambit fields: probabilistic properties and
statistical inference” funded by Villum Fonden. Stepan Mazur acknowledges financial support from
the internal research grants at Örebro University, and from the project “Models for macro and financial
economics after the financial crisis” (Dnr: P18-0201) funded by Jan Wallander and Tom Hedelius
Foundation. The authors would like to thank Prof. Mark Podolskij for significant discussions. Dmitry
Otryakhin thanks Dr. Firuza Mamedova for valuable remarks on the draft of this paper.

Bibliography
A. Basse-O’Connor, R. Lachièze-Rey, and M. Podolskij. Power variation for a class of stationary

increments Lévy driven moving averages. Annals of Probability, 45(6B):4477–4528, 2017. URL
https://doi.org/10.1214/16-AOP1170. [p396, 397]

H. Biermé and H.-P. Scheffler. Fourier series approximation of linear fractional stable motion. Journal
of Fourier Analysis and Applications, 14(2):180–202, 2008. URL https://doi.org/10.1007/s00041-
008-9011-7. [p386]

J.-F. Coeurjolly. dvfBm: Discrete variations of a fractional Brownian motion, 2009. URL https://CRAN.R-
project.org/package=dvfBm. R package version 1.0. [p386]

T. Dang and J. Istas. Estimation of the Hurst and the stability indices of a H-self-similar stable process.
Electronic Journal of Statistics, 11(2):4103–4150, 2017. URL https://doi.org/10.1214/17-EJS1357.
[p398]

J. Huang. somebm: some Brownian motions simulation functions, 2013. URL https://CRAN.R-project.
org/package=somebm. R package version 0.1. [p386]

S. Mazur, D. Otryakhin, and M. Podolskij. Estimation of the linear fractional stable motion. Bernoulli,
26(1):226–252, 2020. URL https://doi.org/10.3150/19-BEJ1124. [p386, 391, 394, 396, 398, 400,
401, 403]

G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes: stochastic models with infinite
variance, volume 1. CRC Press, 1994. [p386]

S. Stoev and M. Taqqu. Simulation methods for linear fractional stable motion and FARIMA us-
ing the fast Fourier transform. Fractals, 95(1):95–121, 2004. URL https://doi.org/10.1142/
S0218348X04002379. [p386, 387, 388]

B. Swihart, J. Lindsey, and P. Lambert. stable: Probability Functions and Generalized Regression Models for
Stable Distributions, 2017. URL https://CRAN.R-project.org/package=stable. R package version
1.1.2. [p386]

N. W. Watkins, D. Credgington, R. Sanchez, and S. C. Chapman. A kinetic equation for linear
fractional stable motion with applications to space plasma physics. ArXiv e-prints, 2008. URL
https://arxiv.org/pdf/0803.2833.pdf. [p386]

H. Wickham. Advanced R. CRC Press, 2014. URL https://adv-r.hadley.nz/index.html. [p402]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL https://ggplot2.tidyverse.org. [p395]

W. B. Wu, G. Michailidis, and D. Zhang. Simulating sample paths of linear fractional stable motion.
IEEE Transactions on Information Theory, 50(6):1086–1096, 2004. URL https://doi.org/10.1109/TIT.
2004.828059. [p386]

D. Wuertz, M. Maechler, and Rmetrics core team members. stabledist: Stable Distribution Functions,
2016. URL https://CRAN.R-project.org/package=stabledist. R package version 0.7-1. [p386]

Stepan Mazur
School of Business, Örebro University
Fakultetsgatan 1, SE-701 82 Örebro
Sweden
ORCiD: 0000-0002-1395-9427
stepan.mazur@oru.se

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1214/16-AOP1170
https://doi.org/10.1007/s00041-008-9011-7
https://doi.org/10.1007/s00041-008-9011-7
https://CRAN.R-project.org/package=dvfBm
https://CRAN.R-project.org/package=dvfBm
https://doi.org/10.1214/17-EJS1357
https://CRAN.R-project.org/package=somebm
https://CRAN.R-project.org/package=somebm
https://doi.org/10.3150/19-BEJ1124
https://doi.org/10.1142/S0218348X04002379
https://doi.org/10.1142/S0218348X04002379
https://CRAN.R-project.org/package=stable
https://arxiv.org/pdf/0803.2833.pdf
https://adv-r.hadley.nz/index.html
https://ggplot2.tidyverse.org
https://doi.org/10.1109/TIT.2004.828059
https://doi.org/10.1109/TIT.2004.828059
https://CRAN.R-project.org/package=stabledist
mailto:stepan.mazur@oru.se


CONTRIBUTED RESEARCH ARTICLES 405

Dmitry Otryakhin1

Department of Mathematics, Aarhus University
Ny Munkegade 118, DK-8000 Aarhus C
Denmark
ORCiD: 0000-0002-4700-7221
d.otryakhin.acad@protonmail.ch

1some parts of the work were done at the Department of Mathematics of Stockholm University.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:d.otryakhin.acad@protonmail.ch


CONTRIBUTED RESEARCH ARTICLES 406

The R package NonProbEst for estimation
in non-probability surveys
by M. Rueda, R. Ferri-García, L. Castro

Abstract Different inference procedures are proposed in the literature to correct selection bias that
might be introduced with non-random sampling mechanisms. The R package NonProbEst enables
the estimation of parameters using some of these techniques to correct selection bias in non-probability
surveys. The mean and the total of the target variable are estimated using Propensity Score Adjustment,
calibration, statistical matching, model-based, model-assisted and model-calibratated techniques.
Confidence intervals can also obtained for each method. Machine learning algorithms can be used
for estimating the propensities or for predicting the unknown values of the target variable for the
non-sampled units. Variance of a given estimator is performed by two different Leave-One-Out
jackknife procedures. The functionality of the package is illustrated with example data sets.

Introduction

Since sampling theory was formalized in the beginning of the 20th century, surveys have been the main
tool to obtain information from society and nature. Traditional surveys used telephone or face-to-face
interviews for questionnaire administration, as well as mailing lists. However, the increase of costs,
linked to the decrease in response rates, and the development of information and communication
technologies have favored the use of new survey modes such as online or smartphone questionnaires.
These modes make the sampling process cheaper and faster, but tend to amplify bias from several
sources. More precisely, online surveys are often performed through a non-probability sampling,
using self-selection procedures without a defined sampling frame where the inclusion probabilities are
known or with deficient sampling frames with coverage issues, leading to higher levels of selection
bias (Elliott and Valliant, 2017).

Some techniques can be used to correct selection bias in online non-probability surveys. A good
overview of the various methods is given in Elliott and Valliant (2017). There are three important
approaches: the pseudo-design based inference (or pseudo-randomisation (Buelens et al., 2018)),
statistical matching and predictive inference.

In the pseudo-design based inference, the idea is to construct weights to correct for selection bias.
The first method is estimating response probabilities and using them in Horvitz-Thompson or Hajek
type estimators to account for unequal selection probabilities. The most used method to estimate
response probabilities is Propensity Score Adjustment (see e.g. Lee and Valliant (2009)). This method
uses a probability reference sample in addition to a non-probability convenience sample to construct a
response propensity model. Sample matching is another approach also applied to tackle selection bias.
A predictive model, with the target variable as the dependent variable, is built using data from the
non-probability sample. This model is subsequently applied to a probability sample (where the target
variable is not measured) to predict values of its individuals for an estimation of the population values.
Similarly, predictive methods are based on superpopulation models. In this approach, a predictive
model is fitted for the analysis variable from the sample and used to project the sample to the full
population. This approach (that can be used with probability and non-probability samples) allows
researchers to use the auxiliary information about covariates in different methods for predicting the
unknown values. Most of these methods require special software for their implementation. The
package NonProbEst implements some of these techniques.

The paper is structured as follows. First, we introduce the notation used throughout the paper
and we discuss the different ways to do inference for non-probability surveys. In section 3 we briefly
comment on the usefulness of Machine Learning (ML) Techniques in this context. Then, we describe
the R package NonProbEst. In section 5 we briefly describe the use of the functions, including suitable
examples, for each method.

Statistical methodology

Let U denote a finite population with N units, U = {1, . . . , k, . . . , N}. Let sV be a volunteer non-
probability sample of size nV , self-selected from an online population UV which is a subset of the total
target population U. Let y be the variable of interest in the survey estimation. Without any auxiliary
information, the population total of y, Y, is usually estimated with the following Horvitz-Thompson

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NonProbEst
https://CRAN.R-project.org/package=NonProbEst


CONTRIBUTED RESEARCH ARTICLES 407

type estimator:
ŶHT = ∑

k∈sV

wvkyk (1)

being wvk a weight of the unit k set by the researcher to adjust the lack of response, lack of coverage,
voluntariness, ... (e.g. by means of post-stratification). A simple choice is wvk = N/nV , that is, consider
the sample of volunteers as if it was obtained with a simple random sampling design of the population
U.

This estimator has a bias induced by various mechanisms regarding their application. The most
important are the selection bias (due to the difference between sampled and nonsampled individuals
on the probability to participate in a survey) and the coverage bias (the online population Uv is not the
same of the target population U).

The key to successful weighting to remove the bias in non-probability surveys lies in the use
of powerful auxiliary information. Auxiliary information can be available in different forms. We
distinguish three different cases, called InfoTP, InfoES and InfoEP, depending on the information at
hand.

• InfoTP: Only the population totals of the auxiliary variables are known (often called control
totals). Possible sources of information are a census of the target population, an administrative
register, ... One of the simplest and most frequently used control totals occurs when the
information consists of known counts for a set of population groups.

• InfoES: The auxiliary variable values are available for every element in a probability sample.
This reference survey is conducted on the same target population than the non-probability
survey, with the main difference that the former has a better coverage and higher response rates
than the latter, thus it is adequate to represent the behavior that the target population should
have when a probability survey is performed on it.

• InfoEP: The auxiliary variable values are available for every element in the whole population.
An example of this is when statistical agencies use auxiliary variables specified in different
existing registers, for all the elements in the population.

We will now explain the main methods used to treat these biases depending on the type of
information that is available.

InfoTP

Calibration

Let xk be the value taken on unit k by a vector of auxiliary variables which population total is assumed
to be known X = ∑N

k=1 xk. The calibration estimation of Y consists in the computation of a new
vector of weights wk for k ∈ s which modifies as little as possible the original sample weights, wvk,
which have the desirable property of producing unbiased estimations, respecting at the same time the
calibration equations

∑
k∈sV

wkxk = X. (2)

Given a pseudo-distance G(wk, wvk), the calibration process consists in finding the solution to the
minimization problem

min
wk
{ ∑

k∈sV

G(wk, wvk)} (3)

while respecting the calibration equation (2). Several distances were defined in Deville and Särndal
(1992), being the linear distance one of the most commonly used. The resulting estimator of Y under
the chi-square distance is the general regression estimator

Yreg = ∑
sV

wkyk = ∑
sV

dkyk + (X−∑
sV

wvkxk)
′ B̂sV (4)

where B̂s is
B̂sV = T−1

s ∑
sV

wvkxkyk (5)

being Ts = ∑sV
wvkxkx′k.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 408

It is proved in Bethlehem (2010) that bias can be reduced through calibration only when the
non-response due to volunteering has a Missing At Random scheme, while it cannot be equally done
in Not Missing at Random situations (which are the most frequent).

InfoSP

Propensity Score Adjustment

The Propensity Score Adjustment method was originally developed by Rosenbaum and Rubin (1983)
which sought to reduce the confounding bias between treatment and control groups in experimental
designs. This approach would be considered in sampling research as well in combination with a
reference sample (Rubin, 1986), but it was not proposed for online surveys until the early 2000’s (Taylor
et al., 2001).

It is expected that a sample collected by online recruitment would not follow the principles of a
probability sampling, especially in those cases that the survey is filled by volunteer respondents. In
such a situation, every individual is associated to a probability of participating in the survey which
depends on her or his characteristics.

The propensity for an individual to take part on the non-probability survey is obtained by training
a predictive model (often a logistic regression) on the dichotomous variable, IsV , which measures
whether a respondent from the combination of both samples took part in the volunteer survey or in
the reference survey. Covariates used in the model, x, are measured in both samples (in contrast to the
target variable which is only measured in the non-probability sample), thus the formula to compute
the propensity of taking part in the volunteer survey with a logistic model, π, can be displayed as

π(x) =
1

e−(γTx) + 1
(6)

for some vector γ, as a function of the model covariates.

We denote by sR the reference sample and wRk the original design weight of the k individual in
the reference sample

Several options for using the propensity scores in estimation are listed below:

• We can use the inverse of the estimated response propensity as a weight for constructing the
estimator (Valliant, 2019):

ŶPSA1 = ∑
k∈sV

wV kyk/π̂(xk) = ∑
k∈sV

ykwPSA1
k (7)

where π̂(xk) is the estimated response propensity for the individual k of the volunteer sample
as predicted using covariates x.

• Alternatively, the approach proposed in Schonlau and Couper (2017) can be used to obtain
weights for a Horvitz-Thompson type estimator using propensity scores. Weights are defined as

wPSA2
k =

1− π̂(xk)

π̂(xk)
(8)

and resulting estimator for the population total is given by

ŶPSA2 = ∑
k∈sV

ykwPSA2
k (9)

• Valliant and Dever (2011) use the propensity scores to post-stratify the sample. The process
is: sort the combined sample by π̂(xk); split the combined sample into g classes ( g = 5 as the
conventional choice following Cochran (1968)), each of which has about the same number of
cases in the combined sample; and compute an average propensity, π̄g within subclass g. Use
π̄g as the weight adjustment for every person in the subclass. Resulting estimator is:

ŶPSA3 = ∑
g

∑
k∈sV g

wV kyk/π̄g = ∑
g

∑
k∈sV g

ykwPSA3
k (10)

• Following the approach described in Lee and Valliant (2009) propensity scores are divided in
g classes, where all units may have the same propensity score or at least be in a very narrow
range and an adjustment factor is calculated as:

fg =
∑k∈sR g

wRk/ ∑k∈sR
wRk

∑k∈sV g
wVk/ ∑k∈sV

wVk
(11)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 409

where sRg is the set of individuals in the reference sample that are in the gth class of propensity
scores and sV g is the set of individuals in the volunteer sample that are in the gth class of
propensity scores. Finally, the adjusted weights wPSA4 are the product of the original weights
and the adjustment factor; following the same notation, the adjusted weight for individual k in
sV g (i. e. the individual k of the gth propensity class in the volunteer sample) is computed as

wPSA4
k = wVk fg (12)

and the estimator is given by

ŶPSA4 = ∑
g

∑
k∈sV g

ykwPSA4
k (13)

Research findings have shown that PSA successfully removes bias in some situations, but at the
cost of increasing the variance (Lee and Valliant, 2009). Valliant and Dever (2011) showed that the
estimation of a variable using PSA must be complemented with further weighting adjustment in order
to make estimates less biased. The use of PSA with further calibration is studied in Lee and Valliant
(2009) and Ferri-García and Rueda (2018), concluding that calibration adjustments are helpful if they
are applied using the right covariates.

Variance estimation in PSA is not a simple issue. Valliant (2019) proposes an estimator of the
variance for an estimator of a mean, ŷ, based on linearization, but this estimator does not take into
account the randomness of weight estimation, therefore it will tend to underestimate the variance.

Jackknife’s variance estimator (Quenouille (1956)) can be seen as an acceptable alternative in
nonprobability samples after applying PSA. Let ŷ = 1

N ∑k∈sV
wPSA

k yk be the estimator of the mean of
y, his Leave-One-Out Jackknife estimator of the variance is given by:

V̂(ŷ) =
n− 1

n

n

∑
j=1

(y(j) − y)2 (14)

where y(j) is the value of the estimator ŷ after dropping unit j from sV and where y is the mean of
values y(j).

Given that PSA weights are estimated from the available data, the exclusion of one unit can have an
impact on the values of wi and affect the variability of the estimator. This variability can be taken into
account if propensities are recalculated for each of the n Leave-One-Out partitions. Thus a Jackknife
estimator with recalculating weights is defined as:

V̂rw(ŷ) =
n− 1

n

n

∑
j=1

(yrw(j) − yrw)
2 (15)

where yrw(j) =
1
N ∑

k∈sV−{j}
wPSA

k (j)yk, with wPSA
k (j) the PSA weight obtained from the sample sV − {j}

and yrw is the mean of values yrw(j).

Statistical matching

The statistical matching method was introduced by Rivers (2007). The idea is to model the relationship
between yk and xk using the volunteer sample sV in order to predict yk for the reference sample. That
is, the matching estimator is given by:

ŶSM = ∑
sR

ŷkwRk

being ŷk the predict value of yk.

The key is how to predict the values yk. Usually ŷk = x′k β̂ being β̂ = ∑k∈sV
ykxk/ ∑k∈sV

x′kxk but
other methods can be considered as donor imputation (Rivers, 2007) or fractional donor imputation
(Kim and Fuller, 2004).

A major drawback of matching is that the precision of the non-probability sample reduces to the
standard error of the reference sample (Buelens et al., 2018). These authors also justify that matching is
based on strong ignorability assumptions and can lead biased estimators if the assumptions are not
met.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 410

InfoUP

The prediction approach is based on superpopulation models, which assume that the population
under study y = (y1, ..., yN)′ is a realization of super-population random variables Y = (Y1, ..., YN)′

having a superpopulation model ξ. To incorporate auxiliary information xk available for all k ∈ U on
assume a superpopulation for y built on some mean function of x:

Yk = m(xk) + ek, k = 1, ..., N. (16)

The random vector e = (e1, ..., eN)′ is assumed to have zero mean and a positive definite covariance
matrix which is diagonal (Yk are mutually independent).

Using a set of covariates, x, measured in sV and sV = U − sV it is possible to estimate the values
of y in sV with regression modeling such that the estimated value of y for an individual k can be
calculated through the following expression:

ŷk = Em(yk|xk) (17)

m alludes to the specific model which provides the expectation of yk, and xk are the values of the k-th
individual in the covariates x.

We can use the auxiliary information in several ways to define several estimators:

• the model-based estimator:

Ŷm = ∑
k∈sV

yk + ∑
k∈sV

ŷk (18)

• the model-assisted estimator:

Ŷma = ∑
k∈U

ŷk + ∑
k∈sV

(yk − ŷk)wVk (19)

• the model-calibrated estimator:
Ŷmcal = ∑

k∈sV

ykwCAL
k (20)

where wCAL
k are such that they minimize ∑k∈s G

(
wCAL

k , wVk
)
, where G(·, ·) is a particular

distance function, subject to

∑
k∈sV

wCAL
k ŷk = ∑

k∈U
ŷk.

Usually the linear regression model is used, Em(yk|xk) = x′kβ and the above estimators can be
rewritten as a type of regression estimators.

Prediction estimators need complete information about the auxiliary variables (InfoEP) and can
fail if the model is not true, but might potentially be fruitful to correct for selection bias in informative
sampling (Buelens et al., 2018).

Use of machine learning algorithms in non-probability sam-
ples

The emerging data sources like Big Data can be used in combination to traditional survey samples
for construct more valid inferences. Machine Learning (ML) methods can be used for the matter,
given their known advantages in high dimensional environments. There are several types of learning
algorithms but for this package we focus on classification and regression. Classification aims to
identify the category to which a new observation belongs while regression is used for prediction in
real-valuated variables. Both are trained with known observations to make predictions based on some
covariates.

There is a vast spectrum of classification and regression algorithms to take into account, starting
from the basic linear and logistic regressions and its extensions, like Ridge regression (Hoerl and
Kennard, 1970). Other examples are decision trees which uses tree-like graphs , like the C4.5 (Quinlan,
1993). More modern approaches even build ensembles of decision trees with outstanding results,
like XGBoost (Chen and Guestrin, 2016). During the last few years, deep learning models have been
dramatically improving the state-of-the-art (LeCun et al., 2015). However, many other techniques are
still being widely used and developed, like some bayesian methods (Park and Casella, 2008). Having
so many different options, choosing the right learning algorithm for each problem is key for obtaining
optimal results.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 411

Regarding survey research, the use of ML algorithms has been studied in the last few years for
deriving model-assisted estimators (Montanari and Ranalli (2007); Baffetta et al. (2009); Breidt et al.
(2017)). In the prediction approach ML algorithms uses the sample to train a model capturing the
behaviour of a target variable which is to be estimated, and applies it to the nonsampled individ-
uals to obtain population-level estimates. Applications of machine learning algorithms in PSA for
nonresponse propensity have been studied for classification and regression trees (Phipps et al., 2012)
and Random Forests (Buskirk and Kolenikov, 2015); their efficacy on reducing nonresponse bias
in comparison to logistic regression depends on the available covariates and the complexity of the
relationships. (Chen et al., 2019) use LASSO for calibrating non-probability surveys. (Buelens et al.,
2018) review existing inference methods to correct for selection bias and recommend adding ML
methods to deal with non-probability samples.

NonProbEst allows the use of a wide variety of classification and regression algorithms for model-
based, model-assisted and model-calibrated estimators, matching and PSA (which only works with
classification). It offers so many alternatives by relying on caret (Kuhn, 2018), a well known machine
learning package.

The R package NonProbEst

The package NonProbEst implements in R a set of techniques for estimation in non-probability
surveys, using various approaches which correspond to several frameworks. Functions in the pack-
age allow to obtain calibration weights via calib_weights, propensity scores via propensities and
matching predictions for a reference sample via matching. Propensity scores can be transformed
into weights by all of the approaches mentioned in previous sections via functions lee_weights,
sc_weights, valliant_weights, vd_weights. These weights can be used for estimation of total, mean
and proportion of a given target variable measured in a sample using functions total_estimation,
mean_estimation, prop_estimation. Alternatively, total and mean can also be calculated using a
model-based, a model-assisted or a model-calibrated approach with the functions model_based,
model_assisted and model_calibrated respectively. The variance of the estimators can be calculated
using the Leave-One-Out Jackknife method, this is, recalculating the set of weights after substracting
one unit or not, by means of the functions generic_jackknife_variance and jackknife_variance,
and without recalculating the weights via fast_jackknife_variance. Frequentist confidence intervals
of the estimates can be directly computed with the confidence_interval function.

Calibration weights are obtained using the calib function of the sampling package (Tillé and
Matei, 2016) for g-weights computation. calib_weights offers a wrapper for calculation of final
weights straight from the dataset. Functions that require prediction techniques, such as propensities,
matching, model_based, model_assisted, model_calibrated and jackknife_variance, use the train
function from the caret package (Kuhn, 2018). This function allows the user to use any of the algo-
rithms in the large list of functions which are covered by train, with the possibility of optimizing
hyperparameters for a better performance of the predictors. For propensity estimation, only classifica-
tion algorithms should be used as the target variable is binary (participation in the probability sample
vs participation in the non-probability sample). Case weights are used to balance both classes (for
models that accept them). For matching, model-based and model-assisted estimations, algorithms
should account for the type of variable of the target feature.

Note that weighting formulas for PSA from Lee (2006) and Valliant and Dever (2011) require
applying a stratification procedure. In both lee_weights and vd_weights the same procedure is
applied: the vector of propensities is sorted increasingly, and the individuals are equally divided in
g strata of the same length according to their position in the sorted vector. g is defined by the user,
and the procedure results in a vector with the strata number (from 1 to g) to which a given individual
corresponds. This stratification avoids errors that could arise from the lack of unique values.

Three datasets are available in the package: sampleP, sampleNP and population. These fictitious
datasets were created as described in Ferri-García and Rueda (2018); sampleP represents a probability
sample of size nr = 500 extracted by simple random sampling from a frame covering the entire
population, while sampleNP represents a non-probability sample of size nv = 1000 extracted by simple
random sampling from a frame covering only the subpopulation of individuals who have access
to Internet. The dataset of the complete population of size N = 50000 is available in population.
Variables available in each dataset differ, with sampleNP having the largest amount of variables. In
the aforementioned dataset, three variables (vote_gen, vote_pens, vote_pir) measuring whether an
individual would vote to a given party ("gen", "pens" or "pir") in an election or not. Probabilities of
voting to party "gen", "pens" or "pir" are higher if the individual is a woman, and elder person and
has access to the Internet, respectively. These variables are only measured in sampleNP, meaning that
adjustment methods have to be applied in order to produce reliable estimates of voting intentions.
For the matter, the rest of the available variables in the dataset, which are also included in sampleP

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=NonProbEst
https://CRAN.R-project.org/package=sampling
https://CRAN.R-project.org/package=caret


CONTRIBUTED RESEARCH ARTICLES 412

(except for the language) and population, can be used. education_primaria, education_secundaria,
education_terciaria are three disjunct variables measuring the education level of the individual
(Primary, Secondary or Tertiary Education), while age and sex measures the numeric age and the
gender (0 female, 1 male). Finally, language measures whether the individual’s native language is the
official language or not. The absence of certain variables in the datasets accounts for real situations
where not all the information is available at individual level.

It must be mentioned that the use of jackknife_variance for calculating the variance of the estima-
tors via Leave-One-Out Jackknife will be computationally slower than the fast_jackknife_variance
alternative. Recalculating the weights in each iteration means that the weighting procedure has to
be repeated as many times as individuals are in the non-probability sample. If Propensity Score
Adjustment is used for weighting, the models have to be rebuilt in each iteration, resulting in larger
computation times which will depend on the computational costs of the algorithms used for propensity
estimation. Note that generic_jackknife_variance will behave similarly if the estimator passed as
argument involves predictive modelling algorithms or other costly procedures. To show the difference
of procedures, we calculated the Leave-One-Out Jackknife estimated variance of the estimator of the
mean for the variable vote_pir in a non-probability sample of size nv = 100 extracted by simple
random sampling on the sampleNP dataset, using a probability sample of size nr = 100 extracted by
simple random sampling on the sampleP dataset as the reference sample data. Considering a popula-
tion of N = 50000, variance estimates of the estimator weighted by PSA using different algorithms
were computed, measuring the computation elapsed time. All the calculations were performed in a
Intel(R) Core(TM) i7-3770 CPU up to 3.40GHz. Results can be consulted in Table 1

Weight recalculation PSA algorithm R function Elapsed time (seconds)
No Logistic regression glm 0.004999876
Yes Logistic regression glm 75.56034
Yes CART rpart 102.3409
Yes Random Forest rf 203.7737
Yes GBM gbm 453.731
Yes Neural Network nnet 719.733

Table 1: Total elapsed time of Leave-One-Out Jackknife variance estimation under recalculation of
weights in each iteration for a set of predictive models, with sample sizes of 100 for both the probability
and the non-probability sample

In this example, the variance estimation with recalculations takes more than 15000 times the
seconds that it takes without recalculations if logistic regression is the method used for propensity
estimation, and almost 144000 times if feed-forward neural networks are used. Time differences
might be different depending on the data, the estimator and the algorithm, but they will be largely
appreciable in all cases.

In order to ilustrate how the resources in the package can be used for estimation in non-probability
surveys, some examples of each adjustment covered by the package are developed in the following
section.

Inference in non-probability samples with NonProbEst

InfoTP: Calibration

Suppose that a non-probability sample of 1000 individuals recruited via online surveying is available
for estimating the vote intention in a given election. For the matter, sampleNP will be used as the
non-probability sample data.

> library(NonProbEst)
> head(sampleNP)
vote_gen vote_pens vote_pir education_primaria education_secundaria education_terciaria age sex language

1 0 1 0 1 0 0 66 1 1
2 0 0 1 0 0 1 30 1 1
3 1 0 0 0 1 0 62 0 1
4 0 0 1 1 0 0 33 0 1
5 0 0 1 0 1 0 30 0 1
6 0 0 0 1 0 0 69 1 1

Some auxiliary information is available in the sample; more precisely, individual data on education,
age, gender and language (as described in the previous Section) can be used for mitigating the effects
of coverage error. Population totals are available for all of these auxiliar variables, as they have been
measured for the entire population. They can be retrieved from the population dataset:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 413

> head(population)
education_primaria education_secundaria education_terciaria age sex language

1 0 1 0 39 1 1
2 0 0 1 55 0 1
3 1 0 0 35 0 1
4 1 0 0 58 1 1
5 1 0 0 36 1 1
6 0 1 0 61 1 1
> totals <- colSums(population)
> totals
education_primaria education_secundaria education_terciaria age sex language

25287 10546 14167 2539340 24430 45429

If the variables of which population totals are available are not disjunct, Raking calibration can
be applied in order to estimate cell counts and account for the lack of information. This can be done
with the calib_weights function; in this case, the Xs argument were the dataset sampleNP selecting the
auxiliar variables only. Other arguments involve the totals previously obtained and the initial weights,
which allows the user to specify whether sampling design weights were used or not. In the latter case,
unitary weights should be provided as a vector of ones of length equal to the number of individuals
in the non-probability sample. Population size and method to be used by the calib function from
sampling have to be specified.

> covariates <- colnames(sampleNP)[4:9]
> initial_weights <- rep(1, nrow(sampleNP))
> w <- calib_weights(sampleNP[, covariates], totals, initial_weights,

N = 50000, method = "raking")

Once we obtain the weights, estimates for the mean (proportion if the variable is binary) or the
total of any variable present in the non-probability sample can be obtained using mean_estimation or
total_estimation respectively. For example, the estimated proportion of votes for each party can be
obtained with the following code:

> mean_estimation(sampleNP, w, "vote_gen", N = 50000)
vote_gen

0.09824163
> mean_estimation(sampleNP, w, "vote_pens", N = 50000)
vote_pens
0.3726149
> mean_estimation(sampleNP, w, "vote_pir", N = 50000)
vote_pir
0.3905399

If these estimates are compared to those which would be obtained if no adjustment was used, the
effect of calibration is notorious. As the presence of "gen" voters in the sample is MCAR, estimates do
not differ, but in the case of "pens" voters whose presence is MAR, the calibration approach gives a
larger estimate which can be explained by the fact that the overrepresentation of younger people in
the sample has been corrected up to a point. To a much lesser extent, this correction is also noticeable
in the estimation of vote to "pir" (presence of their voters in the sample is NMAR).

> sum(sampleNP$vote_gen)/nrow(sampleNP)
[1] 0.096
> sum(sampleNP$vote_pens)/nrow(sampleNP)
[1] 0.346
> sum(sampleNP$vote_pir)/nrow(sampleNP)
[1] 0.404
> sum(sampleNP$vote_gen)/nrow(sampleNP) -
+ mean_estimation(sampleNP, w, "vote_gen", N = 50000)

vote_gen
-0.00224163
> sum(sampleNP$vote_pens)/nrow(sampleNP) -
+ mean_estimation(sampleNP, w, "vote_pens", N = 50000)
vote_pens

-0.02661494
> sum(sampleNP$vote_pir)/nrow(sampleNP) -
+ mean_estimation(sampleNP, w, "vote_pir", N = 50000)
vote_pir

0.01346014

The variance of the estimates can be assessed through Leave-One-Out Jackknife, both with or
without reweighting in each iteration. In the former case, a function must be created by the user for

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sampling


CONTRIBUTED RESEARCH ARTICLES 414

such a task. In the following lines, a function example is developed for estimating the variance on the
estimation of the proportion of votes for the "pir" party:

### Leave-One-Out Jackknife variance estimation with reweighting
> estimator <- function(s){

initial_weights <- rep(1, nrow(s))
w <- calib_weights(s[,covariates], totals, initial_weights, N = 50000,

method = "raking")
return(mean_estimation(s, w, "vote_pir", N = 50000))
}

> v_r <- generic_jackknife_variance(sampleNP, estimator, N = 50000)
> v_r
[1] 0.0003352199
### Leave-One-Out Jackknife variance estimation without reweighting
> v_nr <- fast_jackknife_variance(sampleNP, w, estimated_vars = "vote_pir", N = 50000)
> v_nr

vote_pir
0.0003189449

These estimates of the variance can be used for the construction of confidence intervals for the
estimation of the proportion via confidence_interval function. This function requires the point
estimator and the standard deviation as arguments, with the option to fix the confidence level. If not
specified by the user, the confidence interval is calculated at 95% confidence level.

> ic_r <- confidence_interval( mean_estimation(sampleNP, w, "vote_pir", N = 50000),
sqrt(v_r)
)

> ic_r
lower.vote_pir upper.vote_pir

0.3546549 0.4264249
> ic_nr <- confidence_interval( mean_estimation(sampleNP, w, "vote_pir", N = 50000),

sqrt(v_nr)
)

> ic_nr
lower.vote_pir upper.vote_pir

0.3555368 0.4255429

InfoSP: Propensity Score Adjustment

Suppose that, in addition to the non-probability sample, a probability sample of the same target
population is available as auxiliary information. The target variable is not measured, but some other
variables which are also available in the non-probability sample have been measured on it. For the
matter, sampleP will be used as data from the probability sample.

> head(sampleP)
education_primaria education_secundaria education_terciaria age sex

1 1 0 0 35 1
2 0 0 1 64 0
3 1 0 0 55 1
4 0 1 0 61 1
5 0 0 1 35 0
6 1 0 0 51 1

In order to reduce the selection bias, Propensity Score Adjustment can be used in this case for
reweighting. This procedure is implemented in the propensities function; it requires both samples,
the list of covariates to be used to build the models for propensity estimation, and three arguments
regarding technical aspects of the adjustment: the prediction algorithm (must match any of the list of
caret supported algorithms), a boolean indicating whether smoothing of propensities is applied or
not, and a vector of strings specifying the preprocessing procedures to be passed to train (by default,
preprocessing is not applied). Further arguments to be passed to train can be specified.

In this example, the propensity of participating will be estimated using k-Nearest Neighbors with
further smoothing and a parameter grid of all the odd numbers between 3 and 11 for optimization of k.
The covariates will be all the variables measured in sampleP. The result will be a list with two vectors:
the estimated propensities for individuals in the non-probability (convenience) and the probability
(reference) sample respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 415

> covariates <- colnames(sampleP)
> pi <- propensities(sampleNP, sampleP, covariates,

algorithm = "knn", smooth = T, tuneGrid = data.frame(k = seq(3, 11, by = 2)))
> summary(pi$convenience)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3079 0.6249 0.6873 0.6834 0.7584 0.9995
> summary(pi$reference)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3079 0.5384 0.6388 0.6236 0.6998 0.9469

The propensities must be subsequently transformed into weights for their application in sur-
vey estimation. Transformations available in NonProbEst include approaches developed by Lee
(2006) and Lee and Valliant (2009) in the lee_weights function, Valliant and Dever (2011) in the
vd_weights function, Schonlau and Couper (2017) in the sc_weights function and Valliant (2019)
in the valliant_weights function. lee_weights and vd_weights require propensities of both sam-
ples and a number of strata (5 by default), while sc_weights and valliant_weights only require
propensities of the non-probability sample.

For example, if we want to apply propensities via weights developed in Valliant and Dever (2011)
for the estimation of voting intention to party "pir", we can do it with the following code:

> wi <- vd_weights(convenience_propensities = pi$convenience,
reference_propensities = pi$reference)

> summary(wi)
Min. 1st Qu. Median Mean 3rd Qu. Max.

1.233 1.376 1.493 1.505 1.632 2.011
> mean_estimation(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir")
vote_pir
0.4006072
#Estimation of the 95% confidence interval
> estim <- mean_estimation(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir")
> std_dev <- fast_jackknife_variance(sample = sampleNP, weights = wi,

estimated_vars = "vote_pir", N = 50000)
> confidence_interval(estimation = estim, std_dev = std_dev, confidence = 0.95)
lower.vote_pir upper.vote_pir

0.4001341 0.4010803

Note that for those weights that are calculated by means of propensity stratification, propensities of
the individuals in the convenience and reference sample are needed. If they are calculated by inverting
propensities, only those for the individuals in the convenience sample are needed. For example, if we
calculate weights via the formula developed in Schonlau and Couper (2017), the code is:

> wi <- sc_weights(propensities = pi$convenience)
> summary(wi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0004998 0.3185741 0.4549419 0.5044062 0.6003197 2.2479720

Apart from direct estimation, resulting weights can be used as inputs in the initial_weights
argument of the calib_weights function for the estimation with PSA and calibration, or with the
package survey (Lumley, 2018) for more complex analysis.

InfoUP: superpopulation estimators

In this case, in addition to the non-probability sample, the population itself is avaliable for some
covariates. However, the target variable is only measured in the non-probability sample. For the
matter, sampleNP will be used as the non-probability sample data and population will be used as the
population data.

The model-based estimator can be used to estimate the population total (or mean) for the target
variable. In this example, the expected number of votes for "pens" will be estimated with regularized
logistic regression as learning algorithm. This procedure is implemented in the model_based function.
It requires the sample, the population, the covariates names and the target variable as arguments. In
our example, the specific algorithm and a normalization preprocessing are passed to change default
behaviour. Since no optimization strategy is specified in this case, a default bootstrap will be applied.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NonProbEst
https://CRAN.R-project.org/package=survey


CONTRIBUTED RESEARCH ARTICLES 416

> covariates <- c("education_primaria", "education_secundaria",
"education_terciaria", "age", "sex", "language")

> mySample = sampleNP
> mySample$vote_pens = factor(mySample$vote_pens, c(0, 1), c('F', 'T'))
> model_based(mySample, population, covariates, "vote_pens",

positive_label = 'T', algorithm = "glmnet", proc = c("center", "scale"))
[1] 18282.51

If the proportion of votes has to be estimated, rather than the total, it would be as simple as adding
the estimate_mean argument as follows:

> model_based(mySample, population, covariates, "vote_pens", positive_label = 'T',
algorithm = "glmnet", proc = c("center", "scale"), estimate_mean = TRUE)

[1] 0.366757

Alternatively, model-calibrated estimator can be used to achieve higher efficiency in some situa-
tions. In that case, design weights have to be specified in the argument "weights", in addition to the
rest of arguments previously described. If no sampling design was followed in data collection, which
is the case that we suppose in our example, we can specify unitary weights by turning the parameter
to 1, as it is done in the following code:

> model_calibrated(sample_data = mySample, weights = 1, full_data = population,
+ covariates = covariates, estimated_var = "vote_pens", positive_label = 'T',
+ algorithm = "glmnet", proc = c("center","scale"),
+ estimate_mean = TRUE)
[1] 0.365945

Conclusion and future developments

In this paper we show how the NonProbEst package can simplify the application of different weighting
methods to correct selection bias in non-probability surveys. This package is, to the best of our
knowledge, the first package that supports the user beyond estimation in PSA, PSA+calibration,
statistical matching or model-calibration. Another important feature is that a wide range of ML
techniques can be used to optimize the information provided by the auxiliary variables.

Additional features will be integrated in future versions of the package. Some simplified wrappers
will be developed for some methods so non-expert users can also easily apply them, more parameters
will be avaliable for estimation and further support for weighted models will be added. Also, other
techniques for variance estimation can be considered. Many of these features can already be applied
combining NonProbEst with the survey package, as noted before.

Regarding Machine Learning, methods for variable selection will be studied as well as the use
of more advanced deep learning libraries outside of caret’s scope. Variable selection would help
explaining the bias and choosing the best covariates for its correction. Better deep learning libraries
would allow the use of state-of-the-art algorithms.

Acknowledgments

This work is partially supported by Ministerio de Economía y Competitividad of Spain (grant
MTM2015-63609-R) and by Ministerio de Ciencia, Innovación y Universidades (grant FPU17/02177).

