The

Journal

Volume 13/1, June 2021

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial

Contributed Research Articles

SEEDCCA: An Integrated R-Package for Canonical Correlation Analysis and Partial
LeastSquares 000

npcure: An R Package for Nonparametric Inference in Mixture Cure Models.
A Method for Deriving Information from Running RCode

JMcmprsk: An R Package for Joint Modelling of Longitudinal and Survival Data with
Competing Risks.

Wide-to-tall Data Reshaping Using Regular Expressions and the nc Package
Linear Regression with Stationary Errors: the R Packageslm.
exPrior: An R Package for the Formulation of Ex-Situ Priors

penPHcure: Variable Selection in Proportional Hazards Cure Model with Time-
Varying Covariateso

The bdpar Package: Big Data Pipelining Architecture forR

Unidimensional and Multidimensional Methods for Recurrence Quantification Analy-
siswitherqa. L oL L

clustcurv: An R Package for Determining Groups in Multiple Curves.
Benchmarking R packages for Calculation of Persistent Homology
Statistical Quality Control with the qer Package

pdynmec: A Package for Estimating Linear Dynamic Panel Data Models Based on
Nonlinear Moment Conditions.

DChaos: An R Package for Chaotic Time Series Analysis
IndexNumber: An R Package for Measuring the Evolution of Magnitudes.
garchx: Flexible and Robust GARCH-X Modeling

ROBustness In Network (robin): an R Package for Comparison and Validation of
Communitieso e e e e e

Finding Optimal Normalizing Transformations via bestNormalize

Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured
Modelso

RLumCarlo: Simulating Cold Light using Monte Carlo Methods

OneStep : Le Cam’s One-step Estimation Procedure 366

The HBV.IANIGLA Hydrological Model 378
The R Package smicd: Statistical Methods for Interval-Censored Data. 396
krippendorffsalpha: An R Package for Measuring Agreement Using Krippendorft’s

Alpha Coefficient.o 413
Working with CRSP/COMPUSTAT in R: Reproducible Empirical Asset Pricing . . . 426
distr6: R6 Object-Oriented Probability Distributions InterfaceinR 444
gofCopula: Goodness-of-Fit Tests for Copulae 467
Analyzing Dependence between Point Processes in Time Using IndTestPP 499

Conversations in Time: Interactive Visualization to Explore Structured Temporal Data 516

ROCnReg: An R Package for Receiver Operating Characteristic Curve Inference With

and Without Covariates. 525
Automating Reproducible, Collaborative Clinical Trial Document Generation with the

listdown Package 556
Towards a Grammar for Processing Clinical Trial Data 563
Reproducible Summary Tables with the gtsummary Package 570
Regularized Transformation Models: The tramnet Package 581
BayesSPsurv: An R Package to Estimate Bayesian (Spatial) Split-Population Survival

Modelso e 595
stratamatch: Prognostic Score Stratification Using a Pilot Design 614

News and Notes

ChangesinR4.0-4.1o 631
Changeson CRAN L 634
News from the Bioconductor Project 637
RFoundationNewso 639
News from the Forwards Taskforce. 640
R Medicine 2020: The Power of Going Virtual 642
Conference Report of Why R? Turkey 2021 648

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications
regarding this publication should be addressed to the
editors. All articles are licensed under the Creative
Commons Attribution 4.0 International license (CC BY 4.0,
http://creativecommons.org/licenses/by/4.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Dianne Cook, Monash University, Australia

Executive editors:

Catherine Hurley, Maynooth University, Ireland
Simon Urbanek, University of Auckland, New Zealand
Gavin Simpson, Aarhus University, Denmark
Michael Kane, Yale University, USA

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
r-journal@R-project.org

The R Journal is indexed /abstracted by EBSCO, DOA]J,
Thomson Reuters.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://creativecommons.org/licenses/by/4.0/
http://journal.r-project.org/

THE R JOURNAL

Editorial

by Dianne Cook

On behalf of the editorial board, I am pleased to present Volume 13 Issue 1 of the R Journal.

First, some news about the journal board. Welcome to Gavin Simpson, who joins as a
new Executive Editor! In addition, welcome to our new Associate Editors Nicholas Tierney,
Isabella Gollini, Rasmus Badth, Mark van der Loo, Elizabeth Sweeney, Louis Aslett and
Katarina Domijan. With the large volume of submissions, the Associate Editors now play a
vital role in processing articles.

There are some new developments in the journal operations under way. We are working
on a new package rjtools which will operate a little like the devtools package and help
you to create a new article from a template, and check that it conforms to the style and
requirements of the R Journal.

We are also working on supporting articles written in RMarkdown, which will be
rendered in html through a modified distill web site. The exciting feature is that interactive
graphics could be included directly in the article. You can see how this current issue would
look in the new style at https://rjournal.r-project.org/dev. Particularly, look at articles
Conversations in Time by Wang and Cook as an example that has two examples of how
interactive graphics might be included. Other articles rendered in html are “Finding Optimal
Normalizing Transformations” by Peterson, “Automating Reproducible, Collaborative
Clinical Trial Document Generation” by Kane, Jiang and Urbanek, and “Towards a Grammar
for Processing Clinical Trial Data” by Kane. All remaining articles in the new site style are
the current pdf style.

To experiment with creating a new article, or to check that your article, conforms with
the R Journal author guidelines, go to https://rjournal.github.io/rjtools/. Note that it
is still ok to use the rticles package R Journal Rmarkdown template to create your article.
This will generate the files that are compiled to pdf using latex, but it is an easy translation
for us to convert them into the new style.

The operational support and the experiments have been supported with generous fund-
ing from the R Consortium (https://www.r-consortium.org).

Behind the scenes, several people are assisting with the journal operations and the
new developments. Mitchell O’Hara-Wild has worked on infrastructure, the new article
submission system, a new issue build system and now the new article delivery system
providing html format. H. Sherry Zhang has taken over from Stephanie Kobakian, in
developing the rjtools package including check functions for new articles to help authors
get the style constraints correct. In addition, articles in this issue have been painstakingly
copy edited by Dewi Amaliah.

In this issue

News from the R Core, CRAN, Bioconductor, the R Foundation, and the foRwards Taskforce
are included in this issue along with a summary of activities at the R Medicine and Why R?
2021 conferences.

This issue features 37 contributed research articles covering these topics:

* Multivariate analysis

- SeedCCA: An integrated R-package for Canonical Correlation Analysis and
Partial Least Squares

— Unidimensional and Multidimensional Methods for Recurrence Quantification
Analysis with crqa

— clustcurv: An R Package for Determining Groups in Multiple Curves

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=distill
https://rjournal.r-project.org/dev
https://rjournal.github.io/rjtools/
https://CRAN.R-project.org/package=rticles
https://www.r-consortium.org
https://CRAN.R-project.org/package=SeedCCA
https://CRAN.R-project.org/package=crqa
https://CRAN.R-project.org/package=clustcurv

THE R JOURNAL

- gofCopula: Goodness-of-Fit Tests for Copulae

— ROCnReg: An R Package for Receiver Operating Characteristic Curve Inference
With and Without Covariates

* Non-parametric methods

- npcure: An R Package for Nonparametric Inference in Mixture Cure Models

— ROBustness In Network (robin): an R package for Comparison and Validation of
Communities

- krippendorffsalpha: An R Package for Measuring Agreement Using Krippen-
dorff’s Alpha Coefficient

¢ Temporal and longitudinal methods

— JMcmprsk: An R Package for Joint Modelling of Longitudinal and Survival Data
with Competing Risks

- Linear Regression with Stationary Errors: the R Package slm

— penPHcure: Variable Selection in Proportional Hazards Cure Model with Time-
Varying Covariates

— pdynmc: A Package for Estimating Linear Dynamic Panel Data Models Based on
Nonlinear Moment Conditions

— DChaos: An R Package for Chaotic Time Series Analysis

— IndexNumber: An R Package for Measuring the Evolution of Magnitudes

— garchx: Flexible and Robust GARCH-X Modelling

— Working with CRSP/COMPUSTAT in R: Reproducible Empirical Asset Pricing
— Analysing Dependence Between Point Processes in Time Using Ind TestPP

— Conversations in Time: Interactive Visualisation to Explore Structured Temporal
Data

¢ Computing infrastructure

- A Method for Deriving Information from Running R Code

— Wide-to-tall Data Reshaping Using Regular Expressions and the nc Package
— The bdpar Package: Big Data Pipelining Architecture for R

- Benchmarking R packages for calculation of Persistent Homology

— distr6: R6 Object-Oriented Probability Distributions Interface in R

- Automating Reproducible, Collaborative Clinical Trial Document Generation
- Reproducible Summary Tables with the gtsummary Package

— Towards a Grammar for Processing Clinical Trial Data
¢ Simulation and optimisation

- Finding Optimal Normalizing Transformations via bestNormalize

- Package wsbackfit for Smooth Backfitting Estimation of Generalized Structured
Models

RLumCarlo: Simulating Cold Light using Monte Carlo Methods

OneStep: Le Cam’s one-step estimation procedure
The HBV.IANIGLA Hydrological Model

Regularized Transformation Models: The tramnet Package

¢ Other topics

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=gofCopula
https://CRAN.R-project.org/package=ROCnReg
https://CRAN.R-project.org/package=npcure
https://CRAN.R-project.org/package=robin
https://CRAN.R-project.org/package=krippendorffsalpha
https://CRAN.R-project.org/package=JMcmprsk
https://CRAN.R-project.org/package=slm
https://CRAN.R-project.org/package=penPHcure
https://CRAN.R-project.org/package=pdynmc
https://CRAN.R-project.org/package=DChaos
https://CRAN.R-project.org/package=IndexNumber
https://CRAN.R-project.org/package=garchx
https://CRAN.R-project.org/package=IndTestPP
https://CRAN.R-project.org/package=nc
https://CRAN.R-project.org/package=bdpar
https://CRAN.R-project.org/package=distr6
https://CRAN.R-project.org/package=gtsummary
https://CRAN.R-project.org/package=bestNormalize
https://CRAN.R-project.org/package=wsbackfit
https://CRAN.R-project.org/package=RLumCarlo
https://CRAN.R-project.org/package=OneStep
https://CRAN.R-project.org/package=HBV.IANIGLA
https://CRAN.R-project.org/package=tramnet

THE R JOURNAL

— exPrior: An R Package for the Formulation of Ex-Situ Priors

— BayesSPsurv: An R Package to Estimate Bayesian (Spatial) Split-Population
Survival Models

— Statistical Quality Control with the qcr Package
— The R Package smicd: Statistical Methods for Interval-Censored Data

— stratamatch: Prognostic Score Stratification Using a Pilot Design

Happy reading, and code testing!

Dianne Cook
Monash University

https://journal.r-project.org
r-journal@r-project.org

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=BayesSPsurv
https://CRAN.R-project.org/package=qcr
https://CRAN.R-project.org/package=smicd
https://CRAN.R-project.org/package=stratamatch
https://journal.r-project.org
mailto:r-journal@r-project.org

CONTRIBUTED RESEARCH ARTICLES

SEEDCCA: An Integrated R-Package for
Canonical Correlation Analysis and Partial

Least Squares
by Bo-Young Kim, Yunju Im and Jae Keun Yoo

Abstract Canonical correlation analysis (CCA) has a long history as an explanatory statistical method
in high-dimensional data analysis and has been successfully applied in many scientific fields such as
chemometrics, pattern recognition, genomic sequence analysis, and so on. The so-called seedCCA is a
newly developed R package that implements not only the standard and seeded CCA but also partial
least squares. The package enables us to fit CCA to large-p and small-n data. The paper provides a
complete guide. Also, the seeded CCA application results are compared with the regularized CCA in
the existing R package. It is believed that the package, along with the paper, will contribute to high-
dimensional data analysis in various science field practitioners and that the statistical methodologies
in multivariate analysis become more fruitful.

Introduction

Explanatory studies are important to identify patterns and special structures in data prior to developing
a specific model. When a study between two sets of a p-dimensional random variables X (X € IR?) and
an r-dimensional random variable Y (Y € R"), are of primary interest, one of the popular explanatory
statistical methods would be canonical correlation analysis (CCA; Hotelling (1936)). The main goal of
CCA is the dimension reduction of two sets of variables by measuring an association between the two
sets. For this, pairs of linear combinations of variables are constructed by maximizing the Pearson
correlation. The CCA has successful application in many scientific fields such as chemometrics, pattern
recognition, genomic sequence analysis, and so on.

In Lee and Yoo (2014), it is shown that the CCA can be used as a dimension reduction tool for
high-dimensional data, but also it is connected to the least square estimator. Therefore, the CCA is not
only an explanatory and dimension reduction method but also can be utilized as an alternative to least
square estimation.

If max(p, r) is bigger than or equal to the sample size, n, usual CCA application is not plausible
due to no incapability of inverting sample covariance matrices. To overcome this, a regularized CCA is
developed by Leurgans et al. (1993), whose idea was firstly suggested in Vinod (1976). In practice, the
CCA package by Gonzalez et al. (2008) can implement a version of the regularized CCA. To make the
sample covariance matrices saying £, and):.y, invertible, in Gonzalez et al. (2008), they are replaced
with

2Y =5+ MLyand £ = £, + A1,
x x 11p Y y 11r

The optimal values of A1 and A, are chosen by maximizing a cross-validation score throughout the
two-dimensional grid search. Although it is discussed that a relatively small grid of reasonable values
for A1 and A, can lesson intensive computing in Gonzalez et al. (2008), it is still time-consuming as
observed in later sections. Additionally, fast regularized CCA and robust CCA via projection-pursuit
are recently developed in Cruz-Cano (2012) and Alfons et al. (2016), respectively.

Another version of CCA to handle max(p,r) > n is the so-called seeded canonical correlation
analysis proposed by Im et al. (2014). Since the seeded CCA does not require any regularization
procedure, which is computationally intensive, its implementation to larger data is quite fast. The
seeded CCA requires two steps. In the initial step, a set of variables bigger than 7 is initially reduced
based on iterative projections. In the next step, the standard CCA is applied to two sets of variables
acquired from the initial step to finalize the CCA of data. Another advantage is that the procedure of
the seeded CCA has a close relation with partial least square, which is one of the popular statistical
methods for large p-small # data. Thus the seed CCA can yield the PLS estimates.

The seedCCA package is recently developed mainly to implement the seeded CCA. However, the
package can fit a collection of the statistical methodologies, which are standard canonical correlation
and partial least squares with uni/multi-dimensional responses, including the seeded CCA. The
package is already uploaded to CRAN (https://cran.r-project.org/web/packages/seedCCA/index.
html).

The main goal of the paper is to introduce and illustrate the seed CCA package. Accordingly, three
real data are fitted by the standard CCA, the seeded CCA, and partial least square. Two of the three
data are available in the package. One of them has been analyzed in Gonzdlez et al. (2008). So, the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://cran.r-project.org/web/packages/seedCCA/index.html
https://cran.r-project.org/web/packages/seedCCA/index.html

CONTRIBUTED RESEARCH ARTICLES

implementation results by the seeded and regularized CCA are closely compared.

The organization of the paper is as follows. The collection of three methodologies is discussed in
Section 2. The implementation of seed CCA is illustrated, and compared with CCA in Section 3. In
Section 4, we summarize the work.

We will use the following notations throughout the rest of the paper. A p-dimensional random
variable X will be denoted as X € R”. So, X € IR means a random variable, although there is no
specific mention. For X € R” and Y € R", we define that cov(X) = Zy, cov(Y) = Ly, cov(X,Y) = Zyy,
and cov(Y,X) = Lyx. Moreover, it is assumed that L, and Z, are positive-definite.

Collection of implemented methodologies in seedCCA

Canonical correlation analysis

Suppose the two sets of variable X € R¥ and Y € R" and consider their linear combinations of
U = a"™ and V = bTY. Then we have var(U) = a’Exa, var(V) = bTEZ,b, and cov(U, V) = aTEy,b,
where a € RP*! and b € R™!. Then Pearson-correlation between U and V is as follows:

aTnyb
valZya, /bTZyb.

We seek to find a and b to maximize cor(U, V) by satisfying the following criteria.

cor(U,V) = 1)

1. The first canonical variate pair (U; = a{X, V= bTY) is obtained from maximizing (1).
2. The second canonical variate pair (U = alX, V5 = blY) is constructed from the maximization
of (1) with restriction that var(U,) = var(V,) = 1 and (U, V1) and (Uy, V2) are uncorrelated.

3. At the k step, the kth canonical variate pair (U, = aEX, Vi = bEY) is obtained from the
maximization of (1) with restriction that var(Uy) = var(V;) = 1 and (U, V4) are uncorrelated
with the previous (k — 1) canonical variate pairs.

4. Repeat Steps 1 to 3 until k becomes q (= min(p,r)).

5. Select the first d pairs of (Uy, V}) to represent the relationship between X and Y.

Under this criteria, the pairs (a;, b;) are constructed as follows: a; = Z;l/ 21/Ji and b; = L, 1/ 247,- for
i=1,...,q,where ({1,..,5) and (¢1, ..., ¢;) are, respectively, the g eigenvectors of 2;1/22,@2;12%2;1/2
and I, v ZZWZ;leyZ;l/ 2 with the corresponding common ordered-eigenvalues of p{z > >
p;z > 0. Then, matrices of My = (ay,..,ag) and My = (by, ..., by) are called canonical coefficient

matrices ford =1, ...,q. Also, MIX and M;Y are called canonical variates. In the sample, the population
quantities are replaced with their usual moment estimators. For more details regarding this standard

CCA, readers may refer to Johnson and Wichern (2007).

Seeded canonical correlation analysis

Since the standard CCA application requires the inversion of £, and)f'.y in practice, it is not plausible
for high-dimensional data with max(p,r) > n. In Im et al. (2014), a seeded canonical correlation
analysis approach is proposed to overcome this deficit. The seeded CCA is a two-step procedure
consisting of initialized and finalized steps. In the initialized step, the original two sets of variables are
reduced to m-dimensional pairs without loss of information on the CCA application. In the initialized
step, it is essential to force m << n. In the finalized step, the standard CCA is implemented to the
initially-reduced pairs for the repairing and orthonormality. A more detailed discussion on the seeded
CCA is as follows in the next subsections.

Development

Define a notation of S(M) as the subspace spanned by the columns of M € RP*" . Lee and Yoo (2014)
show the following relation:

S(My) = S(E;'Eyy) and S(My) = S(Z; 'yx). 2)

The relation in (2) directly indicates that My and M,, form basis matrices of S(Z;1Zy,) and S (Zy, 1)
and that My and M, can be restored from z;lzxy and Zy’ 1Zyx.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Now, we define the following two matrices:
Ry, € R = (I, ZyEyy,..., 2011,) and
Ryu, € R7P2 = (g, EyZyy,... Ky 'Ey). ©)

In Ry, and Ry, the numbers of 11 and u; are called termination indexes. They decide the number
of projections of Ly and E,y onto Iy and Xy, respectively. Also define that

Mg,ul ERPY = Ryy, (Rl,ulszx,uq)71R},ulzxy and
My, € R”P = Ryu,(Ry,, ZyRyuw) 'Ry, Ty (4)

In Cook et al. (2007), it is shown that S(MY,,) = S(E;'Ly) and SM),,,) = S(E, 'Eyx) in (4).
Hence M%m and MS,uZ can be used to infer My and My, respectively. One clear advantage to use

O O . . .
M; ., and My, is no need of the inversion of £, and Z;.

Practically, it is important to select proper values for the termination indexes u; and u; as they

define that Ay, = Mg/ w1~ M), and Ay, = MS/ o+l — Mﬁ,uz~ Finally, the following measure for

increment of 1y and u is defined: nFy,, = ntrace(A} , ZxAy,,) and nFy, = ntrace(A;MZZyAy,uz).
Then, a proper value of u is set to have little changes in nFy,,, and nFy,, 1 and in nFy,, and nF,, 1.
g,uz

Next, the original two sets of variables of X and Y are replaced with Mg;1 X e R and MS,EZY €
RP. This reduction of X and Y does not cause any loss of information on CCA in the sense that

SM?,) = S(M,) and S(Mg/uz) = 8(My), and it is called initialized CCA. The initialized CCA has

X, U1
the following two cases.

It is not necessary that the selected u; and u; for Mg/ul and M;, ,, are common.

case 1: Suppose that min(p,r) = r << n. Then, the original X alone is replaced with M2 | X
and the original Y is kept.

case 2: If min(p, r) = r is not fairly smaller than 1, X, and Z,, are replaced by their m largest
eigenvectors in the construction of Ry,u;, Ry,u,, Mg/ul and Mgm. The following two ways to
determine a proper value of 1 is recommended among many. One is a graphical determination
by a scree plot for eigenvalues of Zyy. The other is the number of eigenvalues whose sum is to
cover 90% or above of the total variations of Zyy.

The primary goal in the initialized step is the reduction of X and Y less than n without loss of
information on CCA. In case 1, X and Y are reduced to r-dimensional variates, while they are replaced
with the m-dimensional sets of variables in case 2. After the initialized step, r and m are fairly smaller
than n.

The next step is to conduct the standard CCA for M?C,Elx and MO,EZY for the repairing and
orthonormality. This CCA application is called finalized CCA. Finally, this two-step procedure for CCA

is called seeded CCA.

Partial least squares

The main goal of the two CCA methods is dimension reduction based on the joint relation of X and Y
rather than the conditional relation of Y|X. For simplicity, in this subsection, Y with r = 1 is assumed
as a response variable in a regression of Y|X.

Recall Ry 4, in (3) and Mg/u ,in (4):

Ry, = (Zay, ExEay, E2Exy, ..., B4 ' Eyy) and MY

XUy

= Ry, (R, xR,) 'R, oy

XU XU

According to Helland (1990), the population partial least square (PLS) with u components on the
regression of Y|X is as follows:

ﬁLl],PLS = M())(,Lll' (5)

It is noted that this PLS representation in (5) is equivalent to the canonical matrix for X via the seeded
CCA.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

10

Illustration of seedCCA package

Outline of seedCCA package

The methods discussed in the previous section are implemented through the main function seedCCA.
Its arguments are as follows.

seedCCA(X, Y, type="seed2”, ux=NULL, uy=NULL, u=10, eps=0.01, cut=0.9, d=NULL, AS=TRUE,
scale=FALSE)

The main function seedCCA returns “seedCCA” class and three subclasses depending on the values
of type. The values of type and its resulting subclasses are as follows.

type="cca": standard CCA (max(p,r) < n and min(p,r) > 1) / “final CCA” subclass
type="cca": ordinary least squares (max(p,r) < n and min(p,r) = 1) / “seedols” subclass
type="seed1": seeded CCA with casel (max(p,r) > n) / “finalCCA” subclass
type="seed2": seeded CCA with case2 (max(p,r) > n) / “finalCCA” subclass
type="pls": partial least squares (p > n and r < n) / “seedpls” subclass

The function seedCCA prints out estimated canonical coefficient matrices for all subclasses, and addi-
tionally does canonical correlations for “final CCA” subclasses, although it produces more outputs. For
details, the readers are recommended to run ?seedCCA after loading the seedCCA package. It should
be noted that the seed CCA package must be loaded before using all functions in the package.: of CCA
and corpcor (Schafer et al. (2017)).

For illustration purpose, three data sets will be considered. Pulp data is used for the standard CCA,
which is available from the author’s webpage (http://home.ewha.ac.kr/~yjkstat/pulp.txt). For
the seeded CCA, along with the comparison with the regularized CCA and the partial least squares,
cookie and nutrimouse in seed CCA package will be illustrated.

Standard CCA: pulp data

Pulp data is measurements of properties of pulp fibers and the paper made from them. It contains two
sets of variables with 62 sample sizes. The first set, Y, is for the pulp fiber characteristics, which are
arithmetic fiber length, long fiber fraction, fine fiber fraction, and zero spans tensile. The second set, X,
is regarding the paper properties such as breaking length, elastic modulus, stress at failure, and burst
strength. To implement the standard CCA application, the function seedCCA with type="cca" should
be used. In this case, seeCCA results in the “final CCA” subclass. The function requires two matrix-type
arguments, and it returns the following five components of cor, xcoef, ycoef, Xscores and Yscores.
The first component is cor is the sample canonical correlations. The next two ones, xcoef, and ycoef,
are the estimated canonical matrices for X and Y. The last two components, which are Xscores and
Yscores, are the estimated canonical variates for X and Y. A command plot(object) constructs a plot
of the cumulative correlations against the number of canonical pairs. The plot (object) will provide a
90% reference line as default, and users can change the reference line with plot(object, ref=percent).

loading pulp data

> pulp <- read.table("http://home.ewha.ac.kr/~yjkstat/pulp.txt”, header=TRUE)
> Y <- as.matrix(pulp[,1:41)

> X <- as.matrix(pulp[,5:81)

standard CCA for X and Y
> fit.cca <- seedCCA(X, Y, type="cca")
NOTE: The standard CCA is fitted for the two sets.

> names(fit.cca)

[1] "cor” "xcoef"” "ycoef” "Xscores" "Yscores”
plotting cumulative canonical correlation

> par(mfrow=c(1, 2))

> plot(fit.cca, ref=80)

> plot(fit.cca)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://home.ewha.ac.kr/~yjkstat/pulp.txt

CONTRIBUTED RESEARCH ARTICLES

11

80
o
80
1
()

60
|
60
|

20
|

Percent of cumulative canonical correlation
Percent of cumulative canonical correlation

T T T T T T T T T T T T T T
1.0 1.5 2.0 25 3.0 35 4.0 1.0 15 20 25 3.0 35 40

Number of canonical pairs Number of canonical pairs

Figure 1: Cumulative canonical correlation plot in pulp data in Section 3.2

first two canonical pairs
> X.cc <- fit.cca$Xscores[,1:2]
> Y.cc <- fit.cca$Yscores[,1:2]

According to Figure 1(a) and (b), with 80% cumulative canonical correlations, two canonical pairs are
enough, while three canonical pairs should be good with the default 90%.

Ordinary least squares: pulp data

If the dimension of either X or Y is equal to one, the estimated canonical coefficient matrix from
the standard CCA is equivalent to that from ordinary least squares. In such case, the command
seedCCA(X, Y[, 1], type="cca") results in the ordinary least squares estimate, which is “seedols” sub-
class. The output of "seedols" has three components, which are the estimated coefficients and
the two sets of variables. For example, assume that a regression study of arithmetic fiber length,
which is the first column of Y, given X is of specific interest. It should be noted that the order
of seedCCA(X,Y[,1],type="cca") and seedCCA(Y[,1],X, type="cca") does not matter, and any of
them yields the same results. Also, the commands of coef(object) and fitted(object) return the
estimated coefficients and fitted values from the ordinary least squares, respectively.

extracting arithmatic fiber from Y

> fit.ols <- seedCCA(X, Y[, 1], type="cca")

NOTE: One of the two sets are 1-dimensional, so a linear regression via ordinary least
square is fitted.

> names(fit.ols)
[1] "coef” "X" "y”

> coef(fit.ols)
> fitted(fit.ols)

Seeded CCA (case 1): cookie data

The biscuit dough data set called cookie in seedCCA comes from the experiment of analyzing the
composition of biscuits by NIR spectroscopy. Two sets of variables are obtained from 72 biscuit
samples. The first set of variables is wavelengths measured by spectroscopy. In the original data set,
wavelengths at 700 different points from 1100 to 2798 nanometers (NM) at the steps of 2nm were
measured. However, since some of the figures seemed to contain little information, wavelengths from
1380nm to 2400 at an interval of 4nm were analyzed. The second set of variables is the percentages of
four ingredients: biscuits- fat, sucrose, dry flour, and water. Since the 23rd and 61st samples in the
data set were believed to be outliers, they were deleted from the data set. The standard CCA is not
applicable because of p = 256 > n = 72, and case 1 of the seeded CCA should be fitted, considering
thatn =72 >>r =4.

The basic command for this is seedCCA(X, Y, type="seed1"), which results in “final CCA” subclass.
Regardless of the order of X and Y, the lower dimensional set alone is reduced in the initial step.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Therefore, seedCCA(X, Y, type="seed1") and seedCCA(Y, X, type="seed1") basically produce the same
seeded CCA results. For type="seed1", the values of the options of ux, uy, u, eps, and AS affect the
implementation, whose defaults are NULL, NULL, 10, 0.01, and TRUE, respectively.

Option u controls the maximum number of projections unless both ux and uy are specified. The
option ux=k works only when the dimension of the first set X is bigger than that of the second set Y.
Then, the maximum number of projections becomes the value given in ux=k. The option uy works
in the opposite way to ux. The options of AS=TRUE and eps control automatic termination of the
projections before reaching the maximum given in u, ux, or uy. The projection is terminated if the
increment gets less than the value given in eps. Then, the first candidate value, which satisfies the
stopping criteria, is suggested as a proper value of projections. If any of ux, uy, and u are specified not
enough to guarantee the automatic stopping, a notice is provided to increase it.

