The

Journal

Volume 12/1, June 2020

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . . . . . . . . Lo e e 4

Contributed Research Articles

gk: An R Package for the g-and-k and Generalised g-and-h Distributions . . . . . . 7
NIinTS: An R Package For Causality Detection in Time Series . . . . . . . . . . . 21
Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM . 32
mudfold: An R Package for Nonparametric IRT Modelling of Unfolding Processes . . 49

tsmp: An R Package for Time Series with Matrix Profile. . . . . . . . . . . . .. 76
Individual-Level Modelling of Infectious Disease Data: EpilLM . . . . . . . . . . 87
SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified

Proportional Hazards Model via Gradient Boosting. . . . . . . . . . . . . . .. 105
CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model . . . . 118
SortedEffects: Sorted Causal EffectsinR . . . . . . . . . . . . ... 0oL, 131
npordtests: An R Package of Nonparametric Tests for Equality of Location Against

Ordered Alternatives . . . . . . . . . . . . . ..o oo 147
Ispartition: Partitioning-Based Least Squares Regression . . . . . . . . . . . .. 172
Skew-t Expected Information Matrix Evaluation and Use for Standard Error Calcula-

tons . . . . . L. L L e e e e 188
rcosmo: R Package for Analysis of Spherical, HEALPix and Cosmological Data . . . 206
Tools for Analyzing R Codethe TidyWay . . . . . . . . . . .. ... ... .. 226
spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections of

Multivariate Data . . . . . . . . . .. 0000 243
ari: The Automated RInstructor . . . . . . . . . . . . . . .. ... ... .. 258
CopulaCenR: Copula based Regression Models for Bivariate Censored Datain R. . . 266
mistr: A Computational Framework for Mixture and Composite Distributions . . . . 283
difNLR: Generalized Logistic Regression Models for DIF and DDF Detection . . . . 300
BayesMallows: An R Package for the Bayesian Mallows Model . . . . . . . . . . 324
Variable Importance Plots—An Introduction to the vip Package . . . . . . . . . . 343
SimilaR: R Code Clone and Plagiarism Detection . . . . . . . . . . . . . . .. 367

Linear Fractional Stable Motion with the rlffsm R Package . . . . . . . . . . . . . 386



The R package NonProbEst for estimation in non-probability surveys. . . . . . . . 406

ProjectManagement: an R Package for Managing Projects. . . . . . . . . . . .. 419
The Rockerverse: Packages and Applications for Containerisation withR . . . . . . 437
Special Articles

S,R,and Data Science. . . . . . . . . . . . . ..o 462
Provenance of R’s Gradient Optimizers . . . . . . . . . . . . . . . ... ... 477

News and Notes

Conference Report: Why R?2019. . . . . . . . . . . . . . . . .. ... ... 484
Changeson CRAN . . . . . . . . . . . . . e 495
R FoundationNews . . . . . . . . . . . . . ..o 498

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Kane, Yale University, USA

Executive editors:
Dianne Cook, Monash University, Australia
Catherine Hurley, Maynooth University, Ireland
Simon Urbanek, University of Auckland, New Zealand

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOA]J,
Thomson Reuters.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

Editorial

by Michael |. Kane

On behalf of the editorial board, I am pleased to present Volume 12, Issue 1 of the R Journal
and my second issue as the Editor in Chief. Since the last issue Simon Urbanek has joined
the editorial board and we have made a few structural changes. First, the R Foundation
has approved the R Journal having Associate Editors. This change will allow us to address
the increase in submission volume. The addition of the new AE positions should help
alleviate some of the workload the editors have been dealing with and will result in shorter
turn-around times for submissions. Second, complete issues of the R Journal will no longer
be published in a single pdf. The build process for the document was complex and time
consuming and we were not seeing the volume of download that would justify the effort.
Individual articles are still available and the issue layout is still shown in the “Current Issue”
section of the web page.

In this issue

News from the R Foundation is included in this issue along with an update from the The
R Foundation’s histoRicalg project, which documents historic and historical numerical
algorithms and provides reference implementations in R. In addition, a reprint by John
Chamber, documenting the history of R, which was initially published in the History of

Programming Languages. Finally, this issue features 27 contributed research articles that
have been categorized below.

Papers focusing on reproducibility, managing code and projects, and instruction:

¢ ari: The Automated R Instructor

* ProjectManagement: an R Package for Managing Projects

* The Rockerverse: Packages and Applications for Containerisation with R
¢ SimilaR: R Code Clone and Plagiarism Detection

¢ Tools for Analyzing R Code the Tidy Way
Data exploration and visualization:

* spinifex: An R Package for Creating a Manual Tour of Low-dimensional Projections
of Multivariate Data

* Variable Importance Plots—An Introduction to the vip Package
Astronomy

¢ rcosmo R Package for Analysis of Spherical, HEALPix and Cosmological Data
Medicine and epidemiology

¢ Individual-Level Modelling of Infectious Disease Data: EpilLM
Probability distributions and processes

* BayesMallows: An R Package for the Bayesian Mallows Model

¢ gk: An R Package for the g-and-k and Generalised g-and-h Distributions

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



* Linear Fractional Stable Motion with the rlfsm R Package

¢ mistr: A Computational Framework for Mixture and Composite Distributions

¢ mudfold: An R Package for Nonparametric IRT Modelling of Unfolding Processes
* NIinTS: An R Package For Causality Detection in Time Series

* npordtests: An R Package of Nonparametric Tests for Equality of Location Against
Ordered Alternatives

» Skew-t Expected Information Matrix Evaluation and Use for Standard Error Calcula-
tions

¢ tsmp: An R Package for Time Series with Matrix Profile

* The R package NonProbEst for estimation in non-probability surveys
Supervised learning

* CopulaCenR: Copula based Regression Models for Bivariate Censored Data in R

* CoxPhLb: An R Package for Analyzing Length Biased Data under Cox Model

¢ difNLR: Generalized Logistic Regression Models for DIF and DDF Detection

e Ispartition: Partitioning-Based Least Squares Regression

* Mapping Smoothed Spatial Effect Estimates from Individual-Level Data: MapGAM

* SemiCompRisks: An R Package for the Analysis of Independent and Cluster-correlated
Semi-competing Risks Data

e SortedEffects: Sorted Causal Effects in R

* SurvBoost: An R Package for High-Dimensional Variable Selection in the Stratified
Proportional Hazards Model via Gradient Boosting

Michael |. Kane
michael.kane@r-project.org
Yale University

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


mailto:michael.kane@r-project.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

gk: An R Package for the g-and-k and

Generalised g-and-h Distributions
by Dennis Prangle

Abstract The g-and-k and (generalised) g-and-h distributions are flexible univariate distributions
which can model highly skewed or heavy tailed data through only four parameters: location and
scale, and two shape parameters influencing the skewness and kurtosis. These distributions have
the unusual property that they are defined through their quantile function (inverse cumulative
distribution function) and their density is unavailable in closed form, which makes parameter inference
complicated. This paper presents the gk R package to work with these distributions. It provides the
usual distribution functions and several algorithms for inference of independent identically distributed
data, including the finite difference stochastic approximation method, which has not been used before
for this problem.

Introduction

Statisticians have long sought for a simple extension to the normal distribution which can model data
subject to skew, heavy tails or both. One approach is to transform a standard normal random variable
Z~N(0,1) to

X=A+BG(2)H(Z), (1)

where A and B are location and scale parameters, G(-) introduces asymmetry, and H(-) elongates
the tails of the distribution while having little effect near the mode. This paper considers two such
distributions, the g-and-k and generalised g-and- distributions. These distributions can model many
types of behaviour through just a small number of parameters.

Defining random variables as transformations of Z is equivalent to specifying the distribution’s
quantile function (defined in the next section), and distributions of this type are known as quantile
distributions. Work on quantile distributions goes back at least to Hastings et al. (1947). See Gilchrist
(2000) for a book length treatment of their history and use in statistics. Tukey (1977) proposed the form
(1) and a distribution using it: the original g-and- distribution. Haynes et al. (1997) were the first to
use the two distributions considered in this paper: the g-and-k distribution and a generalised form of
the g-and-h distribution. For brevity henceforth “g-and-h distribution” will refer to their generalised
form. See Peters et al. (2016) for a thorough review of these and other distributions based on (1).

Applications of the g-and-k and g-and- distributions have included environmental data (Rayner
and MacGillivray, 2002), financial returns (Drovandi and Pettitt, 2011) and insurance risk (Peters et al.,
2016). There has also been considerable methodological work on inference for these distributions (e.g.
Rayner and MacGillivray, 2002; Haynes and Mengersen, 2005; Allingham et al., 2009; Drovandi and
Pettitt, 2011; Fearnhead and Prangle, 2012). This is because it is not possible to express the densities
of quantile distributions in closed form beyond some special cases, which makes it difficult to apply
standard likelihood-based inference methods.

This paper presents the gk R package to work with the g-and-k and g-and-# distributions. The
remaining sections covering the following;:
* A mathematical definition of the distributions.

* A description of the package’s functions to perform standard distributional tasks and how they
are implemented.

* An exploration of the range of valid parameters for these distributions, as this has a complicated
form. We propose a novel rule giving “safe” parameter values for the g-and-k distribution.

* A desctiption of several methods for parameter inference and corresponding functions supplied
by the package.

* An illustrative analysis of a real dataset.
¢ A summary.
Definitions

The cumulative distribution function (cdf) of a univariate random variable X, Fx : R — [0,1], is
defined as Pr (X < x). (Later we will often drop subscripts where they are clear from the context.) The

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=gk

CONTRIBUTED RESEARCH ARTICLES

cdf suffices to completely specify the probability distribution of X. It is often the case that the cdf is
not available in closed form but is implicitly defined through its derivative, the probability density
function (pdf). An example of this is the normal distribution.

For quantile distributions, the cdf is implicity defined through its inverse, the quantile function
Fy ' (u) where Fy!' : [0,1] — R. The g-and-k and g-and-/ distributions use a quantile function of the
form F~1(u;60) = Q (z(u);0) where z(-) is the (0, 1) quantile function and 6 is a vector of parameters.
The Q functions are:

Qqk(z A, B, g, k,c) = A+ B(1+ctanh[gz/2]) z (1 +22)k ()
Qgh(z;A, B,g,h,c) = A+ B(1+ ctanh[gz/2]) zexp (h22/2> . 3

It is possible to sample from the distributions using the inversion method, that is, by simulating
U ~ U(0,1) and substituting it into the quantile function. Equivalently one can sample Z ~ N (0,1)
and substitute it into Qg or Qgy, i.e. the process described in the introduction based on Equation (1).
In terms of (1), G(z) = 1+ ctanh(gz/2) produces asymmetry and H(z) = z(1 + z%)¥ or zexp (hz?/2)
elongates tails.

Each distribution has four main parameters: A (location), B (scale), g (shape parameter mainly
affecting skewness), and k or & (shape parameter mainly affecting kurtosis). The remaining parameter
¢ is discussed below. When both shape parameters are zero the distribution is simply AM'(0,1). An
illustration of the flexible shapes that the g-and-k density can take is given in Figure 1. The g-and-h
can produce similar shapes, with the following exception. The g-and-k distribution allows negative
values of k which can produce lighter tails than a normal distribution, but also bimodal distributions
of potentially limited usefulness.

Well-defined continuous distributions result from parameter values producing strictly increasing
quantile functions. Determining when this is true is complicated so discussion is postponed to
a later section. For now note that it is standard to take B > 0 and fix ¢ = 0.8 (which will be
assumed throughout unless mentioned otherwise), and in this case k > 0 or 1 > 0 guarantees a valid

distribution.
< ~
S k ° S
— 0 o — g=0,k=-0.4
— 05 © — g=-05k=-0.1
1 S
™ — 15 @
S 7 2 e v |
o
© <
2 s 7 s 7
(%] N
g o7
a o |
< o
g
~
— o
pag
N
c 7 —
g
o a— J \ —— o o
o 7 S 7 o 7
T T T T T T T T T T T T T T T
-10 -5 0 5 10 -4 -2 0 2 4 -4 -2 0 2 4
X X X

Figure 1: Example g-and-k densities. The first panel fixes ¢ = 0 and varies k, mainly altering kurtosis.
The second fixes k = 0 and varies g, mainly altering skewness. The third shows two examples with
k <o0.

Distribution functions

The gk package provides the standard suite of R functions for the g-and-k and g-and- distributions
i.e. random sampling and calculation of the pdf, cdf and quantile functions. This section describes
how these functions are implemented. It is assumed that parameters have been chosen such that the
quantile function is strictly increasing. No warning is given when this is not the case as checking
validity is time consuming (see next section).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

Quantile function The ggk and ggh functions calculate the quantile function F~!(u). Their imple-
mentation is straightforward. First z(u) is calculated using gnorm, then this is passed to an internal
function, z2gk or z2gh, which computes ng or Qgh~

Random sampling The rgk and rgh functions perform random sampling. This is done by the
method described earlier of sampling (0, 1) draws and substituting them into Qg or Qy, via the
function z2gk or z2gh.

Cumulative distribution function The pgk and pgh functions calculate the cdf F(x) given input
x. They numerically solve Q(z) — x = 0, which is guaranteed to have a unique root for z. The required
final output is then u = ®~1(z) where @ is the A'(0,1) cdf. An alternative approach would be to
directly solve Q (z(u)) — x = 0 for u. However we found this was less numerically stable for u close
toOor1.

Our code finds the root for z using R’s uniroot command and z2gk or z2gh for Q (z) evaluations.
The need to run a root finding algorithm means this function is slow relative to cdf calculations of
standard distributions - see Table 1.

The functions include an argument zscale. Setting this to TRUE outputs the z value which is found
rather than u. This is used in the density functions below, and more generally is also useful to retain
numerical precision when z has large magnitude.

Probability density function The dgk and dgh functions calculate the pdf f(x), or the log pdf if
the argument 1og=TRUE is supplied. The method is based on the standard probability result that if A
has density f4(a) and t(a) is a differentiable 1-1 transformation then the density of B = t(A) is

fg(b) = fa(a)/t'(a)  wherea =t"1(b),

and t' denotes the first derivative of ¢t.

For quantile distributions we have Z ~ A/(0,1) and X = Q(Z) for some Q function. So the pdf of
Xis
f(x) =¢(z)/Q (2) where z = Q7 1(x),
where ¢(z) is the (0, 1) pdf.

Our code to calculate the pdf first finds z = Q 1(x) using pgk or pgh with zscale=TRUE. Then the
pdf or its log is calculated using formulae (4) and (5) (see Appendix A) for Q'(u). The reliance on
performing root finding within pgk and pgh means that dgk and dgh are slow relative to pdf calculations
for standard distributions - see Table 1.

Note that an alternative representation of f(x) is 1/4'(u) where q(u) represents F~!(u) and
u = F(x). Density calculations based on this approach are described in Rayner and MacGillivray
(2002). However we found that calculating the u values required for this approach was occasionally
numerically unstable, as mentioned above.

Cost Table 1 compares the time to execute gk’s distributional functions to those for the normal
distribution. It illustrates that random sampling and quantile function calculation are reasonably
efficient, but calculating the cdf and pdf are expensive.

Time (microseconds) Ratio vs normal
Normal g-and-k g-and-h g-and-k g-and-h
Quantile function 175 972 445 5.56 2.55
Random sampling 150 921 436 6.15 291
cdf 313 143151 116928 457 374
pdf 369 138381 111279 375 302

Table 1: Mean times to perform various distributional operations, evaluated by the microbench-
mark package (Mersmann, 2015). For example the random sampling row compares rnorm(N),
rgk(N,1,2,3,4) and rgh(N,1,2,3,4) for N = 100. We also tried N = 1, which gave qualitatively
similar results but slightly better relative efficiency of the gk functions.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES

10

Range of valid parameters

Recall that a valid continuous distribution requires the quantile function to be strictly increasing.
Clearly this property is unaffected by the choice of A and B > 0. This section discusses the effects of
g /b kand c.

Several theoretical results on valid parameters can be derived. It’s convenient to concentrate on
¢ > 0. Inthiscase h < 0 or k < —1/2is invalid. Taking k > 0 or i1 > 0 produces valid distributions
when 0 < ¢ < ¢* ~ 0.83. This is the reason for taking c = 0.8 as standard: it maintains this property
while allowing the skewness factor in (2) and (3) to have a large effect. For justification of all these
results, see Appendix B.

When ¢ = 0.8, the above results completely characterise the range of valid parameters for the
g-and-h distribution. For the g-and-k distribution, there is still some uncertainty for —0.5 < k < 0,
which, as mentioned earlier, corresponds to light tails. For both distributions, the case where ¢ > ¢* is
less clear: even positive values of k or i do not guarantee validity. Therefore we provide the function
isValid to test parameter validity numerically.

Validity can be checked by testing whether the minimum derivative of (2) or (3) is positive.
Appendix A shows that it is equivalent to test whether the functions (6) or (7) are positive. isValid
uses numerical optimisation to minimise these and returns whether the minimum value is positive. To
reduce the possibility of finding local minima, multiple optimisation starting points can supplied as
a vector to the argument initial_z. However it is still not guaranteed that the global minimum is
found, so there remains a possibility that the function may produce false positives.

The function can be used as follows to illustrate the region of valid g-and-k parameter values for
¢ = 0.8. The results are plotted as Figure 2.

gk_grid = expand.grid(g = seq(-10, 10, 0.1), k = seq(-0.6, 0.1, 0.01))
v = isValid(gk_grid$g, gk_grid$k)

0.0

-0.21 valid
i~ FALSE

TRUE
-0.4
-0.6
-10 -5 0 5 10
g

Figure 2: Validity of parameter values for the g-and-k distribution when ¢ = 0.8, calculated using
isValid. Also shown is a quadratic function k(g) near the curved part of the boundary between the
regions.

We do not test validity automatically within the package’s other functions. This is because isValid
is relatively computationally expensive and not guaranteed to be correct. Therefore particular care
should be taken for k < 0 or ¢ > c*, as the distribution functions will not provide warnings when
invalid parameters are used. A reasonable region of g and k values to use in practice with ¢ = 0.8
can be derived from Figure 2. It shows that for |g| < 7 some —0.5 < k < 0 values are invalid. Apart
from a narrow strip near ¢ = 0, this invalid region’s boundary is roughly quadratic, as illustrated by
the curve k(g) = —0.045 — 0.01g? on the figure. Based on this analysis, k > max (—0.5,k(g)) seems a
reasonable sufficient condition for parameter validity to use in practice.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

11

Inference functions

The package provides three inference methods for data xq, xy, ..., x,, which are assumed to be inde-
pendent and identically distributed (IID) draws from a g-and-k or g-and-h distribution with unknown
parameters. This section describes these methods. An illustration of their use is provided in the next
section. See the gk help files for a full description of all the arguments available.

MCMC inference The mcmc function implements inference using Markov chain Monte Carlo
(MCMCQ). This samples from a Markov chain whose stationary distribution is the Bayesian posterior of
interest for the parameters 6. We use a Metropolis-Hastings algorithm, in which a proposed new state
of the chain ¢’ is sampled by adding a N (0,X) increment to the current state 6;. A decision to accept
or reject 0’ is made based on the prior and likelihood values at 6; and 6’ and a random variable (see
steps 3-4 of Algorithm 1.)

Tuning X can be difficult. Haynes and Mengersen (2005), who first used MCMC for the g-and-k
distribution, did this manually. Instead we use the adaptive Metropolis (AM) algorithm of Haario et al.
(2001) which tunes ¥ automatically during its operation. The resulting ;s no longer form a Markov
chain, but it has been proved (Saksman and Vihola, 2010) that, under suitable conditions, calculations
using them still converge to posterior quantities as the length of the chain increases. The AM algorithm
is presented as Algorithm 1. Step 1 states the proposal matrix used in terms of the empirical variance
of the past MCMC states. To calculate this empirical variance efficiently, the code updates it each time
a new state is observed. As a default we specify tuning choices € = 107 and t = 100.

Like other Bayesian methods, MCMC requires a prior density for the parameters, 7t(), to be
specified. This must be supplied by the user. For computational convenience this should be supplied
in the form of a function get_log_prior which takes a vector of parameters as input and returns
the log prior density. We allow the user to reparameterise 0, using log B rather than B, via the logB
argument. This can improve MCMC efficiency when the posterior for B is concentrated on values
close to zero.

For IID data the likelihood is L(6) = [T, f (xi;6), the product each observation’s pdf. Evaluating
this for the g-and-k or g-and-h distributions using the pgk or pgh command requires 7 calls to numerical
optimisation. Therefore MCMC becomes computationally expensive for even moderately large
datasets.

Algorithm 1 The Adaptive Metropolis MCMC algorithm

Input: observations x, prior density 77(6), number of iterations to perform N, initial
state ), initial variance matrix Xy, pre-tuning period ty, tuning parameter € > 0.

Loopoverl <t < N:

1. If t < tglet Xy = Xy. Otherwise let ¥; = %(2.4)2 (it_l + 61), where ¥,_1 is the
variance of 01,60,,...,6;_1.

2. Sample 6/ ~ N (6;-1,%¢-1)

_ _m(8)L(e")
3. Sample u ~ U(O, 1) and let r = m
4. Ifu < rlet8; = 0. Otherwise let 8; = 0;_1.

Output: sample 6y, 64, ...,0N.

ABC inference The abc function implements inference by approximate Bayesian computation
(ABC). This is a method for approximate Bayesian inference which avoids evaluating the likelihood
function. It is especially useful when the likelihood function is unavailable or, as for quantile distri-
butions, is expensive to compute. ABC is based instead on finding parameter values which produce
simulated data similar to the observations. The abc function implements a simple version of ABC,
Algorithm 2. Here a simulation is accepted if it has one of the M smallest distances to the observations.
Distance refers to a weighted version of Euclidean distance between vectors of simulated and observed
summary statistics. Details of the weighting are given in the algorithm’s description. (For  large,
abc avoids high memory requirements by running several batches of Algorithm 2. Each batch uses

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

12

N = 10* and returns the M best simulations. The overall best M best simulations are then found and
returned. The vj weights calculated in the first batch are reused in the others.)

Like meme, abce is a Bayesian method and requires a prior distribution for 6 to be provided. It is
convenient for this to be provided in a different form to the memc case. A function rprior should be
supplied which a single numeric input and returns that many samples from the prior distribution as
rows of a matrix.

Algorithm 2 Approximate Bayesian computation (ABC)

Input: observations x, prior distribution 77(6), summary statistic function s(x), num-
ber of simulations to perform N, number of samples to output M.

1. Calculate observed summaries sy = s(x).
2. For 1 <i < N sample parameters 6; from the prior.

3. For 1 <i < N simulate summary statistics s(x;) given parameters 6;. Let s;; denote
the jth component of s(x;).

4. For 1 < j < q (where g = dim(sg)) calculate the empirical variance v; of the (s;j)1<i<n
values.

5. For1<i< Nletd; =X/, (s —s0))” /0.

6. Find the M smallest d; values and return the corresponding 6;s.

ABC produces samples from an approximation to the Bayesian posterior distribution. The quality
of the approximation depends in a complex way on the choice of summary statistics and the tuning
parameters N and M. For more background on ABC see the review paper by Marin et al. (2012)
and the handbook of Sisson et al. (2017). Two general R packages for ABC which implement more
advanced methods are abc (Csilléry et al., 2012) and EasyABC (Jabot et al., 2013).

Using ABC for the g-and-k and g-and-h distributions was proposed by Allingham et al. (2009) and
has been investigated in many subsequent papers. Following Drovandi and Pettitt (2011) we offer
three choices of summary statistics which can be selected through the sumstats argument: (1) the full
order statistics; (2) octiles of the observations, Eq, E, ..., E7; (3) robust estimates of the moments based
on the octiles:

Sp=Ey, Sp=Eg—Ey, Sg:(E6+E272E4)/Sb, Sk:(E77E5+E37E1)/Sb.

Many more sophisticated approaches to choosing ABC summary statistics have been proposed (Blum
et al.,, 2013), but these are a simple starting point.

For summaries (2) or (3) we follow Fearnhead and Prangle (2012) and speed up step 3 of Algorithm
2 by using the fact that the octiles (or close approximations) can be simulated quickly without the
need to simulate a full dataset. Suppose Xy, X5,..., Xy are g-and-k or g-and-h variables, and let
Xy < X)--- < X(n) denote the order statistics. We replace E; with E} = X(,(;n/g)) Where r(-)
rounds to the nearest integer. Now we need to simulate 7 order statistics from the g-and-k or g-and-h
distribution. To do so we simulate corresponding order statistics of the 2/ (0, 1) distribution using the
exponential spacings method (Ripley, 1987). This is implemented by the orderstats function. The
uniform order statistics are then substituted into F~1(u).

FDSA inference The fdsa function performs inference using finite difference stochastic approxi-
mation (FDSA). FDSA, originally due to Kiefer and Wolfowitz (1952), attempts to find 6* minimising
a loss function £(0) by iteratively calculating estimates 61, 65, . . . Each iteration moves the estimate in
the opposite direction to an estimate of the loss gradient, based on finite difference calculations.

We use FDSA for maximum likelihood estimation of IID observations. In this setting £(6) can be
taken to be the negative log likelihood,

L(8) = —logL(#) = — ilogf(xi;(?).
i=1

The gradient of £(0) can be estimated using only a small subset of the data, so FDSA has the potential
to scale up to large datasets better than MCMC, while avoiding the approximation error of ABC.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=abc
https://CRAN.R-project.org/package=EasyABC

CONTRIBUTED RESEARCH ARTICLES

13

Unlike ABC and MCMC, we are not aware of FDSA having previously been used for the g-and-k and
g-and-h distributions.

The g-and-k and g-and-h distributions have some parameter constaints (e.g. B > 0, k > 0). Also
we found setting further constaints from preliminary analyses sometimes helps FDSA behave well.
Therefore we use a version of FDSA for bounded minimisation from ['Ecuyer and Glynn (1994),
presented as Algorithm 3.

Algorithm 3 Finite difference stochastic approximation (FDSA)

Input: initial state 6y, choice of a; and ¢; sequences, function ﬁ() which calculates
an unbiased estimate of £(-), number of iterations to perform N, vectors of (possibly
infinite) upper and lower parameter bounds 6,0

Loopover0 <t < N —1.
1. Calculate ¢; by performing the following steps fori <1 < 4.

(a) Let A; be a 4-dimensional vector whose ith component is 1 and others are zero.

(b) Let ¢t = P (6 + ctA;) and ¢~ = P (6; — ctA)).
(Here P(¢) is a projection operator. Its output is ¢’ such that ¢; is the closest value
to ¢; in [6;,6;"]. The i subscripts represent ith components.)

(©) Let i = ey [L(97) = L(¢7)]-
2. Let6;y1 =P (Qt — ﬂtgt)-

Output: Final estimate 6.

The unbiased estimate of £(8) required by Algorithm 3, £(8), can be taken to be the sum of a
random sample of m negative log likelihood terms multiplied by 7/m. Hence for a vector y containing
a random subsample of 1 observations (sometimes referred to as a batch), £(0) can be calculated using
-sum(dgk(y,A,B,g,k,log=TRUE))*n/m (or similar for the g-and-k distribution). Variance reduction in
step 1c of Algorithm 3 is possible by coupling the two estimates (Kushner and Yin, 2003). Hence we
use the same random subsample of data for all £ calculations in an iteration of step 1.

FDSA convergence requires that the gain sequences a; and ¢; must satisfy certain conditions.
Following Spall (1998) we take a; = ag (A +t+1) % and ¢ = ¢ (t + 1) 7. This leaves several tuning
choices, which can be selected by the user, or left at default values which we provide. Following
Kleinman et al. (1999) we use default values « = 1 and y = 0.49. Following Spall (1998) our default
for cg is an estimate of the standard deviation of £(f)) using some preliminary simulations. We
provide defaults a9 = 1 and A = 100 but it is recommended to manually tune these to produce rapid
convergence. This may require several short pilot runs of the algorithm. The fdsa function allows ag
and ¢ to be vectors, in which case operations in Algorithm 3 are interpreted as elementwise where
necessary. This allows the user to tune gain sequences differently for each parameter. As for memc,
we allow the user to reparameterise 6, using log B rather than B, via the 1ogB argument, which can
improve FDSA efficiency when the MLE value of B is close to zero.

Under weak assumptions, FDSA converges to a local minimum of £(6) (Kushner and Yin, 2003).
In our experience the likelihood for the g-and-k and g-and-/ distributions is usually unimodal, so
there is little danger of converging to an incorrect mode. Nonetheless it may be a useful check on the
results to rerun the algorithm from various starting points or compare with the output of another
algorithm.

An alternative to FDSA is simultaneous perturbation stochastic approximation (SPSA) (Spall,
1998). Here each iteration makes a finite difference estimate of the derivative of the loss function when
moving in a random direction from 6;. An update moves 6; a distance (negatively) proportional to this
estimated derivative in the selected direction. Each SPSA iteration requires fewer likelihood estimates
than FDSA, and it is asymptotically more efficient (Kushner and Yin, 2003). However we found in
exploratory work that for our application the SPSA updates were dominated by improving A and B
estimates, and the remaining parameters were learned very slowly.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

14

[Mlustration

We illustrate gk’s inference methods on the Garch exchange rate dataset from the Ecdat package
(Croissant, 2016). This consists of 1967 daily US dollar exchange rates against other currencies from
1980 to 1987. We concentrate on the exchange rate with Canadian Dollars. Let x; denote the exchange

rate on day t. The log return is defined as log (x;11 /). Figure 3 is a time series plot of the log returns.

Figure 7 shows a histogram and a quantile-quantile plot indicating that the tails are heavier than those
of a normal density.

We focus on using the g-and-k distribution to model the log returns under an IID assumption. For
models also including time series structure see for example Drovandi and Pettitt (2011). The full code
for the analysis below can be run via the fx function.

The ABC and MCMC analyses which follow are Bayesian and require specification of a prior. We
use a uniform prior for ease of comparison to the maximum likelihood results from FDSA. For MCMC
we are able to use an improper uniform prior. For ABC a proper prior is required so we bound the
parameters as follows -1 < A < 1,0 < B <1, =5 < g < 5,0 < k < 10. We restrict A and B to
magnitude 1 at most, as we believe log returns of this magnitude are highly unlikely. The g and k
parameters are given wider support which can capture a broad range of distributional shapes.

0.02
|

Log return

-0.01 0.00 0.01
|

Figure 3: Log returns for US dollar / Canadian Dollar exchange rates.

ABC We ran ABC as follows:

rprior = function(i) {

cbind(runif(i, -1, 1), runif(i, @, 1), runif(i, -5, 5), runif(i, 0, 10))}
abc_out = abc(log_return, N = 1E7, rprior = rprior, M=200,

sumstats = 'moment estimates')

This simulated 107 parameter vectors and accepting the best 200. We used moment estimator summary
statistics, described earlier, which can be simulated quickly without the need to simulate an entire
dataset. As a result this analysis took only 6 minutes.

The resulting approximate posterior samples are shown in Figure 6. Figure 7 shows density and

quantile-quantile plots under the mean parameter values. These reveal a very poor fit to the data.

However this short ABC analysis does provide reasonable tuning choices for the other methods.

FDSA We ran FDSA as follows:

abc_out_tf = abc_out[, 1:4]

abc_out_tf[, 2] = log(abc_out_tf[, 21)

abc_est_tf = colMeans(abc_out_tf)

fdsa_out_pilot = fdsa(log_return, N = 1E4, logB = TRUE, theta@® = abc_est_tf,
batch_size = 100, a0 = 2E-4)

a0 = c(1E-6, 1E-2, 1E-2, 1E-2)

fdsa_out = fdsa(log_return, N = 1E4, logB = TRUE, theta® = abc_est_tf,
batch_size = 100, a0 = a0)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=Ecdat

CONTRIBUTED RESEARCH ARTICLES

15

We found that using the original parameterisation caused high variance in our gradient estimates.

This is because the log-likelihood surface becomes extremely steep for B close to 0. Therefore we
reparameterised B to log B. The initial FDSA state was set to equal the ABC means. The FDSA steps
sizes ay were tuned by trial-and-error.

Figure 4 shows a trace plot of the FDSA algorithm output. A pilot run with ag = 2 X 10~% is shown
in black. Parameters log B, g and k do not converge over 10,000 iterations. However they have smooth
curves, indicating that there is relatively little noise in their gradient estimates and so larger steps
could be taken. In contrast A converges quickly and then oscillates noisily. This indicates that a smaller
step size could be used to average out this noise more effectively without endangering convergence.
Therefore for the final run we used ag = (107¢,1072,1072,1072).

The final FDSA analysis took 17 minutes. The final states were A = 9.1 x 1075, B=17x1073,
¢ =2.0x 1072 and k = 0.35. Figure 7 shows density and quantile-quantile plots under these parameter
values. These are a much better fit to the data than the ABC results.