Bibliography
F. Baffetta, L. Fattorini, S. Franceschi, and P. Corona. Design-based approach to k-nearest neigh-

bours technique for coupling field and remotely sensed data in forest surveys. Remote Sensing of
Environment, 113(3):463–475, 2009. [p411]

J. Bethlehem. Selection bias in web surveys. International Statistical Review, 78(2):161–188, 2010. [p408]

F. J. Breidt, J. D. Opsomer, et al. Model-assisted survey estimation with modern prediction techniques.
Statistical Science, 32(2):190–205, 2017. [p411]

B. Buelens, J. Burger, and J. A. van den Brakel. Comparing inference methods for non-probability
samples. International Statistical Review, 86(2):322–343, 2018. [p406, 409, 410, 411]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=NonProbEst
https://CRAN.R-project.org/package=NonProbEst
https://CRAN.R-project.org/package=survey
https://CRAN.R-project.org/package=caret


CONTRIBUTED RESEARCH ARTICLES 417

T. D. Buskirk and S. Kolenikov. Finding respondents in the forest: A comparison of logistic regression
and random forest models for response propensity weighting and stratification. Survey Methods:
Insights from the Field, page 17, 2015. [p411]

J. K. T. Chen, R. L. Valliant, and M. R. Elliott. Calibrating non-probability surveys to estimated control
totals using lasso, with an application to political polling. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 68(3):657–681, 2019. [p411]

T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, pages 785–794. ACM, 2016. [p410]

W. G. Cochran. The effectiveness of adjustment by subclassification in removing bias in observational
studies. Biometrics, pages 295–313, 1968. [p408]

J.-C. Deville and C. E. Särndal. Calibration estimators in survey sampling. Journal of the American
statistical Association, 87(418):376–382, 1992. [p407]

M. R. Elliott and R. Valliant. Inference for nonprobability samples. Statistical Science, 32(2):249–264,
2017. [p406]

R. Ferri-García and M. d. M. Rueda. Efficiency of propensity score adjustment and calibration on the
estimation from non-probabilistic online surveys. SORT-Statistics and Operations Research Transactions,
1(2):159–182, 2018. [p409, 411]

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1):55–67, 1970. [p410]

J. Kim and W. Fuller. Fractional hot deck imputation. Biometrika, 91(3):559–578, 2004. [p409]

M. Kuhn. caret: Classification and Regression Training, 2018. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-81. [p411]

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015. [p410]

S. Lee. Propensity score adjustment as a weighting scheme for volunteer panel web surveys. Journal of
official statistics, 22(2):329–349, 2006. [p411, 415]

S. Lee and R. Valliant. Estimation for volunteer panel web surveys using propensity score adjustment
and calibration adjustment. Sociological Methods & Research, 37(3):319–343, 2009. [p406, 408, 409, 415]

T. Lumley. survey: Analysis of Complex Survey Samples, 2018. URL https://CRAN.R-project.org/
package=survey. [p415]

G. E. Montanari and M. G. Ranalli. Multiple and ridge model calibration for sample surveys. In
Proceedings of the Workshop in Calibration and estimation in surveys, Ottawa, 2007. [p411]

T. Park and G. Casella. The bayesian lasso. Journal of the American Statistical Association, 103(482):
681–686, 2008. [p410]

P. Phipps, D. Toth, et al. Analyzing establishment nonresponse using an interpretable regression tree
model with linked administrative data. The Annals of Applied Statistics, 6(2):772–794, 2012. [p411]

M. H. Quenouille. Notes on bias in estimation. Biometrika, 43(3/4):353–360, 1956. [p409]

J. R. Quinlan. C4. 5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993. [p410]

D. Rivers. Sampling for web surveys. Presented in Joint Statistical Meetings, 2007. Salt Lake City, UT.
[p409]

P. R. Rosenbaum and D. B. Rubin. The central role of the propensity score in observational studies for
causal effects. Biometrika, 70(1):41–55, 1983. [p408]

D. B. Rubin. Statistical matching using file concatenation with adjusted weights and multiple imputa-
tions. Journal of Business & Economic Statistics, 4(1):87–94, 1986. [p408]

M. Schonlau and M. P. Couper. Options for conducting web surveys. Statistical Science, 32(2):279–292,
2017. [p408, 415]

H. Taylor, J. Bremer, C. Overmeyer, J. W. Siegel, and G. Terhanian. The record of internet-based opinion
polls in predicting the results of 72 races in the november 2000 us elections. International Journal of
Market Research, 43(2):127–135, 2001. [p408]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=survey
https://CRAN.R-project.org/package=survey


CONTRIBUTED RESEARCH ARTICLES 418

Y. Tillé and A. Matei. sampling: Survey Sampling, 2016. URL https://CRAN.R-project.org/package=
sampling. R package version 2.8. [p411]

R. Valliant. Comparing alternatives for estimation from nonprobability samples. Journal of Survey
Statistics and Methodology, 2019. [p408, 409, 415]

R. Valliant and J. A. Dever. Estimating propensity adjustments for volunteer web surveys. Sociological
Methods & Research, 40(1):105–137, 2011. [p408, 409, 411, 415]

María del Mar Rueda
Department of Statistics and Operations Research
University of Granada
Spain
ORCiD: 0000-0002-2903-8745
mrueda@ugr.es

Ramón Ferri-García
Department of Statistics and Operations Research
University of Granada
Spain
ORCiD: 0000-0002-9655-933X
rferri@ugr.es

Luis Castro
Department of Statistics and Operations Research
University of Granada
Spain
luiscastro193@correo.ugr.es

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=sampling
https://CRAN.R-project.org/package=sampling
mailto:mrueda@ugr.es
mailto:rferri@ugr.es
mailto:luiscastro193@correo.ugr.es


CONTRIBUTED RESEARCH ARTICLES 419

ProjectManagement: an R Package for
Managing Projects
by Juan Carlos Gonçalves-Dosantos1, Ignacio García-Jurado and Julián Costa

Abstract Project management is an important body of knowledge and practices that comprises the
planning, organisation and control of resources to achieve one or more pre-determined objectives. In
this paper, we introduce ProjectManagement, a new R package that provides the necessary tools to
manage projects in a broad sense, and illustrate its use by examples.

Introduction

Project management is an important body of knowledge and practices that comprises the planning,
organisation and control of resources to achieve one or more pre-determined objectives. The most
commonly used methods for project planning are PERT (Program Evaluation and Review Technique
model) and CPM (Critical Path Method). PERT/CPM analyses the tasks involved in completing a
project, especially the time needed to complete each task, and computes the minimum time needed
to complete the total project. Through the data obtained in the analysis of the project, PERT/CPM
identifies the critical activities, which are those for which any disturbance in its duration modifies
the minimum time of execution of the project. Also, it obtains the times that can be assigned to
non-critical activities, called slacks, in addition to their fixed durations, to give them flexibility. Project
management often deals with the problem of redistribution of resources. Sometimes it is convenient to
reduce the time of an activity by increasing the assigned costs. Other times, when the availability of
resources is limited in a period of time, it may be necessary to level the use of those resources. These
situations require a re-planning of the project.

Even with good project management, once the project has been carried out and the actual durations
of the activities are known, there can be a delay in the completion time of the project. When the
delay generates an additional cost, ways are needed to distribute the cost of the delay among the
different tasks involved. To solve this problem we can use cooperative game theory and rules based
on bankruptcy problems.

The essential elements related to project management can be found in Castro et al. (2007) or in
Hillier and Lieberman (2001). Project management techniques have been widely used in all fields of
engineering. Hall (2012) reviews the impact that such techniques have in various fields and their broad
business opportunities. Their fields of application vary from classical construction and engineering to
information technology and software development, including modern agile methods. Schmitz et al.
(2019) also argue the usefulness of traditional project management techniques in the context of agile
methodology. Evdokimov et al. (2018) include a case study that shows the current relevance of project
management techniques in software development. Özdamar and Ulusoy (1995) present a survey of
the problem of resource constraints. To distribute the delay cost of the project among the activities,
Brânzei et al. (2002) provide two rules using, respectively, a game theoretical and a bankruptcy-based
approach, and Bergantiños et al. (2018) introduce and analyse a consistent rule based on the Shapley
value.

A well-known project management software is Microsoft Project. This tool is designed to create
and control a project, through the allocation of resources to tasks, the management of budget and
workloads, as well as monitoring developments. Microsoft Project is not open source and its license
is fee-based. Other project management applications have been created as free software, such as
OpenProj, PpcProject or ProMes (Gregoriou et al., 2013). In Salas-Morera et al. (2013) we can see a
useful comparison of these applications.

The aforementioned tools are written in Java or Phyton. To the best of our knowledge, there are
only two packages in R available for project management. PlotPrjNetworks (Muñoz, 2015) and plan
(Kelley, 2018) are packages that offer the user the creation of a Gantt diagram for the visualization of
the project structure. In our opinion, a tool was missing to manage a project from its development to
its control. We believe that such a tool would be useful for the user community because it could be
integrated with other tools developed in R, it could be easily modified to suit the specific needs of
each user, and it could be wrapped into a graphical interface.

In this paper, we introduce ProjectManagement1 (Gonçalves-Dosantos et al., 2020b), a new R
package that provides the necessary tools to manage projects in a broad sense. It calculates the critical
activities, the slack of each activity, the minimum duration of the project and the early and last times of

1https://github.com/Juan-Goncalves-Dosantos/ProjectManagement.git

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=PlotPrjNetworks
https://CRAN.R-project.org/package=plan
https://CRAN.R-project.org/package=ProjectManagement


CONTRIBUTED RESEARCH ARTICLES 420

each activity. It plots a graph of the project and the schedule. The package also allows cost management
to reduce the minimum project time, as well as resource management. Once the actual durations of the
activities are known, it is possible to distribute the delay generated in the project among the different
activities. When activity durations are considered random variables, the package provides additional
functionality. In particular, it calculates the average duration of the project and the criticality index of
each activity. It plots a representation of the project duration distribution and the early and last times
of the activities. And it calculates several allocation proposals of the delay cost when the project has
been completed and the actual duration of the activities is known.

The paper is organized as follows. First, we recall the basic definitions of project management
and present different ways to distribute the delay cost when durations are assumed to be known and
when they are random variables. Then, we provide a description of ProjectManagement. Finally, we
illustrate the use of the package by way of examples.

Project management

In this section we discuss the basic concepts of deterministic and stochastic projects with a special
focus on allocating the delay cost among the project activities. The aim of this section is to provide a
brief (and quick) survey of the methodologies implemented in the R package ProjectManagement
that we introduce later, as well as to indicate the main bibliographical sources in which interested
readers can deepen their knowledge of each of these methodologies.

Let X be a finite non-empty set and N be a set of ordered pairs (x1, x2), with x1, x2 ∈ X and |N| = n.
A directed graph is a pair G = (X, N), where X is the set of nodes and N is the set of arcs. We say that
an arc i =

(
xi,1, xi,2

)
∈ N starts at node xi,1 ∈ X and ends at xi,2 ∈ X. A node xs ∈ X is a source node

if there is no arc i ∈ N such that xi,2 = xs. A node xe ∈ X is a sink node if there is no arc i ∈ N such
that xi,1 = xe. A cycle is a set of arcs i0, i1, ..., im ∈ N such that xij ,2 = xij+1,1, with j ∈ {0, ..., m− 1},
and xim ,2 = xi0,1. To illustrate the concept of directed graph consider the following example. Take
graph G = (X, N) given by X = {a, b, c, d} and N = {1 = (a, b) , 2 = (a, c) , 3 = (b, d) , 4 = (c, d)}.
The diagram representing this graph is depicted in Figure 1. This graph has one source (a) and one
sink (d). Arc 3, for instance, starts at node b and ends at node d. This graph has no cycles. However, if
we add an arc 5 = (d, a), the resulting graph has two cycles: 1, 3, 5 and 2, 4, 5.

Figure 1: Diagram of the directed graph G = (X, N). The circles represent the nodes and the arrows
represent the arcs. This is the standard way of depicting a graph.

A deterministic project P is a tuple P =
(
G, x0), where G = (X, N) is a directed graph without

cycles, with one source node and one sink node, and x0 ∈ Rn
+ is the vector of non-negative planned

durations. In this context, N represents the set of activities in the project. We denote by PN the family
of all deterministic projects with set of activities N, and by P the family of all deterministic projects.

In a deterministic project P =
(
G, x0) ∈ PN , you can calculate the minimum duration of P,

denoted by D
(
G, x0), i.e. the minimum time the project needs to complete all activities taking into

account the structure of the graph. This time can be obtained as the solution of a linear programming
problem, and thus, can be easily computed. Alternatively, D

(
G, x0) can be calculated using a project

planning methodology like PERT (see, for instance, Hillier and Lieberman (2001) for details on project
planning).

Given a node x ∈ X, we define the set of immediate predecessors of x as the set of activities ending
in x, Pred (x) = {i ∈ N/xi,2 = x}, and the immediate successors of x as Suc (x) = {i ∈ N/x = xi,1}.
We define the earliest time DE

i
(
G, x0) of an activity i ∈ N as the minimum time required to complete

all immediate predecessor activities of xi,1, i.e. the earliest start time the activity i can start taking into
account the graph

DE
i

(
G, x0

)
= max

j∈Pred(xi,1)
{DE

j

(
G, x0

)
+ x0

j }.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 421

The latest completion time DL
i
(
G, x0) of an activity i ∈ N is the latest point in time when the activity

can end without delaying the project

DL
i

(
G, x0

)
=


maxj∈N;Suc(xj,2)=∅{DE

j
(
G, x0)+ x0

j } i f Suc
(

xi,2
)
= ∅,

minj∈Suc(xi,2){DL
j
(
G, x0)− x0

j } otherwise.

It is easy to see that DE
i
(
G, x0) ≤ DL

i
(
G, x0) for all i ∈ N. Also, we can calculate the minimum

duration of a project, using the earliest start times, as D
(
G, x0) = maxi∈N{DE

i
(
G, x0)+ x0

i }.
We define the slack Si

(
G, x0) of an activity i ∈ N as the maximum time, in addition to x0

i , that i
can use to complete its task without delaying the project

Si

(
G, x0

)
= DL

i

(
G, x0

)
− DE

i

(
G, x0

)
− x0

i .

If the slack for an activity is equal to 0, then this activity is critical, i.e. any perturbation in its time
modifies the duration of the project. We can also define two other types of slack. The free slack of an
activity is the maximum amount of time that this activity can be delayed without causing a delay in
the project or in the earliest time of the other activities. The free slack of an activity can be calculated as

FSi

(
G, x0

)
= min

j∈Suc(xi,2)
{DE

j

(
G, x0

)
} − DE

i

(
G, x0

)
− x0

i .

The independent slack of an activity is the maximum time that the activity duration can be
increased without affecting the times of others activities

ISi

(
G, x0

)
= max{ min

j∈Suc(xi,2)
{DE

j

(
G, x0

)
} − DL

i

(
G, x0

)
− x0

i , 0}.

Given the slack of an activity, we define the latest start time as the latest time that an activity can
start without delaying the project

DEL
i

(
G, x0

)
= DE

i

(
G, x0

)
+ Si

(
G, x0

)
and the earliest completion time as the earliest time in which an activity can end if it starts in its earliest
start time

DLE
i

(
G, x0

)
= DL

i

(
G, x0

)
− Si

(
G, x0

)
.

Besides the schedule of a project, we can manage the resources allocated to the activities. The
minimal cost expediting or MCE method (Kelley, 1961) considers that the duration of some activities
can be reduced by increasing the resources allocated to them and thus the implementation costs. An
MCE problem is a tuple

(
P, x̄0, c, D

)
, where P is a deterministic project, x̄0 ∈ Rn

+ is the vector of
minimum durations, that is, for each activity i ∈ N, x̄0

i is the minimum duration that the activity can
take if the resources allocated to carry it out are increased, c ∈ Rn is the vector of unit costs, that is, for
each activity i ∈ N, ci is the cost of accelerating a unit of time the duration of i, and D is the minimum
duration of the project we are trying to achieve, with D < D

(
G, x0). This problem can be solved as a

linear programming problem.

Two other interesting problems that arise from the management of resources are the levelling
and the allocation (Hegazy, 1999). These problems take into account that in order for activities to
be carried out in the estimated time, a certain level of resources must be used. The problem of
levelling of resources is to find a schedule that allows to execute the project in its minimum duration
time D

(
G, x0) whilst the use of resources is as uniform as possible over time. In the problem of

allocation of resources, the level of resources available in each period of time is limited. The aim
is to find the minimum duration time and a schedule for the execution of the project taking into
account this resource constraint. Given the complex nature of these problems, their exact resolution is
computationally demanding. The most common practice is to use heuristic methods to solve them.

Once the project is completed, we can know the actual (observed) duration of the activities and,
therefore, whether there has been a delay in the project, that is, whether the actual duration of the
project has been different than expected. We define a deterministic project with delays as a tuple
CP =

(
G, x0, x, C

)
, where

(
G, x0) is a deterministic project, x ∈ Rn

+ is the vector of actual duration
of the activities, and C : R+ → R is the delay cost function. We assume that C only depends on the
duration of the project, it is a non-decreasing function, and C

(
D
(
G, x0)) = 0. In practice, the most

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 422

commonly used functions, for a vector y ∈ Rn
+, are

C (D (G, y)) = D (G, y)− δ (1)

with δ ∈ R+, for example δ = D
(
G, x0).

We denote by CPN the family of all deterministic projects with delays with set of activities N, and
by CP the family of all deterministic projects with delays.

In a deterministic project with delays CP ∈ CPN , we may need to allocate C (D (G, x)) among the
activities. This can be useful for several reasons. For example, it can serve as an incentive for those
responsible for the activities that have been delayed to be more diligent in similar projects that we may
carry out with them in the future; or it can be a mechanism to distribute among those responsible for
the activities that have been delayed the financial penalty that the project manager has contractually
guaranteed. Brânzei et al. (2002) propose two rules based on bankruptcy problems to address this
problem: the Proportional rule and the Truncated Proportional rule. Although they define these rules
for the case xi ≥ x0

i , we do not consider this restriction. These rules are only defined when the sum of
the individual delays is not zero.

The Proportional rule for deterministic scheduling problems with delays φ is defined, for each
i ∈ N, by

φi =
xi − x0

i

∑j∈N xj − x0
j
· C (D (G, x)) .

The Truncated Proportional rule for deterministic scheduling problems with delays φ̄ is defined,
for each i ∈ N, by

φ̄i =
min{xi − x0

i , C (D (G, x))}
∑j∈N min{xj − x0

j , C (D (G, x))} · C (D (G, x)) .

In Bergantiños et al. (2018), the problem of allocating the delay costs is addressed in the context
of cooperative game theory using a Shapley rule. As we illustrate later in an example, the Shapley
rule allocates the delay costs in a more sensible way than the proportional rules, at least in some cases.
It is much more costly to compute it but, in general, the extra effort is worthwhile. A TU-game is a
pair (N, v) where N is a finite non-empty set, and v is a map from 2N to R with v (∅) = 0. We say
that N is the player (activity) set of the game and v is the characteristic function of the game, and
we usually identify (N, v) with its characteristic function v. The Shapley value, an allocation rule
in cooperative game theory, is a map Φ that associates to each TU-game (N, v) a vector Φ (v) ∈ RN

satisfying ∑i∈N Φi (v) = v (N) and providing a fair allocation of v (N) among the players in N. The
explicit formula of the Shapley value for every TU-game (N, v) and every i ∈ N is given by

Φi (v) = ∑
S⊆N\{i}

(|N| − |S| − 1)! |S|!
|N|! (v (S ∪ {i})− v (S)) .

Since its introduction by Shapley (1953), the Shapley value has proved to be one of the most
important rules in cooperative game theory and to have applications in many practical problems (see,
for instance, Moretti and Patrone (2008)).

Bergantiños et al. (2018) define the Shapley rule for deterministic projects with delays Sh as
Sh (CP) = Φ

(
vCP), where for all CP =

(
G, x0, x, C

)
∈ CPN :

• vCP is the TU-game with set of players N given by

vCP (S) = C
(

D
(

G,
(

xS, x0
N\S

)))
for all S ⊆ N, where

(
xS, x0

N\S
)

denotes the vector in RN whose i-th component is xi if i ∈ S or

x0
i if i ∈ N \ S, and

• Φ
(
vCP) denotes the proposal of the Shapley value for vCP.

The calculation of the Shapley value has, in general, an exponential complexity. In this context, its
exact calculation is impossible in practice, even for a moderate number of activities. As an alternative
to exact calculation, Castro et al. (2009) proposed an estimate of the Shapley value in polynomial time
using a sampling process. In practical terms, this estimate is a reasonable solution.

Next, we introduce a generalization of the model and the rules described above. It follows the
results in Gonçalves-Dosantos et al. (2020a). If instead of x0

i , the planned duration of activity i ∈ N , we
consider the non-negative random variable X0

i describing the duration of i, we can define a stochastic
project SP as tuple SP =

(
G, X0). Unlike in the deterministic setting, the duration of activities, the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 423

duration of the project, as well as the early and last times are now random variables instead of fixed
numbers.

A stochastic project with delays is a tuple SCP =
(
G, X0, x, C

)
, where

(
G, X0) is a stochastic

project, x is the vector of actual durations, and C : R+ → R is the delay cost function. We assume that
C is non-decreasing and C (D (G, 0)) = 0, where 0 ∈ Rn is the vector with all components equal to
zero. Proportional rules can be extended to stochastic projects with delays in a straightforward way.

The Stochastic Proportional rule for deterministic scheduling problems with delays φ is defined,
for each i ∈ N, by

φi =
xi − E

(
X0

i
)

∑j∈N xj − E
(

X0
j

) · C (D (G, x)) .

The Stochastic Truncated Proportional rule for deterministic scheduling problems with delays φ̄ is
defined, for each i ∈ N, by

φ̄i =
min{xi − E

(
X0

i
)

, C (D (G, x))}
∑j∈N min{xj − E

(
X0

j

)
, C (D (G, x))}

· C (D (G, x)) .

Also, we can extend the Shapley rule to the stochastic context. Let us see two extensions of the rule.
The Shapley rule for stochastic projects with delays SSh is defined by SSh (SCP) = Φ

(
vSCP), where

• vSCP is the TU-game with set of players N given by

vSCP (S) = E
(

C
(

D
(

G,
(

xS, X0
N\S

))))
for all non-empty S ⊆ N,2 and

• Φ
(
vSCP) denotes the proposal of the Shapley value for vSCP.

As an alternative to the previous rule, the Shapley rule in two steps for stochastic projects with
delays SSh2 is defined by SSh2 (SCP) = Φ

(
vSCP

1
)
+ Φ

(
vSCP

2
)
, where

• vSCP
1 is the TU-game with set of players N given by

vSCP
1 (S) = E

(
C
(

D
(

G,
(

xS, X0
N\S

))))
− E

(
C
(

D
(

G, X0
)))

for all S ⊆ N,

• vSCP
2 is the TU-game with set of players N given by

vSCP
2 (S) = E

(
C
(

D
(

G,
(

X0
S, 0N\S

))))
for all S ⊆ N, where 0 ∈ Rn is the vector with all components equal to zero, and

• Φ
(
vSCP

1
)

and Φ
(
vSCP

2
)

denote the proposal of the Shapley value for vSCP
1 and vSCP

2 .

In general, the calculation of vSCP, vSCP
1 and vSCP

2 is very complex. In our package, we use
simulations to approximate these characteristic functions.

ProjectManagement package

ProjectManagement is a new R package that allows the user to address different tasks in project
management. The user can obtain the duration of a project and a schedule of activities, and can plot
this schedule for a better understanding of the problem. When the actual durations of each activity
are observed, the package proposes several allocations of the delay cost, if there was any, among the
activities. In the stochastic context, the package estimates the average duration of the project and plots
the density functions of the following random variables: duration of the project, and early and last
times of the activities. As in the deterministic case, it can make an allocation of the delay cost, if any.

The following dependencies of the package must be taken into account: triangle (Carnell, 2019),
plotly (Sievert, 2020), igraph (Csardi and Nepusz, 2006), kappalab (Grabisch et al., 2015), GameThe-
ory (Cano-Berlanga, 2017) and lpSolveAPI (lp_solve et al., 2020). The first one is used for calculations
with triangular distributions, the second one to plot interactive graphics, the third one to plot graphs,
the next two are related to game-theoretic concepts and the last one to solve linear programming
problems.

2As in all TU-games, we define vSCP (∅) = 0.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=triangle
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=kappalab
https://CRAN.R-project.org/package=GameTheory
https://CRAN.R-project.org/package=GameTheory
https://CRAN.R-project.org/package=lpSolveAPI


CONTRIBUTED RESEARCH ARTICLES 424

The functions incorporated in the package can be seen in Table 1. Note that for projects of more
than 10 activities, functions delay.pert and delay.stochastic.pert will approximate the Shapley
value through a sampling process. Table 2 describes the complete list of parameters used by the
functions. Tables 3, 4, 5, and 6 state which arguments use each function.

Function Description

dag.plot Plots the AON graph of a project.
delay.pert Calculates the delay cost of a deterministic project and

allocates it among the activities.
delay.stochastic.pert Calculates the delay cost of a stochastic project and

allocates it among the activities.
early.time Calculates the earliest start time for each activity.
last.time Calculates the latest completion time for each activity.
levelling.resources Calculates the schedule of the project so that the

consumption of resources is as uniform as possible.
mce Calculates the costs per activity needed to accelerate the project.
organize Relabels the activities of a project (if i precedes j then i ≤ j).
rebuild Builds a type 1 precedence matrix.
resource.allocation Calculates the project schedule so that resource consumption

does not exceed the maximum available per time period.
schedule.pert Calculates the duration of a project and the schedule of each

activity, and plots the schedule and the AON graph.
stochastic.pert Calculates the average duration of a stochastic project,

the criticality index of each activity, and the density functions
of the duration of the project, early times and last times.

Table 1: Summary of functions in ProjectManagement.

ProjectManagement allows the user to plot the activities on nodes graph of the Project (AON).
Originally, in the PERT methodology, projects are represented by activities on arcs graphs (AOA). This
is the representation we have used in this paper up to now. Both AON and AOA representations are
widely used in the literature, each having some advantages over the other in particular circumstances.
For automatically drawing the network of a project, the AON representation is more appropriate
because it is computationally much more efficient. This is why we have incorporated it into the
dag.plot function. This representation will be useful mainly for the user to check that he has entered
the precedence matrices correctly, which are the ones that really characterize the project.

ProjectManagement also allows the user to choose from four different types of immediate prece-
dences between the activities.

• Type 1: Finish to start (FS). If an activity i ∈ N precedes type 1 to j ∈ N, then j cannot start until
activity i has finished.

• Type 2: Start to start (SS). If an activity i ∈ N precedes type 2 to j ∈ N, then j cannot start until
activity i has started.

• Type 3: Finish to finish (FF). If an activity i ∈ N precedes type 3 to j ∈ N, then j cannot finish
until activity i has finished.

• Type 4: Start to finish (SF). If an activity i ∈ N precedes type 4 to j ∈ N, then j cannot finish
until activity i has started.

The relationships between the types of dependencies are as follows: Type 1 implies type 2, type 2
implies type 4, type 1 implies type 3 and finally type 3 implies type 4. Considering these relations, if
one activity precedes another by more than one type, it is only necessary to indicate the one with the
strongest character.

The user can indicate types 1 or 2 in the "prec1and2" parameter (see Table 2) using the values 1 or
2 respectively, and types 3 or 4 in "prec3and4" using 3 or 4 respectively. Note that cycles can not exist.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 425

Parameter Description

duration Vector with the expected duration for each activity.
prec1and2 Matrix indicating precedence type 1 or type 2 between

the activities (Default=matrix(0)).
prec3and4 Matrix indicating precedence type 3 or type 4 between

the activities (Default=matrix(0)).
observed.duration Vector with the actual duration for each activity.
delta Value indicating the maximum time that the project can take

without delay (see equation 1). This value is only used with
the default cost function.

distribution Vector with the distribution function of the duration for each
activity. It can be normal, triangular, exponential, uniform,
beta, t-Student, F distribution, chi-squared, gamma, Weibull,
binomial, Poisson, geometric, hypergeometric, and empirical.

values Matrix with the arguments of the distribution function of
the duration for each activity. By rows the activities,
and by columns the arguments.

percentile Value used to calculate the maximum time allowed for the
duration of the project without delay. This value is only used
if no delta value is assigned.

compilations Number of simulations that the function uses for estimation
(Default=1000).

cost.funtion Delay cost function. If this value is not added, the package uses
equation 1.

early.times Vector with the early time for each activity.
PRINT Logical parameter indicating if the schedule and the AON graph

are depicted (Default=TRUE).
plot.activities.times Vector of selected activities from which it is shown

the distribution of their early and last times (Default=NULL).
minimum.durations Vector with the minimum duration an activity can take even

if the resources are increased.
critical.activities Vector with the critical activities to represent them in a different color

in the AON graph (Default=NULL).
duration.project Value indicating the minimum time sought in the project

(Default=NULL).
activities.costs Vector indicating the cost of accelerating a unit of time

the duration for each activity.
resources Vector indicating the necessary resources for each activity

per period of time.
int Value indicating the duration of each period of time

(Default=1).
max.resources Value indicating the maximum number of resources

that can be used in each period of time.

Table 2: Summary of parameters in ProjectManagement.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 426

Function duration prec1and2 prec3and4 observed.duration delta

dag.plot X X
delay.pert X X X X X
delay.stochastic.pert X X X X
early.time X X X
last.time X X X
levelling.resources X X X
mce X X X
organize X X
resource.allocation X X X
schedule.pert X X X
stochastic.pert X X

Table 3: Arguments used by each function in ProjectManagement.

Function distribution values percentile cost.function compilations

dag.plot

delay.pert X X
delay.stochastic.pert X X X X X
early.time

last.time

levelling.resources

mce

organize

resource.allocation

schedule.pert

stochastic.pert X X X

Table 4: Arguments used by each function in ProjectManagement.

Function early.times PRINT plot.activities.times minimum.durations critical.activities

dag.plot X
delay.pert

delay.stochastic.pert

early.time

last.time X
levelling.resources

mce X
organize

resource.allocation

schedule.pert X
stochastic.pert X

Table 5: Arguments used by each function in ProjectManagement.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 427

Function duration.project activities.costs resources int max.resources

dag.plot

delay.pert

delay.stochastic.pert

early.time

last.time

levelling.resources X X
mce X X
organize

resource.allocation X X X
schedule.pert

stochastic.pert

Table 6: Arguments used by each function in ProjectManagement.

Examples

ProjectManagement is available for download from CRAN. To use the package you will need to load
it at the beginning of the session, usually by typing

> library("ProjectManagement")

Next we analyse the following deterministic project with 10 activities. Their durations and
precedence relations are given in Table 7.

N 1 2 3 4 5 6 7 8 9 10

Immediate precedence type 1 - - - 2 3 3 1, 4 2 5, 8 6
Immediate precedence type 2 - - - - 4 - - - - -
Immediate precedence type 3 - - - - - 8 - - - -
Immediate precedence type 4 - - - - - - 9 - - -

Durations 2 1.5 1 4.5 2 2.5 3 4 2 5

Table 7: Example of a deterministic project.

We start by introducing the data set characterizing the project. We use the function dag.plot for
depicting its AON graph. Figure 2 shows it; the green blocks contain the activities and the precedences
are represented by arrows. The blocks S and E are the source and sink nodes, respectively. Note that
the precedences type 1 are arrows without label, precedences type 2 are labeled as SS, precedences
type 3 as FF, and precedences type 4 as SF.

> prec1and2<-matrix(0,nrow=10,ncol=10)
> prec1and2[1,7]<-1; prec1and2[2,4]<-1; prec1and2[2,8]<-1; prec1and2[3,5]<-1;
> prec1and2[3,6]<-1; prec1and2[4,7]<-1; prec1and2[5,9]<-1; prec1and2[6,10]<-1;
> prec1and2[8,9]<-1; prec1and2[4,5]<-2
> prec3and4<-matrix(0,nrow=10,ncol=10)
> prec3and4[8,6]<-3; prec3and4[9,7]<-4
> dag.plot(prec1and2,prec3and4)

Using schedule.pert, we obtain the project schedule, i.e. the minimum time needed to complete
all activities and the early and last times. Also, we can plot the schedule. Let us see it:

> duration<-c(2,1.5,1,1.5,2,2.5,3,4,2,5)
> schedule.pert(duration,prec1and2,prec3and4)
`Total duration of the project`
[1] 10.5

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 428

Figure 2: AON graph of the project. In an AON graph the activities are embodied in the nodes
(squares) and the precedences of the various types, FS, SS, FF, SF, in the arcs (arrows).

[[2]]

Activities Duration Earliest start time Latest start time Earliest completion time

1 2.0 0.0 5.5 2.0
2 1.5 0.0 0.0 1.5
3 1.0 0.0 2.0 1.0
4 1.5 1.5 6.0 3.0
5 2.0 1.5 6.5 3.5
6 2.5 2.0 3.0 5.5
7 3.0 3.0 7.5 6.0
8 4.0 1.5 1.5 5.5
9 2.0 5.5 8.5 7.5
10 5.0 5.5 5.5 10.5

Activities Latest completion time Slack Free Slack Independent Slack

1 7.5 5.5 1.0 0.0
2 1.5 0.0 0.0 0.0
3 3.0 2.0 0.0 0.0
4 7.5 4.5 0.0 0.0
5 8.5 5.0 2.0 0.0
6 5.5 2.0 2.0 0.0
7 10.5 4.5 4.5 0.0
8 5.5 0.0 0.0 0.0
9 10.5 3.0 3.0 0.0
10 10.5 0.0 0.0 0.0

[[3]]

In this output we can see the total duration (10.5 units) of the project as well as other relevant
information for each activity. Figure 3 depicts the different times of each activity using a colour coding.
If we click on the points on the graph, a label indicates which activity and time it belongs to. Also, if
we double click on a section of the legend we can see the data related to it, as in Figure 4 with the last
times for each activity (another double click restarts the graph). In the output, the plot depicted in
Figure 3 is saved as an object on [[3]]; this allows the users to manipulate the plot according to their
needs. Finally, Figure 5 shows the AON graph of the project where critical activities are represented in
red.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 429

Figure 3: This figure shows an interactive graphic that displays the schedule of the project. If we move
the mouse over the highlighted points of the segments, pop-up tags are generated with information
about the activities.

Figure 4: Latest completion times. This interactive graphic is the result of double clicking on the
"Latest completion date" section of the legend.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 430

Figure 5: AON graph of the project. In an AON graph the activities are embodied in the nodes
(squares) and the precedences of the various types, FS, SS, FF, SF, in the arcs (arrows). Nodes in red
indicate critical activities.

Next, suppose we are interested in shortening the duration of the project. The mce function is used
for this purpose. Let us use the function with the following input data: the minimum duration for
each activity even if the resources are increased

x̄0 = (1, 1, 0.5, 1, 1, 2, 2, 3, 1, 3)

and the costs per unit time to shorten each activity

c = (1, 2, 1, 1, 3, 2, 1, 2, 3, 5) .

> minimum.durations<-c(1,1,0.5,1,1,2,2,3,1,3)
> activities.costs<-c(1,2,1,1,3,2,1,2,3,5)
> mce(duration,minimum.durations,prec1and2,prec3and4,
activities.costs,duration.project=NULL)
necessary negative increase
1: 0.5
Read 1 item
Project duration =
[1] 10.0 9.5 9.0 8.5 8.0 7.5 7.0

Estimated durations = Costs per solution =

2.0 2.0 2.0 2.0 2.0 2.0 2.0
1.5 1.5 1.0 1.0 1.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.5 1.5 1.5 1.5 1.5 1.5 1.5
2.0 2.0 2.0 2.0 2.0 2.0 2.0
2.5 2.5 2.5 2.5 2.5 2.5 2.5
3.0 3.0 3.0 3.0 3.0 3.0 3.0
3.5 3.0 3.0 3.0 3.0 3.0 3.0
2.0 2.0 2.0 2.0 2.0 2.0 2.0
5.0 5.0 5.0 4.5 4.0 3.5 3.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 2.0 2.0 2.0 2.0 2.0 2.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 2.5 5.0 7.5 10

The parameter duration.project=NULL means that we do not indicate a minimum duration of
the project, so the function asks us for a decrease of the duration of the project to obtain all possible
solutions. We have considered it convenient a decrease of 0.5 units of time. Therefore, we have
obtained that the project can reduce its minimum duration to 10, 9.5, 9, 8.5, 8, 7.5 and 7. For each
possible duration of the project, we have the durations of each activity (duration per column and
activity per row), as well as the cost needed to reduce their times to these durations.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 431

Suppose now that to complete the project each activity needs the amount of resources

(6, 6, 6, 3, 4, 2, 1, 2, 3, 1) ,

and we are interested in obtaining a new schedule with a uniform consumption of resources over time.
To do this we use the function levelling.resources in such a way

> resources<-c(6,6,6,3,4,2,1,2,3,1)
> levelling.resources(duration,prec1and2,prec3and4,resources,int=0.5)
Earliest start times =
[1] 3.5 0.0 2.0 2.0 6.5 3.0 5.5 1.5 8.5 5.5
Resources by period=
[1] 6 6 6 2 11 11 7 10 10 10 10 2 2 6 6 6 6 4 4 4 4

Figure 6: This graphic shows the resource consumption according to the initial scheduling (in black)
and according to the scheduling after leveling (in red). The x-axis represents time and the y-axis
represents resource consumption.

As we can see, the function returns the new earliest start times of the activities and the resources
consumed in each period with the new schedule, where time periods start at 0 and end at 10.5 with an
increase of 0.5 time units. Figure 6 represents the resources required in each period of time, before and
after the readjustment.

To conclude with the analysis of resources, consider that the maximum amount of resources
available in each period is 10. We use the resource.allocation function in this situation.

> max.resources<-10
> resource.allocation(duration,prec1and2,prec3and4,resources,
max.resources,int=0.5)
Project duration =
[1] 11
Earliest start times =
[1] 6.0 0.0 1.5 2.5 4.0 2.5 8.0 1.5 6.0 5.5
Resources by period =
[1] 6 6 6 8 8 7 7 7 8 8 6 5 10 10 10 10 2 2 2 2 2 1

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 432

With the new restriction, the minimum duration of the project becomes 11 instead of 10. The output
includes the new earliest start times for each activity and the consumption of resources by period
(note that the last period is now 11).

Continuing the example, we now analyse the allocation of delays. The function delay.pert shows
if there has been a delay in the project and, in that case, allocates it among the activities. Let us see it
using the delay cost function

C (D (G, y)) =
{

0 if D (G, y) ≤ 10.5,
D (G, y)− 10.5 otherwise,

and the (observed) actual durations

x = (2.5, 1.5, 2, 2, 2, 6, 4, 6, 3, 5.5) .

> observed.duration<-c(2.5,1.5,2,2,2,6,4,6,3,5.5)
> cost.function<-function(x){return(max(x-10.5,0))}
> delay.pert(duration,prec1and2,prec3and4,observed.duration,
delta=NULL,cost.function)
There has been a delay of = 3

1 2 3 4 5

The proportional payment 0.15000 0.00000 0.30000 0.15000 0.00000

The truncated proportional payment 0.15789 0.00000 0.31579 0.15789 0.00000

Shapley rule 0.00000 0.00000 0.33333 0.00000 0.00000

6 7 8 9 10

The proportional payment 1.05000 0.30000 0.60000 0.30000 0.15000

The truncated proportional payment 0.94737 0.31579 0.63158 0.31579 0.15789

Shapley rule 1.08333 0.00000 1.08333 0.00000 0.50000

The output shows that there is a delay in the project of 3 units. As there is a delay, we proceed to
make the allocation using three rules: proportional, truncated proportional and Shapley. We can see
the differences between the three rules, especially in activities 1, 4, 7 and 9. While the proportional and
truncated proportional rules assign a positive payment, the Shapley rule does not assign costs to these
activities. This is due to the fact that, although they fall behind the planned duration, they do not
affect the overall delay of the project. Note that if the project has more than ten activities, delay.pert
does not calculate the Shapley rule; instead, it asks the user if he wants to calculate an estimate of its
value.

Let us now assume that we are in a stochastic context, with additional information on planned
durations being random variables. Using the function stochastic.pert with the following random
variables to describe the duration of the activities

X0 = (t (1, 2, 3) , exp (2/3) , t (1/2, 5/4, 5/4) , t (1/4, 7/4, 5/2) , t (1, 2, 3) ,

t (1, 3/2, 5) , t (1, 1, 7) , t (3, 4, 5) , t (1/2, 5/2, 3) , t (1, 6, 8)) ,

where t (a, b, c) denotes the triangular distribution with parameters a, b, and c, and exp (α) denotes
the exponential distribution with parameter α, we can obtain relevant information about the project.
Note that with the argument plot.activities.times=c(7,8) we indicate the activities for which we
want to estimate the densities of their earliest and latest start and completion times; in this example
we have requested only such densities for activities 7 and 8.

> values<-matrix(c(1,3,2,2/3,0,0,1/2,5/4,5/4,1/4,5/2,7/4,1,3,2,1,5,3/2,
1,7,1,3,5,4,1/2,3,5/2,1,8,6),nrow=10,ncol=3,byrow=T)
> distribution<-c("TRIANGLE","EXPONENTIAL",rep("TRIANGLE",8))
> stochastic.pert(prec1and2,prec3and4,distribution,values,percentile=0.95,
plot.activities.times=c(7,8))
Average duration of the project = 10.64242
Percentile duration of the project = 14.21999

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 433

1 2 3 4 5 6 7 8 9 10

Criticality index by activity 0.6 88 11.4 2 0.1 11.3 2.6 86 4 93.4

In the output we can see the average duration of the project and the percentile duration of the
project. The percentile duration of the project shows the value of such that the probability that the
duration of the project is smaller than d equals the variable percentile introduced by the user (see Table
2); in this case percentile=0.95. In addition, we obtain the criticality index by activity, that is, the
proportion of times that an activity is critical. An activity is critical when it has zero slack. Figure 7
plots estimations of the density function of the project duration, the earliest start time and the latest
completion time of activities 7 and 8.

Figure 7: Density estimation of project duration time and earliest start and latest completion times for activities 7
and 8.

We proceed now to the allocation of the delay cost in the stochastic model using the function
delay.stochastic.pert. To be able to compare the results, we will use the same delay cost function
as in the deterministic case. As expected, there are noticeable differences in the allocations between
the two models, as the stochastic model makes use of more complex information.

> delay.stochastic.pert(prec1and2,prec3and4,distribution,values,
observed.duration,percentile=NULL,delta=NULL,cost.function)
Total delay of the stochastic project = 3

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 434

1 2 3 4 5

Stochastic Shapley rule 0.07238 -0.07569 0.56946 0.07440 0.07238

Stochastic Shapley rule 2 0.00693 0.03470 0.51967 0.01363 0.00731

The proportional payment 0.15000 0.00000 0.30000 0.15000 0.00000

The truncated proportional payment 0.15789 0.00000 0.31579 0.15789 0.00000

6 7 8 9 10

Stochastic Shapley rule 1.66514 0.08271 0.11897 0.07256 0.34769

Stochastic Shapley rule 2 1.62101 0.02287 0.25006 0.01046 0.51336

The proportional payment 1.05000 0.30000 0.60000 0.30000 0.15000

The truncated proportional payment 0.94737 0.31579 0.63158 0.31579 0.15789

Finally, to illustrate the runtime of previously used functions, Table 8 shows the time (in seconds)
needed to compute several problems. We have selected a variety of projects with 2, 4, 6, 8 and 10
activities, and we have run the different routines on a computer with Intel Core i5− 7200U and 12 GB
of RAM.