After running seedCCA(X,Y, type="seed1"), a plot for the proper selection of u is automatically
constructed, and a blue vertical bar in the plot is the suggested value of u.

loading cookie data

> data(cookie)

> myseq<-seq(141, 651, by=2)

> A <- as.matrix(cookie[-c(23, 61), myseql)

> B <- as.matrix(cookie[-c(23, 61), 701:7041])

seedec CCA with case 1

> fit.seedl.ab <- seedCCA(A, B, type="seed1") ## the first set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> fit.seedl.ba <- seedCCA(B, A, type="seed1") ## the second set A has been initial-CCAed.
NOTE: Seeded CCA with case 1 is fitted. The set with larger dimension is initially reduced.
The first and second sets are denoted as X and Y, respectively.

> names(fit.seedl.ab)
[1] "cor” "xcoef” "ycoef” '"proper.u” "initialMX@" "newX" "Y" "Xscores” "Yscores"

> names(fit.seedl.ba)
[1] "cor" "xcoef" "ycoef" "proper.u” "X" "initialMY@" "newY" "Xscores"” "Yscores"

> fit.seedl.ab$xcoef[, 3] <- -fit.seedl.ab$xcoef[, 3] ## changing the sign
> fit.seedl.ab$xcoef[, 4] <- -fit.seedl.ab$xcoef[, 4] ## changing the sign

> all(round(fit.seedl.ab$cor, 5)== round(fit.seedl.ba$cor, 5))
[1] TRUE

> fit.seedl.ab$proper.u
[11 3

> fit.seedl.ba$proper.u
[1]1 3

> all(round(fit.seedl.ab$xcoef, 5) == round(fit.seedl.ba$ycoef, 5))
[1] TRUE

> fit.seedl.ab.ux <- seedCCA(A, B, type="seedl”, ux=2)
The maximum number of iterations is reached. So, users must choose u bigger than 2.

> fit.seedl.ab.ux$proper.u
[1] 2

For fit.seed1.ab, the first set A is reduced in the initial step. The output component initialMXe
is the estimate of Mglul and newX is I\A/IS)(LX. On the contrary, in case of fit.seed1.ba, the second
set A is initially reduced, so initialMY@ and newY are produced. So, it is observed that the canon-
ical correlations and suggested values of u from fit.seed1.ab and fit.seed1.ba are equal, not to
mention that fit.seedl.ab$xcoef and fit.seed1.ba$ycoef are the same. The selection plot for u
is reported in Figure 2, and three projections are suggested. Since ux is not given big enough in

seedCCA(A,B, type="seed1",ux=2), the following warning is given:

The maximum number of iterations is reached. So, users must choose u bigger than 2.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

13

15 20
1 |

n*Fu
10
|

1to2 2t03 304 4105

u

Figure 2: Selection plot of u generated from seedCCA(A, B, type="seed1") in Section 3.4

Next, we change the values of ux, uy, AS, and eps. Since the usage of these options for type="seed1"”
are the same as that for type="seed2” and type="pls". To measure the computing time, the tictoc
package (Izrailev (2014)) is used with Intel(R) Core(TM)i7 2.9GHz and 12GB Ram computer.

> seedCCA(A, B, type="seedl1”, ux=5)$proper.u

[113

> seedCCA(B, A, type="seed1"”, eps=0.000001)S$proper.u
[11 4

> library(tictoc)

> tic()

> seedCCA(B, A, type="seedl”, u=30)$proper.u

> toc()

0.03 sec elapsed

> tic()

> seedCCA(B, A, type="seedl”, u=30, AS=FALSE)$proper.u
> toc()

0.29 sec elapsed

Usage of AS should be noted. With bigger choices of u and AS=FALSE, the running time of the function
will be longer.

Seeded CCA (case 2) versus Regularized CCA: nutrimouse data

The nutrimouse data was collected from a nutrition study in 40 mice (n = 40). One of two sets of
variables was expressions of 120 genes measured in liver cells by microarray technology. The other set
of variables was concentrations of 21 hepatic fatty acids(FA) measured through gas chromatography.
In addition, the forty mice are cross-classified based on two factors, genotype and diet. There are
two genotypes, wild-type (WT) and PPAR« deficient (PPAR«) mice and five diets: corn and colza oils
(50/50 REF), hydrogenated coconut oil for a saturated FA diet (COC), sunflower oil for w6 FA-rich
diet (SUN), linseed oil for w3-rich diet (LIN) and corn/colza/enriched fish oils (42.5/42.5/15, FISH).
The nutrimouse data is contained in the seed CCA package.

In this data, case 2 of the seeded CCA should be used because min(120,21) is relatively big
compared to n = 40. Then, case 2 of the seeded CCA requires to choose how many eigenvectors of)f‘.xy
should be enough to replace it. This is another tuning parameter for case 2 of the seeded CCA along
with the number of projections. The option cut in seedCCA controls automatic selection of the number
of eigenvectors of)f'.xy. The option cut=a determines a set of the eigenvectors whose cumulative
proportions of their corresponding eigenvalues is bigger than equal to a. For the set of eigenvectors to
be chosen conservatively, we set the default of cut at 0.9. Also, users can directly give the number of
eigenvectors using d. Unless d is NULL, the option cut is discarded. This means that cut works only
when d=NULL. If users want to use d, then a function covplot should be run first. The function covplot
has the option mind, which set the number of the eigenvalues to show their cumulative percentages.
Its default is NULL, and then it becomes min(p, r). The function returns the eigenvalues, the cumulative

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Scree Plot of cov(X,Y)

Eigenvalues

5 10
FTTTTTTTTT 1

0.449 0.979 0.997 1
Number of Dimensions

Figure 3: Scree plots for the selection of sets of eigenvectors to replace cov(X,Y) generated from
covplot(X, Y, mind=10) in Section 3.5

percentages, and the number of the eigenvectors to account for 60%, 70%, 80%, and 90% of the total
variation along with the scree plot of the eigenvalues.

The results of the seeded and regularized CCAs are compared. Since the regularized CCA is
necessary to choose proper values of the two parameters, we compare running times for the automatic
searches for the regularized and seeded CCAs via the tictoc package. For seedCCA, we use the default
value of cut.

> library(CCA)
> library(tictoc)

loading nutrimouse data

> data(nutrimouse)

> X <- scale(as.matrix(nutrimouse$gene))
> Y <- scale(as.matrix(nutrimouse$lipid))

determining the number of the eigenvectors of cov(X,Y) with cut=0.9
> tic("SdCCA™)

> fit.seed2 <- seedCCA(X, Y)

> toc()

SdCCA: 0.13 sec elapsed

finding the optimal values of lambdal and lambda2 for RCCA

> tic("Regularized CCA")

> res.regul <- estim.regul(X, Y, plt=TRUE, gridl=seq(0.0001, 0.2, 1=51), grid2=seq(@, 0.2, 1=51))
> toc()

Regularized CCA 819.58 sec elapsed

scree plot of cov(X, Y)
> names(covplot(X, Y, mind=10))
[1] "eigenvalue” "cum.percent” "num.evecs”

> names(fit.seed2)
[1] "cor” ‘"xcoef" "ycoef” ‘"proper.ux" "proper.uy" "d" "initialMX@" "initialMY®@"
[9] "newX" "newY" "Xscores" "Yscores"

> fit.seed2%d
[11 3

Since type="seed2" reduces the dimensions of X and Y at the initialized CCA step, the output compo-
nents of initialMX@, initialMY®, newX and newY and d are reported.

The plot generated from covplot(X,Y,mind=10) is given in Figure 3. According to Figure 3, the
first two, three, and four eigenvalues account for 79.6%, 91.8%, and 95.9% of the total variation of)ixy,
respectively. Using 90% conservative guideline, it is determined that the first three largest eigenvectors
replace ﬁxy well enough.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

15

o _ o
N N
0 _| 0 |
- -
x
5 o ;] o _|
[~ [—
< o
n - ° n 40\
°\\ // \\ e o — o °
o ° ~ N
o o
T T T T T T 1 T T T T T 1
1to2 3to4 5t0 6 7t08 1to2 3to4 5t06 7t08
ux uy

Figure 4: Selection plot of ux and uy generated from seedCCA(X, Y) in Section 3.5

The selection plot of ux and uy is given in Figure 4. The figure suggests that 1, and u,, are equal to
7 and 6, respectively.

Now we compare the parameter selection time. For the regularized CCA, it can be done with
estim.regul, and users must provide a small enough range for them to reduce the computing time.
The resulted optimal A1 and A, are 0.168016 and 0.004, respectively. With Intel(R) Core(TM)i7 2.9GHz
and 12GB Ram, the seeded CCA took 0.32 seconds, while 819.58 seconds, around 13.5 minutes, lapsed
for the regularized CCA. This difference is really huge, so time consumed in the selection of ux, uy and,
d is trivially small compared to the regularized CCA. This is a clear desirable aspect and advantage of
the seeded CCA over the regularized one.

Next, we compare the first two pairs of estimated canonical variates. The results shown in Figures
5-6 are equivalent to the analysis discussed in Gonzalez et al. (2008).

Extracting the first two pairs of canonical variates
> sx1 <- fit.seed2$Xscores[, 1]
> sx2 <- fit.seed2$Xscores[, 2]
> syl <- fit.seed2$Yscores[, 1]
> sy2 <- fit.seed2$Yscores[, 2]

fitting the regularized CCA

res.rcc <- rcc(X, Y, 0.168016, 0.004)
RCCA.X <= X%x%res.rcc$xcoef

RCCA.Y <- Y%x%res.rcc$ycoef

rx1 <- RCCA.X[,1]

rx2 <- RCCA.X[,2]

ryl <- RCCA.Y[,1]

ry2 <- RCCA.Y[,2]

V V V V V VYV

par(mfrow=c(1,2))

with(plot(rx1, ryl, col=c(2,4)[genotypel, pch=c(1,2)[genotypel,

main="1st pair from RCCA", xlab="rx1", ylab="ry1"), data=nutrimouse)
with(legend(-1.4, 1.4, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
data=nutrimouse)

with(plot(-sx1, -syl1, col=c(2,4)[genotypel, pch=c(1,2)[genotypel,

main="1st pair from seedCCA"”, xlab="sx1", ylab="sy1"), data=nutrimouse)
with(legend(-1.5, 1.6, legend=levels(genotype), col=c(2,4), pch=c(1,2), cex=1.5),
data=nutrimouse)

+ v + v + Vv + vV

par (mfrow=c(1,2))

with(plot(rx2, ry2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
main="2nd pair from RCCA", xlab="rx2", ylab="ry2"), data=nutrimouse)
with(legend(-2.3, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),
data=nutrimouse)

with(plot(sx2, sy2, col=c(1:4,6)[diet], pch=c(15,16,17,18,20)[diet], cex=1.5,
main="2nd pair from seedCCA", xlab="sx2", ylab="sy2"), data=nutrimouse)
with(legend(-2.5, 1.9, legend=levels(diet), col=c(1:4,6), pch=c(15:18,20)),

+ Vv + v + Vv Vv

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

16

1st pair from RCCA

15

o wt
A ppar

1.0

ryl
0.5

0.0

-0.5
|

B

1.5

-15 -1.0

Figure 5:
genotype in Section 3.5

-0.5

0.0 0.5

rx1l

2nd pair from RCCA

1.0

15

°p

= coc
fish
A lin
o 4 . ref
sun
o
N
=l
o 4 |]
u
¢4 .
u
T T
-2 -1

Figure 6: the second pair of canonical variates from regularized CCA and seeded CCA marked with

diet in Section 3.5

+ data=nutrimouse)

According to Figures 5-6, the first pair of canonical variates from both CCAs distinguish genotype
very well, but their second pairs marked with diet are quite complex. To have more insight into
the results for the second pair on a diet, multivariate analysis of variance is fitted. Further pairwise
comparison is done via Ismeans (Lenth (2016)) with level 5% and p-values adjusted by false discovery

™~<2

rate Benjamini and Hochberg (1995).

> library(lsmeans)

syl

sy2

15

1.0

0.5

0.0

-15 -10 -05

1st pair from seedCCA

o wt N

A ppar oAb
N '
oA

-15

T T T T T
-1.0

sx1

2nd pair from seedCCA

-05 0.0 0.5 1.0

T T
15 2.0

the first pair of canonical variates from regularized CCA and seeded CCA marked with

- coc A
.« fish *A
A in A & ° °
. ref
- sun .
.
.
A
. o Be
- .
e A
* A, -
m
]
-
|
]
T T T T
-2 -1 0 1 2

sx2

> fit2r <- manova(cbind(rx2, ry2)~diet, data=nutrimouse)
> fit3sd <- manova(cbind(sx2, sy2)~diet, data=nutrimouse)

> test(contrast(lsmeans(fit2r, "diet"), "pairwise"”), side = "=",
contrast estimate SE df t.ratio p.value
coc - fish -2.3842686 0.2684019 35 -8.883 <.0001
coc - lin -2.1749708 0.2684019 35 -8.103 <.0001
coc - ref -1.4881111 0.2684019 35 -5.544 <.0001
coc - sun -1.6582635 0.2684019 35 -6.178 <.0001
fish - lin 0.2092978 0.2684019 35 ©.780 0.4897
fish - ref 0.8961575 0.2684019 35 3.339 0.0040
fish - sun 0.7260051 0.2684019 35 2.705 0.0175
lin - ref 0.6868597 0.2684019 35 2.559 0.0214
lin - sun 0.5167073 0.2684019 35 1.925 0.0780
ref - sun -0.1701524 0.2684019 35 -0.634 0.5302

Results are averaged over the levels of: rep.meas

P value adjustment: fdr method for 10 tests

The R Journal Vol. 13/1, June 2021

adjust = "fdr")

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

> test(contrast (lsmeans(fit3sd, "diet"), "pairwise"), side = "=", adjust = "fdr")
contrast estimate SE df t.ratio p.value
contrast estimate SE df t.ratio p.value
coc - fish -2.14838660 0.3163067 35 -6.792 <.0001
coc - lin -1.79396325 0.3163067 35 -5.672 <.0001
coc - ref -1.07697196 ©.3163067 35 -3.405 0.0035
coc - sun -1.03303440 0.3163067 35 -3.266 0.0041
fish - 1lin ©.35442334 0.3163067 35 1.121 0.3001
fish - ref 1.07141463 0.3163067 35 3.387 0.0035
fish - sun 1.11535219 0.3163067 35 3.526 0.0035
lin - ref 0.71699129 0.3163067 35 2.267 0.0371
lin - sun ©.76092885 ©.3163067 35 2.406 0.0308
ref - sun 0.04393756 0.3163067 35 0.139 0.8903

Results are averaged over the levels of: rep.meas
P value adjustment: fdr method for 10 tests

For the regularized CCA, the “coc” diet is different from the others. Moreover “fish” differs from
“sun”. However, the other pairwise comparisons are quite mixed. It is determined that there are
no significant differences between “fish-lin”, “lin-sun”, and “ref-sun”. On the contrary, reasonable
pairwise comparison results come from the seeded CCA. Like the others, the “coc” diet is different
from the others. Furthermore, “fish-lin” is not significantly different, and “ref-sun” is concluded to be
similar. Fish oil is known to contain w3, and linseed oil is designed for it. Therefore, this conclusion
would be reasonable. Also, the reference oil diet consists of corn and colza oil, which is known to
contain wé6. Since sun-flower oil is, indeed, for w6-rich diet, this result is also reasonable. In this regard,
the seeded CCA results would be preferable to the regularized CCA.

Partial least square application with nutrimouse data

With the nutrimouse data, consider a regression of the first one, “ C14.0” in concentrations of 21 hepatic
fatty acids given expressions of 120 genes measured in liver cells. In this case, partial least squares
is a front-runner choice. Then, to obtain the partial least square estimator in seedCCA, one needs
to implement seedCCA(X, Y, type="pls"). This results in “seedpls” subclass. An important matter
in partial least squares is that the first set of the variable must be predictors. The response variable
can be either univariate or multivariate. Option u is recommended to set reasonably small because
the estimated coefficients are reported up to the value given in u. If scale=TRUE, the predictors are
standardized to have zero sample means and the sample correlation matrix.

The estimated coefficients and fitted values by partial least square can be obtained via coef (object, u=NULL)
and fitted(object,u=NULL). The default of u in both coef and fitt is NULL. In both functions, usage
of u is equivalent. If u=k is specified, only the estimated coefficients and fitted values computed from
k projections are reported. All of the coefficient estimates and fitted values are reported up to u, if
u=NULL.

For type="pls”, the automatic procedure to suggest a proper value of projections is not conducted.
For the “seedpls” subclass, plot(object) suggests a proper value of projections along with other
output components. If the terminating condition is not satisfied before reaching the value of u, then
plot(object) provides a caution to increase the value of u.

> data(nutrimouse)

> Y <- as.matrix(nutrimouse$lipid)

> X <- as.matrix(nutrimouse$gene)

> Y1 <- as.matrix(Y[, 1]) ## univariate response

> Y12 <~ as.matrix(Y[, 1:2]1) ## multivariate response

fitting partial least square and obtaining the estimated coefficient vector
> fit.pls1.10 <- seedCCA(X, Y1, u=10, type="pls")
> fit.pls1.3 <- seedCCA(X, Y1, u=3, type="pls", scale=TRUE)

> names(fit.pls1.10)
[-I:l Ncoef” Ilu" IIX” IIYII Ilscale”

> names(fit.pls1.10%$coef)
[17 u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

18

> names(fit.pls1.3$coef)
[‘I] Hu:‘l n Ilu:2“ "u:3ll

> fit.pls1.3$%scale
[1] TRUE

> par(mfrow=c(1,2))
> plot(fit.pls1.10)
$proper.u

[1]1 6

$nFu

[1] 6.344725e+00 2.383108e+00 1.681329e+00 2.669394e+00 1.853061e+00 3.217472e-04 5.296046e-05

[8] 6.017641e-06 4.895905e-07 3.117371e-08
$u

[1] 10

$eps

[1] @.01

> title("fit.pls1.10")

> plot(fit.pls1.3)

Caution: The terminating condition is NOT satisfied. The number of projections should be bigger than 3.

$proper.u

[11 3

$nFu

[1] 6.344725 2.383108 1.681329
$u

[113

$eps

[1] @.01

> title("fit.pls1.3")

> names(fitted(fit.pls1.10))
[1] "u=1" "u=2" "u=3" "u=4" "u=5" "u=6" "u=7" "u=8" "u=9" "u=10"

> fitted(fit.pls1.10, u=6)
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.137 ©0.368 0.317 0.346 0.492 1.620 0.722 0.003 ©0.065 1.212 0.458 0.640 0.272 0.397
15 16 17 18 19 20 21 22 23 24 25 26 27 28
-0.103 0.426 1.448 0.287 1.264 ©0.517 2.803 0.914 0.043 0.028 0.234 0.598 0.875 0.434
29 30 31 32 33 34 35 36 37 38 39 40
0.694 0.666 2.958 2.350 ©.620 ©0.958 ©.495 2.790 0.701 0.168 0.767 0.535

> fit.pls.m <- seedCCA(X, Y12, u=5, type="pls")
> dim(fit.pls.m$coef$'u=1")
[1] 120 2

The selection of projections for two partial least squares by seedCCA(X,Y1,u=10, type="pls") and
seedCCA(X,Y1,u=3, type="pls", scale=TRUE) is given in Figure 7. According to Figure 7, the proper
value of projection is suggested at 6 for fit.pls1.10 object, while the termination condition is not
satisfied for fit.pls1.3 object, so a caution statement is given.

Discussion

When a study between two sets of variables, saying (X € R?,Y € IR"), is of primary interest, canonical
correlation analysis (CCA; Hotelling (1936)) is still popularly used in explanatory studies. The CCA
has successful application in many science fields such as chemometrics, pattern recognition, genomic
sequence analysis, and so on.

The recently developed seedCCA package implements a collection of CCA methodologies includ-
ing the standard CCA application, seeded CCA, and partial least squares. The package enables us to fit
CCA to large-p and small-n data. The paper provides a complete guide for the package to implement
all the methods, along with three real data examples. Also, the seeded CCA application results are
compared with the regularized CCA in the existing CCA package.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

19

fit.pls1.10 fit.pls1.3

o _ o _

~N N

v | v |

= =
> S
Tz o z o
3 £ 3
T =

" \ " \

u\w/°\B o—
(=} \ (=]
T T T T T 1 T T 1
l1to2 2to3 3to4 4to5 5to6 6to7 7to8 1to2 2t03 3t04 4t05

Figure 7: Selection plot of u generated from seedCCA(X, Y1, u=10, type="pls")(left) and seedCCA(X,
Y1, u=3, type="pls", scale=TRUE)(right) in Section 3.6

It is believed that the package, along with the paper, will contribute to high-dimensional data
analysis in various scientific field practitioners and that the statistical methodologies in multivariate
analysis become more fruitful.

Acknowledgments

For the corresponding author Jae Keun Yoo, this work was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of
Education (NRF-2019R1F1A1050715). For Bo-Young Kim, this work was supported by the BK21 Plus
Project through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of
Education (22A20130011003).

Bibliography

A. Alfons, C. Croux, and P. Filzmoser. Robust maximum association between data sets: The R package
ccaPP. Austrian Journal of Statistics, 45(1):71-79, 2016. [p7]

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach
to multiple testing. Journal of the Royal Statistical Society, Series B, 57(1):289-300, 1995. URL https:
//doi.org/10.1111/3.2517-6161.1995.tb02031.x. [p16]

R. D. Cook, B. Li, and F. Chiaromonte. Dimension reduction in regression without matrix inversion.
Biometrika, 94(3):569-584, 2007. URL https://doi.org/10.1093/biomet/asmo38. [p9]

R. Cruz-Cano. FRCC: Fast Regularized Canonical Correlation Analysis, 2012. URL https://CRAN.R-
project.org/package=FRCC. R package version 1.0. [p7]

I. Gonzalez, S. Déjean, P. G. P. Martin, and A. Baccini. Cca: an r package to extend canonical correlation
analysis. Journal of Statistical Software, 23(12):1-13, 2008. URL https://doi.org/10.18637/jss.
v023.112. [p7, 15]

I. S. Helland. Partial least squares regression and statistical models. Scandinavian Journal of Statistics,
17(2):97-114,1990. URL https://www. jstor.org/stable/4616159. [p9]

H. Hotelling. Relations between two sets of variates. Biometrika, 28(3):321-377, 1936. URL https:
//www. jstor.org/stable/2333955. [p7, 18]

Y.Im, H. Gang, and J. Yoo. High-throughput data dimension reduction via seeded canonical correlation
analysis. Journal of Chemometrics, 29(3):193-199, 2014. URL http://dx.doi.org/10.1002/cem.2691.

[p7, 8]

S. Izrailev. tictoc: Functions for timing R scripts, as well as implementations of Stack and List structures.,
2014. URL https://CRAN.R-project.org/package=tictoc. R package version 1.0. [p13]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1093/biomet/asm038
https://CRAN.R-project.org/package=FRCC
https://CRAN.R-project.org/package=FRCC
https://doi.org/10.18637/jss.v023.i12
https://doi.org/10.18637/jss.v023.i12
https://www.jstor.org/stable/4616159
https://www.jstor.org/stable/2333955
https://www.jstor.org/stable/2333955
http://dx.doi.org/10.1002/cem.2691
https://CRAN.R-project.org/package=tictoc

CONTRIBUTED RESEARCH ARTICLES

20

R. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Pearson Prentice Hall, 2007.
[pél

K. Lee and J. Yoo. Canonical correlation analysis through linear modeling. Australian and New Zealand
Journal of Statistics, 56(1):59-72,2014. URL http://dx.doi.org/10.1111/anzs.12057. [p7, 8]

R. V. Lenth. Least-squares means: The R package Ismeans. Journal of Statistical Software, 69(1):1-33,
2016. doi: 10.18637/jss.v069.i01. [p16]

S. E. Leurgans, R. A. Moyeed, and B. W. Silverman. Canonical correlation analysis when the data are

curves. Journal of the Royal Statistical Society, Series B, 55(3):725-740, 1993. URL https://www. jstor.

org/stable/2345883. [p7]

J. Schafer, R. Opgen-Rhein, M. A. V. Zuber, A. P. D. Silva, and K. Strimmer. corpcor: Efficient Estimation

of Covariance and (Partial) Correlation, 2017. URL https://CRAN.R-project.org/package=corpcor.

R package version 1.6.9. [p10]

H. D. Vinod. Canonical ridge and econometrics of joint production. Journal of Econometrics, 4(2):
147-166, 1976. URL https://doi.org/10.1016/0304-4076(76)90010-5. [p7]

Bo-Young Kim, Researcher
Celltrion

Incheon, 22014

Republic of Korea

Yunju Im, Postdoctoral Associate
Department of Biostatistics, Yale University
New Haven, CT 06520

United States of America

Jae Keun Yoo, Professor

Department of Statistics, Ewha Womans University
Seoul, 03760

Republic of Korea

peter.yoo@ewha.ac.kr

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://dx.doi.org/10.1111/anzs.12057
https://www.jstor.org/stable/2345883
https://www.jstor.org/stable/2345883
https://CRAN.R-project.org/package=corpcor
https://doi.org/10.1016/0304-4076(76)90010-5
mailto:peter.yoo@ewha.ac.kr

CONTRIBUTED RESEARCH ARTICLES

21

npcure: An R Package for Nonparametric

Inference in Mixture Cure Models
by Ana Lopez-Cheda, M. Amalia Jdcome, Ignacio Lopez-de-Ullibarri

Abstract Mixture cure models have been widely used to analyze survival data with a cure fraction.
They assume that a subgroup of the individuals under study will never experience the event (cured
subjects). So, the goal is twofold: to study both the cure probability and the failure time of the
uncured individuals through a proper survival function (latency). The R package npcure implements a
completely nonparametric approach for estimating these functions in mixture cure models, considering
right-censored survival times. Nonparametric estimators for the cure probability and the latency as
functions of a covariate are provided. Bootstrap bandwidth selectors for the estimators are included.
The package also implements a nonparametric covariate significance test for the cure probability,
which can be applied with a continuous, discrete, or qualitative covariate.

Introduction

In classical survival analysis, it is assumed that all the individuals will eventually experience the
event of interest. However, there are many contexts in which this assumption might not be true.
Noticeable examples are the lifetime of cancer patients after treatment, time to infection in a risk
population, or time to default in credit scoring, among many others. Cure models are a stream of
methods recently developed in survival analysis that take into account the possibility that subjects
could never experience the event of interest. See Maller and Zhou (1996) for early references and
Amico and Van Keilegom (2018) for an updated review.

Let X be a set of covariates and Y the time to the event of interest with conditional survival
function S (¢|x) = P (Y > |X = x). Mixture cure models, initially proposed by Boag (1949), consider
the population as a mixture of two types of subjects: the susceptible of experiencing the event if
followed for long enough (Y < o) and the cured ones (Y = o). Hence, the survival function of Y can
be written as

S (tx) =1 =p(x) +p(x) So (tx),
where 1 — p (x) = P (Y = 00|X = x) = lim;_,00 S (#|x) is the cure probability, and the (proper) survival
function of the uncured subjects or latency is Sg (t|x) = P (Y > t|Y < 00, X = x). A major advantage of
these models over the non-mixture approach is that they allow the covariates to have different effect
on cured and uncured individuals.

The cure probability, 1 — p (x), is usually estimated parametrically by assuming a logistic form
log (p(x) / (1—p(x))) = B'x, with B a parameter vector. Estimation of Sy (¢|x) can be done by
assuming a particular parametric distribution for the failure time of the uncured subjects, or more
generally, by applying, e.g., proportional hazards (PH) or accelerated failure time (AFT) assumptions.
These two approaches lead to parametric (see, e.g., Farewell, 1982, 1986; Denham et al., 1996) or
semiparametric (see, e.g., Kuk and Chen, 1992; Peng et al., 1998; Peng and Dear, 2000; Li and Taylor,
2002) mixture cure models.

An attractive feature of parametric and semiparametric models is that they provide close expres-
sions for relevant parameters and functions. On the other hand, the sound inference is guaranteed
only if the chosen model fits the data suitably. A problem with these methods is that the parametric
assumptions may be incorrect. For example, regarding the cure rate 1 — p (x), there is no reason to
believe that the cure rate is monotone in x, let alone that it follows a logistic model. To solve this hassle,
Miiller and Van Keilegom (2019) propose a test statistic to assess whether the cure rate, as a function
of X, satisfies a certain parametric model. As for the latency function, Sy (f|x), it is difficult to verify
the distributional assumptions of the model. The goodness of fit for the latency function has only
been addressed in settings without covariates and in an informal way (Maller and Zhou, 1996). The
challenge of developing procedures for testing the parametric form of the conditional survival function
of the uncured with covariates is even more ambitious. It would lead to curse-of-dimensionality
problems and remains an open question.