Next we use the FDSA results to help tune an MCMC algorithm, which quantifies the uncertainty
in the parameter values.

o
N
S
o
] o |
o |
-
3
IS < |
— m |
< 8 h-am 2
o 0
] © |
g | R
< T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
\
[Te} ©
— g —
<]
[Te)
S c 7
<]
<«
o o X S
O_ —
o (2]
g
N o~
S
[Te}
S ]
? T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration

Figure 4: Output from the FDSA algorithm to infer g-and-k parameters for exchange rate log returns.
Black shows output from a pilot run with ag = 2 x 107, Red shows output from the final run with
ap = (1076,1072,1072,1072).

MCMC We ran MCMC as follows:

fdsa_est_tf = fdsa_out[1E5, 1:4]

Sigma@ = var(fdsa_out[1E5 + (-1000:0), 1:4])

log_prior = function(theta) {
if (theta[4] < @) return(-Inf)
return(thetal2])

}

mcmcout_tf = memc(log_return, N = 1E4, logB = TRUE, get_log_prior = log_prior,
thetad = fdsa_est, Sigma@ = Sigmao)

Again we used a log reparameterisation for B. To achieve an improper uniform prior on the original
parameterisation, we used a prior density proportional of Bl (k > 0) on (A,logB, g, k) (where 1
represents an indicator function). Our initial parameter vector was the final FDSA state. We use the
variance matrix of the last 1000 FDSA states to select the initial MCMC proposal variance.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

16

Figure 5 shows a trace plot of the MCMC algorithm output. For the first few hundred iterations
small proposals are made, at least for log B, g and k, but the proposal variance quickly adapts and the
remainder of the output appears to have converged. Exploratory work showed that taking a poor
initial state meant MCMC is very slow to converge, because the variance matrix adapts to the transient
state of the algorithm. Hence tuning based on FDSA output is very useful.

The MCMC analysis took 39 minutes. Figure 6 parameter histograms and figure 7 shows density
and quantile-quantile plots. These are similar to the FDSA fit. Note that the density plot is based on
mean parameter values from the MCMC output (after discarding the first half of the output as burn-in
and transforming log B values back to the original parameterisation).

(=)
-
o
8 4
o
(=] [T}
] ™
e
o - |
] o
o m <
< <9 o © ]
¢ N
[19)
] <
8 ¢
o
=] o
=} 0]
' T T T T T T © T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration
<
8 | s |
<)
(=2} 3 g
8 | S |
S
o
0 0 -
o | o
o
! T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration

Figure 5: States of an MCMC algorithm to infer g-and-k parameters for exchange rate log returns.

Summary The ABC analysis is quick but produces a poor fit. However it helps tune the FDSA
method which finds a good estimate of the MLE in a reasonable time. Further computational effort
using MCMC provides a Bayesian fit. Figure 7 shows that the g-and-k distribution fits the data better
than a normal distribution, but still does not fit the most extreme observations. Further improvements
might be possible by using more flexible distributions, for example allowing different k parameters for
the upper and lower tails (Peters et al., 2016).

Discussion

This paper has reviewed the g-and-k and g-and- distributions, and introduced the gk package to work
with them. The package includes the usual distributional functions, although the pdf and cdf functions
are slow due to relying on numerical root-finding. Another function tests the validity of different
parameter combinations, and this was used to produce a novel result on which parameters are valid
for the g-and-k distribution (i.e. it is appears to be sufficient that k > max (—0.5, —0.045 — 0.01g2).)
The package also provides several methods for inference of IID data under these distributions, and
their use has been illustrated above. The methods include a FPSA algorithm which can find MLEs for
large datasets in a reasonable time and has not been applied to this problem before.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

17

25
J

o
N
wn _|
z - )
k) k7]
=4 =4
[ 3
o o o
-
o 4
o
-0.04 0.00 0.04
A
IS —
o
S -
o
— —
o
o
o
©
o
> o _l >
Z 8 2
=4 =4
[ 3
[a] o [a]
o
o
<
o
o
o
N
;. M
|

-0.00020 -0.00005

A

12000

2000 4000 6000 8000

0

| I N I B

00 01

]

0.2

B

03 04

O

0.00150

0.00165

B

0.00180

Density

Density

05 10 15 20 25

0.0

15

10

I
-0.4 0.0 0.4
9
-0.05 0.00 0.05 o0.10

9

Density

Density

0.8 1.0

0.6

02 04

0.0

20

15

10

00 05 10 15 20

k

gl;

030 034 038

k

ABC

MCMC

Figure 6: Parameter inference for fitting the g-and-k distribution to exchange rate log returns. The
top row shows the ABC posterior sample and the bottom row the MCMC posterior sample, which
requires much more concentrated parameter scales. FDSA estimates of the MLEs are shown by crosses

on the x-axis.

o
mn —
N
o
o —
N (3]
k=
g
2 38 4 &
(%] — =
& 8
o g
g 8
= =
o _
[Te)
o -
I T T 1
-0.01 0.00 0.01 0.02
Log return

(V]

S 1 ° Normal
A ABC
+ FDSA
X MCMC

—

o -

o

o

Q —

o

R C

2 !g!,:

-0.01

0.00

I
0.01

Sample quantile

0.02

Figure 7: (Left) Histogram of exchange rate log returns, and fitted g-and-k densities. (Right) Quantile-
quantile (QQ) plots of fitted g-and-k densities. QQ plots are shown for 30 vectors of parameters

sampled from the second half of the MCMC output.

The R Journal Vol. 12/1, June 2020

ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

18

Appendix A: Formulae

The derivatives of the Q functions are as follows:

/ 2 k
Qi (2 A,B,g k,c) = B (1+22) Ry (zgk), 4@
Q:gh (z;A,B,8,h,c) = Bexp (hzz/Z) Rgp (z:8,h), )
where

1+ (2k+1)22 cgz
R so,k,c) =1 tanh 2 , 6
st (/b ) = [ ctanh 82/ 2] = (272) ©
Rop (z;8,h,¢) = [1 + ctanh (gz/2)] (1 +hzz> TR C— (7)

g 2 cosh? (gz/2)

Observe that each Q' function has the same sign and roots as the corresponding R function.

Appendix B: Range of valid parameters - theory

This appendix proves theoretical results quoted earlier about which parameter values produce valid
g-and-k and g-and-h distributions.

First note that the defining functions in (2) and (3) both have the property that Q (z; A, B, —g,k,¢) =
Q(z A, B, g,k,—c). Therefore any behaviour produced by ¢ < 0 can be replicated with ¢ > 0 and a
different choice of g. So for simplicity it suffices to concentrate on ¢ > 0.

For the remainder of this appendix, distributional validity will correspond to a strictly increasing
quantile function. This property is generally violated if ¢ > 1, as there are two solutions to Q(z) = A:
z = 0 and a solution to 1 + c tanh (gz/2) = 0 (The only exception is the special case of g = 0.) Also
taking h < 0 or k < —1/2is invalid, as in either case Q, which is continuous, has a positive gradient at
z = 0 but limits of zero.

Finally it is shown that non-negative values of k or /i produce valid distributions provided that
0 <c¢ < ¢* = 0.83 (Rayner and MacGillivray, 2002). From Appendix A it suffices to derive the values
of ¢ such that R(z) - representing either Roy (2; 8, k, ¢) or Rgy, (z; ¢, h, ¢) — is guaranteed to be positive
for k > 0 or h > 0. Note that R(z) is a continuous function of z, and R(0) > 0. So a sufficient condition
for validity is that no solution to R(z) = 0 exists. Rearranging R(z) = 0 using (6) and (7) gives

1/c = uvsech® u + tanh u, o
where u=-gz/2,
1 2
and o= {H(zﬁnzz (g-and-k)
ﬁ (g-and-h)

For k > 0 or h > 0, v can only take values in (0,1] with 1 attained by z = 0. Hence (8) gives ¢ > 0
if and only if u > 0, and we concentrate on this case from now on. We wish to find the minimum
positive solution for c. Since 1/c is increasing in v it suffices to concentrate on its largest value, v = 1.

The problem reduces to minimising (# sech u + tanh u) “oru > 0. Numerically this gives c* ~ 0.83,
as shown in Figure 8.

Acknowledgements

Thanks to Kieran Peel who wrote a helpful undergraduate dissertation on this topic.

Bibliography

D. Allingham, R. A. R. King, and K. L. Mengersen. Bayesian estimation of quantile distributions.
Statistics and Computing, 19(2):189-201, 2009. URL https://doi.org/10.1007/s11222-008-9083-x.

[p7,12]

M. G. B. Blum, M. A. Nunes, D. Prangle, and S. A. Sisson. A comparative review of dimension
reduction methods in approximate bayesian computation. Statistical Science, 28(2):189-208, 2013.
URL https://doi.org/10.1214/12-sts406. [p12]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1007/s11222-008-9083-x
https://doi.org/10.1214/12-sts406

CONTRIBUTED RESEARCH ARTICLES

Figure 8: Solutions to (8) forv = 1and u > 0.

Y. Croissant. Ecdat: Data Sets for Econometrics, 2016. URL https://CRAN.R-project.org/package=
Ecdat. R package version 0.3-1. [p14]

K. Gsilléry, O. Frangois, and M. G. B. Blum. abc: an R package for approximate Bayesian computation
(ABC). Methods in ecology and evolution, 3(3):475-479,2012. URL https://doi.org/10.1111/3.2041~
210X.2011.00179.x. [p12]

C. C. Drovandi and A. N. Pettitt. Likelihood-free Bayesian estimation of multivariate quantile
distributions. Computational Statistics & Data Analysis, 55(9):2541-2556, 2011. URL https://doi.
org/10.1016/j.csda.2011.03.019. [p7, 12, 14]

P. Fearnhead and D. Prangle. Constructing summary statistics for approximate Bayesian computation:
Semi-automatic ABC. Journal of the Royal Statistical Society, Series B, 74:419-474,2012. URL https:
//doi.org/10.1111/3.1467-9868.2011.01010.x. [p7, 12]

W. Gilchrist. Statistical modelling with quantile functions. CRC Press, 2000. URL https://doi.org/10.
1201/9781420035919. [p7]

H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, pages 223-242,
2001. URL https://doi.org/10.2307/3318737. [p11]

C. Hastings, Jr., F. Mosteller, J. W. Tukey, and C. P. Winsor. Low moments for small samples: a
comparative study of order statistics. The Annals of Mathematical Statistics, pages 413—-426, 1947. URL
https://doi.org/10.1214/aoms/1177730388. [p7]

M. Haynes and K. Mengersen. Bayesian estimation of g-and-k distributions using MCMC. Computa-
tional Statistics, 20(1):7-30, 2005. URL https://doi.org/10.1007/BF02736120. [p7, 11]

M. A. Haynes, H. L. MacGillivray, and K. L. Mengersen. Robustness of ranking and selection rules
using generalised g-and-k distributions. Journal of Statistical Planning and Inference, 65(1):45-66, 1997.
URL https://doi.org/10.1016/s0378-3758(97)00050-5. [p7]

F.Jabot, T. Faure, and N. Dumoulin. EasyABC: performing efficient approximate Bayesian computation
sampling schemes using R. Methods in Ecology and Evolution, 4(7):684-687, 2013. URL https:
//doi.org/10.1111/2041-210x.12050. [p12]

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. The Annals of
Mathematical Statistics, 23(3):462-466, 1952. URL https://doi.org/10.1007/978-1-4613-8505-9_4.

[p12]

N. L. Kleinman, J. C. Spall, and D. Q. Naiman. Simulation-based optimization with stochastic
approximation using common random numbers. Management Science, 45(11):1570-1578, 1999. URL
https://doi.org/10.1287/mnsc.45.11.1570. [p13]

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and applications. Springer,
2003. URL https://doi.org/10.1007/b97441. [p13]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=Ecdat
https://CRAN.R-project.org/package=Ecdat
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1111/j.2041-210X.2011.00179.x
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1016/j.csda.2011.03.019
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1111/j.1467-9868.2011.01010.x
https://doi.org/10.1201/9781420035919
https://doi.org/10.1201/9781420035919
https://doi.org/10.2307/3318737
https://doi.org/10.1214/aoms/1177730388
https://doi.org/10.1007/BF02736120
https://doi.org/10.1016/s0378-3758(97)00050-5
https://doi.org/10.1111/2041-210x.12050
https://doi.org/10.1111/2041-210x.12050
https://doi.org/10.1007/978-1-4613-8505-9_4
https://doi.org/10.1287/mnsc.45.11.1570
https://doi.org/10.1007/b97441

CONTRIBUTED RESEARCH ARTICLES

20

P. L'Ecuyer and P. W. Glynn. Stochastic optimization by simulation: Convergence proofs for the
GI/G/1 queue in steady-state. Management Science, 40(11):1562-1578, 1994. URL https://doi.org/
10.1287/mnsc.40.11.1562. [p13]

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods.
Statistics and Computing, 22(6):1167-1180, 2012. URL https://doi.org/10.1007/s11222-011-9288~

2. [p12]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2015. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-2.1. [p9]

G. W. Peters, W. Y. Chen, and R. H. Gerlach. Estimating quantile families of loss distributions for
non-life insurance modelling via L-moments. Risks, 4(2):14, 2016. URL https://doi.org/10.2139/
ssrn.2739417. [p7, 16]

G. D. Rayner and H. L. MacGillivray. Numerical maximum likelihood estimation for the g-and-k
and generalized g-and-h distributions. Statistics and Computing, 12(1):57-75, 2002. URL https:
//doi.org/10.1023/A:1013120305780. [p7, 9, 18]

B. Ripley. Stochastic Simulation. Wiley, 1987. URL https://doi.org/10.1002/9780470316726. [p12]

E. Saksman and M. Vihola. On the ergodicity of the adaptive Metropolis algorithm on unbounded
domains. The Annals of Applied Probability, 20(6):2178-2203, 2010. URL https://doi.org/10.1214/
10-aap682. [pl1]

S. A.Sisson, Y. Fan, and M. Beaumont, editors. Handbook of Approximate Bayesian Computation. Chapman
& Hall/CRC, 2017. URL https://doi.org/10.1201/9781315117195. [p12]

J. C. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization.

IEEE Transactions on aerospace and electronic systems, 34(3):817-823,1998. URL https://doi.org/10.

1109/7.705889. [p13]

J. W. Tukey. Modern techniques in data analysis. In Proceedings of the NSF-Sponsored Regional Research
Conference. Southern Massachusetts University, 1977. [p7]

Dennis Prangle

Department of Mathematics and Statistics
Newcastle University

NE1 7RU

UK

dennis.prangle@newcastle.ac.uk

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1287/mnsc.40.11.1562
https://doi.org/10.1287/mnsc.40.11.1562
https://doi.org/10.1007/s11222-011-9288-2
https://doi.org/10.1007/s11222-011-9288-2
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://doi.org/10.2139/ssrn.2739417
https://doi.org/10.2139/ssrn.2739417
https://doi.org/10.1023/A:1013120305780
https://doi.org/10.1023/A:1013120305780
https://doi.org/10.1002/9780470316726
https://doi.org/10.1214/10-aap682
https://doi.org/10.1214/10-aap682
https://doi.org/10.1201/9781315117195
https://doi.org/10.1109/7.705889
https://doi.org/10.1109/7.705889
mailto:dennis.prangle@newcastle.ac.uk

CONTRIBUTED RESEARCH ARTICLES

21

NI1inTS: An R Package For Causality

Detection in Time Series
by Youssef Hmamouche

Abstract The causality is an important concept that is widely studied in the literature, and has several
applications, especially when modelling dependencies within complex data, such as multivariate
time series. In this article, we present a theoretical description of methods from the NIinTS package,
and we focus on causality measures. The package contains the classical Granger causality test. To
handle non-linear time series, we propose an extension of this test using an artificial neural network.
The package includes an implementation of the Transfer entropy, which is also considered as a non-
linear causality measure based on information theory. For discrete variables, we use the classical
Shannon Transfer entropy, while for continuous variables, we adopt the k-nearest neighbors approach
to estimate it.

Introduction

The study of dependencies between variables is an important step in the analysis of multi-variate time
series. Not surprisingly, it can be exploited in causal discovery for financial and neuroscience datasets,
in feature selection to determine the most important variables as inputs of prediction models, etc.
Standard measures like correlation and mutual information are very used for analyzing relationships
between time series. Because these measures are symmetrical, they do not provide enough information
concerning the transfer of information over time from one variable to another one. Therefore, in cases
where we are interested in approximating non-symmetrical dependencies between variables, causality
is more adequate than correlation measures.

In the literature, two main causality measures have been well investigated in the field of time series
analysis; the Granger causality test (Granger, 1980), and the Transfer entropy (Schreiber, 2000). The
Granger causality is based on the principle that a variable causes another variable if it contains useful
information in terms of prediction. Consequently, it is mainly linked to the idea of using of a prediction
model to test the causality. The Transfer entropy in the other hand is based on information theory and
has gained an increasing attention during recent years. It measures the flow of information between
variables using the conditional Shannon entropy. Although these two measures seem radically
different, an interesting finding has been presented in Barnett et al. (2009) showing that they are
equivalent for variables that follow a normal distribution. In addition, Transfer entropy is considered
as a non-linear alternative for the Granger causality, since it does not model the relationships between
variables using a statistical model, instead, it is based on information theory.

This article covers a theoretical description of methods implemented in the NIinTS package
(Hmamouche, 2020). Particularly, we focus on methods and models that are related to causality
measures. This package includes the Granger causality test. To deal with non-linear dependencies
between time series, we propose an non-linear extension of the Granger causality test using feed-
forward neural networks. The package includes also an implementation of Transfer entropy. Two
versions are provided, one for discrete variables, and the second is an estimate for continuous variables
based on the k-nearest neighbors approach (Kraskov et al., 2004). Therefore, We detail the Granger
causality test, the proposed non-linear Granger causality test, the VARNN (Vector Auto-Regressive
Neural Network) model, since it is used in the later. Then, we represent the Transfer entropy, including
the original formulation and the continuous estimation, starting by the estimate of the entropy and the
mutual information, because they will be useful to understand the Transfer entropy estimator.

It is worth to mention that there are several R packages that contain an implementation of the
Granger causality test, such as vars (Pfaff, 2008), Imtest (Zeileis and Hothorn, 2002). However, for
Transfer entropy, especially for the continuous estimation, we found only the RTransferEntropy
package (Simon et al., 2019). The approach used for estimating the Transfer entropy for continu-
ous variables is based on discretization methods, by transforming continuous variables to discrete,
then, applying Shannon Transfert entropy. In this paper, our approach is based on the same princi-
ple proposed in Kraskov et al. (2004) to estimate the mutual information, which inherits from the
Kozachenko-Leonenko estimator of the Shannon entropy.

The organization of the paper is as follows, the two first sections are for the theoretical formulation
of the causality tests and the Transfer entropy measures. The third section provides R code examples
of the presented measures, illustrating the usage of the implemented methods. Finally, the last section
summarizes this paper.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=vars
https://CRAN.R-project.org/package=lmtest
https://CRAN.R-project.org/package=RTransferEntropy

CONTRIBUTED RESEARCH ARTICLES

22

The Granger causality test

The Granger causality test (Granger, 1980) is the classical method to test the causality between time
series. To test if a variable X causes another variable Y, the principle of this test is to predict Y using
its own history, and to predict it using it history plus the history of the variable X, and finally to
evaluate the difference between these two situations to see if the added variable has some effect on the
predictions of the target variable.

Formally, two VAR (p) (Vector Auto-Regressive) models are considered. The first one uses the
precedent values of Y, and the second uses both passed values of X and Y in order to predict Y:

p
Model; Y; = a9+ Z ;Y i+ U, (1)
i=1

P P
Model, Yi=ag+ ) a;Yi;i+ Y BiXii+ Uy, 2)
i=1 i=1

= =
where p is the lag parameter, [, ..., ap] and [By, ..., Bp] are the parameters of the models, and U is a
white noise error term.

To quantify the causality, we have to evaluate the variances of the errors of Model; and Model,. In
this case, the Granger causality index (GCI) can be used, and it is expressed as follows:

ot
GCl=log| = |, ®)
72

where (712 and 0,2 are the variances of the errors of Model; and Model, resp. In order to evaluate
the statistical significance of the difference between these variances, the Fisher test can be used, where
the statistic is as follows:

p_ (RSS51—RSS,) /p

T RSSy/ (n—2p—1)°
RSS; and RSS; are the residual sum of squares related to Model; and Model, resp., and n is the size of
the lagged variables. Two hypotheses have to be considered:

. H(): Vi e {1,-.-,19}/,51‘ =0,
e Hi:Jie{l,...,p}, Bi #0.

Hy is the hypothesis that X does not cause Y. Under Hy, F follows the Fisher distribution with
(p,n —2p — 1) as degrees of freedom.

A non-linear Granger causality test

Using artificial neural networks (ANNs) may be very important when computing causalities, especially
for time series that change non-linearly over time. We take advantage from the characteristics of
ANNSs and propose an implementation of an extended version of the Granger causality test using the
VARNN model. Before describing the proposed causality test, let us first present briefly the VARNN
model which is also available in the package as a prediction model.

The VARNN model: Consider a training dataset that consists of a multivariate time series con-
taining one target variable Y, and k predictor variables {Yj,...,Y;}. The VARNN (p) model is a
multi-layer perceptron neural network model that takes into account the p previous values of the
predictor variables and the target variable (Y) in order the predict future values of Y. We made this
choice to allow for the possibility of predicting each target variable with a specific set of predictors,
since target variables do not necessarily have the same predictors. First, the model reorganizes the
data in a form of a supervised learning form with respect to the lag parameter. The optimization
algorithm used to update the weights of the network is based on the Stochastic Gradient Descent
(SGD) algorithm. The Adam algorithm can also be used to update the learning rate while using SGD
(Kingma and Ba, 2015). The global function of the VARNN (p) can be written as follows:

Y = ¥y (YH,...,Yt,,,,...,Yk<t,1>,...,yk<t,p>> +u, 4)

where ¥, is the network function, and U, represents the error terms.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

23

To—
Yip T 1
7

Evaluate the difference between

predictions of both models

Figure 1: Illustration of the ANN model for the Granger causality test.

A causality test using the VARNN model: Consider two variables X and Y. Similarly to the
Granger causality, to test the causality from X to Y, two prediction models are considered, the first
takes into account the passed values of the target time series, and the second takes the passed values
of the target and the predictor time series,

Model; : Y =Y (thl, ceey Yt—p) + Uy, (5)
Modelp : Y =Y¥oun (Y1, Yiep, Xem1, .-, Xo—p) + Uy, (6)

where ¥1,,,, and ¥y, are the network functions of Model; and Model, resp., using the VARNN
model. Then, we evaluate the difference between these two models by comparing the residual sum
of squares of their errors, and the evaluation is carried out using the Fisher test to examine the null
hypothesis (the hypothesis that X does not cause Y). Figure 1 shows an illustration of the used
structure of the causality model.

The difference compared to the classical test, is that instead of using 2 VAR models (univariate and
bivariate), two VARNN models are used. Therefore, we have to change the statistic of the Fisher test
because there are more parameters in the VARNN models than in the VAR model. In this case, the
statistic of test is as follows:

RSS1 —RSSy) / (dp —dy)

RSSy/ (n —dp) '
where d; and d, are the number of parameters of the univariate and the bivariate model resp. They
depend on the chosen structure (number of layers and of neurons).

po

Let us emphasize an important point about this causality. It is evident that computing causalities
using ANNs may has the classical drawback of increasing the computational time. This is not exactly
precise in some cases, because suppose that we have a large number of time series and we have to
compute causalities between all variables. Also, suppose that relationships between variables change
over time. Therefore, this implies that we need to recalculate the causalities periodically or after each
change. In addition, the basic formulations of the classical causality measures (Granger causality test
and Transfer entropy) are not adaptive, which means they do not make it possible to update the new
values by using the old ones. In the other hand, with ANNSs, the first computation of causalities may
be slow compared to the Granger test or the Entropy Transfer, but if we have new observations in the
time series, the model adapts more quickly thanks to the learning properties of ANNSs.

Transfer entropy

Transfer entropy (Schreiber, 2000) between two time series X and Y, measures the information flow
from X to Y. It was developed to overcome the main drawback of mutual information, which provides
the common information between two variables (symmetric measure), but does not consider the
transfer of information from one variable to the other. To avoid this problem, time delay parameters

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

24

are included in the equation of the mutual information to specify the direction of information:

P (Yt \ yéﬂXf)
Tx—y = Y,A(Zﬁ}xf’ : <Yt'Y’q’ Xf) g W

- I(Yt;Xf|Yf>,

where Zf = (Zi-1,...,2Z4_) for Z = X, Y, p,q are the time delay parameters for X and Y resp.,
P represents the probability, and I represents the mutual information symbol. The transfer entropy
can also be seen as the difference between two conditional entropies, where in the first one, only past
values of Y are used, and in the second, both X and Y are considered:

TExoy = H Y| (Yi-1,.--,Yiy))
—H (Y (Y1, Yig) s (K1 Xip),

where H represents the conditional entropy. Note that this expression resembles, in some sense,
the principle of the Granger causality test which compares two prediction models.

A continuous estimation of Shannon Transfer entropy

In this section, we describe the estimation of Transfer entropy based on the k-nearest neighbors. First,
we show the entropy estimator represented in Kraskov et al. (2004). Then, we show the mutual
information estimator that is based on an extended formulation based on the same principal. Then,
we use this approach to estimate the Transfer entropy:.

Entropy estimation The basic approach for estimating the entropy of continuous variables is
based on binning the data, in order to get back to the classical definition of Shannon entropy. However,
more efficient approaches are proposed by estimating directly the continuous entropy:

H(X) =~ [ p(x)log (x)dx,

where p represents the density function of X. One estimation of the continuous entropy of a
random variable X with n realizations is the expected value of log (p (X)):

A0 = 1 3 tog (7 (x)

The main point of the Kozachenko-Leonenko estimator to approximate log (p (x;)) by considering
p (x;) constant in the sphere centered at x;, with radius the distance from x; to the k-nearest neighbors
of each point. We do not show the details of the mathematical proof, but just the obtained formula:

H(X):F(n)—r(k)+log(c)+%idi, @)
i=1

where I' is the gamma function, m is the dimension of X, i.e, the number of variables, d; is twice the
distance from x; to its Kth neighbor, and c is the volume of the unit ball of dimension . To compute
the distances between two points x; and xj, we use the max norm, |x; — x]-|, therefore, c = 1, and
log (¢) = 0. In the rest of the equations, for simplicity, we neglect this term.

Mutual Information estimation The mutual information between two variables X and Y having
n observations can be expressed as follows:

I(X,Y)=H(X)+H((Y)-H(X)Y). (8)
It is possible to adopt the Kozachenko-Leonenko approach to estimate the mutual information. In
this case, we need to estimate the individual entropy of each variable and the joint entropy. For the

joint entropy, it can be computed using the same way by considering the joint space spanned by X
and Y. Let z; = (x;,y;) for i € [1,n], and d, be the distance for z; to its k" neighbor. The estimate of the

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 25

joint entropy can be expressed as follows:

H(X,Y):I“(n)fr(k)Jr@idi, )

where m, and my are the dimensions of X and Y.

In Kraskov et al. (2004), two new methods have been proposed to improve the Kozachenko-
Leonenko estimator for mutual information. The first method is based on the idea that when estimating
H (X) and H (Y), we do not have to use the same k as used in the joint entropy, but instead, it is more
precise to use the number of neighbors of each variable separately. Thus, the estimate of the individual
entropy, of X for example, is the following:

H(X):F(n)—%ZF(nx(i)—&-l)—i—%Zd,-, (10)

where nx (i) is the number of points where the distance from X; is strictly less than d;/2. As for Y,
H (Y) is computed with the same way. Finally, based on Equations 8, 9 and 10, the mutual information
estimator is as follows:

S
&M:

F(Y) =T (k) +T (n) - (T (nx (i) +1) +T (ny (i) +1)) 1D

i=1

Following the same method and generalizing the previous formulation to ! variables{Xy, ..., X},
the multivariate mutual information estimator is as follows:

[(Xy,....X) =Tk +(I-1T

3\>—n

i 1)+ +T(n (i) +1)), (12)

where ; (i), for (j,i) € [1,1] x [1,n], is the number of points where the distance from the point X;;
is strictly less than d;/2.

The motivation behind the second estimator of mutual information presented in Kraskov et al.
(2004) is that the Kozachenko-Leonenko estimation of the joint entropy (H (X, Y) in the bi-variate
case) may be more precise than the first estimator if we consider that the density is constant in hyper-
rectangles instead of hyper-cubes. Based on this remark, the second estimate of the mutual information
of | variables {X3, ..., X;}, with n observations, can be expressed as follows:

i(Xl,...,X,):r(k)Jrl_—1 +(1-1T %i T (nq( 4T (m (i), (13)

where n; (i), for (j,i) € [1,1] x [1,n], is the number of points where the distance from the Xj; is less
(not strictly) than d;;/2, and d;; is the distance from Xj; to its k" neighbor.

Transfert entropy estimation Let us use the first strategy used by Kraskov for mutual information
estimation to estimate the Transfer entropy. Let X and Y be two time series. The goal is to estimate the
Transfer entropy from X to Y, with time delay parameters p and q resp.

TExoy =H (VYoo Yieg) = H (Y| (Yee1, . Yeep) , (Xem1, -, Xe—p) - (14)

Consider the following notations :

o V' ={Y1,...,. Vi 4}
o X' ={X;_1,..., Xt—p}

. th= Y, Y{"}

o X[ = {x;, xm}

o« 7= {Y", X"}

« z[ = (Y], v xpmy

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 26

We can rewrite then Equation 14 as follows:

TEx .y = H (Y1, Yp) — H (Yi|Xp, Yp), (15)
=H (YY) —H(Yp) —H(Y:, X, Yp) + H(Xp,Yp)
Ay -aom-a(z)+aa.

The maximum joint space is defined by Z{ = {Y;, Y[",X]"}. Consider that Z{ contains n obser-
vations. The first step is to computes the distances d,, i.e., the distance from the point z; to its k"
neighbor, for i € [1, n]. In the same way as estimating mutual information, we compute the maximal

joint entropy H Z{ using the Kozachenko-Leonenko estimator, and the other terms by projecting
the number of neighbors in each marginal space using the Kraskov approach:

A(z) =t +rm+ Py,
(#)=-rw+rom+ =y
H(th):—%;F<nw(i)+1>+r(n)+p:1;di,
I:I(th):—%if(nym(i)+1)+l“(n)+gidi,
i=1 i=1
H(Z{”):f%ir(nzm(z’)Jrl)H"(n)Jrp:qid,-,

1

Il
—_

1

where ny, (i), ny,, (i) and n;,, (i) are the numbers of points where the distance from the point Ylf ,
Y/", and Z" resp., is strictly less than d; /2, fori € [1,n]. By replacing each oh these terms in Equation
15, we obtain:

(P+1)*P*(P+Q+1)+(P+q)idi (16)

TExoy =T (k) =T (n) - 0

By simplifying this expression, the Transfer entropy estimator can be expressed as follows:

TEx_y =T (k) — %Z( ny, (i) +1) — F(nyf(i)+1>—F(nz,n(i)+1)>. (17)

And this is the classical Transfer entropy estimator investigated and discussed in Vicente et al.
(2011); Lizier (2014); Zhu et al. (2015).

Normalizing the Transfer entropy

The values obtained by the Transfer entropy (TE) are not normalized, and practically, it is hard to
quantify the causality in this case. Normalizing the values of TE between 0 and 1 simplifies the
interpretation of the amounts of transferred information. For discrete data, The Transfer entropy from
a variable X to a variable Y has a maximum value H (Y;|Y/"). Thus, the normalized TE (NTE) can be
obtained by dividing TE by its maximum value:

H (Vi [Y}") — H (vi|yy", X}")

NTE= A vy

(18)

In Gourévitch and Eggermont (2007), a preparation step is added to compute NTE to consider
data that contain noise. It consists of subtracting first the average of TE by shuffling the variable X
several times (rearranged it randomly):

n
TEx-y — Yio TEXshufﬂed%Y

NTE = I
H (Yi|Y}")

In the package, we implemented just the first normalization (cf. Equation 18), because the second

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

27

one depends on the way of shuffling the variable X. But it can be obtained easily by computing the
NTE with the original variables, and the average of NTE with several shuffled variables of X.

Concerning continuous Transfer entropy, the term H (Y¢|Y}") may be negative, which means that
if we apply the same method to normalize the discrete TE, we will not obtain values in [0, 1]. To avoid
this problem, we adopt another approach presented in Duan et al. (2013):

n
TEx—y — Yieg TEXslmfﬂed%Y

NTE = ~
Ho — H (Y¢|Y{")

7

where Hj is the maximum entropy of Y by considering the uniform distribution, i.e., Hy =
log (Ymax — Yomin), and Yiax and Yy, are the maximum and the minimum values of Y.