Activities 2 4 6 8 10

delay.pert 0.00 0.00 0.00 0.03 0.11
delay.stochastic.pert 0.06 0.44 1.68 6.23 30.58

early.time 0.00 0.00 0.00 0.00 0.00
last.time 0.00 0.00 0.00 0.00 0.00

levelling.resources 0.00 0.00 0.00 0.02 0.03
mce 0.00 0.00 0.00 0.00 0.02

organize 0.00 0.00 0.00 0.00 0.00
resources.allocation 0.00 0.00 0.00 0.01 0.02

schedule.pert 0.08 0.11 0.13 0.11 0.12
stochastic.pert 0.02 0.03 0.05 0.04 0.04

Table 8: Runtime in seconds of ProjectManagemet functions.

Acknowledgements

This work has been supported by the MINECO grant MTM2017-87197-C3-1-P and by the Xunta de
Galicia through the ERDF (Grupos de Referencia Competitiva ED431C-2016-015 and Centro Singular
de Investigación de Galicia ED431G/01). The comments of an anonymous reviewer have helped us to
improve this paper significantly.

Bibliography
G. Bergantiños, A. Valencia-Toledo, and J. Vidal-Puga. Hart and mas-colell consistency in pert problems.

Discrete Applied Mathematics, 243:11–20, 2018. URL https://doi.org/10.1016/j.dam.2017.08.012.
[p419, 422]

R. Brânzei, G. Ferrari, V. Fragnelli, and S. Tijs. Two approaches to the problem of sharing delay costs in
joint projects. Annals of Operations Research, 109(1):359–374, 2002. URL https://doi.org/10.1023/A:
1016372707256. [p419, 422]

S. Cano-Berlanga. GameTheory: Cooperative Game Theory, 2017. URL https://CRAN.R-project.org/
package=GameTheory. R package version 2.7. [p423]

R. Carnell. triangle: Provides the Standard Distribution Functions for the Triangle Distribution, 2019. URL
https://CRAN.R-project.org/package=triangle. R package version 0.12. [p423]

J. Castro, D. Gómez, and J. Tejada. A project game for pert networks. Operations Research Letters, 35(6):
791–798, 2007. URL https://doi.org/10.1016/j.orl.2007.01.003. [p419]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1016/j.dam.2017.08.012
https://doi.org/10.1023/A:1016372707256
https://doi.org/10.1023/A:1016372707256
https://CRAN.R-project.org/package=GameTheory
https://CRAN.R-project.org/package=GameTheory
https://CRAN.R-project.org/package=triangle
https://doi.org/10.1016/j.orl.2007.01.003


CONTRIBUTED RESEARCH ARTICLES 435

J. Castro, D. Gómez, and J. Tejada. Polynomial calculation of the shapley value based on sampling.
Computers and Operations Research, 36(5):1726–1730, 2009. URL https://doi.org/10.1016/j.cor.
2008.04.004. [p422]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p423]

I. V. Evdokimov, R. Y. Tsarev, T. N. Yamskikh, and A. N. Pupkov. Using pert and gantt charts for
planning software projects on the basis of distributed digital ecosystems. In Journal of Physics:
Conference Series, volume 1074, page 012127. IOP Publishing, 2018. URL https://doi.org/10.1088/
1742-6596/1074/1/012127. [p419]

J. C. Gonçalves-Dosantos, I. García-Jurado, and J. Costa. Sharing delay costs in stochastic scheduling
problems with delays. 4OR - A Quarterly Journal of Operations Research, 2020a. URL https://doi.
org/10.1007/s10288-019-00427-9. [p422]

J. C. Gonçalves-Dosantos, I. García-Jurado, and J. Costa. ProjectManagement: Management of Determinis-
tic and Stochastic Projects, 2020b. URL https://CRAN.R-project.org/package=ProjectManagement.
R package version 1.3.3. [p419]

M. Grabisch, I. Kojadinovic, and P. Meyer. kappalab: Non-Additive Measure and Integral Manipulation
Functions, 2015. URL https://CRAN.R-project.org/package=kappalab. R package version 0.4-7.
[p423]

G. Gregoriou, K. Kirytopoulos, and C. Kiriklidis. Project management educational software (promes).
Computer Applications in Engineering Education, 21(1):46–59, 2013. URL https://doi.org/10.1002/
cae.20450. [p419]

N. G. Hall. Project management: Recent developments and research opportunities. Journal of Systems
Science and Systems Engineering, 21(2):129–143, 2012. URL https://doi.org/10.1007/s11518-012-
5190-5. [p419]

T. Hegazy. Optimization of resource allocation and leveling using genetic algorithms. Journal of
construction engineering and management, 125(3):167–175, 1999. URL https://doi.org/10.1061/
(ASCE)0733-9364(1999)125:3(167). [p421]

F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. McGraw-Hill, 2001. ISBN
0072321695. [p419, 420]

D. Kelley. plan: Tools for Project Planning, 2018. URL https://CRAN.R-project.org/package=plan. R
package version 0.4-3. [p419]

J. E. Kelley. Critical-path planning and scheduling: Mathematical basis. Operations Research, 9(3):
296–320, 1961. URL https://doi.org/10.1287/opre.9.3.296. [p421]

lp_solve, K. Konis, and F. Schwendinger. lpSolveAPI: R Interface to lp_solve Version 5.5.2.0, 2020. URL
https://CRAN.R-project.org/package=lpSolveAPI. R package version 5.5.2.0-17.7. [p423]

S. Moretti and F. Patrone. Transversality of the shapley value. Top, 16(1):1–41, 2008. URL https:
//doi.org/10.1007/s11750-008-0044-5. [p422]

J. C. Muñoz. PlotPrjNetworks: Useful Networking Tools for Project Management, 2015. URL https:
//CRAN.R-project.org/package=PlotPrjNetworks. R package version 1.0.0. [p419]

L. Özdamar and G. Ulusoy. A survey on the resource-constrained project scheduling problem. IIE
transactions, 27(5):574–586, 1995. URL https://doi.org/10.1080/07408179508936773. [p419]

L. Salas-Morera, A. Arauzo-Azofra, L. García-Hernández, J. M. Palomo-Romero, and H.-M. César.
Ppcproject: An educational tool for software project management. Computers and Education, 69:
181–188, 2013. URL https://doi.org/10.1016/j.compedu.2013.07.018. [p419]

K. Schmitz, R. Mahapatra, and S. Nerur. User engagement in the era of hybrid agile methodology.
IEEE Software, 36(4):32–40, 2019. URL https://doi.org/10.1109/MS.2018.290100623. [p419]

L. S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):307–317, 1953.
URL https://doi.org/10.1016/j.compedu.2013.07.018. [p422]

C. Sievert. Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC,
2020. ISBN 9781138331457. URL https://plotly-r.com. [p423]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://doi.org/10.1016/j.cor.2008.04.004
https://doi.org/10.1016/j.cor.2008.04.004
http://igraph.org
https://doi.org/10.1088/1742-6596/1074/1/012127
https://doi.org/10.1088/1742-6596/1074/1/012127
https://doi.org/10.1007/s10288-019-00427-9
https://doi.org/10.1007/s10288-019-00427-9
https://CRAN.R-project.org/package=ProjectManagement
https://CRAN.R-project.org/package=kappalab
https://doi.org/10.1002/cae.20450
https://doi.org/10.1002/cae.20450
https://doi.org/10.1007/s11518-012-5190-5
https://doi.org/10.1007/s11518-012-5190-5
https://doi.org/10.1061/(ASCE)0733-9364(1999)125:3(167)
https://doi.org/10.1061/(ASCE)0733-9364(1999)125:3(167)
https://CRAN.R-project.org/package=plan
https://doi.org/10.1287/opre.9.3.296
https://CRAN.R-project.org/package=lpSolveAPI
https://doi.org/10.1007/s11750-008-0044-5
https://doi.org/10.1007/s11750-008-0044-5
https://CRAN.R-project.org/package=PlotPrjNetworks
https://CRAN.R-project.org/package=PlotPrjNetworks
https://doi.org/10.1080/07408179508936773
https://doi.org/10.1016/j.compedu.2013.07.018
https://doi.org/10.1109/MS.2018.290100623
https://doi.org/10.1016/j.compedu.2013.07.018
https://plotly-r.com


CONTRIBUTED RESEARCH ARTICLES 436

Juan Carlos Gonçalves-Dosantos
Grupo MODES, CITIC and Departamento de Matemáticas, Universidade da Coruña
Campus de Elviña, 15071 A Coruña
Spain
ORCID: 0000-0003-1578-8411
juan.carlos.goncalves@udc.es

Ignacio García-Jurado
Grupo MODES, CITIC and Departamento de Matemáticas, Universidade da Coruña
Campus de Elviña, 15071 A Coruña
Spain
ORCID: 0000-0002-6681-1629
ignacio.garcia.jurado@udc.es

Julian Costa
Grupo MODES, Departamento de Matemáticas, Universidade da Coruña
Campus de Elviña, 15071 A Coruña
Spain
ORCID: 0000-0001-9760-9581
julian.costa@udc.es

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:juan.carlos.goncalves@udc.es
mailto:ignacio.garcia.jurado@udc.es
mailto:julian.costa@udc.es


CONTRIBUTED RESEARCH ARTICLES 437

The Rockerverse: Packages and
Applications for Containerisation with R
by Daniel Nüst, Dirk Eddelbuettel, Dom Bennett, Robrecht Cannoodt, Dav Clark, Gergely Daróczi,
Mark Edmondson, Colin Fay, Ellis Hughes, Lars Kjeldgaard, Sean Lopp, Ben Marwick, Heather
Nolis, Jacqueline Nolis, Hong Ooi, Karthik Ram, Noam Ross, Lori Shepherd, Péter Sólymos, Tyson
Lee Swetnam, Nitesh Turaga, Charlotte Van Petegem, Jason Williams, Craig Willis, Nan Xiao

Abstract The Rocker Project provides widely used Docker images for R across different application
scenarios. This article surveys downstream projects that build upon the Rocker Project images and
presents the current state of R packages for managing Docker images and controlling containers. These
use cases cover diverse topics such as package development, reproducible research, collaborative work,
cloud-based data processing, and production deployment of services. The variety of applications
demonstrates the power of the Rocker Project specifically and containerisation in general. Across the
diverse ways to use containers, we identified common themes: reproducible environments, scalability
and efficiency, and portability across clouds. We conclude that the current growth and diversification
of use cases is likely to continue its positive impact, but see the need for consolidating the Rockerverse
ecosystem of packages, developing common practices for applications, and exploring alternative
containerisation software.

Introduction

The R community continues to grow. This can be seen in the number of new packages on CRAN, which
is still on growing exponentially (Hornik et al., 2019), but also in the numbers of conferences, open
educational resources, meetups, unconferences, and companies that are adopting R, as exemplified by
the useR! conference series1, the global growth of the R and R-Ladies user groups2, or the foundation
and impact of the R Consortium3. These trends cement the role of R as the lingua franca of statistics, data
visualisation, and computational research. The last few years, coinciding with the rise of R, have also
seen the rise of Docker as a general tool for distributing and deploying of server applications—in fact,
Docker can be called the lingua franca of describing computing environments and packaging software.
Combining both these topics, the Rocker Project (https://www.rocker-project.org/) provides Docker
images with R (see the next section for more details). The considerable uptake and continued evolution
of the Rocker Project has led to numerous projects that extend or build upon Rocker images, ranging
from reproducible4 research to production deployments. As such, this article presents what we
may call the Rockerverse of projects across all development stages: early demonstrations, working
prototypes, and mature products. We also introduce related activities that connect the R language and
environment with other containerisation solutions. Our main contribution is a coherent picture of the
current status of using containers in, with, and for R.

The article continues with a brief introduction of containerisation basics and the Rocker Project,
followed by use cases and applications, starting with the R packages specifically for interacting with
Docker, next the second-level packages that use containers indirectly or only for specific features, and
finally some complex use cases that leverage containers. We conclude by reflecting on the landscape
of packages and applications and point out future directions of development.

Containerisation and Rocker

Docker, an application and service provided by the eponymous company, has, in just a few short
years, risen to prominence for developing, testing, deploying and distributing computer software (cf.
Datadog, 2018; Muñoz, 2019). While related approaches exist, such as LXC5 or Singularity (Kurtzer
et al., 2017), Docker has become synonymous with “containerisation”—the method of taking software
artefacts and bundling them in such a way that use becomes standardized and portable across
operating systems. In doing so, Docker had recognised and validated the importance of one very

1https://www.r-project.org/conferences/
2https://www.r-consortium.org/blog/2019/09/09/r-community-explorer-r-user-groups, https://www.r-

consortium.org/blog/2019/08/12/r-community-explorer
3https://www.r-consortium.org/news/announcements, https://www.r-consortium.org/blog/2019/11/14/data-

driven-tracking-and-discovery-of-r-consortium-activities
4"Reproducible" in the sense of the Claerbout/Donoho/Peng terminology (Barba, 2018).
5https://en.wikipedia.org/wiki/LXC

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://en.wikipedia.org/wiki/Docker_(software)
https://www.rocker-project.org/
https://www.r-project.org/conferences/
https://www.r-consortium.org/blog/2019/09/09/r-community-explorer-r-user-groups
https://www.r-consortium.org/blog/2019/08/12/r-community-explorer
https://www.r-consortium.org/blog/2019/08/12/r-community-explorer
https://www.r-consortium.org/news/announcements
https://www.r-consortium.org/blog/2019/11/14/data-driven-tracking-and-discovery-of-r-consortium-activities
https://www.r-consortium.org/blog/2019/11/14/data-driven-tracking-and-discovery-of-r-consortium-activities
https://en.wikipedia.org/wiki/LXC


CONTRIBUTED RESEARCH ARTICLES 438

important thread that had been emerging, namely virtualisation. By allowing (one or possibly) multiple
applications or services to run concurrently on one host machine without any fear of interference
between them, Docker provides an important scalability opportunity. Beyond this though, Docker
has improved this compartmentalisation by accessing the host system—generally Linux—through
a much thinner and smaller shim than a full operating system emulation or virtualisation. This
containerisation, also called operating-system-level virtualisation (Wikipedia contributors, 2020b),
makes efficient use of operating system resources (Felter et al., 2015) and allows another order of
magnitude in terms of scalability of deployment (cf. Datadog, 2018), because virtualisation may
emulate a whole operating system, a container typically runs only one process. The single process
together with sharing the host’s kernel results in a reduced footprint and faster start times. While
Docker makes use of Linux kernel features, it has become important enough that some required
aspects of running Docker have been added to other operating systems so that those systems can
more efficiently support Docker (Microsoft, 2019b). The success of Docker has even paved the way for
industry collaboration and standardisation (OCI, 2019).

The key accomplishment of Docker as an “application” is to make a “bundled” aggregation of
software, the so-called “image”, available to any system equipped to run Docker, without requiring
much else from the host besides the actual Docker application installation. This is a rather attractive
proposition, and Docker’s very easy to operate user interface has led to widespread adoption and use
of Docker in a variety of domains, e.g., cloud computing infrastructure (e.g., Bernstein, 2014), data
science (e.g., Boettiger, 2015), and edge computing (e.g., Alam et al., 2018). It has also proven to be a
natural match for “cloud deployment” which runs, or at least appears to run, “seamlessly” without
much explicit reference to the underlying machine, architecture or operating system: Containers are
portable and can be deployed with very little dependencies on the host system—only the container
runtime is required. These Docker images are normally built from plain text documents called
Dockerfiles; a Dockerfile has a specific set of instructions to create and document a well-defined
environment, i.e., install specific software and expose specific ports.

For statistical computing and analysis centred around R, the Rocker Project has provided a variety
of Docker containers since it began in 2014 (Boettiger and Eddelbuettel, 2017). The Rocker Project pro-
vides several lines of containers spanning from building blocks with R-release or R-devel, via contain-
ers with RStudio Server and Shiny Server, to domain-specific containers such as rocker/geospatial
(Boettiger et al., 2019). These containers form image stacks, building on top of each other for easier
maintainability (i.e., smaller Dockerfiles), better composability, and to reduce build time. Also of note
is a series of “versioned” containers which match the R release they contain with the then-current set of
packages via the MRAN Snapshot views of CRAN (Microsoft, 2019a). The Rocker Project’s impact and
importance was acknowledged by the Chan Zuckerberg Initiative’s Essential Open Source Software for
Science, which provides funding for the project’s sustainable maintenance, community growth, and
targeting new hardware platforms including GPUs (Chan Zuckerberg Initiative et al., 2019).

Docker is not the only containerisation software. Singularity stems from the domain of high-
performance computing (Kurtzer et al., 2017) and can also run Docker images. Rocker images work
out of the box if the main process is R, e.g., in rocker/r-base, but Singularity does not succeed in
running images where there is an init script, e.g., in containers that by default run RStudio Server. In
the latter case, a Singularity file, a recipe akin to a Dockerfile, needs to be used to make necessary
adjustments. To date, no comparable image stack to the Rocker Project’s images exists on Singularity
Hub. A further tool for running containers is podman, which can also build Dockerfiles and run
Docker images. Proof of concepts exists for using podman to build and run Rocker containers6, but
the prevalence of Docker, especially in the broader user community beyond experts or niche systems
and the vast amount of blog posts and courses for Docker currently cap specific development efforts
for both Singularity and podman in the R community. This might quickly change if the usability
and spread of Singularity or podman increase, or if security features such as rootless/unprivileged
containers, which both these tools support out of the box, become more sought after.

Interfaces for Docker in R

Users interact with the Docker daemon typically through the Docker Command Line Interface (Docker
CLI). However, moving back and forth between an R console and the command line can create friction
in workflows and reduce reproducibility because of manual steps. A number of first-order R packages
provide an interface to the Docker CLI, allowing for the interaction with the Docker CLI from an
R console. Table 1 gives an overview of packages with client functionality, each of which provides
functions for interacting with the Docker daemon. The packages focus on different aspects and support
different stages of a container’s life cycle. As such, the choice of which package is most useful depends

6See https://github.com/nuest/rodman and https://github.com/rocker-org/rocker-versioned/issues/187

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://rstudio.com/products/rstudio/
https://rstudio.com/products/shiny/shiny-server/
https://github.com/rocker-org/geospatial
https://singularity-hub.org/
https://singularity-hub.org/
https://github.com/containers/libpod
https://docs.docker.com/engine/reference/commandline/cli/
https://github.com/nuest/rodman
https://github.com/rocker-org/rocker-versioned/issues/187


CONTRIBUTED RESEARCH ARTICLES 439

Functionality

A
zureC

ontainers

babelw
hale

dockerm
achine

dockyard

googleC
loudR

unner

harbor

stevedore

Generate a Dockerfile X
Build an image X X X
Execute a container locally or remotely X X X X X X X
Deploy or manage instances in the cloud X X X X X
Interact with an instance (e.g., file transfer) X X X
Manage storage of images X X
Supports Docker and Singularity X
Direct access to Docker API instead of using the CLI X
Installing Docker software X

Table 1: R packages with Docker client functionality.

on the use case at hand as well as on the user’s level of expertise.

harbor (https://github.com/wch/harbor) is no longer actively maintained, but it should be hon-
ourably mentioned as the first R package for managing Docker images and containers. It uses the sys
package (Ooms, 2019) to run system commands against the Docker CLI, both locally and through an
SSH connection, and it has convenience functions, e.g., for listing and removing containers/images
and for accessing logs. The outputs of container executions are converted to appropriate R types.
The Docker CLI’s basic functionality, although it evolves quickly and with little concern for avoiding
breaking changes, has remained unchanged in core functions, meaning that a core function such as
harbor::docker_run(image = "hello-world") still works despite its stopped development.

stevedore is currently the most powerful Docker client in R (FitzJohn, 2020). It interfaces with the
Docker daemon over the Docker HTTP API7 via a Unix socket on Linux or MacOS, over a named pipe
on Windows, or over an HTTP/TCP connection. The package is the only one not using system calls to
the docker CLI tool for managing images and containers. The package thereby enables connections to
remote Docker instances without direct configuration of the local Docker daemon. Furthermore using
the API gives access to information in a structured way, is system independent, and is likely more
reliable than parsing command line output. stevedore’s own interface is automatically generated
based on the OpenAPI specification of the Docker daemon, but it is still similar to the Docker CLI.
The interface is similar to R6 objects, in that an object of class "stevedore_object" has a number of
functions attached to it that can be called, and multiple specific versions of the Docker API can be
supported thanks to the automatic generation8.

AzureContainers is an interface to a number of container-related services in Microsoft’s Azure
Cloud (Ooi, 2019). While it is mainly intended for working with Azure, as a convenience feature it
includes lightweight, cross-platform shells to Docker and Kubernetes (tools kubectl and helm). These
can be used to create and manage arbitrary Docker images and containers, as well as Kubernetes
clusters on any platform or cloud service.

googleCloudRunner is an interface with Google Cloud Platform container-related services, with
tools to make it easier for R users to interact with them for common use cases (Edmondson, 2020). It
includes deployment functions for creating R APIs using the Docker-based Cloud Run service. Users
can create long running batch jobs calling any Docker image including Rocker via Cloud Build and
schedule services using Cloud Scheduler.

babelwhale provides a unified interface to interact with Docker and Singularity containers (Can-
noodt and Saelens, 2019). Users can, for example, execute a command inside a container, mount a
volume, or copy a file with the same R commands for both container runtimes.

7https://docs.docker.com/engine/api/latest/
8See https://github.com/richfitz/stevedore/blob/master/development.md.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/wch/harbor
https://CRAN.R-project.org/package=sys
https://CRAN.R-project.org/package=stevedore
https://CRAN.R-project.org/package=AzureContainers
https://azure.microsoft.com/
https://azure.microsoft.com/
https://CRAN.R-project.org/package=googleCloudRunner
https://cloud.google.com/
https://cloud.run
https://cloud.google.com/cloud-build/
https://cloud.google.com/scheduler/
https://CRAN.R-project.org/package=babelwhale
https://docs.docker.com/engine/api/latest/
https://github.com/richfitz/stevedore/blob/master/development.md


CONTRIBUTED RESEARCH ARTICLES 440

dockyard (https://github.com/thebioengineer/dockyard) has the goal of lowering the barrier
to creating Dockerfiles, building Docker images, and deploying Docker containers. The package
follows the increasingly used piping paradigm of the Tidyverse-style (Wickham et al., 2019) of program-
ming for chaining R functions representing the instructions in a Dockerfile. An existing Dockerfile
can be used as a template. dockyard also includes wrappers for common steps, such as installing
an R package or copying files, and provides built-in functions for building an image and running a
container, which make Docker more approachable within a single R-based user interface.

dockermachine (https://github.com/cboettig/dockermachine) is an R package to provide a
convenient interface to Docker Machine from R. The CLI tool docker-machine allows users to create
and manage a virtual host on local computers, local data centres, or at cloud providers. A local Docker
installation can be configured to transparently forward all commands issued on the local Docker CLI
to a selected (remote) virtual host. Docker Machine was especially crucial for local use in the early
days of Docker, when no native support was available for Mac or Windows computers, but it remains
relevant for provisioning on remote systems. The package has not received any updates for two
years, but it is functional with a current version of docker-machine (0.16.2). It potentially lowers the
barriers for R users to run containers on various hosts if they perceive that using the Docker Machine
CLI directly as a barrier and it enables scripted workflows with remote processing.

Use cases and applications

Image stacks for communities of practice

Bioconductor (https://bioconductor.org/) is an open-source, open development project for the
analysis and comprehension of genomic data (Gentleman et al., 2004). As of October 30th 2019, the
project consists of 1823 R software packages, as well as packages containing annotation or experiment
data. Bioconductor has a semi-annual release cycle, where each release is associated with a particular
version of R, and Docker images are provided for current and past versions of Bioconductor for
convenience and reproducibility. All images, which are described on the Bioconductor web site (see
https://bioconductor.org/help/docker/), are created with Dockerfiles maintained on GitHub
and distributed through Docker Hub9. Bioconductor’s “base” Docker images are built on top of the
rocker/rstudio image. Bioconductor installs packages based on the R version in combination with the
Bioconductor version and, therefore, uses Bioconductor version tagging devel and RELEASE_X_Y, e.g.,
RELEASE_3_10. Past and current combinations of R and Bioconductor will therefore be accessible via
specific image tags.

The Bioconductor Dockerfile selects the desired R version from Rocker images, adds required
system dependencies, and uses the BiocManager package for installing appropriate versions of Bio-
conductor packages (Morgan, 2019). A strength of this approach is that the responsibility for complex
software configuration and customization is shifted from the user to the experienced Bioconductor core
team. However, a recent audit of the Bioconductor image stack Dockerfile led to the deprecation of
several community-maintained images, because the numerous specific images became too hard to
understand, complex to maintain, and cumbersome to customise. As part of the simplification, a recent
innovation is the bioconductor_docker:devel image, which emulates the Bioconductor environment
for nightly builds as closely as possible. This image contains the environment variables and the system
dependencies needed to install and check almost all Bioconductor software packages (1813 out of 1823).
It saves users and package developers from creating this environment themselves. Furthermore, the
image is configured so that .libPaths() has ‘/usr/local/lib/R/host-site-library’ as the first loca-
tion. Users mounting a location on the host file system to this location can persistently manage installed
packages across Docker containers or image updates. Many R users pursue flexible workflows tailored
to particular analysis needs rather than standardized workflows. The new bioconductor_docker
image is well suited for this preference, while bioconductor_docker:devel provides developers with
a test environment close to Bioconductor’s build system.

Data science is a widely discussed topic in all academic disciplines (e.g., Donoho, 2017). These
discussions have shed light on the tools and craftspersonship behind the analysis of data with
computational methods. The practice of data science often involves combining tools and software
stacks and requires a cross-cutting skillset. This complexity and an inherent concern for openness and
reproducibility in the data science community has led to Docker being used widely. The remainder of
this section presents example Docker images and image stacks featuring R intended for data science.

• The Jupyter Docker Stacks project is a set of ready-to-run Docker images containing Jupyter
applications and interactive computing tools (Jupyter, 2018). The jupyter/r-notebook image

9See https://github.com/Bioconductor/bioconductor_docker and https://hub.docker.com/u/bioconductor
respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/thebioengineer/dockyard
https://github.com/cboettig/dockermachine
https://docs.docker.com/machine/overview/
https://bioconductor.org/
https://bioconductor.org/help/docker/
https://CRAN.R-project.org/package=BiocManager
https://github.com/jupyter/docker-stacks/
https://github.com/Bioconductor/bioconductor_docker
https://hub.docker.com/u/bioconductor


CONTRIBUTED RESEARCH ARTICLES 441

includes R and “popular packages”, and naturally also the IRKernel (https://irkernel.github.
io/), an R kernel for Jupyter, so that Jupyter Notebooks can contain R code cells. R is also
included in the catchall jupyter/datascience-notebook image10. For example, these images
allow users to quickly start a Jupyter Notebook server locally or build their own specialised
images on top of stable toolsets. R is installed using the Conda package manager11, which can
manage environments for various programming languages, pinning both the R version and the
versions of R packages12.

• Kaggle provides the gcr.io/kaggle-images/rstats image (previously kaggle/rstats) and cor-
responding Dockerfile for usage in their Machine Learning competitions and easy access to
the associated datasets. It includes machine learning libraries such as Tensorflow and Keras
(see also image rocker/ml in Section Common or public work environments), and it also
configures the reticulate package (Ushey et al., 2019). The image uses a base image with all pack-
ages from CRAN, gcr.io/kaggle-images/rcran, which requires a Google Cloud Build because
Docker Hub would time out13. The final extracted image size is over 25 GB, which calls into
question whether having everything available is actually convenient.

• The Radiant project provides several images, e.g., vnijs/rsm-msba-spark, for their browser-
based business analytics interface based on Shiny (Chang et al., 2019), and for use in education
as part of an MSc course14. As data science often applies a multitude of tools, this image favours
inclusion over selection and features Python, Postgres, JupyterLab and Visual Studio Code
besides R and RStudio, bringing the image size up to 9 GB.

• Gigantum (http://gigantum.com/) is a platform for open and decentralized data science with a
focus on using automation and user-friendly tools for easy sharing of reproducible computa-
tional workflows. Gigantum builds on the Gigantum Client (running either locally or on a remote
server) for development and execution of data-focused Projects, which can be stored and shared
via the Gigantum Hub or via a zipfile export. The Client is a user-friendly interface to a backend
using Docker containers to package, build, and run Gigantum projects. It is configured to use a
default set of Docker base images (https://github.com/gigantum/base-images), and users are
able to define and configure their own custom images. The available images include two with R
based on Ubuntu Linux and these have the c2d4u CRAN PPA pre-configured for installation of
binary R packages15. The R images vary in the included authoring environment, i.e., Jupyter
in r-tidyverse or both Jupyter & RStudio in rstudio-server. The independent image stack
can be traced back to the Gigantum environment and its features. The R images are based on
Gigantum’s python3-minimal image, originally to keep the existing front-end configuration, but
also to provide consistent Python-to-R interoperability. The Dockerfiles also use build args to
specify bases, for example for different versions of NVIDIA CUDA for GPU processing16, so that
appropriate GPU drivers can be enabled automatically when supported. Furthermore, Gigan-
tum’s focus lies on environment management via GUI and ensuring a smooth user interaction,
e.g., with reliable and easy conflict detection and resolution. For this reason, project repositories
store authoritative package information in a separate file per package, allowing Git to directly
detect conflicts and changes. A Dockerfile is generated from this description that inherits from
the specified base image, and additional custom Docker instructions may be appended by users,
though Gigantum’s default base images do not currently include the littler tool, which is
used by Rocker to install packages within Dockerfiles. Because of these specifics, instructions
from rocker/r-ubuntu could not be readily re-used in this image stack (see Section Conclu-
sions). Both approaches enable the apt package manager (Wikipedia contributors, 2020a) as an
installation method, and this is exposed via the GUI-based environment management17. The
image build and publication process is scripted with Python and JSON template configuration
files, unlike Rocker images which rely on plain Dockerfiles. A further reason in the creation of
an independent image stack were project constraints requiring a Rocker-incompatible licensing
of the Dockerfiles, i.e., the MIT License.

10https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
11https://conda.io/
12See jupyter/datascience-notebook’s Dockerfile at https://github.com/jupyter/docker-

stacks/blob/master/datascience-notebook/Dockerfile#L47.
13Originally, a stacked collection of over 20 images with automated builds on Docker Hub was used,

see https://web.archive.org/web/20190606043353/http://blog.kaggle.com/2016/02/05/how-to-get-started-
with-data-science-in-containers/ and https://hub.docker.com/r/kaggle/rcran/dockerfile

14‘Dockerfile‘ available on GitHub: https://github.com/radiant-rstats/docker.
15https://docs.gigantum.com/docs/using-r
16See https://github.com/gigantum/base-images/blob/master/_templates/python3-minimal-

template/Dockerfile for the Dockerfile of python3-minimal.
17See https://docs.gigantum.com/docs/environment-management

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://irkernel.github.io/
https://irkernel.github.io/
https://hub.docker.com/r/kaggle/rstats
https://github.com/Kaggle/docker-rstats
https://github.com/Kaggle/docker-rstats
https://CRAN.R-project.org/package=reticulate
https://radiant-rstats.github.io/docs/
https://hub.docker.com/r/vnijs/rsm-msba-spark
https://CRAN.R-project.org/package=Shiny
http://gigantum.com/
https://github.com/gigantum/base-images
https://launchpad.net/~marutter/+archive/ubuntu/c2d4u3.5/
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html
https://conda.io/
https://github.com/jupyter/docker-stacks/blob/master/datascience-notebook/Dockerfile#L47
https://github.com/jupyter/docker-stacks/blob/master/datascience-notebook/Dockerfile#L47
https://web.archive.org/web/20190606043353/http://blog.kaggle.com/2016/02/05/how-to-get-started-with-data-science-in-containers/
https://web.archive.org/web/20190606043353/http://blog.kaggle.com/2016/02/05/how-to-get-started-with-data-science-in-containers/
https://hub.docker.com/r/kaggle/rcran/dockerfile
https://github.com/radiant-rstats/docker
https://docs.gigantum.com/docs/using-r
https://github.com/gigantum/base-images/blob/master/_templates/python3-minimal-template/Dockerfile
https://github.com/gigantum/base-images/blob/master/_templates/python3-minimal-template/Dockerfile
https://docs.gigantum.com/docs/environment-management


CONTRIBUTED RESEARCH ARTICLES 442

Capture and create environments

Community-maintained images provide a solid basis so users can meet their own individual require-
ments. Several second-order R packages attempt to streamline the process of creating Docker images
and using containers for specific tasks, such as running tests or rendering reproducible reports. While
authoring and managing an environment with Docker by hand is possible and feasible for experts18,
the following examples show that when environments become too cumbersome to create manually,
automation is a powerful tool. In particular, the practice of version pinning, with system package
managers for different operating systems and with packages remotes and versions or by using MRAN
for R, can greatly increase the reproducibility of built images and are common approaches.

dockerfiler is an R package designed for building Dockerfiles straight from R (Fay, 2019). A
scripted creation of a Dockerfile enables iteration and automation, for example for packaging appli-
cations for deployment (see Deployment and continuous delivery). Developers can retrieve system
requirements and package dependencies to write a Dockerfile, for example, by leveraging the tools
available in R to parse a DESCRIPTION file.

containerit (https://github.com/o2r-project/containerit/) attempts to take this one step fur-
ther and includes these tools to automatically create a Dockerfile that can execute a given workflow
(Nüst and Hinz, 2019). containerit accepts an R object of classes "sessionInfo" or "session_info"
as input and provides helper functions to derive these from workflows, e.g., an R script or R Mark-
down document, by analysing the session state at the end of the workflow. It relies on the sysreqs
(https://github.com/r-hub/sysreqs/) package and it’s mapping of package system dependencies
to platform-specific installation package names19. containerit uses stevedore to streamline the user
interaction and improve the created Dockerfiles, e.g., by running a container for the desired base
image to extract the already available R packages.

dockr is a similar package focusing on the generation of Docker images for R packages, in which
the package itself and all of the R dependencies, including local non-CRAN packages, are available
(Kjeldgaard, 2019a,b). dockr facilitates the organisation of code in the R package structure and the
resulting Docker image mirrors the package versions of the current R session. Users can manually add
statements for non-R dependencies to the Dockerfile.

liftr (Xiao, 2019) aims to solve the problem of persistent reproducible reporting in statistical
computing based on the R Markdown format (Xie et al., 2018). The irreproducibility of authoring
environments can become an issue for collaborative documents and large-scale platforms for pro-
cessing documents. liftr makes the dynamic R Markdown document the main and sole workflow
control file and the only file that needs to be shared between collaborators for consistent environments,
e.g. demonstrated in the DockFlow project (https://dockflow.org). It introduces new fields to the
document header, allowing users to manually declare the versioned dependencies required for ren-
dering the document. The package then generates a Dockerfile from this metadata and provides a
utility function to render the document inside a Docker container, i.e., render_docker("foo.Rmd").
An RStudio addin even allows compilation of documents with the single push of a button.

System dependencies are the domain of Docker, but for a full description of the computing
environment, one must also manage the R version and the R packages. R versions are available via the
versioned Rocker image stack (Boettiger and Eddelbuettel, 2017). r-online leverages these images and
provides an app for helping users to detect breaking changes between different R versions and for
historic exploration of R. With a standalone NodeJS app or r-online, the user can compare a piece of
code run in two separate versions of R. Internally, r-online opens one or two Docker instances with the
given version of R based on Rocker images, executes a given piece of code, and returns the result to
the user. Regarding R package management, this can be achieved with MRAN, or with packages such
as checkpoint (Ooi et al., 2020) and renv (Ushey, 2020), which can naturally be applied within images
and containers. For example, renv helps users to manage the state of the R library in a reproducible
way, further providing isolation and portability. While renv does not cover system dependencies,
the renv-based environment can be transferred into a container either by restoring the environment
based on the main configuration file renv.lock or by storing the renv-cache on the host and not in the
container (Ushey, 2019). With both the system dependencies and R packages consciously managed
in a Docker image, users can start using containers as the only environment for their workflows,
which allows them to work independently of physical computers20 and to assert a specific degree of
confidence in the stability of a developed software (cf. README.Rmd in Marwick, 2017).

18See, e.g., this tutorial by RStudio on how to manage environments and package versions and to ensure
deterministic image builds with Docker: https://environments.rstudio.com/docker.

19See https://sysreqs.r-hub.io/.
20Allowing them to be digital "nomads", cf. J. Bryan’s https://github.com/jennybc/docker-why.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dockerfiler
https://github.com/o2r-project/containerit/
https://github.com/r-hub/sysreqs/
https://CRAN.R-project.org/package=dockr
https://CRAN.R-project.org/package=liftr
https://dockflow.org
https://github.com/ColinFay/ronline
https://srv.colinfay.me/r-online
https://CRAN.R-project.org/package=checkpoint
https://CRAN.R-project.org/package=renv
https://environments.rstudio.com/docker
https://sysreqs.r-hub.io/
https://github.com/jennybc/docker-why


CONTRIBUTED RESEARCH ARTICLES 443

Development, debugging, and testing

Containers can also serve as playgrounds and provide specific or ad hoc environments for the purposes
of developing R packages. These environments may have specific versions of R, of R extension
packages, and of system libraries used by R extension packages, and all of the above in a specific
combination.

First, such containers can greatly facilitate fixing bugs and code evaluation, because developers
and users can readily start a container to investigate a bug report or try out a piece of software
(cf. Ooms, 2017). The container can later be discarded and does not affect their regular system.
Using the Rocker images with RStudio, these disposable environments lack no development comfort
(cf. Section Packaging research reproducibly). Ooms (2017) describes how docker exec can be used
to get a root shell in a container for customisation during software evaluation without writing a
Dockerfile. Eddelbuettel and Koenker (2019) describes an example of how a Docker container was
used to debug an issue with a package only occurring with a particular version of Fortran, and using
tools which are not readily available on all platforms (e.g., not on macOS).

Second, the strong integration of system libraries in core packages in the R-spatial community
makes containers essential for stable and proactive development of common classes for geospatial data
modelling and analysis. For example, GDAL (GDAL/OGR contributors, 2019) is a crucial library in
the geospatial domain. GDAL is a system dependency allowing R packages such as sf, which provides
the core data model for geospatial vector data, or rgdal, to accommodate users to be able to read and
write hundreds of different spatial raster and vector formats (Pebesma, 2018; Bivand et al., 2019). sf
and rgdal have hundreds of indirect reverse imports and dependencies and, therefore, the maintainers
spend a lot of effort trying not to break them. Purpose-built Docker images are used to prepare for
upcoming releases of system libraries, individual bug reports, and for the lowest supported versions
of system libraries21.

Third, special-purpose images exist for identifying problems beyond the mere R code, such as
debugging R memory problems. These images significantly reduce the barriers to following complex
steps for fixing memory allocation bugs (cf. Section 4.3 in R Core Team, 1999). These problems are hard
to debug and critical, because when they do occur they lead to fatal crashes. rocker/r-devel-san
and rocker/r-devel-ubsan-clang are Docker images that have a particularly configured version
of R to trace such problems with gcc and clang compilers, respectively (cf. sanitizers for examples,
Eddelbuettel, 2014). wch/r-debug is a purpose-built Docker image with multiple instrumented builds
of R, each with a different diagnostic utility activated.

Fourth, containers are useful for testing R code during development. To submit a package to
CRAN, an R package must work with the development version of R, which must be compiled locally;
this can be a challenge for some users. The R-hub project provides “a collection of services to help R
package development”, with the package builder as the most prominent one (R-hub project, 2019). R-hub
makes it easy to ensure that no errors occur, but fixing errors still often warrants a local setup, e.g.,
using the image rocker/r-devel, as is testing packages with native code, which can make the process
more complex (cf. Eckert, 2018). The R-hub Docker images can also be used to debug problems locally
using various combinations of Linux platforms, R versions, and compilers22. The images go beyond
the configurations, or flavours, used by CRAN for checking packages23, e.g., with CentOS-based images,
but they lack a container for checking on Windows or OS X. The images greatly support package
developers to provide support on operating systems with which they are not familiar. The package
dockertest (https://github.com/traitecoevo/dockertest/) is a proof of concept for automatically
generating Dockerfiles and building images specifically to run tests24. These images are accompanied
by a special launch script so the tested source code is not stored in the image; instead, the currently
checked in version from a local Git repository is cloned into the container at runtime. This approach
separates the test environment, test code, and current working copy of the code. Another use case
where a container can help to standardise tests across operating systems is detailed the vignettes of
the package RSelenium (Harrison, 2019). The package recommends Docker for running the Selenium
Server application needed to execute test suites on browser-based user interfaces and webpages, but it
requires users to manually manage the containers.