As a result of the increasing demand for the use of cure models, the number of packages in R
accounting for the possibility of cure in survival analysis has grown significantly over the last decade:
see the CRAN task view on survival analysis (https://CRAN.R-project.org/view=Survival). The
smcure package (Cai et al., 2012) fits the semiparametric PH and AFT mixture cure models (see
Kalbfleisch and Prentice, 2002). Besides, the NPHMC package (Cai et al., 2013) allows to calculate
the sample size of a survival trial with or without cure fractions. More recently, the flexsurvcure
package (Amdahl, 2017) provides flexible parametric mixture and non-mixture cure models for time-

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/view=Survival
https://CRAN.R-project.org/package=smcure
https://CRAN.R-project.org/package=NPHMC
https://CRAN.R-project.org/package=flexsurvcure

CONTRIBUTED RESEARCH ARTICLES

22

to-event data, and the rcure package (Han et al., 2017) incorporates methods related to robust cure
models for survival data which include a weakly informative prior in the logistic part. The geecure
package (Niu and Peng, 2018) features the marginal parametric and semiparametric PH mixture
cure models for analyzing clustered survival data with a possible cure fraction. Furthermore, the
miCoPTCM package (Bertrand et al., 2020) fits semiparametric promotion time cure models with
possibly mis-measured covariates, while the mixcure package (Peng, 2020) implements parametric and
semiparametric mixture cure models based on existing R packages. For interval-censored data with a
cure fraction, the GORcure package (Zhou et al., 2017) implements the generalized odds rate mixture
cure model, including the PH mixture cure model and the proportional odds mixture cure model as
special cases. The intercure package (Brettas, 2016) provides an implementation of semiparametric
cure rate estimators for interval-censored data using bounded cumulative hazard and frailty models.

In contrast with (semi)parametric procedures, nonparametric methods do not rely on data belong-
ing to any particular parametric family or fulfilling any parametric assumption. They estimate the goal
functions without making any assumptions about its shape, so they have much wider applicability
than alternative parametric methods. A completely nonparametric mixture cure model must consider
purely nonparametric estimators for both the cure rate, 1 — p(x), and latency function, Sy (¢|x). Unlike
the (semi)parametric approach, nonparametric mixture cure models have been under study only
in recent years. Laska and Meisner (1992), building on the Kaplan-Meier (KM) product-limit (PL)
estimator of the survival function S (t) = P (Y > t) (Kaplan and Meier, 1958), derive nonparametric
estimators of the cure rate and latency function, but their model does not allow for covariates. More
recently, Xu and Peng (2014) propose a nonparametric estimator of the cure rate with one or more
covariates, showing its consistency and asymptotic normality. This estimator was further studied by
Lopez-Cheda et al. (2017a), who, besides proving that it is the maximum likelihood nonparametric
estimator of the cure probability, also obtain an i.i.d. representation and proposed a bootstrap-based
bandwidth selector. As for the latency function, Lépez-Cheda et al. (2017b) introduce a completely
nonparametric estimator, studied some theoretical properties, and proposed a bandwidth selector
based on the bootstrap.

Although some of the aforementioned packages have a nonparametric flavor, their approach to
mixture cure modeling is not completely nonparametric. Our R package npcure (Lopez-de-Ullibarri
et al., 2020) fills the gap by providing implementations of the nonparametric estimator of the cure rate
function proposed by Xu and Peng (2014) (further studied by Lopez-Cheda et al., 2017a) and of the
nonparametric estimator of the latency function proposed by Lopez-Cheda et al. (2017b).

Furthermore, the generalized PL estimator of the conditional survival function, S (¢|x), proposed
by Beran (1981), is implemented. Note that the estimators of the cure rate and latency implemented in
npcure relate strongly to Beran estimator. In any case, Beran estimator is of outstanding importance by
its own, as evidenced by the variety of R packages with functions for computing it, like, e.g., Beran() in
package condSURV (Meira-Machado and Sestelo, 2016), prodlim() in package prodlim (Gerds, 2018)
and Beran() in package survidm (Meira-Machado et al., 2019). The function in our package compares
advantageously with the aforementioned functions with respect to the issue of bandwidth selection.
This smoothing parameter plays an essential role in the bias-variance tradeoff of every nonparametric
smoothing method. In Dabrowska (1992), an expression for the bandwidth minimizing the asymptotic
mean squared error (MSE) of this estimator was obtained, and a plug-in bandwidth selector was
proposed based on suitable estimators of the unknown functions in that expression. However, the
performance of this bandwidth selector is unsatisfying for small sample sizes, and a cross-validation
(CV) procedure is usually preferred (see Iglesias-Pérez, 2009; Gannoun et al., 2007, among others).
Recently, Geerdens et al. (2017) propose an improved CV bandwidth selector, especially with a high
censoring rate. To the best of our knowledge, there are not any R packages allowing to compute Beran
estimator with a suitable bandwidth selector: while the condSURYV and survidm packages do not
consider any bandwidth selectors, the prodlim package uses nearest neighborhoods as the smoothing
parameter. The npcure package, available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=npcure, fulfills this need with the implementation of the CV
bandwidth selector for the Beran estimator in Geerdens et al. (2017).

In this paper, we explain how the npcure package can be used in the context of nonparametric
mixture cure models with right-censored data. The main objective is to estimate the cure probability
and latency functions, as well as to perform covariate significance tests for the cure rate. In the
next section, we describe our approach to nonparametric estimation in mixture cure models. The
methodology applied in the covariate significance tests is presented in another section. Two sections
follow, devoted respectively to explain the package functions and to illustrate their use with an
application to a medical dataset.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=rcure
https://CRAN.R-project.org/package=geecure
https://CRAN.R-project.org/package=miCoPTCM
https://CRAN.R-project.org/package=mixcure
https://CRAN.R-project.org/package=GORcure
https://CRAN.R-project.org/package=intercure
https://CRAN.R-project.org/package=npcure
https://CRAN.R-project.org/package=condSURV
https://CRAN.R-project.org/package=prodlim
https://CRAN.R-project.org/package=survidm
https://CRAN.R-project.org/package=npcure

CONTRIBUTED RESEARCH ARTICLES

23

Nonparametric estimation in mixture cure models

One of the specificities of time-to-event data is related to the presence of individuals that have not
experienced the event by the end of the study. The observed survival times of these individuals are

said to be right-censored and underestimate the true unknown time to the occurrence of the event.

This situation is usually modeled by considering a censoring variable C, with distribution function
G, which is conditionally independent of Y given the covariate X. The observed data are then
{(X;,T;,6;) :i=1,...,n}, where T = min (Y, C) is the observed lifetime and § = 1 (Y < C) is the
uncensoring indicator. For a one-dimensional continuous covariate X, Xu and Peng (2014) propose
the following nonparametric kernel-type estimator of the cure rate:

n 8111 Bpji .
1= pn (1) =T (1 - ”’”]())) = S (Thaxl), M

f:i Bh[r] (x

where, fori =1,...,n,é; and X|; are the concomitant status indicator and covariate corresponding
to the ith ordered time T<,-), and

K, (x - Xm>
T K (x = Xpy)

By (x) =)

are the Nadaraya-Watson weights, where Kj,(-) = %K (7) is a rescaled kernel with bandwidth i — 0.

Although some different kernel functions could be considered, the Epanechnikov kernel, defined as

K(w) = 21— 1] 1),
is the one implemented in the npcure package. Moreover, S}, is the estimator of the conditional survival
function S in Beran (1981), and T4, = max (i:5;=1} Ti is the largest uncensored failure time. Xu and
Peng (2014) prove the consistency and asymptotic normality of the estimator in (1), and Lopez-Cheda
et al. (2017a) show that it is the local maximum likelihood estimator of the cure rate, and obtained an
ii.d. representation and an asymptotic expression for the MSE.

The nonparametric latency estimator proposed by Lopez-Cheda et al. (2017a), and further studied
in Lopez-Cheda et al. (2017D), is:

Sp (tx) — (1= pu(x))
Po (x)

Sop (tx) = , ®3)

where S, is the PL estimator of the conditional survival function S (Beran, 1981) and pj, is the estimator
in (1). As in the case of the cure rate estimator, a smoothing parameter b, not necessarily equal to £, is
needed to compute Sq;, in (3).

Consistency of the nonparametric estimators

The proposed nonparametric estimators of both the cure rate and latency are consistent under the
general condition (see Laska and Meisner, 1992; Maller and Zhou, 1992; Lopez-Cheda et al., 2017a,b)

T < 76(%), 4)

where 19 = sup, (), and 19(x) = sup{t > 0: So (t|x) > 0} and 15(x) = sup{t > 0: G (¢t|x) < 1}
are the right endpoints of the support of the conditional distribution of the uncures and the censoring
variable, respectively.

The condition in (4) ensures 1 — p (x) and Sy (f|x) to be consistently estimated when there is zero
probability that a susceptible individual survives beyond the largest possible censoring time, ¢ (x).
Since T&lax converges to Tp in probability (see Xu and Peng, 2014), assumption (4) guarantees that,
asymptotically, all times observed after the largest uncensored survival time, T}, can be assumed to
correspond to cures.

Under condition (4), Sp (7g(x)|x) = 0 and, for large n, the cure rate estimator in (1) tends to a
nonparametric estimator of S (75 (x) [x) = 1 — p(x) + p(x)Sp (16 (x)|x) = 1 — p(x). However, if there
could be uncured individuals surviving beyond 75 (x), then Sy (75(x)|x) > 0 and the estimator in
(1) would estimate S (tg(x)|x) = 1 — p(x) + p(x)So (tg(x)|x) > 1 — p(x). This might happen, for
example, in a clinical trial with fixed maximum follow-up time.

These comments emphasize that care must be exercised in choosing the length of follow-up if

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

24

cures might be present since too much censoring or insufficient follow-up time could lead to erroneous
conclusions. For example, if the last observation is uncensored, then, even if there is considerable late
censoring, the estimated cure rate is 0. To avoid these difficulties, particularly with heavy censoring,
reasonably long follow-up times and large sample sizes may be required. In this way, Sg (15 (x)|x) is
sufficiently small for the cure rate estimator in (1) to be close enough to 1 — p(x).

Thus, when estimating 1 — p(x) and S (¢|x) for a given x with a data set, it is important to be
confident that 7y < 75(x). In any case, if the censoring distribution G(t|x) has a heavier tail than
So (f|x), the cure rate estimates computed with the nonparametric estimator in (1) will tend to have
smaller biases regardless of the value of 1y (x) (see Xu and Peng, 2014). Maller and Zhou (1992) propose
a simple nonparametric test to assess condition (4). The procedure is based on the length of the interval
(TLaxs T(n)], i-e., the right tail of the KM estimate where it has a constant value. A long plateau with
heavy censoring at the right tail of the KM curve is interpreted as evidence that follow-up time has
been long enough to conclude that condition (4) holds.

Bandwidth selection

The nonparametric estimators in (1) and (3) depend on two smoothing parameters, 1 and b, respectively.
Bootstrap-based selectors for the bandwidth & of the cure rate estimator and the bandwidth b of
the latency estimator are proposed by Lopez-Cheda et al. (2017a) and Lopez-Cheda et al. (2017b),
respectively. The bandwidths are locally chosen so that the selected bandwidths ky and by depend on
the point x of estimation. Using locally adaptive bandwidths instead of global ones is advantageous
because they adapt to the structure of the underlying function, differentially smoothing its flat and
peaky parts.

For a fixed value x, the bootstrap bandwidth of the cure estimator, k%, was introduced by Lopez-
Cheda et al. (2017a) as the minimizer of the bootstrap MSE, approximated with B resamples as follows:

* 1 5 ~xb ~ 2
MSE; () = = Y (i (x) = ()" (5)
B b=1
where ﬁ:f(x) is the estimator of p(x) in (1) computed with {(X;fb, Ti*b’(si*b) i=1,.. .,n} (the bth
bootstrap resample), and using the local bandwidth hy, and py. (x) is computed with the original
sample {(X;, T;,6;) :i =1,...,n}, and the local pilot bandwidth gy.

With respect to the latency estimator in (3), Lopez-Cheda et al. (2017b) propose to choose the
bandwidth by locally with a bootstrap bandwidth selector. The bootstrap bandwidth of the latency
estimator, b}, is taken as the minimizer of the bootstrap mean integrated squared error (MISE):

. 1 & /s . 2
MISE;(by) = %) /O (855, (¢1x) = Sog, (21)) "dt, ©)
b=1"

where SAS,be (t|x) is the nonparametric estimator of Sy (¢/x) in (3) computed with the bth bootstrap

resample and local bandwidth by, SAo,gJC (t|x) is the same estimator obtained using the original sample
and a local pilot bandwidth gy, and u is an adequately chosen upper bound of the integral.

For a fixed covariate value X, the procedure for obtaining the bootstrap bandwidth selector of /1
for py,, (x) (respectively, by for 5o (t|x)) is as follows:

1. Generate B bootstrap resamples {(X;‘b, Ti*b,éi*b> 1= 1,...,n}, forb=1,...,B.

2. Consider a search grid of bandwidths h; € {hy,...,h }. Forb =1,...,Band ! =1,...,L,
compute the nonparametric estimator ﬁ;;lb (x) (respectively, the nonparametric latency estimator,
§3’;ll (t|x)) with the bth bootstrap resample and bandwidth ;.

3. Compute the nonparametric estimator pg, (x) (respectively, the nonparametric latency estimator
So,g. (t|x)) with the original sample and pilot bandwidth gx.

4. For each bandwidth k; € {hy, ..., hy}, compute the Monte Carlo approximation of MSE} (k) in
(5), (respectively, the Monte Carlo approximation of MISE; (I;) in (6)).

5. The bootstrap bandwidth &} for the cure rate estimator (respectively, b} for the latency estimator)
is the minimizer of the Monte Carlo approximation of MSEj (h;) (respectively, MISE} (h;)) over
the grid of bandwidths {hy,..., hL}.

Following [.opez-Cheda et al. (2017a) and Lopez-Cheda et al. (2017b), the bootstrap resamples in
Step 1 are generated considering the following procedure, which is equivalent to the simple weighted
bootstrap proposed by Li and Datta (2001) without resampling the covariate X:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

25

L Generate X7,..., X} by fixing X} = X;,i=1,...,n
II. For each i, compute the weighted empirical distribution ﬁgx.* (t,6]X;) with the original sample,

where Fy, (t,6[x) = YL, Bg.i(x)1(T; < t,6; < 9) and Bg ;(x) is computed with a local pilot
bandwidth gy (see (7) below).

11 For each i, generate the pair (T, ;) from the weighted empirical estimator ﬁgm (t,6]X}) of the
conditional distribution.

Lopez-Cheda et al. (2017a) and Lopez-Cheda et al. (2017b) show that the effect of the pilot
bandwidth on the bootstrap bandwidth selectors of iy and by is considerably low. Consequently, the
same expression for the pilot bandwidth, gy, is used in Step II of the bootstrap resampling procedure
and in the approximation of the MSE; in (5) for the selection of the bandwidth hy of the cure rate
estimator (respectively, in the approximation of the MISE} in (6) for the bandwidth by of the latency
estimator): .

g = dk (X) ;dk (X) 1001/97171/9, (7)
where d," (x) (respectively, d; (x)) is the distance from x to the kth nearest neighbor on the right
(respectively, on the left). If there are not at least k neighbors on the right (or left), we use d;" (x) =
dy (x). Lopez-Cheda et al. (2017a) show that a good choice for the parameter k is to consider k = n/4.
The order n~1/? satisfies the conditions in Theorem 1 of Li and Datta (2001) and coincides with the
optimal order for the pilot bandwidth obtained by Cao and Gonzalez-Manteiga (1993) in the case
without censoring.

When selecting locally adaptive bandwidths, the results might look a little bit spiky due to its local
nature (see, e.g., Brockmann et al., 1993, on local bandwidth selection for kernel regression estimators).
That could be the case for the bootstrap bandwidths for both the cure rate and latency functions. To
get rid of the fluctuation of these local bandwidths, iy and by can be further smoothed, for example,
by computing a centered moving average of the unsmoothed vector of bandwidths as in Lépez-Cheda
et al. (2017a).

Covariate significance tests

In medical studies, it is usually important to assess whether the cure probability depends on a specific
covariate, X. Noting that the cure rate can be interpreted as the regression function E (v|X = x) =
1 — p(x), where v is the indicator of cure, the question can be cast in the form of a hypothesis test:

Hy:EWw|X)=1-p
{Hl CEWX) =1-p(X) ®)

Although there are some parametric approaches to deal with this hypothesis testing problem (see
Miiller and Van Keilegom, 2019, among others), the only completely nonparametric method was
introduced by L6pez-Cheda et al. (2020). Their procedure is based on the test for selecting explanatory
variables in nonparametric regression described by Delgado and Gonzdlez-Manteiga (2001). The
greatest advantage of the proposed significance test for the cure rate is that although the test is
completely nonparametric, no smoothing parameters are required to test (8).

The main challenge when testing (8) is that the cure indicator, v, is only partially known due to
censoring: complete observations are known to be uncured (v = 0), but censored observations might
be either cured or uncured (i.e., v is unknown). Under right censoring, all of the cured individuals
and some of the uncured ones will be censored. This makes it difficult to guess whether a censored
observation belongs to the cured or uncured subpopulation. Lopez-Cheda et al. (2020) solved this
situation by replacing the unknown and inestimable response variable v in (8) by an unknown but
estimable response 17 with the same conditional expectation as v:

v(1-1(6=0,T < 7))
= 1-G6(tx) '

©)

where T is an unknown time beyond which a lifetime might be assumed to be cured. L6pez-Cheda
et al. (2020) propose to estimate # by replacing G and T with suitable nonparametric estimators. The
censoring distribution is estimated with the generalized PL estimator by Beran (1981) computed with
the cross-validation (CV) bandwidth selector in Geerdens et al. (2017) when X is continuous and with
the stratified KM estimator with the same bandwidth selector otherwise. The cure threshold, 7, is
estimated as t = T} ,,, the largest uncensored observed time. The expression of in (9) avoids the
need for an estimator of the unknown cure indicator, v, since if §; = 1 or (6; =0, T; < t) then #; =0,

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

26

whereas if (6; = 0, T; >) then fj; = 1/ (1 — G(#]X;)). Itis easy to check that E (v|X) = E (57| X) if the
conditional censoring distribution G (f|x) is independent of the cure status.

Finally, building on Delgado and Gonzélez-Manteiga (2001) and using the estimated values of # in
(9), the significance test proposed by Lopez-Cheda et al. (2020) is based on the process:

1& (., 1T &,
Un(x) = — 3 (i = 0| 1(Xi < x). (10)
i=1 j=1

Cramér-von Mises (CM) or Kolmogorov-Smirnov (KS) test statistics can be used:

n
CM, = Y U2(X;),
i=1

KSy = max n'2 |, (X;)). (11)
i=1,..n
Note that if X is a nominal variable, it is impossible to compute the indicator function in (10). In this
case, Lopez-Cheda et al. (2020) propose to consider all the possible ‘ordered” permutations of the
values of X and to compute U, (x) according to the ‘ordering’ of each permutation. The values of the
CM and KS test statistics are given by the maximum of the values CM,, and KS;, computed along with
all the permutations.

The distribution of the CM and KS statistics under the null hypothesis is approximated by boot-
strap, according to the following steps:

A. Obtain X/, i=1,...,n, by randomly resampling with replacement from {X1,..., Xu}

B. Estimate the probability of cure under Hy as 1 — p = SKM (Thax), with SKM the KM estimator
of the survival function S(t) = P (Y > t). Fori=1,...,n:

B.1. Compute Sy, (t|X}), a nonparametric estimator of the latency Sy (¢|X}), with the original
sample. Set Y} = co with probability 1 — p, and draw Y;* from Sy, (t|X}) with probability
p.
B.2. Generate C} from a nonparametric estimator of G (¢|X) with the original sample.
B.3. Compute T = min (Y/,C;) and 6F =1 (Y < Cf).
C. With the bootstrap resample { (X}, T},67) :i =1,...,n} compute 7§} fori =1,...,n.

D. With {(#},X}) :i=1,...,n}, compute the bootstrap versions of Uy, in (10) and the correspond-
ing CM and KS statistics, CM;; and KS;;.

E. Repeat Steps A-D above B times in order to generate B values of the CM and KS statistics,
{cmgt, ..., ,CM;B} and {KS;L, ... KS;B}.

F. The p-value of the CM (respectively, KS) test is approximated as the proportion of values
{cm;l,...,CM;B} larger than CM,, (respectively, {KS;!, ..., KS:B} larger than KSy).

Note that nonparametric estimators of the conditional functions Sy (f|x) and G (¢|x) are required in
Step B. Following Lopez-Cheda et al. (2020), if X is continuous, then Sy (¢|x) and G (¢|x) are estimated
with the nonparametric estimator in (3) and the generalized PL estimator in Beran (1981), respectively,
and with the corresponding stratified unconditional estimators otherwise.

The npcure package: structure and functionality

The npcure package provides several functions to model nonparametrically survival data with a
possibility of cure. Table 1 contains a compact summary of the available functions. The estimators of
the cure rate and latency functions, discussed in the section "Nonparametric estimation in mixture cure
models", are implemented by probcure() and latency(), respectively. The functions probcurehboot ()
and latencyhboot () compute bootstrap bandwidths for these estimators. Another function deserving
mention in this context is beran(), which computes the generalized PL estimator of the conditional
survival function S (f|x). A CV bandwidth for use with beran() is returned by berancv(). Given the
computational burden of the procedures implemented by the aforementioned functions, all of them
make extensive use of compiled C code. The significance test introduced in the previous section is
carried out by testcov(), and testmz() performs the nonparametric test of Maller and Zhou (1992).
Next, a detailed account of the usage of all these functions is provided.

The estimation functions in npcure are restricted to one-dimensional continuous covariates. The
Epanechnikov kernel is used in the smoothing procedures. Nonparametric estimation with discrete or

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

27

Function Description

beran Computes Beran’s estimator of the conditional survival function.

berancv Computes the CV bandwidth for Beran’s estimator of the conditional
survival function.

controlpars Sets the control parameters of the latencyhboot() and
probcurehboot () functions.

hpilot Computes pilot bandwidths for the nonparametric estimators of the
cure rate and the latency.

latency Computes the nonparametric estimator of the latency.

latencyhboot Computes the bootstrap bandwidth for the nonparametric estimator
of the latency.

print.npcure Method of the generic function print for ‘npcure” objects.

probcure Computes the nonparametric estimator of the cure rate.

probcurehboot ~ Computes the bootstrap bandwidth for the nonparametric estimator
of the cure rate.

summary.npcure Method of the generic function summary for ‘npcure’ objects.

testcov Performs covariate significance tests for the cure rate.

testmz Performs the nonparametric test of Maller and Zhou (1992).

Table 1: Summary of the functions in the npcure package.

categorical variables could be dealt with as in other kernel smoothing procedures. A simple approach
is to split the sample into a number of subsets according to the covariate values. When the size of the
subsamples is not too small, valid unconditional estimates of the cure probability and latency can be
computed. Another alternative is the use of special kernels that can handle any covariate types (see
Racine and Li, 2004).

Several features are shared by the functions in the package. All functions return an object of S3
class ‘npcure’, formally a list of components. Among these components are the primary outputs of the
functions, like the computed estimates for probcure() and latency(), the selected bandwidths for
probcurehboot () and latencyhboot(), or the p-values of the tests for testcov() and testmz(). The
covariate values, observed times, and uncensoring indicators are passed to the functions via the x, t,
and d arguments, respectively. Typically, a set of names is passed, which are interpreted as column
names of a data frame specified by the dataset argument. However, dataset may also be left as NULL,
the default, in which case the objects named in x, t, and d must live in the working directory. More
details on these and other arguments are given in the following.

Estimation of the cure rate

The estimation of the cure rate using the nonparametric estimator in (1) is implemented in the
probcure() function:

probcure(x, t, d, dataset = NULL, x@, h, local = TRUE, conflevel = oL,
bootpars = if (conflevel == @ && !missing(h)) NULL else controlpars())

The x0 argument specifies the covariate values where conditional estimates of the cure rate are to
be computed. The bandwidths required by the estimator are passed to the h argument. The local
argument is a logical value determining whether the bandwidths are interpreted as local (local =
TRUE) or global (local = FALSE) bandwidths. Notice that if local = TRUE, then h and x@ must have the
same length. Actually, the h argument may be missing, in which case the local bootstrap bandwidth
computed by the probcurehboot () function is used. This last function implements the procedure for
selecting the bandwidth £} described in the section "Bandwidth selection", and its usage is:

probcurehboot(x, t, d, dataset, x@, bootpars = controlpars())

The bootpars argument controls the details of the computation of the bootstrap bandwidth (see section
"Bandwidth selection"). In typical use, it is intended to receive the list returned by the controlpars()
function. The components of this list are described in Table 2.

The function probcure() also allows constructing point confidence intervals (CI) for the cure rate.
These Cls exploit the asymptotic normality of the estimator (Xu and Peng, 2014), using the bootstrap
to obtain an estimate of the standard error of the estimated cure rate. The bootstrap resamples are
generated by the same procedure described in the section "Bandwidth selection". Denoting by z1_, />

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

28

Argument Description

B Number of bootstrap resamples (by default, 999).

hbound A vector giving the minimum and maximum, respectively, of the initial grid
of bandwidths as multiples of the standardized interquartile range (IQR) of
the covariate values (by default, (0.1, 3)).

hl Length of the initial grid of bandwidths (by default, 109).

hsave A logical specifying if the grid of bandwidths is saved (by default FALSE).

nnfrac Fraction of the sample size determining the order k of the nearest neighbor
used when computing the pilot bandwidth g, in (7) (by default, @. 25).

fpilot Either NULL, the default, or a function name. If NULL, the pilot bandwith is

computed by the package function hpilot(). If not NULL, it is the name of
an alternative, user-defined function for computing the pilot.

gt In bandwidth selection with latencyhboot (), order of the quantile of the
observed times specifying the upper bound of the integral in the computa-
tion of the MISE™ in (6) (by default, 0.75).

hsmooth Order of a moving average computed to optionally smooth the selected
bandwidths. By default is 1, meaning that no smoothing is done.

Table 2: Summary of the arguments of the controlpars() function.

the 1 — a/2 quantile of a standard normal and by seg (1 — p;,(x)) the estimate of the standard error of
1 — pj(x) with B bootstrap resamples, a (1 — «) 100% CI for 1 — p(x) is computed as:

1= pn(x) Fz1-s5ep (1 - pu(x)). (12)

The confidence level of the CI is specified through the conflevel argument as a number between
0 and 1. With the special value 0, the default, no CI is computed. Other parameters related to the
bootstrap Cls can be passed to the bootpars argument, typically via the output of the controlpars()
function. These parameters relate to the number of bootstrap resamples and the computation of the
pilot bandwidth, and are specified, respectively, by the B and nnfrac arguments described in Table 2.

The usage of these functions is illustrated with a simulated dataset generated from a model where
the cure probability is a logistic function of the covariate:

library("npcure™)
<- 50
<- runif(n, -2, 2)
<- rweibull(n, shape = 0.5 * (x + 4), scale = 1)
<- rexp(n, rate = 1)
exp(2 * x)/(1 + exp(2 * x))
<- runif(n)
<- ifelse(u < p, pmin(y, c), c)
<- ifelse(u < p, ifelse(y <c, 1, 0), 0)
ata <- data.frame(x = x, t=1t, d =d)

O O + C T 0K X O
N
|

In the next code example, point and 95% CI estimates of the cure probability are obtained with
probcure() at a grid of covariate values ranging from —1.5 to 1.5. For the estimation, the local
bootstrap bandwidths previously computed by probcurehboot() are passed to the h argument. The
bandwidths, which have been further smoothed with a moving average of 15 bandwidths, are
contained in the hsmooth component of the output of probcurehboot(). For the bootstrap, 2000
resamples are generated.

X0 <- seq(-1.5, 1.5, by = 0.1)

hb <- probcurehboot(x, t, d, data, x0 = x@,
bootpars = controlpars(B = 2000, hsmooth = 15))

gl <- probcure(x, t, d, data, x0 = x@, h = hb$hsmooth, conflevel = 0.95,
bootpars = controlpars(B = 2000))

ql

#> Bandwidth type: local

#>

#> Conditional cure estimate:

#> h x0 cure lower 95% CI upper 95% CI

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

29

#> 0.6212329 -1.5 1.000000000 ©0.98450759 1.00000000
#> 0.6523881 -1.4 1.000000000 ©.87087244 1.00000000
#> 0.6533320 -1.3 1.000000000 0.86080078 1.00000000
#> 0.6606362 -1.2 1.000000000 ©.83135572 1.00000000
#> 0.6710717 -1.1 1.000000000 ©0.82267310 1.00000000
#> 0.6912311 -1.0 0.972213147 0.78259082 1.00000000
#> ...