R code examples

In this section, we demonstrate worked examples about the usage of the methods implemented in the
package and discussed theoretically in the two previous sections. We use financial time series from
the package timeSeries (Wuertz et al., 2017). We will present the classical Granger causality test, the
VARNN prediction model, and the proposed non-linear Granger causality test. These functionalities
are provided via Recpp modules. We present also the functions associated to Transfer entropy measures,
including the discrete and continuous estimate. Since other entropy measures are implemented, we
will present them as well, such as the entropy and the mutual information.

The Granger causality test

The causality.test module is based on an Repp module. The two first arguments of the constructor
of this module are two numerical vectors, (the goal is to test if the second vector causes the first one).
The third argument is the lag parameter, which is an integer value. The last argument is logical (false
by default) for the option of making data stationary using the Augmented Dickey-Fuller test, before
performing the causality test.

library (timeSeries)

library (N1inTS)

data = LPP20Q5REC

# Construct the causality model from the second column to the first one,
# with a lag equal to 2, and without taking into account stationarity
model = causality.test (datal[,1], datal,2], 2, FALSE)

The causality.test module has a summary method to show all the results of the test, and 3
properties: the Granger causality index; gci (cf. 2), the statistic of the test (Ftest), and the p-value (the
probability of non causality) of the test (pvalue).

# Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()

model$gci

model$Ftest

model$pvalue

The VARNN model

The varmlp module represents the implementation of the VARNN model. It is an Rcpp module,
where the constructor takes as arguments a numerical Dataframe. Each column represents a variable,
and the first column is the target variable. Note that the Dataframe may contain one column. In
this case, the model will be univariate (ARNN model). The second argument is the lag parameter,
then, a numerical vector representing the size of the hidden layers of the network, then, an integer
argument for the number of iterations to train the model. Other arguments with default values are
available about using the bias neuron, the activation functions to use in each layer, the learning rate,
and the optimization algorithm. More details about these arguments can be found in the manual of
the package (Hmamouche, 2020).

library (timeSeries)
library (N1inTS)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=timeSeries
https://CRAN.R-project.org/package=Rcpp

CONTRIBUTED RESEARCH ARTICLES 28

# Load the data
data = LPP200Q5REC

# The lag parameter
lag = 1

# The training set
train_data = data[1:(nrow (data) - 1), 1]

# Build and train the model
model = varmlp (train_data, 1, c(10,5), 100)

The varmlp module has 3 methods. The method named forecast compute predictions from an
input dataframe, in other words, to test the model. And a method train update the parameters of the
model from new data.

# Predict the last row of the data
predictions = model$forecast (train_data)

# Show the predictions
print (predictions[nrow (predictions),])

# Update the model (two observations are required at least since lag = 1)
model$train (datalnrow (data) - lag: nrow (data)l)

The non-linear Granger causality test

Similarly to the previous test, the nlin_causality.test is an Repp module. The two first arguments
of the constructor of this module are two numerical vectors, (the goal is to test if the second causes the
first). The third argument is the lag parameter. The next two arguments are two numerical vectors
representing the size of the hidden layers used in models 1 and 2, resp. The next argument is an integer
for the number of the iterations to train the networks. Similarly to the varmlp model, other arguments
with default values are available about the bias neuron, the activation functions, the learning rate,
and the optimization algorithm. The manual of the package contain more details concerning these
arguments (Hmamouche, 2020). The following is an example of using the non-linear causality test:

library (timeSeries)

library (N1inTS)

data = LPP20Q5REC

# Build and train the model

model = nlin_causality.test (datal,1], datal,2], 2, c(2), c(4))

The nlin_causality.test module returns the same values as the causality.test; a summary
method to show all the results of the test, and 3 properties; the Granger causality index (gci), the
statistic of the test (Ftest), and the p-value of the test (pvalue).

# Compute the causality index, the Ftest, and the pvalue of the test
model$summary ()

model$gci

model$Ftest

model$pvalue

The discrete entropy

The function entropy_disc permits to compute the Shannon entropy, where the first argument is a
discrete vector, and the second argument is the logarithm function to use (log, by default):

library (N1inTS)
# The entropy of an integer vector
print (entropy_disc (c(3,2,4,4,3)))

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

29

The continuous estimation of the entropy

The function entropy_disc permits to compute the continuous estimation of Shannon entropy, where

the first argument is a numerical vector, and the second argument is the number of neighbors (see 4.1):

library (timeSeries)

library (N1inTS)

# Load data

data = LPP20Q5REC

# The entropy of the first column with k = 3
print (entropy_cont (datal,1], 3))

The discrete mutual information

The function mi_disc permits to compute the Shannon multivariate mutual information, where the
first argument is an integer dataframe, and the second argument is the logarithm function to use (log>
by default):

library (N1inTS)

# Construct an integer dataframe with 2 columns
df = data.frame (c(3,2,4,4,3), c(1,4,4,3,3))

# The mutual information between columns of df
mi = mi_disc (df)

print (mi)

The continuous estimation of the mutual information

The function mi_cont permits to compute the continuous estimate of the mutual information between
two variables. The two first arguments are two vectors, and the third argument is the number of
neighbors (see 4.1):

library (timeSeries)

library (N1inTS)

# Load data

data = LPP20Q5REC

# The mutual information between of the two first columns of the data with k = 3
print (mi_cont (datal,1], datal,2], 3))

The discrete Transfer entropy

The function associated to the discrete TE is named te_disc. The two first arguments are two integer
vectors. Here we allow the two time series to have different lag parameters. Therefore, the second
two arguments are the lag parameters associated to the first and the second arguments resp. The next
argument indicates the logarithm function to use (log; by default). The last argument is logical for the
option of normalizing the value of TE, with a false value by default. The te_disc function returns the
value of Transfer entropy from the second variable to the first variable:

library (N1inTS)

# The transfer entropy between two integer vectors with lag = 1 to 1
te = te_disc (c(3,2,4,4,3), c(1,4,4,3,3), 1, 1)

print (te)

The continuous estimation of the Transfer entropy

The associated function is named te_cont. The two first arguments are two vectors. Then, the second
two arguments are the associated lag parameters for the first and the second arguments resp. The fifth
argument is the number of neighbors. The last argument is logical for the option of normalizing the
value of TE, with a false value by default. The te_cont function returns the value of Transfer entropy
from the second variable to the first one:

library (timeSeries)
library (N1inTS)
# Load data

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

30

data = LPP20@5REC

# The transfer entropy between two columns with lag = 1 and k = 3
te = te_cont (datal,1], data[,2], 1, 1, 3)

print (te)

Conclusion

In this paper, we have presented methods of our NlinTS package for computing causalities in time
series. We have considered two main measures well studied in the literature, the Granger causality
test and the Transfer entropy. The Transfer entropy is originally formulated for discrete variables. For
continuous variables, we adopted a k-nearest neighbors estimation based on the same strategy used to
estimate the Mutual Information in Kraskov et al. (2004). To deal with non-linear time series, we have
proposed another causality measure as an extension of the Granger causality test using an artificial
neural network. Finally, we showed examples for the usage of these methods.

Bibliography

L. Barnett, A. B. Barrett, and A. K. Seth. Granger causality and transfer entropy are equivalent
for gaussian variables. Phys. Rev. Lett., 103:238701, Dec 2009. URL https://doi.org/10.1103/
PhysRevLett.103.238701. [p21]

P. Duan, E. Yang, T. Chen, and S. L. Shah. Direct causality detection via the transfer entropy approach.
IEEE Transactions on Control Systems Technology, 21(6):2052-2066, Nov 2013. ISSN 1063-6536. URL
https://doi.org/10.1109/TCST.2012.2233476. [p27]

B. Gourévitch and J. ]J. Eggermont. Evaluating Information Transfer Between Auditory Cortical
Neurons. Journal of Neurophysiology, 97(3):2533-2543, Mar. 2007. ISSN 0022-3077. URL https:
//doi.org/10.1152/3jn.01106.2006. [p26]

C. W.]. Granger. Testing for causality. Journal of Economic Dynamics and Control, 2:329-352, Jan. 1980.
ISSN 0165-1889. URL https://doi.org/10.1016/0165-1889(80)90069-X. [p21, 22]

Y. Hmamouche. NIinTS: Models for Non Linear Causality Detection in Time Series, 2020. URL https:
//CRAN.R-project.org/package=N1inTS. R package version 1.4.2. [p21, 27, 28]

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun,
editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980. [p22]

A. Kraskov, H. Stogbauer, and P. Grassberger. Estimating mutual information. Phys. Rev. E, 69:066138,
Jun 2004. URL https://doi.org/10.1103/PhysRevE.69.066138. [p21, 24, 25, 30]

J. T. Lizier. Jidt: An information-theoretic toolkit for studying the dynamics of complex systems.

Frontiers in Robotics and Al, 1:11, 2014. ISSN 2296-9144. URL https://doi.org/10.3389/frobt.

2014.00011. [p26]

B. Pfaff. Var, svar and svec models: Implementation within r package vars. Journal of Statistical Software,
Articles, 27(4):1-32, 2008. ISSN 1548-7660. URL https://doi.org/10.18637/jss.v027.104. [p21]

T. Schreiber. Measuring Information Transfer. Physical Review Letters, 85(2):461-464, July 2000. URL
https://doi.org/10.1103/PhysRevLett.85.461. [p21, 23]

B. Simon, D. Thomas, P. Franziska J., and Z. David J. Rtransferentropy — quantifying information
flow between different time series using effective transfer entropy. SoftwareX, 10(100265):1-9, 2019.
URL https://doi.org/10.1016/j.softx.2019.100265. [p21]

R. Vicente, M. Wibral, M. Lindner, and G. Pipa. Transfer entropy—a model-free measure of effective

connectivity for the neurosciences. Journal of Computational Neuroscience, 30(1):45-67, Feb. 2011.

ISSN 1573-6873. URL https://doi.org/10.1007/s10827-010-0262-3. [p26]

D. Wuertz, T. Setz, and Y. Chalabi. timeSeries: Rmetrics - Financial Time Series Objects, 2017. URL
https://CRAN.R-project.org/package=timeSeries. R package version 3042.102. [p27]

A. Zeileis and T. Hothorn. Diagnostic checking in regression relationships. R News, 2(3):7-10, 2002.

URL https://CRAN.R-project.org/doc/Rnews/. [p21]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1109/TCST.2012.2233476
https://doi.org/10.1152/jn.01106.2006
https://doi.org/10.1152/jn.01106.2006
https://doi.org/10.1016/0165-1889(80)90069-X
https://CRAN.R-project.org/package=NlinTS
https://CRAN.R-project.org/package=NlinTS
http://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.3389/frobt.2014.00011
https://doi.org/10.18637/jss.v027.i04
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1016/j.softx.2019.100265
https://doi.org/10.1007/s10827-010-0262-3
https://CRAN.R-project.org/package=timeSeries
https://CRAN.R-project.org/doc/Rnews/

CONTRIBUTED RESEARCH ARTICLES 31

J. Zhu, J.-]. Bellanger, H. Shu, and R. Le Bouquin Jeannés. Contribution to Transfer Entropy Estimation
via the k-Nearest-Neighbors Approach. Entropy, 17(6):4173—4201, June 2015. URL https://doi.
org/10.3390/e17064173. [p26]

Youssef Hmamouche
Aix Marseille Université, Université de Toulon, CNRS, LIS, UMR7020, Marseille, France

Aix Marseille Université, CNRS, LPL, UMR7309, Aix-en-Provence, France
youssef.hmamouche@lis-1ab.fr

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.3390/e17064173
https://doi.org/10.3390/e17064173
mailto:youssef.hmamouche@lis-lab.fr

CONTRIBUTED RESEARCH ARTICLES

32

Mapping Smoothed Spatial Effect
Estimates from Individual-Level Data:
MapGAM

by Lu Bai, Daniel L. Gillen, Scott M. Bartell, Verénica M. Vieira

Abstract We introduce and illustrate the utility of MapGAM, a user-friendly R package that provides
a unified framework for estimating, predicting and drawing inference on covariate-adjusted spatial
effects using individual-level data. The package also facilitates visualization of spatial effects via
automated mapping procedures. MapGAM estimates covariate-adjusted spatial associations with
a univariate or survival outcome using generalized additive models that include a non-parametric
bivariate smooth term of geolocation parameters. Estimation and mapping methods are implemented
for continuous, discrete, and right-censored survival data. In the current manuscript, we summarize
the methodology implemented in MapGAM and illustrate the package using two example simulated
datasets: the first considering a case-control study design from the state of Massachusetts and the
second considering right-censored survival data from California.

Introduction

In spatial epidemiology studies, mapping crude and adjusted spatial distributions of disease risk
is a useful tool for identifying risk factors of public health concern (Elliott and Wartenberg, 2004).
The underlying (or crude) geographic pattern of disease is often what is observed by public health
practitioners, but these patterns may be due to important spatially-varying predictors such as so-
cioeconomic status, race/ethnicity, or environmental exposures. Individual-level spatial analyses
can provide insight regarding disease risk by adjusting for these variables without aggregation bias
(also known as ecological bias). Disease risks often have complex spatial patterns that are subject to
high variability due to sparsity. Smoothing provides an efficient method to deal with these issues by
borrowing strength from adjacent observations to reduce variability while allowing for non-parametric
flexibility when estimating the spatial distribution of risk. Generalized additive models (GAMs), origi-
nally proposed by Hastie and Tibshirani (1986), are common model-based approaches for mapping
point-based epidemiologic data(Webster et al., 2006; Vieira et al., 2008; Baker et al., 2011; Akullian
etal., 2014; Bristow et al., 2014; Hoffman et al., 2015). GAMs provide a unified statistical framework
that allows for the adjustment of individual-level risk factors when evaluating spatial variability in a
flexible way. The flexibility provided by GAMs, together with the intuitive nature of many smoothing
techniques, make them an ideal choice for modeling complex spatial associations.

There are a number of R packages implementing GAMs and related models (R Core Team, 2015).
The gam package (IHastie, 2004) provides an implementation of the GAM framework of Hastie and
Tibshirani (1986) by providing two types of commonly used smoothing methods: cubic loess smooth-
ing splines for univariate variables and local kernel smoothing (LOESS) for multivariate variables.
The mgcv(Wood, 2009; Breslow and Clayton, 1993) package implements cubic smoothing splines and
tensor product smooths, an extension of cubic splines to multi-dimentions. mgcv also provides various
criterion to aid in the selection of model complexity via the choice of effective degrees of freedom
and provides functions to fit generalized additive mixed effects models (GAMMs) for correlated
data. Package gamlss (Rigby and Stasinopoulos, 2005; Stasinopoulos and Rigby, 2007) implements an
extension of the GAM that incorporates selected distributions outside of the exponential family. With
respect to censored survival data, parametric additive models can be fit using both the gamlss.cens
package (Stasinopoulos et al., 2015) and the VGAM package (W., 2007). Bayesian inferences for the
spatial analysis of survival data based on the parametric proportional hazards model are implemented
in package spatsurv(Taylor et al., 2016; Taylor and Rowlingson, 2014). However, parametric models
assume a full distribution of the survival times, and misspecifying the distribution may yield bias for
estimates. Cox proportional hazards models, which are semi-parametric without specifying a form
for underlying hazard function, are more robust for survival analysis including mulitple adjusted
variables.

A variety of R packages incorporate Cox proportional hazards models and spatial smoothing term.
The R interface to BayesX(Umlauf et al., 2015; Belitz et al., 2016; Kneib et al., 2014), R2BayesX(Umlauf
et al.,, 2016), provides survival spatial analysis based on structured additive models (STAR) without
specifying the baseline hazard. mboost(Hothorn et al., 2016) implements boosting for optimizing

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

33

penalized likehood function, and as an extention of mboost, gamboostMSM(Reulen, 2014) provides
estimates for multistate models. mgcv also incorporates 'coxph' family in the model fitting. However
these packages use cubic, B- and/or P- splines as smoothing methods; none offer LOESS. LOESS
adapts to varying data densities by defining a local neighborhood based on a fixed proportion ("span”)
of the observations; this is especially useful for spatial analyses as population densities typically vary
within any study region.

Therefore, none of the above packages provide an implementation of the Cox proportional hazards
additive model for censored survival data that allows for multivariate loess smoothing of covariates
such as geolocation parameters, despite the fact that spatial effect estimation in the context of survival
outcomes is of great interest in epidemiology studies (Henderson et al., 2002; Bristow et al., 2014).
Moreover, displaying spatial predictions on a map with irregular geographic boundaries is a non-
trivial effort, often handled by exporting statistical predictions to separate specialized geographic
information system (GIS) software such as ArcGIS that requires a paid user license (Webster et al.,
2006; Vieira et al., 2008) or by omitting geographic boundaries altogether(Akullian et al., 2014). At best,
these limitations and complexities pose a significant barrier to researchers not already well versed in
both GAMs and GIS methods and at worst may lead to reporting errors due to the inefficient transfer
of estimates between separate software packages.

To address the above deficiencies of current software, MapGAM was built to provide a single
R package that allows for estimating, predicting, and visualizing covariate-adjusted spatial effects
using individual-level data. The package estimates covariate-adjusted spatial associations with a
univariate or survival outcome via GAMs that include a non-parametric bivariate smooth term of
geolocation parameters. Estimation and mapping methods are implemented for continuous, discrete,
and right-censored survival data. In addition, support functions for efficient control sampling in
case-control studies and inferential procedures for testing global and pointwise spatial effects are
implemented. We have found that a unified system for estimating and visualizing covariate-adjusted
spatial effects on outcomes arising from the most commonly encountered epidemiologic study designs
greatly facilitates efficient and reproducible analyses in these settings.

This article serves as an introduction and illustration of the MapGAM package. The remainder
of the manuscript is organized as follows: Section 2 provides an overview of the methodology
implemented in MapGAM for estimating and visualizing spatial effects in the context of a generalized
additive model for continuous, binary or count outcome data. An illustrative example using MapGAM
to analyze hypothetical case-control data from the state of Massachusetts is also provided. Section 3
considers estimating spatial effects on right-censored survival times via a Cox proportional hazards
additive model. The estimation procedures implemented in MapGAM are provided and a brief
simulation study considers the performance of the proposed fitting methods in various settings. In
Section 4 we consider inference procedures associated with spatial modeling and illustrate how to use
the package to perform a global test of a spatial effect and calculate confidence intervals for predictions
at each spatial prediction point. Section 5 concludes with discussion of the utility of the MapGAM
package and considers possible extensions of the package in future research.

Spatial effect on a univariate outcome

We consider estimating and visualizing covariate-adjusted spatial effects in the context of a GAM
for continuous, binary or count outcome data. The spatial effect can be estimated by fitting a GAM
model with a bivariate smoothing term for the two geolocation parameters. Typical models will also
include additional adjustment for demographic characteristics and other risk factors that may serve as
potential confounding factors in the association between location and the outcome of interest.

Generalized additive model

We consider modeling observations that are distributed on a map with u; and v; denoting the geo-
graphical parameters for the ith observation,i =1,...,n. Let Y; denote the outcome and X; denote a
vector of adjustment covariates. Further suppose that the distribution of the outcome belongs to the
exponential family. The GAM then assumes that

g(ui) =i = Bo+ X B+ fluy,v), 1

where g(+) is the link function for mean of the outcome y; = E[Y;] and the variance of the outcome
is defined by the assumed probability model and denoted as V; = Var(Y;) = V(y;, ¢); a function of

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=MapGAM

CONTRIBUTED RESEARCH ARTICLES

34

the mean and nuisance parameter ¢.  denotes a vector of coefficients associated with adjustment
covariate X; and f(u;, v;) represents the spatial effects, which is a nonlinear function of location.

When fitting the model, we separate the spatial effect into parametric and nonparametric portions:
fu;,v;) = 1u; + v20; + s;, and the model becomes

g(ui) =1 = Po+ X/ B+si, )

where X; = [X;,u;,v;] and B = [B",71,72]". The parametric part of the spatial effect is fit jointly
with other adjustment variables using least squares, while the nonparametric term is fit using a
nonparametric smoother. To ensure identifiability, we constrain the model so that ) ; s; = 0.

A local scoring procedure (Hastie and Tibshirani, 1986) is used to fit the model. Let [ denote
the log-likelihood function based upon one observations Y = [Yy,..., Yn]T, which is a function of
7 = [n1,...,mn] . To estimate the parameters of the model we seek to maximize the expected log
likelihood:

E(I(71,Y7)) = maxE(L(;, Yi)), fori =1, ,n 3)

where the expectation is taken over the joint distribution of X and Y. This has intuitive appeal since

it seeks to choose a model that maximizes the likelihood of all possible future observations. Under

standard regularity conditions (namely the ability to interchange integration and differentiation), we
obtain

E[dl/dily, =0, @)

While there is no general closed for solution to Eq.(4), a first-order Taylor series expansion leads to an
iterative estimating procedure given by

e = pold g [dl/dy,)| ot/ E[d*1/dy?] |yt (5)
which is equivalent to
dl/dy;
i i ]E[dzl/dﬂiz o ©

In the exponential family case, we can compute the first and second derivatives of the expected log
likelihood as

A e 1
o= mmv (5, @)
and ) 5

ﬂ — (Y, — 4 V1 i -1 % _ % -1

dn? i =)V (dm> {V" <d77i ani) Vi ®)

Then taking the expectation (conditional on X) of Eq.(8) we obtain

[ ()
()=

Hence #; is updated in the GLM case by

d .
n =E [’71 + (Y — pi) (TZZ,)

} ) (10)
g ug

Further, letting Y94 = [Y°ld ... y9l4]T denote the working response computed in terms of 74 and
& fw wl wn g resp P Ul

1°'% and given by

dn:
YO = i+ (Y; — i) (di‘) , (11)
Wi 7o ol
we obtain from Eq.(2), Eq.(10), and Eq.(11),
E[Yg;lid] — ‘Bgew + XiT‘Bnew Jrslnew. (12)

The coefficients Bgew , B”ew and nonparametric term, s, must be estimated in order to obtain an updated
value of #% in Eq.(10). If no parametric linear predictor term is included in the model (beyond the
spatial smoothing term), the updated s"¢® can be estimated by regressing the working response Y2/
on a bivariate smoother for u and v. However, with the parametric linear predictor term included in

the model, the backfitting algorithm can be used to update By ,8 and s, as is done in the gam package.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

35

Specifically, we begin by defining W = [Wy, -, W,]T as

Wi = i/ )2V s i 13)

and initializing s = 0. The backfitting procedure then loops through the following three steps until the
mean squared error does not further decrease relative to a defined convergence criteria:

1. Update By and B by fitting a linear regression model with Y34 — s as the response and corre-

sponding weight W;
2. Update § by regressing response Y3/? — By — X on a bivariate smoother for u and v with weight
W;

3. Calculates =§—1T734.
Thus, the general algorithm for fitting a generalized additive model within the MapGAM package is:

1. Initialize s = 0. Initialize By and by fitting a generalized linear regression model with all the
adjusted covariates and geolocation parameters included in the model (ie. omitting s).

2. Loop:

old

(a) With the current estimated By, 8 and s, calculate 7°/ as well as working response Y2/ and

W using Eq.(2), Eq.(11) and Eq.(13) respectively.
(b) Update Bo, B and s via the backfitting algorithm.

3. Repeat 2. until convergence.

A locally weighted scatterplot smoother (LOESS) (Cleveland, 1979, 1981; Cleveland and Devlin,
1988) is utilized as the bivariate smoothing function for the two geolocation parameters u and v in the
MapGAM package. The smoothing parameter defining the neighborhood used to select the K nearest
observations points for smoothing may be user specified or automatically chosen by minimizing AIC
(Webster et al., 2006).

Estimating and mapping a spatial effect

In the MapGAM package, typical spatial applications will start with the predgrid() function to create
a regular grid of points within the study area, potentially restricted to points within optional map
boundaries (e.g., a country, state, or regional map obtained from the maps package or imported from
a shapefile). Crude or covariate-adjusted odds ratios, hazard ratios, or other effect estimates are then
obtained for each grid point using the modgam() function to smooth by geolocation. modgam() provides
compatible and flexible interfaces, acting as a wrapper function to the gam() function in the gam
package. Specifically, the model can be specified via a formula statement, or for users less familiar
with writing model formulas in R, the formula can be omitted in which case the model is specified
implicitly by structuring the data so that the first column of the data represents the outcome to be
modeled (or the first two columns for survival objects), the next two columns represent the parameters
for geolocation, and the remaining columns represent the adjustment covariates to be included in
the model. With the model specified, modgam() proceeds by calling the gam() function to estimate
model parameters, then calls mypredict.gam() to generate predictions for the specified grid. The
optspan() function can be used to find an optimal span size (proportion of data size included in
the neighborhood) for the LOESS smoother. Optionally, the modgam() function can call optspan() to
choose the optimal span for fitting the model in an automated fashion.

Considering the estimated spatial effect f(u;, v;) for the i’ location, researchers are often interested
in the spatial effect difference (or ratio, log-ratio) comparing each location to a defined reference.
To obtain spatial effect estimates, one can specify type="spatial”, then modgam() provides three
options for the choice of reference: the median of f(u;,v;),i = 1,...,n, the mean of f(u;,v;), i =
1,...,n, or an estimated spatial effect value at a user-specified geolocation. Alternatively, specifying
reference="none" will produce prediction estimates based upon the linear predictor for each covariate
combination in the prediction dataset (including the model intercept). To produce estimates of effects
for all adjustment covariates, the option type="all” may be specified. The result of modgam() is
an object of class modgam() that can be summarized by class-defined printing, summarizing and
plotting methods. Specifically, a heatmap of the predicted values from a fitted model can be generated
using either the colormap() or plot() functions. For tailored plots, the trimdata() and sampcont()
functions can be used to restrict data to those areas within a specified set of map boundaries and
to conduct simple or spatiotemporal stratified sampling from eligible controls—a useful feature for
analysis of data from large cohorts.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

36

Application to case-control data from Massachusetts

In this section we present an illustrative example using MapGAM to analyze hypothetical case-
control data from Massachusetts. MAdata is a simulated case-control study dataset available in the
MapGAM package. Contained in the dataset are 90 cases and 910 controls with randomly generated
geolocations across Massachusetts, geocoded on a Lambert projection (in meters). MAmap provides a
map of Massachusetts using the same projection. The dataset also contains three randomly generated
potential adjustment covariates: smoking, mercury exposure and selenium exposure. A summary of
the dataset follows:

R> data("MAdata")
R> data("MAmap")
R> summary(MAdata)

Case Xcoord Ycoord Smoking
Min. :0.00  Min. : 35354  Min. 1778430  Min. :0.000
1st Qu.:0.00 1st Qu.:111465 1st Qu.:869089 1st Qu.:0.000
Median :0.00 Median :183100 Median :891067 Median :0.000
Mean :0.09  Mean 1175054  Mean : 889081 Mean :0.177
3rd Qu.:0.00  3rd Qu.:236826  3rd Qu.:919684  3rd Qu.:0.000
Max. :1.00  Max. 1327861 Max. 1954253  Max. :1.000
Mercury Selenium
Min. :0.1418  Min. :0.2049
1st Qu.:0.7206  1st Qu.:0.8573
Median :1.0010 Median :1.1836
Mean :1.1471 Mean :1.3590
3rd Qu.:1.4017 3rd Qu.:1.6844
Max. :5.6298  Max. 5.8963

The geolocations of the observations are shown in Figure 1, which can be generated with the
following code:

R> plot(MAmap)
R> points(MAdata$Xcoord, MAdata$Ycoord, col = MAdata$Case + 1)

Figure 1: Map of Massachusetts that indicates the location of cases and controls. Data are contained in
the MAdata dataset. Depicted are controls (black, ‘0’) and cases (red, ‘x").
We first start with generating a prediction grid for the map using predgrid().

library("PBSmapping")
R> gamgrid <- predgrid(MAdata, map = MAmap)

After defining a prediction grid, modgam() is used to fita GAM model based on the MAdata and generate
predictions on the defined grid. A formula expression indicates that the indicator Case is specified
as the response, and two spatial parameters Xcoord and Ycoord are included in 1lo() to specify a

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

37

geospatial smoothing term. In addition, potential confounders Smoking, Mercury and Selenium are
also adjusted for in the model as linear terms. Argument sp is used to specify the span size for the
spatial smoothing term. A specification of sp = null (the default) implies that an optimal span will
be selected. Note that if the model formula is not supplied, the data must be structuring so that the
outcome is in the first column, the two spatial parameters are in the second and third columns and
the adjustment variables are in other columns. In that case, specifying m="adjusted"” will include all
other columns of the data as linear terms in the model and m="crude"” will fit only the two spatial
parameters (the m argument is ignored if a model formula is supplied). For this particular example,
the resulting call to modgam() using the formula statement is given as follows:

R> fit1 <- modgam(Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +
+ Selenium, data = MAdata, rgrid = gamgrid, sp = NULL,

type = "spatial”, verbose = FALSE)
R> fit1

Call:

modgam(formula = Case ~ lo(Xcoord, Ycoord) + Smoking + Mercury +
Selenium, data = MAdata, rgrid = gamgrid, sp = NULL, type = "spatial”,
verbose = FALSE)

Model:

Case ~ lo(Xcoord, Ycoord, span = 0.3, degree = 1) + Smoking +
Mercury + Selenium

Family: binomial Link: logit

Coefficients:
(Intercept)
-6.911648e+00
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Xcoord
2.363118e-06
lo(Xcoord, Ycoord, span = 0.3, degree = 1)Ycoord
4.376156e-06
Smoking
1.533433e+00
Mercury
5.729589e-01
Selenium
-6.431932e-01

Coefficients in the above output represent log-odds ratios. The interpretation of parametric terms
remain the same as the usual logistic regression model. For example, we estimate the odds of disease
is estimated to be ¢! = 4.63-fold higher when comparing smokers to non-smokers with similar
location and exposure to mercury and selenium.

The interpretation of the smoothed spatial terms is best done graphically. A heatmap of the
estimated spatial effect predictions (representing the odds ratio comparing the odds at each location to
the median odds across all locations) can be generated using the modgam plotting routine via a call to
the plot () function. This in turn relies upon the colormap() function defined within MapGAM. The
resulting heatmap is displayed in Figure 2. The exp argument is used to specify whether the heatmap
is drawn on the scale of the odds ratio (exp=TRUE) or the log odds ratio (exp=FALSE).

R> plot(fitl, exp = TRUE, MAmap, contours = "response")

Estimating spatial effects for right-censored survival data

To quantify spatial effects on censored survival outcomes, MapGAM implements a Cox propor-
tional hazards additive model with a bivariate (two geolocation parameters) smoothing term. The
incorporation of a bivariate smoother within the Cox model is not, to the best of our knowledge,
currently implemented within R. In this section, we briefly introduce the methodology implemented
in MapGAM as an extension of the GAM methods previously discussed for GLMs, provide a limited
simulation study to illustrate the validity of the methodology in selected settings and provide an
example of applying the MapGAM package to estimate spatial effects on censored survival data using
hypothetical survival times derived from the state of California.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

38

odds ratio
- m
0.41 1 448 50 km

—rz

Figure 2: Heatmap of the estimated odds ratio of spatial effect predictions compared to the median

estimated odds over all locations. Red colors indicate areas with an increased odds of being a case.

Blue colors represent a decreased odds of being a case.

Fitting the Cox proportional hazards additive model

Suppose we observe right-censored survival data that is distributed on a map with u; and v; as the
geographical parameters for the i observation, i = 1,...,n. Let T; denote the observed followup

time and J; denote the indicator of whether or not T; represents the true failure time for observation i.