Fifth, Docker images can be used on continuous integration (CI) platforms to streamline the
testing of packages. Ye (2019) describes how they speed up the process of testing by running tasks on
Travis CI within a container using docker exec, e.g., the package check or rendering of documentation.
Cardozo (2018) also saved time with Travis CI by re-using the testing image as the basis for an image

21Cf. https://github.com/r-spatial/sf/tree/master/inst/docker, https://github.com/Nowosad/rspatial_proj6,
and https://github.com/r-spatial/sf/issues/1231

22See https://r-hub.github.io/rhub/articles/local-debugging.html and https://blog.r-hub.io/2019/04/25/r-
devel-linux-x86-64-debian-clang/

23https://cran.r-project.org/web/checks/check_flavors.html
24dockertest is not actively maintained, but mentioned still because of its interesting approach.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://www.r-spatial.org/
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=rgdal
https://github.com/rocker-org/r-devel-san
https://github.com/rocker-org/r-devel-san-clang
https://CRAN.R-project.org/package=sanitizers
https://github.com/wch/r-debug
https://github.com/traitecoevo/dockertest/
https://CRAN.R-project.org/package=RSelenium
https://selenium.dev/
https://travis-ci.org/
https://github.com/r-spatial/sf/tree/master/inst/docker
https://github.com/Nowosad/rspatial_proj6
https://github.com/r-spatial/sf/issues/1231
https://r-hub.github.io/rhub/articles/local-debugging.html
https://blog.r-hub.io/2019/04/25/r-devel-linux-x86-64-debian-clang/
https://blog.r-hub.io/2019/04/25/r-devel-linux-x86-64-debian-clang/
https://cran.r-project.org/web/checks/check_flavors.html


CONTRIBUTED RESEARCH ARTICLES 444

intended for publication on Docker Hub. r-ci is, in turn, used with GitLab CI, which itself is built on
top of Docker images: the user specifies a base Docker image and control code, and the whole set of
tests is run inside a container. The r-ci image stack combines rocker versioning and a series of tools
specifically designed for testing in a fixed environment with a customized list of preinstalled packages.
Especially for long-running tests or complex system dependencies, these approaches to separate
installation of build dependencies with code testing streamline the development process. Containers
can also simplify the integration of R software into larger, multi-language CI pipelines. Furthermore,
with each change, even this manuscript is rendered into a PDF and deployed to a GitHub-hosted
website (see .travis.yml and Dockerfile in the manuscript repository), not because of concern about
time, but to control the environment used on a CI server. This gives, on the one hand, easy access after
every update of the R Markdown source code and, on the other hand, a second controlled environment
to make sure that the article renders successfully and correctly.

Processing

The portability of containerised environments becomes particularly useful for improving expensive
processing of data or shipping complex processing pipelines. First, it is possible to offload complex
processing to a server or clouds and also to execute processes in parallel to speed up or to serve
many users. batchtools provides a parallel implementation of the Map function for various schedulers
(Lang et al., 2017). For example, the package can schedule jobs with Docker Swarm. googleCom-
puteEngineR has the function gce_vm_cluster() to create clusters of 2 or more virtual machines,
running multi-CPU architectures (Edmondson, 2019). Instead of running a local R script with the
local CPU and RAM restrictions, the same code can be processed on all CPU threads of the cluster of
machines in the cloud, all running a Docker container with the same R environments. googleCom-
puteEngineR integrates with the R parallelisation package future (Bengtsson, 2020a) to enable this
with only a few lines of R code25. Google Cloud Run is a CaaS (Containers as a Service) platform. Users
can launch containers using any Docker image without worrying about underlying infrastructure in
a so-called serverless configuration. The service takes care of network ingress, scaling machines up
and down, authentication, and authorisation—all features which are non-trivial for a developer to
build and maintain on their own. This can be used to scale up R code to millions of instances if need
be with little or no changes to existing code, as demonstrated by the proof of concept cloudRunR26,
which uses Cloud Run to create a scalable R-based API using plumber (Trestle Technology, LLC,
2018). Google Cloud Build and the Google Container Registry are a continuous integration service
and an image registry, respectively, that offload building of images to the cloud, while serving the
needs of commercial environments such as private Docker images or image stacks. As Google Cloud
Build itself can run any container, the package googleCloudRunner demonstrates how R can be used
as the control language for one-time or batch processing jobs and scheduling of jobs27. drake is a
workflow manager for data science projects (Landau, 2018). It features implicit parallel computing and
automated detection of the parts of the work that actually needs to be re-executed. drake has been
demonstrated to run inside containers for high reproducibility28. Furthermore, drake workflows have
been shown to use future package’s function makeClusterPSOCK() for sending parts of the workflow
to a Docker image for execution29 (see package’s function documentation; Bengtsson, 2020b). In the
latter case, the container control code must be written by the user, and the future package ensures
that the host and worker can connect for communicating over socket connections. RStudio Server
Pro includes a functionality called Launcher (since version 1.2, released in 2019). It gives users the
ability to spawn R sessions and background/batch jobs in a scalable way on external clusters, e.g.,
Kubernetes based on Docker images or Slurm clusters, and optionally, with Singularity containers.
A benefit of the proprietary Launcher software is the ability for R and Python users to leverage
containerisation’s advantages in RStudio without writing specific deployment scripts or learning
about Docker or managing clusters at all.

Second, containers are perfectly suited for packaging and executing software pipelines and
required data. Containers allow for building complex processing pipelines that are independent
of the host programming language. Due to its original use case (see Introduction), Docker has no
standard mechanisms for chaining containers together; it lacks definitions and protocols for how
to use environment variables, volume mounts, and/or ports that could enable the transfer of input
(parameters and data) and output (results) to and from containers. Some packages, e.g., containerit,

25https://cloudyr.github.io/googleComputeEngineR/articles/massive-parallel.html
26https://github.com/MarkEdmondson1234/cloudRunR
27https://code.markedmondson.me/googleCloudRunner/articles/cloudbuild.html
28See for example https://github.com/joelnitta/pleurosoriopsis or https://gitlab.com/ecohealthalliance/drake-

gitlab-docker-example, the latter even running in a continuous integration platform (cf. Development, debugging,
and testing.

29https://docs.ropensci.org/drake/index.html?q=docker#with-docker

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/ColinFay/r-ci
https://docs.gitlab.com/ee/ci/
https://CRAN.R-project.org/package=batchtools
https://mllg.github.io/batchtools/reference/makeClusterFunctionsDocker.html
https://CRAN.R-project.org/package=googleComputeEngineR
https://CRAN.R-project.org/package=googleComputeEngineR
https://CRAN.R-project.org/package=future
https://cloud.run
https://CRAN.R-project.org/package=plumber
https://cloud.google.com/cloud-build/
https://CRAN.R-project.org/package=drake
https://solutions.rstudio.com/launcher/overview/
https://support.rstudio.com/hc/en-us/articles/360019253393-Using-Docker-images-with-RStudio-Server-Pro-Launcher-and-Kubernetes
https://slurm.schedmd.com/
https://cloudyr.github.io/googleComputeEngineR/articles/massive-parallel.html
https://github.com/MarkEdmondson1234/cloudRunR
https://code.markedmondson.me/googleCloudRunner/articles/cloudbuild.html
https://github.com/joelnitta/pleurosoriopsis
https://gitlab.com/ecohealthalliance/drake-gitlab-docker-example
https://gitlab.com/ecohealthalliance/drake-gitlab-docker-example
https://docs.ropensci.org/drake/index.html?q=docker#with-docker


CONTRIBUTED RESEARCH ARTICLES 445

provide Docker images that can be used very similar to a CLI, but this usage is cumbersome30. outsider
(https://docs.ropensci.org/outsider/) tackles the problem of integrating external programs into
an R workflow without the need for users to directly interact with containers (Bennett et al., 2020).
Installation and usage of external programs can be difficult, convoluted and even impossible if
the platform is incompatible. Therefore, outsider uses the platform-independent Docker images to
encapsulate processes in outsider modules. Each outsider module has a Dockerfile and an R package
with functions for interacting with the encapsulated tool. Using only R functions, an end-user can
install a module with the outsider package and then call module code to seamlessly integrate a
tool into their own R-based workflow. The outsider package and module manage the containers
and handle the transmission of arguments and the transfer of files to and from a container. These
functionalities also allow a user to launch module code on a remote machine via SSH, expanding the
potential computational scale. Outsider modules can be hosted code-sharing services, e.g., on GitHub,
and outsider contains discovery functions for them.

Deployment and continuous delivery

The cloud is the natural environment for containers, and, therefore, containers are the go-to mechanism
for deploying R server applications. More and more continuous integration (CI) and continuous
delivery (CD) services also use containers, opening up new options for use. The controlled nature of
containers, i.e., the possibility to abstract internal software environment from a minimal dependency
outside of the container is crucial, for example to match test or build environments with production
environments or transfer runnable entities to as-a-service infrastructures.

First, different packages use containers for the deployment of R and Shiny apps. Shiny is a pop-
ular package for creating interactive online dashboards with R, and it enables users with very diverse
backgrounds to create stable and user-friendly web applications (Chang et al., 2019). ShinyProxy
(https://www.shinyproxy.io/) is an open-source tool to deploy Shiny apps in an enterprise context,
where it features single sign-on, but it can also be used in scientific use cases (e.g., Savini et al., 2019;
Glouzon et al., 2017). ShinyProxy uses Docker containers to isolate user sessions and to achieve scala-
bility for multi-user scenarios with multiple apps. ShinyProxy itself is written in Java to accommodate
corporate requirements and may itself run in a container for stability and availability. The tool is built
on ContainerProxy (https://www.containerproxy.io/), which provides similar features for executing
long-running R jobs or interactive R sessions. The started containers can run on a regular Docker
host but also in clusters. Continuous integration and deployment (CI/CD) for Shiny applications
using Shinyproxy can be achieved, e.g., via GitLab pipelines or with a combination of GitHub and
Docker Hub. A pipeline can include building and checking R packages and Shiny apps. After the
code has passed the checks, Docker images are built and pushed to the container registry. The pipeline
finishes with triggering a webhook on the server, where the deployment script is executed. The script
can update configurations or pull the new Docker images. There is a ShinyProxy 1-Click App in the
DigitalOcean marketplace that is set up with these webhooks. The documentation explains how to set
up HTTPS with ShinyProxy and webhooks.

Another example is the package golem, which makes heavy use of dockerfiler when it comes to
creating the Dockerfile for building and deploying production-grade Shiny applications (Guyader
et al., 2019). googleComputeEngineR enables quick deployments of key R services, such as RStudio
and Shiny, onto cloud virtual machines (VMs) with Google Cloud Compute Engine (Edmondson, 2019).
The package utilises Dockerfiles to move the labour of setting up those services from the user to a
premade Docker image, which is configured and run in the cloud VM. For example, by specifying the
template template="rstudio" in functions gce_vm_template() and gce_vm() an up-to-date RStudio
Server image is launched for development work, whereas specifying template="rstudio-gpu" will
launch an RStudio Server image with a GPU attached, etc.

Second, containers can be used to create platform installation packages in a DevOps setting. The
OpenCPU system provides an HTTP API for data analysis based on R. Ooms (2017) describes how
various platform-specific installation files for OpenCPU are created using Docker Hub. The automated
builds install the software stack from the source code on different operating systems; afterwards a
script file downloads the images and extracts the OpenCPU binaries.

Third, containers can greatly facilitate the deployment to existing infrastructures. Kubernetes
(https://kubernetes.io/) is a container-orchestration system for managing container-based applica-
tion deployment and scaling. A cluster of containers, orchestrated as a single deployment, e.g., with
Kubernetes, can mitigate limitations on request volumes or a container occupied with a computa-
tionally intensive task. A cluster features load-balancing, autoscaling of containers across numerous
servers (in the cloud or on premise), and restarting failed ones. Many organisations already use a
Kubernetes cluster for other applications, or a managed cluster can be acquired from service providers.

30https://o2r.info/containerit/articles/container.html

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://docs.ropensci.org/outsider/
https://www.shinyproxy.io/
https://www.containerproxy.io/
https://github.com/analythium/shinyproxy-1-click/blob/master/digitalocean/setup.md#setting-up-webhook
https://marketplace.digitalocean.com/apps/shinyproxy
https://github.com/analythium/shinyproxy-1-click/blob/master/digitalocean/secure.md
https://CRAN.R-project.org/package=golem
https://CRAN.R-project.org/package=googleComputeEngineR
https://www.opencpu.org/
https://kubernetes.io/
https://o2r.info/containerit/articles/container.html


CONTRIBUTED RESEARCH ARTICLES 446

Docker containers are used within Kubernetes clusters to hold native code, for which Kubernetes
creates a framework around network connections and scaling of resources up and down. Kubernetes
can thereby host R applications, big parallel tasks, or scheduled batch jobs in a scalable way, and
the deployment can even be triggered by changes to code repositories (i.e., CD, see Edmondson,
2018). The package googleKubernetesR (https://github.com/RhysJackson/googleKubernetesR) is
a proof of concept for wrapping the Google Kubernetes Engine API, Google’s hosted Kubernetes
solution, in an easy-to-use R package. The package analogsea provides a way to programmatically
create and destroy cloud VMs on the Digital Ocean platform (Chamberlain et al., 2019). It also in-
cludes R wrapper functions to install Docker in such a VM, manage images, and control containers
straight from R functions. These functions are translated to Docker CLI commands and transferred
transparently to the respective remote machine using SSH. AzureContainers is an umbrella package
that provides interfaces for three commercial services of Microsoft’s Azure Cloud, namely Container
Instances for running individual containers, Container Registry for private image distribution, and
Kubernetes Service for orchestrated deployments. While a package like plumber provides the infras-
tructure for turning an R workflow into a web service, for production purposes it is usually necessary
to take into account scalability, reliability and ease of management. AzureContainers provides an
R-based interface to these features and, thereby, simplifies complex infrastructure management to
a number of R function calls, given an Azure account with sufficient credit31. Heroku is another
cloud platform as a service provider, and it supports container-based applications. heroku-docker-r
(https://github.com/virtualstaticvoid/heroku-docker-r) is an independent project providing a
template for deploying R applications based on Heroku’s image stack, including multiple examples
for interfacing R with other programming languages. Yet the approach requires manual management
of the computing environment.

Independent integrations of R for different cloud providers lead to repeated efforts and code
fragmentation. To mitigate these problems and to avoid vendor lock-in motivated the OpenFaaS
project. OpenFaas facilitates the deployment of functions and microservices to Kubernetes or Docker
Swarm. It is language-agnostic and provides auto-scaling, metrics, and an API gateway. Reduced
boilerplate code is achieved via templates. Templates for R32 are provided based on Rocker’s Debian
and R-hub’s r-minimal Alpine images. The templates use multi-stage Docker builds to combine R base
images with the OpenFaaS ‘watchdog’, a tiny Golang web server. The watchdog marshals an HTTP
request and invokes the actual application. The R session uses plumber or similar packages for the
API endpoint with packages and data preloaded, thus minimizing response times.

The prevalence of Docker in industry naturally leads to the use of R in containers, as companies
already manage platforms in Docker containers. These products often entail a large amount of open-
source software in combination with proprietary layers adding the relevant commercialisation features.
One such example is RStudio’s data science platform RStudio Team. It allows teams of data scientists
and their respective IT/DevOps groups to develop and deploy code in R and Python around the
RStudio Open-Source Server inside of Docker images, without requiring users to learn new tools or
directly interact with containers. The best practices for running RStudio with Docker containers as
well as Docker images for RStudio’s commercial products are publicly available.

Using R to power enterprise software in production environments

R has been historically viewed as a tool for analysis and scientific research, but not for creating software
that corporations can rely on for production services. However, thanks to advancements in R running
as a web service, along with the ability to deploy R in Docker containers, modern enterprises are now
capable of having real-time machine learning powered by R. A number of packages and projects have
enabled R to respond to client requests over TCP/IP and local socket servers, such as Rserve (Urbanek,
2019), svSocket (Grosjean, 2019), rApache and more recently plumber (https://www.rplumber.io/)
and RestRserve (http://restrserve.org), which even processes incoming requests in parallel with
forked processes using Rserve. The latter two also provide documentation for deployment with Docker
or ready-to-use images with automated builds33. These software allow other (remote) processes and
programming languages to interact with R and to expose R-based function in a service architecture
with HTTP APIs. APIs based on these packages can be deployed with scalability and high availability
using containers. This pattern of deploying code matches those used by software engineering services
created in more established languages in the enterprise domain, such as Java or Python, and R can be
used alongside those languages as a first-class member of a software engineering technical stack.

CARD.com implemented a web application for the optimisation of the acquisition flow and

31See "Deploying a prediction service with Plumber" vignette for details: https://cran.r-
project.org/web/packages/AzureContainers/vignettes/vig01_plumber_deploy.html.

32See OpenFaaS R templates at https://github.com/analythium/openfaas-rstats-templates.
33See https://www.rplumber.io/docs/hosting.html#docker, https://hub.docker.com/r/trestletech/plumber/

and https://hub.docker.com/r/rexyai/restrserve/.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/RhysJackson/googleKubernetesR
https://CRAN.R-project.org/package=analogsea
https://www.digitalocean.com/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.heroku.com/
https://github.com/virtualstaticvoid/heroku-docker-r
https://www.openfaas.com/
https://www.openfaas.com/
https://github.com/r-hub/r-minimal
https://docs.docker.com/develop/develop-images/multistage-build/
https://rstudio.com/products/team/
https://support.rstudio.com/hc/en-us/articles/360021594513-Running-RStudio-with-Docker-containers
https://github.com/rstudio/rstudio-docker-products
https://CRAN.R-project.org/package=Rserve
https://CRAN.R-project.org/package=svSocket
http://www.rapache.net
https://www.rplumber.io/
http://restrserve.org
https://CRAN.R-project.org/package=Rserve
https://cran.r-project.org/web/packages/AzureContainers/vignettes/vig01_plumber_deploy.html
https://cran.r-project.org/web/packages/AzureContainers/vignettes/vig01_plumber_deploy.html
https://github.com/analythium/openfaas-rstats-templates
https://www.rplumber.io/docs/hosting.html#docker
https://hub.docker.com/r/trestletech/plumber/
https://hub.docker.com/r/rexyai/restrserve/


CONTRIBUTED RESEARCH ARTICLES 447

the real-time analysis of debit card transactions. The software used Rserve and rApache and was
deployed in Docker containers. The R session behind Rserve acted as a read-only in-memory database,
which was extremely fast and scalable, for the many concurrent rApache processes responding to
the live-scoring requests of various divisions of the company. Similarly deodorised R scripts were
responsible for the ETL processes and even the client-facing email, text message and push notification
alerts sent in real-time based on card transactions. The related Docker images were made available at
https://github.com/cardcorp/card-rocker. The images extended rocker/r-base and additionally
entailed an SSH client and a workaround for being able to mount SSH keys from the host, Pandoc,
the Amazon Web Services (AWS) SDK, and Java, which is required by the AWS SDK. The AWS SDK
allowed for running R consumers reading from real-time data processing streams of AWS Kinesis 34.
The applications were deployed on Amazon Elastic Container Service (ECS). The main takeaways from
using R in Docker were not only that pinning the R package versions via MRAN is important, but also
that moving away from Debian testing to a distribution with long-term support can be necessary. For
the use case at hand, this switch allowed for more control over upstream updates and for minimising
the risk of breaking the automated builds of the Docker images and production jobs.

The AI @ T-Mobile team created a set of machine learning models for natural language processing
to help customer care agents manage text-based messages from customers (T-Mobile et al., 2018).
For example, one model identifies whether a message is from a customer (see Shiny-based demo
further described by Nolis and Werdell, 2019), and others tell which customers are likely to make a
repeat purchase. If a data scientist creates a such a model and exposes it through a plumber API, then
someone else on the marketing team can write software that sends different emails depending on that
real-time prediction. The models are convolutional neural networks that use the keras package (Allaire
and Chollet, 2019) and run in a Rocker container. The corresponding Dockerfiles are published on
GitHub. Since the models power tools for agents and customers, they need to have extremely high
uptime and reliability. The AI @ T-Mobile team found that the models performed well, and today
these models power real-time services that are called over a million times a day.

Common or public work environments

The fact that Docker images are portable and well defined make them useful when more than one
person needs access to the same computing environment. This is even more useful when some
of the users do not have the expertise to create such an environment themselves, and when these
environments can be run in public or using shared infrastructure. For example, RCloud (https:
//rcloud.social) is a cloud-based platform for data analysis, visualisation and collaboration using R.
It provides a rocker/drd base image for easy evaluation of the platform35.

The Binder project, maintained by the team behind Jupyter, makes it possible for users to create
and share computing environments with others (Jupyter et al., 2018). A BinderHub allows anyone
with access to a web browser and an internet connection to launch a temporary instance of these
custom environments and execute any workflows contained within. From a reproducibility standpoint,
Binder makes it exceedingly easy to compile a paper, visualize data, and run small examples from
papers or tutorials without the need for any local installation. To set up Binder for a project, a
user typically starts at an instance of a BinderHub and passes the location of a repository with a
workspace, e.g., a hosted Git repository, or a data repository like Zenodo. Binder’s core internal tool
is repo2docker. It deterministically builds a Docker image by parsing the contents of a repository,
e.g., project dependency configurations or simple configuration files36. In the most powerful case,
repo2docker builds a given Dockerfile. While this approach works well for most run-of-the-mill
Python projects, it is not so seamless for R projects. This is partly because repo2docker does not
support arbitrary base images due to the complex auto-generation of the Dockerfile instructions.

Two approaches make using Binder easier for R users. First, holepunch (https://github.com/
karthik/holepunch) is an R package that was designed to make sharing work environments accessible
to novice R users based on Binder. For any R projects that use the Tidyverse suite (Wickham et al.,
2019), the time and resources required to build all dependencies from source can often time out before
completion, making it frustrating for the average R user. holepunch removes some of these limitations
by leveraging Rocker images that contain the Tidyverse along with special Jupyter dependencies,
and only installs additional packages from CRAN and Bioconductor that are not already part of
these images. It short circuits the configuration file parsing in repo2docker and starts with the
Binder/Tidyverse base images, which eliminates a large part of the build time and, in most cases,
results in a Binder instance launching within a minute. holepunch also creates a DESCRIPTION file
for essential metadata and dependency specification, and thereby turns any project into a research

34See useR!2017 talk "Stream processing with R in AWS".
35https://github.com/att/rcloud/tree/master/docker
36See supported file types at https://repo2docker.readthedocs.io/en/latest/config_files.html. For R, the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/cardcorp/card-rocker
https://aws.amazon.com/kinesis/
https://aws.amazon.com/ecs/
https://secure.message.t-mobile.com/v1/shiny/is-customer/app/
https://CRAN.R-project.org/package=keras
https://github.com/tmobile/r-tensorflow-api
https://github.com/tmobile/r-tensorflow-api
https://rcloud.social
https://rcloud.social
https://mybinder.readthedocs.io/en/latest/
https://github.com/karthik/holepunch
https://github.com/karthik/holepunch
https://static.sched.com/hosted_files/user2017/2f/AWR Kinesis at useR 2017.pdf
https://github.com/att/rcloud/tree/master/docker
https://repo2docker.readthedocs.io/en/latest/config_files.html


CONTRIBUTED RESEARCH ARTICLES 448

compendium (see Packaging research reproducibly). The Dockerfile included with the project can
also be used to launch an RStudio Server instance locally, i.e., independent of Binder, which is especially
useful when more or special computational resources can be provided there. The local image usage
reduces the number of separately managed environments and, thereby, reduces work and increases
portability and reproducibility.

Second, the Whole Tale project (https://wholetale.org) combines the strengths of the Rocker
Project’s curated Docker images with repo2docker. Whole Tale is a National Science Foundation (NSF)
funded project developing a scalable, open-source, multi-user platform for reproducible research
(Brinckman et al., 2019; Chard et al., 2019b). A central goal of the platform is to enable researchers to
easily create and publish executable research objects37 associated with published research (Chard et al.,
2019a). Using Whole Tale, researchers can create and publish Rocker-based reproducible research
objects to a growing number of repositories including DataONE member nodes, Zenodo and soon
Dataverse. Additionally, Whole Tale supports automatic data citation and is working on capabilities for
image preservation and provenance capture to improve the transparency of published computational
research artefacts (Mecum et al., 2018; McPhillips et al., 2019). For R users, Whole Tale extends
the Jupyter Project’s repo2docker tool to simplify the customisation of R-based environments for
researchers with limited experience with either Docker or Git. Multiple options have been discussed
to allow users to change the Ubuntu LTS (long-term support, currently Bionic Beaver) base image,
buildpack-deps:bionic, used in repo2docker. Whole Tale implemented a custom RockerBuildPack38.
The build pack combines a rocker/geospatial image with repo2docker’s composability39. This works
because both Rocker images and the repo2docker base image use distributions with APT (Wikipedia
contributors, 2020a) so that the instructions created by the latter work because of the compatible shell
and package manager.

In high-performance computing, one use for containers is to run workflows on shared local
hardware where teams manage their own high-performance servers. This can follow one of several
design patterns: Users may deploy containers to hardware as a work environment for a specific project,
containers may provide per-user persistent environments, or a single container can act as a common
multi-user environment for a server. In all cases, though, the containerised approach provides several
advantages: First, users may use the same image and thus work environment on desktop and laptop
computers. The first to patterns provide modularity, while the last approach is most similar to a
simple shared server. Second, software updates can be achieved by updating and redeploying the
container rather than by tracking local installs on each server. Third, the containerised environment
can be quickly deployed to other hardware, cloud or local, if more resources are necessary or in case of
server destruction or failure. In any of these cases, users need a method to interact with the containers,
be it an IDE exposed over an HTTP port or command-line access via tools such as SSH. A suitable
method must be added to the container recipes. The Rocker Project provides containers pre-installed
with the RStudio IDE. In cases where users store nontrivial amounts of data for their projects, the
data needs to persist beyond the life of the container. This may be in shared disks, attached network
volumes, or in separate storage where it is uploaded between sessions. In the case of shared disks or
network-attached volumes, care must be taken to match user permissions, and of course backups are
still necessary.

CyVerse is an open-source, NSF-funded cyberinfrastructure platform for the life sciences providing
easy access to computing and storage resources (Merchant et al., 2016). CyVerse has a browser-based
‘data science workbench’ called the Discovery Environment (DE). The DE uses a combination of
HTCondor and Kubernetes for orchestrating container-based analysis and integrates with external
HPC, i.e., NSF-XSEDE, through TAPIS (TACC-API’s). CyVerse hosts a multi-petabyte Data Store based
on iRODS with shared access by its users. The DE runs Docker containers on demand, with users able to
integrate bespoke containers from DockerHub or other registries (Devisetty et al., 2016). Rocker image
integration in the DE is designed to provide researchers with scalable, compute-intensive, R analysis
capabilities for large and complex datasets (e.g., genomics/multi-omics, GWAS, phenotypic data,
geospatial data, etc.). These capabilities give users flexibility similar to Binder, but allow containers
to be run on larger computational resources (RAM, CPU, Disk, GPU), and for longer periods of time
(days to weeks). The Rocker Project’s RStudio and Shiny are integrated into the DE by deriving new
images from Rocker images40. These new images include a reverse proxy using nginx to handle
communication with CyVerse’s authentication system (RStudio Support, 2020); CyVerse also allows

37In Whole Tale a tale is a research object that contains metadata, data (by copy or reference), code, narrative,
documentation, provenance, and information about the computational environment to support computational
reproducibility.

38See https://github.com/whole-tale/repo2docker_wholetale.
39Composability refers to the ability to combine multiple package managers and their configuration files, such as

R, ‘pip‘, and ‘conda‘; see Section Common or public work environments for details.
40See https://github.com/cyverse-vice/ for Dockerfiles and configuration scripts; images are auto-built on

DockerHub at https://hub.docker.com/u/cyversevice.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://wholetale.org
https://cyverse.org
https://cyverse.org/discovery-environment
https://research.cs.wisc.edu/htcondor/
https://www.xsede.org/
https://www.tacc.utexas.edu/tapis
https://irods.org/
https://github.com/whole-tale/repo2docker_wholetale
https://github.com/cyverse-vice/
https://hub.docker.com/u/cyversevice


CONTRIBUTED RESEARCH ARTICLES 449

owners to invite other registered users to securely access the same instance. The CyVerse Rocker
images further include tools for connecting to its Data Store, such as the CLI utility icommands for
iRODS. CyVerse accounts are free (with some limitations for non-US users), and the CyVerse Learning
Center provides community members with information about the platform, including training and
education opportunities.

Using GPUs (graphical processing units) as specialised hardware from containerised common
work environments is also possible and useful (Haydel et al., 2015). GPUs are increasingly popular for
compute-intensive machine learning (ML) tasks, e.g., deep artificial neural networks (Schmidhuber,
2015). Although in this case containers are not completely portable between hardware environments,
but the software stack for ML with GPUs is so complex to set up that a ready-to-use container is
helpful. Containers running GPU software require drivers and libraries specific to GPU models and
versions, and containers require a specialized runtime to connect to the underlying GPU hardware.
For NVIDIA GPUs, the NVIDIA Container Toolkit includes a specialized runtime plugin for Docker
and a set of base images with appropriate drivers and libraries. The Rocker Project has a repository
with (beta) images based on these that include GPU-enabled versions of machine-learning R packages,
e.g., rocker/ml and rocker/tensorflow-gpu.

Teaching

Two use cases demonstrate the practical usefulness and advantages of containerisation in the context
of teaching. On the one hand a special case of shared computing environments (see Section 4.7), and
on the other hand leveraging sandboxing and controlled environments for auto-grading.

Prepared environments for teaching are especially helpful for (a) introductory courses, where
students often struggle with the first step of installation and configuration (Çetinkaya Rundel and
Rundel, 2018), and (b) courses that require access to a relatively complex setup of software tools, e.g.,
database systems. Çetinkaya Rundel and Rundel (2018) describe how a Docker-based deployment
of RStudio (i) avoided problems with troubleshooting individual students’ computers and greatly
increased engagement through very quickly showing tangible outcomes, e.g., a visualisation, and
(ii) reduced demand on teaching and IT staff. Each student received access to a personal RStudio
instance running in a container after authentication with the university login, which gives the benefits
of sandboxing and the possibility of limiting resources. Çetinkaya Rundel and Rundel (2018) found
that for the courses at hand, actual usage of the UI is intermittent so a single cloud-based VM with
four cores and 28 GB RAM sufficed for over 100 containers. An example for mitigating complex setups
is teaching databases. R is very useful tool for interfacing with databases, because almost every
open-source and proprietary database system has an R package that allows users to connect and
interact with it. This flexibility is even broadened by DBI (R Special Interest Group on Databases
(R-SIG-DB) et al., 2019), which allows for creating a common API for interfacing these databases, or
the dbplyr package (Wickham and Ruiz, 2019), which runs dplyr (Wickham et al., 2020) code straight
against the database as queries. But learning and teaching these tools comes with the cost of deploying
or having access to an environment with the software and drivers installed. For people teaching R,
it can become a barrier if they need to install local versions of database drivers or connect to remote
instances which might or might not be made available by IT services. Giving access to a sandbox for
the most common environments for teaching databases is the idea behind r-db, a Docker image that
contains everything needed to connect to a database from R. Notably, with r-db, users do not have
to install complex drivers or configure their machine in a specific way. The rocker/tidyverse base
image ensures that users can also readily use packages for analysis, display, and reporting.

The idea of a common environment and partitioning allows for using containers in teaching
for secure execution and automated testing of submissions by students. First, Dodona is a web
platform developed at Ghent University that is used to teach students basic programming skills, and
it uses Docker containers to test submissions by students. This means that both the code testing the
students’ submissions and the submission itself are executed in a predictable environment, avoiding
compatibility issues between the wide variety of configurations used by students. The containerisation
is also used to shield the Dodona servers from bad or even malicious code: memory, time and
I/O limits are used to make sure students cannot overload the system. The web application managing
the containers communicates with them by sending configuration information as a JSON document
over standard input. Every Dodona Docker image shares a main.sh file that passes through this
information to the actual testing framework, while setting up some error handling. The testing process
in the Docker containers sends back the test results by writing a JSON document to its standard
output channel. In June 2019, R support was added to Dodona using an image derived from the
rocker/r-base image that sets up the runner user and main.sh file expected by Dodona41. It also
installs the packages required for the testing framework and the exercises so that this does not have

41https://github.com/dodona-edu/docker-images/blob/master/dodona-r.dockerfile

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://learning.cyverse.org/
https://learning.cyverse.org/
https://github.com/NVIDIA/nvidia-docker
https://github.com/rocker-org/ml
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=dbplyr
https://CRAN.R-project.org/package=dplyr
https://github.com/ColinFay/r-db
https://dodona.ugent.be
https://github.com/dodona-edu/docker-images/blob/master/dodona-r.dockerfile


CONTRIBUTED RESEARCH ARTICLES 450

to happen every time a student’s submission is evaluated. The actual testing of R exercises is done
using a custom framework loosely based on testthat (Wickham, 2011). During the development of the
testing framework, it was found that the testthat framework did not provide enough information to
its reporter system to send back all the fields required by Dodona to render its feedback. Right now,
multiple statistics courses are developing exercises to automate the feedback for their lab classes.

Second, PrairieLearn is another example of a Docker-based teaching and testing platform. PrairieLearn
is being developed at the University of Illinois at Urbana-Champaign (Zilles et al., 2018) and has been
in extensive use across several faculties along with initial use on some other campuses. It uses Docker
containers as key components, both internally for its operations (programmed mainly in Python as
well as in Javascript), as well as for two reference containers providing, respectively, Python and R
auto-graders. A key design decision made by PrairieLearn permits external grading containers to be
supplied and accessed via a well-defined interface of invoking, essentially, a single script, run.sh.
This script relies on a well-defined file layout containing JSON-based configurations, support files,
exam questions, supplementary data, and student submissions. It returns per-question evaluations as
JSON result files, which PrarieLearn evaluates, aggregates and records in a database. The Data Science
Programming Methods course (Eddelbuettel, 2019) uses this via the custom rocker-pl container
(Barbehenn and Eddelbuettel, 2019).42 The rocker-pl image extends rocker/r-base with the plr R
package (Eddelbuettel and Barbehenn, 2019b) for integration into PrarieLearn testing and question
evaluation, along with the actual R packages used in instruction and testing for the course in question.
As automated grading of submitted student answers is close to the well-understood problem of
unit testing, the tinytest package (van der Loo, 2019) is used for both its core features for testing
as well as clean extensibility. The package ttdo (Eddelbuettel and Barbehenn, 2019a) utilizes the
extensibility of tinytest to display context-sensitive colourized differences between incorrect answers
and reference answers using the diffobj package (Gaslam, 2019). Additionally, ttdo addresses the
issue of insufficient information collection that Dodona faced by allowing for the collection of arbitrary,
test specific attributes for additional logging and feedback. The setup, described in more detail by
Eddelbuettel and Barbehenn (2020), is an excellent illustration of both the versatility and flexibility
offered by Docker-based approaches in teaching and testing.

Packaging research reproducibly

Containers provide a high degree of isolation that is often desirable when attempting to capture a
specific computational environment so that others can reproduce and extend a research result. Many
computationally intensive research projects depend on specific versions of original and third-party
software packages in diverse languages, joined together to form a pipeline through which data flows.
New releases of even just a single piece of software in this pipeline can break the entire workflow,
making it difficult to find the error and difficult for others to reuse existing pipelines. These breakages
can make the original the results irreproducible and, and the chance of a substantial disruption like
this is high in a multi-year research project where key pieces of third-party software may have several
major updates over the duration of the project. The classical “paper” article is insufficient to adequately
communicate the knowledge behind such research projects (cf. Donoho, 2010; Marwick, 2015).

Gentleman and Lang (2007) coined the term Research Compendium for a dynamic document
together with supporting data and code. They used the R package system (R Core Team, 1999) for
the functional prototype all the way to structuring, validating, and distributing research compendia.
This concept has been taken up and extended43, not in the least by applying containerisation and
other methods for managing computing environments—see Section Capture and create environments.
Containers give the researcher an isolated environment to assemble these research pipelines with
specific versions of software to minimize problems with breaking changes and make workflows
easier to share (cf. Boettiger, 2015; Marwick et al., 2018). Research workflows in containers are safe
from contamination from other activities that occur on the researcher’s computer, for example the
installation of the newest version of packages for teaching demonstrations or specific versions for
evaluation of others’ works. Given the users in this scenario, i.e., often academics with limited formal
software development training, templates and assistance with containers around research compendia
is essential. In many fields, we see that a typical unit of research for a container is a research report or
journal article, where the container holds the compendium, or self-contained set of data (or connections
to data elsewhere) and code files needed to fully reproduce the article (Marwick et al., 2018). The
package rrtools (https://github.com/benmarwick/rrtools) provides a template and convenience
functions to apply good practices for research compendia, including a starter Dockerfile. Images
of compendium containers can be hosted on services such as Docker Hub for convenient sharing
among collaborators and others. Similarly, packages such as containerit and dockerfiler can be used

42The reference R container was unavailable at the time, and also relies on a heavier CentOS-based build so that
a lighter alternative was established.

43See full literature list at https://research-compendium.science/.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=testthat
https://github.com/PrairieLearn
https://stat430.com
https://stat430.com
https://github.com/stat430dspm/rocker-pl
https://CRAN.R-project.org/package=tinytest
https://CRAN.R-project.org/package=ttdo
https://CRAN.R-project.org/package=diffobj
https://CRAN.R-project.org/package=ttdo
https://github.com/benmarwick/rrtools
https://research-compendium.science/


CONTRIBUTED RESEARCH ARTICLES 451

to manage the Dockerfile to be archived with a compendium on a data repository (e.g. Zenodo,
Dataverse, Figshare, OSF). A typical compendium’s Dockerfile will pull a rocker image fixed to a
specific version of R, and install R packages from the MRAN repository to ensure the package versions
are tied to a specific date, rather than the most recent version. A more extreme case is the dynverse
project (Saelens et al.), which packages over 50 computational methods with different environments
(R, Python, C++, etc.) in Docker images, which can be executed from R. dynverse uses a CI platform
(see Development, debugging, and testing) to build Rocker-derived images, test them, and, if the tests
succeed, publish them on Docker Hub.

Future researchers can download the compendium from the repository and run the included
Dockerfile to build a new image that recreates the computational environment used to produce the
original research results. If building the image fails, the human-readable instructions in a Dockerfile
are the starting point for rebuilding the environment. When combined with CI (see Development,
debugging, and testing), a research compendium set-up can enable continuous analysis with easier
verification of reproducibility and audits trails (Beaulieu-Jones and Greene, 2017).

Further safeguarding practices are currently under development or not part of common practice
yet, such as preserving images (Emsley and De Roure, 2018), storing both images and Dockerfiles
(cf. Nüst et al., 2017), or pinning system libraries beyond the tagged base images, which may be seen
as stable or dynamic depending on the applied time scale (see discussion on debian:testing base
image in Boettiger and Eddelbuettel, 2017). A recommendation of the recent National Academies’
report on Reproducibility and Replicability in Science is that journals “consider ways to ensure computational
reproducibility for publications that make claims based on computations” (Committee on Reproducibility
and Replicability in Science, 2019). In fields such as political science and economics, journals are
increasingly adopting policies that require authors to publish the code and data required to reproduce
computational findings reported in published manuscripts, subject to independent verification (Jacoby
et al., 2017; Vilhuber, 2019; Alvarez et al., 2018; Christian et al., 2018; Eubank, 2016; King, 1995).
Problems with the computational environment, installation and availability of software dependencies
are common. R is gaining popularity in these communities, such as for creating a research compendium.
In a sample of 105 replication packages published by the American Journal of Political Science (AJPS),
over 65% use R. The NSF-funded Whole Tale project, which was mentioned above, uses the Rocker
Project community images with the goal of improving the reproducibility of published research
artefacts and simplifying the publication and verification process for both authors and reviewers by
reducing errors and time spent specifying the environment.

Conclusions

This article is a snapshot of the R corner in a universe of applications built with a many-faced
piece of software, Docker. Dockerfiles and Docker images are the go-to methods for collaboration
between roles in an organisation, such as developers and IT operators, and between participants in
the communication of knowledge, such as researchers or students. Docker has become synonymous
with applying the concept of containerisation to solve challenges of reproducible environments, e.g.,
in research and in development & production, and of scalable deployments because it can easily
move processing between machines, e.g., locally, a cloud provider’s VM, another cloud provider’s
Container-as-a-Service. Reproducible environments, scalability & efficiency, and portability across
infrastructures are the common themes behind R packages, use cases, and applications in this work.