More compactly, the same bootstrap bandwidths would be selected and the same estimates
obtained if h were left unset when calling probcure():

g2 <- probcure(x, t, d, data, x@ = x@, conflevel = 0.95,
bootpars = controlpars(B = 2000, hsmooth = 15))

Figure 1 shows a plot of the true cure rate function and its point and 95% CI estimates at the
covariate values saved in x0. The plot can be reproduced by executing the next code. The components
of the g1 object accessed by the code are x0, keeping the vector of covariate values, g, containing
the point estimates of the cure rate, and conf, a list with the lower (component lower) and upper
(component upper) limits of the CIs for the cure rate.

plot(q1$x0, q1%$q, type = "1", ylim = c(@, 1), xlab = "Covariate X",
ylab = "Cure probability")
lines(q1$x0, gl$conf$lower, lty = 2)
lines(q1$x0, qgl$conf$upper, lty = 2)
lines(q1$x0, 1 - exp(2 * q1$x0)/(1 + exp(2 * q1$x0)), col = 2)
legend("topright”, c("Estimate”, "95% CI limits”, "True"),
1ty = c(1, 2, 1), col = c(1, 1, 2))

1.0
1.0

B N —— Estimate N —— Estimate
- 95% Cl limits - 95% ClI limits
— True — True
«© «©
c 7 o 7
>
= 9 | ©
E o a o
o g
by a
2 < - o
o ° S
N ~N
c 7 o 7|
o | NI o |
o o
T T T T T T T T T T T T T
-15 -1.0 -0.5 0.0 0.5 1.0 15 0.0 0.5 1.0 15 2.0 25
Covariate X Time

Figure 1: Left panel: estimation of the cure rate. Right panel: estimation of the latency for x = 0.

Estimation of the latency function

The latency estimator in (3) is implemented in the latency() function:

latency(x, t, d, dataset = NULL, x@, h, local = TRUE, testimate = NULL,
conflevel = OL, bootpars = if (conflevel == @) NULL else controlpars(),
save = TRUE)

The function’s interface is similar to that of probcure(), with all the arguments, except for
testimate, having exactly the same interpretation. The testimate argument determines the times
t at which the function Sy (¢|x) is estimated. It defaults to NULL, which results in the latency being
estimated at times given by the t argument.

Also, as was the case for probcure(), latency() allows getting bootstrap Cls for the latency
function by specifying their level with the conflevel argument. These Cls also rely on the asymptotic

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

30

normality of the latency estimator Sy, (¢|x) in (3) (L6pez-Cheda et al., 2017b). A (1 —) 100% CI for
Sop (t|x) is computed as:

S (tx) F z1- 5528 (Sop (%)), (13)

where se (Sp (t|x)) is a bootstrap estimate of the standard error of Sy, (¢|x), the bootstrap resamples
being generated as described in the section "Bandwidth selection".

Also, as with probcure(), the user can specify a local or global bandwidth with the combined use
of the h and local arguments. When h is left unspecified, a local bootstrap bandwidth is indirectly
computed by the latencyhboot () function:

latencyhboot(x, t, d, dataset = NULL, x@, bootpars = controlpars())

This function provides an implementation of the bandwidth selector b} introduced in the section
"Bandwidth selection". It is homologous to probcurehboot (), with which it shares a common interface.
The only noticeable difference is that now the qt argument of controlpars() (see Table 2) can be used
to set u, the upper bound of the integral that must be calculated when computing the bootstrap MISE
in (6).

Using the same simulated data as before, the next code illustrates the computation of point and
95% Cl estimates (based on 500 bootstrap resamples) of the latency for covariate values 0 and 0.5, and
with local bandwidths equal to 0.8 and 0.5, respectively. Notice that, since the testim argument is
unset, the estimates are computed at the times t:

S0 <- latency(x, t, d, data, x0 = c(@, 0.5), h = c(0.8, 0.5),
conflevel = 0.95, bootpars = controlpars(B = 500))

To estimate the latency using the bootstrap bandwidth selector, latencyhbooot () can be called
before calling latency(). In the following code, the component h of the output of latencyhbooot(),
where the selected local bandwidths are contained, is passed to the h argument of latency():

b <- latencyhboot(x, t, d, data, x0 = c(@, 0.5))
S0 <- latency(x, t, d, data, x@ = c(@, 0.5), h = b$h, conflevel = 0.95)
S0

#> Bandwidth type: local

#>

#> Covariate (x0): 0.0 0.5

#> Bandwidth (h): 4.531978 2.527206

#>

#> Conditional latency estimate:

#>

#> x0 = 0

#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
...

#>

#> x0 = 0.5

#> time latency lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.00000000 1.0000000
#> 0.042088293 1.0000000 1.00000000 1.0000000
#> 0.042271452 1.0000000 1.00000000 1.0000000
#> 0.059671372 1.0000000 1.00000000 1.0000000
#> 0.067375891 1.0000000 1.00000000 1.0000000
#> 0.098569312 1.0000000 1.00000000 1.0000000
...

An alternative, more succinct way to proceed is to leave h unset, since in that case, latencyhboot ()
is indirectly called:

S0 <- latency(x, t, d, data, x0 = c(@, 0.5), conflevel = 0.95)

Figure 1 shows the estimated and true latencies for covariate value x = 0. Next, the code to
obtain the plot is reproduced, and it is helpful in illustrating the structure of the output list returned

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 31

by latency(). The testim component has the times at which the estimates are computed. The S
component is a list having a named item for each covariate value. Each element contains the latency
estimates for a covariate value, and the name is constructed from the covariate value by prefixing it
with an x. The conf component is also a named list, the names being constructed as those of the S
component. Each one of these items contains, structured as a list, the lower (lower component) and
upper (upper component) limits of the Cls. Finally, x@ keeps the covariate values as a separate element.

plot(S@$testim, SO$S$x0, type = "s", xlab = "Time", ylab = "Latency”,
ylim = c(0, 1))
lines(S@$testim, S@$conf$x@$lower, type = "s", lty = 2)
lines(S@$testim, S@$conf$x@$upper, type = "s", lty = 2)
lines(S@$testim, pweibull(S@$testim, shape = 0.5 * (S@$x0[1] + 4),
scale = 1, lower.tail = FALSE), col = 2)
legend("topright”, c("Estimate”, "95% CI limits”, "True"),
1ty = c(1, 2, 1), col = c(1, 1, 2))

Significance test for the cure rate

The npcure package also provides an implementation of the nonparametric covariate significance tests
for the cure rate discussed in the section "Covariate significance tests":

testcov(x, t, d, dataset = NULL, bootpars = controlpars(), save = FALSE)

The x argument is the covariate whose effect on the cure rate is to be tested. The function’s output
is a list whose main components are CM and KS. Each of them, in turn, is a list containing the test
statistic (stat) and p-value (pvalue) of the CM and KS tests, respectively.

The result of the test carried out with our simulated data and 2500 bootstrap resamples is:
testcov(x, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test

#>

#> Covariate: x

#> test statistic p.value
#> Cramer-von Mises 0.4537077 0.0592
#> Kolmogorov-Smirnov 1.2456568 ©.0708

Non-numeric covariates can also be tested. For example, for z, a nominal covariate added to the
simulated data, the result is:

data$z <- rep(factor(letters[1:5]), each = 10)
testcov(z, t, d, data, bootpars = controlpars(B = 2500))

#> Covariate test

#>

#> Covariate: z

#> test statistic p.value
#> Cramer-von Mises 0.2513218 0.6356
#> Kolmogorov-Smirnov 0.7626470 ©.5340

Estimation of the conditional survival function

The npcure package also includes the beran() function, which computes the generalized PL estimator
of the conditional survival function, S (¢|x), by Beran (1981). The beran() function in our package
may be used together with the berancv() function:

berancv(x, t, d, dataset, x@, cvpars = controlpars())

This function computes the local CV bandwidth selector of Geerdens et al. (2017). It can be directly
called by the user, but in practical work should be more usual an indirect call from the beran()
function, which, as said before, computes the generalized PL estimator of S (¢|x):

beran(x, t, d, dataset, x@, h, local = TRUE, testimate = NULL, conflevel = 0oL,
cvbootpars = if (conflevel == @ && !missing(h)) NULL else controlpars())

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

32

The arguments of these two functions have the same meaning as their homonyms in the latency()
and latencyhboot() functions, cvpars and cvbootpars playing the role of bootpars in these last
functions. Asin latency(), if no bandwidth is provided by the user via h, then the local CV bandwidth
in Geerdens et al. (2017) is computed by berancv().

For example, the code below computes the Beran estimator for the covariate values 0 and 0.5
using local CV bandwidths. The default behavior of berancv() is modified by the auxiliary function
controlpars(). In detail, the local CV bandwidth search is performed in a grid of bandwidths, which
is saved (hsave = TRUE) and consists of 200 bandwidths (h1 = 200) ranging from 0.2 to 2 times the
standardized IQR of the covariate (hbound = c(@.2,2)). Point and 95% CI estimates of the conditional
survival function S (t|x) are computed by beran() with the selected bandwidths:

x0 <- c(0, 0.5)
hcv <- berancv(x, t, d, data, x0 = x0,
cvpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))
S <- beran(x, t, d, data, x@ = x@, h = hcv$h, conflevel = 0.95)
S

#> Bandwidth type: local

#>

#> Covariate (x0): 0.0 0.5

#> Bandwidth (h): 1.598875 1.104106

#>

#> Beran's conditional survival estimate:

#>

#> x0 = 0

#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
...

#>

#> x0 = 0.5

#> time survival lower 95% CI upper 95% CI
#> 0.004599127 1.0000000 1.0000000 1.0000000
#> 0.042088293 1.0000000 1.0000000 1.0000000
#> 0.042271452 1.0000000 1.0000000 1.0000000
#> 0.059671372 1.0000000 1.0000000 1.0000000
#> 0.067375891 1.0000000 1.0000000 1.0000000
#> 0.098569312 1.0000000 1.0000000 1.0000000
...

The next code shows an equivalent way of obtaining the same estimates:

S <- beran(x, t, d, data, x@ = x0@, conflevel = 0.95,
cvbootpars = controlpars(hbound = c(0.2, 2), hl = 200, hsave = TRUE))

Figure 2 displays point and 95% CI estimates of the survival curve for covariate value 0.5. It has
been obtained by executing:

plot(S$testim, S$S$x0.5, type = "s", xlab = "Time", ylab = "Survival”,
ylim = c(0, 1))
lines(S$testim, S$conf$x@.5%lower, type = "s", lty
lines(S$testim, S$conf$x@.5%upper, type = "s", lty
pod <- exp(2 * x0[2])/(1 + exp(2 * x0[2]))
lines(S$testim, 1 - p@ + p@ * pweibull(S$testim,
shape = 0.5 * (x0[2] + 4), scale = 1, lower.tail = FALSE), col = 2)
legend("topright”, c("Estimate”, "95% CI limits”, "True"),
1ty = c(1, 2, 1), col = c(1, 1, 2))

2)
2)

Test for enough follow-up

The nonparametric estimators of the cure rate and latency functions given in (1) and (3), respectively,
require assumption (4) for their consistency. In other words, the follow-up must be long enough for

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

33

1.0

n — Estimate
- 95% CI limits
— True
@
® 4
P T N S
— o 7
[
2
c
=3
? <
o
(3]
84
e
o
T T T T T T
0.0 0.5 1.0 15 2.0 25

Time

Figure 2: Beran’s estimate of the conditional survival function for x = 0.5.

cures to happen so that the censored times after the largest uncensored observation can be assumed to
correspond to cured subjects.

The procedure to test the hypothesis (4) proposed by Maller and Zhou (1992) is performed by the
testmz () function:

testmz(t, d, dataset)

The function returns a list (with class attribute ‘npcure’) whose main component, containing the
p-value of the test, is pvalue. The further component aux is, in turn, a list of components statistic,
which contains the test statistic, n, the sample size, delta, giving the difference between the largest
observed time T(,,) and the largest uncensored time T} ax, and interval, which has the range between

max(0, T}, — delta) and TL,,.

With our simulated data, the result of the test is:
testmz(t, d, data)

#> Maller-Zhou test

#>

#> statistic n p.value
#> 43 50 2.024892e-43
Example

To illustrate the nonparametric modeling of the mixture cure model with the npcure package, we
consider the bone marrow transplantation data in Klein and Moeschberger (2005), available as the bmt
dataset of the R package KMsurv (Klein et al., 2012). The data comes from a multi-center study carried
out between 1984 and 1989, involving 137 patients with acute myelocytic leukemia (AML) or acute
lymphoblastic leukemia (ALL), aged from 7 to 52. Bone marrow transplant (BMT) is the standard
treatment for acute leukemia. Transplantation can be considered a failure when leukemia recurs or
the patient dies. Consequently, the failure time is defined as the time (days) to relapse or death. The
variables collecting this information are:

t2 Disease-free survival time in days (time to relapse, death, or end of study)
d3 Disease-free survival indicator (1: Dead or relapsed, 0: Alive and disease-free)
The probability of cure after BMT is high, especially if BMT is performed while the patient remains
in the chronic phase (Devergie et al., 1987). Recovery after BMT is a complex process depending on a
large set of risk factors, whose status is coded by the following variables:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=KMsurv

CONTRIBUTED RESEARCH ARTICLES 34

ta Time to acute graft-versus-host disease (GVHD).

tc Time to chronic GVHD.

tp Time to return of platelets to normal levels.

z1 Patient age (years).

z2 Donor age (years).

z7 Waiting time to transplant (days).

group Disease group (1: ALL, 2: AML low risk, 3: AML high risk).

da Acute GVHD indicator (1: Developed, 0: Never developed).

dc Chronic GVHD indicator (1: Developed, 0: Never developed).

dp Platelet recovery indicator (1: Returned to normal, 0: Never returned to normal).
z3 Patient gender (1: Male, 0: Female).

z4 Donor gender (1: Male, 0: Female).

z5 Patient cytomegalovirus (CMV) status (1: Positive, 0: Negative).

z6 Donor CMV status (1: Positive, 0: Negative).

z8 FAB (1: FAB grade 4 or 5 and AML, 0: Otherwise).

z9 Hospital (1: Ohio State University, 2: Alferd, 3: St. Vincent, 4: Hahnemann).

z10 Methotrexate (MTX) used for prophylaxis of GVHD (1: Yes, 0: No).

Before applying the estimation methods of the npcure package, it should be checked whether the
follow-up time was long enough to make it sure that condition (4) holds. This can be subjectively
assessed by visualizing a plot of the KM estimate of the unconditional survival function, S(¢). The
estimated survival curve in Figure 3 suggests the existence of a non-zero asymptote at the right tail.
The test of Maller and Zhou (1992) confirms that the follow-up period is adequate to ensure the validity
of the nonparametric estimation procedures available in the package:

data("bmt”, package = "KMsurv")
testmz(t2, d3, bmt)

#> Maller-Zhou test

#>
#> statistic n p.value
#> 11 137 1.047242e-05

1.0

N — Estimate
- 95% ClI limits
©
® 4
©
— o 7
K
£
>
n <
s 4
~!
o
o |
[S)
T T T T T T
0 500 1000 1500 2000 2500
Time (days)

Figure 3: Estimated disease-free survival.

Estimation of the probability of cure

We start by estimating the cure probability as a function of age (z1) and waiting time to transplant
(27), respectively. Cure probabilities are estimated at a grid of 100 values between the 5th and 95th
quantiles of the values of z1 and z7. The code for z1 is (for z7, it is similar):

x0 <- seq(quantile(bmt$z1, @.05), quantile(bmt$z1, 0.95), length.out = 100)
g.age <- probcure(zl, t2, d3, bmt, x0 = x@, conflevel = 0.95,
bootpars = controlpars(hsmooth = 10))

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

35

Both estimated cure rates are displayed in Figure 4, where a kernel estimate of the covariate density
has been added for reference:

par(mar = c(5, 4, 4, 5) + 0.1)
plot(q.age$x0d, q.age$q, type = "1", ylim = c(0, 1),
xlab = "Patient age (years)"”, ylab = "Cure probability")
lines(q.age$x0, qg.age$conf$lower, 1ty = 2)
lines(q.age$x0, g.age$conf$upper, 1ty = 2)
par(new = TRUE)
d.age <- density(bmt$z1)
plot(d.age, xaxt = "n", yaxt = "n", xlab = "", ylab = "") col = 2,
main = "", zero.line = FALSE)
mtext("Density”, side = 4, col = 2, line = 3)
axis(4, ylim = c(@, max(d.age$y)), col = 2, col.axis = 2)
legend("topright”, c("Estimate”, "95% CI limits”, "Covariate density"”),
1ty = c(1, 2, 1), col = c(1, 1, 2), cex = 0.8)

The cure probability seems to be nearly constant or, at most, to decrease slightly with patient age
and as the waiting time to transplant increases.

3 1 — Estimate 3 1 — Estimate
- 95% Cl limits --- 95% Cl limits S
—— Covariate density —— Covariate density [~ ©
o
o _| L8 © _|
o o o
3
r <
> > ©
Z o | £ o |
5 © ~ 5 & © .
£ s % £ -
° o 2 [o c
R Y VU U § g -8 &
L <« e e < s °
=3 5 7 =3 5 7
o ° o °
—
IS g
P B (=] ~ - 8
o o ©
o | L S o | | 8
=} S o o
T T T T T T T T T T T °©
15 20 25 30 35 40 45 200 400 600 800
Patient age (years) Waiting time to transplant (days)

Figure 4: Estimation of the cure probability conditional on age (left panel) and waiting time to
transplant (right panel). Nonparametric estimates of the covariate density are plotted for reference.

Testing the effect of one covariate on the probability of cure

The significance of the effect of patient age (z1) and waiting time to transplant (z7) on the probability
of cure can be tested with the testcov() function:

testcov(zl, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test

#>

#> Covariate: z1

#> test statistic p.value
#> Cramer-von Mises 0.1103200 0.8204
#> Kolmogorov-Smirnov @.7308477 ©.7900

testcov(z7, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test

#>

#> Covariate: z7

#> test statistic p.value
#> Cramer-von Mises 0.7921912 0.0968
#> Kolmogorov-Smirnov 1.6116129 ©0.1008

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

36

The effect of age on the cure probability is not statistically significant with neither the CM nor the

KS tests (pcpr = 0.820 and pgs = 0.790, where the subscripts identify the p-value in an obvious way).

As for the effect of waiting time to transplant, it reaches a borderline significance (pcys = 0.097 and
pks =0.101).

Cure probability can also be compared between groups defined by a categorical covariate. We
illustrate this case by considering gender (z3) and the use of MTX for prophylaxis of GVHD (z10). For
improving readability, we first label the groups:

bmt$z3 <- factor(bmt$z3, labels = c("Male”, "Female"))
bmt$z10 <- factor(bmt$z10, labels = c("MTX", "No MTX"))
summary (bmt[, c("z3", "z10")1)

#> z3 z10
#> Male :57 MTX 197
#> Female:80 No MTX:40

The estimated survival functions are displayed in Figure 5. The code for gender (z3) is:

library("”survival")
Sgender <- survfit(Surv(t2, d3) ~ z3, data = bmt)

Sgender

#> Call: survfit(formula = Surv(t2, d3) ~ z3, data = bmt)
#>

#> n events median 0.95LCL ©.95UCL

#> z3=Male 57 36 318 172 NA

#> z3=Female 80 47 606 418 NA

plot(Sgender, col = 1:2, mark.time = FALSE, xlab = "Time (days)"”,
ylab = "Disease-free survival")

legend("topright”, legend = c("Male”, "Female"), title = "Gender"”,
Ity =1, col = 1:2)

o o
S Gender S MTX
— Male — Yes
—— Female — No
«© fee]
o 7 o 7
g g
3 © E o
2 ©] 3 ©
[[V
L 2
T T
Q (]
g < | o < |
g © g ©
2 ki)
a a
N ~N
c 7 o 7|
o o
o 7 o 7
T T T T T T T T T T T T
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Time (days) Time (days)

Figure 5: Survival curves of patients conditional on gender (left panel) and use of MTX for prophylaxis
of GVHD (right panel).

The estimated probability of cure for each group defined by gender (z3) is obtained by computing
for each stratum the unconditional cure rate estimator of Laska and Meisner (1992). This estimator of

the probability of cure is the value of the KM curve at T} . (i.e., it is the minimum of the KM estimate):

ggender <- c(min(Sgender[1]$surv), min(Sgender[2]$surv))
ggender

#> [1] 0.1899671 0.4065833

The estimated probability of cure is 19.0% for males and 40.7% for females. The cure probabilities
according to the use or not of MTX as GVHD prophylactic (z10) are:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

37

Smtx <- survfit(Surv(t2, d3) ~ z10, data = bmt)
gmtx <- c(min(Smtx[1]1$surv), min(Smtx[2]$surv))
qmtx

#> [1] 0.3679977 0.3482143

The cure rate of patients treated with MTX is estimated to be 36.8%, slightly higher than 34.8%, the
estimate for patients not treated with MTX.

The effect of these two binary variables on the cure probability is tested with the testcov()
function similarly as it was done with continuous covariates:

testcov(z3, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test

#>

#> Covariate: z3

#> test statistic p.value
#> Cramer-von Mises ©.5947305 0.0900
#> Kolmogorov-Smirnov 1.1955919 0.0892

testcov(z10, t2, d3, bmt, bootpars = controlpars(B = 2500))

#> Covariate test

#>
#> Covariate: z10
#> test statistic p.value

#> Cramer-von Mises 1.018441 0.0692
#> Kolmogorov-Smirnov 1.199340 0.0668

The differences in the probability of cure between males and females, and between patients with
and without MTX treatment are not statistically significant, although a borderline effect is evidenced
(pcm = 0.090 and pgs = 0.089 for gender, pcpr = 0.069 and pgs = 0.067 for MTX).

Estimation of the latency function

The survival of the uncured patients (latency) is estimated for patient age (z1) 25 and 40 years as
follows:

SO <- latency(zl, t2, d3, bmt, x@ = c(25, 40), conflevel = 0.95,
bootpars = controlpars(B = 500))

Figure 6 displays the survival functions for the two ages, obtained by executing:

plot(S@$testim, SO$S$x25, type = "s"”, ylim = c(0, 1),

xlab = "Time (days)"”, ylab = "Latency")
lines(S@$testim, S@$conf$x25%lower, type = "s", lty
lines(So$testim, S@$conf$x25%upper, type = "s", 1ty
lines(S0$testim, S0$S$x40, type = "s", col = 2)
lines(S@$testim, S@$conf$x40$lower, type = "s", 1ty = 2, col = 2)
lines(So$testim, S@$conf$x40@$upper, type = "s", 1ty = 2, col = 2)
legend("topright”, c("Age 25: Estimate”, "Age 25: 95% CI limits”,

"Age 40: Estimate”, "Age 40: 95% CI limits"), 1ty = 1:2,

col = c(1, 1, 2, 2))

2)
2)

An increased survival of younger patients can be observed, but the survival advantage vanishes
after approximately 6 years.

Summary

This paper introduces the npcure package. It provides an R implementation of a completely non-
parametric approach for estimation in mixture cure models, along with a nonparametric covariate
significance test for the cure probability. Moreover, the generalized PL estimator of the conditional
survival function with a CV bandwidth selection function is included. Furthermore, the theory under-
lying the implemented methods, presented in Xu and Peng (2014), Lopez-Cheda et al. (2017a), and
Lopez-Cheda et al. (2017b), has been compiled.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

38

(=}
- 7 —— Age 25: Estimate
- Age 25: 95% ClI limits
—— Age 40: Estimate
o _| - Age 40: 95% ClI limits
o
© 4
3 o
c
Q
< R
- <
o
(3]
8
o 4 ol
o
T T T T T T
0 500 1000 1500 2000 2500
Time (days)

Figure 6: Latency curves of uncured patients 25 and 40 years old.

The npcure package has some limitations. Firstly, it only handles right-censored survival times.
Left-censored data, truncation, or interval-censored data have not been considered in this approach,
and it remains an open problem to be dealt with in the future. Secondly, a conditional estimation can
be performed when only one covariate is involved. The same restriction applies to the implemented
covariate significance test for the cure rate. An important extension would be the development of
estimation and test procedures for the cure rate and latency functions when they depend on a set of
covariates. A major challenge is the way the covariates are handled. In that case, the analysis of a large
number of covariates would suffer from the curse of dimensionality. Dimension reduction techniques
would be required, which leads to a demanding approach that has not been addressed yet, and we
leave for further research.

There is an interesting issue that remains an open problem to be dealt with in future versions of
the package. Traditional cure rate models implicitly assume that there is no additional information
on the cure status of the patients. So, the cure indicator is modeled as a latent variable. However,
examples contradicting this assumption can be found. For instance, in some clinical settings, subjects
who are followed up beyond a threshold period without experiencing the event can be considered as
cured. In other cases, complementary diagnostic tests providing further information about a patient’s
cure status may be available. We aim to develop improved non-parametric methods of estimation and
hypothesis testing that take into account this additional information.

Acknowledgments

The first author’s research was sponsored by the Beatriz Galindo Junior Spanish Grant from Ministerio
de Ciencia, Innovacién y Universidades (MICINN) with reference BGP18/00154. All the authors
acknowledge partial support by the MICINN Grant MTM2017-82724-R (EU ERDF support included),
and by Xunta de Galicia (Centro Singular de Investigacion de Galicia accreditation ED431G/01 2016-
2019 and Grupos de Referencia Competitiva CN2012/130 and ED431C2016-015) and the European
Union (European Regional Development Fund - ERDEF).

Bibliography
J. Amdahl. flexsurvcure: Flexible Parametric Cure Models, 2017. URL https://CRAN.R-project.org/
package=flexsurvcure. R package version 0.0.2. [p21]

M. Amico and I. Van Keilegom. Cure models in survival analysis. Annual Review of Statistics and Its
Application, 5:311-342,2018. URL https://doi.org/10.1146/annurev-statistics-031017-100101.