Further, let X; be a vector including adjustment covariates X and geolocations (1, v) corresponding
to observation i. The Cox proportional hazards additive model used in the MapGAM package
incorporates a bivariate smoother into the Cox proportional hazards model (Kelsall and Diggle, 1998)
as

Ai(t) = Ao(t) exp{X B +si}, (14)
where A;(t) represents the hazard function for observation i evaluated at time ¢ and Ag(#) denotes the
baseline hazard (ie. the hazard of an observation with all covariate values equal to 0 and location with
s = 0, where again s is a smooth function of spatial coordinates # and v). Define the linear predictor

i =X} B+si. (15)

For ease of exposition, consider the case of no tied failure times. Then the partial likelihood and
log-partial likelihood are given by
eli
PL = —_— (16)
]1;[3 ZkeR, el

1=3 [Uj—log(Ze”")], 17)
j€D keR;

respectively, where D represents the set of indices of all unique failures and R; = {k|T; > T;} denotes
the risk set just prior to time T;. In the event of tied failure times, MapGAM defaults to the use of the
Efron approximation (Efron, 1977) for the partial likelihood:

[ker, ™

[1—5 :
JeD T [Tier, e — Lier, e (k= 1)/|F]

and

(18)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

39

where F; is the set of indices of the failures occurring at time T}, and |F;| is the number of indices in the
set F;.
]

Letting | denote the log-partial likelihood in Eq.(17), we again seek to solve the maximization
problem provided in Eq.(3). The solution can be found iteratively using Eq.(6). We can compute the
first and second derivatives of the log-partial likelihood with respect to 7; for observation i as

dl e'li
— =0; — = (19)
dn; ]-:;‘;j Lker; €
and ) )
d-l e'li e
dTZ:_.-Z » R,e'7k+.Z 5 (20)
i JiER; “KER; JiER; (ZkeR/ e'?k)

The Cox model is a semi-parametric model without any specification for the distribution of the survival
times, so it is not possible to calculate a close form for the expectation of the second derivatives for the
log partial likelihood as required in Eq.(9). So before updating #, a GAM model can be fitted using the
second derivatives as responses to estimate the expectation of the second derivatives of log-partial
likelihood.

To this end, we modify the local scoring procedure presented in Section 2.1 by noting that in Eq.(6),
with an estimate 7°/, the new estimate for 7 can be obtained using the following two steps:

1. Estimate IE[d?]/ d}yiz} by fitting a generalized additive model using [d?]/ d;yl-z}, i=1,---,n
as responses, including the linear predictor of X and a bivariate smoother of geolocation
parameters;

2. Estimate 71" using the backfitting algorithm described in Section 2.1 with W; = —1/18[d?]/ drliz]
as weights and Y2/ = 914 — [dl/dy;] |yota/ IE[d%1/dy?] as working responses.

i

Simulation examples

In this section we assess the performance of our proposed method for fitting the Cox proportional haz-
ards additive model using two simulation studies. In both simulation settings, two spatial parameters
(u, v) and adjustment covariate x are generated from a uniform distribution with range from —1 to 1.
Survival times were then simulated from an exponential distribution with a hazard function. The first
simulation example assumes a linear effect of all covariates on the log-hazard and that the effect of
adjustment covariate x does not interact with the effect of the spatial parameters u and v.

A = 0.03exp {log(0.7)x + log(1.2)u +log(1.5)v} . (21)

In the second simulation example, the spatial parameters have a nonlinear effect on the log-hazard,
while the adjustment covariate x has a linear effect that does not interact with the spatial coordinates.
The hazard function used in the second simulation example is

A = 0.03exp {10g(0.7)x +1og(1.2)u 4 log(1.5)v + log(0.8)u? + log(1.8)uv} . (22)

The true data-generating heatmaps of the two examples are shown in Figures 3a and 3¢, respectively.
When we set a seed of 269, with N = 5000 sampled data points. The survival times under the first (sec-
ond) simulation setting range from 0.0011(0.0011) to 316.5(396.8), and have a median of 22.66(24.16).
In both settings, censoring times were randomly sampled from a Uniform(0,70) distribution and
observed times were taken to be the minimum of the true failure time and censoring time for each
observation, yielding approximately 41.6% and 43.9% censoring in scenario 1 and 2, respectively. Code
for this simulation is provided in the Appendix. Cox proportional hazards additive models were fit
and the spatial effect of the points on an equally-spaced grid (201 x 201) extended across u € [—1,1]
and v € [—1,1] were predicted using the modgam function from the MapGAM package. Smoothing
span sizes of 0.4 and 0.2 were utilized for scenario 1 and 2, respectively. In each case, these values
roughly correspond to the automated span size chosen when optimizing AIC.

Figure 3b and 3d display the estimated spatial effects for example data sets using the first (linear
relationship) and second (nonlinear relationship) simulation settings, respectively. Comparing the
estimated values in Figures 3b and 3d to the corresponding true data generating values displayed
in Figures 3a and 3d, we can see that the additive proportional hazards model implemented in
MapGAM accurately recreates the true spatial effects (either linear or nonlinear) giving rise to the
data. In addition, two scatterplots of the estimated versus true spatial effect are provided in Figure

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

40

4a and 4b, again illustrating that the additive proportional hazards method outlined above is able to
correctly identify the spatial effects present in the data with minimal bias.

-1.0 -0.5 0.0 0.5 1.0
| | 1 1 |
e ‘
© |
o
g g -1
e}
p
1
2 ‘
3
log hazard ratio
[
-0.6 0.55
(a) Truths for linear spatial effect
u
-1.0 -05 0.0 0.5 1.0
| | | | |
n
9
b B ) g = |
n
& o
1
2 il
1
- log hazard ratio
-0.9 1.05

(c) Truths for nonlinear spatial effect

-1.0 -0.5 0.0 0.5 1.0

0.5

-0.5
1

I —

-1.0

log hazard ratio
|
-0.6 0.55

(b) Estimates for linear spatial effect

u

-1.0 -05 0.0 0.5 1.0
| | | | 1
e ] *‘
0
2
o |
o
©
S =
T
£ -
W

log hazard ratio
- -
-0.9 1.05

(d) Estimates for nonlinear spatial effect

Figure 3: Heatmaps of the the log-hazard ratio comparing the hazard of the location to the median
hazard for two simulation examples with 5000 simulated observations. For the first simulation example
with linear spatial effect on log-hazards: (a) estimated log-hazard ratio; (b) true log-hazard ratio; For
the second simulation example with nonlinear spatial effect on log-hazards: (c) true log-hazard ratio;
(d) estimated log-hazard ratio.

o |
<
o O i [}
K T v
o Pl - ©
% ©° g
S
g g
> 2 - o o
8 © 2 S
3 o 3
1) o - 2
g ! S
a < 8 g
S
l"/ T T T T T T g T T T T
-06 -04 -02 00 02 04 06 -0.5 0.0 0.5 1.0

true log hazard ratio true log hazard ratio

(a) Linear spatial effect (b) Nonlinear spatial effect

Figure 4: Comparisons of the true log-hazard ratio and the estimated log-hazard ratio for two simula-
tion examples with 5000 simulated observations: (a) result for the first simulation example with linear
spatial effect; (b) result for the second simulation example with nonlinear spatial effect.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

Application to right-censored California data

In this section we use the MapGAM package to estimate and visualize spatial effects for a dataset
simulated from information on censored survival times of California ovarian cancer patients. These
are data contained in the object CAdata within the MapGAM package. The original source is the
California advanced-stage invasive epithelial ovarian cancer patients reported to the California Cancer
Registry from 1996 to 2006 (Bristow et al., 2014). After removing patients with age <25 and >80 for
identifiability reasons, and adding random noise to the geolocation parameters, CAdata represents a
random draw of size N = 5,000 observations from the original dataset. Observed times and failure
status were simulated based upon the observed distribution found in the original dataset. Potential
covariates available in the dataset include age and insurance type (6 categories in total: Managed
Care, Medicare, Medicaid, Other Insurance, Not Insured and Unknown). A summary of CAdata is as
follows:

R> data("CAdata")
R> summary(CAdata)

time event X Y
Min. : 0.004068 Min. :0.0000 Min. :1811375  Min. :-241999
1st Qu.: 1.931247 1st Qu.:0.0000 1st Qu.:2018363 1st Qu.: -94700
Median : 4.749980 Median :1.0000 Median :2325084 Median : -60387
Mean 6.496130  Mean :0.6062  Mean 12230219 Mean ;87591
3rd Qu.: 9.609031 3rd Qu.:1.0000 3rd Qu.:2380230 3rd Qu.: 318280
Max. :24.997764  Max. :1.0000 Max. 12705633  Max. : 770658
AGE INS
Min. :25.00  Mcd: 431

1st Qu.:53.00 Mcr:1419
Median :62.00 Mng:2304
Mean :61.28 Oth: 526
3rd Qu.:71.00 Uni: 168
Max. :80.00  Unk: 152

CAmap is the map file for California State. The geolocations of the observations are plotted in Figure 5.

Figure 5: Map of California displaying the geolocations of the observations in CAdata. Depicted in
the plot are censored observations (black, ‘0") and observed event observations (red, ‘x’).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

42

R> data("CAmap")
R> plot(CAmap)
R> points(CAdata$X,CAdatasy)

Below we generate the object CAgrid for the state of California using the predgrid() function and
estimate spatial effects on the relative risk of death from a Cox proportional hazards additive model
using the modgam() function. As with the previous example, coeficients for parametric terms in the
model are interpretable as the would be in a standard (non-GAM) fit of the data. In this case, the
coefficients for these terms represent log-hazard ratios. For example, we estimate that the hazard
ratio comparing two subpopulations differing in age by 1 year but having similar insurance status
is approximately e!"2® = 1.03. The smoothed spatial terms are again best intepreted graphically. A
heatmap of the hazard ratio comparing the estimated hazard at each location to the median hazard
across all locations is plotted using the plotting routines defined for modgam objects via plot(). The
resulting heatmap is displayed in Figure 6.

R> CAgrid = predgrid(CAdatal, c("X","Y")], map = CAmap,

+ nrow = 186, ncol = 179)

R> fit2 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

R> plot(fit2, CAmap, exp = T, border.gray = 0.5)

R> fit2

Call:
modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,
Y), data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor (INS)Oth factor (INS)Uni
0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor (INS)Unk
0.07594159

Inference for spatial effects

Making inferences

In addition to providing point estimates associated with each spatial location, MapGAM provides
pointwise standard errors as well confidence intervals. This inference is returned by the modgam
function when the option se.fit=TRUE is specified. The estimated pointwise standard errors for
spatial effects are derived from the sum of two variance curves: one from the parametric terms
associated with location, ju; + 29;, and the other from the non parametric term, s;(Chambers and
Hastie, 1992). Briefly, variance estimation requires computation of the operation matrix G; for each
smooth term s;, such that s; = G;z, where z is the working response from the last iteration of the
fitting algorithm described in Section 2.1 and is asymptotically distributed as a Gaussian random
variable. From this, the covariance matrix for the estimated s; is given by G,‘COU(Z)GI-T , which can be
estimated by (f)GiW_lG,-—r , where W is a diagonal matrix with elements defined by the weights used
in the last iteration of the fitting algorithm and ¢ is an overdispersion parameter estimated using
Pearson’s Chi square statistic. The operation matrix, G;, tends to be computationally expensive to
obtain for non-parametric or semi-parametric smoothing procedures, and hence approximations are
often used when estimating G,-Cov(z)GiT . One approach is to approximate $G;W~! GiT by $G;W~1,
which is generally conservative for non-projection smoothers (Chambers and Hastie, 1992). In this
case, G; can be orthogonally decomposed into G; = H; 4+ N;, where H; can be obtained as the design
matrix corresponding to the parametric portion of the linear predictor, and Nj; corresponds to the
non-parametric portion. Thus, the variance of the estimated smooth term can be approximated via
a decomposition of two variance components: (i) the variance from the parametric portion of the
linear predictor which captures the correlation all parametric terms that are fitted together, and (ii)
the variance from the non-parametric portion of linear predictor reflecting the marginal information
obtained in the smoothing terms.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

43

log hazard ratio
|

| . |
-1.1 0 127 200 km

—_—pZ

Figure 6: Heatmap of the estimated hazard ratio compared to the median hazard over all locations
using the CAdata. Red areas indicate on increased hazard and blue areas indicate a decreased hazard.

modgam conducts a global test for spatial effects via a likelihood ratio test by comparing the de-
viance between a full model (including the spatial smoother) and a reduced model (omitting the
spatial smoother). For the full model, the degrees of freedom of the non-parametric term are computed
as tr(S) — 1, where S denotes the smoothing matrix, and the degrees of freedom of the paramet-
ric portion are p + 3 (p + 2 for survival data). Thus, the degrees of freedom of the full model are
tr(S) 4+ p + 2 (tr(S)+p+1), and the degrees of freedom for the likelihood ratio test statistic are t7(S) + 1.
The function modgam will return the p-value for the likelihood ratio test automatically. In addition,
modgam also performs a permutation test of the global spatial effect and pointwise significance (Kelsall
and Diggle, 1998; Webster et al., 2006) . The function will return the results of the permutation test
when permute=N.permt is specified in the function call, where N. permt denotes the desired number of
permutations used to generate the permutation distribution.

For visualizing inference for spatial effects, the plot function will plot all point estimates along
with the associated lower and higher band of confidence intervals provided that se.fit=TRUE is
specified in the original modgam call. By setting "contours = intervals", areas with confidence intervals
excluding 0 (on the log estimated effect scale) will be indicated on the map by plotting the contours of
an indicator vector created to indicate whether 0 is below, between or above the confidence intervals
at the grid points. By setting "contours = permrank", contours will be added to indicate significant
areas that had a pointwise permutation based p value less than a specified threshold (default of .05).

An example

Returning to the CAdata example presented in Section 3.3, we consider visualizing spatial inference.
Setting se. fit=TRUE, modgam function returns pointwise standard errors and confidence intervals. In
fit3 below, the resulting standard errors can be obtained via the call fit3$se. The resulting confidence
intervals can be plotted via the plot function, and are shown in Figure 7.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

44

R> fit3 <- modgam(Surv(time, event) ~ AGE + factor(INS) + lo(X, Y),
+ data = CAdata, rgrid = CAgrid, sp = 0.3, verbose = FALSE,

+ se.fit = TRUE)

R> plot(fit3, CAmap, exp = True, mapmin = @.2, mapmax = 5,

+ border.gray = 0.7, contours = "interval")

R> fit3

Call:

modgam(formula = Surv(time, event) ~ AGE + factor(INS) + lo(X,
Y), data = CAdata, rgrid = CAgrid, sp = 0.3, se.fit = TRUE,
verbose = FALSE)

Model:
Surv(time, event) ~ lo(X, Y) + AGE + factor(INS)
span: 0.3

Coefficients:
AGE factor(INS)Mcr factor(INS)Mng factor(INS)Oth factor(INS)Uni
0.02657848 0.03657777 0.05251440 0.16770033 0.26790051
factor (INS)Unk
0.07594159

95 % Cl (lower) Point Estimate 95 % Cl (higher)
0 L
[v_l

o7 vy oY

7\ 7\ Ty

log hazard ratio

log hazard ratio -

|
-1.81

»z
»z

log hazard ratio l;l
- ¢ 7+ 200 km ]

1.74 200 km 1.74 200 km |

Figure 7: Heatmap of the hazard ratio as well as confidence intervals compared to the median hazard
with significant areas circled which were identified by confidence intervals. The left plot illustrates
the lower bound of a 95% confidence interval for the hazard ratio at each location. The center plot
depicts the estimated hazard ratio at each location. The right plot indicates the upper bound of a 95%
confidence interval for the hazard ratio at each location.

Concluding remarks

GAMs provide a unified statistical framework that allows for the adjustment of individual-level risk
factors when evaluating spatial variability in a flexible way. Given the complex nature of spatial
patterns, GAMs provide an improved framework over traditional parametric modeling of spatial
patterns. The MapGAM package introduced here provides a fairly comprehensive and user-friendly set of
tools for both fitting GAMs to a variety of outcomes and visualizing complex spatial effects. Of course,
one must be careful of overfitting observed data given the flexibility afforded by the GAM framework.
As such, care is needed when choosing the degree of flexibility utilized in model specifications and
honest assessments of out-of-sample predictive performance should be considered.

Bivariate LOESS smoothing with standard error estimation is computationally intensive, especially
in the context of GAMs and proportional hazards models. For example, with 5000 observations, a span

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

45

size of 0.2, and a binomial outcome modgam took about 1 second to provide estimates without standard
errors but about 50 seconds with standard error estimates (se. fit=TRUE) on recent personal computers.
For the same span size and number of observations but with a proportional hazards model, modgam
took about 40 seconds without standard errors and about 70 seconds with standard errors. Although
slower than we might like, the run times for se. fit=TRUE are much faster than the pointwise permuta-
tion test we previously employed which required a 1000-fold increase in run times (Webster et al., 2006).

Estimating and mapping spatial distributions of disease risk is extremely useful for identifying
health disparities, and mapping risk surfaces that are adjusted for individual-level confounding
variables is of great interest to epidemiologists. By developing and actively maintaining a convenient
R package, MapGAM, we intend to facilitate mapping crude and covariate-adjusted spatial effects for
the most common probability models used to characterize the relationship of disease risk to spatial
location and other factors. In the future we hope to improve the flexibility of the package by expanding
the incorporated smoothing methods, including the addition of basis expansion and tensor product
methods, allowing for smoothing over more than two dimensions, and expanding the sampcont func-
tion to include additional sampling methods such as matching. Further research on the development
and implementation of adaptive smoothing methods that allow for the amount of smoothing to
vary depending on the local extent of a spatial effect is currently in progress, and may be added to
the package in a future update. In addition, while spatial correlation is accounted for via the fixed
effects smoothed spatial term in the models we have presented, correlation may also arise if repeated
measures on sampling units are taken through time. This is currently beyond the scope of the package,
but is an area of our current research.

Acknowledgments

Funding for the project was provided by NIH NIEHS Grant No. P42ES007381.

Bibliography

A. Akullian, P. Kohler, J. Kinuthia, K. Laserson, L. A. Mills, J. Okanda, G. Olilo, M. Ombok,
F. Odhiambo, D. Rao, J. Wakefield, and G. John-Stewart. Geographic distribution of hiv stigma
among women of childbearing age in rural kenya. AIDS, 28:1665-1672, 2014. URL https:
//doi.org/1®.1@97/QAD.®®®®®@@®®®®®®318.[p32,33]

S. Baker, K. E. Holt, A. C. Clements, A. Karkey, A. Arjyal, M. FE. Boni, S. Dongol, N. Hammond,
S. Koirala, P. T. Duy, T. V. T. Nga, J. I. Campbell, C. Dolecek, B. Basnyat, G. Dougan, and J. J. Farrar.
Combined high-resolution genotyping and geospatial analysis reveals modes of endemic urban
typhoid fever transmission. Open Biology, 1(2):110008, 2011. URL https://doi.org/10.1098/rsob.
110008. [p32]

C. Belitz, A. Brezger, T. Kneib, S. Lang, and N. Umlauf. BayesX: Software for Bayesian Inference in
Structured Additive Regression Models, 2016. URL http://www.BayesX.org/. Version 1.1. [p32]

N. E. Breslow and D. G. Clayton. Approximate inference in generalized linear mixed models. Journal
of the American Statistical Association, pages 9-25,1993. URL https://doi.org/10.1080/01621459.
1993.10594284. [p32]

R. E. Bristow, J. Chang, A. Ziogas, H. Anton-Culver, and M. Vieira, Veronica. Spatial analysis of
adherence to treatment guidelines for advanced-stage ovarian cancer and the impact of race and
socioeconomic status. Gynecologic Oncology, 134:60-67, 2014. URL https://doi.org/10.1016/7.
ygyno.2014.03.561. [p32, 33, 41]

J. Chambers and T. J. Hastie. Statistical Models in S. Chapman and Hall/CRC, 1992. [p42]

W.S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the American
Statistical Association, 74:829-836,1979. URL https://doi.org/10.1080/01621459.1979.10481038.

[p35]

W. S. Cleveland. LOWESS: A program for smoothing scatterplots by robust locally weighted regres-
sion. The American Statistician, 35:54, 1981. [p35]

W. S. Cleveland and S. J. Devlin. Locally-weighted regression: An approach to regression analysis by
local fitting. Journal of the American Statistical Association, 83:596-610, 1988. URL https://doi.org/
10.1080/01621459.1988.10478639. [p35]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1097/QAD.0000000000000318
https://doi.org/10.1097/QAD.0000000000000318
https://doi.org/10.1098/rsob.110008
https://doi.org/10.1098/rsob.110008
http://www.BayesX.org/
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1080/01621459.1993.10594284
https://doi.org/10.1016/j.ygyno.2014.03.561
https://doi.org/10.1016/j.ygyno.2014.03.561
https://doi.org/10.1080/01621459.1979.10481038
https://doi.org/10.1080/01621459.1988.10478639
https://doi.org/10.1080/01621459.1988.10478639

CONTRIBUTED RESEARCH ARTICLES

46

B. Efron. The efficiency of cox’s likelihood function for censored data. Journal of the Americian Statistical
Association, 72:557-565, 1977. URL https://doi.org/10.1080/01621459.1977.10480613. [p38]

P. Elliott and D. Wartenberg. Spatial epidemioloty: Current approaches and future challenges. Envi-
ronmental Health Perspectives, 112:998-1106, 2004. URL https://doi.org/10.1289/ehp.6735. [p32]

T. Hastie. gam: Generalized Additive Models, 2004. URL https://CRAN.R-project.org/package=gam. R
package version 1.12. [p32]

T. Hastie and R. Tibshirani. Generalized additive model. Statistical Science, pages 297-318, 1986. URL
doi:10.1214/ss/1177013604. [p32, 34]

R. Henderson, S. Shimakura, and D. Gorst. Modeling spaital variation in leukemia survival data.
Journal of the American Statistical Association, 97:965 — 975, 2002. URL https://doi.org/10.1198/
016214502388618753. [p33]

K. Hoffman, A. Aschengrau, T. F. Webster, S. M. Bartell, and V. M. Vieira. Associations between
residence at birth and mental health disorders: A spatial analysis of retrospective cohort data. BMC
Public Health, 15(688), 2015. URL https://doi.org/10.1186/512889-015-2011-z. [p32]

T. Hothorn, P. Buehlmann, T. Kneib, M. Schmid, and B. Hofner. mboost: Model-Based Boosting, 2016.
URL https://cran.r-project.org/web/packages/mboost/. R package version 2.7-0. [p32]

J. E. Kelsall and P. J. Diggle. Spatial variation in risk of disease: A nonparametric binary regression
approach. Applied Statistics, pages 559-573, 1998. URL https://doi.org/10.1111/1467-9876.
00128. [p38, 43]

T. Kneib, F. Heinzl, A. Brezger, D. S. Bove, and N. Klein. BayesX: R Utilities Accompanying the Soft-
ware Package BayesX, 2014. URL https://cran.r-project.org/web/packages/BayesX. R package
Version 0.2-9. [p32]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2015. URL http://www.R-project.org/. [p32]

H. Reulen. gamboostMSM: Estimating Multistate Models Using gamboost (), 2014. URL https://cran.
r-project.org/web/packages/gamboostMSM/. R package version 1.1.87. [p33]

R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape,(with
discussion). Applied Statistics, 54:507-554, 2005. URL https://doi.org/10.1111/3.1467-9876.
2005.00510.x. [p32]

D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape
(GAMLSS) in R. Journal of Statistical Software, 2007. [p32]

M. Stasinopoulos, B. Rigby, and N. Mortan. gamlss.cens: Fitting an Interval Response Variable Using
gamlss.family distributions, 2015. URL http://CRAN.R-project.org/package=gamlss.cens. R
package version 4.3.1. [p32]

B. M. Taylor and B. S. Rowlingson. spatsurv: an R package for bayesian inference with spatial survival
models. Journal of Statistical Software, 2014. URL https://doi.org/10.18637/jss.v077.104. [p32]

B. M. Taylor, B. S. Rowlingson, and Z. Zheng. spatsurv: Bayesian Spatial Survival Analysis with Parametric
Proportional Hazards Models, 2016. URL https://cran.r-project.org/web/packages/spatsurv/. R
package version 0.9-14. [p32]

N. Umlauf, D. Adler, T. Kneib, S. Lang, and A. Zeileis. Structured additive regression models: An
R interface to BayesX. Journal of Statistical Software, 63(21):1-46, 2015. URL https://doi.org/10.
18637/3ss.v063.121. [p32]

N. Umlauf, T. Kneib, S. Lang, and A. Zeileis. R2BayesX: Estimate Structured Additive Regression Mod-
els with BayesX, 2016. URL https://cran.r-project.org/web/packages/R2BayesX/. R package
version 1.1-0. [p32]

V. M. Vieira, T. F. Webster, ]. M. Weinberg, and A. Aschengrau. Spatial-temporal analysis of breast
cancer in upper cape cod, massachusetts. International Journal of the Health Geographics, 7(46), 2008.
URL https://doi.org/10.1186/1476-072X-7-46. [p32, 33]

Y. T. W. VGAM: Vector Generalized Linear and Additive Models, 2007. URL https://cran.r-project.
org/web/packages/VGAM. R package version 1.0-2. [p32]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1080/01621459.1977.10480613
https://doi.org/10.1289/ehp.6735
https://CRAN.R-project.org/package=gam
doi:10.1214/ss/1177013604
https://doi.org/10.1198/016214502388618753
https://doi.org/10.1198/016214502388618753
https://doi.org/10.1186/s12889-015-2011-z
https://cran.r-project.org/web/packages/mboost/
https://doi.org/10.1111/1467-9876.00128
https://doi.org/10.1111/1467-9876.00128
https://cran.r-project.org/web/packages/BayesX
http://www.R-project.org/
https://cran.r-project.org/web/packages/gamboostMSM/
https://cran.r-project.org/web/packages/gamboostMSM/
https://doi.org/10.1111/j.1467-9876.2005.00510.x
https://doi.org/10.1111/j.1467-9876.2005.00510.x
http://CRAN.R-project.org/package=gamlss.cens
https://doi.org/10.18637/jss.v077.i04
https://cran.r-project.org/web/packages/spatsurv/
https://doi.org/10.18637/jss.v063.i21
https://doi.org/10.18637/jss.v063.i21
https://cran.r-project.org/web/packages/R2BayesX/
https://doi.org/10.1186/1476-072X-7-46
https://cran.r-project.org/web/packages/VGAM
https://cran.r-project.org/web/packages/VGAM

CONTRIBUTED RESEARCH ARTICLES

47

T. Webster, V. Vieira, ]. Weinberg, and A. Aschengrau. Method for mapping population-based case-
control studies: An application using generalized additive models. International Journal of Health
Geographics, 5(26), 2006. URL https://doi.org/10.1186/1476-072X-5-26. [p32, 33, 35, 43, 45]

S. Wood. Mixed Gam Computation Vehicle with GCV/AIC/REML Smoothness Estimation, 2009. URL
https://CRAN.R-project.org/package=mgcv. R package version 1.8-10. [p32]

Appendix

We have conducted simulations to assess the performance of the proposed method for fitting the Cox
proportional hazards additive mode in Section 3.2. Data was generated by the function sim. sample.data
under the settings described in Section 3.2.

R> sim.sample.data <- function(f, N = 5000){
set.seed(269)
u <- runif(N, -1, 1)
v <= runif(N, -1, 1)
X <= runif(N, -1, 1)
lambda <- 0.03 * exp(f(u, v, x))
eventTime <- rexp(N, lambda)
censTime <- runif(N, @, 70)
time <- ifelse(eventTime <= censTime, eventTime, censTime)
event <- (eventTime <= censTime) * 1
obs.data <- data.frame(time = time, event = event, u = u, v = v, X = X)
new.data <- data.frame(u = rep(seq(-1, 1, 0.01), each = 201),
v = rep(seq(-1, 1, 0.01), 201))
truth <- f(new.data$u, new.data$v, 0)
list(obs = obs.data, new = new.data, truth = truth - median(truth))

+ 4+ + o+ o+ o+ o+ o+ o+ A+ o+ 4+

3

The first simulation example assumes a linear effect of all covariates on the log-hazard as shown in Eq.
21. The following code generates the data for the first simulation example and estimates the spatial
effect using modgam() function.

R> f.linear <- function(u, v, x){

+  log(0.7) * x + log(1.2) * u + log(1.5) * v

+ 3

R> data.linear <- sim.sample.data(f.linear)

R> fit.linear <- modgam(Surv(time, event) ~ lo(u, v) + x,
+ data = data.linear$obs, rgrid = data.linear$new,

+ family = "survival”, sp = 0.4)

The second simulation example assumes a nonlinear effect of spatial parameters on the log-hazard
as shown in Eq. 22. The following code generates the data for the second simulation example and
estimates the spatial effect using modgam() function.

R> f.nonlinear <- function(u,v,x){

+  log(@.7)*x + log(1.2)*u + log(1.5)*v+1log(@.8)*u”2+log(1.8)*u*v
+}

R> data.nonlinear <- sim.sample.data(f.nonlinear)

R> fit.nonlinear <- modgam(Surv(time, event) ~ lo(u, v) + x,

+ rgrid = data = data.nonlinear$obs, data.nonlinear$new,

+ family = "survival”, sp = 0.2)

Heatmaps of the log-hazard ratio comparing the hazard of the location to the median hazard for the
two simulation examples are generated using the following code:

R> par(mfrow = c(2, 2))

R> obj.linear <- list(grid = data.linear$new, fit = data.linear$truth)

R> colormap(obj.linear, axes = T, arrow = F, mapmin = -0.6, mapmax = 0.55,
+ legend.name = "log hazard ratio”, legend.cex = 1.3, legend.add.line = 0,
+ col.seq = diverge_hsv(201))

R> mtext(”(a) Truths for linear spatial effect”, side = 1, line = 4)

R> plot(fit.linear, mapmin = -0.6, mapmax = 0.55, axes =T, arrow = F,

+ legend.cex = 1.3)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1186/1476-072X-5-26
https://CRAN.R-project.org/package=mgcv

CONTRIBUTED RESEARCH ARTICLES

48

R> mtext(”(b) Estimates for linear spatial effect”, side = 1, line = 4)

R> obj.nonlinear <- list(grid = data.nonlinear$new,

+ fit = data.nonlinear$truth)

R> colormap(obj.nonlinear, axes = T, arrow = F, mapmin = -0.9,

+ mapmax = 1.05, legend.name = "log hazard ratio”, legend.cex = 1.3,
legend.add.line = @, col.seq = diverge_hsv(201))

R> mtext(”(c) Truths for nonlinear spatial effect”, side = 1 , line = 4)

R> plot(fit.nonlinear, mapmin = -0.9, mapmax = 1.05, axes =T,

+ arrow = F, legend.cex = 1.3)

R> mtext(”(d) Estimates for nonlinear spatial effect”, side = 1, line = 4)

Comparisons of the true log-hazard ratio and the esimated log-hazard ratio for the two simulation
examples are plotted using the following code:

R> par(mfrow = c(1, 2), mai = c(1.3, 0.8, 0.4, 0.4))

R> plot(data.linear$truth, fit.linear$fit, xlab = "true log hazard ratio”,
+ ylab = "predicted log hazard ratio")

R> abline(@, 1, lwd = 4, col = "green")

R> mtext(”(a) Linear spatial effect”, side = 1, line = 4.5)

R> plot(data.nonlinear$truth, fit.nonlinear$fit,

+ xlab = "true log hazard ratio”, ylab = "predicted log hazard ratio”)
R> abline(@, 1, lwd = 4, col = "green")

R> mtext(”(b) Nonlinear spatial effect”, side = 1, line = 4.5)

Lu Bai

Department of Statistics

University of California, Irvine

Irvine, California 92697-1250, United States of America

E-mail: baill@uci.edu

URL: http://publichealth.uci.edu/spatialepidemiology/

Daniel L. Gillen

Department of Statistics

University of California, Irvine

Irvine, California 92697-1250, United States of America
E-mail: dgillen@uci.edu

URL: http://www.ics.uci.edu/~dgillen

Scott M. Bartell

Program in Public Health

Department of Statistics

University of California, Irvine

Irvine, California 92697, United States of America

E-mail: sbartell@uci.edu

URL: http://publichealth.uci.edu/spatialepidemiology/

Verénica M. Vieira

Program in Public Health

University of California, Irvine

Irvine, California 92697, United States of America

E-mail: baill@uci.edu

URL: http://publichealth.uci.edu/spatialepidemiology/

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


mailto:bail1@uci.edu
http://publichealth.uci.edu/spatialepidemiology/
mailto:dgillen@uci.edu
http://www.ics.uci.edu/~dgillen
mailto:sbartell@uci.edu
http://publichealth.uci.edu/spatialepidemiology/
mailto:bail1@uci.edu
http://publichealth.uci.edu/spatialepidemiology/

CONTRIBUTED RESEARCH ARTICLES

49

mudfold: An R Package for
Nonparametric IRT Modelling of

Unfolding Processes
by Spyros E. Balafas, Wim P. Krijnen, Wendy |. Post and Ernst C. Wit

Abstract Item response theory (IRT) models for unfolding processes use the responses of individuals
to attitudinal tests or questionnaires in order to infer item and person parameters located on a latent
continuum. Parametric models in this class use parametric functions to model the response process,
which in practice can be restrictive. MUDFOLD (Multiple UniDimensional unFOLDing) can be used
to obtain estimates of person and item ranks without imposing strict parametric assumptions on the
item response functions (IRFs). This paper describes the implementation of the MUDFOLD method
for binary preferential-choice data in the R package mudfold. The latter incorporates estimation,
visualization, and simulation methods in order to provide R users with utilities for nonparametric
analysis of attitudinal questionnaire data. After a brief introduction in IRT, we provide the method-
ological framework implemented in the package. A description of the available functions is followed
by practical examples and suggestions on how this method can be used even outside the field of
psychometrics.