The projects presented above show the growing number of users, developers, and real-world
applications in the community and the resulting innovations. But the applications also point to the
challenges of keeping up with a continuously evolving landscape. Some use cases have considerable
overlap, which can be expected as a common language and understanding of good practices is still
taking shape. Also, the ease with which one can create complex software systems with Docker to
serve one’s specific needs, such as an independent Docker image stack, leads to parallel developments.
This ease-of-DIY in combination with the difficulty of reusing parts from or composing multiple
Dockerfiles is a further reason for fragmentation. Instructions can be outsourced into distributable
scripts and then copied into the image during build, but that makes Dockerfiles harder to read.
Scripts added to a Dockerfile also add a layer of complexity and increase the risk of incomplete
recipes. Despite the different image stacks presented here, the pervasiveness of Rocker images can
be traced back to its maintainers and the user community valuing collaboration and shared starting
points over impulses to create individual solutions. Aside from that, fragmentation may not be a
bad sign but may instead be a reflection of a growing market that is able to sustain multiple related
efforts. With the maturing of core building blocks, such as the Rocker suite of images, more working
systems will be built, but they may simply work behind the curtains. Docker alone, as a flexible
core technology, is not a feasible level of collaboration and abstraction. Instead, the use cases and
applications observed in this work provide a more useful division.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://zenodo.org/
https://dataverse.org/
https://figshare.com/
https://osf.io/


CONTRIBUTED RESEARCH ARTICLES 452

Nonetheless, at least on the level of R packages some consolidation seems in order, e.g., to reduce
the number of packages creating Dockerfiles from R code or controlling the Docker daemon with
R code. It remains to be seen which approach to control Docker, via the Docker API as stevedore
or via system calls as dockyard/docker/dockr, is more sustainable, or whether the question will
be answered by the endurance of maintainers and sufficient funding. Similarly, capturing environ-
ments and their serialisation in form of a Dockerfile currently is happening at different levels of
abstraction, and re-use of functionality seems reasonable, e.g., liftr could generate the environment
with containerit, which in turn may use dockerfiler for low-level R objects representing a Dockerfile
and its instructions. In this consolidation of R packages, the Rocker Project could play the role of
a coordinating entity. Nonetheless, for the moment, it seems that the Rocker Project will focus on
maintaining and extending its image stacks, e.g., images for GPU-based computing and artificial
intelligence. Even with coding being more and more accepted as a required and achievable skill,
an easier access, for example by exposing containerisation benefits via simple user interfaces in the
users’ IDE, could be an important next step, since currently containerisation happens more in the
background for UI-based development (e.g., a rocker/rstudio image in the cloud). Furthermore, the
maturing of the Rockerverse packages for managing containers may lead to them being adopted in
situations where manual coding is currently required, e.g. in the case of RSelenium or drake (see
Sections Development, debugging, and testing and Processing respectively). In some cases, e.g.,
for analogsea, the interaction with the Docker daemon may remain too specific to re-use first-order
packages to control Docker.

New features which make complex workflows accessible and reproducible and the variety in
packages connected with containerisation, even when they have overlapping features, are a signal and
support for a growing user base. This growth is possibly the most important goal for the foreseeable
future in the Rockerverse, and, just like the Rocker images have matured over years of use and millions
of runs, the new ideas and prototypes will have to prove themselves. It should be noted that the
dominant position is that Docker is a blessing and a curse for these goals. It might be wise to
start experimenting with non-Docker containerisation tools now, e.g., R packages interfacing with
other container engines, such as podman/buildah, or an R package for creating Singularity files.
Such efforts might help to avoid lock-in and to design sustainable workflows based on concepts of
containerisation, not on their implementation in Docker. If adoption of containerisation and R continue
to grow, the missing pieces for a success predominantly lie in (a) coordination and documentation of
activities to reduce repeated work in favour of open collaboration, (b) the sharing of lessons learned
from use cases to build common knowledge and language, and (c) a sustainable continuation and
funding for development, community support, and education. A first concrete effort to work towards
these missing pieces should be sustaining the structure and captured status quo from this work in the
form of a CRAN Task View on containerisation.

Author contributions

The ordering of authors following DN and DE is alphabetical. DN conceived the article idea, initialised
the formation of the writing team, wrote sections not mentioned below, and revised all sections. DE
wrote the introduction and the section about containerisation and the Rocker Project, and reviewed all
sections. DB wrote the section on outsider. GD contributed the CARD.com use case. RC contributed to
the section on interfaces for Docker in R (dynverse and dynwrap). DC contributed content on Gigantum.
ME contributed to the section on processing and deployment to cloud services. CF wrote paragraphs
about r-online, dockerfiler, r-ci and r-db. EH contributed content on dockyard. LK contributed
content on dockr. SL contributed content on RStudio’s usage of Docker. BM wrote the section on
research compendia and made the project Binder-ready. HN & JN co-wrote the section on the T-
Mobile use case. KR wrote the section about holepunch. NR wrote paragraphs about shared work
environments and GPUs. LS & NT wrote the section on Bioconductor. PS wrote the paragraphs about
CI/CD pipelines with Shinyproxy 1-Click app and OpenFaaS templates. TS & JW wrote the section on
CyVerse. CvP wrote the section on the usage of Docker containers in Dodona. CW wrote the sections
on Whole Tale and contributed content about publication reproducibility audits. NX contributed
content on liftr. All authors approved the final version. This articles was collaboratively written at
https://github.com/nuest/rockerverse-paper/. The contributors page and discussion issues provide
details on the respective contributions.

Acknowledgements

DN is supported by the project Opening Reproducible Research (o2r) funded by the German Research
Foundation (DFG) under project number PE 1632/17-1. The funders had no role in data collection and

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://github.com/containers/libpod
https://github.com/nuest/rockerverse-paper/issues/3
https://github.com/nuest/rockerverse-paper/issues/3
https://github.com/nuest/rockerverse-paper/
https://github.com/nuest/rockerverse-paper/graphs/contributors
https://github.com/nuest/rockerverse-paper/issues/
https://www.uni-muenster.de/forschungaz/project/12343
https://gepris.dfg.de/gepris/projekt/415851837


CONTRIBUTED RESEARCH ARTICLES 453

analysis, decision to publish, or preparation of the manuscript. KR was supported in part by a grant
from The Leona M. and Harry B. Helmsley Charitable Trust, award number 2016PG-BRI004. LS and
NT are supported by US NIH / NHGRI awards U41HG00405 and U24HG010263. CW is supported
by the Whole Tale project (https://wholetale.org) funded by the US National Science Foundation
(NSF) under award OAC-1541450. NR is supported in part by the Chan-Zuckerberg Initiative Essential
Open Source Software for Science program. We would like to thank Celeste R. Brennecka from the
Scientific Editing Service of the University of Münster for her editorial support.

Bibliography
M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen. Orchestration of Microservices for

IoT Using Docker and Edge Computing. IEEE Communications Magazine, 56(9):118–123, Sept. 2018.
ISSN 0163-6804, 1558-1896. doi: 10.1109/MCOM.2018.1701233. [p438]

J. Allaire and F. Chollet. keras: R Interface to ’Keras’, 2019. URL https://CRAN.R-project.org/package=
keras. R package version 2.2.5.0. [p447]

R. M. Alvarez, E. M. Key, and L. Núñez. Research replication: Practical considerations. PS: Political Sci-
ence & Politics, 51(2):422–426, Apr 2018. ISSN 1049-0965, 1537-5935. doi: 10.1017/S1049096517002566.
[p451]

L. A. Barba. Terminologies for Reproducible Research. arXiv:1802.03311 [cs], Feb. 2018. URL http:
//arxiv.org/abs/1802.03311. arXiv: 1802.03311. [p437]

A. Barbehenn and D. Eddelbuettel. rocker-pl: Docker image for grading R in PrairieLearn, 2019. URL
https://github.com/stat430dspm/rocker-pl. Docker container to support STAT 430 ’Data Science
Programming Methods’, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

B. K. Beaulieu-Jones and C. S. Greene. Reproducibility of computational workflows is automated using
continuous analysis. Nature Biotechnology, advance online publication, Mar. 2017. ISSN 1087-0156.
doi: 10.1038/nbt.3780. [p451]

H. Bengtsson. future: Unified Parallel and Distributed Processing in R for Everyone, 2020a. URL https:
//CRAN.R-project.org/package=future. R package version 1.16.0. [p444]

H. Bengtsson. future: Unified Parallel and Distributed Processing in R for Everyone, 2020b. URL https:
//CRAN.R-project.org/package=future. R package version 1.16.0. [p444]

D. Bennett, H. Hettling, D. Silvestro, R. Vos, and A. Antonelli. outsider: Install and run programs,
outside of r, inside of r (under review). Journal of Open Source Software, 5(45):2038, 2020. doi:
10.21105/joss.02038. [p445]

D. Bernstein. Containers and cloud: From LXC to docker to kubernetes. IEEE Cloud Computing, 1(3):
81–84, Sept. 2014. doi: 10.1109/mcc.2014.51. [p438]

R. Bivand, T. Keitt, and B. Rowlingson. rgdal: Bindings for the ’Geospatial’ Data Abstraction Library, 2019.
URL https://CRAN.R-project.org/package=rgdal. R package version 1.4-8. [p443]

C. Boettiger. An introduction to Docker for reproducible research, with examples from the R en-
vironment. ACM SIGOPS Operating Systems Review, 49(1):71–79, Jan. 2015. ISSN 01635980. doi:
10.1145/2723872.2723882. [p438, 450]

C. Boettiger and D. Eddelbuettel. An Introduction to Rocker: Docker Containers for R. The R Journal, 9
(2):527–536, 2017. doi: 10.32614/RJ-2017-065. [p438, 442, 451]

C. Boettiger, R. Lovelace, M. Howe, and J. Lamb. rocker-org/geospatial, Dec. 2019. [p438]

A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B. Jones, K. Kowalik, S. Kulasekaran, B. Ludäscher,
B. D. Mecum, J. Nabrzyski, et al. Computing environments for reproducibility: Capturing the
“Whole Tale”. Future Generation Computer Systems, 94:854–867, 2019. doi: 10.1016/j.future.2017.12.
029. [p448]

R. Cannoodt and W. Saelens. babelwhale: Talking to ’Docker’ and ’Singularity’ Containers, 2019. URL
https://CRAN.R-project.org/package=babelwhale. R package version 1.0.1. [p439]

L. Cardozo. Faster Docker builds in Travis CI for R packages, 2018. URL https://lecardozo.github.
io/2018/03/01/automated-docker-build.html. [p443]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://wholetale.org
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1541450
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
http://arxiv.org/abs/1802.03311
http://arxiv.org/abs/1802.03311
https://github.com/stat430dspm/rocker-pl
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=future
https://CRAN.R-project.org/package=rgdal
https://CRAN.R-project.org/package=babelwhale
https://lecardozo.github.io/2018/03/01/automated-docker-build.html
https://lecardozo.github.io/2018/03/01/automated-docker-build.html


CONTRIBUTED RESEARCH ARTICLES 454

S. Chamberlain, H. Wickham, and W. Chang. analogsea: Interface to ’Digital Ocean’, 2019. URL
https://CRAN.R-project.org/package=analogsea. R package version 0.7.2. [p446]

Chan Zuckerberg Initiative, C. Boettiger, N. Ross, and D. Eddelbuettel. Maintain-
ing Rocker: Sustainability for Containerized Reproducible Analyses, 2019. URL
https://chanzuckerberg.com/eoss/proposals/maintaining-rocker-sustainability-for-
containerized-reproducible-analyses/. [p438]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2019.
URL https://CRAN.R-project.org/package=shiny. R package version 1.4.0. [p441, 445]

K. Chard, N. Gaffney, M. B. Jones, K. Kowalik, B. Ludäscher, T. McPhillips, J. Nabrzyski, V. Stodden,
I. Taylor, T. Thelen, M. J. Turk, and C. Willis. Application of BagIt-Serialized Research Object Bundles
for Packaging and Re-execution of Computational Analyses. 2019a. doi: 10.5281/zenodo.3381754.
To appear in 2019 IEEE 15th International Conference on e-Science (e-Science). [p448]

K. Chard, N. Gaffney, M. B. Jones, K. Kowalik, B. Ludäscher, J. Nabrzyski, V. Stodden, I. Taylor, M. J.
Turk, and C. Willis. Implementing computational reproducibility in the whole tale environment. In
Proceedings of the 2nd International Workshop on Practical Reproducible Evaluation of Computer Systems,
P-RECS ’19, pages 17–22, 2019b. doi: 10.1145/3322790.3330594. [p448]

T.-M. Christian, W. G. Jacoby, S. Lafferty-Hess, and T. Carsey. Operationalizing the replication standard.
International Journal of Digital Curation, 13(1), 2018. doi: 10.2218/ijdc.v13i1.555. [p451]

Committee on Reproducibility and Replicability in Science. Reproducibility and Replicability in Science.
National Academies Press, 2019. ISBN 978-0-309-48616-3. doi: 10.17226/25303. [p451]

Datadog. 8 surprising facts about real Docker adoption, June 2018. URL https://www.datadoghq.
com/docker-adoption/. [p437, 438]

U. K. Devisetty, K. Kennedy, P. Sarando, N. Merchant, and E. Lyons. Bringing your tools to CyVerse
Discovery Environment using Docker. F1000Research, 5:1442, Dec. 2016. ISSN 2046-1402. doi:
10.12688/f1000research.8935.3. [p448]

D. Donoho. 50 Years of Data Science. Journal of Computational and Graphical Statistics, 26(4):745–766,
Oct. 2017. ISSN 1061-8600. doi: 10.1080/10618600.2017.1384734. [p440]

D. L. Donoho. An invitation to reproducible computational research. Biostatistics, 11(3):385–388, July
2010. ISSN 1465-4644. doi: 10.1093/biostatistics/kxq028. [p450]

A. Eckert. Building and testing R packages with latest R-Devel, Feb. 2018. URL https://
alexandereckert.com/post/testing-r-packages-with-latest-r-devel/. [p443]

D. Eddelbuettel. sanitizers: C/C++ source code to trigger Address and Undefined Behaviour Sanitizers, 2014.
URL https://CRAN.R-project.org/package=sanitizers. R package version 0.1.0. [p443]

D. Eddelbuettel. STAT430: Data Science Programming Methods, 2019. URL https://stat430.com. Fourth
and fifth year topics course, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

D. Eddelbuettel and A. Barbehenn. ttdo: Extend ’tinytest’ with ’diffobj’, 2019a. URL https://CRAN.R-
project.org/package=ttdo. R package version 0.0.4. [p450]

D. Eddelbuettel and A. Barbehenn. plr: Utility Functions for ’PrairieLearn’ and R, 2019b. URL
https://github.com/stat430dspm/plr. R package supporting Docker for STAT 430 ’Data Sci-
ence Programming Methods’, Department of Statistics, University of Illinois at Urbana-Champaign.
[p450]

D. Eddelbuettel and A. Barbehenn. An R Autograder for PrairieLearn, 2020. URL http://arxiv.org/
abs/2003.06500. [p450]

D. Eddelbuettel and R. Koenker. Debugging with Docker and Rocker – A Concrete Example helping
on macOS, Aug. 2019. URL http://dirk.eddelbuettel.com/blog/2019/08/05/. [p443]

M. Edmondson. R on Kubernetes - serverless Shiny, R APIs and scheduled scripts, May
2018. URL https://code.markedmondson.me/r-on-kubernetes-serverless-shiny-r-apis-and-
scheduled-scripts/. [p446]

M. Edmondson. googleComputeEngineR: R Interface with Google Compute Engine, 2019. URL https:
//CRAN.R-project.org/package=googleComputeEngineR. R package version 0.3.0. [p444, 445]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=analogsea
https://chanzuckerberg.com/eoss/proposals/maintaining-rocker-sustainability-for-containerized-reproducible-analyses/
https://chanzuckerberg.com/eoss/proposals/maintaining-rocker-sustainability-for-containerized-reproducible-analyses/
https://CRAN.R-project.org/package=shiny
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://alexandereckert.com/post/testing-r-packages-with-latest-r-devel/
https://alexandereckert.com/post/testing-r-packages-with-latest-r-devel/
https://CRAN.R-project.org/package=sanitizers
https://stat430.com
https://CRAN.R-project.org/package=ttdo
https://CRAN.R-project.org/package=ttdo
https://github.com/stat430dspm/plr
http://arxiv.org/abs/2003.06500
http://arxiv.org/abs/2003.06500
http://dirk.eddelbuettel.com/blog/2019/08/05/
https://code.markedmondson.me/r-on-kubernetes-serverless-shiny-r-apis-and-scheduled-scripts/
https://code.markedmondson.me/r-on-kubernetes-serverless-shiny-r-apis-and-scheduled-scripts/
https://CRAN.R-project.org/package=googleComputeEngineR
https://CRAN.R-project.org/package=googleComputeEngineR


CONTRIBUTED RESEARCH ARTICLES 455

M. Edmondson. googleCloudRunner: R Scripts in the Google Cloud via Cloud Run, Cloud Build and
Cloud Scheduler, 2020. URL https://CRAN.R-project.org/package=googleCloudRunner. R package
version 0.1.1. [p439]

I. Emsley and D. De Roure. A Framework for the Preservation of a Docker Container | International
Journal of Digital Curation. International Journal of Digital Curation, 12(2), Apr. 2018. doi: 10.2218/
ijdc.v12i2.509. [p451]

N. Eubank. Lessons from a decade of replications at the Quarterly Journal of Political Science. PS:
Political Science & Politics, 49(2):273–276, Apr 2016. ISSN 1049-0965, 1537-5935. doi: 10.1017/
S1049096516000196. [p451]

C. Fay. dockerfiler: Easy Dockerfile Creation from R, 2019. URL https://CRAN.R-project.org/package=
dockerfiler. R package version 0.1.3. [p442]

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated performance comparison of virtual
machines and Linux containers. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 171–172, Mar. 2015. doi: 10.1109/ISPASS.2015.7095802. [p438]

R. FitzJohn. stevedore: Docker Client, 2020. URL https://CRAN.R-project.org/package=stevedore. R
package version 0.9.3. [p439]

B. Gaslam. diffobj: Diffs for R Objects, 2019. URL https://CRAN.R-project.org/package=diffobj. R
package version 0.2.3. [p450]

GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library. Open Source
Geospatial Foundation, 2019. URL https://gdal.org. [p443]

R. Gentleman and D. T. Lang. Statistical Analyses and Reproducible Research. Journal of Computational
and Graphical Statistics, 16(1):1–23, Mar. 2007. ISSN 1061-8600. doi: 10.1198/106186007X178663.
[p450]

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge,
J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J.
Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, and J. Zhang. Bioconductor: open
software development for computational biology and bioinformatics. Genome Biology, 5(10):R80,
Sept. 2004. ISSN 1474-760X. doi: 10.1186/gb-2004-5-10-r80. [p440]

J.-P. S. Glouzon, J.-P. Perreault, and S. Wang. Structurexplor: a platform for the exploration of structural
features of RNA secondary structures. Bioinformatics, 33(19):3117–3120, Oct. 2017. ISSN 1367-4803.
doi: 10.1093/bioinformatics/btx323. [p445]

P. Grosjean. SciViews-R: A GUI API for R. UMONS, MONS, Belgium, 2019. URL http://www.sciviews.
org/SciViews-R. [p446]

V. Guyader, C. Fay, S. Rochette, and C. Girard. golem: A Framework for Robust Shiny Applications, 2019.
URL https://CRAN.R-project.org/package=golem. R package version 0.1. [p445]

J. Harrison. RSelenium: R Bindings for ’Selenium WebDriver’, 2019. URL https://CRAN.R-project.org/
package=RSelenium. R package version 1.7.5. [p443]

N. Haydel, G. Madey, S. Gesing, A. Dakkak, S. G. de Gonzalo, I. Taylor, and W.-m. W. Hwu. Enhancing
the Usability and Utilization of Accelerated Architectures via Docker. In Proceedings of the 8th
International Conference on Utility and Cloud Computing, UCC ’15, pages 361–367. IEEE Press, 2015.
ISBN 978-0-7695-5697-0. URL http://dl.acm.org/citation.cfm?id=3233397.3233456. [p449]

K. Hornik, U. Ligges, and A. Zeileis. Changes on cran. The R Journal, 11(1):438–441, June 2019. URL
http://journal.r-project.org/archive/2019-1/cran.pdf. [p437]

W. G. Jacoby, S. Lafferty-Hess, and T.-M. Christian. Should journals be responsible for reproducibility?
Inside Higher Ed, Jul 2017. URL https://www.insidehighered.com/blogs/rethinking-research/
should-journals-be-responsible-reproducibility. [p451]

P. Jupyter. Jupyter Docker Stacks — docker-stacks latest documentation, 2018. URL https://jupyter-
docker-stacks.readthedocs.io/en/latest/. [p440]

P. Jupyter, M. Bussonnier, J. Forde, J. Freeman, B. Granger, T. Head, C. Holdgraf, K. Kelley, G. Nalvarte,
A. Osheroff, M. Pacer, Y. Panda, F. Perez, B. Ragan-Kelley, and C. Willing. Binder 2.0 - Reproducible,
interactive, sharable environments for science at scale. Proceedings of the 17th Python in Science
Conference, pages 113–120, 2018. doi: 10.25080/Majora-4af1f417-011. [p447]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=googleCloudRunner
https://CRAN.R-project.org/package=dockerfiler
https://CRAN.R-project.org/package=dockerfiler
https://CRAN.R-project.org/package=stevedore
https://CRAN.R-project.org/package=diffobj
https://gdal.org
http://www.sciviews.org/SciViews-R
http://www.sciviews.org/SciViews-R
https://CRAN.R-project.org/package=golem
https://CRAN.R-project.org/package=RSelenium
https://CRAN.R-project.org/package=RSelenium
http://dl.acm.org/citation.cfm?id=3233397.3233456
http://journal.r-project.org/archive/2019-1/cran.pdf
https://www.insidehighered.com/blogs/rethinking-research/should-journals-be-responsible-reproducibility
https://www.insidehighered.com/blogs/rethinking-research/should-journals-be-responsible-reproducibility
https://jupyter-docker-stacks.readthedocs.io/en/latest/
https://jupyter-docker-stacks.readthedocs.io/en/latest/


CONTRIBUTED RESEARCH ARTICLES 456

G. King. Replication, replication. PS: Political Science & Politics, 28(3):444–452, Sep 1995. doi: 10.2307/
420301. [p451]

L. Kjeldgaard. dockr: Creation of Lightweight Docker Images for Your Packages, 2019a. URL https:
//CRAN.R-project.org/package=dockr. R package version 0.8.6. [p442]

L. Kjeldgaard. ’dockr’: easy containerization for R - pRopaganda by smaakagen, Dec. 2019b. URL
http://smaakage85.netlify.com/2019/12/21/dockr-easy-containerization-for-r/. [p442]

G. M. Kurtzer, V. Sochat, and M. W. Bauer. Singularity: Scientific containers for mobility of compute.
PLOS ONE, 12(5):e0177459, May 2017. ISSN 1932-6203. doi: 10.1371/journal.pone.0177459. [p437,
438]

W. M. Landau. The drake r package: a pipeline toolkit for reproducibility and high-performance
computing. Journal of Open Source Software, 3(21), 2018. [p444]

M. Lang, B. Bischl, and D. Surmann. batchtools: Tools for r to work on batch systems. The Journal of
Open Source Software, 2(10):135, 2 2017. ISSN 2475-9066. doi: 10.21105/joss.00135. [p444]

B. Marwick. How computers broke science – and what we can do to fix it, Nov.
2015. URL http://theconversation.com/how-computers-broke-science-and-what-we-can-do-
to-fix-it-49938. [p450]

B. Marwick. Research compendium for the 1989 excavations at Madjedbebe rockshelter, NT, Australia,
July 2017. [p442]

B. Marwick, C. Boettiger, and L. Mullen. Packaging Data Analytical Work Reproducibly Using R (and
Friends). The American Statistician, 72(1):80–88, Jan. 2018. ISSN 0003-1305. doi: 10.1080/00031305.
2017.1375986. [p450]

T. McPhillips, C. Willis, M. Gryk, S. Nunez-Corrales, and B. Ludäscher. Reproducibility by Other
Means: Transparent Research Objects. 2019. doi: 10.5281/zenodo.3382423. To appear in 2019 IEEE
15th International Conference on e-Science (e-Science). [p448]

B. Mecum, M. B. Jones, D. Vieglais, and C. Willis. Preserving reproducibility: Provenance and
executable containers in dataone data packages. In 2018 IEEE 14th International Conference on
e-Science (e-Science), pages 45–49. IEEE, 2018. doi: 10.1109/eScience.2018.00019. [p448]

N. Merchant, E. Lyons, S. Goff, M. Vaughn, D. Ware, D. Micklos, and P. Antin. The iPlant Collaborative:
Cyberinfrastructure for Enabling Data to Discovery for the Life Sciences. PLOS Biology, 14(1):
e1002342, Jan. 2016. ISSN 1545-7885. doi: 10.1371/journal.pbio.1002342. [p448]

Microsoft. CRAN Time Machine - MRAN, 2019a. URL https://mran.microsoft.com/timemachine.
[p438]

Microsoft. Linux Containers on Windows, Sept. 2019b. URL https://docs.microsoft.com/en-
us/virtualization/windowscontainers/deploy-containers/linux-containers. [p438]

M. Morgan. BiocManager: Access the Bioconductor Project Package Repository, 2019. URL https://CRAN.R-
project.org/package=BiocManager. R package version 1.30.10. [p440]

S. Muñoz. The history of Docker’s climb in the container management market, June
2019. URL https://searchservervirtualization.techtarget.com/feature/The-history-of-
Dockers-climb-in-the-container-management-market. [p437]

J. Nolis and J. Werdell. Small data, big value, Dec. 2019. URL https://medium.com/tmobile-tech/
small-data-big-value-f783ceca4fdb. [p447]

D. Nüst and M. Hinz. containerit: Generating Dockerfiles for reproducible research with R. Journal
of Open Source Software, 4(40):1603, Aug. 2019. ISSN 2475-9066. doi: 10.21105/joss.01603. URL
https://joss.theoj.org/papers/10.21105/joss.01603. [p442]

D. Nüst, M. Konkol, E. Pebesma, C. Kray, M. Schutzeichel, H. Przibytzin, and J. Lorenz. Opening the
Publication Process with Executable Research Compendia. D-Lib Magazine, 23(1/2), Jan. 2017. ISSN
1082-9873. doi: 10.1045/january2017-nuest. [p451]

OCI. Open Containers Initiative - About, 2019. URL https://www.opencontainers.org/about. [p438]

H. Ooi. AzureContainers: Interface to ’Container Instances’, ’Docker Registry’ and ’Kubernetes’ in ’Azure’,
2019. URL https://CRAN.R-project.org/package=AzureContainers. R package version 1.2.0.
[p439]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dockr
https://CRAN.R-project.org/package=dockr
http://smaakage85.netlify.com/2019/12/21/dockr-easy-containerization-for-r/
http://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938
http://theconversation.com/how-computers-broke-science-and-what-we-can-do-to-fix-it-49938
https://mran.microsoft.com/timemachine
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://docs.microsoft.com/en-us/virtualization/windowscontainers/deploy-containers/linux-containers
https://CRAN.R-project.org/package=BiocManager
https://CRAN.R-project.org/package=BiocManager
https://searchservervirtualization.techtarget.com/feature/The-history-of-Dockers-climb-in-the-container-management-market
https://searchservervirtualization.techtarget.com/feature/The-history-of-Dockers-climb-in-the-container-management-market
https://medium.com/tmobile-tech/small-data-big-value-f783ceca4fdb
https://medium.com/tmobile-tech/small-data-big-value-f783ceca4fdb
https://joss.theoj.org/papers/10.21105/joss.01603
https://www.opencontainers.org/about
https://CRAN.R-project.org/package=AzureContainers


CONTRIBUTED RESEARCH ARTICLES 457

H. Ooi, A. de Vries, and Microsoft. checkpoint: Install Packages from Snapshots on the Checkpoint Server for
Reproducibility, 2020. URL https://CRAN.R-project.org/package=checkpoint. R package version
0.4.9. [p442]

J. Ooms. OpenCPU - Why Use Docker with R? A DevOps Perspective, Oct. 2017. URL https:
//www.opencpu.org/posts/opencpu-with-docker/. [p443, 445]

J. Ooms. sys: Powerful and Reliable Tools for Running System Commands in R, 2019. URL https://CRAN.R-
project.org/package=sys. R package version 3.3. [p439]

E. Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal, 10(1):
439–446, 2018. doi: 10.32614/RJ-2018-009. [p443]

R Core Team. 1999. URL https://cran.r-project.org/doc/manuals/r-devel/R-exts.html. [p443,
450]

R-hub project. R-hub Docs, 2019. URL https://docs.r-hub.io/. [p443]

R Special Interest Group on Databases (R-SIG-DB), H. Wickham, and K. Müller. DBI: R Database
Interface, 2019. URL https://CRAN.R-project.org/package=DBI. R package version 1.1.0. [p449]

RStudio Support. Running rstudio server with a proxy, Jan. 2020. URL https://support.rstudio.
com/hc/en-us/articles/200552326-Running-RStudio-Server-with-a-Proxy. [p448]

W. Saelens, R. Cannoodt, H. Todorov, and Y. Saeys. A comparison of single-cell trajectory inference
methods. 37. ISSN 15461696. doi: 10.1038/s41587-019-0071-9. [p451]

L. Savini, L. Candeloro, S. Perticara, and A. Conte. EpiExploreR: A Shiny Web Application for
the Analysis of Animal Disease Data. Microorganisms, 7(12):680, Dec. 2019. doi: 10.3390/
microorganisms7120680. [p445]

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, Jan. 2015.
ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003. [p449]

T-Mobile, J. Nolis, and H. Nolis. Enterprise Web Services with Neural Networks Using R and Ten-
sorFlow, Nov. 2018. URL https://opensource.t-mobile.com/blog/posts/r-tensorflow-api/.
[p447]

Trestle Technology, LLC. plumber: An API Generator for R, 2018. URL https://CRAN.R-project.org/
package=plumber. R package version 0.4.6. [p444]

S. Urbanek. Rserve: Binary R server, 2019. URL https://CRAN.R-project.org/package=Rserve. R
package version 1.7-3.1. [p446]

K. Ushey. Using renv with Docker, 2019. URL https://rstudio.github.io/renv/articles/docker.
html. [p442]

K. Ushey. renv: Project Environments, 2020. URL https://CRAN.R-project.org/package=renv. R
package version 0.9.3. [p442]

K. Ushey, J. Allaire, and Y. Tang. reticulate: Interface to ’Python’, 2019. URL https://CRAN.R-project.
org/package=reticulate. R package version 1.14. [p441]

M. van der Loo. tinytest: Lightweight and Feature Complete Unit Testing Framework, 2019. URL https:
//CRAN.R-project.org/package=tinytest. R package version 1.1.0. [p450]

L. Vilhuber. Report by the AEA Data Editor. AEA Papers and Proceedings, 109:718–729, May 2019. ISSN
2574-0768. doi: 10.1257/pandp.109.718. [p451]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5–10, 2011. URL https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p450]

H. Wickham and E. Ruiz. dbplyr: A ’dplyr’ Back End for Databases, 2019. URL https://CRAN.R-
project.org/package=dbplyr. R package version 1.4.2. [p449]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K. Müller, J. Ooms, D. Robinson,
D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
Tidyverse. Journal of Open Source Software, 4(43):1686, Nov. 2019. ISSN 2475-9066. doi: 10.21105/joss.
01686. [p440, 447]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=checkpoint
https://www.opencpu.org/posts/opencpu-with-docker/
https://www.opencpu.org/posts/opencpu-with-docker/
https://CRAN.R-project.org/package=sys
https://CRAN.R-project.org/package=sys
https://cran.r-project.org/doc/manuals/r-devel/R-exts.html
https://docs.r-hub.io/
https://CRAN.R-project.org/package=DBI
https://support.rstudio.com/hc/en-us/articles/200552326-Running-RStudio-Server-with-a-Proxy
https://support.rstudio.com/hc/en-us/articles/200552326-Running-RStudio-Server-with-a-Proxy
https://opensource.t-mobile.com/blog/posts/r-tensorflow-api/
https://CRAN.R-project.org/package=plumber
https://CRAN.R-project.org/package=plumber
https://CRAN.R-project.org/package=Rserve
https://rstudio.github.io/renv/articles/docker.html
https://rstudio.github.io/renv/articles/docker.html
https://CRAN.R-project.org/package=renv
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=reticulate
https://CRAN.R-project.org/package=tinytest
https://CRAN.R-project.org/package=tinytest
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://CRAN.R-project.org/package=dbplyr
https://CRAN.R-project.org/package=dbplyr


CONTRIBUTED RESEARCH ARTICLES 458

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2020. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.8.4. [p449]

Wikipedia contributors. APT (software), Feb. 2020a. URL https://en.wikipedia.org/w/index.php?
title=APT_(software)&oldid=939802209. Page Version ID: 939802209. [p441, 448]

Wikipedia contributors. OS-level virtualization, Jan. 2020b. URL https://en.wikipedia.org/w/index.
php?title=OS-level_virtualization&oldid=935110975. Page Version ID: 935110975. [p438]

N. Xiao. liftr: Containerize R Markdown Documents for Continuous Reproducibility, 2019. URL https:
//CRAN.R-project.org/package=liftr. R package version 0.9.2. [p442]

Y. Xie, J. J. Allaire, and G. Grolemund. R Markdown: The Definitive Guide. Chapman and Hall/CRC,
2018. [p442]

H. Ye. Docker Setup for R package Development, 2019. URL https://haoye.us/post/2019-10-10-
docker-for-r-package-development/. [p443]

C. Zilles, M. West, D. Mussulman, and T. Bretl. Making testing less trying: Lessons learned from oper-
ating a computer-based testing facility. In Proceedings of the 2018 Frontiers in Education Conference (FIE
2018), 2018. URL http://lagrange.mechse.illinois.edu/pubs/ZiWeMuBr2018/ZiWeMuBr2018.pdf.
[p450]

M. Çetinkaya Rundel and C. Rundel. Infrastructure and Tools for Teaching Computing Throughout
the Statistical Curriculum. The American Statistician, 72(1):58–65, Jan. 2018. ISSN 0003-1305. doi:
10.1080/00031305.2017.1397549. [p449]

Daniel Nüst
University of Münster
Institute for Geoinformatics
Heisenbergstr. 2
48149 Münster, Germany

0000-0002-0024-5046
daniel.nuest@uni-muenster.de

Dirk Eddelbuettel
University of Illinois at Urbana-Champaign
Department of Statistics
Illini Hall, 725 S Wright St
Champaign, IL 61820, USA

0000-0001-6419-907X
dirk@eddelbuettel.com

Dom Bennett
Gothenburg Global Biodiversity Centre, Sweden
Carl Skottsbergs gata 22B
413 19 Göteborg, Sweden

0000-0003-2722-1359
dominic.john.bennett@gmail.com

Robrecht Cannoodt
Ghent University
Data Mining and Modelling for Biomedicine group
VIB Center for Inflammation Research
Technologiepark 71
9052 Ghent, Belgium

0000-0003-3641-729X
robrecht@cannoodt.dev

Dav Clark
Gigantum, Inc.
1140 3rd Street NE
Washington, D.C. 20002, USA

0000-0002-3982-4416
dav@gigantum.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=dplyr
https://en.wikipedia.org/w/index.php?title=APT_(software)&oldid=939802209
https://en.wikipedia.org/w/index.php?title=APT_(software)&oldid=939802209
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=935110975
https://en.wikipedia.org/w/index.php?title=OS-level_virtualization&oldid=935110975
https://CRAN.R-project.org/package=liftr
https://CRAN.R-project.org/package=liftr
https://haoye.us/post/2019-10-10-docker-for-r-package-development/
https://haoye.us/post/2019-10-10-docker-for-r-package-development/
http://lagrange.mechse.illinois.edu/pubs/ZiWeMuBr2018/ZiWeMuBr2018.pdf
https://orcid.org/0000-0002-0024-5046
mailto:daniel.nuest@uni-muenster.de
https://orcid.org/0000-0001-6419-907X
mailto:dirk@eddelbuettel.com
https://orcid.org/0000-0003-2722-1359
mailto:dominic.john.bennett@gmail.com
https://orcid.org/0000-0003-3641-729X
mailto:robrecht@cannoodt.dev
https://orcid.org/0000-0002-3982-4416
mailto:dav@gigantum.com


CONTRIBUTED RESEARCH ARTICLES 459

Gergely Daróczi

0000-0003-3149-8537
daroczig@rapporter.net

Mark Edmondson
IIH Nordic A/S, Google Developer Expert for Google Cloud Platform
Artillerivej 86
2300 København S, Denmark

0000-0002-8434-3881
mark@markedmondson.me

Colin Fay
ThinkR
5O rue Arthur Rimbaud
93300 Aubervilliers, France

0000-0001-7343-1846
contact@colinfay.me

Ellis Hughes
Fred Hutchinson Cancer Research Center
Vaccine and Infectious Disease
1100 Fairview Ave. N., P.O. Box 19024
Seattle, WA 98109-1024, USA
ehhughes@fredhutch.org

Lars Kjeldgaard
Danish Tax Authorities
Oestbanegade 123
2100, Koebenhavn Oe
lars_kjeldgaard@hotmail.com

Sean Lopp
RStudio, Inc
250 Northern Ave
Boston, MA 02210, USA
sean@rstudio.com

Ben Marwick
University of Washington
Department of Anthropology
Denny Hall 230, Spokane Ln
Seattle, WA 98105, USA

0000-0001-7879-4531
bmarwick@uw.edu

Heather Nolis
T-Mobile
12920 Se 38th St.
Bellevue, WA, 98006, USA
heather.wensler1@t-mobile.com

Jacqueline Nolis
Nolis, LLC
Seattle, WA, USA

0000-0001-9354-6501
jacqueline@nolisllc.com

Hong Ooi
Microsoft
Level 5, 4 Freshwater Place
Southbank, VIC 3006, Australia

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://orcid.org/0000-0003-3149-8537
mailto:daroczig@rapporter.net
https://orcid.org/0000-0002-8434-3881
mailto:mark@markedmondson.me
https://orcid.org/0000-0001-7343-1846
mailto:contact@colinfay.me
mailto:ehhughes@fredhutch.org
mailto:lars_kjeldgaard@hotmail.com
mailto:sean@rstudio.com
https://orcid.org/0000-0001-7879-4531
mailto:bmarwick@uw.edu
mailto:heather.wensler1@t-mobile.com
https://orcid.org/0000-0001-9354-6501
mailto:jacqueline@nolisllc.com


CONTRIBUTED RESEARCH ARTICLES 460

hongooi@microsoft.com

Karthik Ram
Berkeley Institute for Data Science
University of California
Berkeley, CA 94720, USA

0000-0002-0233-1757
karthik.ram@berkeley.edu

Noam Ross
EcoHealth Alliance
460 W 34th St., Ste. 1701
New York, NY 10001, USA

0000-0002-2136-0000
ross@ecohealthalliance.org

Lori Shepherd
Roswell Park Comprehensive Cancer Center
Elm & Carlton Streets
Buffalo, NY, 14263, USA

0000-0002-5910-4010
lori.shepherd@roswellpark.org

Péter Sólymos
Analythium Solutions
#258 150 Chippewa Road
Sherwood Park, AB, T8A 6A2, Canada

0000-0001-7337-1740
peter@analythium.io

Tyson Lee Swetnam
University of Arizona
1657 E Helen St.
Tucson, AZ, 85721, USA

0000-0002-6639-7181
tswetnam@arizona.edu

Nitesh Turaga
Roswell Park Comprehensive Cancer Center
Elm & Carlton Streets
Buffalo, NY, 14263, USA

0000-0002-0224-9817
nitesh.turaga@roswellpark.org

Charlotte Van Petegem
Ghent University
Department WE02
Krijgslaan 281, S9
9000 Gent, Belgium

0000-0003-0779-4897
charlotte.vanpetegem@ugent.be

Jason Williams
Cold Spring Harbor Laboratory
1 Bungtown Rd.
Cold Spring Harbor, NY, 11724, USA

0000-0003-3049-2010
williams@cshl.edu

Craig Willis
University of Illinois at Urbana-Champaign
501 E. Daniel St.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:hongooi@microsoft.com
https://orcid.org/0000-0002-0233-1757
mailto:karthik.ram@berkeley.edu
https://orcid.org/0000-0002-2136-0000
mailto:ross@ecohealthalliance.org
https://orcid.org/0000-0002-5910-4010
mailto:lori.shepherd@roswellpark.org
https://orcid.org/0000-0001-7337-1740
mailto:peter@analythium.io
https://orcid.org/0000-0002-6639-7181
mailto:tswetnam@arizona.edu
https://orcid.org/0000-0002-0224-9817
mailto:nitesh.turaga@roswellpark.org
https://orcid.org/0000-0003-0779-4897
mailto:charlotte.vanpetegem@ugent.be
https://orcid.org/0000-0003-3049-2010
mailto:williams@cshl.edu


CONTRIBUTED RESEARCH ARTICLES 461

Champaign, IL 61820, USA
0000-0002-6148-7196

willis8@illinois.edu

Nan Xiao
Seven Bridges Genomics
529 Main St, Suite 6610
Charlestown, MA 02129, USA

0000-0002-0250-5673
me@nanx.me

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://orcid.org/0000-0002-6148-7196
mailto:willis8@illinois.edu
https://orcid.org/0000-0002-0250-5673
mailto:me@nanx.me


SPECIAL ARTICLES 462

S, R, and Data Science
by John M. Chambers

Abstract Data science is increasingly important and challenging. It requires computational tools
and programming environments that handle big data and difficult computations, while supporting
creative, high-quality analysis. The R language and related software play a major role in computing
for data science. R is featured in most programs for training in the field. R packages provide tools for
a wide range of purposes and users. The description of a new technique, particularly from research
in statistics, is frequently accompanied by an R package, greatly increasing the usefulness of the
description.

The history of R makes clear its connection to data science. R was consciously designed to
replicate in open-source software the contents of the S software. S in turn was written by data
analysis researchers at Bell Labs as part of the computing environment for research in data analysis
and collaborations to apply that research, rather than as a separate project to create a programming
language. The features of S and the design decisions made for it need to be understood in this
broader context of supporting effective data analysis (which would now be called data science). These
characteristics were all transferred to R and remain central to its effectiveness. Thus, R can be viewed
as based historically on a domain-specific language for the domain of data science.