[p21]

R. Beran. Nonparametric Regression with Randomly Censored Survival Data. University of California,
Berkeley, 1981. [p22, 23, 25, 26, 31]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=flexsurvcure
https://CRAN.R-project.org/package=flexsurvcure
https://doi.org/10.1146/annurev-statistics-031017-100101

CONTRIBUTED RESEARCH ARTICLES

39

A. Bertrand, C. Legrand, and I. Van Keilegom. miCoPTCM: Promotion Time Cure Model with Mis-
Measured Covariates, 2020. URL https://CRAN.R-project.org/package=miCoPTCM. R package ver-
sion 1.1. [p22]

J. W. Boag. Maximum likelihood estimates of the proportion of patients cured by cancer therapy.
Journal of the Royal Statistical Society B, 11:15-53, 1949. URL https://doi.org/10.1111/3.2517-
6161.1949.tb00020. x. [p21]

J. Brettas. intercure: Cure Rate Estimators for Interval Censored Data, 2016. URL https://CRAN.R-
project.org/package=intercure. R package version 0.1.0. [p22]

M. Brockmann, T. Gasser, and E. Herrmann. Locally adaptive bandwidth choice for kernel regression
estimators. Journal of the American Statistical Association, 88:1302-1309, 1993. URL https://doi.org/
1@.23@7/229127@.[p25]

C. Cai, Y. Zou, Y. Peng, and]J. Zhang. smcure: Fit Semiparametric Mixture Cure Models, 2012. URL
https://CRAN.R-project.org/package=smcure. R package version 2.0. [p21]

C. Cai, S. Wang, W. Lu, and]J. Zhang. NPHMC: Sample Size Calculation for the Proportional Hazards
Mixture Cure Model, 2013. URL https://CRAN.R-project.org/package=NPHMC. R package version
22. [p21]

R. Cao and W. Gonzélez-Manteiga. Bootstrap methods in regression smoothing. Journal of Nonparamet-
ric Statistics, 2:379-388, 1993. URL https://doi.org/10.1080/10485259308832566. [p25]

D. Dabrowska. Variable bandwidth conditional Kaplan-Meier estimate. Scandinavian Journal of Statistics,
19:351-361, 1992. [p22]

M. A. Delgado and W. Gonzélez-Manteiga. Significance testing in nonparametric regression based
on the bootstrap. Amnnals of Statistics, 29:1469-1507, 2001. URL https://doi.org/10.1214/aos/
1013203462. [p25, 26]

J. W. Denham, E. Denham, K. B. Dear, and G. V. Hudson. The follicular non-Hodgkin’s lymphomas -
I. the possibility of cure. European Journal of Cancer, 32:470-479, 1996. URL https://doi.org/10.
1@16/@959—8@49(95)@@6@7—9.[pZ]]

A. Devergie, E. Gluckman, F. Varrin, J. L. Huret, J. Meletis, H. D. Castro, D. Bombail, E. Vilmer,
R. Traineau, and M. Boiron. La greffe de moelle osseuse allogénique dans la leucémie myéloide
chronique. Nouvelle Revue Frangaise d’Hématologie, 29:69-72, 1987. [p33]

V. T. Farewell. The use of mixture models for the analysis of survival data with long-term survivors.
Biometrics, 38:1041-1046, 1982. URL https://doi.org/10.2307/2529885. [p21]

V. T. Farewell. Mixture models in survival analysis: Are they worth the risk? Canadian Journal of
Statistics, 14:257-262,1986. URL https://doi.org/10.2307/3314804. [p21]

A. Gannoun, J. Saracco, and K. Yu. Comparison of kernel estimators of conditional distribution
function and quantile regression under censoring. Statistical Modelling, 7:329-344, 2007. URL
https://doi.org/10.1177/1471082X0700700404. [p22]

C. Geerdens, E. F. Acar, and P. Janssen. Conditional copula models for right-censored clustered event
time data. Biostatistics, 19:247-262,2017. URL https://doi.org/10.1093/biostatistics/kxx034.
[p22, 25,31, 32]

T. A. Gerds. prodlim: Product-Limit Estimation for Censored Event History Analysis, 2018. URL https:
//CRAN.R-project.org/package=prodlim. R package version 2018.04.18. [p22]

X. Han, Y. Zhang, and Y. Shao. rcure: Robust Cure Models for Survival Analysis, 2017. URL https:
//CRAN.R-project.org/package=rcure. R package version 0.1.0. [p22]

M. C. Iglesias-Pérez. Comparacién de dos selectores de la ventana en la estimacién de la distribucion
condicional con censura. In SGAPEIO, editor, Proceedings of the IX Congreso Galego de Estatistica e
Investigacion de Operaciéns. Sociedade Galega para a Promocién da Estatistica e Investigacién de
Operaciéns, 2009. URL http://sidor.uvigo.es/ixsgapeio/resumenes/81_29_paper.pdf. [p22]

J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data. Wiley, New York, 2nd
edition, 2002. ISBN 978-0-471-36357-6. [p21]

E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association, 53:458-481, 1958. URL https://doi.org/10.2307/2281868. [p22]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=miCoPTCM
https://doi.org/10.1111/j.2517-6161.1949.tb00020.x
https://doi.org/10.1111/j.2517-6161.1949.tb00020.x
https://CRAN.R-project.org/package=intercure
https://CRAN.R-project.org/package=intercure
https://doi.org/10.2307/2291270
https://doi.org/10.2307/2291270
https://CRAN.R-project.org/package=smcure
https://CRAN.R-project.org/package=NPHMC
https://doi.org/10.1080/10485259308832566
https://doi.org/10.1214/aos/1013203462
https://doi.org/10.1214/aos/1013203462
https://doi.org/10.1016/0959-8049(95)00607-9
https://doi.org/10.1016/0959-8049(95)00607-9
https://doi.org/10.2307/2529885
https://doi.org/10.2307/3314804
https://doi.org/10.1177/1471082X0700700404
https://doi.org/10.1093/biostatistics/kxx034
https://CRAN.R-project.org/package=prodlim
https://CRAN.R-project.org/package=prodlim
https://CRAN.R-project.org/package=rcure
https://CRAN.R-project.org/package=rcure
http://sidor.uvigo.es/ixsgapeio/resumenes/81_29_paper.pdf
https://doi.org/10.2307/2281868

CONTRIBUTED RESEARCH ARTICLES

40

J. P. Klein and M. L. Moeschberger. Survival Analysis: Techniques for Censored and Truncated Data.
Springer-Verlag, New York, 2nd edition, 2005. ISBN 978-0-387-21645-4. [p33]

J. P. Klein, M. L. Moeschberger, and J. Yan. KMsurv: Data sets from Klein and Moeschberger (1997),
Survival Analysis, 2012. URL https://CRAN.R-project.org/package=KMsurv. R package version
0.1-5. [p33]

A.Y.C.Kuk and C. H. Chen. A mixture model combining logistic regression with proportional hazards
regression. Biometrika, 79:531-541, 1992. URL https://doi.org/10.1093/biomet/79.3.531. [p21]

E. M. Laska and M.]. G. Meisner. Nonparametric estimation and testing in a cure model. Biometrics,
48:1223-1234,1992. URL https://doi.org/10.2307/2532714. [p22, 23, 36]

C.Liand]. M. G. Taylor. A semi-parametric accelerated failure time cure model. Statistics in Medicine,
21:3235-3247,2002. URL https://doi.org/10.1002/sim.1260. [p21]

G. Li and S. Datta. A bootstrap approach to nonparametric regression for right censored data.
Annals of the Institute of Statistical Mathematics, 53:708-729, 2001. URL https://doi.org/10.1023/A:
1014644700806. [p24, 25]

A. Lopez-Cheda, R. Cao, M. A. Jacome, and I. Van Keilegom. Nonparametric incidence estimation and
bootstrap bandwidth selection in mixture cure models. Computational Statistics & Data Analysis, 105:
144-165, 2017a. URL https://doi.org/10.1016/j.csda.2016.08.002. [p22, 23, 24,25, 37]

A. Lépez-Cheda, M. A. Jacome, and R. Cao. Nonparametric latency estimation for mixture cure
models. TEST, 26:353-376, 2017b. URL https://doi.org/10.1007/s11749-016-0515-1. [p22, 23,
24,25, 30, 37]

A. Lopez-Cheda, M. A. Jacome, I. Van Keilegom, and R. Cao. Nonparametric covariate hypothesis
tests for the cure rate in mixture cure models. Statistics in Medicine, 39:2291-2307, 2020. URL
https://doi.org/10.1002/sim.8530. [p25, 26]

I. Lépez-de-Ullibarri, A. Lopez-Cheda, and M. A. Jacome. npcure: Nonparametric Estimation in Mixture
Cure Models, 2020. URL https://CRAN.R-project.org/package=npcure. R package version 0.1-5.
[p22]

R. A. Maller and S. Zhou. Estimating the proportion of immunes in a censored sample. Biometrika, 79:
731-739,1992. URL https://doi.org/10.1093/biomet/79.4.731. [p23, 24, 26,27, 33, 34]

R. A. Maller and S. Zhou. Survival Analysis with Long-Term Survivors. Wiley, Chichester, U. K., 1996.
URL https://doi.org/10.1002/cbm.318. [p21]

L. Meira-Machado and M. Sestelo. condsurv: An R package for the estimation of the conditional
survival function for ordered multivariate failure time data. The R Journal, 8(2):460-473, 2016. URL
https://doi.org/10.32614/RJ-2016-059. [p22]

L. Meira-Machado, M. Sestelo, and G. Soutinho. survidm: Inference and Prediction in an Illness-Death
Model, 2019. URL https://CRAN.R-project.org/package=survidm. R package version 1.2.0. [p22]

U. U. Miiller and I. Van Keilegom. Goodness-of-fit tests for the cure rate in a mixture cure model.
Biometrika, 106:211-227,2019. URL https://doi.org/10.1093/biomet/asy058. [p21, 25]

Y. Niu and Y. Peng. geecure: Marginal Proportional Hazards Mixture Cure Models with Generalized Estimat-
ing Equations, 2018. URL https://CRAN.R-project.org/package=geecure. R package version 1.0-6.
[p22]

Y. Peng. mixcure: Mixture Cure Models, 2020. URL https://CRAN.R-project.org/package=mixcure. R
package version 2.0. [p22]

Y. Peng and K. B. Dear. A nonparametric mixture model for cure rate estimation. Biometrics, 56:237-243,
2000. URL https://doi.org/10.1111/3j.0006-341X.2000.00237.x. [p21]

Y. Peng, K. B. Dear, and J. W. Denham. A generalized F mixture model for cure rate estimation. Statistics
in Medicine, 17:813-830, 1998. URL https://doi.org/10.1002/(SICI)1097-0258(19980430)17:
8<813::AID-SIM775>3.0.C0O;2-%23. [le]

J. Racine and Q. Li. Nonparametric estimation of regression functions with both categorical and
continuous data. Journal of Econometrics, 119:99-130, 2004. URL https://doi.org/10.1016/50304-
4076(03)00157-X. [p27]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=KMsurv
https://doi.org/10.1093/biomet/79.3.531
https://doi.org/10.2307/2532714
https://doi.org/10.1002/sim.1260
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1023/A:1014644700806
https://doi.org/10.1016/j.csda.2016.08.002
https://doi.org/10.1007/s11749-016-0515-1
https://doi.org/10.1002/sim.8530
https://CRAN.R-project.org/package=npcure
https://doi.org/10.1093/biomet/79.4.731
https://doi.org/10.1002/cbm.318
https://doi.org/10.32614/RJ-2016-059
https://CRAN.R-project.org/package=survidm
https://doi.org/10.1093/biomet/asy058
https://CRAN.R-project.org/package=geecure
https://CRAN.R-project.org/package=mixcure
https://doi.org/10.1111/j.0006-341X.2000.00237.x
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<813::AID-SIM775>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<813::AID-SIM775>3.0.CO;2-%23
https://doi.org/10.1016/S0304-4076(03)00157-X
https://doi.org/10.1016/S0304-4076(03)00157-X

CONTRIBUTED RESEARCH ARTICLES

41

J. Xu and Y. Peng. Nonparametric cure rate estimation with covariates. Canadian Journal of Statistics,
42:1-17,2014. URL https://doi.org/10.1002/cjs.11197. [p22,23,24,27,37]

J. Zhou, J. Zhang, and W. Lu. Computationally efficient estimation for the generalized odds rate
mixture cure model with interval-censored data. Journal of Computational and Graphical Statistics, 27:
48-58,2017. URL https://doi.org/10.1080/10618600.2017.1349665. [p22]

Ana Lopez-Cheda

Research Group MODES, CITIC, Departamento de Matemiticas, Facultade de Informdtica, Universidade da
Corufia

CITIC, Campus de Elvifia s/n, A Corufia 15071

Spain

(ORCiD: 0000-0002-3618-3246)

ana.lopez.cheda@udc.es

M. Amalia Jacome

Research Group MODES, CITIC, Departamento de Matemdticas, Facultade de Ciencias, Universidade da
Corufia

Ruia da Fraga s/n, A Zapateira, A Corufia 15071

Spain

(ORCiD: 0000-0001-7000-9623)

maria.amalia.jacome@udc.es

Ignacio Lépez-de-Ullibarri

Research Group MODES, Departamento de Matemdticas, Escuela Universitaria Politécnica, Universidade da
Corufia

15405, Ferrol, A Corufia

Spain

(ORC:iD: 0000-0002-3438-6621)

ignacio.lopezdeullibarri@udc.es

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1002/cjs.11197
https://doi.org/10.1080/10618600.2017.1349665
mailto:ana.lopez.cheda@udc.es
mailto:maria.amalia.jacome@udc.es
mailto:ignacio.lopezdeullibarri@udc.es

CONTRIBUTED RESEARCH ARTICLES

42

A Method for Deriving Information from
Running R Code

by Mark PJ. van der Loo

Abstract It is often useful to tap information from a running R script. Obvious use cases include
monitoring the consumption of resources (time, memory) and logging. Perhaps less obvious cases
include tracking changes in R objects or collecting the output of unit tests. In this paper, we demonstrate
an approach that abstracts the collection and processing of such secondary information from the
running R script. Our approach is based on a combination of three elements. The first element is
to build a customized way to evaluate code. The second is labeled local masking and it involves
temporarily masking a user-facing function so an alternative version of it is called. The third element
we label local side effect. This refers to the fact that the masking function exports information to the
secondary information flow without altering a global state. The result is a method for building systems
in pure R that lets users create and control secondary flows of information with minimal impact on
their workflow and no global side effects.

Introduction

The R language provides a convenient language to read, manipulate, and write data in the form of
scripts. As with any other scripted language, an R script gives a description of data manipulation
activities, one after the other, when read from top to bottom. Alternatively, we can think of an R
script as a one-dimensional visualization of data flowing from one processing step to the next, where
intermediate variables or pipe operators carry data from one treatment to the next.

We run into limitations of this one-dimensional view when we want to produce data flows that
are somehow ‘orthogonal’ to the flow of the data being treated. For example, we may wish to follow
the state of a variable while a script is being executed, report on progress (logging), or keep track
of resource consumption. Indeed, the sequential (one-dimensional) nature of a script forces one to
introduce extra expressions between the data processing code.

As an example, consider a code fragment where the variable x is manipulated.

x[x > threshold] <- threshold
x[is.na(x)] <- median(x, na.rm=TRUE)

In the first statement, every value above a certain threshold is replaced with a fixed value, and next,
missing values are replaced with the median of the completed cases. It is interesting to know how an
aggregate of interest, say the mean of x, evolves as it gets processed. The instinctive way to do this is
to edit the code by adding statements to the script that collect the desired information.

meanx <- mean(x, na.rm=TRUE)

x[x > threshold] <- threshold

meanx <- c(meanx, mean(x, na.rm=TRUE))
x[is.na(x)] <- median(x, na.rm=TRUE)
meanx <- c(meanx, mean(x, na.rm=TRUE))

This solution clutters the script by inserting expressions that are not necessary for its main purpose.
Moreover, the tracking statements are repetitive, which validates some form of abstraction.

A more general picture of what we would like to achieve is given in Figure 1. The ‘primary data
flow’ is developed by a user as a script. In the previous example, this concerns processing x. When the
script runs, some kind of logging information, which we label the ‘secondary data flow” is derived
implicitly by an abstraction layer.

Creating an abstraction layer means that concerns between primary and secondary data flows are
separated as much as possible. In particular, we want to prevent the abstraction layer from inspecting
or altering the user code that describes the primary data flow. Furthermore, we would like the user
to have some control over the secondary flow from within the script, for example, to start, stop, or
parameterize the secondary flow. This should be done with minimum editing of the original user
code, and it should not rely on global side effects. This means that neither the user nor the abstraction
layer for the secondary data flow should have to manipulate or read global variables, options, or other
environmental settings to convey information from one flow to the other. Finally, we want to treat
the availability of a secondary data flow as a normal situation. This means we wish to avoid using
signaling conditions (e.g., warnings or errors) to convey information between the flows unless there is
an actual exceptional condition such as an error.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

43

Primary data flow

[data]—>[process;]—>[data’]—>[processs]—>[data”]

v v
Secondary
o o

Figure 1: Primary and secondary data flows in an R script. The primary flow follows the execution of
an R script, while in the background a secondary data flow (e.g. logging information) is created.

Prior art

There are several packages that generate a secondary data flow from a running script. One straightfor-
ward application concerns logging messages that report on the status of a running script. To create
a logging message, users edit their code by inserting logging expressions where desired. Logging
expressions are functions calls that help to build expressions, for example, by automatically adding
a timestamp. Configuration options usually include a measure of logging verbosity and setting
an output channel that controls where logging data will be sent. Changing these settings relies on
communication from the main script to the functionality that controls the flow of logging data. In
logger (Dardczi, 2021), this is done by manipulating a variable stored in the package namespace using
special helper functions. The logging package (Frasca, 2019) also uses an environment within the
namespace of the package to manage option settings, while futile.logger (Rowe, 2016) implements a
custom global option settings manager that is somewhat comparable to R’s own options() function.

Packages bench (Hester, 2020b) and microbenchmark (Mersmann, 2019) provide time profiling
of single R expressions. The bench package also includes memory profiling. Their purpose is not
to derive a secondary data flow from a running production script as in Figure 1 but to compare the
performance of R expressions. Both packages export a function that accepts a sequence of expressions
to profile. These functions take control of expression execution and insert time and/or memory
measurements where necessary. Options, such as the number of times each expression is executed, are
passed directly to the respective function.

Unit testing frameworks provide another source of secondary data flows. Here, an R script is used
to prepare, set up, and compare test data, while the results of comparisons are tapped and reported.
Testing frameworks are provided by testthat (Wickham, 2011), RUnit, (Burger et al., 2018), testit Xie
(2021), unitizer (Gaslam, 2021), and tinytest (van der Loo, 2020). The first three packages (testthat,
RUnit, and testit) all export assertion functions that generate condition signals to convey information
about test results. Packages RUnit and testit use sys.source() to run a file containing unit test
assertions and exit on the first error while testthat uses eval() to run expressions, capture conditions,
and test results and reports afterward. The unitizer framework is different because it implements an
interactive prompt to run tests and explore their results. Rather than providing explicit assertions,
unitizer stores results of all expressions that return a visible result and compares their output at
subsequent runs. Interestingly, unitizer allows for optional monitoring of the testing environment.
This includes environment variables, options, and more. This is done by manipulating the code
of (base) R functions that manage these settings and masking the original functions temporarily.
These masking functions then provide parts of the secondary data flow (changes in the environment).
Finally, tinytest is based on the approach that is the topic of this paper, and it will be discussed as an
application below.

Finally, we note the covr package of Hester (2020a). This package is used to keep track of which
expressions of an R package are run (covered) by package tests or examples. In this case, the primary
data flow is a test script executing code (functions, methods) stored in another script, usually in the
context of a package. The secondary flow consists of counts of how often each expression in the
source is executed. The package works by parsing and altering the code in the source file, inserting
expressions that increase appropriate counters. These counters are stored in a variable that is part of
the package’s namespace.

Summarizing, we find that in logging packages, the secondary data flow is invoked explicitly
by users while configuration settings are communicated by manipulating a global state that may or
may not be directly accessible by the user. For benchmarking packages, the expressions are passed
explicitly to an ‘expression runner’ that monitors the effect on memory and passage of time. In
most test packages, the secondary flow is invoked explicitly using special assertions that throw
condition signals. Test files are run using functionality that captures and administrates signals where
necessary. Two of the discussed packages explicitly manipulate existing code before running it to
create a secondary data flow. The covr package does this to update expression counters and the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

44

unitizer package to monitor changes in the global state.

Contribution of this paper

The purpose of this paper is to first provide some insight into the problem of managing multiple
data flows, independent of specific applications. In the following section, we discuss managing a
secondary data stream from the point of view of changing the way in which expressions are combined
and executed by R.

Next, we highlight two programming patterns that allow one to derive a secondary data stream,
both in non-interactive (while executing a file) and in interactive circumstances. The methods discussed
here do not require explicit inspection or modification of the code that describes the primary data
flow. It is also not necessary to invoke signaling conditions to transport information from or to the
secondary data stream.

We also demonstrate a combination of techniques that allow users to parameterize the secondary
flow without resorting to global variables, global options, or variables within a package’s namespace.
We call this technique ‘local masking’ with ‘local side effects’. It is based on temporarily and locally
masking a user-facing function with a function that does exactly the same except for a side effect that
passes information to the secondary data flow.

As examples, we discuss two applications where these techniques have been implemented. The
first is the lumberjack package (van der Loo, 2021), which allows for tracking changes in R objects as
they are manipulated expression by expression. The second is tinytest (van der Loo, 2020), a compact
and extensible unit testing framework.

Finally, we discuss some advantages and limitations to the techniques proposed.

Concepts

In this section we give a high-level overview of the problem of adding a second data flow to an existing
one, and general way to think about a solution. The general approach was inspired by a discussion of
Milewski (2018) and is related to what is sometimes called a bind operator in functional programming.

Consider as an example the following two expressions, labeled e; and e;.

el: x <-10
e2: y <- 2%Xx

We would like to implement some kind of monitoring as these expressions are evaluated. For this
purpose, it is useful to think of e; and e, as functions that accept a set of key-value pairs, possibly alter
the set’s contents, and return it. In R this set of key-value pairs is an environment, and usually, it is the
global environment (the user’s workspace). Starting with an empty environment {} we get:

er({3) ={("x",10)}
ea(er({})) = {("x",10),("y", 20)}

In this representation, we can write the result of executing the above script in terms of the function
composition operator o:

ea(e1({})) = (e20er)({})-

And in general, we can express the final state I/ of any environment after executing a sequence of
expressions eq, ey, - - , € as:

U= (eyoer_10---0e1)({}), 1)

where we assumed without loss of generality that we start with an empty environment. We will refer
to the sequence e . .. ¢ as the ‘primary expressions’ since they define a user’s main data flow.

We now wish to introduce some kind of logging. For example, we want to count the number of
evaluated expressions, not counting the expressions that will perform the count. The naive way to do
this is to introduce a new expression, say #:

n: if (lexists(”N")) N <- 1 else N <- N + 1
And we insert this into the original sequence of expressions. This amounts to the cumbersome solution:

UU{("N",k)} = (noegonoeqono---noe)({}), 2

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

45

where the number of executed expressions is stored in N. We shall refer to n as a ‘secondary expression’,
as it does not contribute to the user’s primary data flow.

The above procedure can be simplified if we define a new function composition operator o, as
follows:

aoyb=aonob.

One may verify the associativity property a o, (boy, ¢) = (a0, b) oy ¢ for expressions a, b, and ¢, so oy
can, indeed, be interpreted as a new function composition operator. Using this operator we get

UU{("N" k=1)} = (ex oneg—10n -~ oner)({}), ©)

which gives the same result as Equation 2 up to a constant.

If we are able to alter function composition, then this mechanism can be used to track all sorts of
useful information during the execution of ey, . . ., ex. For example, a simple profiler is set up by timing
the expressions and adding the following expression to the function composition operator.

s: if (lexists("”S")) S <- Sys.time() else S <- c(S, Sys.time())

After running ey o5 - - - o5 e1, diff(S) gives the timings of individual statements. A simple memory
profiler is defined as follows.

m: if (lexists("M")) M <- sum(memory.profile()) else M <- c(M, sum(memory.profile()))

After running ey oy, - - - 0y €1, M gives the amount of memory used by R after each expression.

We can also track changes in data, but it requires that the composition operator knows the name of
the R object that is being tracked. As an example, consider the following primary expressions.

el: x <= rnorm(10)
e2: x[x<0] <- 0
e3: print(x)

We can define the following expression for our modified function composition operator.

v: {
if (lexists("V")){
V <- logical(@)
X0 <- x
3
if (identical(x@,x)) V <- c(V, FALSE)
else V <- c(V, TRUE)
X0 <- x

3

After running e3 o, ey 0y €1, the variable V equals ¢ (TRUE, FALSE), indicating that e, changed x, and e3
did not.

These examples demonstrate that redefining function composition yields a powerful method
for extracting logging information with (almost) no intrusion on the user’s common workflow. The
simple model shown here does have some obvious setbacks: first, the expressions inserted by the
composition operator manipulate the same environment as the user expressions. The user- and
secondary expressions can therefore interfere with each other’s results. Second, there is no direct
control from the primary sequence over the secondary sequence: the user has no explicit control over
starting, stopping, or parametrizing the secondary data stream. We demonstrate in the next section
how these setbacks can be avoided by evaluating secondary expressions in a separate environment
and by using techniques we call ‘local masking’ and ‘local side-effect’.

Creating a secondary data flow with R

R executes expressions one by one in a read-evaluate-print loop (REPL). In order to tap information
from this running loop, it is necessary to catch the user’s expressions and interweave them with our
own expressions. One way to do this is to develop an alternative to R’s native source () function. Recall
that source() reads an R script and executes all expressions in the global environment. Applications
include non-interactive sessions or interactive sessions with repetitive tasks such as running test
scripts while developing functions. A second way to intervene with a user’s code is to develop a
special ‘forward pipe’ operator, akin to R’s |> pipe, the magrittr pipe of Bache and Wickham (2014), or

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

the “dot-pipe” of Mount and Zumel (2018). Since a user inserts a pipe between expressions, it is an
obvious place to insert code that generates a secondary data flow.

In the following two subsections we will develop both approaches. As a running example, we will
implement a secondary data stream that counts expressions.

Build your own source()

The source() function reads an R script and executes all expressions in the global environment. A
simple variant of source() that counts expressions as they get evaluated can be built using parse()
and eval ().

run <- function(file){
expressions <- parse(file)
runtime <- new.env(parent=.GlobalEnv)

n<-20
for (e in expressions){
eval(e, envir=runtime)
n<-n+1
3
message (sprintf(”"Counted %d expressions”,n))
runtime

3

Here, parse() reads the R file and returns a list of expressions (technically, an object of class ‘expression’).
The eval() function executes the expression while all variables created by or needed for execution are
sought in a newly created environment called runtime. We make sure that variables and functions in
the global environment are found by setting the parent of runtime equal to .GlobalEnv. Now, given a
file "script.R".

contents of script.R
x <- 10
y <- 2%x

An interactive session would look like this.

> e <- run("script.R")
Counted 2 expressions
> e$x
[1] 10

So, contrary to the default behavior of source(), variables are assigned in a new environment. This
difference in behavior can be avoided by evaluating expressions in .GlobalEnv. However, for the next
step, it is important to have a separate runtime environment.

We now wish to give the user some control over the secondary data stream. In particular, we want
the user to be able to choose when run() starts counting expressions. Recall that we demand that
this is done by direct communication to run(). This means that side-effects such as setting a special
variable in the global environment or a global option is out of the question. Furthermore, we want to
avoid code inspection: the run() function should be unaware of what expressions it is running exactly.
We start by writing a function for the user that returns TRUE.

start_counting <- function() TRUE

Our task is to capture this output from run() when start_counting() is called. We do this by masking
this function with another function that does exactly the same, except that it also copies the output
value to a place where run() can find it. To achieve this, we use the following helper function.

capture <- function(fun, envir){
function(...){
out <- fun(...)
envir$counting <- out
out
}
}

This function accepts a function (fun) and an environment (envir). It returns a function that first
executes fun(...), copies its output value to envir, and then returns the output to the user. In an
interactive session, we would see the following.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

> store <- new.env()

> f <- capture(start_counting, store)
> ()

[1] TRUE

> store$counting

[1] TRUE

Observe that our call to () returns TRUE as expected but also exported a copy of TRUE into store.
The reason this works is that an R function ‘remembers’ where it is created. The function f() was
created inside capture(), and the variable envir is present there. We say that this ‘capturing’ version
of start_counting has a local side-effect: it writes outside of its own scope but the place where it writes
is controlled.

We now need to make sure that run() executes the captured version of start_counting(). This is
done by locally masking the user-facing version of start_counting(). That is, we make sure that the
captured version is found by eval () and not the original version. A new version of run() now looks
as follows.

run <- function(file){
expressions <- parse(file)
store <- new.env()
runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)
n<-0
for (e in expressions){
eval(e, envir=runtime)
if (isTRUE(store$counting)) n <- n + 1
}
message(sprintf("Counted %d expressions”, n))
runtime

}
Now, consider the following code, stored in script1.R.

contents of scriptl.R

x <- 10
start_counting()
y <- 2%Xx

In an interactive session, we would see this.

> e <- run("script1.R")
Counted 1 expressions
> e$x

[1] 10

> e$y

[1] 20

Let us go through the most important parts of the new run() function. After parsing the R file, a
new environment is created that will store the output of calls to start_counting().

store <- new.env()

The runtime environment is created as before, but now we add the capturing version of start_counting().

runtime <- new.env(parent=.GlobalEnv)
runtime$start_counting <- capture(start_counting, store)

This ensures that when the user calls start_counting(), the capturing version is executed. We call
this technique local masking since the start_counting() function is only masked during the execution
of run(). The captured version of start_counting()as a side effect stores its output in store. We
call this a ‘local side-effect’ because store is never seen by the user: it is created inside run() and
destroyed when run() is finished.

Finally, all expressions are executed in the runtime environment and counted conditional on the
value of store$counting

for (e in expressions){

eval(e, envir=runtime)

if (isTRUE(store$counting)) n <- n + 1
}

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

48

Summarizing, with this construction, we are able to create a file runner akin to source() that can
gather and communicate useful process metadata while executing a script. Moreover, the user of
the script can convey information directly to the file runner, while it runs, without relying on global
side-effects. This is achieved by first creating a user-facing function that returns the information to be
sent to the file runner. The file runner locally masks the user-facing version with a version that copies
the output to an environment local to the file runner before returning the output to the user.

The approach just described can be generalized to more realistic use cases. All examples mentioned
in the ‘Context” section —time or memory profiling, or logging changes in data, merely need some
extra administration. Furthermore, the current example emits the secondary data flow as a ‘message’.
In practical use cases, it may make more sense to write the output to a file connection or database
or the make the secondary data stream output of the file runner. In the Applications section, both
applications are discussed.

Build your own pipe operator

Pipe operators have become a popular tool for R users over the last years, and R currently has a pipe
operator (|>) built-in. This pipe operator is intended as a form of ‘syntactic sugar” that, in some cases,
makes code a little easier to write. A pipe operator behaves somewhat like a left-to-right ‘expression
composition operator’. This, in the sense that a sequence of expressions that are joined by a pipe
operator are interpreted by R’s parser as a single expression. Pipe operators also offer an opportunity
to derive information from a running sequence of expressions.

It is possible to implement a basic pipe operator as follows.
“%p>%" <- function(lhs, rhs) rhs(lhs)

Here, the rhs (right-hand side) argument must be a single-argument function, which is applied to 1lhs.
In an interactive session we could see this.

> 3 %p>% sin %p>% cos
[1] 0.9900591

To build our expression counter, we need to have a place to store the counter value hidden from
the user. In contrast to the implementation of the file runner in the previous section, each use of %p>%
is disconnected from the other, and there seems to be no shared space to increase the counter at each
call. The solution is to let the secondary data flow travel with the primary flow by adding an attribute
to the data. We create two user-facing functions that start or stop logging as follows.

start_counting <- function(data){
attr(data, "n") <- 0
data
}
end_counting <- function(data){
message(sprintf(”"Counted %d expressions”, attr(data,”n")-1))
attr(data, "n") <- NULL
data
3

Here, the first function attaches a counter to the data and initializes it to zero. The second function
reports its value, decreased by one, so the stop function itself is not included in the count. We also
alter the pipe operator to increase the counter if it exists.

“%p>%" <- function(lhs, rhs){
if (lis.null(attr(lhs,"n"))){
attr(lhs,"n") <- attr(lhs,”n") + 1
}
rhs(lhs)
}

In an interactive session, we could now see the following.

> out <- 3 %p>%

+ start_counting %p>%
+ sin %p>%

+ cos %p>%

+ end_counting
Counted 2 expressions

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

49

> out
[1] 0.9900591

Summarizing, for small interactive tasks, a secondary data flow can be added to the primary one
by using a special kind of pipe operator. Communication between the user and the secondary data
flow is implemented by adding or altering attributes attached to the R object.