Introduction

In this paper we introduce the R package mudfold (Balafas et al., 2019), which implements the non-
parametric IRT model for unfolding processes MUDFOLD. The latter, was developed by Van Schuur
(1984) and later extended by Post (1992) and Post and Snijders (1993). IRT models have been designed
to measure mental properties, also called latent traits. These models have been used in the statistical
analysis of categorical data obtained by the direct responses of individuals to tests and questionnaires.
Two response processes that result in different classes of IRT models can be distinguished. The cumu-
lative (also called monotone) processes and the unfolding (also called proximity) processes in the IRT
framework differ in the way that they model the probability of a positive response to a question from
a person as a function of the latent trait, which is termed as item response function (IRF).

Cumulative IRT models also known as Rasch models (Rasch, 1961), assume that the IRF is a
monotonically increasing function. That is, the higher the latent trait value for a person, the higher
the probability of a positive response to an item (Sijtsma and Junker, 2006). This assumption makes
cumulative models suitable for testing purposes where latent traits such as knowledge or abilities need
to be measured. The unfolding models consider nonmonotone IRFs. These models originate from
the work of Thurstone (1927, 1928) and have been formalized by Coombs (1964) in his deterministic
unfolding model. In unfolding IRT the IRF is assumed to be a unimodal (single ‘peak’) function of the
distance between the person and item locations on a hypothesized latent continuum. Unimodal IRFs
imply that the closer an individual is located to an item the more likely is that he responds positively
to this item (Hoijtink, 2005). Unfolding models can be used when one is interested to measure bipolar
latent traits such as preferences, choices, or political ideology, which are generally termed as attitudes
(Andrich, 1997). Such type of latent traits when they are analyzed using monotone IRT models usually
result in a multidimensional solution. In this sense, unfolding models are more general than the
cumulative IRT models (Stark et al., 2006; Chernyshenko et al., 2007) and can be seen as a form of
quadratic factor analysis (Maraun and Rossi, 2001).

Parametric IRT (PIRT) models for unfolding processes exist for dichotomous items (Hoijtink, 1991;
Andrich and Luo, 1993; Maydeu-Olivares et al., 2006), polytomous items (Roberts and Laughlin, 1996;
Luo, 2001) as well as for bounded continuously scored items (Noel, 2014). Typically, estimation in PIRT
models exploits maximum likelihood methods like the marginal likelihood (e.g. Roberts et al., 2000)
or the joint likelihood (e.g. Luo et al., 1998), which are optimized using the expectation-maximization
(EM) or Newton type of algorithms. Unfolding PIRT models that infer model parameters by adopting
Bayesian Markov Chain Monte Carlo (MCMC) algorithms (Johnson and Junker, 2003; Roberts and
Thompson, 2011; Liu and Wang, 2019; Lee et al., 2019) are also available. PIRT models however,
make explicit parametric assumptions for the IRFs, which in practice can restrict measurement by
eliminating items with different functional properties.

Nonparametric IRT (NIRT) models do not assume any parametric form for the IRFs but instead
introduce order restrictions (Sijtsma, 2005). These models have been used to construct or evaluate
scales that measure among others, internet gaming disorder (Finseras et al., 2019), pedal sensory
loss (Rinkel et al., 2019), partisan political preferences (Hinggli, 2020), and relative exposure to soft

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=mudfold

CONTRIBUTED RESEARCH ARTICLES

50

versus hard news (Boukes and Boomgaarden, 2015). The first NIRT model was proposed by Mokken
(1971) for monotone processes. His ideas were used for the unfolding paradigm by Van Schuur (1984)
who designed MUDFOLD as the unfolding variant of Mokken’s model. MUDFOLD was extended
by Van Schuur (1992) for polytomous items and Post (1992) and Post and Snijders (1993) derived
testable properties for nonparametric unfolding models that were adopted in MUDFOLD. Usually,
NIRT methods employ heuristic item selection algorithms that first rank the items on the latent scale
and then use these ranks to estimate individual locations on the latent continuum. Such estimates for
individuals’ ideal-points in unfolding NIRT have been introduced by Van Schuur (1988) and later by
Johnson (2006). NIRT approaches can be used for exploratory purposes, preliminary to PIRT models,
or in cases where parametric functions do not fit the data.

IRT models can be fitted by means of psychometric software implemented in R (Choi and Asil-
kalkan, 2019), which can be downloaded from the Comprehensive R Archive Network (CRAN)'.
An overview of the R packages suitable for IRT modelling can be found at the dedicated task view
Psychometrics. PIRT models for unfolding where the latent trait is unidimensional, such as the graded
unfolding model (GUM) (Roberts and Laughlin, 1996) and the generalized graded unfolding model
(GGUM) (Roberts et al., 2000) can be fitted by the R package GGUM (Tendeiro and Castro-Alvarez,
2018). Sub-models in the GGUM class are also available into the Windows software GGUM2004
(Roberts et al., 2006). A large variety of unfolding models for unidimensional and multidimensional
latent traits can be defined and fitted to data with the R package mirt (Chalmers, 2012). To our
knowledge, software that fits nonparametric IRT in the unfolding class of models (analogous to the
molklken package (Van der Ark, 2007, 2012) in the cumulative class) is not yet available in R.

In order to fill this gap, we have developed the R package mudfold. The main function of
the package implements item selection algorithm of Van Schuur (1984) for scaling the items on a
unidimensional scale. Scale quality is assessed using several diagnostics such as, scalability coefficients
similar to the homogeneity coefficients of Loevinger (1948), statistics proposed by Post (1992), and
newly developed tests. Uncertainty for the goodness-of-fit measures is quantified using nonparametric
bootstrap (Efron et al., 1979) from the R package boot (Canty and Ripley, 2017). Missing values can
be treated using multiple multivariate imputation by chained equations (MICE, Buuren et al., 2006),
which is implemented in the R package mice (van Buuren and Groothuis-Oudshoorn, 2011). Estimates
for the person locations derived from Van Schuur (1988) and Johnson (2006) are available to the user of
the package. Generally, the MUDFOLD algorithm is suitable for studies where there are no restrictions
on the number of items that a person can “pick". Besides these pick-any-out-of-N study designs,
sometimes individuals are restricted to select a prespecified number of items, i.e. pick-K-out-of-N. The
latter design, due to the violation of independence does not respect the IRT assumptions. However,
our package is also able to deal with such situations.

Methodology

Consider a sample of n individuals randomly selected from a population of interest in order to take a
behavioral test. Participants indexed by i,i = 1,2, ..., n are asked to state if they do agree or do not
with eachof j =1,2,..., N statements (i.e. items) towards a unidimensional attitude 6 that we intend
to measure. Let X;; be random variables associated with the 0, 1 response of subject i on item j. We
will denote the response of individual i on item j as Xj; and x;; its realization.

Subsequently, we can define the IRF for an item j as a function of 6. That is, the probability of posi-
tive endorsement of item j from individual i with latent parameter 6; we write P; (6;) = P (X,-j =1 |9i) .

In PIRT models for unfolding, P; (6;) is a parametric unimodal function of the proximity between
the subject parameter 6; and the item parameter ;. NIRT unfolding models avoid to impose strict
functional assumptions on the IRFs. In the latter case, the focus is on ordering the items on a unidi-
mensional continuum. The item ranks are then used as measurement scale to calculate person specific
parameters (ideal-points) on the latent continuum.

Assumptions of the nonparametric unfolding IRT model

In unidimensional IRT models, unidimensionality of the latent trait, and local independence of the
responses are common assumptions. However, the usual assumption of monotonicity that we meet
in the cumulative IRT models, needs modification in the unfolding IRT where unimodal shaped IRFs
are considered. For obtaining diagnostic properties for the nonparametric unfolding model, Post
and Snijders (1993) proposed two additional assumptions for the IRFs. The assumptions of the
nonparametric unfolding model are:

TURL: http://CRAN.R-project.org

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/view=Psychometrics
https://CRAN.R-project.org/package=GGUM
https://CRAN.R-project.org/package=mirt
https://CRAN.R-project.org/package=mokken
https://CRAN.R-project.org/package=boot
https://CRAN.R-project.org/package=mice
http://CRAN.R-project.org

CONTRIBUTED RESEARCH ARTICLES

51

A1l. Unidimensionality (UD): There exists a unidimensional latent variable § € R on which individuals
and items are scaled.

A2. Local Independence (LI): The responses of individuals on distinct items are independent given
the latent parameter 6, i.e the joint conditional probability of N responses simplifies into the
likelihood form,

z

P(Xx=x | 0=00)=TTF @) [1-B@)] "
]

Il
-

A3. Unimodality (UM): For every item j, P; (6) is a weakly unimodal function of 6.

For the sake of clarity, a function P; (f) : R — R, is weakly unimodal if there exists a §; €
(—00, +00) such that, P; (6) is non decreasing for all § < B; and non increasing for all 6 > B;.
The location parameter ; for the jth item is the value of the latent trait for which the IRF P; (6)
reaches its maximum (or the midpoint of the interval where P; (¢) is maximum when f; is not
unique).

Ad4. Stochastic Ordering (SO): For any probability distribution G (8) of latent trait values and any

value 6 on the latent scale, Pg (9 > 00|X; = 1> is nondecreasing function of j for all j such that

pj (x) > 0.

Given the item ordering this assumption is equivalent to two properties for the IRFs. First,
given that a single item is chosen, the posterior densities g of # have a monotone likelihood ratio
(MLR) in 0, and second, the IRFs have a monotone traceline ratio (MTR). The next assumption
concerns only unfolding models and is not applicable for cumulative IRT.

A5. Manifest unimodality (MUM): For any probability distribution G (6) of latent trait values, and for
any values 6; < 60y, the posterior probability Pg <91 <0< |X;= l) is a weakly unimodal
function of j.

Assumption A1 implies that there exist only one latent trait that explains the responses of persons
on the items. Assumption A2 is mathematically convenient since it reduces the likelihood to a simple
product and implies that given the latent trait value no other information on the other items is relevant
to predict the responses to a particular item. The next assumption concerns the conditional distribution
of each item given the latent trait. The unimodality assumption that is described in A3 restricts the
IRFs to have a single-peak shape without imposing any explicit functional form. If A3 holds for all the
IRFs then we can order the items on the unidimensional continuum based on their location parameter
Bjsuch that f; < B < --- < By. The set of assumptions A1-A3 is the core in unfolding IRT models.

Additionally, two assumptions are needed about the individuals {i | i = 1,...,n} and the
distribution G of their latent trait values {6; | i = 1,...,n} in order to obtain testable properties for
the nonparametric unfolding model (Post and Snijders, 1993). Assumption A4 is analogous to the
invariant item ordering (IIO) assumption in the monotone IRT models and implies that the posterior
distribution of 6 given a positive response to an item located at §; is stochastically ordered by the
location B; (Johnson, 2006). In simple words, A4 assumes that an individual who responds positively
to an item with higher rank should have a larger latent trait than those individuals who respond
positively to a low-rank item. For example, if a person responds positively to an item that is considered
politically conservative, then this person is more likely to be a conservative compared to a person who
responded positively to a liberal statement. Despite the fact that this assumption seems intuitive, not
all parametric unfolding models require this additional assumption. Assumption A5 suggests that
individual i who endorses item j has a latent trait value ¢; that is most likely close to item location g;
and less likely either much lower or much higher on the latent scale than that. Post (1992) shows that
the measurement assumptions A4-A5 are related to the mathematical property of total positivity of
order 2 (TP;) (Karlin, 1968). In addition, if the IRFs P; (9) are positive for all j, then these assumptions
hold if and only if the IRFs satisfy the property of TP3.

Errors and scalability coefficients

PIRT approaches use well defined IRFs that parametrize explicitly persons and items on some known
parameter space. Estimates of the parameters can be obtained using suitable frequentist or Bayesian
methods and the fit of the model to the data is assessed using goodness-of-fit indices. Contrarily, in
NIRT modelling the functional form of the IRF is unknown and alternative estimation methods are
needed (Mokken, 1997).

Models in the NIRT class, typically employ item selection algorithms that construct ordinal

measurement scales for persons by iteratively maximizing some scalability measure upon the items.

The resulting scales are then used to locate the individuals on the latent continuum based on their
responses. Usually, these item selection algorithms are bottom-up methods that are divided into two

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

52

parts. In the first part the algorithms seek to find the best minimal scale, that is a minimal set of items
that meets certain scalability requirements. The best minimal scale is the starting point for the second
part of the scaling procedure, where it is extended iteratively by adding in each step the item that best
fulfills the prespecified scalability criteria.

As in other NIRT models, MUDFOLD adopts a two step item selection algorithm that identifies the
unique rank order for a maximal (sub) set of items. In this algorithm, scalability coefficients analogous
to the ones defined by Mokken (1971) are used as tests for the goodness-of-fit. Mokken’s coefficients
are similar to the H coefficients proposed by Loevinger (1948), which were defined on the basis of
violation probabilities of the deterministic cumulative model (see Guttman, 1944) for ordered item
pairs. In the same line, the scalability coefficients in MUDFOLD are defined on the basis of violation
probabilities of the deterministic unfolding model of Coombs (1964) for triples of items. MUDFOLD's
scalability coefficients in a triple of items compare the number of errors observed (i.e. the number
of {1,0,1} responses, which falsify the Coombsian model) with the number of errors that we would
expect if the items were statistically independent. A triple of items is a permutation (ordering) of three
distinct items.

Observed errors (O) in an ordered triple of items (h, 1, k) with h, I, k distinct elements of the set
{1,2,...,N}, is the frequency of {1,0, 1} responses over all individuals. The observed errors can be
calculated by Oy = XL v (1 —xj) xjx where x; is the realization of random variable X; and
x; = 1if the i" individual responds positively on item (.) otherwise x; = 0. It can be seen that the
number of observed errors for three items stays invariant for the permutations (k, 1, k) and (k, I, h) for
any h # | # k # hin the integer set {1,2,...,N}.

Expected errors (EO) in an ordered item triple (k,1, k) under random ordering is the expected
frequency of {1,0,1} responses if the items , I, and k were statistically independent multiplied by the
sample size, EOy;, = p (h) (1 —p (1)) p (k) n. We can estimate p (j) foritem j p (j) = LI % as the
relative frequency for item j.

Scalability coefficient (H) for any ordered item triple (h, 1, k), is defined as the value obtained if we
subtract from unity the ratio of observed errors over the expected errors for this triple,

Onik
EOp”

thk:1— Vh,l,ke{l,Z,...,N}. (1)
Using the scalability coefficients for triples, we can extend the notion of scalability for a scale s
consisting of m items, where 3 < m < N and for an item j € s. The H coefficient for an item j € s,
j=1,2,...,mis given by,

L1 k)eT;(s) Onik

H, (s) = 1 — —WOEhts) Zhk
j (©) E(n,1k)eT;(s) EOnik

@)
whe.re Ti(s) = {(Shzflzsk) | Sp< s <spij€ {sn,s1,5¢}} is the set of all item triples (with respect to
the item order), that include item j.

Given that the m items constituting the scale are ordered, we are able to calculate the H coefficient
for the total scale s by summing the observed errors and the expected errors for all 3,(#;), triples of

items of s and calculate their error ratio. If we subtract the obtained number from the unity results in a
total scalability measure,
Y1 k)eT(s) Onlk

H 18) = 1-— 7
total (%) Yn1k)eT(s) EOnik

®)

where T (s) = {(sp,51,5k) | sp < 81 < si} is the set of all item triples for a given scale s.

Perfect fit of the scale to the data yields a scalability coefficient value of Hyya1 (s) = 1. The latter
means that no error patterns are observed in this scale. Likewise, Hiya1 (s) = 0 implies that the number
of observed errors is equal to what you would have expected for a random ordering. Values around
0.5 suggest a moderate unfolding scale. Calculating the triple scalability coefficients for all the items is
the first step in the construction of a MUDFOLD scale.

We will demonstrate how the H coefficients for triples are calculated using the dataset ANDRICH
that comes with the mudfold package in R data format. The dataset contains the binary responses
of n = 54 students on N = 8 statements towards capital punishment. This attitudinal test have been
constructed by Andrich (1988) in order to measure attitudes towards capital punishment.

Calculating scalability coefficients for the ANDRICH data. We can install and subsequently
load the package and the data into the R environment.

## Install and load the mudfold package and the ANDRICH data
install.packages("mudfold”)
library(mudfold)

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

53

data("ANDRICH")

N <- ncol(ANDRICH) # number of items

n <- nrow(ANDRICH) # number of persons
item_names <- colnames(ANDRICH) # item names

Functions for calculating the observed errors, expected errors, and H coefficients for each
possible item triple are available internally in the mudfold package. These functions can
be accessed by the :: : operator. For the ANDRICH data the H coefficients for triples can be
calculated as follows.

experr <- mudfold:::Err_exp(ANDRICH) # errors expected
obserr <- mudfold:::Err_obs(ANDRICH) # errors observed
hcoeft <- 1 - (obserr / experr) # H coefficients

Generally, there exist N° item permutations of length three with repetitions that can be
obtained from N items. Thus, the corresponding H coefficients of each possible item
permutation of length three can be stored into a three way array with dimension N x
N X N. In the ANDRICH data example, the scalability coefficients for the item permutations
of length three are stored into three-way array with dimension 8 x 8 x 8. It can be seen
that the H coefficients for symmetric permutations stay invariant and we demonstrate this
feature below. Consider the ordered triple of items (HIDEOUS, DONTBELIEV, DETERRENT) and its
symmetric permutation (DETERRENT, DONTBELIEV, HIDEOUS).

triple_HDODE <- matrix(c(”HIDEOUS”, "DONTBELIEV”, "DETERRENT"), ncol = 3)
triple_DEDOH <- matrix(rev(triple_HDODE), ncol = 3)

If we compare the H coefficients of these two (symmetric) triples we will see that they
coincide.

## Compare H coefficients
hcoeft[triple_HDODE] == hcoeft[triple_DEDOH]

The Hyy, coefficients form the basis in order to calculate the scalability coefficients for items
and scales. The item selection algorithm implemented in the package runs in two steps and
scalability criteria are used in both steps.

Scale construction

In the first step of the item selection algorithm, a search in order to find the best triple of
items is conducted. A lower bound A; that controls the scalability properties of the best
triple can be specified by the user (default value is A; = 0.3). The value of A; is used as a
threshold to determine if the triple is good enough to continue the scaling process. Larger
values of Aq lead to more strict criteria while lower values of A; relax these criteria.

In its second step, the item selection algorithm extends the best elementary scale repeat-
edly until no more items fulfill its scalability criteria. A second threshold A, = 0 is explicitly
used in the first criterion of this step. This threshold controls the scalability properties of
the triples containing a candidate item in the scale extension procedure. As for Ay, larger
values of A, lead to more strict scalability requirements, while, lower values relax these
requirements.

Step 1: search for the best unique triple.

The search for the optimal item triple in the first step requires the calculation of the scalability
coefficients for every possible permutation of length 3 that can be obtained from N starting
items.

Among the set of all permutations of length three we seek to find those that fulfill certain
scalability criteria and we call this set of permutations unique triples. Unique triples is a
finite set containing all (h,1,k) with h,1,k € {1,2,...,N},and h # | # k # h for which only
one of their permutations (out of three possible) presents a positive Hy;; coefficient i.e.

Hue >0, Hppy <0, Hppe <0.

This guarantees that triples in the set of unique triples are “uniquely” represented on the
latent dimension, i.e. are scalable together in only one permutation besides the reverse

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

54

permutation. From the set of unique triples, the triple (%, 1, k) that has the maximum Hyy; is
called the best unique triple and it will be selected as the best starting scale if its scalability
coefficient is positive and greater than a specified lower bound A;. If more than one triples
fulfill the requirements for being the best unique triple it can be shown that all of them will
converge to same solution in the second step.

If the set of unique triples is empty, the algorithm stops automatically without proceeding
in the second step. The same holds also in the case in which unique triples exist but their
scalability coefficient is lower that the bound specified by the user.

First step: search for best minimal scale in the ANDRICH data. Here we describe how the
main function of the mudfold package searches for the best minimal unfolding scale in
the first step of the implemented algorithm. After we calculated the observed errors, the
expected errors, and the scalability coefficients for each triple of items in the ANDRICH dataset,
we need to determine the optimal triple for the first step of MUDFOLD's item selection
algorithm. The triples of items in the order (4,1, k) for the ANDRICH data can be obtained
with the combinations() function from the R package gtools (Warnes et al., 2015). These
combinations are then permuted twice to yield the orderings (I, k,1) and (I, h, k) respectively.

## Install and load the library "gtools”
install.packages(gtools)
library(gtools)

## Obtain item permutations (h,1,k), (h,k,1), and (1,h,k)
perml <- combinations(N, 3, item_names, set = FALSE)
perm2 <- perml1[, c(1,3,2)]

perm3 <- perml[, c(2,1,3)]

The set of unique triples can then be obtained.

## Find the set of unique triples.

ung <- rbind(perm1[(hcoeft[perml1] > @ & hcoeft[perm2] < @ & hcoeft[perm3] < @), 1,
perm2[ (hcoeft[perml1] < @ & hcoeft[perm2] > @ & hcoeft[perm3] < @), 1,
perm3[ (hcoeft[perml] < @ & hcoeft[perm2] < @ & hcoeft[perm3] > @), 1)

The set of unique triples in the ANDRICH data example contains sixteen item triples. With the
command hcoeft[ung] we can see that all except one of the triples show Hy;; coefficients
greater than the lower bound. The ordered triple of items (INEFFECTIV, DONTBELIEV, DETERRENT)
is selected as the best starting scale with a maximum scalability coefficient of 0.853 which
is indeed larger than A;. This triple will be extended repeatedly in the second step of the
algorithm. In each iteration one from the remaining ones is added to the scale in a specific
position if certain scalability requirements are met.

Step 2: extending the best starting scale

Given the best unique triple obtained in the first step of the algorithm, in the second step
of the item selection process the algorithm investigates repeatedly the remaining N — 3
items to find the best fourth, fifth, etc to add to the scale. In each iteration of this step, all
the possible scales that contain one of the remaining items in every possible position are
investigated to choose the most appropriate one.

For a scale consisting of m items, (3 < m < N — 1) we intend to find one of the
remaining N — m items to add in the scale. For the (m + 1)”‘ item there exist m 4 1 possible
scale positions that have to be investigated with respect to their scalability properties. In
each iteration of the MUDFOLD scaling algorithm, the number of candidate scales under
investigation is (N —m) (m +1).

In order to determine the (m + 1) best fitting item we test three criteria. The first
criterion uses an explicit value A, (by default A, = 0) as a lower bound for the scalability
coefficients. The scalability criteria in the second step are :

1. All the (%) item triples in the scale (with respect to the item order), containing the
candidate item must have Hy;; coefficient greater than A,.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=gtools

CONTRIBUTED RESEARCH ARTICLES

55

2. If more than one item fulfills the first criterion, then the item with the minimum
number of possible scale positions is chosen.

3. The scalability coefficient H; (s) of the selected item has to be higher than A;.

It can be the case that more than one scales fulfill these criteria. In such instances, the
algorithm continues by choosing the scale that includes the most uniquely represented item
and shows the minimum number of expected errors. The scale extension process continues
as long as the scalability criteria described above are fulfilled.

Second step: scale extension for the ANDRICH data For the ANDRICH data, after the first
step of the item selection process where we obtained the best unique triple, the remaining
five items can still be added to the scale.

BestUnique <- ung[which.max(hcoeft[unql), ] # Best unique triple
ALLitems <- colnames(ANDRICH)
Remaining <- ALLitems[!ALLitems %in% BestUnique] # Remaining items

Next, an iterative procedure needs to be defined for the second, scale extension step of
the MUDFOLD algorithm. Adding one item in each repetition implies that a maximum of
N — 3 = 5 iterations can take place if all items fit in a MUDFOLD scale. In each iteration we
construct the scales to be evaluated where each scale contains one of the remaining items in
a specific position.

For example, in the first iteration of the scale extension step for the ANDRICH dataset, all
the scales that need to be assessed can be constructed as follows. First we need to consider
all the possible positions where a new item can be added. The possible positions depend on
the length of the existing scale. At this point, since the scale consists of three items there
exist four possible positions where a new item can be added.

## Create indices to be used in constructing scales
1b <- length(BestUnique) # length of best unique triple
1r <- length(Remaining) # number of remaining items to add in the scale

## create all possible positions where each new item from Remaining
## can be added in the scale

index_rep <- rep(seq(1, (1b+1)) ,1r) - 1 # possible positions
index_irep <- rep(Remaining, each = 1lb+1) # item for each position

After we define all the possible positions for new items, each item is added in every position
and results in a different scale to be assessed.

## Create all possible scales by adding each item in Remaining
## to every possible position of BestUnique
ALLscales <- lapply(1:length(index_rep),
function(i) append(BestUnique, index_irep[i], after = index_rep[i] ))

Each of these scales will be judged in terms of its scalability properties. For instance, let us
consider the first scale that is constructed in the first iteration of the scale extension step in
the ANDRICH data.

Examplescale <- AlLLscales[[1]]
Examplescale
# "HIDEOUS" "INEFFECTIV" "DONTBELIEV" "DETERRENT"

This scale has been constructed after inserting the item HIDEOUS into the first possible position
of the minimal scale (INEFFECTIV, DONTBELIEV, DETERRENT). The first scalability criterion for this
scale determines if the Hy; coefficients of the triples that contain the new item (i.e. HIDEOUS)
are larger than a user specified A, (default A; = 0). We can extract all the triples for this
specific scale using the combinations() function.

les <- length(Examplescale)
ExamplescaleTRIPLES <- combinations(n = les, r = 3, v = Examplescale, set = FALSE)

From the four triples in total, only the first three are containing the new item HipEOUS. We
can obtain the H coefficient for each of these triples with

hcoeft[ExamplescaleTRIPLES[1:3, 1]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

56

and we can see that the triple (HIDEOUs, INEFFECTIV, DETERRENT) has a H coefficient which is
lower than A,. Hence, this scale does not fulfill the first criterion and should be excluded
from the scale extension process. The first criterion is calculated for every scale possible and
the scales that conform to this criterion continue the scale extension process. Lowering the
values of A; to a negative number will allow more scales to pass this criterion, while setting
Aj to a large negative number e.g. —99 will allow all scales to pass this criterion.

The second scale assessment determines which scale or scales contain the item that is the
most “uniquely” represented. Let us assume that the number of scales that fulfill the first
criterion is six. Moreover, assume that five out of these six scales contain the item MUSTHAVEIT
and one scale contains the item crIMDESERV. In this scenario the scale that contains the item
cRIMDESERV, will be the one that continues the scale extension.

The scales that contain the least frequently observed item are checked according to a
third criterion. The third and last criterion in the iterative scale extension phase concerns
the scalability properties of the new item. The scale that contains the new item with the
highest item scalability coefficient will be chosen as the best MUDFOLD scale if and only
if H; (s) > A1 where A is the lower bound that have been used also in the first step of the
item selection algorithm.

In the ANDRICH example the algorithm completes five iterations in the second step which
means that all the items are included in the MUDFOLD scale. The latter, consists of eight
items and shows a scale scalability coefficient equal to 0.64.

After a MUDFOLD scale with a good fit is obtained, one can assess its unfolding quality.
This is done by scale diagnostics described by Post (1992) and Post and Snijders (1993).
These diagnostics are based on sample proportions from which the unimodality assumption
of the scale is evaluated and nonparametric estimates of the item response functions are
obtained.

MUDFOLD diagnostics

In this section, we discuss diagnostics implemented in the mudfold package, which can be
used to assess if a scale s consisting of m items, j = 1, ..., m conforms with the assumptions
A2 to A5 of a unidimensional nonmonotone homogeneous MUDFOLD scale.

Diagnostic for assumption A2

Let us denote by X_; the n x (m — 1) matrix that contains the responses of n individuals
to all the items in the scale except item j. Testing if A2 (local independence) holds, is
equivalent to testing if the positive response on an item depends solely on the latent trait 6,
ie. P(X;= = 1|x_;,6 ) = P(X;=1]6).1f p; = P (X; = 1) denotes the probability of positive
response to item j, testing th1s hypothesis implies fitting the following regularized logistic
regression model,

log 1 = po+ Z BeX_jk + B, 4)

where X_ ;. denotes the kth column of X_ j and § = (91, el 9”) is a nonparametric estimate
of the latent attitude with regression parameter 4. The response regression parameters By
are penalized using the least absolute shrinkage and selection operator (LASSO, Tibshirani,
1996). LASSO shrinks the coefficients By of the regression in (4) towards zero. If f = 0
forallk =1,...,m then the local independence assumption if fulfilled and the probability
of positive response on the item j depends only on 6. On the other hand if there is any
k for which By # 0 there is evidence of violations in the local independence assumption.
Fitting sparse generalized linear models with simultaneous estimation of the regularization
parameter is straightforward in R with the function cv.glmnet() that is available with the
package glmnet (Friedman et al., 2010).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=glmnet

CONTRIBUTED RESEARCH ARTICLES

57

Diagnostic for assumption A3

The condition A3 required by MUDFOLD is the assumption of unimodality of the IRFs,
which are unknown nonlinear functions of the latent trait. In order to obtain estimates of
these functions, we use a nonlinear generalized additive model (GAM, Wood, 2011) that
is implememented in the R package mgcv (Wood, 2017). Specifically, for each item the
probability of positive response p; is modelled as a smooth function of the latent trait 6, that
is,

log 31 = B+ ofo (0), ©)

where fy (é) is a smooth function of f. Plotting the probability of positive response modelled

by (5) against a nonparametric estimate of the latent trait §, should yield a single ‘peaked’

curve if the unimodality assumption for the IRFs holds.

Diagnostics for assumptions A4 and A5

For the assumptions A4-A5, diagnostic statistics that quantify to which extent the scale
agrees with these assumptions have been proposed by Post (1992). These statistics are
based on conditional IRF probabilities, which are estimated by their corresponding sample
proportions and collected into a matrix that is called the conditional adjacency matrix
(CAM).

CAM in its (j, k) element contains the conditional frequency that a subject from the
sample will choose the row item j given that the column item k is chosen. The probability
P (X;=1] Xi = 1) is estimated from the data by dividing the joint frequency of choosing
both items j and k by the relative frequency of choosing item k. That is,

Yl xijxig /n Yl xij Xig

Y xi /n Y Xk

In the package mudfold, the CAM can be obtained using the function CAM(), which takes
as input either a fitted MUDFOLD object or a dataset with the complete responses of n
individuals to m items. In the ANDRICH dataset example, the CAM of the original data can be
calculated using the command CAM(ANDRICH).

Each row of the CAM is regarded as an empirical estimate of the corresponding IRF.
Hence, if the ordering of the items is correct, and if assumptions Al to A5 hold, then (i)
the observed maxima of the different rows of the CAM are expected to appear around the
principal diagonal (moving maxima property), and (ii) the rows of the CAM are expected
to show a weakly unimodal pattern. One can potentially evaluate the unfolding model by
checking how strongly the observed row patterns of the CAM deviate from the expected
patterns described above.

CAMj, = , for j # k. (6)

Max statistic (MAX) : The moving maxima property of the CAM corresponds to condition
A4, which assumes stochastic ordering of the items by their location parameter g;. In
order to formally check this assumption, Post (1992) proposed a statistic that quantifies the
violations of the moving maxima property for the rows of the CAM , which is called the
max statistic (MAX).

Calculation of the MAX can be done in two ways, namely a top-down and a bottom-up
method
Yyl jgmax (0, (M — My))  (top-down method)

MAX; = )

Z{;ll max (0, (Mg — M;)) (bottom-up),
where M; is the position of the maximum in the jth row of CAM. In order to create a measure
of the moving maxima property that is bounded within the interval [0, 1] we divide MAX; by

the number of potential violations of the moving maxima property which are approximately
equal to m?/12.

The sum over all rows yields the total MAX statistic of the scale, i.e. MAXipa1 =

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=mgcv

CONTRIBUTED RESEARCH ARTICLES

58

]’.”:1 MAX;.. The quantity MAX.t Will be the same for both methods in (7), however, the
number of items showing positive MAX can be different. In this situation the method that
yields the minimum number of items showing positive MAX is chosen. If the number
of items with positive MAX is the same for both methods then we choose arbitrarily the
top-down method. In the case where M, is next to a diagonal element then the maximum in
the jth row can have two positions and the position that yields the lower MAX value will be
chosen.