Note to R Journal readers:

The following paper was published online in the History of Programming Languages (HOPL),
Volume 4, in June 2020 (DOI 10.1145/3386334). The content seems likely to be of interest to many R
Journal readers, and since HOPL is plausibly not typical reading for data scientists, the editors of the R
Journal have kindly offered to republish the paper here. This is possible thanks also to the enlightened
policy of the ACM, providing for open distribution through the chosen copyright declaration.

Introduction

R has become a widely used medium for the practice of technically advanced data science; most
importantly, a medium in which new applications and new ideas in the practice of data science are
very often shared throughout the worldwide community.

The language, data structure and functional capabilities of R, as they were implemented in the late
1990s, were modelled on the S software from Bell Labs, supplemented by some new ideas, reflecting
developments in programming language design during this period. To create a free, open-source
language based on S, R’s original authors, Ihaka and Gentleman (1996), were joined by an international
group of volunteers, subsequently known as R Core Ihaka (1998).

The necessary definition of S, independent of its proprietary implementation, was taken from two
books: Becker et al. (1988) for the general features and Chambers and Hastie (1992) for the fitting and
analysis of statistical models plus some extensions to the software, notably to classes and methods.
In the R community, these books are nearly always referred to as the blue book and the white book,
respectively, from their covers.

The S software was distinguished from many programming language designs in being motivated
by a relatively specific scientific goal; namely, to support research in data analysis at Bell Labs and
applications to challenging problems. The goal of the language was to provide interactive analysis
using the best current techniques Becker and Chambers (1984) and also a programming interface
to software implementing new techniques Becker and Chambers (1985). These goals influenced
distinctive characteristics of S: data structures designed for data analysis rather than built up from
basic types; interfaces to other software as part of the language design.

Data analysis as practiced at Bell Labs is recognized as the precursor of what would now be
described as “data science” Donoho (2017). Subsequent versions of S and of R have retained and
extended a design focussed on the needs of data science, so that R can be viewed as a domain-specific
language for the domain of data science.

This perspective helps to understand both the history and many of the design choices leading to R.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 463

1965–1985: Bell Labs, Data Science and Computing

For a long period in the 20th century, particularly for the three or four decades following the second
world war, notable scientific and technological advances came from the research area of AT&T’s Bell
Telephone Laboratories (aka “Bell Labs”).

The most famous of these, the invention of the transistor, was a critical step towards the digital and
miniaturization revolution that continues to overwhelm us. Other advances were also key, notably
information theory, coding and digital techniques for communication.

It was noted at the time, and even more since then, that the productivity and originality of much
Bell Labs work seemed to derive from an organization and research atmosphere not easily found
elsewhere. A non-technical account that nevertheless conveys much of the research management style
is given in the book by Jon GertnerGertner (2013).

The management philosophy of Bell Labs research was to hire bright and self-motivated individu-
als and give them the freedom to come up with their own ideas. At the same time, there was a belief
that some of these ideas would be fundamentally valuable for communication, and so for the parent
company. Whoever came up with such ideas could expect to be rewarded financially (moderately) and
with recognition. Along with ideas leading to the transistor and communication theory, this research
environment nurtured an approach to what can now be called data science.

Data Science and Data Analysis

Techniques, applications and teaching for data science have drawn much attention recently, and for
good reason. Essentially all branches of science face challenges in studying important questions due
to the quantity, complexity or questionable nature of the data.

The term “data science” is relatively recent and is used somewhat loosely at times; we will assume
a simple but strict definition:

Data science consists of techniques and their application to derive and communicate scientifically
valid inferences and predictions based on relevant data.

(In particular, just the use of “big data” does not qualify the results as data science.)

Although the popularity of the term lay decades in the future, research in data analysis at Bell
Labs during the design and evolution of S is widely recognized as the precursor to data science. The
fundamental inspiration for this research came originally from John Tukey. The historical summary in
the paper “50 Years of Data Science” Donoho (2017) cites his “Future of Data Analysis” paper Tukey
(1962) as a point of origin for data science. Tukey’s championing of data analysis continued through
many later contributions, including the book “Exploratory Data Analysis” Tukey (1977) and beyond.
His career was divided between Bell Labs and Princeton University (along with many other activities).
Tukey was an enormous influence, not to say inspiration, at Bell Labs.

Bell Labs statistics research was housed in the “Statistics and Data Analysis Research” department,
surely the only group of research statisticians with “Data Analysis” in its title at that time. Interesting
and potentially rewarding projects could range from the essentially theoretical (though usually with
an implication of future application) through more data-analytic methods (for example, data or model
visualization Wilk and Gnanadesikan (1968)) to collaborative projects with other groups at Bell Labs
and AT&T to obtain insights from particular sources of data.

Data analysis at Bell Labs did not avoid “big data” by the standards of the time (usually meaning
one or a few reels of magnetic tape); on the contrary, the challenge of doing analysis in this context
was often central to a particularly interesting and important collaboration. For example, rain gauge
experiments in the 1960s studying the effect of rainfall on errors in microwave transmission generated
data running to several million observations, requiring some “big data” techniques for visualization
and summaries (Freeny and Gabbe (1969) and Jaeckel and Gabbe (1974)).

Overall, the combination of opportunities and responsibilities gave data analysis at Bell Labs
much of the flavor associated with contemporary discussions of data science: large datasets; iterative,
probing analysis including visualization; problems of practical importance and, as a result, challenging
computations. Data analysis that was useful and applicable to sizable datasets required advanced
computational techniques for the time and good software to implement them.

By the time I first arrived at Bell Labs as a graduate student intern in 1964, advances in computation
were already recognized as important for data analysis. S came after more than a decade of involvement
in statistical computing.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 464

Before S

The decade or so beginning in the mid-1960s was a determining period for scientific computing, and in
particular for computations involving significant amounts of data. Hardware, software and algorithms
all broke decisively with the first generation of computing and its emphasis on the physical elements
of the computer and individual machine instructions.

By the middle of the 1960s, Bell Labs was involved in a project to create the Multics system, jointly
with MIT and General Electric Corbató and Vyssotsky (1965). This was a pioneering and ambitious
effort to implement a multi-process, multi-user operating system on a large scale.

The combination of data analysis research and large-scale applications had sensitized management
at Bell Labs to the relevance of statistical computing. The first planning for a statistical system began in
1965 (with John Tukey participating in our initial meeting). The system was to be built around the PL-1
language and was predicated on Multics as the operating system environment. The proposed name
was BLISS, for Bell Labs Interactive Statistical System (although the “I” was sometimes interpreted as
Interim).

Bell Labs dropped out of the Multics project in 1966, for practical reasons. The Murray Hill location
of Bell Labs had scheduled the replacement of its IBM 7094 system with hardware from General
Electric, with the intention of running Multics. The IBM equipment was promised to a new Bell Labs
location in Indian Hill, Illinois.

Not surprisingly, the implementation of Multics took considerably longer than had been predicted.
It was clearly not going to be generally usable when the hardware transfer occurred. With the new
hardware at Murray Hill but no Multics, most of the Research area of Bell Labs was left with a
computer system from a much less experienced company than IBM, an operating system not the one
desired (and neither understood by us nor bug-free) and less of a software base than the IBM, let alone
what had been expected with Multics.

For data analysis, the immediate computational strategy was largely a rescue mission, to provide a
capability to manage and analyze data with the scale and reliability we required, and with access to
the numerical capabilities necessary for the analysis. The facility took the form of a subroutine library,
callable from Fortran and largely implemented in that language.

The BLISS project was dropped, inevitably since it not only assumed the Multics operating system
but was to have been an extension of the PL-1 language planned for Multics but not available otherwise.
Of the small group involved in planning BLISS, only I would still be at Bell Labs and involved in
statistical computing when work on § began. Only a little prototyping had been completed on BLISS,
none of which was relevant to later work.

It would be a decade before the first version of S was implemented to provide an interactive
environment for flexible analysis applied to a wide range of data. However, that decade was by
no means static. Research in data analysis and collaborative projects continued actively. Providing
state-of-the-art computing focused initially on relatively specific methods, implemented as subroutines
to be called from Fortran and organized in a subroutine library.

When we came back to create an interactive environment, the computing facilities incorporated in
the library had expanded enormously, both for Fortran’s traditional domain of numerical computation
and for the other areas that make up data science. Computations for linear algebra, optimization, func-
tion approximation, random number generation and data manipulation (e.g., sorting and searching)
were among those largely revolutionized by new computer-oriented techniques. These were often
implemented in publicly available sources, such as published algorithm sections. The community
involved in using and testing these algorithms grew rapidly as well.

Additional areas had been advanced locally, including two of relevance for data science: visualiza-
tion and data management. A flexible structure for computer graphics in support of data analysis was
implemented through Fortran subroutines. This software, referred to as GR-Z Becker and Chambers
(1976), provided a structure for graphics later adopted and extended in S and therefore in R.

I wrote (but never described externally) some data management software that supported a general
model of data structures defined hierarchically with named components, starting from vectors and
scalars of some basic types. The structures were self-defining and extensible. Lengths of components
could be queried and modified. Users could create arbitrary new types of structure. With some
modification, this software provided the initial implementation for data structures in S.

First Version of S

The first meetings to plan for an interactive statistical system took place in 1976. At this time, powerful
software for data analysis existed in the form of an extensive subroutine library. Interactive use of this
software was becoming possible through time-shared terminals.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 465

However, the software in the library could only be used by writing a complete control script, also
a Fortran program, that managed the data, carried out the analysis and produced some informative
output to be viewed later. This would be run as a “job”, with control information included, in a format
little changed from the days when user card decks were submitted for operators to run.

The details needed were sufficiently tricky and extensive to be outside the skills of the principal
investigators, particularly for analysis involving serious data in terms of size or complexity. As a
result, most data analysis involved a team including programmers. Decisions about new analysis
required communicating the ideas to the programming staff, adding to the delay and discouraging
repeated changes.

When Rick Becker joined us, he had experience with an interactive system at the National Bureau
of Economic Research that, while much less extensive or general than our software, provided truly
interactive analysis. Rick and I became convinced that we could build a system combining convenient
interactive use with access to the full power of the Fortran-based library. We proposed to create an
“interactive environment” (as the title of the first book on S Becker and Chambers (1984) referred to it)
that continued to support data analysis but gave the analyst a convenient, direct interface. To achieve
this goal, the new software had to provide three features:

1. Convenience: compact, straightforward expression for the analysis, with § handling details such
as managing the data and providing graphical or formatted output.

2. Completeness: the extensive range of summaries, modeling and visualization provided by the
Fortran library had to be available;

3. Extensibility: we were a data analysis research community, so new techniques would need to be
available from §.

A fourth requirement was that this be implementable with a relatively modest programming effort;
essentially, the two eventual authors with help from various colleagues.

The approach that succeeded in satisfying all the requirements was to build the system around an
interface to Fortran. From the start of the project, our design was based on writing specialized code to
incorporate individual Fortran subroutines into S by writing a specialized interface function for each
of them.

Typically for Bell Labs research, we felt free to start the project without any formal approval. The
first meeting, on May 5 1976, involved about five people as I recall, none of them management. We
presented some ideas and preliminary software. Figure 1 is the first “visual” of the first talk. The upper
half of the figure illustrates the concept of the interface implemented in Fortran: a Fortran subroutine
(XABC, the rectangle) interpreting the user’s interactive expression, passed in as an S object by the
argument INSTR. Eventually the interface calls the Fortran algorithm (ABC, the circle). The result is
returned to the interactive user as an S object (through the argument OUTSTR, since XABC is a subroutine
rather than a function). The lower half of the figure sketches the implementation of the objects for the
user’s call and the value returned.

The details of how all this would work were somewhat unclear initially, of course, but the design
suggested by the Figure is broadly consistent with the implementation over the next couple of years.
By the time S was distributed generally, the interface mechanism, as well as being the implementation
for most of the system, was provided to users as an interface language, Becker and Chambers (1985),
the chief mechanism for extensibility. The interface language would be pre-compiled into Fortran.

The essential programming unit was a function definition. Each function would be available in S
with the name and arguments defined in the interface code. The arguments in a call to the function
would be objects in S. The function would return an S object as its value. The body of the function
could contain any Fortran code but typically it would call a subroutine, not dependent on S, to do the
actual analysis, visualization or other computation. In particular, this made essentially all the code in
our library available for incorporating into S.

The interface language also had some facilities for creating and manipulating certain S objects,
mainly vectors, matrices and lists with named components that were themselves S objects. The
interface language mapped objects or their components into Fortran arrays, usually numeric. The
language also had built-in accessor functions to provide necessary scalar information for Fortran, such
as the length of a vector or the dimensions of a matrix.

In addition to the interface routines, top-level code parsed the user language, loaded the code for
individual functions and evaluated the call to the function.

The user language consisted of expressions, generally C-style, plus a few extra operators and minus
declarations. The essence of the system was in the functions, several hundred of which were included
by the time S was distributed outside AT&T. All function calls took some S objects as arguments and
returned an S object as the value.

For example, the function

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 466

Figure 1: Design for an Interactive System. May 5, 1976

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 467

reg(x, y)

computed the linear regression of a vector y against the columns of a matrix x, returning an S object
representing the regression, in this case a list with named components.

If the user had, say, read in a matrix and assigned it in S as myData, a regression of the first column
against the next 3 columns would be:

r <- reg(myData[,1], myData[,2:4])

Information from the regression object such as r$coef and r$resid for coefficients and residuals could
be used for further analysis of the results.

An interface function would have been written for reg() specifying the arguments, with x to be
interpreted as a numeric matrix and y as a numeric vector. The interface function would call a Fortran
subroutine expecting such arguments, typically also supplying expressions for additional required
information. For example, the length of y would be available as LENGTH(y) in the interface language.

Such Fortran subroutines would usually return their result by filling in output arguments. The
interface language included expressions for allocating corresponding objects in S and for returning
an object containing the computed results. (See (Chambers, 2016, pp 26–29) for the actual interface
function for reg().)

Interface functions were written for many of the analytical techniques and for graphics, including
interaction. Basic summaries, data manipulation and simple facilities for data input and report
generation were also included. All of these made use of existing code in the Fortran library.

The choice of a C-style user language seems obvious now, but was not standard for a statistical
system at the time. For example, some of our colleagues who were Unix authors or users suggested
that a shell-style language built around pipes would be just as capable and easier for users to learn.
Our feeling was that nearly all the likely early users of S were comfortable with a scientific expression
language. Also, general computations in data analysis fairly quickly become more tree-like. Both
arguments in the regression example above are themselves function calls (in S, operators are functions),
making a pure pipe syntax less convenient.

The user language retained this form throughout the evolution of S and R, although additional
structure was added.

In a 2016 book on R, I asserted that its design can be summarized by three principles, (Chambers,
2016, pp 4–11):

objects: Everything that exists in R is an object.

functions: Everything that happens in R is a function call.

interfaces: Interfaces to other languages are a part of R.

These principles did not suddenly appear at a late stage in the evolution of the software; rather, they
are broadly visible from the first version of S and explain a number of detailed decisions.

For example, the centrality of function calls is clear from Figure 1 although functions as objects
came later, as will be discussed below. The fundamental role of interfaces is also clear from the Figure;
initially, only to Fortran but later to C also and to executable code generally.

The uniform approach to dynamically allocated § objects was partly a result of depending on
the existing data management routines in the subroutine library. A resulting idiosyncrasy was that S
had no scalar types as distinct from general objects. The intention was that low-level computations
depending on these would be done through the interface to Fortran. It was also a practical decision:
the available programming resources would have been insufficient to implement a language with
similar capabilities from the ground up.

By 1978, a version of the system existed and was in use on the Murray Hill computer system
(now Honeywell, which had purchased the General Electric computer division). The system survived
without a name for its first few months but was eventually called "S" (initially with quotation marks).

S Outside Bell Labs

By the end of the 1970s, S was proving popular with users in statistics research and also in some other
research and development organizations at Murray Hill. Only at Murray Hill, however, because it
was implemented in the operating system for our unintended Honeywell computer and built upon
the local subroutine library written for that machine.

A desire to enlarge the user community motivated an effort to port S to other hardware and
operating systems. The prospect of rewriting the system directly for a variety of targets was daunting.
The mechanism in the S main program to swap in and communicate with code for individual functions

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 468

was a custom-built overloading computation specialized to this operating system. Porting this and
other parts of the system management to each target machine seemed likely to be tricky and tedious.

The solution came via another, separate fallout from the Multics debacle. Some of the Bell Labs
computer science researchers involved with the Multics effort decided to pursue related operating
system ideas, on a deliberately smaller scale. As the ideas crystallized into an actual system, it was
called Unix Ritchie (1984).

At first, Unix seemed an unlikely target for S and not particularly helpful for portability. Like
S, Unix was initially implemented on the available machine; in its case, the 16-bit PDP-11. Hardly
a promising target for substantial data science and the initial uses of Unix did not include sizable
numerical computations (no Fortran compiler, for example).

Fortunately, the growing popularity of Unix motivated them, like us, to strive for portability. A
new version of Unix was designed for portability with operating system functionality callable from C
Johnson and Ritchie (1978). Unix was ported to some 32-bit machines and a Fortran compiler included,
through translation into C.

We took advantage of the popularity of Unix and its adoption on many platforms to define portable
S to be a Unix implementation. Non-portable operations such as loading the code for functions and
transferring control to them were re-implemented in C for Unix. This was technically a second version
of S but retaining the existing user and interface languages, with only a few changes in individual
functions.

Unix did us a second important service. Through negotiations with the appropriate legal organi-
zations at Bell Labs, Unix was licensed for distribution outside AT&T. We were able to arrange for
similar licensing of S.

By 1985, an S community was starting to grow, including particularly welcome interactions with
university users, for whom an S license was relatively inexpensive. Statisticians in a number of
prominent university departments included some enthusiastic users (e.g., at Wisconsin, Carnegie
Mellon, Berkeley and Toronto). Two books described the software: a user’s manual Becker and
Chambers (1984) and a book describing the extension of S by writing functions in the interface
language Becker and Chambers (1985).

1985–2000: S, Leading to R

At the same time that the S community was growing using the current version, the original authors
were at work on a new version. The user language retained its grammar and the system supported
nearly all of the functional capabilities, but the implementation was based on a new computational
model.

The S software in this version was the basis for R. The plan for R was to reproduce the form and
analytic capabilities of S, with additional features. This was in fact what happened, complicated
by further evolution of S during the implementation of R, from which some new features were also
incorporated.

To sort this out, it will be helpful to document the evolution of S during the period (Section 3.1),
describe the creation of R (Section 3.2) and summarize the structure of R as it derives from S but also
its relevant new features (Section 3.3). Lastly, we will relate the shared computational model of S and
R to data science (Section 3.4).

S, Versions 3 and 4

The “new S”, as the title of its 1988 user manual Becker et al. (1988) described it, was not back-
compatible. However, it aimed to give the user the same experience of high-level interactive data
analysis combined with the ability to incorporate new research.

The subtitle of the original user manual Becker and Chambers (1984) was An Interactive Environment
for Data Analysis and Graphics. The subtitle of the new book was almost identical except that An
Interactive ... was replaced by A Programming .... The design aimed to provide a unified and convenient
organization for programming in the language and for the organization of data.

The new S retained the three fundamental principles mentioned on page 467, but in a revised form.

objects: The uniformity of objects became explicit for the user, with properties such as the object’s
class available for programming. New classes of objects extended the analysis.

functions: The key change for programming was to add function definitions to the user language.
Programming would now be centered on the creation of new S-language functions. Function
definitions were now S objects that could be passed around and computed on.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 469

interfaces: The interface language disappeared but inter-language interfaces remained central, espe-
cially for C but still for Fortran as well, along with an interface to the Unix shell.

S continued to evolve during this period, but largely by adding new capabilities or programming
features without breaking back-compatibility, documented for the user community mainly by the 1988
book and two subsequent books.

A 1992 book, cite, introduced an approach to fitting and analyzing statistical models, using §’s
object-based computations and a version of functional object-oriented programming. The statistical
modeling software made use of the flexibility in objects and functions to create a unified and statistically
informative approach to fitting models.

Statistical models were described and implemented in several classes (e.g., linear models, smooth
curve fitting, . . . ). Within each class a particular model was defined by a structural formula, essentially
an expression in S that was a symbolic representation of the particular model, and by the data from
which the model should be estimated. The data would typically be gathered together in a new class of
objects, the data frame, representing a sequence of n observations on the same p variables.

The conceptual framework of this software was carried over into R, along with most of the specific
functionality described in Chambers and Hastie (1992), and became influential for future work in
data analysis, two aspects in particular.: models as objects and the data frame as a representation of
data for scientific studies. Viewing fitted models as objects from corresponding classes emphasized
the data analysis philosophy encouraging visualization, examination and further modification. In S
and R, generic functions for plotting, updating and extracting information will have methods for the
various classes of models. The structure has lent itself to research and implementation of new classes
of models, with corresponding R packages.

The data frame concept is central. It can be viewed both as a table of named entries (the variables)
and as a rectangular array of the individual observations. However, it differs from a general dictionary
or table in that each entry must have n elements corresponding to the observations and it differs
from a matrix in that the entries may be of different types. In S and R, the data frame is implemented
as a class built on a vector of type "list" with attributes defining the variable names and other
properties. The rectangular structure is implemented by functional methods for the class; for example,
to extract or replace data by matrix-like expressions. The data frame concept has been replicated
in other software and languages, such as the DataFrame class in the pandas software in Python
(https://pandas.pydata.org). Section 3.3 will discuss further details of the implementation.

The example of linear regression illustrates the concepts. The original reg() function regressed a
numeric vector on a numeric matrix, but the new structure allowed more flexible possibilities. So, a fit
of runTime to runners’ age from a dataset of racing results Kaplan and Nolan (2015) might have the
form

r1 <- lm( runTime ∼ age, data = cbMen)

The first argument is now an expression that effectively produces a symbolic form for the model,
typically containing the names of variables in the data frame supplied as the second argument —
potentially in general S expressions, e.g. log(age).

The object returned is from a class, "lm" in this case, for which functional methods simplify further
study, such as specialized graphical displays:

plot(r1)

creates a specialized visualization useful for studying linear regression fits. Other statistical modelling
techniques would replace lm() with aov(), for example for an analysis-of-variance model, but giving
the user similar features for specifying the model and studying the result. Section 3.3 will relate these
techniques to the design of the language.

At the same time that R was being implemented as a “free” S, additional research in statistical
computing at Bell Labs produced a new version of S, extending it in a generally back-compatible way.
From 1997, this was the version of S as licensed by Bell Labs (by then part of Lucent Technologies
after the further split of AT&T) and generally referred to as Version 4 of S, described in a 1998 book
Chambers (1998).

Some of its features were incorporated in the initial version of R or added later. A more general,
more formal version of object-oriented programming was provided, although it did not replace the
earlier version in the white book. An additional interface to C was provided that passed references to
S objects, on which users could program via C macros and utility functions. Classes of connection
objects were defined to deal more generally with input and output (e.g., fifo and pipe connections).
(Section 3.3 will examine these topics in more detail).

The licensing of S had always provided a re-sellers option for those wanting to produce a com-
mercial product extending S. Of several such efforts, the dominant one became software known as

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://pandas.pydata.org


SPECIAL ARTICLES 470

S-Plus, managed by a company called MathSoft in 1998. The company changed names a few times
until becoming a subsidiary of TibCo (the Wikipedia article, https://en.wikipedia.org/wiki/S-PLUS
outlines the history). Eventually, the owners of S-Plus obtained an exclusive resale license and in 2004
bought the rights to the S software.

The S-Plus user community existed, and continues to exist to some extent, along with the growing
R community. Some desire for compatibility of R with S-Plus was relevant in the development of R, as
will be noted in Section 3.3.

The Birth of R

Ross Ihaka and Robert Gentleman published a paper in 1996 Ihaka and Gentleman (1996) describing a
“language for data analysis and graphics”. The project had been previously announced through an S
community letter and a small but growing group of contributors existed. Interest in R grew following
the publication and by 1998 the contributors had expanded to a group of 11 “volunteers”, with write
permission on the R source (an informal group that came to be known as R core and that has continued,
with gradually varying membership, to be responsible for the official versions of R until the present
day).

None of us at Bell Labs was consulted, ensuring a valid implementation freely available for
distribution. Some notes by Ross Ihaka appear to be the main documentation of the early R core work
Ihaka (1998). The goal of the project took its key form at this time: R would be “a free implementation
of something ‘close to’ version 3 of the S language”.

Setting the goal of a “GNU S” (as R is still described on the project web site) was a watershed
decision. The original form of the language and the basic approach to objects resembled S, with some
internal distinctions partly reflecting Lisp-style languages and the writings of Abelson and Sussman
Abelson and Sussman (1983). In particular, the data type known in R as a pairlist was the traditional
Lisp list and was used to manipulate objects and for other basic computations. S function objects and
the evaluation of calls used a form of closures.

Implementing a close approximation to S required a different model for objects and for evaluation;
respectively, vectors with attributes and so-called lazy evaluation (Section 3.3). Pair-list objects and
closure semantics are still used internally, but are now largely isolated from the R user or programmer.

As noted, the definition of S used as a model for implementation was taken from the “blue” book
and “white” book, since there was no formal definition. The blue book contained a semi-formal model
of the language, including the evaluation semantics (Becker et al., 1988, Ch. 11). An appendix, as
before, provided the detailed documentation of the functions supplied with S. These two inclusions
supplied at least an approximation to a definition of S, available without obtaining the licensed
software itself.

The key content of the white book in terms of data frames and model objects was reproduced,
along with the more standard of the specific types of models; e.g., linear regression and analysis of
variance. Data frames in particular, (Chambers and Hastie, 1992, Ch. 3), became central to many
extensions in R, reflecting their basic relevance to data science. A data frame represents a set of n
values for p observable variables, the classical form of scientific data. Computationally, it combines
the properties of a list (of variables, possibly of different types) with those of an n by p array.

R thus inherited the computational techniques, interactive user interface and programming struc-
ture of S, shaped by the data analysis philosophy of Bell Labs. This in turn featured an emphasis on
deep engagement with data, exploration and collaboration that constituted a pre-adaptation to the
needs of modern data science.

The work of the R core group resulted in the release of version 1.0.0 of R on February 29, 2000.

R and S

This section examines the main technical characteristics of R, noting the features of S it implemented
and those where it diverged or added features original with R. In addition to this historical, “vertical”
view, we note a few of the main “horizontal” distinctions that differentiate both R and S from some
other languages, since these often relate to the data science domain-language aspect of R.

Throughout this section, any descriptions unqualified by mentioning either S or R will indicate
characteristics common to both, implemented in R to replicate known behavior in S. When S and R
use different terms to refer to the same concept, the R term will be used.

The discussion is organized by the three principles into Objects, Function calls and Interfaces, plus
a fourth topic, Packages. The impact of R as well as its relation to data science has been strongly
influenced by the growth of the R community of users and contributors. For this growth, the R

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://en.wikipedia.org/wiki/S-PLUS


SPECIAL ARTICLES 471

package structure has been the key addition to the software. The packages available from several sites,
especially the central CRAN archive, now form an extensive, usable and relatively coherent code base
for applications.

Objects

Objects in the original version of S were an extension of Fortran one-way arrays, called vectors
in S. Unlike Fortran, S allocated vectors dynamically as required in function calls. These vectors
contained elements of a single specified type, initially corresponding to the types found in Fortran.
Two characteristics distinguished these S vectors from the basic types in other languages: for all types,
elements may be “missing”, denoted by NA; and there are no scalar types.

Version 3 of S, and therefore R, retained vectors as the core data structure. An extensible facility
for defining general object structure was built on this through two features. Vectors could be of type
"list", with elements being arbitrary objects; and any vector could have a named list of attributes to
specify additional information.

Vectors with attributes supported an extensible mechanism for adding specialized structure to
simple objects, at first implicitly and later explicitly. Objects essential to data science, such as matrices
and multi-way arrays, could be considered built-in without requiring a primitive implementation.
A general array is a vector that has an attribute named "dim" containing an integer vector of the
dimensions. Thus arrays automatically can have any type of data and can allow for missing values.
Separating the data from the attributes is helpful for data analysis, separating the logic that depends
on the structure from the computations on the specific type of data.

Advances in data analysis led to the need for more specialized data structures and for specialized
computations to generate and operate on them. The natural, and perhaps inevitable, language
extension to implement this coherently was functional object-oriented programming. Functions may be
generic, with the computational method for particular arguments selected corresponding to the class of
the argument(s). Statistical models for data are a natural application and were in fact the motivation
for the first implementation (Chambers and Hastie, 1992, Appendix A). A more general and more
formal version followed in Chambers (1998), but the simpler one continues to be popular.

The uniformity of objects extends to functions. In particular, functions are simply objects, with
a syntactic definition in the language. Note that a name is not part of the function definition, in
contrast for example to Python or Julia. Assigning a function is not different from assigning any other
object. As noted below, the semantics of function call evaluation are defined directly from the object,
regardless of how that object was obtained.

R supports all the object structure of S but with an implementation at the primitive level reflecting
influence from Lisp. Language objects such as function definitions and unevaluated function calls
are implemented via Lisp-style lists, but these are largely hidden from users who are encouraged to
manipulate such objects by conversion to and from vectors of type "list".

A more important influence, specifically from the Scheme form of Lisp, is that R is lexically scoped.
In particular, any assignment of a function object incorporates a reference to the environment—the
other assigned objects existing where the assignment took place. Since everything is an object, this
environment is itself an object, of type "environment". As an ordinary object, an environment is
effectively a dictionary of objects indexed by character strings. But in an environment, objects are
accessed by reference, which deliberately contradicts the usual non-reference semantics of S. Changing
an environment, by changing the object associated with a particular string, changes that environment
wherever it is currently referenced.

Environments are key to evaluating function calls and to the installation and use of R packages, as
discussed under these topics below. Environments can also be used directly in R and have been, for
example to implement the usual form of object-oriented programming (Chambers, 2016, Ch. 11). Their
reference-style semantics does pose some dangers: the same computation on an object in R might
have different results if that object was an environment on one hand or a list with the same elements
corresponding to the same names on the other.

Function calls

The “everything that happens is a function call” principle reflects a design goal of S to encourage
and support functional programming in the language. Combined with the object principle, functional
programming implies an explicit conceptual model for a function call. Based on the definition of the
function and the objects supplied as arguments, an object is computed and returned as the result
of the call. No modifications to the arguments or other side effects should result and the function
definition should determine the computations. R is not a pure functional language: various tricks

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 472

and special computations exist to violate the principal. However, the essential language structure
promotes functional programming; in particular, through the implementation of the function call
itself which differs from languages that regard the call as simply taking a vector of references to the
arguments as objects.

A function call in R, when it is about to be evaluated, essentially consists of two objects: the function
definition and an environment containing objects corresponding to each of the formal arguments in
that definition. These usually resulted from a function call in the language with the function identified
by name and with some number of actual arguments supplied as expressions, but nothing in the
evaluation depends on assuming this. The objects corresponding to formal arguments are special
objects of type "promise". A promise object has the expression for the corresponding actual argument
(or a special marker for missing arguments), the value of that argument (if it has been evaluated), and
a flag set when evaluation takes place.

The call is evaluated by evaluating the body of the function “in” the environment of the call; i.e.,
a name encountered in the evaluation will be searched for there. Ordinary assignments will create
objects there. When the name corresponds to a promise object, the promise will be evaluated if it has
not been already, in the environment from which the function was called, and the result will be stored
in the promise. If the argument was missing and the function definition included a default expression,
that expression is evaluated, this time in the environment of the call. So, for example:

function(x, scale = sd(x, na.rm = TRUE))
x/scale

is a function that scales an object by the value given and uses the standard deviation of the object
(missing values removed) by default.

This evaluation mechanism is often called “lazy” evaluation, but a better term would be evaluate-
when-needed. It usually would give the same result as a model where all arguments were evaluated
at the start of the call, but some functions depend on the distinction, and might fail without the extra
flexibility. For example, default values can use intermediate results computed in the call before the
missing argument was needed.

When a name occurs in the evaluation, it is first matched to the environment of the call, then to
the parent of that environment, and so on. The parent of the call is the environment of the function
definition, which is the environment in which the definition was evaluated. This is used in some
computations to create functions inside a call, with the effect that these can then share variables in the
original function. More importantly, all the functions in an R package have the same environment,
providing a mechanism for sharing specialized tools and data within and between packages.

Interfaces

Effective data analysis today needs to use a variety of powerful tools for modelling and visualization.
Well-developed implementations may exist in any of a variety of languages, including C++, Python,
Java or Julia as well as R itself and (still) C or Fortran. It is neither practical nor sensible to reprogram the
software in a single language; therefore, convenient interfaces from the user’s preferred programming
language are essential. R now has interfaces on the CRAN repository to all of the above, with several
of them being widely used.

The three interfaces of S were retained, to Fortran and C routines for simple arguments and to C
with general pointers to R objects. The latter is generally more in use, lending itself to extensions and
general computations. For C-level access to objects, R initially replicated the C macro calls used with S,
but this has been extended and replaced with its own version. There is also a third C interface, using
the Lisp-style representation of the argument list.

The Rcpp interface to C++ is used extensively in packages based on specialized C++ code. The
original Rcpp is described in Eddelbuettel and François (2011), but the interface has been much
extended in the version now on CRAN. Approximately 10% of the packages on CRAN use Rcpp.
Rcpp includes extensions to C++ to support a high-level programming style with R objects that in
many ways resurrects the features of the original interface language of Section 2.3, but now for C++.

Packages

For any open-source software, an important advantage is that experienced users are encouraged to
share their extensions and applications, and that the license for the software may enforce these to also
be freely available, if distributed. The shared software may just be a folder of source code files, but
will be more useful to the community if accompanied by documentation and made straightforward to
include and to access from the user’s software.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 473

R has an extended definition for shared software, the R package. This has a prescribed hierarchical
structure. The structure provides for documentation, R source, data files and some top-level description
of the package. There is also a standard structure that simplifies inclusion of code for compilation in C,
C++ and Fortran. Further optional structure allows inclusion of essentially anything, notably code
from any other language. A collection of tools is used to install, load and invoke software from the
package.

Compared to libraries or modules in other languages, the package in R imposes considerable
demands on the programmer; for example, where a Python module is essentially just a folder con-
taining code, an R package organizes code in a specific structure of subdirectories that then enables a
very general but standardized format. In the basic package-sharing mechanism, a source copy of the
package is processed by an INSTALL utility into a folder whose contents can then be loaded into an R
session, making the code, documentation and any other content available to the user of the session.

The package structure and repositories of contributed packages have played a major role in the
usefulness and popularity of R. They put some extra burden on providers of the extended software,
particularly if the package is to be accepted by one of the central repositories, notably CRAN, which
is by far the largest and most used site and is associated with the R project itself. CRAN enforces
standards for the documentation, portability and usability of contributed packages. This is more than
compensated by benefits to users in terms of software documentation and testing, and usually benefits
the authors also in the long-term evolution of their software.

Data Science

Some of the central and influential features of S as described in the two books of 1988 and 1992
illustrate its nature as a domain-specific language and system for data science. R took over these
features, adding some important extensions and improvements but with the focus still on data science.

In 1988, the preface to the blue book Becker et al. (1988), stated:

The primary goal of the S environment is to enable and encourage good data analysis.

This explicitly states the goal as supporting the domain of data analysis, Bell Labs style, very much in
the spirit of modern data science.

The domain of data science was also implied (though still not named as such) in the citation when
S received the 1998 ACM Software System Award, ACM (1998): § had “forever altered how people
analyze, visualize, and manipulate data”.

Some of the capabilities of S important to users trying to do data science are implied in the citation:

• visualization, usually referred to as “graphics” in the books. The blue book preface, in listing key
features, said “Especially, S is about graphics: ... flexible ways of looking at data”.

• analysis. S introduced an object-based view of analysis. A linear regression fit, for example,
returned an object from a corresponding class. Simple S expressions then produced visual and
numerical information, encouraging interactive exploration. This style has become the norm for
modern data analysis.

• data. Some classes of data introduced have become central to data science in R and beyond.

From a data science perspective, the most important class of objects is the data frame, which models
the structure in which scientific data has always been recorded: a table indexed by observations
and variables in which each observation records corresponding values of the variables. As noted
previously, this class was introduced to S in the context of statistical models, but is widely used and
remains an active area for new developments, such as the “tidy” version in R for Data Science Wickham
and Grolemund (2016). Analogous types have been added to software in other languages, such as the
DataFrame structure in the Pandas software in Python.

From a programming perspective, however, a data frame does not correspond to a standard type
of data. It cannot be a two-way array in the sense of Fortran (or R or Julia), because while all the values
of a single variable will be constrained to have the same type, different variables can correspond to
different types (numeric versus categorical, for example). Neither can it be a simple table or dictionary
indexed by the names of the variables. The number and order of values from the variables is linked by
their correspondence to particular observations; operations on the object cannot be allowed to revise
some elements inconsistently with the rest.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 474

From 2000: R

S did not quite disappear with the initial arrival of R. During the years 1996 to 2000 when the R Core
team was preparing the official version of R, another version of S appeared at Bell Labs, as noted,
while independently the commercial S-Plus system based on S maintained a significant user base.

After the official launch of R in 2000, open-source R gradually became the dominant source of new
software for statistics and data science. S-Plus continued as a commercial product. However, by late
2000 the Bell Labs researchers still involved with S, Duncan Temple Lang Temple Lang (1997) and
the present author, had both accepted invitations to join R Core. By the start of the 21st century, the
evolution of Bell Labs’ S had ended.

Since its official first version, R has expanded in all measures: users, contributors, citations and
public awareness. Some measures have shown literally exponential growth, such as the number of
packages in the main repository, CRAN. Although S had accumulated a significant user base by the
time of the Software System Award in 1998, the impact of R is on an entirely different scale.

R’s popularity is no doubt due to a number of factors but a principal one is its evident link with
data science, which has shown a similar explosion of public interest and involvement. R features in
the teaching and practical projects for nearly all programs in data science. Data science is inevitably
mentioned in popular articles on R, e.g. Thieme (2018).

R inherited the data science orientation of S by replicating the structure and contents of Version
3 of S. To this R added some key contributions of its own in the internal computational model; for
example, the role of closures and of R environments generally. For the future of its contributions to
data science, perhaps the most important feature of R was the package structure.

In the balance between effort required from the software developer and the usefulness of the result,
R tips the scales toward the user. This is reinforced by the central CRAN repository. A package on
CRAN is more visible, easier for users to install and has some extra prestige, motivating developers to
spend some effort to comply with the requirements.

That effort has been reduced by tools to assist the creation, modification and distribution of
packages, particularly before they are ready to be part of CRAN or similar repositories. Some of
the tools are R-independent; for example, github repositories have become virtually standard for
circulating a package in a more flexible evolving format.

Integrated development environments (IDEs) specifically for R have also accelerated the creation
and revision of packages and other R software. A notable example is the RStudio IDE. This is a desktop
integrating the use of R with editing, graphics, documentation and a variety of utilities that typically
replace specialized R- or shell-level commands with button clicks or other interactions. RStudio
is a commercial enterprise but the IDE and many associated R packages are freely available and
open-source (www.rstudio.com). The RStudio IDE has become popular for teaching and specifically
for courses associated with data science. It also greatly simplifies editing and installing an R package.

Repositories of contributed packages, and in particular CRAN, have become a key driver in the
growth and extension of R as specialized for scientific disciplines or other areas of application. This has
relevance for data science: progress will require increasing collaboration between researchers in the
scientific disciplines, on one hand, and professionals developing the statistical and computer-science
techniques for data science, on the other. R and its package structure are popular ways to bring data
science techniques to a specialized audience; for example, a plethora of “Using R for xxx Data” books
have appeared, with corresponding packages.

Data science will increasingly require a widening range of high-quality software for diverse
purposes. No single language or environment will be universally suitable. Interfaces between
languages have always been part of the design of S and now R. The R package structure facilitates
including code from other languages: compiled code from C, C++ and Fortran but also code in any
other language to which R has an interface (Chambers, 2016, Part IV). Multi-language IDEs such
as Jupyter are complemented by such interfaces, allowing the R programmer to request specific
computations from the other software in a natural R style. The end user does not need to do any
programming in the language on the other side of the interface, in contrast to the IDE approach.

Acknowledgments

Thanks to Jean-Baptiste Tristan, the conference historian, and the referees for suggestions on early
versions of the paper and to members of R Core for correcting some historical details. Most especially,
much gratitude to all the members of the S and R teams over these many years. Both languages
have always been the product of close collaboration, including all the authors of the related books
in the reference list but also those extending S and R, now a community of thousands over different

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

www.rstudio.com


SPECIAL ARTICLES 475

disciplines and applications.