Generalizations of this technique come with a few caveats. First, the current pipe operator only
allows right-hand side expressions that accept a single argument. Extension to a more general case
involves inspection and manipulation of the right-hand side’s abstract syntax tree and is out of scope
for the current work. Second, the current implementation relies on the right-hand side expressions to
preserve attributes. A general implementation will have to test that the output of rhs(lhs) still has the
logging attribute attached (if there was any) and re-attach it if necessary.

Application 1: tracking changes in data

The lumberjack package (van der Loo, 2021) implements a logging framework to track changes in
R objects as they get processed. The package implements both a pipe operator, denoted %L>%, and a
file runner called run_file(). The main communication devices for the user are two functions called
start_log() and dump_log().

We will first demonstrate working with the lumberjack pipe operator. The function start_log()
accepts an R object and a logger object. It attaches the logger to the R object and returns the augmented

R object. A logger is a reference object' that exposes at least an $add() method and a $dump() method.

If a logger is present, the pipe operator stores a copy of the left-hand side. Next, it executes the
expression on the right-hand side with the left-hand side as an argument and stores the output. It
then calls the add() method of the logger with the input and output so that the logger can compute
and store the difference. The dump_log() function accepts an R object, calls the $dump() method on
the attached logger (if there is any), removes the logger from the object and returns the object. An
interactive session could look as follows.

> library(lumberjack)

> out <- women %L>%

> start_log(simple$new()) %L>%

> transform(height = height * 2.54) %L>%
> identity() %L>%

> dump_log()

Dumped a log at /home/mark/simple.csv

> read.csv("simple.csv")

step time expression changed
1 1 2019-08-09 11:29:06 transform(height = height * 2.54) TRUE
2 2 2019-08-09 11:29:06 identity() FALSE

Here, simple$new() creates a logger object that registers whether an R object has changed or not.

There are other loggers that compute more involved differences between in- and output. The $dump()
method of the logger writes the logging output to a csv file.

For larger scripts, a file runner called run_file() is available in lumberjack. As an example,
consider the following script. It converts columns of the built-in women data set to SI units (meters and
kilogram) and then computes the body-mass index of each case.

contents of script2.R

start_log(women, simple$new())

women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
women$bmi <- women$weight/(women$height)*2

In an interactive session, we can run the script and access both the logging information and retrieve
the output of the script.

> e <- run_file("script2.R")
Dumped a log at /home/mark/women_simple.csv
> read.csv("women_simple.csv")
step time expression changed
1 1 2019-08-09 13:11:25 start_log(women, simple$new()) FALSE

1 A native R Reference Class, an ‘R6’ object (Chang, 2020), or any other reference type object implementing the
proper APL

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

50

2 2019-08-09 13:11:25 women$height <- women$height * 2.54/100 TRUE
3 2019-08-09 13:11:25 women$weight <- women$weight * @.453592 TRUE
4 2019-08-09 13:11:25 women$bmi <- women$weight/(women$height)*2 TRUE

head(e$women, 3)

height weight bmi

1.4732 52.16308 24.03476

2 1.4986 53.07026 23.63087

3 1.5240 54.43104 23.43563

VvV & w N

_

The lumberjack file runner locally masks start_log() with a function that stores the logger and
the name of the tracked R object in a local environment. A copy of the tracked object is stored locally
as well. Expressions in the script are executed one by one. After each expression, the object in the
runtime environment is compared with the stored object. If it has changed, the $add() method of the
logger is called, and a copy of the changed object is stored. After all expressions have been executed,
the $dump () method is called, so the user does not have to do this explicitly.

A user can add multiple loggers for each R object and track multiple objects. It is also possible
to dump specific logs for specific objects during the script. All communication necessary for these
operations runs via the mechanism explained in the ‘build your own source ()’ section.

Application 2: unit testing

The tinytest package (van der Loo, 2020) implements a unit testing framework. Its core function is a
file runner that uses local masking and local side effects to capture the output of assertions that are
inserted explicitly by the user. As an example, we create tests for the following function.

contents of bmi.R
bmi <- function(weight, height) weight/(height*2)

A simple tinytest test file could look like this.

contents of test_script.R

data(women)

women$height <- women$height * 2.54/100
women$weight <- women$weight * 0.453592
BMI <- with(women, bmi(weight,height))

expect_true(all(BMI >= 10))
expect_true(all(BMI <= 30))

The first four lines prepare some data, while the last two lines check whether the prepared data meets
our expectations. In an interactive session, we can run the test file after loading the bmi () function.

> source("bmi.R")
> library(tinytest)
> out <- run_test_file('test_script.R")

Running test_script.R................. 2 tests OK
> print(out, passes=TRUE)
————— PASSED . test_script.R<7--7>
call| expect_true(all(BMI >= 10))
————— PASSED . test_script.R<8--8>

call| expect_true(all(BMI <= 30))

In this application, the file runner locally masks the expect_x() functions and captures their
result through a local side effect. As we are only interested in the test results, the output of all other
expressions is discarded.

Compared to the basic version described in the ‘build your own source ()’ section, this file runner
keeps some extra administration, such as the line numbers of each masked expression. These can be
extracted from the output of parse(). The package comes with a number of assertions in the form of
expect_x() functions. It is possible to extend tinytest by registering new assertions. These are then
automatically masked by the file runner. The only requirement on the new assertions is that they
return an object of the same type as the built-in assertions (an object of class ‘tinytest’).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

51

Discussion

The techniques demonstrated here have two major advantages. First, it allows for a clean and side-
effect free separation between the primary and secondary data flows. As a result, the secondary data
flow is composed with the primary data flow. In other words: a user that wants to add a secondary
data flow to an existing script does not have to edit any existing code. Instead, it is only necessary
to add a bit of code to specify and initialize the secondary stream, which is a big advantage for
maintainability. Second, the current mechanisms avoid the use of condition signals. This also leads to
code that is easier to understand and navigate because all code associated with the secondary flow
can be limited to the scope of a single function (here: either a file runner or a pipe operator). Since
the secondary data flow is not treated as an unusual condition (exception), the exception signaling
channel is free for transmitting truly unusual conditions such as errors and warnings.

There are also some limitations inherent to these techniques. Although the code for the secondary
data flow is easy to compose with code for the primary data flow, it is not as easy to compose different
secondary data flows. For example, one can use only one file runner to run an R script and only a
single pipe operator to combine two expressions.

A second limitation is that this approach does not recurse into the primary expressions. For
example, the expression counters we developed only count user-defined expressions. They can not
count expressions that are called by functions called by the user. This means that something like a
code coverage tool such as covr is out of scope.

A third and related limitation is that the resolution of expressions may be too low for certain
applications. For example in R, “if” is an expression (it returns a value when evaluated) rather than a
statement (like for). This means that parse() interprets a block such as

if (x>0){
X <- 10

y <- 2%X

}

as a single expression. If higher resolution is needed, this requires explicit manipulation of the user
code.

Finally, the local masking mechanism excludes the use of the namespace resolution operator. For
example, in lumberjack, it is not possible to use lumberjack::start_log() since, in that case, the
user-facing function from the package is executed and not the masked function with the desired local
side-effect.

Conclusion

In this paper we demonstrated a set of techniques that allow one to add a secondary data flow to an
existing user-defined R script. The core idea is that we manipulate way expressions are combined
before they are executed. In practice, we use R’s parse() and eval () to add secondary data stream
to user code, or build a special ‘pipe” operator. Local masking and local side effects allow a user to
control the secondary data flow without global side-effects. The result is a clean separation of concerns
between the primary and secondary data flow, that does not rely on condition handling, is void of
global side-effects, and that is implemented in pure R.

Mark PJ. van der Loo

Statistics Netherlands

PO-BOX 24500, 2490HA Den Haag

The Netherlands
https://orcid.org/0000-0002-9807-4686

https://www.markvanderloo.eu

m.vanderloo@cbs.nl

Bibliography

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2014. URL https://CRAN.R-
project.org/package=magrittr. R package version 1.5. [p45]

M. Burger, K. Juenemann, and T. Koenig. RUnit: R Unit Test Framework, 2018. URL https://CRAN.R-
project.org/package=RUnit. R package version 0.4.32. [p43]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://orcid.org/0000-0002-9807-4686
https://orcid.org/0000-0002-9807-4686
https://www.markvanderloo.eu
mailto:m.vanderloo@cbs.nl
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=RUnit
https://CRAN.R-project.org/package=RUnit

CONTRIBUTED RESEARCH ARTICLES

52

W. Chang. R6: Encapsulated Classes with Reference Semantics, 2020. URL https://CRAN.R-project.org/
package=R6. R package version 2.5.0. [p49]

G. Dardéczi. logger: A Lightweight, Modern and Flexible Logging Ultility, 2021. URL https://CRAN.R-
project.org/package=logger. R package version 0.2.0. [p43]

M. Frasca. logging: R Logging Package, 2019. URL https://CRAN.R-project.org/package=logging. R
package version 0.10-108. [p43]

B. Gaslam. unitizer: Interactive R Unit Tests, 2021. URL https://CRAN.R-project.org/package=
unitizer. R package version 1.4.14. [p43]

J. Hester. covr: Test Coverage for Packages, 2020a. URL https://CRAN.R-project.org/package=covr. R
package version 3.5.1. [p43]

J. Hester. bench: High Precision Timing of R Expressions, 2020b. URL https://CRAN.R-project.org/
package=bench. R package version 1.1.1. [p43]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2019. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-7. [p43]

B. Milewski. Category Theory for Programmers. Blurb, Incorporated, 2018. ISBN 9780464825081. See
also the online lectures: https:/ /youtu.be/ISLbk{SSR58. [p44]

J. Mount and N. Zumel. Dot-Pipe: an S3 Extensible Pipe for R. The R Journal, 10(2):309-316, 2018. doi:
10.32614/R]-2018-042. URL https://doi.org/10.32614/RJ-2018-042. [p46]

B. L. Y. Rowe. futile.logger: A Logging Utility for R, 2016. URL https://CRAN.R-project.org/package=
futile.logger. R package version 1.4.3. [p43]

M. van der Loo. tinytest: Lightweight but Feature Complete Unit Testing Framework, 2020. URL https:
//github.com/markvanderloo/tinytest. R package version 1.2.4. [p43, 44, 50]

M. P.]. van der Loo. Monitoring Data in R with the lumberjack Package. Journal of Statistical Software,
98:1-13, 2021. [p44, 49]

H. Wickham. testthat: Get started with testing. The R Journal, 3:5-10, 2011. URL https://journal.r-
project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf. [p43]

Y. Xie. testit: A Simple Package for Testing R Packages, 2021. URL https://CRAN.R-project.org/
package=testit. R package version 0.13. [p43]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=logger
https://CRAN.R-project.org/package=logger
https://CRAN.R-project.org/package=logging
https://CRAN.R-project.org/package=unitizer
https://CRAN.R-project.org/package=unitizer
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=bench
https://CRAN.R-project.org/package=bench
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://youtu.be/I8LbkfSSR58
https://doi.org/10.32614/RJ-2018-042
https://CRAN.R-project.org/package=futile.logger
https://CRAN.R-project.org/package=futile.logger
https://github.com/markvanderloo/tinytest
https://github.com/markvanderloo/tinytest
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://journal.r-project.org/archive/2011-1/RJournal_2011-1_Wickham.pdf
https://CRAN.R-project.org/package=testit
https://CRAN.R-project.org/package=testit

CONTRIBUTED RESEARCH ARTICLES

53

JMcmprsk: An R Package for Joint
Modelling of Longitudinal and Survival
Data with Competing Risks

by Hong Wang, Ning Li, Shanpeng Li, and Gang Li

Abstract In this paper, we describe an R package named JMcmprsk, for joint modelling of longitudinal
and survival data with competing risks. The package in its current version implements two joint
models of longitudinal and survival data proposed to handle competing risks survival data together
with continuous and ordinal longitudinal outcomes respectively (Elashoff et al., 2008; Li et al., 2010).
The corresponding R implementations are further illustrated with real examples. The package also
provides simulation functions to simulate datasets for joint modelling with continuous or ordinal
outcomes under the competing risks scenario, which provide useful tools to validate and evaluate
new joint modelling methods.

Introduction

Joint modeling of longitudinal and survival data has drawn a lot of attention over the past two decades.
Much of the research has been focused on data with a single event time and a single type of failure,
usually under the assumption of independent censoring of event times (Tsiatis and Davidian, 2004).
However, in some situations interest lies with competing risks data, where there is more than one
possible cause of an event or where the censoring is informative (Williamson et al., 2008). Typically, a
standard linear mixed model or its extensions are used for the longitudinal submodel. Cause-specific
hazards model with either unspecified or spline baseline hazards are studied for the competing risk
submodels. Various types of random effects are assumed to account for the association between these
submodels.

Despite various theoretical and methodological developments (Hickey et al., 2018b; Papageorgiou
et al., 2019), there are still limited software packages to deal with specific problems in the analysis
of follow-up data in clinical studies. To our knowledge, currently, there are three related CRAN R
packages, namely JM (Rizopoulos, 2012), joineR (Williamson et al., 2008), and lemm (Proust-Lima
et al., 2017), which support the modeling of longitudinal and survival data with competing risks.

The JM package provides support for competing risks via the "CompRisk" option in the jointModel ()
function. In JM, a linear mixed-effects submodel is modeled for the longitudinal part and a relative
risk submodel is assumed for each competing event. In the current version (1.4-8), only the piecewise
proportional hazards model, where the log baseline hazard is approximated using B-splines, is sup-
ported for the survival component. The joineR package fits the joint model (Williamson et al., 2008)
for joint models of longitudinal data and competing risks using the joint () function. In their model,
the time-to-event data is modeled using a cause-specific Cox proportional hazards regression model
with time-varying covariates. The longitudinal outcome is modeled using a linear mixed effects model.
The association is captured by a zero-mean shared latent Gaussian process. Parameters in the model
are estimated using an Expectation Maximization(EM) algorithm. The lemm package implements the
support for competing risks joint modeling in the Jointlemm() function. Radically different from the
above two R packages, the lemm package uses a less well-known framework called the joint latent class
model (Proust-Lima et al., 2014), which assumes that dependency between the longitudinal markers
and the survival risk can be captured by a latent class structure entirely. However, the lemm package
is mainly designed for prediction purpose and may not be suited to evaluate specific assumptions
regarding the characteristics of the marker trajectory that are the most influential on the event risk
(Proust-Lima et al., 2014).

In all these packages, a time-independent shared random effects vector is usually assumed in
modeling the longitudinal and survival data. However, they are not capable of fitting more flexible
models with separate random effects in these submodels (Elashoff et al., 2008; Li et al., 2010). In
many biomedical applications, sometimes, it is necessary to have a model which takes into account
longitudinal ordinal outcomes for the longitudinal part. Yet, due to the complex nature of joint
modeling, most of the available software does not support longitudinal ordinal variables (Armero
et al., 2016; Ferrer, 2017). We thus decided to fill this gap and implemented a joint model which
supports ordinal disease markers based on our previous work (Li et al., 2010).

Both JM and joineR packages depend heavily on the R nlme and survival packages. In JM, the
linear mixed-effects submodel and the survival submodel are first fitted using 1me() and coxph() R
function in these packages before a joint modeling process. In joineR, 1me() and coxph() functions

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

54

are applied to obtain initial values for parameters in the joint model, which are further estimated by
an EM algorithm. The major advantage of using available packages such as survival and nlme lies
that joint modeling R packages can be built quickly with adequate efficiency as most of these base R
packages have been optimized for speed. However, if required functionality is not available in these
packages, as is the case of Elashoff et al. (2008) and Li et al. (2010), implementing new joint modeling
methods is a non-trivial task.

Compared with JM and joineR packages, the JMcmprsk package introduced here can be regarded
as a "stand-alone" R package, which does not required initial estimates for the linear mixed effects
model or survival submodel to compute parameters of the joint model in question. In particular, the
JMcemprsk package is built within the Repp (Eddelbuettel et al., 2011) and GSL(The GNU Scientific
Library)(Galassi et al., 2002) framework, which make R functions have access to a wide range of fast
numerical routines such as Monte Carlo integration, numerical integration and differentiation.

Joint Models with Competing Risks

A joint model for competing risk data consists of two linked components: the longitudinal submodel,
which takes care of repeatedly measured information and the survival submodel, which deals with
multiple failure times. The combination of different longitudinal and survival components leads to a
variety of joint models (Hickey et al., 2018a).

In the current version of JMcmprsk, we have implemented two joint models for competing risk
data, namely joint modeling with continuous longitudinal outcomes (Elashoff et al., 2008), and joint
modeling with ordinal longitudinal outcomes (Li et al., 2010). Both models have adopted a cause-
specific Cox submodel with a frailty term for multiple survival endpoints. The difference between
these two models lies in the longitudinal part. The former model applies a linear mixed submodel
for the continuous longitudinal outcome, while the latter model includes a partial proportional odds
submodel for the ordinal longitudinal outcome.

Different from previous approaches (Rizopoulos, 2012; Williamson et al., 2008), we assume a
flexible separate random effects structure for the longitudinal submodel and the survival submodel.
Furthermore, the association between both submodels is modeled by the assumption that the random
effects in two submodels jointly have a multivariate normal distribution.

Model 1: Joint modeling with continuous longitudinal outcomes

Let Y;(t) be the longitudinal outcome measured at time ¢ for subjecti, i = 1,2,--- ,n and n is the total
number of subjects in study. Let C; = (T;, D;) denote the competing risks data on subject i, where
T; is the failure time or censoring time, and D; takes value in {0,1, - - - , g}, with D; = 0 indicating a
censored event and D; = k showing that subject i fails from the kth type of failure, wherek =1,--- ,g.

The joint model is specified in terms of the following two linked submodels:
1 (1
X007+ XV (1) b+ i),
2
M) = A exp(XP (D) Ty +vay), for k=1, g,

=
—~
~
—
Il

where Xi(l) (1), X;Z) (t) denote the covariates for the fixed-effects and vy, f(i(l) (t) denotes the covari-
ates for the random-effects b; and €;(t) ~ N(0,02) for all t > 0. The parameter v; is set to 1 to ensure
identifiability. We assume that b; is independent of €;(¢) and that €;(1) is independent of ¢;(¢,) for any
t) # ty. We further assume the random effects b; and u; jointly have a multivariate normal distribution,
denoted by 6; ~ N(0,%), where X = (Zb,ZbTu;Zbu,Uu).

Denote ¥ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of ¥ through an EM algorithm. The complete data likelihood is

L(¥;Y,C,0)
) 1 i
o« I [H]’ 1 \/— eXP((Yij - X,v(l) () B — Xi(l) (tij)Tbi)z)}

ot g [£ o)

x¥ exp(—EGiTZ*l(?i).
(m)[x|

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

55

In the E-step, we need to calculate the expected value of all the functions of 6. Since the integral
over the random effects does not have a closed-form solution, an iterative numerical method has to be
employed.

In JMcmprsk, the integral over time is approximated using a Gauss-Kronrod quadrature and the
computation of the integral over the individual random effects is achieved using a Gauss-Hermite
quadrature. The quadrature approximates the integral using a weighted sum of function values at
specified points within the domain of integration; the Gaussian quadrature is based on the use of
polynomial functions. A standard option here is the Gaussian quadratic rules. In the M-step, ¥ is
updated by maximizing the functions obtained from the E-step.

Model 2: Joint modeling with ordinal longitudinal outcomes

Let Yz-j denote the jth response measured on subject i, wherei =1,--- ,n,j=1,--- ,n;,and Yij takes
valuesin {1, -+ ,K}. The competing risks failure times on subject i is (T;, D;), and the notations have
the same meaning as in Model 1.

We propose the following partial proportional odds model for Y;;

X1, Wi, by) = !

P(Y;; < k|X;;, ’ 7 X '
(i | Xij, Xij, Wij 1+ exp(—6r — X — Xjjor — Wi/Tbi)

wherek=1,--- ,K—1, Xij and)N(ij are p x 1 and s x 1 vectors of covariates for the fixed-effect f and
ag, with a7 = 0, and)N(,']' is a subset of X;; for which the proportional odds assumption may not be
satistied. The g x 1 vector b; represents random effects of the associated covariates Wj;.

The distribution of the competing risks failure times (T}, D;) are assumed to take the form of the
following cause-specific hazards frailty model:

M(HZi(#),u) = Aoa(h) exp(Zi(t) g +vgus), for d=1,--- g,
where the | x 1 vector 7, and v are the cause-specific coefficients for the covariates Z;(t) and the
random effects u;, respectively.

The parameter v is set to 1 to ensure identifiability. We assume the random effects b; and u; jointly
have a multivariate normal distribution, denoted by a; ~ N(0,X).

Denote ¥ as the unknown parameters from the joint models. We propose to obtain the maximum
likelihood estimate of ¥ through an EM algorithm. The complete data likelihood is

L(¥;Y,C,a)
o T [T I (k) — (k= 1)} 050

XH‘[";:l/\d(Ti)(exp{ / Z/\d dt

1 1
X —— exp(fia;r):_lai).
2m)TH |z

where 77;;(k) stands for the probability that Y;; < k given the covariates and the random effects. The
implementation of EM algorithm in this case is similar to the procedure of Model 1.

Package structure and functionality

The R package]Mcmprsk implements the above two joint models on the basis of R package Repp
(Eddelbuettel et al., 2011) and GSL library(Galassi et al., 2002) and is hosted at CRAN. After setting
the GSL env1ronment by following the instructions in the INSTALL file from the package, we can issue
the following command in the R console to install the package:

> install.packages("JMcmprsk")

There are two major functions included in the JMemprsk package: the function that fits continuous
outcomes jmc() and the function that fits ordinal outcomes jmo().

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

56

jmc() function

As an illustrative example of jmc(), we consider Scleroderma Lung Study (Tashkin et al., 2006), a
double-blinded, randomized clinical trial to evaluate the effectiveness of oral cyclophosphamide
(CYC) versus placebo in the treatment of lung disease due to scleroderma. This study consists of
158 patients and the primary outcome is forced vital capacity (FVC, as % predicted) determined at
3-month intervals from the baseline. The event of interest is the time-to-treatment failure or death.
We consider two covariates, baseline %FVC (FVCj) and baseline lung fibrosis (FIBj) and two risks,
informative and noninformative. The model setups are as follows:

O/oFVCi]' = PBo+ ;Bltij + B2FVCy; + B3FIBy; 4+ B4CYC;
+B5FVCy; x CYC; + BeFIBy; x CYC; + ,B7t1']' x CYC; + bitij +e€,

and the cause-specific hazards frailty models are

A1 (t) = Aor(t) exp(111 FV Co; + Y12FIBo; + 113CYCi + 7114FVCo; x CYC; + 15FIBo; x CYC; + u;)
Az (t) = Aoz (t) exp (721 FV Coi + v22FIBo; + 123CYCi + 724 FVCoj X CYC; + 725FIBy; x CYC; + vau;),

We first load the package and the data.

library(JMcmprsk)

set.seed(123)

data(lung)

yread <- lung[, c(1,2:11)]

cread <- unique(lung[, c(1, 12, 13, 6:10)]1)

The number of rows in "yread" is the total number of measurements for all subjects in the study. For
"cread", the survival/censoring time is included in the first column, and the failure type coded as
0 (censored events), 1 (risk 1), or 2 (risk 2) is given in the second column. Two competing risks are
assumed.

Then, "yread" and "cread" are used as the longitudinal and survival input data for the model
specified by the function jmc() as shown below:

jmcfit <- jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time”, "FVCO", "FIB@", "CYC", "FVCO.CYC",
"FIB@.CYC", "time.CYC"),
RE = "linear”, ID = "ID",cate = NULL, intcpt = 0,
quad.points = 20, quiet = TRUE, do.trace = FALSE)

where out is the name of the outcome variable in the longitudinal sub-model, FE the list of covariates
for the fixed effects in the longitudinal sub-model, RE the types/vector of random effects in the
longitudinal sub-model, ID the column name of subject id, cate the list of categorical variables for the
fixed effects in the longitudinal sub-model, intcpt the indicator of random intercept coded as 1 (yes,
default) or 0(no). The option quiet is used to print the progress of function, the default is TRUE (no
printing).

A concise summary of the results can be obtained using jmcfit as shown below:

>jmcfit
Call:
jmc(long_data = yread, surv_data = cread, out = "FVC",
FE = c("time"”, "FVCQ", "FIBQ", "CYC", "FVC@.CYC", "FIB@.CYC", "time.CYC"),
RE = "linear”, ID = "ID", cate = NULL, intcpt = @, quad.points = 20, quiet = FALSE)

Data Summary:
Number of observations: 715
Number of groups: 140

Proportion of competing risks:

Risk 1 : 10 %

Risk 2 : 22.86 %

Numerical intergration:

Method: standard Guass-Hermite quadrature

Number of quadrature points: 20

Model Type: joint modeling of longitudinal continuous and competing risks data

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 57

Model summary:

Longitudinal process: linear mixed effects model

Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard
Loglikelihood: -3799.044

Longitudinal sub-model fixed effects: FVC ~ time + FVCO + FIB@ + CYC + FVCQ.CYC + FIBQ.CYC + time.CYC

Estimate Std. Error 95% CI Pr(>1Z1)
Longitudinal:
Fixed effects:
intercept 66.0415 0.7541 (64.5634, 67.5196) 0.0000
time -0.0616 0.0790 (-0.2165, 0.0932) 0.4353
FvCo 0.9017 0.0365 (0.8302, 0.9732) 0.0000
FIBO -1.7780 0.5605 (-2.8767,-0.6793) 0.0015
CYC 0.0150 0.9678 (-1.8819, 1.9119) 0.9876
FVC@.CYC 0.1380 0.0650 (0.0106, 0.2654) 0.0338
FIB0.CYC 1.7088 0.7643 (0.2109, 3.2068) 0.0254
time.CYC 0.1278 0.1102 (-0.0883, 0.3438) 0.2464
Random effects:
sigma*2 22.7366 0.6575 (21.4478, 24.0253) 0.0000

Survival sub-model fixed effects: Surv(surv, failure_type) ~ FVC0O + FIB@Q + CYC + FVCO@.CYC + FIB@.CYC

Estimate Std. Error 95% CI Pr(>|Z])
Survival:
Fixed effects:
FVCo_1 0.0187 0.0326 (-0.0452, 0.0826) 0.5660
FIBO_1 0.1803 0.3521 (-0.5098, 0.8705) 0.6086
CYC_1 -0.6872 0.7653 (-2.1872, 0.8128) 0.3692
FVCO.CYC_1 -0.0517 0.0746 (-0.1979, 0.0945) 0.4880
FIB@.CYC_1 -0.4665 1.1099 (-2.6419, 1.7089) 0.6743
FvCo_2 -0.0677 0.0271 (-0.1208,-0.0147) 0.0123
FIBO_2 0.1965 0.3290 (-0.4484, 0.8414) 0.5503
Cyc_2 0.3137 0.4665 (-0.6007, 1.2280) 0.5013
FVC@.CYC_2 0.1051 0.0410 (0.0248, 0.1854) 0.0103
FIB@.CYC_2 0.1239 0.4120 (-0.6836, 0.9314) 0.7636
Association parameter:
v2 1.9949 2.3093 (-2.5314, 6.5212) 0.3877
Random effects:
sigma_b11 0.2215 0.0294 (0.1638, 0.2792) 0.0000
sigma_u 0.0501 0.0898 (-0.1259, 0.2260) 0.5772
Covariance:
sigma_b1u -0.0997 0.0797 (-0.2560, 0.0565) 0.2109

The resulting table contains three parts, the fixed effects in longitudinal model, survival model
and random effects. It gives the estimated parameters in the first column, the standard error in the
second column, and 95% confidence interval and p-value for these parameters in the third and fourth
columns. In our example, there is only one random effect. If there is more than one random effect, the
output will include sigmay 11, sigmay12, sigmay22, sigmay1u, sigmay2u, and so on.