The MAX statistic can be calculated using the function MAX() from the R package
mudfold, which takes as input either a fitted MUDFOLD object obtained from the main
mudfold() function, or an object of class "cam.mdf" calculated from the function CAM(). The
argument 'type' of the MAX() function controls if the MAX for the items or the whole scale
will be returned to the user. Visual inspection of the observed maxima pattern can also be
useful. If the maximum values of the CAM rows are close to the diagonal then the unfolding
model holds. The diagnostics() will return and plot a matrix with a star at the maximum
of each CAM row for visual inspection of their distribution.

Iso statistic (ISO) : In order to quantify if the rows of the CAM show a weakly unimodal
pattern, the iso statistic (proposed by I. Molenaar, personal communication) was introduced.
Iso statistic (ISO), is a measure for the degree of unimodality violation in the rows of CAM.
ISO can be obtained for each item (ISO;) and their summation results in the total ISO for the
scale (ISOy).

To come up with an ISO value for an item j, one should first locate the maximum in
each row of the CAM. If we index m* the maximum in row j of CAM, the ISO measures
deviations from unimodality to the left and right of m*, i.e.

150, = Y max (O,CAM]-h—CAM]-k)+ Y max (O,CAM]-k—CAMjh). ®)

h<k<m* m*<h<k

The total ISO statistic for a scale consisting of m items is calculated as the sum of the
individual ISO statistics, i.e. ISO;’s, i.e. ISOota1 = Z]""Zl ISO;. The ISO statistic, both for an
item or for the scale, is zero if the unimodality in row j of the conditional adjacency matrix
is not disturbed and positive if disturbances in unimodality occur in row j.

The user can calculate the ISO statistic using the function IS0(), which takes as input
outputs either from the mudfold() function, or from the function CAM() and returns a vector
with the ISO;’s for each j € {1,2,...,m} or the sum of this vector if type = 'scale’.

All the diagnostic tests discussed in this section are implemented in the function
diagnostics() of the mudfold package. The function diagnostics() can be used with
fitted objects from the main mudfold() function.

Uncertainty estimates for MUDFOLD statistics

Since the sampling distributions of the MUDFOLD'’s goodness-of-fit and diagnostic statistics
are non-standard, calculating their standard errors is not straightforward. Instead, for pro-
viding uncertainty estimates of the MUDFOLD statistics both at the item and the scale level,
nonparametric bootstrap is used (Efron et al., 1979). Bootstrap is a resampling technique
that can be used for assessing uncertainty in instances when statistical inference is based on
complex procedures. With bootstrapping we sample R times n samples with replacement
from a dataset of size n1. The bootstrap samples of the statistic obtained from R iterations are
then used to approximate the sampling distribution of the statistic.

Given a MUDFOLD scale s, statistics for items such as the O; (s), EO; (s), H; (s), and
the total scale such as the Oygta1, EOyotal, Hiotal are bootstraped R times. The bootstrap
procedure implemented in mudfold depends on the function boot () from the R package
boot (Canty and Ripley, 2017). Using the boot package allows the user of mudfold package
to obtain different types of confidence intervals for assessing uncertainty using the function
boot.ci().

Additional to the uncertainty estimates, a bootstrap estimate of the unfolding scale can

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

59

be also calculated. This estimate corresponds to the most frequently obtained MUDFOLD
scale in R bootstrap iterations. In many instances the bootstrap estimate will coincide with
MUDFOLD scale obtained by the item selection algorithm. When the two estimates are
different the bootstrap scale estimate can be used to correct the MUDFOLD scale after
assessing its properties carefully.

Nonparametric estimation of person ideal points

With MUDFOLD, after obtaining an item ordering (scale) that consists of a (sub) set of
m items, m < N, one can estimate in a nonparametric way subject locations on a latent
continuum. Two nonparametric estimators can be used with slightly different properties
both based on the Thurstone (1927, 1928) estimator for the measurement of attitudes.

Originally, the Thurstone estimator él.ﬂ of the i-th respondent location parameter given a
vector of known item location parameters = (B1, B2, ..., Bm)" was defined as,

B Lj—1 BjXij
0 =~m ©)
Yt Xij

where x;; is the response of person i on item j. The parameter estimate éiﬁ for each i takes
values within the item parameter range. In MUDFOLD however, the item parameters
vector B is unknown, thus we need to estimate it. In order to do so, we make use of two
alternative estimates for §’s proposed by Van Schuur (1988) and Johnson (2006), respectively.
The former uses item ranks as approximations of the item locations while latter uses item
quantiles.

Van Schuur’s person parameter estimator uses the item ranks obtained from MUD-
FOLD's item selection algorithm as estimates for the vector B = (B1,B2,...,Bm)". Since
MUDEFOLD estimates only the rank order of the parameter vector, i.e. ¥ = (r,t2,...,"m)
one can define a rank estimate

/§; =7j, (10)

where 7; is the rank of the item j on the MUDFOLD scale. By using the estimated ranks
as approximations of the parameter vector we can estimate a respondent’s location as the
mean of the endorsed item ranks. That is,

m
ity i
Lty xij

if Z}-":l Xij >0

D>
~=
I

(11)
undefined, if Z]m:l xjj = 0.

Alternatively Johnson’s quantile estimator bounds both estimates for 0’s and ’s within
a unit interval. This estimator uses the item ranks divided by the length of the scale
m as approximations for the B vector. In all the estimators described in this section, no
estimates can be defined for individuals with total score X;" = Z}”:l x;j equal to zero. These
individuals are not endorsing any item and therefore provide no information whether they
belong to the extreme right of the scale or to extreme left. The user of the package mudfold
can choose between Van Schuur’s and Johnson'’s estimators for obtaining persons scores on
the factors.

Missing values

Missing data occur when intended responses from one or multiple persons are not provided.
Handling missing values is critical since it can bias inferences or lead to wrong conclusions.
One way to go is to ignore the missing observations by applying list-wise deletion. This,
however, can lead to a great loss of information especially if the number of missing values
is large. The other approach, is to replace the missing values with actual values which is
called imputation.

In the case of random missing value mechanisms such as missing completely at random

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

60

(MCAR) and missing at random (MAR) (Rubin, 1976; Little and Rubin, 1987), different
approaches can be used in order to impute the missing observations. Imputation within IRT
is in general associated with more accurate estimates of item location and discrimination
parameters under several missing data generating mechanisms (Sulis and Porcu, 2017). In
the package mudfold missing values can be imputed using the logistic regression version of
multiple multivariate imputation by chained equations (MICE). The latter is available from
the R package mice. MICE imputation within mudfold can be used solely or in combination
with bootstrap uncertainty estimates. In the latter case, each bootstrap sample is imputed
before fitting a MUDFOLD scale, while in the former the data are imputed M times and the
results are averaged across the M datasets.

The mudfold package

The R package mudfold contains a collection of functions related to the MUDFOLD item
selection algorithm. In the following we describe the functionality of the package and the
ANDRICH dataset is used for demonstration purposes.

Description of the functions mudfold() and as.mudfold()

The main function of this package, called mudfold(), fits Van Schuur’s item selection algo-
rithm to binary data in order to obtain a unidimensional ordinal scale for the persons. The
mudfold() function can be called with,

mudfold(data, estimation, lambdal, lambda2, start.scale,
nboot, missings, nmice, seed, mincor, ...)

The functions has ten main arguments where only the first one is obligatory. These are:

data: The input data, i.e. an x N data.frame or matrix, with persons in the rows and
items in the columns. It contains the binary responses of n individuals on N items. .

estimation: This argument handles the nonparametric estimation of the person parameters.
The default, estimation = "rank” uses a rank based estimator (Van Schuur, 1988).
Alternatively, person parameters are obtained by a quantile estimator (Johnson, 2006),
which is accessible by setting estimation = "quantile”.

lambdal: The parameter A1, 0 < A; < 1 is a user specified lower bound for scalability
criteria that are used in MUDFOLD's item selection algorithm. In the default setting,
A1 = 0.3. Large values of A; lead to more strict criteria in the item selection procedure.

lambda2: Parameter Ay, —co < Ay < 1is alower bound explicitly used at the first scalability
criterion of the second step (default A, = 0).

start.scale: The user can pass to this argument a character vector of length greater than
or equal to three, containing ordered item names from colnames(data) that are used
as the best elementary scale for the second step of the item selection algorithm. If
start.scale = NULL (default), the first step of the item selection algorithm determines
the best elementary triple of items that is extended in the second step.

nboot: Argument that controls the number of bootstrap iterations. If nboot = NULL (default)
no bootstrap is applied.

missings: Argument that controls treatment of missing values. If missings = "omit”
(default) list-wise deletion is applied to data. If missings = "impute"” then the mice
function is applied to data in order to impute the missings nmice times.

nmice: Argument that controls the number of mice imputations (This argument is used
only when missings = "impute” and nboot = NULL.

seed: Argument that is used for reproducibility of bootstrap results.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

61

mincor: This can be scalar, numeric vector (of size ncol (data)) or numeric matrix (square,
of size ncol (data) specifying the minimum threshold(s) against which the absolute
correlation in the data is compared. See ?mice: : :quickpred for more details. To be
used when mice becomes problematic due to co-linear terms.

... : Additional arguments to be passed into the boot () function (see ?boot in R).

The function mudfold() internally has four main steps. A data checking step, the first
step of the item selection process, the second step of the item selection process, and the
bootstrap step if the user chooses this option. The output of mudfold(), is a 1ist() of class
"mdf"” that contains information for each internal step of the function. The first element of
the output list contains information on the function call. The second element contains results
of the data checking step. The next element of the output contains descriptive statistics
obtained from the observed data and the last element of the output has all the information
from the the fitting process (triple statistics, first step, second step). If bootstrap is applied to
estimate uncertainty , an additional element that contains the bootstrap information is given
to the output.

For example, if you want to fit a MUDFOLD scale to the ANDRICH data and run a non-
parametric bootstrap with R = 100 iterations in parallel, you can specify it directly into the
mudfold() function as follows.

fitANDRICH <- mudfold(ANDRICH, nboot = 100, parallel = "multicore”, seed = 1)

In the example above, the first two arguments are core in the mudfold() function. The
third argument parallel is an argument of the boot () function that runs bootstrapping in
parallel fashion in order to reduce computational time. The last argument seed is used to
ensure reproducibility of the bootstrap results.

In some cases the unfolding scale could be known. In these instances, the user is
interested in obtaining the MUDFOLD goodness-of-fit and diagnostic statistics for the given
scale. The function as.mudfold() can be used for treating the given rank order of the items
as a MUDFOLD scale. The function uses only the first two arguments of the mudfold()
function. In principle, this function transforms a given scale into an S3 class "mdf" object.

Description of the generic functions

For "mdf" objects from the mudfold() or as.mudfold() functions, generic functions for
print(), summary() and plot() and coef () are available. The generic function print.mdf ()
can be accessed with,

print(x)

where x is an "mdf" class object. This function prints information for x, such as time elapsed
for fitting, warnings from the data checking step, convergence for each step of the algorithm
and statistics with bootstrap confidence intervals if nboot is not equal to NULL.

In the ANDRICH data example, the command print (fitANDRICH) is used to print informa-
tion from the fitANDRICH object to the console. The function call together with the elapsed
time to fit the model, the number of individuals, and the number of items used in the analysis
is the first part of the output. Next, the values of the mudfold() arguments are given, which
are followed by convergence indicators for each step of the item selection algorithm. Scale
statistics such as the scalability coefficient and the ISO statistic are also printed together with
their percentile confidence intervals obtained in 1000 bootstrap iterations. The summary of
the bootstrap iterations finalize the output when printing the fitANDRICH object.

The function summary is a generic function that is summarizing information from model
fitting functions. In our case the output of summary.mdf () is a list object summarizing results
from the mudfold() function. The function can be called via

summary(object, boot, type = "perc”, ...)

and consists of three arguments:

object: a list of class "mdf"”, output of the mudfold() function.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

62

boot: logical argument that controls if bootstrap confidence intervals and bootstrap sum-
mary for each coefficient will be returned. If boot = FALSE (default) no information for
bootstrap is returned. When boot=TRUE, confidence intervals, standard errors, biases,
calculated from the bootstrap iterations for each parameter are given with the output.

type: The type of bootstrap confidence intervals to be calculated if the argumnet boot
= TRUE. Available options are "norm”, "basic"”, "perc"” (deafult), and "bca"”. See the
argument type of the boot.CI() for details.

The output of the summary.mdf () is a list with two main components. The first component
of the list is a data. frame with scale statistics and the second component is a list with item
statistics.

Typing summary (fitANDRICH,boot = TRUE) into the R console will return the summary
of the fitted scale to the ANDRICH data. The output consists of six distinct data. frame objects.
The first data. frame contains information on scale statistics with their bootstraped statistics.
The next four data. frame objects correspond to the H coefficients, the ISO statistics, the
observed errors, and the expected errors for each item in the scale together with their
bootstrap summary statistics. The last data. frame gives descriptive statistics for the items
in the scales.

A generic function for plotting S3 class "mdf” objects is also available to the user. The
function plot.mdf () returns empirical estimates of the IRFs, the order of the items on the
latent continuum or a histogram of the person parameters . You can plot "mdf" class objects
with the following R syntax.

plot(x, select = NULL, plot.type = "IRF")

This function consists of three arguments from which the first is the usual argument x which
stands for the "mdf" object to be plotted. The argument plot. type controls the type of
plot that is returned, and three types of plots are available. If plot.type = "scale”, a
unidimensional continuum with the items in the obtained rank order is returned. In the
default settings of this function (i.e. plot.type = "IRF"), the corresponding plot has the
items on the x-axis indicating their order on the latent continuum and the probability of
a positive response on the y-axis. The IRF of each item among the latent scale is plotted
with different colours. When plot. type = "IRF" will return a plot with the distribution of
person parameters on the latent continuum. The argument select is optional and provides
the possibility for the user to plot a subset of items. The user can provide in this argument
a vector of item names to be plotted. If select = NULL, the function returns the estimated
IRFs for all items in the obtained MUDFOLD scale. For plotting S3 class "mdf" objects, we
use the functions na.approx(), melt() and ggplot() from the R packages zoo (Zeileis and
Grothendieck, 2005), reshape2 (Wickham, 2007), and ggplot2 (Wickham, 2009), respectively.

A generic coef.mdf () function for S3 class "mdf" objects can also be used. This function
is a simple wrapper that uses a single argument named ' type'. The coef.mdf () will extract
nonparametric estimates of: persons ranks when type = "persons”, item ranks when type
= "items", or both when type = "all” from a fitted MUDFOLD object.

The diagnostics() function

After a scale has been obtained, scale diagnostics need to be applied is order to assess
its unfolding properties. The MUDFOLD diagnostics described in section 2.4 of this pa-
per are implemented into a function named diagnostics() that can calculate all of them
simultaneously. The function syntax is,

diagnostics(x, boot, nlambda, lambda.crit, type, k, which, plot)

and uses eight arguments described below.

x: a list of class "mdf”, output of the mudfold() function.

boot: logical argument that controls if bootstrap confidence intervals and summary for
the H coefficients and the ISO and MAX statistics will be returned. If boot = FALSE
(default) no information for bootstrap is returned. When boot = TRUE, confidence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=zoo
https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES

63

intervals, standard errors, biases, calculated from the bootstrap iterations for each
diagnostic are given with the output.

nlambda: The number of regularization parameters to be used in cv.glmnet() function
when testing local independence.

lambda.crit: String that specifies the criterion to be used by cross-validation for choosing
the optimal regularization parameter. Available options are "class" (default), "de-
viance", "auc”, "mse", "mae". See the argument 'type.measure' in the cv.glmnet()

function for more details.

type: The type of bootstrap confidence intervals to be calculated if the argumnet boot
= TRUE. Available options are "norm”, "basic"”, "perc” (deafult), and "bca"”. See the
argument type of the boot.CI() for details.

k: The dimension of the basis in the thin plate spline that is used when testing for IRF
unimodality. The default valueisk = 4.

which: Which diagnostic should be returned by the function. Available options are "H",
"LI", "UM", "IS0", "MAX", "STAR", "all" (default).

plot: Logical. Should plots be returned for the diagnostics that can be plotted? Default
value is plot = TRUE.

For the ANDRICH data example the command diagnostics(fitANDRICH) will calculate and
plot the scale diagnostics for the fitANDRICH object.

Unfolding data simulation and description of the mudfoldsim() function

In order to provide the user the flexibility of simulating unfolding data, the function
mudfoldsim() is available from the mudfold package. The responses of subjects on dis-
tinct items are simulated with the use of a flexible parametric IRF that generalizes proximity
relations between item and person parameters.

Assume that we want to simulate a test dataset with responses from 7 individuals
indexed by i = 1,2,...,n on N proximity items (indexed by j) with latent parameters 6; and
B respectively. The vector of item parameters = (B1,..., fn)" is drawn at random from a
standard normal distribution. For the person parameters, the user can choose if they will
follow a standard normal distribution, or they will be drawn uniformly in the range of item
parameters. Simulating person parameters from a standard normal distribution may imply
that a number of individuals are located too far to the left or right of the most extreme items
(due to sampling variation). These subjects will not agree with any item. These responses
are not useful in unfolding analysis since no discriminant information is provided for the
items in the scale. The user of mudfold package is free to include or exclude such type of
responses.

Unfolding models are also known as distance models since they model the probability
of positive endorsement of item j from individual i as a function of the proximity between

6; and B;. We consider a linear transformation 7;; of the squared difference dizj =(0;—B j)z

given by 7;; = 11 + 'yzdizj, where the parameters 77 ( deterministic parameter) and 7,

(discrimination parameter) are fixed.
Using 7;; with the standard logistic function one obtains a parametric IRF f (7;;) = H%T/
e 1
Consequently, the positive binary response of individual i on item j can be considered as

the outcome of a Bernoulli trial with “success" probability 1/ (1 + ¢~ ). Hence, the item
response variables X;; that contain binary responses from 7 individuals on N items, follow
a Bernoulli distribution according to,

. 1 . .
Xij ~ Bernoulli <1+6_T’1) fori=1,...,n,j=1,...,N. (12)

In mudfoldsim() function, the model parameters v (.) are user specified with default settings
v1 =5 and 7, = —10 respectively. This specific set up of the model parameters produces

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

64

nearly deterministic response curves for the subjects which in turn guarantees that the
number of observed errors is small.

We note that the IRF proposed by Andrich (1988) is a special case of the one implemented
in the mudfoldsim() function for y; = 0 and 7, = —1. This parametric simulation method
is implemented in a flexible R function available from the mudfold package. This function
consists of several arguments that allow the user to control the unfolding properties of the
simulated data. The function in its default settings can be called easily with the following
syntax,

mudfoldsim(N, n, gammal = 5, gamma2 = -10, zeros = FALSE, parameters = "normal”,
seed = NULL)

and makes use of six user-specified arguments:

N: An integer corresponding to the number of items to be simulated.
n: The number of persons to be simulated.

gammal: This argument is passed to the IRF. Controls the 7y or discriminative parameter of
the IRF. The higher the parameter the larger the number of items that individuals tend
to endorse if parameter - is kept constant.

gamma2: The deterministic parameter (i.e. ;) of the IRF. As the value of this parameter
decreases, individuals tend to make less “errors” in their responses (i.e. their responses
are more in line with the unfolding scale).

zeros: A logical argument that controls if individuals who endorse no items will be
simulated. If zeros=TRUE the function allows for individuals that are not endorsing
any of the items. On the other hand, if zeros=FALSE (default) only individuals who
endorse at least one item will be part of the simulated data.

parameters: Argument for the person parameters with two options available. In the default
option parameters="normal” and in this case the person parameters are drawn from a
standard normal distribution. On the other hand, the user can set this argument equal
to "uniform” which implies that subject parameters will be drawn uniformly in the
range of the item parameters.

seed: An integer to be used in the set.seed() function. If seed=NULL (default), then the
seed is not set.

The output of the mudfoldsim() function is a list containing the simulated data (in a
random item order), the parameters used in the IRF, and the matrix of probabilities under
which the binary data has been sampled.

Description of the pick() function

Since the main mudfold() function is designed for dichotomous (binary) items, we provide
the user with the function pick (). The latter, is used to transform quantitative or ordinal type
of variables into a binary form. The underlying idea of this function is that the individual
selects those items with the highest preference. This transformation can be done in two
different ways, either by user specified cut-off value(s) or by assuming a pick K out of N
(individuals are asked to explicitly pick K out of N items) response process, where each
response vector consists of the K highest valued items. Dichotomization is performed
row-wise by default, however the user can also perform the transformation column-wise.

The R function pick() can be utilized with the following code,
pick(x, k = NULL, cutoff = NULL, byItem = FALSE)
and makes use of four parameters. These are,
x: A data.frame or matrix with persons in the rows and items in the columns contain-

ing quantitative or ordinal type of responses from »n individuals/raters on N items.
Missing values are not allowed.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

65

k: This integer (1 < k < N) controls the number of items a person can pick (default k=NULL).
This argument is used if one wants to transform the data into pick K out of N form. If
the parameter k is provided by the user, then cutoff should be NULL and vice verca.

cutoff: The numeric value(s) that will be used as thresholds for the transformation (default
cutoff=NULL). Any value greater than or equal to the cutoff will be 1 and 0 otherwise.
The length of this argument should be equal to 1 (indicating same threshold for all
rows of x) or equal to n (when byItem=FALSE) which imposes an explicit cut-off value
for each individual in x. If byItem=TRUE then the length of this parameter should be 1
(global cut-off value) or N (explicit cut-off per item).

byItem: This is a logical argument. If byItem=TRUE, the transformation is applied on the
columns of x. In the default byItem=FALSE, the function "picks" items row-wise.

In the default parameter settings of the function pick(), the parameters k and cutoff
respectively are equal to NULL. In this case, the mean from N responses is used as a person-
specific cut-off value (if byItem=FALSE). When byItem=TRUE (with k, cutoff equal to NULL)
then the item mean over all individuals is used as an item specific cut-off value. The
parameters k and cutoff are responsible for different dichotomization processes and they
cannot be used simultaneously, which means that only one of the two arguments can be
different than NULL.

In the case in which the user chooses to transform the data assuming that persons are
asked to pick exactly K out of N items, ties can occur. If x; is a response vector subject to
transformation, in which ties exist, then we select among the tied items at random.

Generally, dichotomization should be avoided since it could distort the data structure and
lead into information loss. Models that take into account information different categories
should be prefered over dichotomization for polytomous data.

Applications

In this section we provide examples of how to use MUDFOLD method on two datasets,
which are provided with the mudfold package. The first application is from the field of
psychometrics while the second example is a linguistic application.

The commands install.packages("mudfold”) and library(mudfold) will download,
install and load the mudfold package so it can be used. The command set.seed(1) will set
the seed for reproducibility.

Loneliness data

In order to demonstrate the functionality of the mudfold package we re-analyze question-
naire data following the strategy suggested by Post et al. (2001). For this purpose, we use
a unidimensional measurement scale for loneliness that follows the definitions of a Rasch
scale and has been constructed by de Jong-Gierveld and Kamphuls (1985). De Jong-Gierveld
loneliness scale consists of eleven items, five of which are positive and six are negative. The
items in the loneliness scale are given below and the sign next to the items corresponds to
the item content.

There is always someone I can talk to about my day to day problems +
I'miss having a really close friend B
I experience a general sense of emptiness -
There are plenty of people I can lean on in case of trouble +
I miss the pleasure of company of others -
I find my circle of friends and acquaintances too limited -
There are many people that I can count on completely
There are enough people that I feel close to

I'miss having people around -
Often I feel rejected -
I can call on my friends whenever I need them +

AP ITOoTMmOOw>

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

66

"o

Each item in the scale has three possible levels of response, i.e. “no", “more or less",
“yes" and dichotomization methods that involve item reverse coding have been proposed by
De Jong and van Tilburg (1999). These methods as well as the determination of dimensional-
ity of this scale have been under critical discussion. Following this discussion, Post et al.
(2001) reanalyzed the loneliness scale data obtained from the NESTOR study (Knipscheer
et al., 1995) using MUDFOLD in a three step analysis routine.

Persons with missing responses are removed from the data (7,,;s = 69). The dataset with
the complete responses is included in the R package mudfold in R data format. List-wise
deletion in this case yields identical results with MICE imputation. Following the routine
suggested by Post et al. (2001) responses of each subject are dichotomized setting “yes”
versus “no” and “more or less”.

The threshold that is used for the main analysis has been determined on the basis of
MUDEFOLD scale analysis on datasets with different thresholds. Specifically, the data has
been dichotomized using as thresholds the response, (i) “yes”, (ii) “more or less”, (iii)
different thresholds per item where the response category “more or less” is collapsed with
the smaller category between “yes” and “no”. The results from this analysis showed that
dichotomizing the data at the higher preference will yield the best unfolding measurement
scale for loneliness.

Dichotomizing the data at “yes” is straightforward with the pick() function.

data("Loneliness")
dat <- pick(Loneliness, cutoff = 3)

In the first step of the analysis, we conduct a MUDFOLD scale search on the transformed
binary responses of n = 3987 individuals on N = 11 items. The A; parameter in the
mudfold() function is set to A; = 0.1 since the default value leads to a minimal scale of
length three.

Lonelifit <- mudfold(dat, lambdal = 0.1, nboot = 100, seed = 1)

The function takes about five minutes to run 100 bootstrap iterations. The resulting scale
and its associated statistics can be obtained by summarizing the Lonelifit object.

loneliSummary <- summary(Lonelifit, boot = TRUE)
The MUDFOLD scale for the Loneliness data in its estimated rank order is:

loneliScale <- loneliSummary$ITEM_STATS$ITEM_DESCRIPTIVES$items
loneliScale
## IIGH IIH‘I IIDM HKH IICH HEH ‘IIH IIFM

The scale has length eight, with the first four items positively formulated and the last
four negatively formulated. Items A,B, and J are excluded from the scale. This is because
some triples (with respect to the item rank order) that include these items have scalability
coefficient Hyjx lower than A,. Statistics for the resulting MUDFOLD scale and each item
explicitly can be accessed directly from the summary object loneliSummary. Scale statistics
with their bootstrap uncertainty estimates can be obtained with the following command.

loneliSummary$SCALE_STATS[1:3, ]

#i# value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
## H(scale) 0.536 0.436 0.571 0.511 -0.025 0.031 100
## ISO(scale) 0.078 0.001 1.753 0.384 0.306 0.459 100
## MAX(scale) 0.000 0.000 2.400 0.381 0.381 0.683 100

The output above, in each row shows a scale statistic and its columns correspond to the
bootstrap properties of this statistic. The H coefficient for the scale shows strong evidence
towards unidimensionality (Ho,) (s) =~ 0.54, se = 0.031), the ISO statistic is low (ISOypta; ~
0.08, se = 0.459) denoting small amount of violations of the manifest unimodality, and the
MAX statistic is zero (se = 0.683) meaning no violations of the stochastic ordering.

Scale diagnostics are given in Figure 1 and 2. Visual inspection if the maxima of the CAM
rows are a nondecreasing function of the item ranks, violations of the local independence
assumption, and the IRF for each item in the Loneliness unfolding scale can be obtained by
using the diagnostics() function as shown below.

par(mfrow = c(1, 2))
# testing for local independence

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

67

Local Independence Moving maxima o.Est\mated IRF for G - i IRF for H - i IRF for D o i IRF for K
F F
@ @ @ @
| | 7 £ Eil g
2o Lo Lo Lo
c E o Fo Fo Fo
% x 3 S 3 o
£ £ i iz iz s
£ £ T T T T
Ex E«x 3 B 3 3
o o
© D © D Q =3 =1 =1
ST 57 ST 5 °T 5 °r 5
H H Theta Theta Theta Theta
Estimated IRF for C Estimated IRF for E Estimated IRF for | Estimated IRF for F
G G 2 =1 - 2
O I O X 0O w — uw O I O X O w — u © © © 0
3 3 3 2
Row index Row index ) = w )
ﬂ)w mm Lo wko
£ £3 £3 £3
Figure 1: Left hand side: Red squares 7 s s s
53 1S 3 y3
in the lower triangular part of the ma- =, T, T, T
3 3 3 S
trix represent pairs of conditionally de-
3 3 3 3

pendent items. Right hand side: Red “T 353 T e T e T
squares represent the position of the ob-

served maxima in the CAM rows for the Figure 2: The estimated item response function for each item
Loneliness unfolding scale. in the Loneliness unfolding scale.

diagnostics(Lonelifit, which = "LI")

# visual inspection of moving maxima
diagnostics(Lonelifit, which = "STAR")
par(mfrow=c(2,4))

# visual inspection for IRF unimodality
diagnostics(Lonelifit, which = "UM")
par(mfrow = c(1, 1))

The H coefficients for each item in the scale are also available in the summary object and
can be accessed by:

loneliSummary$ITEM_STATS$H_MUDFOLD_items
value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)

H(G) .54 0.444 0.573 0.510 -0.034 0.035 96
H(H) .52 0.440 0.543 0.495 -0.027 0.025 72
H(D) .51 0.400 0.553 0.498 -0.015 0.032 65
H(K) ©.51 0.440 0.554 0.495 -0.016 0.025 60
H(C) .55 0.404 0.590 0.513 -0.041 0.049 76
H(E) .57 0.491 0.610 0.555 -0.016 0.029 78
H(I) .55 0.493 0.586 0.541 -0.011 0.022 47
H(F) .52 0.349 0.546 0.464 -0.057 0.058 84

From the item fit we can see that the H coefficient for each item in the scale is above 0.5
which means that all the items are scalable together. Looking at the column boot(iter)
of the output above you can get information for the number of times each item was in-
cluded in a MUDFOLD scale out of R = 100 bootstrap iterations. The item G was the
most frequently included item (96%) while the items K, I were included less frequently
in a MUDFOLD scale compared to the other items (60% and 47% respectively). Typing
loneliSummary$ITEM_STATS$ISO_MUDFOLD_items into the R console will return a summary
of the ISO statistic for each item in the scale. The latter, shows that only small violations of
unimodality occur for the items in the scale. The same holds for the MAX statistic (it can be
accessed by loneliSummary$ITEM_STATS$MAX_MUDFOLD_items), which shows zero values for
all the items in the scale.

After the scale is obtained and checked for its conformity to the unfolding principles
we can visualize the estimated empirical IRFs and the distribution of the estimated person
parameters. Plots for the IRFs and the person parameters can be obtained by:

plot(Lonelifit,plot.type = "IRF")
plot(Lonelifit,plot.type = "persons”)

Figures 3 and 4 show the empirical estimates of the IRFs and the distribution of the person
parameters respectively. In figure 3 you can see that the scale clearly consists of four
positively formulated items in its beginning for which the IRF is decreasing as one moves
from the left to the right of the scale, and four negatively formulated items in the end for
which the IRF is increasing as one moves from the left to the right of the scale. In figure 4 we
can see that the sample under consideration tends to feel less lonely since the distribution

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

68

Empirical Estimates for ltem Response Curves Distribution of 6's (person parameters) on the latent scale
.—\__
3 \ It
g 0.75 ems
& \ - G 04
o H
2 ‘ )
G 050 K
o
= —C
o
> E 0.2
= —— |
]
3 0.25 —— [
[
o _|_|
0.0
G H D K C E | F G H D K C E | F
Latent scale Latent scale

Figure 3: MUDFOLD’s empirical estimates of the Figure 4: The distribution of the estimated person
IRFs for the Loneliness unfolding scale. ranks for the Loneliness unfolding scale.

of the person parameters is skewed to the right. In such example, clearly any parametric
model that assumed a latent normal distribution of the latent person parameters would be
inappropriate.

Plato’s seven works data

In this section, we present an application of MUDFOLD method to the Plato7 data set. This
dataset is available from the R package smacof (de Leeuw and Mair, 2009) and has been
also included in the mudfold package. The data can be loaded into the R environment with
the command data("Plato7").

Plato7 contains information on the quantity distribution over the sentence ending from
seven works of Plato (D. R. Cox, 1959). Specifically, the last five syllables from each sentence
in seven Plato’s works are extracted and categorized as short or long. This produces 2° = 32
possible combinations of short-long syllables of length five, which are called clausulas and
can be used to identify rhythmic changes in the literary style. The quantity of the clausulas
in each work of Plato is recorded in terms of proportions.

The question is whether it is possible using these data to assign a chronological order
to the works of Plato. Particularly, it is known that Plato wrote first the Republic and last
the Laws. In between Republic and Laws, Plato wrote the Critias, Philebus, Politicus,
Sophist and Timaeus. However, the exact order of these five works is unknown. Assuming
that the change in Plato’s literary style was monotone in time, we might be able to assign a
time order in his works by analyzing the clausula’s distribution in each Plato’s work.

We consider the development of Plato’s literary style as a unidimensional scale, on which
clausulas and works are ordered. In this analysis we consider that the quantity of clausula
i in Plato’s work j will be governed by a proximity relation. That is, each clausula with a
parameter 6; on a latent literary style continuum tends to prefer (appear most frequently in)
the works of Plato with parameters f; close to 6;.