Bibliography
H. Abelson and G. J. Sussman. Structure and Interpretation of Computer Programs. MIT Press, Cambridge,

MA, 1983. [p470]

ACM. ACM Software System Award, 1998. https://awards.acm.org/award_winners/chambers_
6640862. [p473]

R. A. Becker and J. M. Chambers. GR-Z: A system of graphical subroutines for data analysis. In Proc.
9th Interface Symp. Computer Science and Statistics, 1976. [p464]

R. A. Becker and J. M. Chambers. S: An Interactive Environment for Data Analysis and Graphics.
Wadsworth, Belmont CA, 1984. [p462, 465, 468]

R. A. Becker and J. M. Chambers. Extending the S System. Wadsworth, Belmont CA, 1985. [p462, 465,
468]

R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S Language. Chapman & Hall, Boca Raton, FL,
1988. [p462, 468, 470, 473]

J. M. Chambers. Programming with Data: A Guide to the S Language. Springer, New York, 1998. [p469,
471]

J. M. Chambers. Extending R. Chapman & Hall/CRC, 2016. [p467, 471, 474]

J. M. Chambers and T. Hastie, editors. Statistical Models in S. Chapman & Hall, Boca Raton, FL, 1992.
[p462, 469, 470, 471]

F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the multics system. In Proceedings of
the November 30–December 1, 1965, Fall Joint Computer Conference, Part I, AFIPS ’65 (Fall, part I), pages
185–196, New York, NY, USA, 1965. ACM. doi: 10.1145/1463891.1463912. [p464]

D. Donoho. 50 years of data science. Journal of Computational and Graphical Statistics, 26(4):745–766,
2017. doi: 10.1080/10618600.2017.1384734. [p462, 463]

D. Eddelbuettel and R. François. Rcpp: seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. doi: 10.18637/jss.v040.i08. URL http://www.jstatsoft.org/v40/i08/. [p472]

A. E. Freeny and J. D. Gabbe. A statistical description of intense rainfall. Bell System Technical Journal,
48:1789–1851, 1969. [p463]

J. Gertner. The Idea Factory: Bell Labs and the Great Age of American Innovation. Penguin, 2013. [p463]

R. Ihaka. R : Past and Future History, 1998. (draft for Interface Symp. Computer Science and Statistics):
https://cran.r-project.org/doc/html/interface98-paper/paper.html. [p462, 470]

R. Ihaka and R. Gentleman. R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5:299–314, 1996. [p462, 470]

L. Jaeckel and J. Gabbe. Crawford hill rainfall data. In Exploring Data Analysis: The Computer Revolution
in Statistics, chapter 3. University of California Press, 1974. [p463]

S. Johnson and D. M. Ritchie. UNIX time-sharing system: portability of C programs and the UNIX
system. Bell System Technical Journal, 57(6):2021–2048, 1978. [p468]

D. Kaplan and D. Nolan. Modeling runners’ times in the cherry blossom race. In D. Nolan and
D. Temple Lang, editors, Data Science in R, chapter 2, pages 45–103. Chapman and Hall/CRC, 2015.
[p469]

D. M. Ritchie. The evolution of the UNIX time-sharing system. AT&T Bell Laboratories Technical Journal,
63(8):1577–1593, 1984. [p468]

D. Temple Lang. A Multi Threaded Extension to a High Level Interactive Statistical Computing Environment.
PhD thesis, University of California, Berkeley, 1997. [p474]

N. Thieme. R Generation. Significance, 15(4):14–19, August 2018. [p474]

J. W. Tukey. The future of data analysis. The Annals of Mathematical Statistics, 33(1):1–67, 1962. [p463]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://awards.acm.org/award_winners/chambers_6640862
https://awards.acm.org/award_winners/chambers_6640862
http://www.jstatsoft.org/v40/i08/
https://cran.r-project.org/doc/html/interface98-paper/paper.html


SPECIAL ARTICLES 476

J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, Massachusetts, 1977. [p463]

H. Wickham and G. Grolemund. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data.
O’Reilly, 2016. [p473]

M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika, 55
(1):1–17, 1968. [p463]

John M. Chambers
Stanford University
line 390 Serra Mall
line Stanford, CA 94305 USA

jmc@stat.stanford.edu

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:jmc@stat.stanford.edu


SPECIAL ARTICLES 477

Provenance of R’s Gradient Optimizers
by John C Nash

Abstract Gradient optimization methods (function minimizers) are well-represented in both the
base and package universe of R (R Core Team, 2019). However, some of the methods and the codes
developed from them were published before standards for hardware and software were established,
in particular the IEEE arithmetic (IEEE, 1985). There have been cases of unexpected behaviour or
outright errors, and these are the focus of the histoRicalg project. A summary history of some of the
tools in R for gradient optimization methods is presented to give perspective on such methods and
the occasions where they could be used effectively.

The task

Ignoring exogenous data (assume that it is supplied when needed), our problem is to find

argminx f (x)

where x is our set of n parameters and f () is a scalar real function of those parameters. The gradient
of f (x) is the vector valued function

g(x) = ∂ f (x)/∂x.

The Hessian of f (x) is the matrix of second partial derivatives

H(x) = ∂2 f (x)/∂x2.

We will be considering methods for this problem where a gradient can be supplied, though many of
the R tools will use a numerical approximation if needed.

General approaches

The so-called Newton method tries to find x that satisfies the first order conditions for an extremum,
namely,

H(x)δ = −g(x)

and then updates x to (x + δ).

The main objections to this approach are

• the Hessian is generally expensive to compute, though because an accurate Hessian is so useful,
I strongly recommend that workers examine whether it can be computed in a reasonable way;

• it is necessary to apply safeguards on the computations and the size of δ to avoid cases where
the Hessian is near singular, poorly computed, or the assumptions of the method are violated.

There are four main approaches to simplifying the Newton method:

• The variable metric or quasi-Newton methods use clever ways to improve an approximate
Hessian or Hessian inverse while finding lower points x on the function surface, using only
function and gradient values computed in the process.

• Truncated Newton methods use a linear conjugate gradient method to inexactly solve the
Newton equations, thereby reducing memory requirements.

• Conjugate gradient methods aim to search "downhill" for better points on the functional surface
using only recent gradient information. The traditional first search direction is that of steepest
descents, namely, −g, the negative gradient. After a line search selects a suitable step size, we
have a new point, a new function value that is lower than the initial point, and a new gradient.
Using this information and possibly the last search direction, we compute a new search direction
that is somehow "conjugate" to the previous one. For a problem with n parameters, of course,
there are only n independent search directions, so we need to restart the procedure on or before
that step. Indeed there are a number of strategies for deciding when to restart the conjugacy
cycle. And, of course, there are a number of choices for updating the search direction and for
performing the line search.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 478

• Limited Memory BFGS methods use reduced memory approaches to variable metric methods,
but can also be thought of as extending conjugate gradients methods by using several rather
than the two most recent gradients.

The histoRicalg project

The R Consortium awarded some modest funding for histoRicalg, a project to document and transfer
knowledge of some older algorithms used by R and by other computational systems. These older
codes are mainly in Fortran, but some are in C, with the original implementations possibly in other
programming languages. This effort was prompted by finding some apparent bugs in codes, which
could be either from the original programs or else the implementations. Two examples in particular
– in nlm() and in optim--L-BFGS-B – gave motivation for the project. We welcome interest and
participation, and have a project repository https://gitlab.com/nashjc/histoRicalg, where several
aspects of this work are in various stages of completion.

The function optim() in base-R has three of the optimizers from the 1990 edition of Compact
Numerical Methods (Nash, 1979), abbreviated CNM henceforth. Given the dates of their conception,
these are an obvious focus for histoRicalg. The direct-search Nelder-Mead method (Nelder and Mead,
1965) is in fact the default solver i.e., it uses method="Nelder-Mead" in the optim() call and does not
require a gradient routine to be supplied. In fact, Nelder-Mead will be used even if a gradient routine
is included unless some other method is suggested. The choice if method="BFGS" is the variable metric
method of Fletcher (1970). The third choice from CNM is method="CG" for conjugate gradients, which
is a combination of several similar approaches.

In this article on the provenance of the methods, the details will be discussed only in general terms.
However, it is critical to get those details right.

Provenance of the R optim–BFGS solver

If the source code for base R is in a directory that is named R-X.Y.Z (in my case 3.5.1 when this
vignette was started) then the calling routine for optim() is src/library/stats/R/optim.R, but this
uses the .External2 method to call src/library/stats/src/optim.c, where the function vmmin is
called. However, the source for vmmin is in src/appl/optim.c. I will venture that having two files of
the same name in different directories is tempting an error.

I will use optim--BFGS when using the call method="BFGS" in optim(), and similar abbreviations for
the other methods. To use optim--BFGS, the relevant code is a C routine vmmin. In src/appl/optim.c,
above this routine is the comment

{,comment}
/* BFGS variable-metric method, based on Pascal code
in J.C. Nash, `Compact Numerical Methods for Computers', 2nd edition,
converted by p2c then re-crafted by B.D. Ripley */

As author of this work, I can say that the code used is Algorithm 21 of (Nash, 1979). In the First
Edition, this was a step-and-description code which was replaced by Turbo Pascal in the Second Edition.
The methods were worked out mainly on a Data General Nova which had partitions of between 3.5 K
and 8 K bytes accessible via a 10 character per second teletype. The floating point available had a 24
bit mantissa, in a single level of precision with (as I recall) no guard digit. Programming was in a fairly
early and simple form of BASIC.

This machine was at Agriculture Canada. In the late 1970s, it was replaced with a Data General
Eclipse, but largely the facilities were the same, except the floating point went to 6 hexadecimal digits
with no guard digit. I also implemented some codes on HP 9830 and Tektronix 4051 "programmable
calculators". A Fortran translation was made as NASHLIB, which ran mainly on IBM System 360 class
computers, but also was tested at least partially on Univac 1108, ICL 1906A and Xerox-Honeywell
CP-6 machines. The codes were distributed as Fortran source code. See https://gams.nist.gov/cgi-
bin/serve.cgi/Package/NASHLIB. I have been informed that the servers supporting this link will not
be replaced when they fail.

NASHLIB dates from the 1979-1981 period, though the methods were developed in the mid-
1970s at Agriculture Canada to support economic modelling. In 1975, I received an invitation (from
Brian Ford) to collaborate with the Numerical Algorithms Group in Oxford, and Agriculture Canada
generously allowed me two 6-week periods to do so. During the second of these, in the tail end of
the hurricane of January 1976, I drove to Dundee to meet Roger Fletcher. He took an interest in the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://gitlab.com/nashjc/histoRicalg


SPECIAL ARTICLES 479

concept of a program that used minimal memory. We found a printout of the Fortran for the method
in (Fletcher, 1970), and with a ruler and pencil, Roger and I scratched out the lines of code that were
not strictly needed. As I recall, the main deletion was the cubic interpolation line search. The resulting
method simply used backtracking with an acceptable point condition.

On my return to Ottawa, I coded the method in BASIC and made two small changes:

• I managed to re-use one vector, thereby reducing the storage requirement to a square matrix
and five vectors of length n, the number of parameters.

• The very short floating point precision seemed to give early termination on some problems.
Often this was due to failure of the update of the approximate inverse Hessian when an
intermediate quantity indicated the approximate Hessian was not positive definite. As a quick
and dirty fix, I simply checked if

the current search was a steepest descent. If so, then the method is terminated. If not, the inverse
Hessian approximation is reset to the unit matrix and the cycle restarted. This "quick fix" has, of course,
become permanent. My experience over the years suggests it is a reasonable compromise, but the
possibility of better choices is still open.

Evolution of the code

Considering the simplicity of the method, it is surprising to me how robust and efficient it has shown
itself to be over the last four decades.

The code does allow of some variations:

• the organization of some of the calculations may have an influence on outcomes. There are
opportunities for accumulation of inner products, and the update of the inverse Hessian ap-
proximation involves subtractions, so digit cancellation could be an issue.

• tolerances for termination, for the "acceptable point" (Armijo) condition, and other settings
could be changed. However, I have found the original settings seem to work as well or better
than other choices I have tried.

In the mid-1980s, the BASIC code was extended to allow for masks (fixed parameters) and bounds
(or box) constraints on the parameters (Nash and Walker-Smith, 1987). This adds about 50% more
code, as well as vector storage for the constraints and indices to manage them (essentially 3 ∗ n), but
does permit a much wider variety of problems to be solved. Even for unconstrained problems that
may have difficult properties, imposing loose bounds can prevent extreme steps in the parameters. To
add this capability to R, I put the package Rvmmin on CRAN in 2011 (Nash, 2018). This code is, as of
2018, part of a new optimx (Nash and Varadhan (2011), Nash (2014a)) package on CRAN. It is entirely
written in R.

Extensions and related codes

There are other R packages with related capability. In particular, ucminf (Nielsen and Mortensen,
2012) is based on the Fortran code of Nielsen (2000). This appears to use a very similar algorithm to
optim--BFGS, but employs a more sophisticated line search. This package does not, however, allow for
constraints in the form of bounds or masks.

The approximate inverse Hessian could also be saved and used to provide some estimates of
parameter dispersion. Clearly, the use of a steepest descents direction for the final line search in Rvmmin
before termination means that the penultimate approximation must be saved. In practice, I have
found the approximate inverse Hessian bears little or no resemblance to the actual Hessian. This may
be because the construction of the approximation maintains the positive definite condition. It is an
open question whether the approximation has any utility.

Package mize (Melville, 2017) offers some options to build a gradient minimizer and could possibly
allow some algorithmic comparisons to be made, but I have not had the time to delve into this.

Rather more sophisticated codes are part of base R in nlm() and nlminb(). The former is a
polyalgorithm of quasi-Newton type for unconstrained problems (Schnabel et al., 1985). The latter
allows bounds constraints and is drawn from the PORT library (Fox, 1997) code by Gay (1990), but
there are a number of common ideas in both methods. For users, these two functions generally work
well with the default settings of their controls. This is fortunate, as even though I am fairly experienced
with such programs, I hesitate to play with the numerous control parameters.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



SPECIAL ARTICLES 480

To underline this last sentence, there was a thread on the R-help mailing list in 2010 (see, for ex-
ample, https://stat.ethz.ch/pipermail/r-help/2010-July/245182.html) noting that the default
behaviour of nlminb() at that time was to assume a positive objective function such as a sum of
squares. Thus the function would terminate if a non-positive evaluation occurred. This has since been
corrected, but was present in R for some years, possibly resulting in erroneous results being published.

Provenance of the R optim–CG and related solvers

The original Algorithm 22 of CNM which was converted to C and included in R as the method="CG"
choice for optim() by Brian Ripley is an approach that has never felt quite right to me. And I am the
author! It offers three different search direction updates using the type element of the control list. The
default is type=1 for the Fletcher-Reeves update (Fletcher and Reeves, 1964), with 2 for Polak–Ribiere
(Polak and Ribiere, 1969) and 3 for Beale–Sorenson (Sorenson, 1969), (Beale, 1972).

In the mid-1980’s I updated the CG code (in BASIC) to handle bounds and masks. Then in 2009
I incorporated the Yuan/Dai (Dai and Yuan, 2001) search direction update that melds the different
formulas used in optim--CG. This gives a remarkably effective method that retains a surprisingly short
code, and entirely in R, with a version that handles bounds and masks. This is package Rcgmin (Nash,
2014c).

There has been a flurry of work on CG-related optimizers in the last decade or so, in particular
associated with Hager and Zhang. See (Hager and Zhang, 2006a) and (Hager and Zhang, 2006b).
I have experimentally wrapped the CG-Descent code, but as yet do not feel the program is ready
for production release. However, collaboration on this and related codes I have been exploring is
welcome.

Provenance of the R optim–L-BFGS-B and related solvers

The base-R code lbfgsb.c (at the time of writing in R-3.5.2/src/appl/) is commented:

/* l-bfgs-b.f -- translated by f2c (version 19991025).

From ?optim:
The code for method ‘"L-BFGS-B"’ is based on Fortran code by Zhu,
Byrd, Lu-Chen and Nocedal obtained from Netlib (file 'opt/lbfgs_bcm.shar')

The Fortran files contained no copyright information.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited
memory algorithm for bound constrained optimization.
\emph{SIAM J. Scientific Computing}, \bold{16}, 1190--1208.

*/

The paper (Byrd et al., 1995) builds on (Lu et al., 1994). There have been a number of other workers
who have followed-up on this work, but R code and packages seem to have largely stayed with codes
derived from these original papers. Though the date of the paper is 1995, the ideas it embodies were
around for a decade and a half at least, in particular in (Nocedal, 1980) and (Liu and Nocedal, 1989).
The definitive Fortran code was published as (Zhu et al., 1997). This is available as toms/778.zip on
http://www.netlib.org.

Besides the ACM TOMS code, there are two related codes from the Northwestern team on NETLIB:

• http://netlib.org/opt/lbfgs_um.shar is for unconstrained minimization, while

• http://netlib.org/opt/lbfgs_bcm.shar handles bounds constrained problems.

To these are attached references (Liu and Nocedal, 1989) and (Byrd et al., 1995) respectively, most
likely reflecting the effort required to implement the constraints.

The unconstrained code has been converted to C under the leadership of Naoaki Okazaki (see http:
//www.chokkan.org/software/liblbfgs/, or the fork at https://github.com/MIRTK/LBFGS). This has
been wrapped for R as the lbfgs package (Coppola et al., 2014). I have included this as one of the
solvers callable from package optimx.

A side-by-side comparison of the main subroutines in the two downloads from Netlib (toms and
opt) unfortunately shows a lot of differences. I have not tried to determine if these affect performance
or are simply cosmetic.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://stat.ethz.ch/pipermail/r-help/2010-July/245182.html
http://www.netlib.org
http://netlib.org/opt/lbfgs_um.shar
http://netlib.org/opt/lbfgs_bcm.shar
http://www.chokkan.org/software/liblbfgs/
http://www.chokkan.org/software/liblbfgs/
https://github.com/MIRTK/LBFGS


SPECIAL ARTICLES 481

More seriously perhaps, there were some deficiencies in the code(s), and in 2011 Nocedal’s team
published a Fortran code with some corrections (Morales and Nocedal, 2011). Since the R code in C
predates this by many years, I prepared package lbfgsb3 to wrap the Fortran code. However, I did
not discover any test cases where the optim--L-BFGS-B and lbfgsb3 gave different output different,
though I confess that the tests I ran are not exhaustive.

In 2016, I was at a Fields Institute optimization conference in Toronto for the 70th birthday of Andy
Conn. By sheer serendipity, Nocedal did not attend the conference, but sat down next to me at the
conference dinner. When I asked him about the key changes, he said that the most important one was
to fix the computation of the machine precision, which was not always correct in the 1995 code. Since
R gets this number as .Machine$double.eps, the offending code is irrelevant.

Within (Morales and Nocedal, 2011), there is also reported an improvement in the subspace
minimization that is applied in cases of bounds constraints. In the few tests I have applied with
bounds constraints, I have yet to see any substantive differences, but welcome communcation should
such be found.

Using Rcpp (see Eddelbuettel and François (2011) and the Fortran code in package lbfgs3, Matthew
Fidler developed package lbfgsb3c. As this provides a more standard call and return than lbfgsb3,
Fidler and I have unified the two packages, but are still checking and cleaning the package at the time
of writing.

Provenance of truncated Newton codes for R

There are (at least) two implementations of truncated Newton methods available.

nloptr--tnewton() is a wrapper of the NLopt truncated Newton method translated to C and
somewhat modified by Steven G. Johnson in the nlopt project (https://nlopt.readthedocs.io/
en/latest/NLopt_Algorithms/) from Fortran code due to Ladislav Luksan (http://www.cs.cas.cz/
luksan/subroutines.html). The many layers and translations make it difficult to unravel the particu-
lar details in this code, and I do not feel confident to provide a competent overview.

optimx--tn() and optimx--tnbc() are translations from Matlab source of the Truncated Newton
codes of Stephen Nash (Nash, 1983) that I prepared, initially in package Rtnmin. The code is entirely
in R. In implementing the codes, the principal awkwardness was in making available to different
functions a quite extensive set of variables relating to the function and gradient. My choice was to
use the list2env() function to create an environment to hold this data. Note the survey of truncated
Newton methods by Stephen in (Nash, 2000).

Discussion

This story of some of the function minimizers available to R users is not finished. There are certain to
be related methods in packages or collections I have overlooked. Moreover, I have not had the time or
energy to fully explore some of the items I have mentioned. Nevertheless, how codes come about is
important to understanding their strengths and weaknesses and in maintaining them to a level that
users can reliably use them. Such matters were a large consideration for Nash (2014b), but have been
more explicitly addressed by histoRicalg.

When evaluating such tools, it is important to consider what is wanted. Personally, I value
reliability as more important than speed. By this, I mean

• the program will always proceed towards a minimum

• on termination it will provide useful information on the result obtained, such as whether there
are good indications of a satisfactory result, or that we have halted for some reason such as
exhausting a computational limit.

"Speed" is, of course, desirable, but how this is measured is debatable. Execution time is notoriously
sensitive to hardware and software environments, as well as to the way functions and gradients are
coded. Number of function and gradient counts is an alternative, since these computations often are
the bottleneck of optimization. However, there are some methods where the optimization calculations
are demanding either in cycles or memory.

Readers may note that I have highlighted that some codes are written entirely in R. This allows for
customization or in-line use of faster code, and I have exchanged notes with several workers wanting
to speed up time-consuming optimizations by such ideas. Profiling and debugging tools are generally
quite challenging to use when there are multiple programming languages involved. All-R code may

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
http://www.cs.cas.cz/luksan/subroutines.html
http://www.cs.cas.cz/luksan/subroutines.html


SPECIAL ARTICLES 482

also be much easier to read and maintain if well-coded, especially as the programming language
support for "old" languages diminishes.

These considerations are, of course, why we have a number of methods, and why Ravi Varadhan
and I prepared the optimx package with tools to allow for comparison of several methods. But please,
do use the comparison for evaluating and choosing a method, not for production minimization by a
"try everything" strategy. As new methods are released, we hope to include them in the set optimx
can call via a unified interface that is very close to the optim() function. We note that a somewhat
different approach to unifying methods is available in the ROI package of Hornik et al. (2011).

Bibliography
E. M. L. Beale. A derivation of conjugate gradients. In F. A. Lootsma, editor, Numerical Methods for

Nonlinear Optimization, pages 39–43. Academic Press, London, 1972. [p480]

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput., 16(5):1190–1208, Sept. 1995. ISSN 1064-8275. doi: 10.1137/
0916069. URL http://dx.doi.org/10.1137/0916069. [p480]

A. Coppola, B. Stewart, and N. Okazaki. lbfgs: Limited-memory BFGS Optimization, 2014. URL
https://CRAN.R-project.org/package=lbfgs. R package version 1.2.1. [p480]

Y. H. Dai and Y. Yuan. An efficient hybrid conjugate gradient method for unconstrained optimization.
Annals of Operations Research, 103(1-4):33–47, 2001. [p480]

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. doi: 10.18637/jss.v040.i08. URL http://www.jstatsoft.org/v40/i08/. [p481]

R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13(3):317–322, 1970.
[p478, 479]

R. Fletcher and C. M. Reeves. Function minimization by conjugate gradients. The Computer Journal, 7
(2):149–154, 1964. [p480]

P. Fox. The Port Mathematical Subroutine Library, version 3, 1997. URL http://www.bell-labs.com/
project/PORT/. [p479]

D. M. Gay. Usage summary for selected optimization routines. Computing Science Technical Report
153. Technical report, AT&T Bell Laboratories, Murray Hill, 1990. [p479]

W. W. Hager and H. Zhang. Algorithm 851: CG_DESCENT, a conjugate gradient method with
guaranteed descent. ACM Transactions on Mathematical Software, 32(1):113–137, Mar. 2006a. [p480]

W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific Journal of
Optimization, 2:35–58, 2006b. [p480]

K. Hornik, D. Meyer, and S. Theussl. ROI: R Optimization Infrastructure, 2011. URL http://CRAN.R-
project.org/package=ROI. R package version 0.0-7. [p482]

IEEE. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, pages 10–11, 1985.
doi: 10.1109/IEEESTD.1985.82928. [p477]

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathe-
matical Programming, 45(1-3):503–528, 1989. doi: 10.1007/BF01589116. URL https://doi.org/10.
1007/BF01589116. [p480]

P. Lu, J. Nocedal, C. Zhu, and R. H. Byrd. A limited-memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16:1190–1208, 1994. [p480]

J. Melville. mize: Unconstrained Numerical Optimization Algorithms, 2017. URL https://CRAN.R-
project.org/package=mize. R package version 0.1.1. [p479]

J. L. Morales and J. Nocedal. Remark on Algorithm 778: L-BFGS-B: Fortran subroutines for large-
scale bound constrained optimization. ACM Trans. Math. Softw., 38(1):7:1–7:4, Dec 2011. URL
http://doi.acm.org/10.1145/2049662.2049669. [p481]

J. C. Nash. Compact numerical methods for computers : linear algebra and function minimisation. Adam
Hilger, Bristol, 1979. Second Edition, 1990, Bristol: Institute of Physics Publications. [p478]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://dx.doi.org/10.1137/0916069
https://CRAN.R-project.org/package=lbfgs
http://www.jstatsoft.org/v40/i08/
http://www.bell-labs.com/project/PORT/
http://www.bell-labs.com/project/PORT/
http://CRAN.R-project.org/package=ROI
http://CRAN.R-project.org/package=ROI
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://CRAN.R-project.org/package=mize
https://CRAN.R-project.org/package=mize
http://doi.acm.org/10.1145/2049662.2049669


SPECIAL ARTICLES 483

J. C. Nash. On best practice optimization methods in R. Journal of Statistical Software, 60(2):1–14, 2014a.
URL http://www.jstatsoft.org/v60/i02/. [p479]

J. C. Nash. Nonlinear Parameter Optimization Using R Tools. John Wiley & Sons: Chichester, May 2014b.
ISBN 978-1-118-56928-3. URL http://www.wiley.com//legacy/wileychi/nash/. Companion web-
site (see http://www.wiley.com//legacy/wileychi/nash/). JNfile: 14nlpor.pdf. [p481]

J. C. Nash. Rcgmin: Conjugate Gradient Minimization of Nonlinear Functions, 2014c. URL https://CRAN.R-
project.org/package=Rcgmin. R package version 2013-2.21. [p480]

J. C. Nash. Rvmmin: Variable Metric Nonlinear Function Minimization, 2018. URL https://CRAN.R-
project.org/package=Rvmmin. R package version 2018-4.17. [p479]

J. C. Nash and R. Varadhan. Unifying optimization algorithms to aid software system users: optimx
for R. Journal of Statistical Software, 43(9):1–14, 8 2011. ISSN 1548-7660. URL http://www.jstatsoft.
org/v43/i09/. [p479]

J. C. Nash and M. Walker-Smith. Nonlinear Parameter Estimation: An Integrated System in BASIC. Marcel
Dekker, New York, 1987. See http://www.nashinfo.com/nlpe.htm for an expanded downloadable
version. [p479]

S. G. Nash. Truncated-Newton Methods for Large-Scale Minimization, pages 91–100. Pergamon, 1983.
[p481]

S. G. Nash. A survey of truncated-Newton methods. Journal of Computational and Applied Mathematics,
124:45–59, 2000. [p481]

J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7(4):308–313,
January 1965. [p478]

H. B. Nielsen. UCMINF - an algorithm for unconstrained, nonlinear optimization. Technical report,
Department of Mathematical Modelling, Technical University of Denmark., dec 2000. URL http:
//www2.imm.dtu.dk/~hbn/publ/TR0019.ps. Report IMM-REP-2000-18. [p479]

H. B. Nielsen and S. B. Mortensen. ucminf: General-purpose unconstrained non-linear optimization, 2012.
URL http://CRAN.R-project.org/package=ucminf. R package version 1.1-3. [p479]

J. Nocedal. Updating quasi-newton matrices with limited storage. Mathematics of Computation, 35:
773–782, 7 1980. doi: 10.1090/S0025-5718-1980-0572855-7. [p480]

E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées. Revue
Française d’Informatique et de Recherche Opérationnelle, 16:35–43, 1969. [p480]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2019. URL https://www.R-project.org/. [p477]

R. B. Schnabel, J. E. Koonatz, and B. E. Weiss. A modular system of algorithms for unconstrained
minimization. ACM Trans. Math. Softw., 11(4):419–440, Dec. 1985. ISSN 0098-3500. doi: 10.1145/6187.
6192. URL http://doi.acm.org/10.1145/6187.6192. Original report CU-CS-480-82 from 1982,
revised. The UNCMIN Manual. [p479]

H. Sorenson. Comparison of some conjugate direction procedures for function minimization. Journal of
The Franklin Institute - Engineering and Applied Mathematics, 288:421–441, 12 1969. doi: 10.1016/0016-
0032(69)90253-1. [p480]

C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale
bound-constrained optimization. ACM Trans. Math. Softw., 23(4):550–560, Dec. 1997. ISSN 0098-3500.
doi: 10.1145/279232.279236. URL http://doi.acm.org/10.1145/279232.279236. [p480]

John C. Nash
Retired Professor
University of Ottawa, Telfer School of Management
Ottawa, Ontario
Canada
https://orcid.org/0000-0002-2762-8039
nashjc@uottawa.ca

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://www.jstatsoft.org/v60/i02/
http://www.wiley.com//legacy/wileychi/nash/
https://CRAN.R-project.org/package=Rcgmin
https://CRAN.R-project.org/package=Rcgmin
https://CRAN.R-project.org/package=Rvmmin
https://CRAN.R-project.org/package=Rvmmin
http://www.jstatsoft.org/v43/i09/
http://www.jstatsoft.org/v43/i09/
http://www.nashinfo.com/nlpe.htm
http://www2.imm.dtu.dk/~hbn/publ/TR0019.ps
http://www2.imm.dtu.dk/~hbn/publ/TR0019.ps
http://CRAN.R-project.org/package=ucminf
https://www.R-project.org/
http://doi.acm.org/10.1145/6187.6192
http://doi.acm.org/10.1145/279232.279236
mailto:nashjc@uottawa.ca


NEWS AND NOTES 484

Conference Report: Why R? 2019
by Michał Burdukiewicz, Filip Pietluch, Jarosław Chilimoniuk, Katarzyna Sidorczuk, Dominik
Rafacz, Leon Eyrich Jessen, Stefan Rödiger, Marcin Kosiński and Piotr Wójcik

Figure 1: Why R? 2019 conference banner used for social media promotion.

Why R? 2019 conference

Why R? conferences have been the hallmark of the Why R? Foundation (whyr.pl). Our goal
has been to establish a series of international R-related events in Poland. After three years,
we are happy to announce that our main event, the Why R? conference, has become one of
the largest annual R conferences in Central Europe.

Why R? 2019 was the third part of Why R? conference event. After the last edition that
was held in Wrocław (Burdukiewicz et al., 2018), our conference has returned to Warsaw. A
total of approximately 300 people from 20 countries attended the main conference event. The
event took place from 26th to 29th September 2019 and was co-organised by the Faculty of
Economic Sciences of the University of Warsaw (wne.uw.edu.pl/en/), a leading academic
institution in Poland, having important achievements in quantitative methods and data
science. We received major support from ML in PL Society (mlinpl.org), a group of
young researchers, aiming to promote machine learning events in Poland, who shared their
resources and experience to make the conference more accessible.

For the first time, this year the conference featured a language-agnostic data visualiza-
tions hackathon (whyr.pl/2019/hackathon). Such an event gives the Why R? community a
chance to exchange experience and inspirations with the users of any other languages and
tools.

Participants

In spite of the fact that Why R? events are aimed at experienced data science practitioners,
each conference gathers a high percentage of students (around 30%). Our participants have
very diverse scientific backgrounds, where mathematics (mainly statistics) and computer
science are the most common. All of them have jobs related to data science, including
professional R developers (programmers), data engineers, machine learning practitioners

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

whyr.pl
wne.uw.edu.pl/en/
mlinpl.org
whyr.pl/2019/hackathon


NEWS AND NOTES 485

and business analysts. One of the key advantages of Why R? is that it gathers participants
both from academia and the industry.

Conference program

Figure 2: Why R? 2019 conference programme.

The format of the conference was aimed at exposing participants to recent developments
in the R language as well as a wide range of application examples. The event consisted
of workshops, invited keynote talks, field-specific series of talks, lightning-talks, special
interest groups and a full-day data visualizations hackathon. It offered extensive networking
opportunities. The welcome party was held at the conference venue on the first day of
lectures. In addition, many informal gatherings were organised during each conference day,
as the event took place close to the Old Town.

To sum up, Why R? 2019 consisted of: one day of hackathon (60 attendees), one day of
workshops (150 attendees), one evening of round tables, two days of lectures (250 attendees)
and one evening Welcome paRty (100 attendees). In 2019 we hosted a total of 315 unique
attendees. During lectures there were carried out: 6 keynote talks, 42 regular talks and 14
lightning talks. Below you can find the conference agenda.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



NEWS AND NOTES 486

Figure 3: Why R? 2019 conference agenda.

Materials from the conference are available on GitHub and YouTube:
- abstracts github.com/WhyR2019/abstracts,
- presentations github.com/WhyR2019/presentations
- videos whyr.pl/youtube/

Data Visualizations Hackathon

On the day before the conference we organized the free Data Visualizations Hackathon. It
was a great opportunity for networking and exchange of experiences between data scientists
that use different programming languages. The challenge was based on the data from
Google Places API, which allows to search for places in a particular area. Thanks to this API
we gathered data related to places in Warsaw, their working hours and occupancy. Based
on this source of data participants, divided into 10 teams, were asked to prepare useful
business application powered data visualizations solutions and techniques.

Pre-meetings

In 2019, Why R? 2019 was preceded by fourteen pre-meetings in eight countries. The purpose
of those meetings was to provide the space for professional networking and knowledge
exchange for practitioners and students, from the area of statistical machine learning, pro-
gramming, optimization and data science. The Why R? Foundation supported organisation
of pre-meetings financially and/or by sending speakers.

The organisation of pre-meetings would not be possible without the wonderful support
of local R communities. Aside from the promotion of Why R? we had a great opportunity to
interact with other R enthusiasts.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

github.com/WhyR2019/abstracts
github.com/WhyR2019/presentations
whyr.pl/youtube/


NEWS AND NOTES 487

Figure 4: Locations and dates of the main Why R? 2019 conference and Why R?-branded pre-meetings.

Workshops

Figure 5: Why R? 2019 workshops.

Why R? 2019 conference had a wide portfolio of workshops that are listed below. One can
find materials from workshops at this GitHub repository github.com/WhyR2019/workshops

• Introduction to modern Generalized Additive Models in R (with mgcv) by Matteo
Fasiolo (University of Bristol). The assumption of the full-day workshop was firstly
to give its participants some theoretical background about GAMs and some practical
experience in R and finally to make attendees ready to start applying these models
themselves. GAM models are a non-parametric extension of traditional regression
model and were proved to be highly useful for both predictive and inferential purposes.
Their popularity is based on a good balance between flexibility and interpretability as

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

github.com/WhyR2019/workshops


NEWS AND NOTES 488

well as on the possible application on large datasets. Matteo started with explanation
of standard GAMs and related R packages. He explained what an additive model
is, how the smooth effects and random effects are introduced. GAM models fitting
was accompanied by the explanation of additional diagnostic and model selection
tools, and Big Data GAM methods. In the end more recent developments were also
described, i.e. quantile GAM models. The practical sessions were based on the mgcv
(Wood, 2017), qgam (Fasiolo et al., 2017) and mgcViz (Fasiolo et al., 2018) packages.

• data.table introduction & time-series by Jan Gorecki (H2O.AI). The workshop was
divided into two parts – the first part was devoted to the introduction of data.table
query concept while the second focused on a particular use case of working with
time-series data. In the first part Jan showed syntax similarities and differences be-
tween data.table and data.frame approaches. He used Arun Srinivasan workshops
materials from useR!2017, with a few extras: chaining of data.table queries, reference
semantics, subset of data: .SD and R function argument matching. In the second part
Jan showed the application of efficient data processing on financial time series data of
high-frequency (tick data quotations), including efficient aggregation to OHLC data,
calculation of moving averages and using rolling join.

• Straightforward introduction to Deep Learning in R (with Keras) by Mikołaj Bogucki
and Mikołaj Olszewski (iDash). The workshop started with the explanation of what
Deep Learning and Neural Networks are (complex functions) and what components
they include (input, output, hidden layers and weights). Then Keras (Allaire et al.,
2018) was presented as a high level library allowing to build neural networks with
an easy to use set of commands. The practical example using airBnB data and Keras
R codes showed all stages of building a Neural Network: (1) defining the structure
of the network, (2) defining the way of training (the loss function and the optimizer
algorithm), (3) training (together with its visualization), (4) evaluation and (5) predic-
tion. In addition, training, validation, test set division, simple imputation of missing
data, using non-linear activation functions and basic feature engineering was shortly
explained.

• auditor + DALEX: a powerful duet for validation and explanation of machine learn-
ing models by Alicja Gosiewska and Tomasz Mikołajczyk (MI2 Data Lab). The aim of
the workshop was to familiarize participants with modern methods of model verifica-
tion and exploration. In the first part Alicja and Tomasz introduced the idea of DALEX
(Biecek, 2018) explainers, showing how to use them to assess the performance of a
model and explain the model’s predictions (including global and local explanations).
In the second part they focused on additional functionalities of the auditor (Gosiewska
and Biecek, 2018) package, showing how the analysis of residuals may be applied to
select the best model or even improve models.

• Black is the new White - using eXplainable Artificial Intelligence in Business by
Marcin Chlebus (Faculty of Economic Sciences, University of Warsaw, Data Juice Lab,
Data Donuts). Marcin presented XAI as a possible solution for understanding “Black-
box” model complexity and fuzziness. He showed how XAI helps in stability and
sensitivity analysis, prediction quality assessment and identification of decision drivers.
The use cases showing the application of XAI in cross-sell marketing campaigns and
risk management were presented. With the use of step by step analysis, it was shown
that XAI is a set of tools enabling application of “black box” models in many business
industries through in-depth understanding of advanced machine learning modelling.

• Shiny Basics by Theo Roe (Jumping Rivers). This workshop was intended as a quick
introduction to creating interactive visualisations of data using shiny. Theo started
with some basic examples of using rmarkdown and htmlwidgets, then showed input
and output bindings to interact with R data structures and using inputs to render
output tables and graphs. In the end, Theo showed how to create own page layouts
using shiny and shinydashboard and input and output "slots".

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



NEWS AND NOTES 489

• Speeding up R wih C++ (Rcpp) – from basics to more advanced applications by
Piotr Wójcik (Faculty of Economic Sciences, University of Warsaw, Data Science
Lab). Piotr discussed various aspects of Rcpp that helps to easily replace the R code
with often significantly faster counterparts in C++. Writing R functions in C++ was
explained, starting from simple examples with the focus on similarities and differences
between R and C++ syntax. Then Piotr at first explained writing loops and recursive
calls in C++, using Rcpp sugar and secondly presented how to store C++ code in *.cpp
files, using Standard Template Library, iterators, algorithms and range-based loops. In
the end complex input/output objects (S3 and S4) were discussed.

• Machine Learning Pipelines and Reproducible Research with mlr3 and drake by
Jakob Richter (TU Dortmund University) and Patrick Schratz (LMU Munich). The
workshop was divided into two parts – the former introduced the new mlr3 package
(Lang et al., 2019) framework (the successor of the mlr package) while the latter
presented a brief overview of the drake package (Landau, 2018) in R. In the first part
Jakob and Patrick explained the philosophy and ingredients of mlr3 package. They
presented how to define the data and the target variable, using learners provided by
mlr3, set and tune hyperparameters, make predictions and evaluate their performance,
including resampling techniques and comparing multiple learners. The practical
example showed hyperparameter tuning and training of a random forest classifier
on the iris dataset. The practical part also involved benchmark analysis of multiple
learners, using different hyperparameter ranges on the iris and spam datasets. A
particular emphasis was put on machine learning workflows that might be easily
controlled with mlr3pipelines package (Binder et al., 2019). In the second part the
drake package was presented. It helps to set up a reproducible workflow of the project
and it easily integrates with the mlr3 package and its extensions.

• Basics of spatial data analysis by Jakub Nowosad (Adam Mickiewicz University,
Poznan). The emphasis in this workshop was put on getting started with spatial data
analysis. Jakub demonstrated key packages for spatial analysis and making maps,
explained spatial data representation in R, using sf (Pebesma, 2018), for spatial vector
data, and raster (Hijmans et al., 2017) packages. Then he gave a lot of examples of
spatial data visualization, using a powerful tmap package (Tennekes, 2018), including
some vector-raster interactions. In the end, he also showed data manipulation exam-
ples with the tidyverse (dplyr) approach, in which sf spatial objects are simply special
data frames.

Invited talks

The invited talks topics included domain knowledge from statistics, computer science,
natural sciences and economics. The speakers list presents as follows:

Marvin Wright

Random forests used to be everywhere, from Microsoft Kinect to meteorology, but their
popularity considerably dropped with the advent of deep learning. During his keynote
talk at Why R? 2019 Marvin R. Wright has shown that random forests still can be used in
machine learning routines, making the whole process time- and cost-efficient.

Implementing a real-life machine learning solution is not only about the best performance.
Marvin has shown that considering trade-off between performance and costs of the analysis,
random forests are still unbeatable. Aside from the methodological background, Marvin has
given an overview of random forest implementations in R (Wright and Ziegler, 2017).

Marvin is a Postdoc at the Leibniz Institute for Prevention Research and Epidemiology
in Bremen, Germany. He is the author of several R packages, including the fastest implemen-
tation of random forest in R, ranger. He holds a Ph.D. in Biostatistics from the University

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



NEWS AND NOTES 490

of Lübeck, supervised by Andreas Ziegler. In the past, Marvin worked at the University
of Lübeck. He was a visiting researcher at the University of Copenhagen. Also, he spent
some time in the automotive and health insurance industries. His main research interests
are interpretable machine learning, genetic epidemiology and survival analysis.