The supporting function coef () can be used to extract the coefficients of the longitudinal /survival
process by specifying the argument coeff, where'beta" and "gamma" denotes the longitudinal and
survival submodel fixed effects, respectively.

beta <- coef(jmcfit, coeff = "beta")

>beta
intercept time.1 FvCo FIBO CYC FVCo.CYC FIB@.CYC
66.04146267 -0.06164756 0.90166283 -1.77799172 0.01503104 ©.13798885 1.70883750
time.CYC
0.12776670
gamma <- coef(jmcfit, coeff = "gamma")

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

58

>gamma

FvCo FIBO CYcC FVCo.CYC FIB@.CYC
[1,1 0.01871359 ©.1803249 -0.6872099 -0.05172157 -0.4664724
[2,] -0.06772664 ©.1965190 ©.3136709 0.10509986 ©.1239203

The supporting function summary() can be used to extract the point estimate, the standard error,
95%CI, and p-values of the coefficients of both sub-models with the option coeff to specify which
submodel fixed effects one would like to extract, and digits, the number of digits to be printed out.
We proceed below to extract the fixed effects for both submodels:

>summary(jmcfit, coeff = "longitudinal”, digits = 4)
Longitudinal coef SE 95%Lower 95%Upper p-values

1 intercept 66.0415 0.7541 64.5634 67.5196 0.0000
2 time -0.0616 0.0790 -0.2165 ©0.0932 ©0.4353
3 FVCO 0.9017 0.0365 ©0.8302 ©0.9732 0.0000
4 FIBO -1.7780 0.5605 -2.8767 -0.6793 0.0015
5 CYC 0.0150 0.9678 -1.8819 1.9119 0.9876
6 FVCO.CYC ©0.1380 0.0650 ©.0106 ©0.2654 0.0338
7 FIBO.CYC 1.7088 0.7643 0.2109 3.2068 0.0254
8 time.CYC 0.1278 0.1102 -0.0883 0.3438 0.2464

>summary(jmcfit, coeff = "survival”, digits = 4)
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 FvCo_1 0.0187 1.0189 0.0326 -0.0452 0.0826 0.5660
2 FIBO_1 ©.1803 1.1976 0.3521 -0.5098 ©.8705 0.6086
3 CYC_1 -0.6872 0.5030 ©.7653 -2.1872 ©.8128 0.3692
4 FVCO.CYC_1 -0.0517 0.9496 0.0746 -0.1979 0.0945 0.4880
5 FIB@.CYC_1 -0.4665 0.6272 1.1099 -2.6419 1.7089 0.6743
6 FvCo_2 -0.0677 0.9345 0.0271 -0.1208 -0.0147 0.0123
7 FIBO_2 ©.1965 1.2172 0.3290 -0.4484 0.8414 0.5503
8 CYC_2 0.3137 1.3684 0.4665 -0.6007 1.2280 0.5013
9 FVCo.CYC_2 0.1051 1.1108 0.0410 0.0248 0.1854 0.0103
10 FIBO.CYC_2 ©.1239 1.1319 0.4120 -0.6836 ©0.9314 0.7636

We proceed to test the global hypothesis for the longitudinal and the survival submodels using
linearTest().

>linearTest(jmcfit, coeff="beta")
Chisq df Pr(>|Chi])
Lxbeta=Cb 1072.307 7 0.0000
>linearTest(jmcfit, coeff="gamma")
Chisq df Pr(>|Chi])
Lxgamma=Cg 11.06558 10 0.3524

The results suggest that the hypothesis f; = B2 = --- = By = 0 is rejected, and the hypothesis
Y1 =7Y12="""=715 =721 = Y22 = - - = 25 = 01is not rejected at the significance level of 0.05.

linearTest () can also be used to test any linear hypothesis about the coefficients for each sub-
model. For example, if one wants to test Hy : f; = B in the longitudinal submodel, then we start with
a linear contrast Lb and pass it to 1inearTest().

Lb <- matrix(c(1, -1, 0, @, @, @, @), ncol = length(beta)-1, nrow = 1)
>linearTest(jmcfit, coeff="beta", Lb = Lb)

Chisq df Pr(>|Chil|)
Lxbeta=Cb 124.8179 1 0.0000

Note that we do not include intercept for linear hypotheses testing. It is seen that the hypothesis
B1 = B2 is rejected at level 0.05 in the above example.

Similarly, a linear hypotheses testing can also be done in the survival submodel using 1inearTest ().
For example, if we want to test Hy : 11 = 721, then we start with another linear contrast Lg and pass
it to linearTest().

Lg <- matrix(c(1, 0, @, @0, @, -1, @, @, @, @), ncol = length(gamma), nrow = 1)
>linearTest(jmcfit, coeff="gamma", Lg = Lg)

Chisq df Pr(>|Chi])
L*gamma=Cg 4.301511 1 0.0381

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

59

It is seen that the hypothesis 11 = 23 is rejected at level 0.05.

For categorical variables, jmc() function will create the appropriate dummy variables automatically
as needed within the function. The reference group in a categorical variable is specified as the one that
comes first alphabetically. Below is another example:

First, we add two categorical variables "sex" and "race" to the longitudinal data set "yread", in
which "sex" is coded as "Female" or "Male", and race is coded as "Asian", "White", "Black", or "Hispanic".

#make up two categorical variables and add them into yread
set.seed(123)
sex <- sample(c("Female", "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White", "Black”, "Asian"”, "Hispanic"),
nrow(cread), replace = TRUE)
ID <- cread$ID
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {
yread <- dplyr::left_join(yread, cate_var, by = "ID")
}

Second, we rerun the model with the two added categorical variables.

run jmc function again for yread file with two added categorical variables
res2 <- jmc(long_data = yread, surv_data = cread,

out = "FVC", cate = c("sex", "race"),

FE = c("time”, "FVC@", "FIB@", "CYC", "FVC@.CYC",

"FIBO.CYC”, "time.CYC"),

RE = "time"”, ID = "ID", intcpt = 0,

quad.points = 20, quiet = FALSE)
res2

We can obtain the estimated coefficients of the longitudinal process using coef ().

> coef(res2, coeff = "beta")

intercept time FvCe FIBO CYC FvCo.CYC FIB@.CYC
67.05760799 -0.07340060 ©.91105151 -1.75007966 0.02269507 0.13045588 1.58807248 0.
Male Black Hispanic White

-0.77110697 -0.94635182 -0.45873814 -1.19910638

jmo() function

The implementation of jmo() is very similar to that of jmc(). As an illustrative example, we use the
data from (rt PA Stroke Study, 1995). In this study, 624 patients are included, and the patients treated
with rt-PA were compared with those given placebo to look for an improvement from baseline in the
score on the modified Rankin scale, an ordinal measure of the degree of disability with categories
ranging from no symptoms, no significant disability to severe disability or death, which means in
this example, Yj; takes K = 4 ordinal values. The following covariates are considered: treatment
group (rt-PA or placebo), modified Rankin scale prior stroke onset, time since randomization (dummy
variables for 3, 6 and 12 months), and the three subtypes of acute stroke (small vessel occlusive disease,
large vessel atherosclerosis or cardioembolic stroke, and unknown reasons). Similarly, we also consider
the informative and noninformative risks. The model setups are as follows:

P(Y;j<k) = [l+exp(—b — (B1Group + BaModified Rankin scale prior onset + B3time3
+Batime6 + Bstimel2 + BeSmall vessel + ByLarge vessel or cardioembolic stroke
+BsSmall vessel*group + BoLarge vessel or cardioembolic stroke*group)

— (&g Small vessel 4 aj,Large vessel or cardioembolic stroke) — b;)] 71,
wherek=1,--- ,K—1.

A(t) = Api(t) exp(y11Group + y1Modified Rankin scale prior onset
+7135mall vessel + y14Large vessel or cardioembolic stroke

+7155mall vessel*group + 716Large vessel or cardioembolic stroke*group + ;)

Aa(t) Aoz (£) exp(y21 Group + y2xModified Rankin scale prior onset
+723Small vessel + 4 Large vessel or cardioembolic stroke

+725Small vessel*group + yp¢Large vessel or cardioembolic stroke*group + v,u;)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

time.CYC
15876200

CONTRIBUTED RESEARCH ARTICLES 60

We first load the package and the data.

library(JMcmprsk)

set.seed(123)

data(ninds)

yread <- ninds[, c(1, 2:14)]

cread <- ninds[, c(1, 15, 16, 6, 10:14)]
cread <- unique(cread)

and the other arrangements are the same with those in jmc(),

jmofit <- jmo(yread, cread, out = "Y",
FE = c("group”, "time3", "time6"”, "timel2", "mrkprior”,
"smlves"”, "1lvORcs", "smlves.group”, "lvORcs.group"),
cate = NULL,RE = "intercept”, NP = c("smlves”, "1lvORcs"),
ID = "ID",intcpt = 1, quad.points = 20,
max.iter = 1000, quiet = FALSE, do.trace = FALSE)

where NP is the list of non-proportional odds covariates and FE the list of proportional odds covariates.

To see a concise summary of the result, we can type:

>jmofit
Call:
jmo(long_data = yread, surv_data = cread, out = "Y",
FE = c("group”, "time3"”, "time6", "timel2", "mrkprior"”, "smlves”, "1lvORcs"”, "smlves.group”, "1lvORcs.group”),

RE = "intercept”, NP = c("smlves"”, "lvORcs"), ID = "ID", cate = NULL, intcpt =1,
quad.points = 20, max.iter = 1000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:
Longitudinal process: partial proportional odds model
Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard

Loglikelihood: -2292.271

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + timel12 + mrkprior + smlves +
1vORcs + smlves.group + 1vORcs.group
Longitudinal sub-model non-proportional odds: smlves_NP + 1vORcs_NP

Estimate Std. Error 95% CI Pr(>1Z1)
Longitudinal:
Fixed effects:
proportional odds:

group 1.6053 0.1905 (1.2319, 1.9786) 0.0000
time3 2.5132 0.1934 (2.1341, 2.8923) 0.0000
time6 2.6980 0.1962 (2.3134, 3.0825) 0.0000
timel12 2.9415 0.2004 (2.5486, 3.3344) 0.0000
mrkprior -2.1815 0.2167 (-2.6063,-1.7567) 0.0000
smlves 6.4358 0.4228 (5.6072, 7.2644) 0.0000
1vORcs -1.2907 0.2861 (-1.8515,-0.7300) 0.0000
smlves.group ©.4903 0.7498 (-0.9793, 1.9598) 0.5132
1VORcs.group -3.2277 0.4210 (-4.0528,-2.4026) 0.0000

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Non-proportional odds:

smlves_NP_2 0.2725 0.4485 (-0.6066, 1.1515) 0.5435
1vORcs_NP_2 -0.4528 0.2466 (-0.9362, 0.0305) 0.0663
smlves_NP_3 1.7844 1.0613 (-0.2958, 3.8645) 0.0927
1vORcs_NP_3 -0.1364 0.4309 (-0.9809, 0.7081) 0.7516
Logit-specific intercepts:

thetal -6.2336 0.1722 (-6.5712,-5.8960) 0.0000
theta2 -4.1911 0.1561 (-4.4971,-3.8851) 0.0000
theta3 3.9806 0.1896 (3.6091, 4.3522) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + 1lvORcs +
smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z])
Survival:
Fixed effects:
group_1 -0.4630 0.2434 (-0.9400, 0.0140) 0.0571
mrkprior_1 0.5874 9.1371 (9.3187, 0.8560) 0.0000
smlves_1 -2.5570 0.7223 (-3.9728,-1.1413) 0.0004
1vORcs_1 0.5992 0.2485 (0.1120, 1.0863) 0.0159
smlves.group_1 -0.4990 1.4257 (-3.2934, 2.2955) 0.7264
1vORcs.group_1 1.1675 0.4692 (0.2479, 2.0871) 0.0128
group_2 0.2087 0.4834 (-0.7388, 1.1562) 0.6659
mrkprior_2 0.0616 0.4277 (-0.7766, 0.8998) 0.8854
smlves_2 0.7758 0.6217 (-0.4428, 1.9943) 0.2121
1vORcs_2 -0.3256 0.5120 (-1.3291, 0.6778) 0.5247
smlves.group_2 -0.0437 1.1573 (-2.3120, 2.2245) 0.9699
1vORcs.group_2 0.0991 1.0718 (-2.0015, 2.1998) 0.9263
Association prameter:
v2 0.0101 0.1595 (-0.3025, 0.3227) 0.9496
Random effects:
sigma_b11 55.6404 5.6560 (44.5547, 66.7261) 0.0000
sigma_u 6.6598 1.7196 (3.2894, 10.0303) 0.0001
Covariance:
sigma_blu -19.2452 0.7730 (-20.7602,-17.7302) 0.0000

The usage of function coef () is similar to those in Model 1. More specifically, coef () can extract
the coefficients of non-proportional odds fixed effects and logit-specific intercepts. For example,

alpha <- coef(jmofit, coeff = "alpha")
>alpha
smlves_NP 1vORcs_NP
[1,] 0.2724605 -0.4528214
[2,] 1.7843743 -0.1363731

theta <- coef(jmofit, coeff = "theta")
> theta
[1] -6.233618 -4.191114 3.980638

The usage of function summary () is the same as in Model 1. It extracts the point estimate, standard
error, 95%ClI, and p-values of the coefficients of both submodels as demonstrated below:

> summary(jmofit, coeff = "longitudinal")
Longitudinal coef SE 95%Lower 95%Upper p-values

1 group 1.6053 0.1905 1.2319 1.9786 0.0000
2 time3 2.5132 0.1934 2.1341 2.8923 0.0000
3 time6 2.6980 0.1962 2.3134 3.0825 0.0000
4 time12 2.9415 0.2004 2.5486 3.3344 0.0000
5 mrkprior -2.1815 ©.2167 -2.6063 -1.7567 0.0000
6 smlves 6.4358 0.4228 5.6072 7.2644 0.0000
7 1vORcs -1.2907 ©.2861 -1.8515 -0.7300 ©.0000
8 smlves.group ©.4903 ©0.7498 -0.9793 1.9598 0.5132
9 1vORcs.group -3.2277 0.4210 -4.0528 -2.4026 ©0.0000

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

10 smlves_NP_2 ©@.2725 0.4485 -0.6066 1.1515 ©.5435
11 1vORcs_NP_2 -0.4528 0.2466 -0.9362 0.0305 0.0663
12 smlves_NP_3 1.7844 1.0613 -0.2958 3.8645 0.0927
13 1vORcs_NP_3 -0.1364 0.4309 -0.9809 0.7081 0.7516
14 thetal -6.2336 0.1722 -6.5712 -5.8960 0.0000
15 theta2 -4.1911 0.1561 -4.4971 -3.8851 0.0000
16 theta3 3.9806 0.1896 3.6091 4.3522 0.0000

> summary(jmofit, coeff = "survival")
Survival coef exp(coef) SE(coef) 95%Lower 95%Upper p-values

1 group_1 -0.4630 0.6294 0.2434 -0.9400 0.0140 0.0571
2 mrkprior_1 ©.5874 1.7993 0.1371 0.3187 0.8560 0.0000
3 smlves_1 -2.5570 0.0775 ©.7223 -3.9728 -1.1413 0.0004
4 1vORcs_1 0.5992 1.8206 ©0.2485 0.1120 1.0863 0.0159
5 smlves.group_1 -0.4990 0.6072 1.4257 -3.2934 2.2955 0.7264
6 1vORcs.group_1 1.1675 3.2140 0.4692 0.2479 2.0871 0.0128
7 group_2 0.2087 1.2321 0.4834 -0.7388 1.1562 0.6659
8 mrkprior_2 ©0.0616 1.0636 0.4277 -0.7766 ©0.8998 0.8854
9 smlves_2 ©.7758 2.1722 0.6217 -0.4428 1.9943 0.2121
10 1vORcs_2 -0.3256 0.7221 0.5120 -1.3291 0.6778 0.5247
11 smlves.group_2 -0.0437 0.9572 1.1573 -2.3120 2.2245 0.9699
12 1vORcs.group_2 0.0991 1.1042 1.0718 -2.0015 2.1998 0.9263

Analogous to jmcfit, linearTest() can be used to the global hypothesis for the longitudinal and
the survival submodels.

> linearTest(jmofit,coeff="beta")
Chisq df Pr(>|Chi])

L*beta=Cb 1096.991 9 0.0000

> linearTest(jmofit,coeff="gamma")
Chisq df Pr(>|Chi])

Lxgamma=Cg 47.15038 12 0.0000

> linearTest(jmofit,coeff="alpha")
Chisq df Pr(>|Chi])

L*alpha=Ca 8.776262 4 0.0669

According to the p-values, the hypothesis 1 = fo = - - = Bg = 0isrejected, Y11 = y1p =+ =
Y6 = Y21 = Y22 = -+ = Y26 = Ois rejected, but #11 = a1p = ap; = app = 0 is not rejected at the
significance level of 0.05.

Similarly, linearTest() can be used to test a linear hypothesis for non-proportional odds fixed
effects in the longitudinal submodel. For example, if we want to test Hy : a1 = a1, then we can

simply type:

La <- matrix(c(1, @, -1, @), ncol = length(alpha), nrow = 1)
> linearTest(jmofit, coeff = "alpha”, La = La)

Chisq df Pr(>|Chil|)
Lxalpha=Ca 1.929563 1 0.1648

It is seen that the hypothesis a1; = a5 is not rejected at level 0.05.

Likewise, jmo() function allows for categorical variables. Moreover, categorical variables are
allowed for setting up non-proportional odds covariates. As an illustration, here we consider the "sex"
and "race" variables and use them as two of the non-proportional odds covariates. Below is another
example:

#Create two categorical variables and add them into yread
ID <- creads$ID
set.seed(123)
sex <- sample(c("Female”, "Male"), nrow(cread), replace = TRUE)
race <- sample(c("White"”, "Black”, "Asian"”, "Hispanic"), nrow(cread), replace = TRUE)
cate_var <- data.frame(ID, sex, race)
if (require(dplyr)) {
yread <- dplyr::left_join(yread, cate_var, by = "ID")
}

res2 <- jmo(yread, cread, out = "Y",

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 63

FE = c("group”, "time3", "time6", "timel2", "mrkprior”,

"smlves”, "1lvORcs”, "smlves.group”, "l1vORcs.group”), cate = c("race”, "sex"),
RE = "intercept”, NP = c("smlves”, "lvORcs", "race"”, "sex"), ID = "ID",intcpt =1,
quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

res2

Call:

jmo(long_data = yread, surv_data = cread, out = "Y",

FE = c("group”, "time3", "time6", "timel12", "mrkprior"”, "smlves"”, "1lvORcs"”, "smlves.group”, "1lvORcs.group"),
RE = "intercept”, NP = c("smlves”, "lvORcs", "race"”, "sex"), ID = "ID", cate = c("race”, "sex"),

intcpt = 1, quad.points = 20, max.iter = 10000, quiet = FALSE, do.trace = FALSE)

Data Summary:
Number of observations: 1906
Number of groups: 587

Proportion of competing risks:
Risk 1 : 32.88 %
Risk 2 : 4.26 %

Numerical intergration:
Method: Standard Guass-Hermite quadrature
Number of quadrature points: 20

Model Type: joint modeling of longitudinal ordinal and competing risks data

Model summary:

Longitudinal process: partial proportional odds model

Event process: cause-specific Cox proportional hazard model with unspecified baseline hazard
Loglikelihood: -2271.831

Longitudinal sub-model proportional odds: Y ~ group + time3 + time6 + timel2 + mrkprior + smlves +

1vORcs + smlves.group + 1vORcs.group + Black + Hispanic + White + Male
Longitudinal sub-model non-proportional odds: smlves_NP + 1vORcs_NP + Black_NP + Hispanic_NP +

White_NP + Male_NP

Longitudinal:
Fixed effects:

Estimate Std. Error 95% CI Pr(>121)

proportional odds:

group 1.1430 0.1989 (9.7532, 1.5328) 0.0000
time3 2.4607 0.1963 (2.0758, 2.8455) 0.0000
time6 2.6310 0.1986 (2.2416, 3.0203) 0.0000
timel2 2.8717 0.2111 (2.4579, 3.2854) 0.0000
mrkprior -2.3329 0.1855 (-2.6965,-1.9693) 0.0000
smlves 3.9941 0.4413 (3.1292, 4.8589) 0.0000
1vORcs -0.9469 0.3219 (-1.5778,-0.3160) 0.0033
smlves.group -4.3940 0.7560 (-5.8758,-2.9123) 0.0000
1vORcs.group -3.6954 0.4768 (-4.6299,-2.7608) 0.0000
Black 0.8235 0.3162 (0.2038, 1.4433) 0.0092
Hispanic -0.0218 0.3289 (-0.6665, 0.6229) 0.9471
White 0.0523 0.3457 (-0.6253, 0.7299) 0.8797
Male -0.3528 0.2323 (-0.8080, 0.1025) 0.1288
Non-proportional odds:

smlves_NP_2 0.3314 0.4310 (-0.5133, 1.1761) 0.4419
1vORcs_NP_2 -0.3148 0.2696 (-0.8432, 0.2136) 0.2429
Black_NP_2 0.3781 0.2936 (-0.1973, 0.9535) 0.1978
Hispanic_NP_2 -0.0303 0.3176 (-0.6528, 0.5923) 0.9241
White_NP_2 -0.3802 0.3034 (-0.9748, 0.2144) 0.2102
Male_NP_2 0.0531 0.2221 (-0.3822, 0.4884) 0.8110
smlves_NP_3 2.2743 1.0748 (0.1677, 4.3809) 0.0343
1vORcs_NP_3 0.0033 0.4632 (-0.9045, 0.9111) 0.9943
Black_NP_3 -0.2274 0.5419 (-1.2896, 0.8349) 0.6748
Hispanic_NP_3 -0.5070 0.5087 (-1.5040, 0.4901) 0.3190

The R Journal Vol. 13/1, June 2021

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

64

White_NP_3 0.4205 0.5722 (-0.7010, 1.5420) 0.4624
Male_NP_3 -0.8489 0.3911 (-1.6155,-0.0824) 0.0300
Logit-specific intercepts:

thetal -6.0565 0.2868 (-6.6186,-5.4945) 0.0000
theta2 -4.0881 0.2379 (-4.5545,-3.6217) 0.0000
theta3 4.1340 0.3437 (3.4602, 4.8077) 0.0000

Survival sub-model fixed effects: Surv(surv, comprisk) ~ group + mrkprior + smlves + 1lvORcs +

smlves.group + lvORcs.group

Estimate Std. Error 95% CI Pr(>|Z])
Survival:
Fixed effects:
group_1 -0.2815 0.2545 (-0.7802, 0.2173) 0.2687
mrkprior_1 0.6404 0.1549 (9.3367, 0.9440) 0.0000
smlves_1 -1.8107 0.8252 (-3.4280,-0.1934) 0.0282
1vORcs_1 0.4894 0.2450 (0.0092, 0.9696) 0.0458
smlves.group_1 1.2608 1.6390 (-1.9517, 4.4733) 0.4417
1vORcs.group_1 1.4503 0.4901 (0.4898, 2.4108) 0.0031
group_2 0.2073 0.4831 (-0.7396, 1.1542) 0.6678
mrkprior_2 0.0617 0.4343 (-0.7896, ©.9129) 0.8871
smlves_2 0.7871 0.6026 (-0.3940, 1.9683) 0.1915
1vORcs_2 -0.3266 0.5085 (-1.3233, 0.6701) 0.5207
smlves.group_2 -0.0374 1.1600 (-2.3110, 2.2362) 0.9743
1vORcs.group_2 0.0952 1.0591 (-1.9807, 2.1711) 0.9284
Association prameter:
v2 0.0036 0.1577 (-0.3056, 0.3128) 0.9818
Random effects:
sigma_b11 49.0241 5.0606 (39.1053, 58.9430) 0.0000
sigma_u 6.3475 1.5884 (3.2343, 9.4607) 0.0001
Covariance:
sigma_blu -17.6331 0.7415 (-19.0864,-16.1797) 0.0000
coef(res2, coeff = "beta")
group time3 time6 timel2 mrkprior smlves 1vORcs

1.14302264 2.46065107 2.63095850 2.87165209 -2.33288371 3.99407491 -0.94689649

smlves.group 1vORcs.group Black Hispanic White Male
-4.39403193 -3.69535020 0.82353645 -0.02181286 0.05232005 -0.35276916

Older versions of jmc() and jmo()

In the previous versions of JMcmprsk, both the previous jmc() and jmo() functions require the
longitudinal input data "yfile" to be in a specific format regarding the order of the outcome variable
and the random and fixed effects covariates. It also requires users to create an additional "mfile" for
the longitudinal data. At the suggestions of the reviewers, in the most recent version, we focus and
develop user-friendly versions of these functions.

However, for both package consistency and user’s convenience, we still keep older versions of
these functions in the package, and rename these functions to jmc_0() and jmo_0(), respectively.
Supporting functions of jmo() and jmc(), such as coef (), summary(), linearTest(), also apply to
jmc_0() and jmo_0() functions.

Here, we show the usage of jmc_0() with some simulated data and the "lung" data used in
presenting jmc() functions.

If the data are provided as files, the function jmc_0() has the following usage:

library(JMcmprsk)

yfile=system.file("extdata”, "jmcsimy.txt"”, package = "JIMcmprsk")
cfile=system.file("extdata”, "jmcsimc.txt"”, package = "JMcmprsk")
mfile=system.file("extdata”, "jmcsimm.txt"”, package = "IMcmprsk")
jmc_0fit = jmc_0(p=4, yfile, cfile, mfile, point=20, do.trace = FALSE)

with p the dimension of fixed effects (including the intercept) in yfile, the option point is the
number of points used to approximate the integral in the E-step, default is 20, and do. trace is used to

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

65

control whether the program prints the iteration details. Additionally, the option type_file controls
the type of data inputs.

If data frames or matrices are provided as inputs, we set the above type_file option as type_file
= FALSE in the jmc_0() function:

library(JMcmprsk)

data(lung)

lungY <- lung[, c(2:11)]

lungC <- unique(lung[, c(1, 12, 13, 6:10)1)

lungC <- lungC[, -11]

return a vector file with the number of repeated measurements as lungM

lungM <- data.frame(table(lung$ID))

lungM <- as.data.frame(lungM[, 21)

jmc_0fit2=jmc_0(p=8, lungy¥, lungC, lungM, point=20, do.trace = FALSE, type_file = FALSE)

Computational Complexity

To understand the computational complexity of both jmc() and jmo() models, we carried out a variety
of simulations with different sample size and different proportions of events. However, there was no
clear trend observed between the proportions of events and running times. Hence, only one event
distribution with different sample sizes are given here for illustration purpose. According to Figures 1
and 2, we can easily see that the run time grows much faster as sample size increases, which implies
that the computational complexity does not follow a linear order. In this case, it will limit joint models
to handling large and even moderate sample size data. To make the joint modeling more scalable, it is
necessary to carry out a novel algorithm to reduce its computational complexity to a linear order.

Run time under different sample sizes for jmc function

4000~

3000 -

run time (s}

2000~

1000 -

' " ' ' '
1000 2000 3000 4000 5000
sample size

Figure 1: Run time comparison under different sample sizes for jmc() function (from 500 to 5000).
Data setup: p = 4, ny = 6, 10.4% censoring, 51.4% risk 1, and 38.2% risk 2. The run time under each
sample size was based on one random sample.

Data Simulation

A simulation can generate datasets with exact ground truth for evaluation. Hence, the simulation of
longitudinal and survival data with multiple failures associated with random effects is an important
measure to assess the performance of joint modeling approaches dealing with competing risks. In
JMcmprsk, simulation tools are based on the data models proposed in Elashoff et al. (2008) and Li et al.
(2010), which can be used for testing joint models with continuous and ordinal longitudinal outcomes,
respectively.

The main function for simulation data continuous longitudinal outcomes and survival data with
multiple event outcomes is called SimDataC(), which has the following usage:

SimDataC(k_val, pl_val, pla_val, p2_val, g_val, truebeta, truegamma,
randeffect, yfn, cfn, mfn)

We briefly explain some of the important options. k_val denotes the number of subjects in study;
pl1_val and pla_val denote the dimension of fixed effects and random effects in longitudinal mea-
surements, respectively; p2_val and g_val denotes the dimension of fixed effects and number to

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 66

Run time under different sample sizes for jmo function

4000~

3000~

2000 -

run time (s)

1000 -

1000 2000 3000 4000 5000
sample size

Figure 2: Run time comparison under different sample sizes for jmo() function (from 500 to 5000).
Data setup: p = 4, n; = 10, 22.4% censoring, 57.2% risk 1, and 20.4% risk 2. The run time under each
sample size was based on one random sample.

competing risks in survival data; truebeta and truegamma represent the true values of fixe effects in
the longitudinal and the survival submodels, respectively. randeffect sets the true values for random
effects in longitudinal and competing risks parts, namely in the order of 03,15, and 0y,

The following example generates the datasets used in simulation study in Elashoff et al. (2008):

require(JMcmprsk)
set.seed(123)
yfn="jmcsimyl.txt";
cfn="jmcsimc1.txt";
mfn="jmcsimm1.txt";
k_val=200;p1_val=4;pla_val=1; p2_val=2;g_val=2;
truebeta=c(10,-1,1.5,0.6);truegamma=c(0.8,-1,0.5,-1); randeffect=c(5,0.5,0.5,0.5);
#writing files
SimDataC(k_val, pl_val, pla_val, p2_val, g_val,truebeta,
truegamma, randeffect, yfn, cfn, mfn)

The output of function SimDataC() contains additional censoring rate information and newly generated
files names for further usage.

$*censoring_rate"”
[1] 0.21

$ratel

[1] @.45

$rate2

[1] 0.34

$yfn

[1] "jmcsimyl.txt"
$cfn

[1] "jmcsimc1.txt"”
$mfn

[1]1 "jmcsimm1.txt"

The main function for data simulation with ordinal longitudinal outcomes and survival data with
multiple event outcomes is called SimDataO(), the usage of which is very similar to SimDataC():

SimDataO(k_val, pl_val, pla_val, p2_val, g_val, truebeta, truetheta,
truegamma, randeffect, yfn, cfn, mfn)

All options have the same meanings as in SimDataC(), while SimData0O() has one more option
truetheta, which sets the true values of the non-proportional odds longitudinal coefficients sub-
set.