Since the data is given in continuous form, we transform the percentages into binary
format in order to apply MUDFOLD. We consider the mean quantity of each clausula as
an explicit cut-off value for the transformation. The latter can be seen as a pick any out of
N response process where the number of items “picked” varies across subjects. We can
apply the transformation with the function pick() from the mudfold package in its default
settings as follows.

dat.Plato <- pick(Plato7)

After the transformation, we end up with a matrix containing the binary preferences of
n = 32 clausulas on N = 7 works of Plato. Now we can fit a MUDFOLD scale (with
bootstrap for assessing parameter uncertainty) to the transformed data with the default
search settings and study its summary.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=smacof

CONTRIBUTED RESEARCH ARTICLES

69

fitPlato <- mudfold(dat.Plato, nboot = 100, seed = 1)
summaryPlato <- summary(fitPlato, boot = TRUE)

We can check the MUDFOLD scale from the summary object.
summaryPlato$SCALE_STATS[1:3, ]

## value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
## H(scale) ©0.558 0.457 1.000 0.714 0.156 0.146 100
## ISO(scale) 0.146 0.000 1.129 0.141 -0.005 0.254 100
## MAX(scale) 0.000 0.000 0.850 0.035 0.035 0.191 100

The scale shows strong scalability properties with Hy,5) = 0.56, and low ISO statistic

(ISO¢ota1 = 0.15). Since the scale is strong, the next step is to check the rank order of the
items in the MUDFOLD scale and their scalability properties.

summaryPlato$ITEM_STATS$H_MUDFOLD_items

## value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
## H(Republic) 0.66 0.362 1 0.761 0.097 0.179 70
## H(Sophist) 0.41 0.381 1 0.656 0.241 0.157 70
## H(Politicus) 0.58 0.392 1 0.662 0.078 0.161 62
## H(Philebus) 0.63 0.429 1 0.726 0.094 0.141 83
## H(Laws) 0.51 0.394 1 0.688 0.176 0.148 77

The results shows that the MUDFOLD scale has length five and the items Critias and
Timaeus have been excluded from the measurement process. Republic is correctly ordered
first and Laws is correctly ordered last among Plato’s works. Almost all the items are strong
unfolding items with H; (s) higher than 0.5 which means that the items are scalable together
in one dimension. The item Sophist shows moderate unfolding strength with the lowest
item scalability coefficient (i.e. H;(s) = 0.41) while the item Republic is the strongest
unfolding item in the scale.

Since the ISO statistic for the scale is positive one may wants to check which items

are responsible for the small amount of manifest unimodality violations that are observed.

Assessing these violations for each item involves checking their ISO statistics.
summaryPlato$ITEM_STATS$ISO_MUDFOLD_items

## value perc_lower95CI perc_upper95CI boot(mean) boot(bias) boot(se) boot(iter)
## ISO(Republic) 0.104 0 0.365 0.036 -0.068 0.076 74
## I1SO(Sophist) 0.042 0 0.326 0.039 -0.003 0.078 70
## ISO(Politicus) ©.000 Q 0.082 0.005 0.005 0.018 65
## ISO(Philebus) ©.000 0 0.576 0.027 0.027 0.117 87
## ISO(Laws) 0.000 Q 0.186 0.019 0.019 0.067 78

The obtained summary output for the ISO statistics of the items in the MUDFOLD scale show
that Republic is the item with the higher manifest unimodality errors in its estimated IRF
with an iso statistic value of 0.1. The higher uncertainty is observed for the item Philebus
that shows a bootstrap standard error of 0.1.

The estimated empirical IRFs and the estimated IRFs for the items in the Plato7 unfolding
scale can be visualized with

plot(fitPlato, plot.type = "IRF")
par(mfrow = c(2, 3))
diagnostics(fitPlato, which = "UM")
par(mfrow = c(1, 1))

and the output is shown in figures 5 and 6 respectively. From figure 5 it can be seen that the
scale consists of two items in the first positions (i.e. Republic and Sophist) with decreasing
empirical IRFs as one moves from the left to the right hand side of the latent scale. These
two items show small amount of manifest unimodality violations which can be seen at the
end of their IRFs where the value of the curves is larger for the item Laws compared to item
Philebus. Third in the scale is the item Politicus for which the empirical IRF shows a
single-peak shape. Politicus is followed by the items Philebus and Laws with increasing
empirical IRFs at positions four and five of the scale. The estimates of the IRFs are shown in
figure 6 with no obvious violations of the IRF unimodality.

Other diagnostics can be obtained by the diagnostics() function. In this example the
bootstrap estimate of the scale with the estimated MUDFOLD scale are slightly different. In
such instances an additional element with a summary of the scale estimated by the bootstrap
is included in the output. Accessing the summary of the bootstrap scale is straightforward
with summaryPlato$BOOT_SCALE.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

70

Eostimated IRF for Republic gstimated IRF for Sophist Estimated IRF for Politicus
- ) C i i
Empirical Estimates for ltem Response Curves Ly Qoo D
Fo =] o
© —© _u:
08 s -3 WS
o o
8 53 g3 s
2 B S =
@ 0.6 Items &’d &o o3
g =—g== Republic o E:o_ o
= Sophist ©I0 20 30 40 ©T0 20 30 40 ©I0 20 30 40
S o4 -— Politicus Theta Theta Theta
s Philebus Estimated IRF for Philebus Estimated IRF for Laws
2 —— Laws pc) o
3 ‘T -
g o2 Lo S
S Fo &s
& —e L
= Do
Republic Sophist Politicus Philebus  Laws §g— 12;'-
Latent scale 24 <%N
&o s
> T
To °
. P . ©I0 ~20_ 30 40 ©10 ~20_ 30 40
Figure 5: MUDFOLD’s empirical esti- Theta Theta
mates of the IRFs for the items in the
Plato7 unfolding scale. Figure 6: MUDFOLD's estimates of the IRFs for the items in
the Plato7 unfolding scale.
Summary

In this paper we introduced an R package named mudfold (Balafas et al., 2019). The latter
is available under general public license (GPL > 2) from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=mudfold. This package imple-
ments a nonparametric item response theory model for unfolding proposed by Van Schuur
(1984, 1988) and further developed by Post (1992) (see also Johnson (2006)).

The mudfold package is an addition to a broad family of R packages that fit IRT models.
The approach described here is an additional exploratory and validation method when
fitting such models. Moreover it adds to the package mokken for the case in which proximity
item response data needs to be analysed.

Looking to the future our focus will be on extending the functionality of this package. In
detail, we aim on the implementation of a more efficient item selection algorithm which can
reduce the computational cost implied from the old fashioned iterative algorithm presented
here when the sample size and item number are significantly increasing. Methodologies
for handling multicategory type of items (Van Schuur, 1984) are not yet implemented
in the package, however, we plan to extend its applicability in the future. Last but not
least, a parametric version of MUDFOLD method based on the IRF implemented in the
mudfoldsim() will offer a complete framework for the analysis of data that have been
generated under an unfolding response process.

Bibliography

D. Andrich. The application of an unfolding model of the pirt type to the measurement of

attitude. Applied psychological measurement, 12(1):33-51, 1988. URL https://doi.org/10.

1177/014662168801200105. [p52, 64]

D. Andrich. A hyperbolic cosine irt model for unfolding direct responses of persons to items.
In W. J. van der Linden and R. K. Hambleton, editors, Handbook of Modern Item Response
Theory, pages 399—-414. Springer New York, New York, NY, 1997. ISBN 978-1-4757-2691-6.
URL https://doi.org/10.1007/978-1-4757-2691-6_23. [p49]

D. Andrich and G. Luo. A hyperbolic cosine latent trait model for unfolding dichotomous
single-stimulus responses. Applied Psychological Measurement, 17(3):253-276, 1993. URL
https://doi.org/10.1177/014662169301700307. [p49]

S. Balafas, W. Krijnen, and E. Wit. mudfold: Multiple UniDimensional unFOLDing, 2019. URL
https://CRAN.R-project.org/package=mudfold. R package version 1.1.2. [p49, 70]

M. Boukes and H. G. Boomgaarden. Soft news with hard consequences? introducing a
nuanced measure of soft versus hard news exposure and its relationship with political

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


http://CRAN.R-project.org/package=mudfold
https://doi.org/10.1177/014662168801200105
https://doi.org/10.1177/014662168801200105
https://doi.org/10.1007/978-1-4757-2691-6_23
https://doi.org/10.1177/014662169301700307
https://CRAN.R-project.org/package=mudfold

CONTRIBUTED RESEARCH ARTICLES

71

cynicism. Communication Research, 42(5):701-731, 2015. URL https://doi.org/10.1177/
0093650214537520. [p50]

S. V. Buuren, J. P. Brand, C. G. Groothuis-Oudshoorn, and D. B. Rubin. Fully conditional
specification in multivariate imputation. Journal of Statistical Computation and Simulation,
76(12):1049-1064, 2006. URL https://doi.org/10.1080/10629360600810434. [p50]

A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2017. R package version
1.3-20. [p50, 58]

R. P. Chalmers. mirt: A multidimensional item response theory package for the R environ-
ment. Journal of Statistical Software, 48(6):1-29, 2012. URL https://doi.org/10.18637/
jss.v048.106. [p50]

O. Chernyshenko, S. Stark, F. Drasgow, and B. Roberts. Constructing personality scales
under the assumptions of an ideal point response process: Toward increasing the flexibility
of personality measures. Psychological assessment, 19:88-106, 04 2007. URL https://doi.
org/10.1037/1040-3590.19.1.88. [p49]

Y.-J. Choi and A. Asilkalkan. R packages for item response theory analysis: Descriptions
and features. Measurement: Interdisciplinary Research and Perspectives, 17(3):168-175, 2019.
URL https://doi.org/10.1080/15366367.2019.1586404. [p50]

C. H. Coombs. A Theory Of Data. Wiley, 1964. ISBN 978-0471171140. [p49, 52]

L. B. D. R. Cox. On a discriminatory problem connected with the works of Plato. Journal of
the Royal Statistical Society. Series B (Methodological), 21(1):195-200, 1959. ISSN 00359246.
URL https://doi.org/10.1111/3.2517-6161.1959.tb00329.x. [p68]

G.J. De Jong and T. van Tilburg. Manual of the loneliness scale. Amsterdam: VU University
Amsterdam, 1999. [p66]

J. de Jong-Gierveld and F. Kamphuls. The development of a rasch-type loneliness scale.
Applied psychological measurement, 9(3):289-299, 1985. URL https://doi.org/10.1177/
014662168500900307. [p65]

J. de Leeuw and P. Mair. Multidimensional scaling using majorization: SMACOF in R. Journal
of Statistical Software, 31(3):1-30, 2009. URL https://doi.org/10.18637/jss.v031.103.

[p68]

B. Efron et al. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1):
1-26,1979. URL https://doi.org/10.1214/a0s/117634455. [p50, 58]

T. R. Finseras, S. Pallesen, R. A. Mentzoni, E. Krossbakken, D. L. King, and H. Molde.
Evaluating an internet gaming disorder scale using mokken scaling analysis. Frontiers
in Psychology, 10:911, 2019. ISSN 1664-1078. URL https://doi.org/10.3389/fpsyg.2019.
00911. [p49]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL
https://doi.org/10.18637/jss.v033.101. [p56]

L. Guttman. A basis for scaling qualitative data. American Sociological Review, 9(2):139-150,
1944. ISSN 00031224. URL https://doi.org/10.2307/2086306. [p52]

R. Hénggli. Role of Dialogue in Public Opinion Formation, pages 187-222. Springer International
Publishing, Cham, 2020. ISBN 978-3-030-26582-3. URL https://doi.org/10.1007/978-
3-030-26582-3_8. [p49]

H. Hoijtink. The measurement of latent traits by proximity items. Applied psychological
measurement, 15(2):153-169, 1991. URL https://doi.org/10.1177/014662169101500205.

[p49]

H. Hoijtink. Item response models for nonmonotone items. In K. Kempf-Leonard, editor,
Encyclopedia of Social Measurement, pages 373 — 378. Elsevier, New York, 2005. ISBN
978-0-12-369398-3. URL https://doi.org/10.1016/B0-12-369398-5/00464-3. [p49]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1177/0093650214537520
https://doi.org/10.1177/0093650214537520
https://doi.org/10.1080/10629360600810434
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1037/1040-3590.19.1.88
https://doi.org/10.1037/1040-3590.19.1.88
https://doi.org/10.1080/15366367.2019.1586404
https://doi.org/10.1111/j.2517-6161.1959.tb00329.x
https://doi.org/10.1177/014662168500900307
https://doi.org/10.1177/014662168500900307
https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.1214/aos/117634455
https://doi.org/10.3389/fpsyg.2019.00911
https://doi.org/10.3389/fpsyg.2019.00911
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.2307/2086306
https://doi.org/10.1007/978-3-030-26582-3_8
https://doi.org/10.1007/978-3-030-26582-3_8
https://doi.org/10.1177/014662169101500205
https://doi.org/10.1016/B0-12-369398-5/00464-3

CONTRIBUTED RESEARCH ARTICLES

72

M. S. Johnson. Nonparametric estimation of item and respondent locations from unfolding-
type items. Psychometrika, 71(2):257-279,2006. URL https://doi.org/10.1007/s11336-
003-1098-9. [p50, 51, 59, 60, 70]

M. S. Johnson and B. W. Junker. Using data augmentation and markov chain monte carlo for
the estimation of unfolding response models. Journal of Educational and Behavioral Statistics,
28(3):195-230, 2003. URL https://doi.org/10.3102/10769986028003195. [p49]

S. Karlin. Total positivity, volume 1. Stanford University Press, 1968. ISBN 978-0804703147.
[p51]

C. P. Knipscheer, ]. d. Jong-Gierveld, T. G. van Tilburg, P. A. Dykstra, et al. Living arrange-
ments and social networks of older adults. Amsterdam: VU University Amsterdam, 1995.

[p66]

P. Lee, S.-H. Joo, S. Stark, and O. S. Chernyshenko. Ggum-rank statement and person
parameter estimation with multidimensional forced choice triplets. Applied Psychological
Measurement, 43(3):226-240, 2019. URL https://doi.org/10.1177/0146621618768294.

[p49]

R.]J. Little and D. B. Rubin. Statistical analysis with missing data. New York: Wiley, 1987,
1987. URL https://doi.org/10.1002/9781119013563. [p60]

C.-W. Liu and W.-C. Wang. A general unfolding irt model for multiple response styles.
Applied Psychological Measurement, 43(3):195-210, 2019. URL https://doi.org/10.1177/
0146621618762743. [p49]

J. Loevinger. The technic of homogeneous tests compared with some aspects of "scale
analysis" and factor analysis. Psychological bulletin, 45(6):507, 1948. URL https://doi.
org/10.1037/h0055827. [p50, 52]

G. Luo. A class of probabilistic unfolding models for polytomous responses. Journal of
Mathematical Psychology, 45(2):224 — 248, 2001. ISSN 0022-2496. URL https://doi.org/10.
1006/ jmps. 2000. 1310. [p49]

G. Luo, D. Andrich, and L. Styles. The jml estimation of the generalised unfolding model
incorporating the latitude of acceptance parameter. Australian Journal of Psychology, 50(3):
187-198,1998. URL https://doi.org/10.1080/00049539808258795. [p49]

M. D. Maraun and N. T. Rossi. The extra-factor phenomenon revisited: Unidimensional
unfolding as quadratic factor analysis. Applied Psychological Measurement, 25(1):77-87,
2001. URL https://doi.org/10.1177/01466216010251006. [p49]

A. Maydeu-Olivares, A. Herndndez, and R. P. McDonald. A multidimensional ideal point
item response theory model for binary data. Multivariate Behavioral Research, 41(4):445-472,
2006. URL https://doi.org/10.1207/s15327906mbr4104_2. PMID: 26794914. [p49]

R. J. Mokken. A theory and procedure of scale analysis: With applications in political research,
volume 1. Walter de Gruyter, 1971. ISBN 978-3-11-081320-3. [p50, 52]

R.J. Mokken. Nonparametric models for dichotomous responses. In W. J. van der Linden
and R. K. Hambleton, editors, Handbook of Modern Item Response Theory, pages 351-367.

Springer New York, New York, NY, 1997. ISBN 978-1-4757-2691-6. URL https://doi.

org/10.1007/978-1-4757-2691-6_20. [p51]

Y. Noel. A beta unfolding model for continuous bounded responses. Psychometrika, 79(4):

647-674, Oct 2014. ISSN 1860-0980. URL https://doi.org/10.1007/s11336-013-9361-1.

[p49]

W.]. Post. Nonparametric Unfolding Models: A Latent Structure Approach. M & T series. DSWO
Press, 1992. ISBN 978-9066950641. [p49, 50, 51, 56, 57, 70]

W. J. Post and T. A. Snijders. Nonparametric unfolding models for dichotomous data.

Methodika, 1993. [p49, 50, 51, 56]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1007/s11336-003-1098-9
https://doi.org/10.1007/s11336-003-1098-9
https://doi.org/10.3102/10769986028003195
https://doi.org/10.1177/0146621618768294
https://doi.org/10.1002/9781119013563
https://doi.org/10.1177/0146621618762743
https://doi.org/10.1177/0146621618762743
https://doi.org/10.1037/h0055827
https://doi.org/10.1037/h0055827
https://doi.org/10.1006/jmps.2000.1310
https://doi.org/10.1006/jmps.2000.1310
https://doi.org/10.1080/00049539808258795
https://doi.org/10.1177/01466216010251006
https://doi.org/10.1207/s15327906mbr4104_2
https://doi.org/10.1007/978-1-4757-2691-6_20
https://doi.org/10.1007/978-1-4757-2691-6_20
https://doi.org/10.1007/s11336-013-9361-1

CONTRIBUTED RESEARCH ARTICLES

73

W. J. Post, M. A. van Duijn, and B. van Baarsen. Single-peaked or monotone tracelines? on
the choice of an irt model for scaling data. In Essays on item response theory, pages 391-414.
Springer, 2001. URL https://doi.org/10.1007/978-1-4613-0169-1_21. [p65, 66]

G. Rasch. On general laws and the meaning of measurement in psychology. In Proceedings of
the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Contribu-
tions to Biology and Problems of Medicine, pages 321-333, Berkeley, Calif., 1961. University
of California Press. URL http://projecteuclid.org/euclid.bsmsp/1200512895. [p49]

W. D. Rinkel, M. H. Aziz, J. W. Van Neck, M. C. Cabezas, L. A. van der Ark, and J. H. Coert.
Development of grading scales of pedal sensory loss using mokken scale analysis on the
rotterdam diabetic foot study test battery data. Muscle & Nerve, 60(5):520-527, 2019. URL
https://doi.org/10.1002/mus.26628. [p49]

J. S. Roberts and J. E. Laughlin. A unidimensional item response model for unfolding
responses from a graded disagree-agree response scale. Applied Psychological Measurement,
20(3):231-255, 1996. URL https://doi.org/10.1177/014662169602000305. [p49, 50]

J. S. Roberts and V. M. Thompson. Marginal maximum a posteriori item parameter estima-
tion for the generalized graded unfolding model. Applied Psychological Measurement, 35(4):
259-279,2011. URL https://doi.org/10.1177/0146621610392565. [p49]

J. S. Roberts, J. R. Donoghue, and J. E. Laughlin. A general item response theory model for
unfolding unidimensional polytomous responses. Applied Psychological Measurement, 24
(1):3-32,2000. URL https://doi.org/10.1177/01466216000241001. [p49, 50]

J. S. Roberts, H.-r. Fang, W. Cui, and Y. Wang. Ggum2004: A windows-based program to
estimate parameters in the generalized graded unfolding model. Applied Psychological
Measurement, 2006. URL https://doi.org/10.1177/0146621605280141. [p50]

D. B. Rubin. Inference and missing data. Biometrika, 63(3):581-592, 1976. URL https:
//doi.org/10.1093/biomet/63.3.581. [p60]

K. Sijtsma. Nonparametric item response theory models. In K. Kempf-Leonard, editor,
Encyclopedia of Social Measurement, pages 875 — 882. Elsevier, New York, 2005. ISBN
978-0-12-369398-3. URL https://doi.org/10.1016/B0-12-369398-5/00459-X. [p49]

K. Sijtsma and B. W. Junker. Item response theory: Past performance, present developments,
and future expectations. Behaviormetrika, 33(1):75-102, 2006. URL https://doi.org/10.
2333/bhmk.33.75. [p49]

S. Stark, O. Chernyshenko, F. Drasgow, and B. Williams. Examining assumptions about
item responding in personality assessment: Should ideal point methods be considered
for scale development and scoring? Journal of Applied Psychology, 91(1):25-39, 2006. ISSN
0021-9010. URL https://doi.org/10.1037/0021-9010.91.1.25. [p49]

I. Sulis and M. Porcu. Handling missing data in item response theory. assessing the accuracy
of a multiple imputation procedure based on latent class analysis. Journal of Classification,
34(2):327-359, Jul 2017. ISSN 1432-1343. URL https://doi.org/10.1007/s00357-017-
9220-3. [p60]

J. N. Tendeiro and S. Castro-Alvarez. GGUM: Generalized Graded Unfolding Model, 2018. URL
https://CRAN.R-project.org/package=GGUM. R package version 0.3.3. [p50]

L. L. Thurstone. A law of comparative judgment. Psychological review, 34(4):273,1927. URL
https://doi.org/10.1037/h0070288. [p49, 59]

L. L. Thurstone. Attitudes can be measured. American journal of Sociology, pages 529-554,
1928. URL https://doi.org/10.1086/214483. [p49, 59]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1):267-288, 1996. URL https://doi.org/10.1111/7.

2517-6161.1996.tb02080.x. [p56]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.1007/978-1-4613-0169-1_21
http://projecteuclid.org/euclid.bsmsp/1200512895
https://doi.org/10.1002/mus.26628
https://doi.org/10.1177/014662169602000305
https://doi.org/10.1177/0146621610392565
https://doi.org/10.1177/01466216000241001
https://doi.org/10.1177/0146621605280141
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1016/B0-12-369398-5/00459-X
https://doi.org/10.2333/bhmk.33.75
https://doi.org/10.2333/bhmk.33.75
https://doi.org/10.1037/0021-9010.91.1.25
https://doi.org/10.1007/s00357-017-9220-3
https://doi.org/10.1007/s00357-017-9220-3
https://CRAN.R-project.org/package=GGUM
https://doi.org/10.1037/h0070288
https://doi.org/10.1086/214483
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

CONTRIBUTED RESEARCH ARTICLES

74

S. van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. Journal of Statistical Software, 45(3):1-67, 2011. URL https://doi.org/10.
18637/jss.v045.103. [p50]

L. A. Van der Ark. Mokken scale analysis in R. Journal of Statistical Software, 20(11):1-19,
2007. URL https://doi.org/10.18637/jss.v020.111. [p50]

L. A. Van der Ark. New developments in mokken scale analysis in R. Journal of Statistical
Software, 48(5):1-27,2012. URL https://doi.org/10.18637/jss.v048.105. [p50]

W. Van Schuur. Stochastic unfolding. In Sociometric research, pages 137-158. Springer, 1988.
URL https://doi.org/10.1007/978-1-349-19051-5_9. [p50, 59, 60, 70]

W. H. Van Schuur. Structure in Political Beliefs: A New Model for Stochastic Unfolding with
Application to European Party Activities. CT Press, 1984. ISBN 978-9070758042. [p49, 50, 70]

W. H. Van Schuur. Nonparametric unidimensional unfolding for multicategory data. Political
Analysis, 4:41-74,1992. URL https://doi.org/10.1093/pan/4.1.41. [p50]

G. R. Warnes, B. Bolker, and T. Lumley. gtools: Various R Programming Tools, 2015. URL
https://CRAN.R-project.org/package=gtools. R package version 3.5.0. [p54]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):
1-20,2007. URL https://doi.org/10.18637/jss.v021.112. [p62]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
ISBN 978-0-387-98140-6. URL https://doi.org/10.1007/978-0-387-98141-3. [p62]

S. Wood. Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, 2
edition, 2017. [p57]

S.N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 73
(1):3-36,2011. URL https://doi.org/10.1111/3.1467-9868.2010.00749.x. [p57]

A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular time series.
Journal of Statistical Software, 14(6):1-27, 2005. URL https://doi.org/10.1007/978-0~-
387-98141-3. [p62]

Spyros E. Balafas

Bernoulli Institute for Mathematics, Computer Science & Artificial Intelligence
University of Groningen (RUG)

Bernoulliborg, Rm. 460, Nijenborgh 9

9747 AG Groningen

The Netherlands

s.balafas@rug.nl

Wim P. Krijnen

Bernoulli Institute for Mathematics, Computer Science & Artificial Intelligence
University of Groningen (RUG)

Bernoulliborg, Nijenborgh 9

9747 AG Groningen

The Netherlands

w.p.krijnen@rug.nl

Wendy |. Post

Orthopedagogy & Clinical Educational Science
University of Groningen (RUG)

Grote Rozenstraat 38

9712 T] Groningen

The Netherlands

w.J.post@rug.nl

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.18637/jss.v020.i11
https://doi.org/10.18637/jss.v048.i05
https://doi.org/10.1007/978-1-349-19051-5_9
https://doi.org/10.1093/pan/4.1.41
https://CRAN.R-project.org/package=gtools
https://doi.org/10.18637/jss.v021.i12
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1007/978-0-387-98141-3
https://doi.org/10.1007/978-0-387-98141-3
mailto:s.balafas@rug.nl
mailto:w.p.krijnen@rug.nl
mailto:w.j.post@rug.nl

CONTRIBUTED RESEARCH ARTICLES

75

Ernst C. Wit

Faculty of Science & Informatics
Universita della Svizzera Italiana (USI)
Via Buffi 13

6900 Lugano

Switzerland

wite@usi.ch

The R Journal Vol. 12/1, June 2020

ISSN 2073-4859


mailto:wite@usi.ch

CONTRIBUTED RESEARCH ARTICLES

76

tsmp: An R Package for Time Series with
Matrix Profile

by Francisco Bischoff and Pedro Pereira Rodrigues

Abstract This article describes tsmp, an R package that implements the MP concept for TS. The tsmp
package is a toolkit that allows all-pairs similarity joins, motif, discords and chains discovery, semantic
segmentation, etc. Here we describe how the tsmp package may be used by showing some of the
use-cases from the original articles and evaluate the algorithm speed in the R environment. This
package can be downloaded at https://CRAN.R-project.org/package=tsmp.

Introduction: time series data mining

A TS is a sequence of real-valued numbers indexed in time order. Usually, this sequence is taken
in a regular period of time, which will be assumed to be true in this context. The interests in TS
data mining have been growing along with the increase in available computational power. This
kind of data is easily obtained from sensors (e.g., ECG), (ir)regular registered data (e.g., weekly sales,
stock prices, brachial blood pressure). Even other kinds of data can be converted to TS format, such
as shapes (Wei et al., 2006) and DNA sequences (Shieh and Keogh, 2008). TS are generally large,
high dimensional and continuously updated which requires algorithms fast enough in order to be
meaningful. Besides, unlike other kinds of data, which usually have exact answers, TS are usually
analysed in an approximated fashion.

These characteristics have been challenging researchers to find faster and more accurate methods to
retrieve meaningful information from TS. This required one or more of these methods: dimensionality
reduction, constraints, domain knowledge, parameter tweaks. Only afterwards could the data mining
tasks be applied in feasable time. Typical tasks include motif and discord discovery, subsequence
matching, semantic segmentation, rule discovery, similarity search, anomaly detection, clustering,
classification, indexing, etc. (Fu, 2011).

This paper describes the tsmp package (Bischoff, 2018) which uses a novel approach to TS data
mining: the MP Yeh et al. (2017b), which is based on the APSS (also known as similarity join). The
APSS’ task is to, given a collection of data objects, retrieve the nearest neighbour for each object. The
remaining part of this paper is organised as follows: In Section 2 we describe the reasoning behind the
MP, in Section 3 we present the tsmp package with examples, in Section 4 we compare the performance
of the R implementation, and in Section 5 we conclude with a brief discussion.

The matrix profile

The reader may be aware of what a DM is. It is widely used in TS for clustering, classification, motif
search, etc. But, even for modestly sized datasets, the algorithms can take months to compute even with
speed-up techniques such as indexing (Shieh and Keogh, 2008; Fu et al., 2008), lower-bounding (Keogh
and Ratanamahatana, 2005), data discretization (Lin et al., 2003) and early abandoning (Faloutsos
et al,, 1994). At best, they can be one or two orders of magnitude faster.

The MP is an ordered vector that stores the Euclidean distance between each pair within a similarity
join set. One (inefficient) way would be to use the full DM of every iteration of a sliding window join
and retrieve just the smallest (non-diagonal) value of each row. The MP also has a companion vector
called PI, that gives us the position of the nearest neighbour of each subsequence.

This method has a host of interesting and exploitable properties. For example, the highest point
on the MP corresponds to the TS discord, the (tied) lowest points correspond to the locations of the
best TS motif pair, and the variance can be seen as a measure of the TS complexity. Moreover, the
histogram of the values in the MP is the exact answer to the TS density estimation. Particularly, it has
implications for TS motif discovery, TS joins, shapelet discovery (classification), density estimation,
semantic segmentation, visualisation, rule discovery, clustering, etc. (Yeh et al., 2017b).

Some of the advantages/features of this method:

e Itis exact, providing no false positives or false dismissals.

e It is simple and parameter-free. In contrast, the more general metric space APSS algorithms
require building and tuning spatial access methods and/or hash functions.

e It requires an inconsequential space overhead, just O(n) with a small constant factor.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES

77

e It is extremely scalable, and for massive datasets, we can compute the results in an anytime
fashion, allowing ultra-fast approximate solutions.

¢ Having computed the similarity join for a dataset, we can incrementally update it very efficiently.
In many domains, this means we can effectively maintain exact joins on streaming data forever.

e It provides full joins, eliminating the need to specify a similarity threshold, which is a near-
impossible task in this domain.

o It is parallelizable, both on multicore processors and in distributed systems (Zhu et al., 2016).

The tsmp package

The tsmp package provides several functions that allow for an easy workflow using the MP concept for
TS mining. The package is available from the CRAN at https://CRAN.R-project.org/package=tsmp.
In Section 3.1 we explain how to install this package. In Section 3.2 we describe the syntax for the main
functions in tsmp, giving an example of a particular model. In Section 3.3 we will further explain the
available algorithms for MP computation and its current use. In Section 3.4 we show some examples
of MP application for data mining.

Installation

The tsmp package can be installed in two ways:

The release version from CRAN:
install.packages("tsmp")
or the development version from GitHub:

# install.packages("devtools”)
devtools::install_github("franzbischoff/tsmp")

Input arguments and example

The tsmp has a simple and intuitive workflow. First, you must compute the MP of the desired TS.
Depending on the task, the user might want to follow one of three paths: univariate self-join, AB-join
or multivariate self-join. One exception is the SiMPle algorithm that is a multivariate AB-join and will
be explained in Section 3.3.

The main function is tsmp(), which has the following usage:

tsmp(..., window_size, exclusion_zone = 1/2,
mode = c("stomp”, "stamp”, "simple”, "mstomp”, "scrimp"),
verbose = 2, s_size = Inf, must_dim = NULL, exc_dim = NULL,
n_workers = 1, .keep_data = TRUE)

The first argument ellipsis (the three dots) receives one or two TS. For self-joins, the user must
input just one TS; two for AB-joins. Multivariate TS may be input as a matrix where each column
represents one dimension. Alternatively, the user may input the Multivariate TS as a list of vectors. The
second argument window_size is the size of the sliding window. These are the most basic parameters
you need to set.

Further parameters are:

* exclusion_zone, is an important parameter for self-joins. This is used to avoid trivial matches
and is a modifier of the window_size, i.e., for an exclusion_zone of 1/2, and window_size of 50,
internally the result will be 25.

¢ mode, here the user may choose the algorithm used for the MP calculation. stomp, stamp and
scrimp return equal results, although differing in some practical attributes, and they will be
further explained in Section 3.3. mstomp is designed for Multivariate TS self-join only. simple is
designed for Multivariate TS for self-join and AB-join, which will also be further explained in
Section 3.3.

* verbose, controls the verbosity of the function. 0 means no feedback, 1 means text messages
only, 2 (the default) means text messages and progress bar, and 3 also plays a sound when
finished.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES

78

* s_size, controls the anytime algorithms. This is just a way to end the algorithm in a controlled
manner because the anytime algorithms can be stopped anytime and the result will be returned.

* must_dim, is an optional argument for the mstomp algorithm. See next item.

* exc_dim, as must_dim, is an optional argument for the mstomp algorithm. These arguments con-
trol which dimensions must be included and which must be excluded from the multidimensional
MP.