Jakub Nowosad

Jakub Nowosad’s keynote lecture was a great opportunity to learn about geostatistics. Jakub,
a co-author of the Geocomputation with R (Lovelace et al., 2019), has focused on tools used
to solve real-life problems in spatial data analysis.

The growing importance of spatial data stimulates a rapid evolution of geostatistical
methods. Jakub, as the active member of #rspatial community, not only presented cutting-
edge tools but also gave his unique insight into the future of the spatial data analysis.

Jakub is an assistant professor in the Department of Geoinformation at the Adam Mick-
iewicz University in Poznan, Poland. His main research is focused on developing and
applying spatial methods in order to expand our understanding of processes and patterns
in the environment. He has extensive teaching experience in the fields of spatial analysis,
geostatistics, statistics, and machine learning.

Sigrid Keydana

We know how accurate are our predictions but do we really know how certain they are?
This question has been answered by Sigrid Keydana (RStudio) during her keynote lecture.

Sigrid has presented tfprobability, an interface to TensorFlow Probability, a tool for
obtaining uncertainty estimates from deep neural networks. This exciting tool can be
extended beyond a classic deep learning framework into complex hierarchical models.

Sigrid is an Applied Researcher at RStudio. She has experience as a psychologist,
software developer and data scientist. She is passionate about exploring the borders of deep
learning, especially by helping users to apply the power of deep learning in R.

Steph Locke

Machine learning models find their place in almost every area of our life, influencing things
as small as the video recommendations on YouTube or as big as the length and severity
of a sentence in a criminal procedure. With the growing importance of machine learning,
it becomes more and more important to train models while keeping in mind their ethical
consequences.

During her keynote talk at Why R? 2019, Steph Locke showed us ethical concerns about
data science. Apart from pointing out existing issues, she has also presented solutions
leading to more fair and transparent machine learning models.

Steph is the founder of a consultancy in the UK. Her talks, blog posts, conferences, and
business all have one thing in common – they help people get started with data science.
Steph holds the Microsoft MVP award for her community contributions. In her spare time,
Steph plays board games with her husband and takes copious pictures of her doggos.

Wit Jakuczun

Wit Jakuczun from WLOG Solutions presented his talk about deploying - How to make R
great for machine learning in (not only) Enterprise.

For many years software engineers have put enormous effort to develop best practices
to deliver stable and maintainable software. How R users can benefit from this experience?
Wit answered this question by going through several concepts and tools that are natural for
software engineers but are often undervalued by R users.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



NEWS AND NOTES 491

Paula Brito

During her keynote lecture at Why R? 2019 Paula Brito has given a unique insight into the
world of symbolic data, where data points are represented not as single values, but more
complex structures, like sets or intervals (Noirhomme-Fraiture and Brito, 2011).

A classical paradigm of data science assumes that categorical variables, like gender or
educational stage, are represented as the single value per observation. Paula has shown how
to utilize her package, MAINT.Data, to model interval data, using its symbolic representation
which leads to more accurate and robust models.

Paula is Associate Professor at the Faculty of Economics of the University of Porto, and
member of the Artificial Intelligence and Decision Support Research Group (LIAAD) of
INESC TEC, Portugal. Her current research focuses on the analysis of multidimensional
complex data, known as symbolic data, for which she develops statistical approaches and
multivariate analysis methodologies.

Round tables

Round tables are networking-oriented social mixers devoted to connecting people with
similar interests. The exact points discussed during the round table and its style depend on
the moderators who are shaping out the details, based on the general agenda provided by
the Why R? organizers. The organizing committee both selects the topics of round tables
and invites appropriate moderators.

Diversity in Data Science

This board aims to inspire members of affinity groups to pursue careers in data science. We
hope that this platform for networking will reduce the diversity of R community. Moderator:
Barbara Sobkowiak (Women in Machine Learning & Data Science Poland).

Career-planning in Data Science

Participants of WhyR will have a chance to learn from more experienced R enthusiasts about
their career paths. Moderator: Kamil Kosiński (PwC).

Teaching Data Science

Practitioners will share their experiences in introducing their students to basic and advanced
concepts of data science. Moderator: Patrick Schratz (Ludwig Maximilian University of
Munich).

Data Visualizations

Discuss data visualizations good practices and approaches to various presentation chal-
lenges. Moderator: Michał Burdukiewicz (Warsaw University of Technology).

Ethics in Data Science

With the increased importance of machine learning, we are becoming more and more
concerned about the ethics of data science. Moderator: Steph Locke (Locke Data).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



NEWS AND NOTES 492

Conference organizers

The organizing committee consisted of Klaudia Korniluk, Marcin Kosiński, Michał Bur-
dukiewicz, Jarosław Chilimoniuk, Katarzyna Sidorczuk, Filip Pietluch, Weronika Puchała
and Dominik Rafacz.

The quality of the scientific program of the conference was the achievement of Ste-
fan Rödiger (Brandenburg University of Technology Cottbus-Senftenberg), Piotr Wójcik
(University of Warsaw) and Bernd Bischl (Ludwig Maximilian University of Munich).

Acknowledgements

We would like to express our gratitude to all our sponsors, the Faculty of Economic Sciences
(University of Warsaw), ML in PL Society, local organizers of the pre-meetings and student
helpers.

Additional information

Why R? 2019 website http://whyr.pl/2019
Corporate sponsors: PwC Poland, iDash, R Consortium, umping Rivers Ltd., Appsilon
Data Science, RStudio, Inc., Analyx®GmbH, Pearson IOKI and WLOG Solutions.

Bibliography

J. J. Allaire, F. Chollet, RStudio, Google, Y. Tang, D. Falbel, W. V. D. Bijl, and M. Studer. keras:
R Interface to ’Keras’, Apr. 2018. URL https://CRAN.R-project.org/package=keras.
[p488]

P. Biecek. DALEX: Descriptive mAchine Learning EXplanations, June 2018. URL https:
//CRAN.R-project.org/package=DALEX. [p488]

M. Binder, F. Pfisterer, B. Bischl, M. Lang, and S. Dandl. mlr3pipelines: Preprocessing
Operators and Pipelines for ’mlr3’, 2019. URL https://CRAN.R-project.org/package=
mlr3pipelines. R package version 0.1.1. [p489]

M. Burdukiewicz, L. E. J. Marta Karas, M. Kosiński, B. Bischl, and S. Rödiger. Conference
report: Why r? 2018. The R Journal, 10(2):572–578, 2018. URL https://journal.r-
project.org/archive/2018-2/whyR.pdf. [p484]

M. Fasiolo, Y. Goude, R. Nedellec, and S. N. Wood. Fast calibrated additive quantile
regression, 2017. [p488]

M. Fasiolo, R. Nedellec, Y. Goude, and S. N. Wood. Scalable visualisation methods for
modern generalized additive models, 2018. [p488]

A. Gosiewska and P. Biecek. auditor: an R package for model-agnostic visual vali-
dation and diagnostic. ArXiv e-prints, 2018. URL http://adsabs.harvard.edu/abs/
2018arXiv180907763G. Provided by the SAO/NASA Astrophysics Data System. [p488]

R. J. Hijmans, J. van Etten, J. Cheng, M. Mattiuzzi, M. Sumner, J. A. Greenberg, O. P.
Lamigueiro, A. Bevan, E. B. Racine, A. Shortridge, and A. Ghosh. raster: Geographic Data
Analysis and Modeling, Nov. 2017. URL https://CRAN.R-project.org/package=raster.
[p489]

W. M. Landau. The drake r package: a pipeline toolkit for reproducibility and high-
performance computing. Journal of Open Source Software, 3(21), 2018. URL https:
//doi.org/10.21105/joss.00550. [p489]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

http://whyr.pl/2019
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=mlr3pipelines
https://CRAN.R-project.org/package=mlr3pipelines
https://journal.r-project.org/archive/2018-2/whyR.pdf
https://journal.r-project.org/archive/2018-2/whyR.pdf
http://adsabs.harvard.edu/abs/2018arXiv180907763G
http://adsabs.harvard.edu/abs/2018arXiv180907763G
https://CRAN.R-project.org/package=raster
https://doi.org/10.21105/joss.00550
https://doi.org/10.21105/joss.00550


NEWS AND NOTES 493

M. Lang, B. Bischl, J. Richter, P. Schratz, and M. Binder. mlr3: Machine Learning in R - Next
Generation, 2019. URL https://CRAN.R-project.org/package=mlr3. R package version
0.1.4. [p489]

R. Lovelace, J. Nowosad, and J. Muenchow. Geocomputation with R. CRC Press, Mar. 2019.
ISBN 978-1-351-39690-5. Google-Books-ID: 8W2PDwAAQBAJ. [p490]

M. Noirhomme-Fraiture and P. Brito. Far beyond the classical data models: symbolic data
analysis. Statistical Analysis and Data Mining: The ASA Data Science Journal, 4(2):157–170,
2011. ISSN 1932-1872. doi: 10.1002/sam.10112. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/sam.10112. [p491]

E. Pebesma. Simple Features for R: Standardized Support for Spatial Vector Data. The
R Journal, 10(1):439–446, 2018. doi: 10.32614/RJ-2018-009. URL https://doi.org/10.
32614/RJ-2018-009. [p489]

M. Tennekes. tmap: Thematic maps in R. Journal of Statistical Software, 84(6):1–39, 2018. doi:
10.18637/jss.v084.i06. [p489]

S. Wood. Generalized Additive Models: An Introduction with R, Second Edition. Chapman
& Hall/CRC Texts in Statistical Science. CRC Press, 2017. ISBN 9781498728379. URL
https://books.google.dk/books?id=JTkkDwAAQBAJ. [p488]

M. N. Wright and A. Ziegler. ranger: A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 2017. ISSN 1548-7660.
doi: 10.18637/jss.v077.i01. URL http://arxiv.org/abs/1508.04409. arXiv: 1508.04409.
[p489]

Michał Burdukiewicz
Warsaw University of Technology, Why R? Foundation
Pl. Politechniki 1, 00-661 Warsaw
Poland
michal@whyr.pl

Filip Pietluch
University of Wrocław
Pl. Uniwersytecki 1, 50-137 Wrocław
Poland
fpietluch@gmail.com

Jarosław Chilimoniuk
University of Wrocław
Pl. Uniwersytecki 1, 50-137 Wrocław
Poland
jaroslaw.chilimoniuk@gmail.com

Katarzyna Sidorczuk
University of Wrocław
Pl. Uniwersytecki 1, 50-137 Wrocław
Poland
sidorczuk.katarzyna17@gmail.com

Dominik Rafacz
Warsaw University of Technology
Pl. Politechniki 1, 00-661 Warsaw
Poland
dominikrafacz@gmail.com

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/package=mlr3
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10112
https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10112
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://books.google.dk/books?id=JTkkDwAAQBAJ
http://arxiv.org/abs/1508.04409
mailto:michal@whyr.pl
mailto:fpietluch@gmail.com
mailto:jaroslaw.chilimoniuk@gmail.com
mailto:sidorczuk.katarzyna17@gmail.com 
mailto:dominikrafacz@gmail.com


NEWS AND NOTES 494

Leon Eyrich Jessen
Technical University of Denmark
Anker Engelunds Vej 1, 2800 Kgs. Lyngby, Denmark
Denmark
ljess@dtu.dk

Stefan Rödiger
Brandenburg University of Technology Cottbus–Senftenberg
Universitätsplatz 1, Senftenberg
Germany
ORCiD: 0000-0002-1441-6512
stefan.roediger@b-tu.de

Marcin Kosiński
Gradient Metrics LLC, Why R? Foundation
Warsaw
Poland
marcin@whyr.pl

Piotr Wójcik
University of Warsaw, Data Science Lab
ul. Dluga 44/50, 00-241 Warsaw
Poland
pwojcik@wne.uw.edu.pl

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:ljess@dtu.dk
mailto:stefan.roediger@b-tu.de
mailto:marcin@whyr.pl
mailto:pwojcik@wne.uw.edu.pl


NEWS AND NOTES 495

Changes on CRAN
2020-01-01 to 2020-08-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 8 months, 1554 new packages were added to the CRAN package repository. 96
packages were unarchived and 843 were archived. The following shows the growth of the
number of active packages in the CRAN package repository:

2000 2005 2010 2015 2020

0
50

00
10

00
0

15
00

0

Number of CRAN Packages

2000 2005 2010 2015 2020

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

Number of CRAN Packages (Log−Scale)

On 2020-08-31, the number of active packages was around 16174.

Changes in the CRAN Repository Policy

The Policy now says the following:

• All correspondence with CRAN must be sent to CRAN-submissions@R-project.org
(for submissions) or CRAN@R-project.org (for published packages) and not to mem-
bers of the team, in plain text ASCII and not HTML.

• A package listed in ‘Suggests’ or ‘Enhances’ should be used conditionally in examples
or tests if it cannot straightforwardly be installed on the major R platforms. (‘Writing
R Extensions’ recommends that they are always used conditionally.)

• Orphaned CRAN packages should not be strict requirements (in the ‘Depends’, ‘Im-
ports’ or ‘LinkingTo’ fields, including indirectly). They are allowed in ‘Suggests’ if
used conditionally, although this is discouraged.

• Packages which use Internet resources should fail gracefully with an informative
message if the resource is not available or has changed (and not give a check warning
nor error).

• Compiled code should never terminate the R process within which it is running. Thus
C/C++ calls to assert/abort/exit/std::terminate, Fortran calls to STOP and so on
must be avoided.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/web/packages/policies.html
mailto:CRAN-submissions@R-project.org
mailto:CRAN@R-project.org


NEWS AND NOTES 496

• Updates to previously-published packages must have an increased version. Increasing
the version number at each submission reduces confusion so is preferred even when a
previous submission was not accepted.

CRAN package submissions

During the first 8 months of 2020 (January to August), CRAN received 22020 package
submissions. For these, 38551 actions took place of which 25063 (65%) were auto processed
actions and 13488 (35%) manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting
auto 5710 4300 5269 0 0 6216 1987 1581
manual 5437 95 936 783 291 4532 1181 233

These include the final decisions for the submissions which were

action archive publish
auto 5401 (25.2%) 5258 (24.5%)
manual 5315 (24.8%) 5449 (25.4%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

The CRAN team has changed. Martina Schmirl and Jelena Saf left the team. Thanks a
lot to both of you! New members are Gregor Seyer who is very actively processing newbies
submissions and Julia Haider who just joined the team. Welcome to CRAN!

CRAN mirror security

Currently, there are 101 official CRAN mirrors, 65 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

New packages in CRAN task views

Bayesian BEST, BVAR, BayesPostEst, Bergm, NGSSEML, acebayes, bbricks, conting,
mcmcse, stableGR.

ChemPhys spectrino.

Cluster DatabionicSwarm, ProjectionBasedClustering, genieclust.

Databases RClickhouse, dbx, dplyr, sparklyr.

Econometrics REndo, collapse, fixest, mfx, mhurdle, mnlogit, skedastic.

Environmetrics PMCMRplus, dsm, rioja.

Finance copulaData, nvmix, qrmdata, qrmtools.

FunctionalData fdANOVA, fdaACF.

HighPerformanceComputing pbdBASE.

Hydrology AWAPer, RNRCS, climate, fasstr, metScanR, stationaRy.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/view=Bayesian
https://CRAN.R-project.org/package=BEST
https://CRAN.R-project.org/package=BVAR
https://CRAN.R-project.org/package=BayesPostEst
https://CRAN.R-project.org/package=Bergm
https://CRAN.R-project.org/package=NGSSEML
https://CRAN.R-project.org/package=acebayes
https://CRAN.R-project.org/package=bbricks
https://CRAN.R-project.org/package=conting
https://CRAN.R-project.org/package=mcmcse
https://CRAN.R-project.org/package=stableGR
https://CRAN.R-project.org/view=ChemPhys
https://CRAN.R-project.org/package=spectrino
https://CRAN.R-project.org/view=Cluster
https://CRAN.R-project.org/package=DatabionicSwarm
https://CRAN.R-project.org/package=ProjectionBasedClustering
https://CRAN.R-project.org/package=genieclust
https://CRAN.R-project.org/view=Databases
https://CRAN.R-project.org/package=RClickhouse
https://CRAN.R-project.org/package=dbx
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=sparklyr
https://CRAN.R-project.org/view=Econometrics
https://CRAN.R-project.org/package=REndo
https://CRAN.R-project.org/package=collapse
https://CRAN.R-project.org/package=fixest
https://CRAN.R-project.org/package=mfx
https://CRAN.R-project.org/package=mhurdle
https://CRAN.R-project.org/package=mnlogit
https://CRAN.R-project.org/package=skedastic
https://CRAN.R-project.org/view=Environmetrics
https://CRAN.R-project.org/package=PMCMRplus
https://CRAN.R-project.org/package=dsm
https://CRAN.R-project.org/package=rioja
https://CRAN.R-project.org/view=Finance
https://CRAN.R-project.org/package=copulaData
https://CRAN.R-project.org/package=nvmix
https://CRAN.R-project.org/package=qrmdata
https://CRAN.R-project.org/package=qrmtools
https://CRAN.R-project.org/view=FunctionalData
https://CRAN.R-project.org/package=fdANOVA
https://CRAN.R-project.org/package=fdaACF
https://CRAN.R-project.org/view=HighPerformanceComputing
https://CRAN.R-project.org/package=pbdBASE
https://CRAN.R-project.org/view=Hydrology
https://CRAN.R-project.org/package=AWAPer
https://CRAN.R-project.org/package=RNRCS
https://CRAN.R-project.org/package=climate
https://CRAN.R-project.org/package=fasstr
https://CRAN.R-project.org/package=metScanR
https://CRAN.R-project.org/package=stationaRy


NEWS AND NOTES 497

MetaAnalysis NMADiagT, SPAtest, getspres, metagam, metapower, metarep, metawho,
miniMeta, poolr, publipha.

MissingData CircSpaceTime, ClustImpute, ECLRMC, EditImputeCont, FSMUMI, IPW-
boxplot, NPBayesImputeCat, RBtest, RMixtComp, StempCens, areal, biclustermd,
bootImpute, cassandRa, iai, impimp, imputeFin, imputeR, isotree, lodi, metasens,
miWQS, miceRanger, mipred, misaem, missSBM, missingHE, naivebayes, plsR-
beta, psfmi, robustrank, rrcovNA, rsparse, sievePH, tensorBF, ui.

ModelDeployment RestRserve.

NaturalLanguageProcessing BTM, LexisNexisTools, corporaexplorer, crfsuite, ruimte-
hol, textplot, tokenizers.bpe, topicdoc.

NumericalMathematics Carlson, JuliaConnectoR, RcppBigIntAlgos, caracas, clifford,
dual, polyMatrix, rmatio, symengine.

OfficialStatistics cancensus, cansim, collapse.

Optimization mixsqp.

Psychometrics BGGM, EGAnet, IsingFit, IsingSampler, NetworkComparisonTest, Sem-
NeT, TestDesign, bootnet, edina, edmdata, elasticIsing, errum, gimme, glasso,
graphicalVAR, iarm, irtplay, lvnet, mgm, mlVAR, networktools, networktree,
thurstonianIRT.

Robust rrcovNA.

Spatial cancensus, gear.

TeachingStatistics arm, msos, wooldridge.

TimeSeries BGVAR, BMTAR, BayesARIMAX, DTSg, EBMAforecast, NGSSEML, Pro-
bReco, UComp, bootUR, changepoint.geo, collapse, data.table, disaggR, fa-
ble.prophet, fabletools, fdaACF, fsMTS, garma, gratis, gravitas, mbsts, mixAR,
pcts, rhosa, runner, scoringutils, seer, slider, smoots, statespacer, testcorr.

Tracking rerddapXtracto.

WebTechnologies dash, rromeo.

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

https://CRAN.R-project.org/view=MetaAnalysis
https://CRAN.R-project.org/package=NMADiagT
https://CRAN.R-project.org/package=SPAtest
https://CRAN.R-project.org/package=getspres
https://CRAN.R-project.org/package=metagam
https://CRAN.R-project.org/package=metapower
https://CRAN.R-project.org/package=metarep
https://CRAN.R-project.org/package=metawho
https://CRAN.R-project.org/package=miniMeta
https://CRAN.R-project.org/package=poolr
https://CRAN.R-project.org/package=publipha
https://CRAN.R-project.org/view=MissingData
https://CRAN.R-project.org/package=CircSpaceTime
https://CRAN.R-project.org/package=ClustImpute
https://CRAN.R-project.org/package=ECLRMC
https://CRAN.R-project.org/package=EditImputeCont
https://CRAN.R-project.org/package=FSMUMI
https://CRAN.R-project.org/package=IPWboxplot
https://CRAN.R-project.org/package=IPWboxplot
https://CRAN.R-project.org/package=NPBayesImputeCat
https://CRAN.R-project.org/package=RBtest
https://CRAN.R-project.org/package=RMixtComp
https://CRAN.R-project.org/package=StempCens
https://CRAN.R-project.org/package=areal
https://CRAN.R-project.org/package=biclustermd
https://CRAN.R-project.org/package=bootImpute
https://CRAN.R-project.org/package=cassandRa
https://CRAN.R-project.org/package=iai
https://CRAN.R-project.org/package=impimp
https://CRAN.R-project.org/package=imputeFin
https://CRAN.R-project.org/package=imputeR
https://CRAN.R-project.org/package=isotree
https://CRAN.R-project.org/package=lodi
https://CRAN.R-project.org/package=metasens
https://CRAN.R-project.org/package=miWQS
https://CRAN.R-project.org/package=miceRanger
https://CRAN.R-project.org/package=mipred
https://CRAN.R-project.org/package=misaem
https://CRAN.R-project.org/package=missSBM
https://CRAN.R-project.org/package=missingHE
https://CRAN.R-project.org/package=naivebayes
https://CRAN.R-project.org/package=plsRbeta
https://CRAN.R-project.org/package=plsRbeta
https://CRAN.R-project.org/package=psfmi
https://CRAN.R-project.org/package=robustrank
https://CRAN.R-project.org/package=rrcovNA
https://CRAN.R-project.org/package=rsparse
https://CRAN.R-project.org/package=sievePH
https://CRAN.R-project.org/package=tensorBF
https://CRAN.R-project.org/package=ui
https://CRAN.R-project.org/view=ModelDeployment
https://CRAN.R-project.org/package=RestRserve
https://CRAN.R-project.org/view=NaturalLanguageProcessing
https://CRAN.R-project.org/package=BTM
https://CRAN.R-project.org/package=LexisNexisTools
https://CRAN.R-project.org/package=corporaexplorer
https://CRAN.R-project.org/package=crfsuite
https://CRAN.R-project.org/package=ruimtehol
https://CRAN.R-project.org/package=ruimtehol
https://CRAN.R-project.org/package=textplot
https://CRAN.R-project.org/package=tokenizers.bpe
https://CRAN.R-project.org/package=topicdoc
https://CRAN.R-project.org/view=NumericalMathematics
https://CRAN.R-project.org/package=Carlson
https://CRAN.R-project.org/package=JuliaConnectoR
https://CRAN.R-project.org/package=RcppBigIntAlgos
https://CRAN.R-project.org/package=caracas
https://CRAN.R-project.org/package=clifford
https://CRAN.R-project.org/package=dual
https://CRAN.R-project.org/package=polyMatrix
https://CRAN.R-project.org/package=rmatio
https://CRAN.R-project.org/package=symengine
https://CRAN.R-project.org/view=OfficialStatistics
https://CRAN.R-project.org/package=cancensus
https://CRAN.R-project.org/package=cansim
https://CRAN.R-project.org/package=collapse
https://CRAN.R-project.org/view=Optimization
https://CRAN.R-project.org/package=mixsqp
https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=BGGM
https://CRAN.R-project.org/package=EGAnet
https://CRAN.R-project.org/package=IsingFit
https://CRAN.R-project.org/package=IsingSampler
https://CRAN.R-project.org/package=NetworkComparisonTest
https://CRAN.R-project.org/package=SemNeT
https://CRAN.R-project.org/package=SemNeT
https://CRAN.R-project.org/package=TestDesign
https://CRAN.R-project.org/package=bootnet
https://CRAN.R-project.org/package=edina
https://CRAN.R-project.org/package=edmdata
https://CRAN.R-project.org/package=elasticIsing
https://CRAN.R-project.org/package=errum
https://CRAN.R-project.org/package=gimme
https://CRAN.R-project.org/package=glasso
https://CRAN.R-project.org/package=graphicalVAR
https://CRAN.R-project.org/package=iarm
https://CRAN.R-project.org/package=irtplay
https://CRAN.R-project.org/package=lvnet
https://CRAN.R-project.org/package=mgm
https://CRAN.R-project.org/package=mlVAR
https://CRAN.R-project.org/package=networktools
https://CRAN.R-project.org/package=networktree
https://CRAN.R-project.org/package=thurstonianIRT
https://CRAN.R-project.org/view=Robust
https://CRAN.R-project.org/package=rrcovNA
https://CRAN.R-project.org/view=Spatial
https://CRAN.R-project.org/package=cancensus
https://CRAN.R-project.org/package=gear
https://CRAN.R-project.org/view=TeachingStatistics
https://CRAN.R-project.org/package=arm
https://CRAN.R-project.org/package=msos
https://CRAN.R-project.org/package=wooldridge
https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/package=BGVAR
https://CRAN.R-project.org/package=BMTAR
https://CRAN.R-project.org/package=BayesARIMAX
https://CRAN.R-project.org/package=DTSg
https://CRAN.R-project.org/package=EBMAforecast
https://CRAN.R-project.org/package=NGSSEML
https://CRAN.R-project.org/package=ProbReco
https://CRAN.R-project.org/package=ProbReco
https://CRAN.R-project.org/package=UComp
https://CRAN.R-project.org/package=bootUR
https://CRAN.R-project.org/package=changepoint.geo
https://CRAN.R-project.org/package=collapse
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=disaggR
https://CRAN.R-project.org/package=fable.prophet
https://CRAN.R-project.org/package=fable.prophet
https://CRAN.R-project.org/package=fabletools
https://CRAN.R-project.org/package=fdaACF
https://CRAN.R-project.org/package=fsMTS
https://CRAN.R-project.org/package=garma
https://CRAN.R-project.org/package=gratis
https://CRAN.R-project.org/package=gravitas
https://CRAN.R-project.org/package=mbsts
https://CRAN.R-project.org/package=mixAR
https://CRAN.R-project.org/package=pcts
https://CRAN.R-project.org/package=rhosa
https://CRAN.R-project.org/package=runner
https://CRAN.R-project.org/package=scoringutils
https://CRAN.R-project.org/package=seer
https://CRAN.R-project.org/package=slider
https://CRAN.R-project.org/package=smoots
https://CRAN.R-project.org/package=statespacer
https://CRAN.R-project.org/package=testcorr
https://CRAN.R-project.org/view=Tracking
https://CRAN.R-project.org/package=rerddapXtracto
https://CRAN.R-project.org/view=WebTechnologies
https://CRAN.R-project.org/package=dash
https://CRAN.R-project.org/package=rromeo
mailto:Kurt.Hornik@R-project.org
mailto:Uwe.Ligges@R-project.org
mailto:Achim.Zeileis@R-project.org


NEWS AND NOTES 498

R Foundation News
by Torsten Hothorn

Donations and members

Membership fees and donations received between 2020-02-24 and 2020-09-08.

Donations

Ichu Cheng (Canada) Mitchell Gail (United States) ken ikeda (Japan) Parag Magunia (United
States) John McMahon (United States) Daniel Wollschläger (Germany)明彦田中 (Japan)

Supporting benefactors

McGill University, Ottawa (Canada) www.ohmybingo.com, Alderley Edge (United King-
dom)

Supporting institutions

University of Iowa, Iowa City (United States)

Supporting members

Diogo Almeida (United Arab Emirates) Paul Artes (United Kingdom) Ashanka Beligaswatte
(Australia) Chris Billingham (United Kingdom) Wesley Brooks (United States) Robert Car-
nell (United States) Luca Cocconcelli (United Kingdom) Rémi Coulaud (France) Alistair
Cullum (United States) Ajit de Silva (United States) Dubravko Dolic (Germany) Gerrit
Eichner (Germany) Martin Elff (Germany) Mitch Eppley (United States) Nathan Epstein
(United States) cristiano esclapon (Switzerland) Guenter Faes (Germany) Gottfried Fischer
(Austria) Jutta Gampe (Germany) Jan Marvin Garbuszus (Germany) Stefano Guazzetti (Italy)
Chris Hanretty (United Kingdom) Takehiko Hayashi (Japan) Alessamdro Ielpi (Canada)
Christian Kampichler (Netherlands) Srikanth Kannan (India) Curtis Kephart (United States)
sanghyeon kim (Korea, Republic of) Sebastian Koehler (Germany) Luca La Rocca (Italy)
Adrien Le Guillou (France) Seungdoe Lee (Korea, Republic of) Bernhard Lehnert (Germany)
Alain Lesaffre (Australia) Eric Lim (United Kingdom) Sharon Machlis (United States) John
MacKintosh (United Kingdom) Michal Majka (Austria) harvey minnigh (Puerto Rico) Ernst
Molitor (Germany) Jairo Montenegro Arjona (Colombia) David Monterde (Spain) Stefan
Moog (Germany) Steffen Moritz (Germany) Jens Oehlschlägel (Germany) Jaesung James
Park (Korea, Republic of) Matt Parker (United States) Bill Pikounis (United States) Robert
Selden (United States) Christian Seubert (Austria) Pedro Silva (Brazil) gabriel silver (United
States) Berthold Stegemann (Germany) Harald Sterly (Germany) Dag Tanneberg (Germany)
Nicholas Turner (United States) Philipp Upravitelev (Russian Federation) Robert van den
Berg (Austria) Mark van der Loo (Netherlands) Frans van Dunné (Costa Rica)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859

mailto:Torsten.Hothorn@R-project.org

	Editorial
	In this issue

	gk: An R Package for the g-and-k and Generalised g-and-h Distributions
	Introduction
	Definitions
	Distribution functions
	Range of valid parameters
	Inference functions
	Illustration
	Discussion
	Appendix A: Formulae
	Appendix B: Range of valid parameters - theory
	Acknowledgements

	NlinTS: An R Package For Causality Detection in Time Series
	Introduction
	The Granger causality test
	A non-linear Granger causality test
	Transfer entropy
	A continuous estimation of Shannon Transfer entropy
	Normalizing the Transfer entropy
	R code examples
	The Granger causality test
	The VARNN model
	The non-linear Granger causality test
	The discrete entropy
	The continuous estimation of the entropy
	The discrete mutual information
	The continuous estimation of the mutual information
	The discrete Transfer entropy
	The continuous estimation of the Transfer entropy

	Conclusion

	Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM 
	Introduction
	Spatial effect on a univariate outcome
	Generalized additive model
	Estimating and mapping a spatial effect
	Application to case-control data from Massachusetts

	Estimating spatial effects for right-censored survival data 
	Fitting the Cox proportional hazards additive model
	Simulation examples
	Application to right-censored California data
	Inference
	Making inferences
	An example

	Discussion
	Acknowledgments
	Appendix

	mudfold: An R Package for Nonparametric IRT Modelling of Unfolding Processes
	Introduction
	Methodology
	Assumptions of the nonparametric unfolding IRT model
	Errors and scalability coefficients
	Scale construction
	MUDFOLD diagnostics
	Uncertainty estimates for MUDFOLD statistics
	Nonparametric estimation of person ideal points
	Missing values

	The mudfold package
	Description of the functions mudfold() and as.mudfold()
	Description of the generic functions
	The diagnostics() function
	Unfolding data simulation and description of the mudfoldsim() function
	Description of the pick() function

	Applications 
	Loneliness data
	Plato's seven works data
	Summary
	tsmp: An R Package for Time Series with Matrix Profile
	Introduction: time series data mining
	The matrix profile
	The tsmp package
	Installation
	Input arguments and example
	Computational methods
	Data mining tasks
	Speed
	Conclusion
	Acknowledgements

	Acronyms
	 Individual-Level Modelling of Infectious Disease Data: EpiILM
	Introduction
	Model
	Contents of EpiILM
	Simulation of epidemics
	Descriptive analyses
	Example: spatial model
	Example: network model
	Bayesian Inference
	Case Study: Tomato spotted wilt virus (TSWV) data

	Conclusion
	Acknowledgments


	SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified Proportional Hazards Model via Gradient Boosting
	Introduction
	Methods
	Stratified proportional hazards model
	Gradient boosting for SPH
	Stopping criteria

	Simulation studies
	Illustration of package
	Model fitting
	Simple example

	TCGA data example
	Conclusion
	Acknowledgments

	CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model
	Introduction
	Fitting the Cox model
	Notation and model
	Estimation of the covariate effects

	Checking the Cox model assumptions
	Checking the stationarity assumption
	Implementation of CoxPhLb
	The simulated data example
	The Channing House data

	Summary
	Acknowledgements


	SortedEffects: Sorted Causal Effects in R
	The sorted effects method
	The SortedEffects package
	Functions in the package
	spe
	ca
	subpop
	Inference

	Gender wage gap application
	Acknowledgements

	npordtests: An R Package of Nonparametric Tests for Equality of Location Against Ordered Alternatives
	Introduction
	Ordered alternative tests
	Jonckheere-Terpstra test
	Beier and Buning's Adaptive test
	Modified Jonckheere-Terpstra test
	Terpstra-Magel test
	Ferdhiana-Terpstra-Magel test
	KTP test
	S test
	Gaur's Gc test

	Demonstration of the npordtests package
	Datasets
	Tests
	Jonkheere-Terpstra test: JtTest(...)
	Beier and Buning's Adaptive test: AtTest(...)
	Modified Jonkheere-Terpstra test: MjtTest(...)
	Terpstra-Magel test: TmTest(...)
	Ferdhiana-Terpstra-Magel test: FtmTest(...)
	KTP test: KtpTest(...)
	S test: SsTest(...)
	Gaur's Gc test: GcTest(...)

	Simulation study
	Results
	Summary
	Acknowledgments

	lspartition: Partitioning-Based Least Squares Regression
	Introduction
	Setup
	Package and data

	Partitioning scheme selection
	Bias and variance
	Integrated mean squared error
	Implementation details

	Estimation and inference
	Point estimation and bias correction
	Pointwise inference
	Uniform inference
	Linear combinations

	Summary

	Skew-t Expected Information Matrix Evaluation and Use for Standard Error Calculations
	Introduction
	Skew-t distributions
	The maximum penalized likelihood estimation method
	Application to stock returns data

	Skew-t information matrix
	Numerical evaluation of the skew-t information matrix
	Expected information matrix accuracy verification
	Information matrices condition numbers and parameters correlations

	Standard errors of skew-t parameter MPLEs
	A Monte Carlo skew-t fitting difficulty and a solution
	Standard errors of skew-t MPLEs

	Concluding comments

	rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data
	Introduction
	Basics of CMB data
	rcosmo package
	Visualisation tools
	rcosmo classes
	Getting data into rcosmo
	Use of memory mapping
	Introduction to HEALPix
	HEALPix functions
	Subsetting and combining spherical regions
	Spherical geometry functions
	Statistical functions
	Random sampling
	Univariate spherical statistics and plots
	Multivariate statistics for data from different CMBWindows.
	Investigating spatial dependencies

	Converting other spherical data to HEALPix format
	Summary and future directions
	Acknowledgements
	Appendix: Statistical model


	Tools for Analyzing R Code the Tidy Way
	Introduction
	Methods
	Examples
	Discussion
	Acknowledgements


	spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections of Multivariate Data
	Introduction
	Algorithm
	Notation
	Steps

	Package structure and functionality
	Installation
	Functions
	Usage

	Application
	Jet cluster
	DIS cluster

	Discussion
	Acknowledgments

	ari: The Automated R Instructor
	Introduction
	Configuring Ari
	Making videos with ari: ari_stitch
	Synthesizer authentication
	Creating speech from text: ari_spin
	Summary
	Future directions


	CopulaCenR: Copula based Regression Models for Bivariate Censored Data in R
	Introduction
	Package Features
	Methods
	Copula model for bivariate censored data
	Joint likelihood functions for bivariate censored data
	Marginal models
	Two-step estimation procedure
	Likelihood-based tests for covariate effects

	Examples
	Bivariate event time generation
	Fitting copula models for bivariate right-censored data
	Fitting copula models for bivariate interval-censored data

	Summary
	Acknowledgments

	mistr: A Computational Framework for Mixture and Composite Distributions
	Introduction
	Distributions in R
	Combining distributions

	Computational framework
	Adding transformation
	Visualization
	Combining objects
	Combining mixture and composite distributions

	Data modeling
	Risk measures

	Summary

	difNLR: Generalized Logistic Regression Models for DIF and DDF Detection
	Introduction
	Generalized logistic models for DIF and DDF detection
	Nonlinear regression models for binary items
	Regression models for ordinal and nominal items

	Implementation in examples
	DIF detection
	DIF detection among ordinal data
	DDF detection among nominal data
	Further features
	Troubleshooting

	Real data example
	Summary
	Acknowledgments

	BayesMallows: An R Package for the Bayesian Mallows Model
	Introduction
	Background: the Bayesian Mallows model for rankings
	Notation
	The BMM for Complete Rankings
	Distance measures and partition function
	Partial rankings and transitive pairwise comparisons
	Non-transitive pairwise comparisons
	Clustering

	Computational considerations
	Details on the MCMC procedures
	Partition Function
	Sampling from the Bayesian Mallows Model

	Packages implementing the Mallows model
	Analysis of complete rankings with BayesMallows
	Jumping over the scale parameter
	Other distance metrics

	Analysis of preference data with BayesMallows
	Transitive closure and initial ranking
	Convergence diagnostics
	Posterior distributions

	Clustering with BayesMallows
	Computing mixtures of Mallows distributions
	Convergence diagnostics
	Deciding on the number of mixtures
	Posterior distributions

	Discussion

	Variable Importance Plots—An Introduction to the vip Package
	Introduction
	Constructing VIPs in R

	Model-specific VI
	Decision trees and tree ensembles
	Linear models
	Neural networks

	Model-agnostic VI
	Variance-based methods
	Permutation method
	Shapley method

	Drawbacks of existing methods
	Use sparklines to characterize feature effects
	Ames housing example
	Summary
	Acknowledgments


	SimilaR: R Code Clone and Plagiarism Detection
	Introduction
	Program Dependence Graph
	Comparing Program Dependence Graphs
	Illustrative examples
	A case study
	Discussion


	Linear Fractional Stable Motion with the rlfsm R Package
	Introduction
	Basic R functions
	Types of data we use
	Simulation method for the linear fractional stable motion
	MCestimLFSM and numerical properties of statistical estimators
	On some of the other basic functions

	Parameter estimation of the linear fractional stable motion
	Parameter estimation in the continuous case
	Parameter estimation in the general case
	Implementation in R
	Estimate deterioration
	Zones with different convergence regimes in the low-frequency case

	S4 classes for Levy-driven motions
	Classes for simulated lfsm

	Acknowledgments


	The R package NonProbEst for estimation in non-probability surveys
	Introduction
	Statistical methodology
	InfoTP
	InfoSP
	InfoUP

	Use of machine learning algorithms in non-probability samples
	The R package NonProbEst
	Inference in non-probability samples with NonProbEst
	InfoTP: Calibration
	InfoSP: Propensity Score Adjustment
	InfoUP: superpopulation estimators

	Conclusion and future developments

	ProjectManagement: an R Package for Managing Projects
	Introduction
	Project management
	ProjectManagement package
	Examples
	Acknowledgements

	The Rockerverse: Packages and Applications for Containerisation with R
	Introduction
	Containerisation and Rocker
	Interfaces for Docker in R
	Use cases and applications
	Image stacks for communities of practice
	Capture and create environments
	Development, debugging, and testing
	Processing
	Deployment and continuous delivery
	Using R to power enterprise software in production environments
	Common or public work environments
	Teaching
	Packaging research reproducibly

	Conclusions
	Author contributions
	Acknowledgements


	S, R, and Data Science
	Introduction
	1965–1985: Bell Labs, Data Science and Computing
	Data Science and Data Analysis
	Before S
	First Version of S
	S Outside Bell Labs

	1985–2000: S, Leading to R
	S, Versions 3 and 4
	The Birth of R
	R and S
	Data Science

	From 2000: R

	Provenance of R's Gradient Optimizers
	The task
	General approaches
	The histoRicalg project
	Provenance of the R optim–BFGS solver
	Evolution of the code
	Extensions and related codes
	Provenance of the R optim–CG and related solvers
	Provenance of the R optim–L-BFGS-B and related solvers
	Provenance of truncated Newton codes for R
	Discussion

	Conference Report: Why R? 2019
	Why R? 2019 conference
	Participants
	Conference program
	Data Visualizations Hackathon
	Pre-meetings
	Workshops
	Invited talks
	Marvin Wright
	Jakub Nowosad
	Sigrid Keydana
	Steph Locke
	Wit Jakuczun
	Paula Brito

	Round tables
	Diversity in Data Science
	Career-planning in Data Science
	Teaching Data Science
	Data Visualizations
	Ethics in Data Science

	Conference organizers
	Acknowledgements
	Additional information


	Changes on CRAN
	Changes in the CRAN Repository Policy
	CRAN package submissions
	CRAN mirror security
	New packages in CRAN task views


	R Foundation News
	Donations and members
	Donations
	Supporting benefactors
	Supporting institutions
	Supporting members