* n_workers, controls how many threads will be used for the stamp, stomp, and mstomp. Note that
for small datasets, multiple threads add an overhead that makes it slower than just one thread.

* .keep_data, TRUE by default, keeps the input data inside the output object. This is useful for
chained commands.

Example data

We think that the best and simple example to demonstrate the tsmp package is the motif search.

The tsmp package imports the %>% (pipe) operator from the magrittr package that makes the tsmp
workflow easier.

The following code snippet shows an example of the workflow for motif search:

R> data <- mp_fluss_data$walkjogrun$data
R> motifs <- tsmp(data, window_size = 80, exclusion_zone = 1/2) %>%
+ find_motif(n_motifs = 3, radius = 10, exclusion_zone = 20) %T>% plot()

The find_motif () function is an S3 class that can receive as the first argument the output of tsmp()
function as a univariate or multivariate MP. This allows us to use the pipe operator easily. The plot()
function is also an S3 class extension for plotting objects from the tsmp package and works seamlessly.

Computational methods

There are several methods to compute the MP. The reason for that is the unquenchable need for
speed of the UCR's researchers. Before starting, let’s clarify that the time complexity of a brute force
algorithm has a time complexity of O(n?m), for n being the length of the reference TS and m the length
of the sliding window (query) that is domain dependent.

STAMP

This was the first algorithm used to compute the MP. It uses the MASS (Mueen et al., 2015) as the core
algorithm for calculating the similarity between the query and the reference TS, called the DP. The
ultimate MP comes from merging the element-wise minimum from all possible DP. This algorithm
has the time complexity of O(n? log 1) and space complexity of O(n) (Yeh et al., 2017b). The anytime
property is achieved using a random approach where the best-so-far MP is computed using the DP
that have been already calculated.

STOMP

This was the second algorithm used to compute the MP. It also uses the MASS to calculate the DP
but only for the first iteration of each batch. The researchers noticed that they could reuse the values
calculated of the first DP to make a faster calculation in the next iterations. This results on a time
complexity of O(n?), keeping the same space complexity of O(n). This algorithm is also suitable for
a GPU framework (although this was not yet implemented in tsmp package) (Zhu et al., 2016). The
main drawback of STOMP compared with STAMP is the lack of the anytime property. In scenarios
where a fast convergence is needed (e.g., finding the top-k motifs) it may be required only 5% of the
MP computation to provide a very accurate approximation of the final result.

SCRIMP

The SCRIMP algorithm is still experimental at the time of this article. It combines the best features of
STOMP and STAMP, having a time complexity of O(n?) and the anytime property (UCR, 2016).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES 79

SiMPle

The SiMPle algorithm is a variation designed for music analysis and exploration (Silva et al., 2018).
Internally it uses STOMP for MP computation and allows multidimensional self-joins and AB-joins.
The resulting MP is computed using all dimensions. One major difference is that it doesn’t apply any
z-normalization on the data, since for music domain this would result in spurious similarities.

mSTOMP

The mSTOMP algorithm was designed to motif search in multidimensional data (Yeh et al., 2017a).
Performing motif search on all dimensions is almost guaranteed to produce meaningless results,
so this algorithm, differently from SiMPle, doesn’t compute the MP using all dimensions naively,
but the d-dimensional MP for every possible setting of d, simultaneously, in O(dn? logd) time and
O(dn) space. The resulting MP allow motif search in multiple dimensions and also to identify which
dimensions are relevant for the motifs founded.

Data mining tasks
Motif search

In Section 3.2 we have shown a basic example of the workflow for motif search. Let’s take a look at the
result of that code:

R> motifs

Matrix Profile

Profile size = 9922

Window size = 80

Exclusion zone = 40

Contains 1 set of data with 10001 observations and 1 dimension

Motif pairs found = 2
Motif pairs indexes =

[584, 7411 [4799, 5329]
Motif pairs neighbors =

[2948, 9900, 8265] [7023, 8861, 2085, 248]

As we can see, this is a summary that tsmp package automatically generates from the resulting
object. One nice property is that the object always holds the original MP and by default also holds
the input data so that you can keep mining information from it. If the dataset is too big or you are
concerned about privacy, you may set the argument . keep_data = FALSE.

In addition to this summary, you can see the results using plot() in Figure 1:

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES

80

R> plot(motifs, type = "matrix")

MOTIF Discover

Matrix Profile (w = 80; ez = 0.5)

HWMM»MNW

distance
2 4 6 8

0 2000 4000 6000 8000 10000
index
Motif 1 Motif 2 Motif 3

g g g
© — T N S -
g 3! B < g
No© N E N
T 1 T o © i
£ 2 g T £ .
5] T T T T T 5] T T T T T o 7 T T T T
c c c

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80

length length length

Figure 1: The upper graphic shows the computed MP with each motif pair as a coloured vertical bar.

The lower graphics show each motif in colour and the founded neighbours in grey.

This dataset is the WalkJogRun PAMAP’s dataset (Reiss and Stricker, 2012). It contains the recording
of human movements in three states, walking, jogging and running. As we can see, the plot shows the
motifs of each state. Experienced readers might say that this is not the purpose of motif search, and
we agree. The result shown here was achieved using a large radius and exclusion_zone to force the
algorithm to look for distant motifs. Semantic segmentation is the proper algorithm for this task, and
we will show this in the next section.

Semantic segmentation

As previously explained, the resulting object holds the original data and MP. So let’s save some time
and use the resulting object from the last section to try to find where the human subject started to jog
and to run:

R> segments <- motifs %>% fluss(num_segments = 2)
R> segments

Matrix Profile

Profile size = 9922

Window size = 80

Exclusion zone = 40

Contains 1 set of data with 10001 observations and 1 dimension

Arc Count

Profile size = 9922
Minimum normalized count = ©0.063 at index 3448

Segments = 2
Segmentation indexes = 3448 6687

We can see that this object now holds information of the FLUSS algorithm (Gharghabi et al., 2017),
but the motif information is still there and can be retrieved using as.motif (). In Figure 2 we can see
the graphic result of the segmentation.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

81

R> plot(segments, type = "data")

Fast Low—cost Unipotent Semantic Segmentation

Arc Plot
T T T T T T
0 2000 4000 6000 8000 10000
index
Data
0 |
-
o -
w0 ]
[}
o
Er
' T T T T T T
0 2000 4000 6000 8000 10000
index
Arc count
=
2 %1
o 4
T o
D 4
N 7]
©
E S-
=
8 T T T T T T
0 2000 4000 6000 8000 10000
index

Figure 2: Semantic segmentation using MP. The upper graphic shows the arc plot of predicted
semantic changes (ground truth is 3800 and 6800). The middle graphic shows the data. The lower
graphic shows the normalised arc counts with correction for the "edge-effect" (Gharghabi et al., 2017).

Time series chains

As a final example of practical application, let’s search for a new kind of primitive: time series chains
(Zhu et al., 2018a). This algorithm looks for patterns that are not just similar but evolve through
time. The dataset used in this example is a record of the Y-axis of a mobile phone accelerometer while
placing it on a walking subject’s pocket (Hoang et al., 2015). The authors of this dataset wanted to
analyse the stability of the mobile phone as it slowly settles in the pocket. This is a good example of a
pattern that changes through time. Let’s start with the workflow for this example:

R> chains <- mp_gait_data %>% tsmp(window_size = 50, exclusion_zone = 1/4,
+ verbose = 0) %>% find_chains()
R> chains

Matrix Profile

Profile size = 855

Window size = 50

Exclusion zone = 13

Contains 1 set of data with 904 observations and 1 dimension

Chains found = 58

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

82

Best Chain size = 6
Best Chain indexes = 148 380 614 746 778 811

Here we see that the algorithm found 58 chains. Id est, it found 58 evolving patterns with at least
three elements, and the best one is presented in the last line, a chain with six elements. Figure 3 shows
the patterns discovered.

R> plot(chains, ylab = "")
Chain Discover
Arc Plot
@m» Right
L
T T T T T T T
200 300 400 500 600 700 800
index
Data
o ]
o
o ] N/\/\/\
S
! =
o
? T T T T T T T
200 300 400 500 600 700 800
index
Motifs
8
T — -
© -
s ] :::::::::::::::QEE:::j;;;:::::::::::::::
[0 I
N T
LI V
E o, ]
8 I T T T T T T
0 10 20 30 40 50
length

Figure 3: Finding evolving patterns using MP. The upper graphic shows the arc plot of the discovered
patterns. The middle graphic shows the data and the position of every pattern as a vertical coloured
line. The lower graphic shows the patterns for comparison. They are y-shifted for visualisation only.

Speed

While this new method for TS data mining is extremelly fast, we have to take into consideration that
the R environment is not as fast as a low-level implementation such as C/C++. In Table 1 we present
the comparison to the MATLAB version that is available at the UCR. Yeh et al. (2017b) shows that the
slowest algorithm (STAMP) can be hundreds of times faster than the MK algorithm (the fastest known
exact algorithm for computing TS motifs) (Yoon et al., 2015), while the R implementation is just 1.65 to
8.04 times slower than MATLAB’s, which is not a problem for an R researcher.

R> set.seed(2018)
R> data <- cumsum(sample(c(-1, 1), 40000, TRUE))

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

83

Algorithm R Time* MATLAB Time* Threads

scrimp 45.30 27.49 1
stomp 52.72 10.27 8
stomp 136.01 16.91 1
stamp 140.25 55.57 8
stamp 262.03 113.18 1

Table 1: Performances of R and MATLAB implementations on an Intel(R) Core(TM) i7-7700 CPU @
3.60GHz using a random walk dataset. *“Median of 5 trials, in seconds.

Conclusion

The examples in Section 3.4 show how straightforward the usage of tsmp package is. Regardless,
these examples are just a glimpse of the potential of the MP. Several new algorithms based on MP are
being developed and will be gradually implemented in the tsmp package (Linardi et al., 2018; Zhu
et al., 2018b; Gharghabi et al., 2018; Imani et al., 2018). Yeh et al. (2017a) for example, have developed
an algorithm to allow MDS visualisation of motifs. Gharghabi et al. (2018) have developed a new
distance measure that better suits repetitive patterns (Imani et al., 2018).

The MP has the potential to revolutionise the TS data mining due to its generality, versatility,
simplicity and scalability (UCR, 2016). All existing algorithms for MP have been proven to be flexible
to be used in several domains using very few parameters and they are also robust, showing good
performance with dimensionality reduced data and noisy data. In addition, a yet to be published
article shows a fantastic score of > 10'® pairwise comparisons a day using GPU for motif discovery
(Zimmerman et al., 2018).

The tsmp package is the first known MP toolkit available on any statistical language, and we hope
it can help researchers to better mining TS and also to develop new methods based on MP.

Acknowledgements

We would like to thank the researchers from UCR for their contribution and permission to use their
base code to be implemented in this package. Particularly to Prof. Eamonn Keogh whose work
and assistance led to this project. We also acknowledge the participation in project NanoSTIMA
(NORTE-01-0145-FEDER-000016) which was financed by the North Portugal Regional Operational
Program (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement and through the European
Regional Development Fund (ERDF).

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp

CONTRIBUTED RESEARCH ARTICLES

Acronyms

* APSS: all-pairs similarity search

* CRAN: Comprehensive R Archive Network

¢ DM: distance matrix

e DP: distance profile

¢ ECG: electrocardiogram

* FLUSS: fast low-cost unipotent semantic segmentation

* GPU: graphics processor unit

* MASS: Mueen'’s algorithm for similarity search

e MDS: multidimensional space

* MP: matrix profile

e mSTOMP: Multivariate scalable time series ordered-search matrix profile
¢ PI: profile index

® SCRIMP: Scalable column independent matrix profile

¢ SiMPle: Similarity matrix profile

e STAMP: Scalable time series anytime matrix profile

* STOMP: Scalable time series ordered-search matrix profile
¢ TS: time series

® UCR: University of California Riverside

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES

85

Bibliography

F. Bischoff. tsmp: Time Series with Matrix Profile, 2018. URL https://CRAN.R-project.org/package=
tsmp. R package version 0.3.2. [p76]

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series
databases. ACM SIGMOD Record, 23(2):419-429, jun 1994. ISSN 01635808. doi: https:/ /doi.org/10.
1145/191843.191925. [p76]

A. W. C. Fu, E. Keogh, L. Y. H. Lau, C. A. Ratanamahatana, and R. C. W. Wong. Scaling and
time warping in time series querying. VLDB Journal, 17(4):899-921, 2008. ISSN 10668888. doi:
https://doi.org/10.1007 /s00778-006-0040-z. [p76]

T. C. Fu. A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):
164-181, 2011. ISSN 09521976. doi: https://doi.org/10.1016/j.engappai.2010.09.007. [p76]

S. Gharghabi, Y. Ding, C.-C. M. Yeh, K. Kamgar, L. Ulanova, and E. Keogh. Matrix Profile VIII:
Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In 2017 IEEE
International Conference on Data Mining (ICDM), volume 2017-Novem, pages 117-126. IEEE, nov
2017. ISBN 978-1-5386-3835-4. doi: https://doi.org/10.1109/ICDM.2017.21. [p80, 81]

S. Gharghabi, S. Imani, A. Bagnall, A. Darvishzadeh, and E. Keogh. Matrix Profile XII: MPdist: A
Novel Time Series Distance Measure to Allow Data Mining in More Challenging Scenarios. In 2018
IEEE International Conference on Data Mining (ICDM), 2018. [p83]

T. Hoang, D. Choi, and T. Nguyen. On the Instability of Sensor Orientation in Gait Verification on
Mobile Phone. In Proceedings of the 12th International Conference on Security and Cryptography, pages
148-159. SCITEPRESS - Science and and Technology Publications, 2015. ISBN 978-989-758-117-5.
doi: https://doi.org/10.5220/0005572001480159. [p81]

S. Imani, F. Madrid, W. Ding, S. Crouter, and E. Keogh. Matrix Profile XIII : Time Series Snippets : A
New Primitive for Time Series Data Mining. In 2018 IEEE International Conference on Data Mining
(ICDM), 2018. [p83]

E. Keogh and C. A. Ratanamahatana. Exact indexing of dynamic time warping. Knowledge and
Information Systems, 7(3):358-386, mar 2005. ISSN 0219-1377. doi: https://doi.org/10.1007 /s10115-
004-0154-9. [p76]

J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic representation of time series, with implications
for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data
mining and knowledge discovery - DMKD 03, page 2, New York, New York, USA, 2003. ACM Press.
ISBN 978-3-642-41397-1. doi: https://doi.org/10.1145/882085.882086. [p76]

M. Linardi, Y. Zhu, T. Palpanas, and E. Keogh. Matrix Profile X: VALMOD - Scalable Discovery
of Variable-Length Motifs in Data Series. In Proceedings of the 2018 International Conference on
Management of Data - SIGMOD ’18, pages 1053-1066, New York, New York, USA, 2018. ACM Press.
ISBN 9781450347037. doi: https:/ /doi.org/10.1145/3183713.3183744. [p83]

A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. K. Gupta, and E. Keogh. The Fastest
Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance and Correlation
Coefficient, 2015. URL https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html. [p78]

A. Reiss and D. Stricker. Introducing a New Benchmarked Dataset for Activity Monitoring. In
2012 16th International Symposium on Wearable Computers, pages 108-109. IEEE, jun 2012. ISBN
978-0-7695-4697-1. doi: https:/ /doi.org/10.1109/ISWC.2012.13. [p80]

J. Shieh and E. Keogh. iSAX: indexing and mining terabyte sized time series. In Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08, page 623,
New York, New York, USA, 2008. ACM Press. ISBN 9781605581934 doi: https://doi.org/10.1145/
1401890.1401966. [p76]

D. E. Silva, C.-C. M. Yeh, Y. Zhu, G. Batista, and E. Keogh. Fast Similarity Matrix Profile for Music
Analysis and Exploration. IEEE Transactions on Multimedia, 14(8):1-1, 2018. ISSN 1520-9210. doi:
https://doi.org/10.1109/TMM.2018.2849563. [p79]

UCR. UCR Matrix Profile Page, 2016. URL http://www.cs.ucr.edu/~eamonn/MatrixProfile.html.
[p78, 83]

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=tsmp
https://CRAN.R-project.org/package=tsmp
https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

CONTRIBUTED RESEARCH ARTICLES

86

L. Wei, E. Keogh, and X. Xi. SAXually Explicit Images: Finding Unusual Shapes. In Sixth International
Conference on Data Mining (ICDM’06), pages 711-720. IEEE, dec 2006. ISBN 0-7695-2701-7. doi:
https:/ /doi.org/10.1109/ICDM.2006.138. [p76]

C.-c. M. Yeh, N. Kavantzas, and E. Keogh. Matrix Profile VI : Meaningful Multidimensional Motif
Discovery. In Proceedings - IEEE International Conference on Data Mining, ICDM, 2017a. [p79, 83]

C.C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. E. Silva, A. Mueen, and E. Keogh.
Matrix profile I: All pairs similarity joins for time series: A unifying view that includes motifs,
discords and shapelets. Proceedings - IEEE International Conference on Data Mining, ICDM, pages
1317-1322, 2017b. ISSN 15504786. doi: https://doi.org/10.1109/ICDM.2016.89. [p76, 78, 82]

C. E. Yoon, O. OReilly, K. J. Bergen, and G. C. Beroza. Earthquake detection through computationally
efficient similarity search. Science Advances, 1(11):e1501057-e1501057, dec 2015. ISSN 2375-2548. doi:
https://doi.org/10.1126 /sciadv.1501057. [p82]

Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-c. M. Yeh, and G. Funning. Matrix Profile II : Exploiting a
Novel Algorithm and GPUs to Break the One Hundred Million Barrier for Time Series Motifs and
Joins. Icdm, 54(1):739-748, jan 2016. ISSN 0219-1377. doi: https:/ /doi.org/10.1109/ICDM.2016.126.
[p77, 78]

Y. Zhu, M. Imamura, D. Nikovski, and E. Keogh. Matrix Profile VII: Time Series Chains: A New
Primitive for Time Series Data Mining. Knowledge and Information Systems, pages 1-27, jun 2018a.
ISSN 0219-1377. doi: https:/ /doi.org/10.1007 /s10115-018-1224-8. [p81]

Y. Zhu, C.-c. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh. Matrix Profile XI: SCRIMP++: Time
Series Motif Discovery at Interactive Speeds. In 2018 IEEE International Conference on Data Mining
(ICDM), 2018b. [p83]

Z. Zimmerman, K. Kamgar, Y. Zhu, N. S. Senobari, B. Crites, and G. Funning. Scaling Time Series
Motif Discovery with GPUs: Breaking the Quintillion Pairwise Comparisons a Day Barrier. ACM,
2018. doi: https://doi.org/10.1145/3357223.3362721. [p83]

Francisco Bischoff

CINTESIS - Center for Health Technology and Services Research

MEDCIDS - Community Medicine, Information and Health Decision Sciences Department
Faculty of Medicine of the University of Porto

Rua Dr. Placido Costa, s/n

4200-450 Porto, Portugal

ORCiD: 0000-0002-5301-8672

fbischoff@med.up.pt

Pedro Pereira Rodrigues

CINTESIS - Center for Health Technology and Services Research

MEDCIDS - Community Medicine, Information and Health Decision Sciences Department
Faculty of Medicine of the University of Porto

Rua Dr. Placido Costa, s/n

4200-450 Porto, Portugal

ORCiD: 0000-0001-7867-6682

pprodrigues@med.up.pt

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


mailto:fbischoff@med.up.pt
mailto:pprodrigues@med.up.pt

CONTRIBUTED RESEARCH ARTICLES

87

Individual-Level Modelling of Infectious
Disease Data: EpilLM

by Vineetha Warriyar K. V., Waleed Almutiry and Rob Deardon

Abstract In this article we introduce the R package EpilLM, which provides tools for simulation from,
and inference for, discrete-time individual-level models of infectious disease transmission proposed by
Deardon et al. (2010). The inference is set in a Bayesian framework and is carried out via Metropolis-
Hastings Markov chain Monte Carlo (MCMC). For its fast implementation, key functions are coded in
Fortran. Both spatial and contact network models are implemented in the package and can be set in
either susceptible-infected (SI) or susceptible-infected-removed (SIR) compartmental frameworks. Use
of the package is demonstrated through examples involving both simulated and real data.

Introduction

The task of modelling infectious disease transmission through a population poses a number of
challenges. One challenge is that successfully modelling many, if not most, infectious disease systems
requires accounting for complex heterogeneities within the population. These heterogeneities may be
characterized by individual-level covariates, spatial clustering, or the existence of complex contact
networks through which the disease may propagate. A second challenge is that there are inherent
dependencies in infection (or event) times.

To model such scenarios, Deardon et al. (2010) introduced a class of discrete time individual-
level models (ILMs), fitting the models to data in a Bayesian Markov chain Monte Carlo (MCMC)
framework. They applied spatial ILMs to the UK foot-and-mouth disease (FMD) epidemic of 2001,
which accounted for farm-level covariates such as the number and type of animals on each farm.
However, the ILM class also allows for the incorporation of contact networks through which disease
can spread. Once fitted, such models can be used to predict the course of an epidemic (e.g., O'Reilly
et al., 2018) or test the effectiveness of various control strategies (e.g., Tildesley et al., 2006) that can be
imposed upon epidemics simulated from the fitted model.

A third challenge when modelling disease systems is that very little software so far has been made
available that allows for simulation from, and especially inference for, individual-level models of
disease transmission. Most inference for such models is carried out in fast, low-level languages such
as Fortran or variants of C, which makes it difficult for researchers (e.g., public health epidemiologists)
without a strong background in computational statistics and programming to make use of the models.

A number of R packages have recently been developed for modelling infectious disease systems
(e.g., RO (Boelle and Obadia, 2015), EpiEstim (Cori, 2019), EpiModel (Jenness et al., 2018), and epinet
(Groendyke and Welch, 2016)). Most of these packages can be used to carry out epidemic simulation
from given models; in addition, R0 or EpiEstim, for example, can be used to calculate the (basic)
reproduction number under various scenarios. The EpiModel package allows for the simulation of
epidemics from stochastic models, primarily exponential-family random graph models (ERGMs), and
provides tools for analyzing simulation output. Functions for carrying out some limited forms of
inference are also provided. Another widely used package for monitoring and modelling infectious
disease spread through surveillance data is surveillance (Meyer et al., 2017). This package provides
for a highly flexible modelling framework for such data. However, the package does not cover
mechanistic, individual-level disease transmission models such as those of Deardon et al. (2010).

Here, we detail a novel R statistical software package EpilLM (Warriyar. K. V. et al., 2020) for
simulating from, and carrying out Bayesian MCMC-based statistical inference for spatial and/or
network-based models in the Deardon et al. (2010) individual-level modelling framework. The
package allows for the incorporation of individual-level susceptibility and transmissibility covariates
in models, provides various methods of summarizing epidemic data sets, and permits reasonably
involved scenarios to be coded up by the user due to its setting in an R framework. The main
functions, including for likelihood calculation are coded in Fortran in order to achieve the goal of agile
implementation.

The type of spatial and network-based transmission models that EpilLM facilitates can be used
to model a wide range of disease systems, as well as other transmissible processes. Human diseases
such as influenza, measles or HIV, tend to be transmitted via interactions which can be captured by
contact networks. For example, Malik et al. (2014) used a network representing whether two people
shared the same household for modelling influenza spread in Hong Kong. Networks can also be used
to characterize social or sexual relationships.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=R0
https://CRAN.R-project.org/package=EpiEstim
https://CRAN.R-project.org/package=EpiModel
https://CRAN.R-project.org/package=epinet
https://CRAN.R-project.org/package=R0
https://CRAN.R-project.org/package=EpiEstim
https://CRAN.R-project.org/package=EpiModel
https://CRAN.R-project.org/package=surveillance
https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES

88

In the livestock industries, diseases are often transmitted from farm to farm via supply trucks or
animal movements from farm to farm, or from farm to market. For example, ILM’s were used by
Kwong et al. (2013) to model the spread of porcine reproductive and respiratory syndrome (PRRS)
through Ontario swine farms via such mechanisms. Spatial mechanisms are also often important in
livestock industries (e.g., Jewell et al., 2009; Deardon et al., 2010; Kwong et al., 2013), as well as for
modelling crop diseases (e.g., Pokharel and Deardon, 2016), since airborne spread is often a key factor.

Further, these types of models can also be used to model transmissible processes other than infec-
tious disease spread. For example, Cook et al. (2007) used similar models to model the transmission of
alien species through a landscape; specifically, giant hogweed in the UK. In addition, Vrbik et al. (2012)
used spatial ILM’s to model fire spread. They looked at fire spread under controlled conditions, but
such models would likely be useful for modelling the spread of forest fires since important covariates
such as vegetation-type could be incorporated into the models.

Data from infectious disease systems are generally "time-to-event’, typically involving multiple
states. However, standard survival models (e.g., Cox (1972), Therneau (2015)) or multi-state time-to-
event models (e.g., see Jackson (2011)) are not applicable here, because in an infectious disease system
individual event times cannot be assumed independent even after conditioning on covariates. That
is, my risk of contracting and infectious disease generally depends upon the disease state of other
individuals in the population; this is not typically the case for most cancers, for example to which
more standard models can be applied.

The remainder of this paper is structured as follows: Section 2 explains the relevant models
involved in the package; Section 3 describes the contents of the package along with some illustrative
examples; and Section 4 concludes the paper with a brief discussion on future development.

Model

In our EpilLM package, we consider two compartmental frameworks: susceptible-infectious (SI) and
susceptible-infectious-removed (SIR). In the former framework, individuals begin in the susceptible
state (S) and if /when infected become immediately infectious (I) and remain in that state indefinitely. In
the latter framework, individuals once infected remain infectious for some time interval before entering
the removed state (R). This final state might represent death, quarantine, or recovery accompanied
by immunity. We consider discrete time scenarios so a complete epidemic history is represented by
t=1,2,...,teuq, where (typically) t = 1 is the time when the first infection is observed and ¢, is the
time when the epidemic ends. Hence, for a given time point ¢, an individual i belongs to one, and only
one, of the sets S(t) or I(t) if the compartmental framework is SI, and i belongs to one, and only one,
of the sets S(t), I(t), or R(t) if the compartmental framework is SIR.

Under either framework, the probability that a susceptible individual 7 is infected at time point f is
given by IP(i, t) as follows:

P(i,1) = 1— exp{-Qs(i) ¥ Qr()e(if) —e}, Qs(i) >0, Or(j) >0, & >0 1)
jel()

where: Qg (i) is a susceptibility function that accommodates potential risk factors associated with
susceptible individual i contracting the disease; Q7 (j) is a transmissibility function that accommodates
potential risk factors associated with infectious individual j contracting the disease; ¢ is a sparks term
which represents infections originating from outside the population being observed or some other
unobserved infection mechanism; and «(i, j) is an infection kernel function that represents the shared
risk factors between pairs of infectious and susceptible individuals.

The susceptibility function can incorporate any individual-level covariates of interest, such as age,
genetic factors, vaccination status, and so on. In Equation (1), Qg (i) is treated as a linear function of the
covariates, i.e., Qg(i) = wo + a1 X1 (i) + 02X (i) + - - - + a0, X, (i), where X1 (i), ..., Xy, (i) denote ng
covariates associated with susceptible individual i, along with susceptibility parameters «y, . .., a,, > 0.
Note that, if the model does not contain any susceptibility covariates then Qg (i) = ag is used. In a
similar way, the transmissibility function in Equation (1) can incorporate any individual-level covari-
ates of interest associated with infectious individual. Q7 (j) is also treated as a linear function of the
covariates, but without the intercept term, i.e., Qr(j) = ¢1X1(j) + ¢2Xo(j) + - - - + ¢u, X, (j), where
X1(j), ..., Xn, (j) denote the n; covariates associated with infectious individual j, along with transmis-
sibility parameters ¢, ..., ¢, > 0. Also note that if the model does not contain any transmissibility
covariates then Q7 (j) = 11is used.

In this package, we also consider two broad types of ILM models based on the type of the kernel
function (i, j): spatial and network-based ILMs. In the spatial-based ILMs, the infection kernel

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES

89

function is represented by the power-law function as
w(if) = d;;”,

where B is the spatial parameter that accounts for the varying risk of transmitting disease over the
Euclidean distance between individuals 7 and j, di]-. Whereas in the network-based ILMs, (i, j) can be
represented by one or more contact network matrices and is written as

K(ij) = p1 C) 4+ pu C,

0
o)

in graph theory this is more typically referred to as a (weighted) adjacency matrix. The corresponding
B(.)’s represent the effect of each of the n networks on transmission risk. In each contact network, each
individual in the population is denoted by a node and is connected by lines or edges. These connections
represent potential transmission routes through which disease can spread between individuals in the
population. If the network is unweighted, the contact matrix is treated as binary (0 or 1). If the edges

where C;/ denotes the (i, j)! element of what we term the contact matrix of a given contact network;

have weights assigned to them, then Ci(].') € R* or Cl(] ) e [0,1] are typically used. These weights can be
used to allow for different infection potential between different pairs of individuals. If the network is
undirected, the contact matrix will be symmetric; if directed, it can be non-symmetric. Finally, the C;;
(diagonal terms) are not used in the models and are typically set to C;; = 0, V.

Note that IP(7, t) gives the probability that susceptible individual i is infected at time point ¢,
representing some interval in continuous time (e.g., a day or week), but they actually become infectious
at time £ + 1.

Following Deardon et al. (2015), the likelihood function for the ILMs (1) is given by

Emax

f(S,LR|6) =[] fi(S, I,R|) (2)
t=1
where
f:(S,I,R|0) = 11 ]P(i,t)] { [I -PG1) (3)
iel(t+1)\I(t) ieS(t+1)

and where, 0 is the vector of unknown parameters, I(f + 1)\I(t) denotes all new infections observed
at t + 1in the infectious state at time ¢, and t;;;5x < t,,,4 is the last time point at which data are observed
or being simulated.

Contents of EpilLM

The EpilLM package makes use of Fortran code that is called from within R. This package can be
used to carry out simulation of epidemics, calculate the basic reproduction number, plot various
epidemic summary graphics, calculate the log-likelihood, and carry out Bayesian inference using
Metropolis-Hastings MCMC for a given data set and model. The functions involved in the package
are summarized in Table 1.

Simulation of epidemics

The function epidata() allows the user to simulate epidemics under different models and scenarios.
One can use the argument type to select the compartmental framework (SI or SIR) and population
size through the argument n. If the compartmental framework is SIR, the infectious period is passed
through the argument infperiod. Depending on whether a spatial or network model is being con-
sidered, the user can pass the arguments: x, y for location and contact for contact networks. Users
can also control the susceptibility function Qg(i) through the Sformula argument, with individual-
level covariate information passable through this argument. If there is no covariate information,
Sformula is null. An expression of the form Sformula = ~ model is used to specify the covariate
information, separated by + and - operators similar to the R generic function formula(). For example,
Og(i) = ag + a1 X(i), i = 1,...,n can be passed through the argument Sformula as Sformula = ~ 1
+ X. In a similar way, the user can control the transmissibility function Qr (i) through the Tformula
argument. Note that, the Tformula must not include the intercept term to avoid model identifiability
issues, i.e., for a model with one transmissibility covariate (X), the Tformula becomes Tformula = ~
-1 + X. The spatial (or network), susceptibility, transmissibility, and spark (if any) parameters are
passed through arguments beta, alpha, phi, and spark, respectively.

The R Journal Vol. 12/1, June 2020 ISSN 2073-4859


https://CRAN.R-project.org/package=EpiILM
https://CRAN.R-project.org/package=EpiILM

CONTRIBUTED RESEARCH ARTICLES

90

Function Output

epiBRo Calculates the basic reproduction num-
ber for a specified SIR model

epidata Simulates epidemic for the specified
model type and parameters

plot.epidata Produces spatial plots of epidemic pro-

gression over time as well as various
epidemic curves of epidata object

epidic Computes the deviance information cri-
terion for a specified individual-level
model

epilike Calculates the log-likelihood for the
specified model and data set

epimemc Runs an MCMC algorithm for the esti-
mation of specified model parameters

summary . memc Produces the summary of epimemc ob-
ject

plot.mcmc Plots epimcmc object

pred.epi Computes posterior predictions for a
specified epidemic model

plot.pred.epi Plot posterior predictions

Table 1: Description of functions and their output in the EpilLM package

The argument tmin helps to fix the initial infection time while generating an epidemic. By default,
tmin is set as time ¢t = 1. We can also specify the initial infective or infectives using the argument
inftime. For example, in a population of 10 individuals, we could choose, say, the third individual
to become infected at time point 1, using the option inftime = ¢(0,0,1,0,0,0,0,0,0,0). We could
also infect more than one individual and they could be infected at differen