The following example generates the datasets used in simulation study in Li et al. (2010):
require(JMcmprsk)
set.seed(123)

yfn="jmosimy1.txt";
cfn="jmosimc1.txt";

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

mfn="jmosimm1.txt";
k_val=500;p1_val=3;pla_val=1; p2_val=2;g_val=2;
truebeta=c(-1,1.5,0.8);truetheta=c(-0.5,1);truegamma=c(0.8,-1,0.5,-1); randeffect=c(1,0.5,0.5);
#writing files
SimDataO(k_val, pl_val, pla_val, p2_val, g_val,
truebeta, truetheta, truegamma, randeffect, yfn, cfn, mfn)

The output of the above function is

$~censoring_rate”
[1] 0.218

$ratel

[1] 0.414

$rate2

[1] 0.368

$yfn

[1]1 "jmosimy1.txt"
$cfn

[1] "jmosimc1.txt"”
$mfn

[1] "jmosimm1.txt"

Conclusions and Future Work

In this paper, we have illustrated the capabilities of package JMcmprsk for fitting joint models of time-
to-event data with competing risks for two types of longitudinal data. We also present simulation tools
to generate joint model datasets under different settings. Several extensions of JMcmprsk package are
planned to further expand on what is currently available. First, as the integral over the random effects
becomes computationally burdensome in the case of high dimensionality, Laplace approximations or
other Gauss-Hermite quadrature rules would be applied to the E-M step to speed up the computation
procedure. Second, with the increasing need for predictive tools for personalized medicine, dynamic
predictions for the aforementioned joint models will be added. Third, other new joint models such as
joint analysis for bivariate longitudinal ordinal outcomes will be included.

Acknowledgements

We thank the reviewers for their insightful and constructive comments that led to significant improve-
ments in our paper. The research of Hong Wang was partly supported by the National Social Science
Foundation of China (17BTJ019). The research of Gang Li was partly supported by the National
Institute of Health Grants P30 CA-16042, UL1TR000124-02, and PO1AT003960.

Bibliography

C. Armero, C. Forné, M. Rué, A. Forte, H. Perpinan, G. Gémez, and M. Baré. Bayesian joint ordinal
and survival modeling for breast cancer risk assessment. Statistics in medicine, 35(28):5267-5282,
2016. [p53]

D. Eddelbuettel, R. Frangois, J. Allaire, K. Ushey, Q. Kou, N. Russel, J]. Chambers, and D. Bates. Rcpp:
Seamless r and c++ integration. Journal of Statistical Software, 40(8):1-18, 2011. [p54, 55]

R. M. Elashoff, G. Li, and N. Li. A joint model for longitudinal measurements and survival data in the
presence of multiple failure types. Biometrics, 64(3):762-771, 2008. [p53, 54, 65, 66]

P. L. Ferrer. Joint modelling and prediction of several risks of cancer progression from repeated measurements of
biomarkers. PhD thesis, University of Bordeaux, 2017. [p53]

M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, and R. Ulerich.
GNU scientific library. Network Theory Limited, 2002. [p54, 55]

G. L. Hickey, P. Philipson, A. Jorgensen, and R. Kolamunnage-Dona. A comparison of joint models for
longitudinal and competing risks data, with application to an epilepsy drug randomized controlled
trial. Journal of the Royal Statistical Society: Series A (Statistics in Society), 181(4):1105-1123, 2018a.
[p54]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

68

G. L. Hickey, P. Philipson, A. Jorgensen, and R. Kolamunnage-Dona. Joint models of longitudinal and
time-to-event data with more than one event time outcome: a review. The international journal of
biostatistics, 14(1), 2018b. [p53]

N. Li, R. M. Elashoff, G. Li, and]J. Saver. Joint modeling of longitudinal ordinal data and competing
risks survival times and analysis of the ninds rt-pa stroke trial. Statistics in medicine, 29(5):546-557,
2010. [p53, 54, 65, 66]

G. Papageorgiou, K. Mauff, A. Tomer, and D. Rizopoulos. An overview of joint modeling of time-
to-event and longitudinal outcomes. Annual review of statistics and its application, 6:223-240, 2019.

[p53]

C. Proust-Lima, M. Séne, J. M. Taylor, and H. Jacqmin-Gadda. Joint latent class models for longitudinal
and time-to-event data: A review. Statistical methods in medical research, 23(1):74-90, 2014. [p53]

C. Proust-Lima, V. Philipps, and B. Liquet. Estimation of extended mixed models using latent classes
and latent processes: The r package lemm. Journal of Statistical Software, 78(1):1-56, 2017. [p53]

D. Rizopoulos. Joint models for longitudinal and time-to-event data: With applications in R. Chapman and
Hall/CRC, 2012. [p53, 54]

N. rt PA Stroke Study. Tissue plasminogen activator for acute ischemic stroke. New England Journal of
Medicine, 333(24):1581-1588, 1995. [p59]

D. P. Tashkin, R. Elashoff, P. J. Clements, J. Goldin, M. D. Roth, D. E. Furst, E. Arriola, R. Silver,
C. Strange, M. Bolster, et al. Cyclophosphamide versus placebo in scleroderma lung disease. New
England Journal of Medicine, 354(25):2655-2666, 2006. [p56]

A. A. Tsiatis and M. Davidian. Joint modeling of longitudinal and time-to-event data: an overview.
Statistica Sinica, pages 809-834, 2004. [p53]

P. Williamson, R. Kolamunnage-Dona, P. Philipson, and A. Marson. Joint modelling of longitudinal
and competing risks data. Statistics in medicine, 27(30):6426—-6438, 2008. [p53, 54]

Hong Wang

School of Mathematics & Statistics,Central South University
Changsha, Hunan Provinice, 410075

China

wh@csu.edu.cn

Ning Li

UCLA Biomathematics

Los Angeles, CA 90095-1772
USA
nli@biomath.ucla.edu

Shanpeng Li

Department of Biostatistics, L ICLA School of Public Health
Los Angeles, CA 90095-1772

USA

lishanpeng@913@ucla.edu

Gang Li*

Department of Biostatistics,LICLA School of Public Health
Los Angeles, CA 90095-1772

USA

(Corresponding Author)

vli@ucla.edu

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:wh@csu.edu.cn
mailto:nli@biomath.ucla.edu
mailto:lishanpeng0913@ucla.edu
mailto:vli@ucla.edu

CONTRIBUTED RESEARCH ARTICLES

69

Wide-to-tall Data Reshaping Using

Regular Expressions and the nc Package
by Toby Dylan Hocking

Abstract Regular expressions are powerful tools for extracting tables from non-tabular text data.
Capturing regular expressions that describe the information to extract from column names can be
especially useful when reshaping a data table from wide (few rows with many regularly named
columns) to tall (fewer columns with more rows). We present the R package nc (short for named
capture), which provides functions for wide-to-tall data reshaping using regular expressions. We
describe the main new ideas of nc, and provide detailed comparisons with related R packages (stats,
utils, data.table, tidyr, tidyfast, tidyfst, reshape2, cdata).

Introduction

Regular expressions are powerful tools for text processing that are available in many programming
languages, including R. A regular expression pattern or regex defines a set of matches in a subject
string. For some example subjects, consider the column names of the famous iris data set in R: Species,
Sepal.Length, Petal .Width, etc. Some example patterns: a dot between square brackets [.] matches
a period, a dot by itself . matches any non-newline character, and a dot followed by a star . * matches
zero or more non-newline characters. Therefore the pattern . *[.].* matches zero or more non-newline
characters, followed by a period, followed by zero or more non-newline characters. It would match
Sepal.Length and Petal.Width, but it would not match Species. For a more detailed discussion of
regular expressions, we refer the reader to help(regex) in R or the book of Friedl (2002).

The focus of this article is patterns with capture groups, which are typically defined using paren-
theses. For example, the pattern (.*)[.](.*) results in the same matches as the pattern in the previous
paragraph, and it additionally allows the user to capture and extract the substrings by group index
(e.g., group 1 matches Sepal, group 2 matches Length).

Named capture groups allow extracting the substring by name rather than by index. Using
names rather than indices is preferable in order to create more readable regular expressions (names
document the purpose of each sub-pattern) and to create more readable R code (it is easier to
understand the intent of named references than numbered references). For example, the pattern
(?<part>.*)[.](?<dimension>.*) documents that the flower part appears before the measurement
dimension; the part group matches Sepal and the dimension group matches Length.

Recently, Hocking (2019a) proposes a new syntax for defining named capture groups in R code.
Using this new syntax, named capture groups are specified using named arguments in R, which
results in code that is easier to read and modify than capture groups defined in string literals. For
example, the pattern in the previous paragraph can be written as part = ".*", "[.]", dimension =
". %", Sub-patterns can be grouped for clarity and/or re-used using lists, and numeric data may be
extracted with user-provided type conversion functions.

The main thesis of this article is that regular expressions can greatly simplify the code required to
specify wide-to-tall data reshaping operations (when the input columns adhere to a regular naming
convention). For one such operation, the input is a “wide” table with many columns, and the desired
output is a “tall” table with more rows, and some of the input columns are converted into a smaller
number of output columns (Figure 1). To clarify the discussion, we first define three terms that we will
use to refer to the different types of columns involved in this conversion:

Reshape columns contain the data which is present in the same amount but in different shapes in
the input and output. There are equivalent terms used in different R packages: varying in
utils::reshape, measure.vars in melt (data.table, reshape2), etc.

Copy columns contain data in the input which are each copied to multiple rows in the output (id.vars
in melt).

Capture columns are only present in the output, and contain data which come from matching a
capturing regex pattern to the input reshape column names.

For example, the wide iris data (W in Figure 1) have four numeric columns to reshape: Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width. For some purposes (e.g., displaying a histogram of each
reshape input column using facets in ggplot2), the desired reshaping operation results in a table with
a single reshape output column (S in Figure 1), two copied columns, and two columns captured from
the names of the reshaped input columns. For other purposes (e.g., scatterplot to compare sepal and

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES

70

|Sepal LengthlSepal WldthlPetal Length |Peta1 Wldthl Species flower

5.1 3.5 1.4 0.2 setosa 1

7.0 3.2 4.7 1.4 versicolor 51
Sw S seecies fiover
1: 5.1 setosa 1 Sepal Length
Convert four 2: 3.5 setosa 1 Sepal Width
input reshape 3: 1.4 setosa 1 Petal Length
columns to 4: 0.2 setosa 1 Petal Width
Single output 5: 7.0 versicolor 51 Sepal Length
reshape column 6: 3.2 versicolor 51 Sepal Width
and two output 7: 4.7 versicolor 51 Petal Length
8: 1.4 versicolor 51 Petal Width

capture columns

Output reshape column
Species flower [[IH] M e yeoap

1 5.1 1.4 setosa 1 Length
2 3.5 0.2 setosa 1 width
3 7.0 4.7 versicolor 51 Length
4 3.2 1.4 versicolor 51 width
M 2 Output reshape column
Species flower for each dim
1: 5.1 3.5 setosa 1 Sepal Convert four input reshape
2: 1.4 0.2 setosa 1 Petal columns to Multiple (2)
3: 7.0 3.2 versicolor 51 Sepal output reshape columns and
4: 4.7 1.4 versicolor 51 Petal one output capture column

Column type legend: = reshape, Name = copy,= capture.

Figure 1: Two rows of the iris data set (W, black) are considered as the input to a wide-to-tall reshape
operation. Four input reshape columns are converted to either a single output reshape column (S,
blue) or multiple (2) output reshape columns (M1, M2, red). Other output columns are either copied
from the non-reshaped input data, or captured from the names of the reshaped input columns.

petal sizes) the desired reshaping operation results in a table with multiple reshape output columns
(M1 with Sepal and Petal columns in Figure 1), two copied columns, and one column captured from
the names of the reshaped input columns.

In this article, our original contribution is the R package nc which provides a new implementation
of the previously proposed named capture regex syntax of Hocking (2019a), in addition to several
new functions that perform wide-to-tall data reshaping using regular expressions. The main new idea
is to use a single named capture regular expression for defining both (1) the subset of reshape input
columns to convert and (2) the additional capture output columns. We will show that this results in a
simple, powerful, non-repetitive syntax for wide-to-tall data reshaping. A secondary contribution of
this article is a detailed comparison of current R functions for wide-to-tall data reshaping in terms
of syntax, computation times, and functionality (Table 1). Note that in this article, we do not discuss
tall-to-wide data reshaping, because regular expressions are not useful in that case.

The organization of this article is as follows. The rest of this introduction provides an overview
of current R packages for regular expressions and data reshaping. The second section describes the
proposed functions of the nc package, and then the third section provides detailed comparisons with
other R packages. The article concludes with a summary and discussion of possible future work.

Related work

There are many R functions which can extract tables from non-tabular text using regular expres-
sions. Recommended R package functions include base: :regexpr and base: :gregexpr as well as
utils::strcapture. CRAN packages which provide various functions for text processing using regu-
lar expressions include namedCapture (Hocking, 2019b), rematch2 (Csérdi, 2017), rex (Ushey et al.,
2017), stringr (Wickham, 2018), stringi (Gagolewski, 2018), tidyr (Wickham and Henry, 2018), and
re2r (Wenfeng, 2017). We refer the reader to our previous research paper for a detailed comparison of
these packages (IHocking, 2019a).

For reshaping data from wide (one row with many columns) to tall (one column with many rows),
there are several different R functions that provide similar functionality. Each function supports a
different set of features (Table 1); each feature/column is explained in detail below:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=nc
https://CRAN.R-project.org/package=nc
https://CRAN.R-project.org/package=namedCapture
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=re2r

CONTRIBUTED RESEARCH ARTICLES

71

pkg: :function single multiple regex narm types list
nc::capture_melt_multiple no yes capture yes any yes
nc::capture_melt_single yes no capture yes any yes
tidyr::pivot_longer yes yes capture yes any yes
stats: :reshape yes if sorted capture no some no
data.table::melt, patterns yes if sorted match yes no yes
tidyfst::longer_dt yes no match yes no yes
tidyr::gather yes no no yes some yes
tidyfast::dt_pivot_longer yes no no yes no yes
cdata: :rowrecs_to_blocks yes yes no no no yes
cdata: :unpivot_to_blocks yes no no no no yes
reshape2: :melt yes no no yes no no
utils::stack yes no no no no no

Table 1: Reshaping functions in R support various features: “single” for converting input columns into
a single output column; “multiple” for converting input columns (either “if sorted” in a regular order,
or “yes” for any order) into multiple output columns of possibly different types; “regex” for regular
expressions to “match” input column names or to “capture” and create new output column names;
“na.rm” for removal of missing values; “types” for converting input column names to non-character
output columns; “list” for output of list columns.

single refers to support for converting input reshape columns of the same type to a single reshape
output column.

multiple refers to support for converting input reshape columns of possibly different types to multiple
output reshape columns; “if sorted” means that conversion works correctly only if the input
reshape columns are sorted in a regular order, e.g., Sepal.Length, Sepal.Width, Petal.Length,
Petal.Width; “yes” means that conversion works correctly even if they are not sorted, e.g.,
Sepal.Length, Sepal.Width, Petal.Width, Petal.Length.

regex refers to support for regular expressions; “match” means a pattern is used to match the input
column names; “capture” means that the specified pattern is used to create new output cap-
ture columns — this is especially useful when the names consist of several distinct pieces of
information, e.g., Sepal.Length; “no” means that regular expressions are not directly supported
(although base: : grep can always be used).

na.rm refers to support for removing missing values.
types refers to support for converting captured text to numeric output columns.

list refers to support for output of list columns.

Recommended R package functions include stats: :reshape and utils::stack for reshaping
data from wide to tall. Of the features listed in Table 1, utils::stack only supports output with
a single reshape column, whereas stats: : reshape supports the following features. For data with
regular input column names (output column, separator, time value), regular expressions can be used
to specify the separator (e.g., in Sepal.Length, Sepal is output column, dot is separator, Length is
time value). Multiple output columns are supported, but incorrect output may be computed if input
columns are not sorted in a regular order. The time value is output to a capture column named time
by default. Automatic type conversion is performed on time values when possible, but custom type
conversion functions are not supported. There is neither support for missing value removal nor list
column output.

The tidyr package provides two functions for reshaping data from wide to tall format: gather
and pivot_longer. The older gather function only supports converting input reshape columns to
a single output reshape column (not multiple). The input reshape columns to convert may not
be directly specified using regular expressions; instead, R expressions such as x:y can be used to
indicate all columns starting from x and ending with y. It does support limited type conversion;
if the convert = TRUE argument is specified, the utils::type.convert function is used to convert
the input column names to numeric, integer, or logical. In contrast, the newer pivot_longer also
supports multiple output reshape columns (even if input reshape columns are unsorted) and regular
expressions for specifying output capture columns (but to specify input reshape columns with a
regex, grep must be used). Arbitrary type conversion is also supported in pivot_longer, via the
names_transform argument, which should be a named list of conversion functions. Both functions
support list columns and removing missing values, although different arguments are used (na. rm for
gather, values_drop_na for pivot_longer).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

72

The reshape2 and data.table packages each provide a melt function for converting data from
wide to tall (Wickham, 2007; Dowle and Srinivasan, 2019). The older reshape2 version only supports
converting input reshape columns to a single output reshape column, whereas the newer data.table
version also supports multiple output reshape columns. Regular expressions are not supported in
reshape2, but can be used with data.table: :patterns to match input column names to convert
(although the output can be incorrect if columns are not sorted in a regular order). Neither function
supports type conversion, and both functions support removing missing values from the output using
the na.rm argument. List column output is supported in data.table but not reshape2. The tidyfast
(Barrett, 2020) and tidyfst (Huang and Zhao, 2020) packages provide reshaping functions that use
data.table::melt internally (but do not support multiple output reshape columns).

The cdata package provides several functions for data reshaping, including rowrecs_to_blocks
and unpivot_to_blocks, which can convert data from wide to tall (Mount and Zumel, 2019). The
simpler of the two functions is unpivot_to_blocks, which supports a single output reshape column
(interface similar to reshape2: :melt/tidyr: :gather). The user of rowrecs_to_blocks must provide
a control table that describes how the input should be reshaped into the output. It, therefore, supports
multiple output reshape columns for possibly unsorted input columns. Both functions support list
column output, but other features from Table 1 are not supported (regular expressions, missing value
removal, type conversion).

Basic features for wide-to-tall data reshaping using regular expressions

The nc package provides new regular expression functionality based on the syntax recently proposed
by Hocking (2019a). During the rest of the article, we give only a brief overview of this syntax; for
a more detailed review, please read the nc package vignettes. In this section, we show how new nc
functions can be used to reshape wide data (with many columns) to tall data (with fewer columns,
and more rows). We begin by considering the two data visualization problems which were mentioned
in the introduction and which involve the familiar iris data set.

Single reshape output column

First, suppose we would like to visualize the univariate distribution of each numeric variable. One
way would be to use a histogram of each numeric variable, with row facets for the flower part and
column facets for the measurement dimension. Our desired output, therefore, needs a single column
with all of the reshaped numeric data to plot (Figure 1, W—S).

We can perform this operation using nc: : capture_melt_single, which inputs a data frame and
a pattern which should match the names of the input columns to reshape. Any input columns with
names that do not match the pattern are considered copy columns; the output also contains a capture
column for each group specified in the pattern:

> (iris.tall.single <- nc::capture_melt_single(

+ iris, part = ".x", "[.]1", dim = ". %", value.name = "cm"))
Species part dim cm
1: setosa Sepal Length 5.1
2: setosa Sepal Length 4.9
3: setosa Sepal Length 4.7
4: setosa Sepal Length 4.6
5: setosa Sepal Length 5.0

596: virginica Petal Width
597: virginica Petal Width
598: virginica Petal Width
599: virginica Petal Width
600: virginica Petal Width

= NN =N
0 W o W w

The code above can be read as follows. The first argument, iris specifies the wide input to reshape
(a data frame or data table). The next three arguments (part = ".x", "[.]", dim = ".x") specify
the regex. Internally nc generates a capture group for each named argument, so the generated regex
patternis (.*)[.]1(.*) in this example. The value.name argument is not considered part of the regex
and instead specifies the name of the output reshape column.

The output above is a data table (a data frame subclass with special methods with reference
semantics) because data. table: :melt is used internally for the reshape operation. The output data

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=reshape2
https://CRAN.R-project.org/package=tidyfast
https://CRAN.R-project.org/package=tidyfst
https://CRAN.R-project.org/package=cdata

CONTRIBUTED RESEARCH ARTICLES 73

table consists of one copy column (Species), two capture columns (part, dim), and a single reshape
column (cm). These data can be used to create the desired histogram with ggplot2 via:

> library(ggplot2)

> ggplot(iris.tall.single) + facet_grid(part ~ dim) +

+ theme_bw() + theme(panel.spacing = grid::unit(@, "lines”)) +

+ geom_histogram(aes(cm, fill = Species), color = "black”, bins = 40)

Length Width
40 -
30 i
20 - § Species

101 |:| setosa
48' . versicolor
30+

20 - [::] virginica
10+ d||llin
O-

cm

count

[edas

For comparison, we show how the same reshape operation can be accomplished with the data.table
package:

iris.pattern <= "(.*)[.1(.*)"
iris.wide <- data.table::as.data.table(iris)
iris.tall <- data.table::melt(
iris.wide, measure = patterns(iris.pattern), value.name = "cm")
iris.tall[, “:="(part = sub(iris.pattern, "\\1", variable),
dim = sub(iris.pattern, "\\2", variable))][]

+ V + V Vv V

Species variable cm part dim
setosa Sepal.Length 5.1 Sepal Length
setosa Sepal.Length Sepal Length
setosa Sepal.lLength Sepal Length
setosa Sepal.Length Sepal Length
setosa Sepal.Length Sepal Length

g w N =
g~ b b O

S OO N WO

596: virginica Petal.Width
597: virginica Petal.Width
598: virginica Petal.Width
599: virginica Petal.Width
600: virginica Petal.Width

Petal Width
Petal Width
Petal Width
Petal Width
Petal Width

= NN =N
0 W o W w

The code above uses data.table: :melt with patterns which takes a regex used to specify the
four columns to reshape. The part and dim capture columns must be created during a post-processing
step. In this case, the nc code is substantially simpler because the named capture regular expression
was used to specify both the input columns to reshape and the capture columns to output.

Finally we show how the same reshape operation could be done using the tidyr package:

n n

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm”,
+ names_to=c("part”, "dim"), names_pattern=iris.pattern)

A tibble: 600 x 4
Species part dim cm
<fct> <chr> <chr> <dbl>
setosa Sepal Length 5.1
setosa Sepal Width 3
setosa Petal Length 1
setosa Petal Width 0
setosa Sepal Length 4.
3
1
0

o N A~ O

setosa Sepal Width
setosa Petal Length
setosa Petal Width

0 N O wWwN =

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 74

9 setosa Sepal Length 4.
10 setosa Sepal Width 3.
... with 590 more rows

7
2

The code above is almost as simple as the corresponding nc code, but with one key difference.
The output capture column names are defined in the names_to argument, which is far away from the
definition of the groups in iris.pattern. In this simple example with two groups in the regex this
separation of related concepts is not a huge problem, but the nc syntax should be preferred for more
complex patterns (with more groups) in order to keep the group names and sub-patterns closer and
easier to maintain/read in the code.

Multiple reshape output columns

For the second data reshaping task, suppose we want to determine whether or not sepals are larger
than petals for each measurement dimension and species. We could use a scatterplot of sepal versus
petal, with a facet for measurement dimension. We, therefore, need a data table with two reshape
output columns: a Sepal column to plot against a Petal column (Figure 1, W—M1). We can perform
this operation using another function, nc: : capture_melt_multiple, which inputs a data frame and a
pattern which must contain the special column group and at least one other named group:

> (iris.parts <- nc::capture_melt_multiple(iris, column = ".x" "[.]1", dim = ".x"))

Species dim Petal Sepal

1: setosa Length 1.4 5.1
2: setosa Length 1.4 4.9
3: setosa Length 1.3 4.7
4: setosa Length 1.5 4.6
5: setosa Length 1.4 5.0
296: virginica Width 2.3 3.0
297: virginica Width 1.9 2.5
298: virginica Width 2.0 3.0
299: virginica Width 2.3 3.4
300: virginica Width 1.8 3.0

Again, any input columns with names that do not match the pattern are considered copy columns
(Species in the example above). Each unique value captured in the special column group becomes
the name of an output reshape column (Petal, Sepal); other groups are used to create output capture
columns (dim). These data can be used to create the scatterplot using ggplot2 via:

> ggplot(iris.parts) + facet_grid(. ~ dim) +

+ theme_bw() + theme(panel.spacing = grid::unit(@, "lines")) +

+ coord_equal() + geom_abline(slope = 1, intercept = @, color = "grey") +
+ geom_point(aes(Petal, Sepal, color = Species), shape = 1)

Length Width
8-
Species
= 0] setosa
o
% 44 o versicolor

g virginica
5 ;

0 2 4 6 0 2 4 6
Petal

For comparison, we show how to output a data table with multiple reshape output columns using
the data.table and tidyr packages:

> iris.multiple <- data.table::melt(
+ iris.wide, measure = patterns(Petal="Petal”, Sepal="Sepal”))
> iris.multiple[, dim := c("Length”, "Width")[variable]]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

75

Species variable Petal Sepal dim

1: setosa 1 1.4 5.1 Length
2: setosa 1 .4 4.9 Length
3: setosa 1 1.3 4.7 Length
4: setosa 1 1.5 4.6 Length
5: setosa 1 1.4 5.0 Length
296: virginica 2 2.3 3.0 Width
297: virginica 2 1.9 2.5 Width
298: virginica 2 2.0 3.0 Width
299: virginica 2 2.3 3.4 Width
300: virginica 2 1.8 3.0 Width

n n

> tidyr::pivot_longer(iris, matches(iris.pattern), values_to = "cm”,
+ names_to=c("”.value”, "dim"), names_pattern=iris.pattern)

A tibble: 300 x 4
Species dim Sepal Petal
<fct> <chr> <dbl> <dbl>

1 setosa Length 5.1 1.4
2 setosa Width 3.5 0.2
3 setosa Length 4.9 1.4
4 setosa Width 3 0.2
5 setosa Length 4.7 1.3
6 setosa Width 3.2 0.2
7 setosa Length 4.6 1.5
8 setosa Width 3.1 0.2
9 setosa Length 5 1.4
10 setosa Width 3 0.2
with 290 more rows

The code above computes equivalent results but suffers from the same drawbacks as discussed in
the previous section (repetition, separation of pattern and group names).

To conclude this section, nc provides two new functions for data reshaping using regular expres-
sions. Both functions input a data frame to reshape and a pattern to match with the column names.
For nc::capture_melt_single, all matching input columns are reshaped in the output to a single
column which is named using the value.name argument. For nc: : capture_melt_multiple the output
is multiple reshape columns with names defined by the values captured in the special column group.
Values from other groups are stored in capture columns in the output. Both functions support the
output of numeric capture columns via user-specified type conversion functions, as we will see in the
next section.

Comparisons which highlight differences with other packages

In this section, we compare the new data reshaping functions in the nc package with similar functions
in other packages. We aim to demonstrate that the new nc syntax is often more convenient and less
repetitive without sacrificing speed.

Building a complex pattern from smaller sub-patterns

In terms of functionality for wide-to-tall data reshaping, the most similar package to nc is tidyr
(Table 1). One advantage of nc is that complex patterns may be defined in terms of simpler sub-
patterns, which can include group names and type conversion functions. Integrating these three
pieces results in a syntax that is easy to read as well; it is more difficult to build and read complex
patterns using tidyr syntax, which requires specifying regex pattern strings, group names, and types
as separate arguments. For example, consider a data set from the World Health Organization (WHO):

> data(who, package = "tidyr")
> set.seed(1);sample(names(who), 10)

[1] "newrel_f3544" "year" "new_ep_m65" "country” "new_ep_m1524"
[6]1 "new_sn_m4554" "new_ep_f3544" "new_sp_f2534" "new_sp_f65" "newrel_m4554"

>

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Each reshape column name starts with new and has three distinct pieces of information: diagnosis
type (e.g., ep, rel), gender (m or f), and age range (e.g., 1524, 4554). We extract all three pieces of
information below and include a function for converting gender to a factor with levels in a specific
(non-default) order:

> nc.who.sub.pattern <- list(
+ "new_?", diagnosis = ".x", "_",
+ gender = ".", function(mf)factor(mf, c("m", "f")))
> nc.who.ages <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = ".x")
> print(nc.who.ages[1:2], class = TRUE)
country iso2 iso3 year diagnosis gender ages value
<char> <char> <char> <int> <char> <fctr> <char> <int>
1: Afghanistan AF AFG 1997 sp m 014 0
2: Afghanistan AF AFG 1998 sp m 014 30

First, note that nc.who.sub.pattern is a sub-pattern list variable that we have used as the first
part of the pattern in the call to nc: : capture_melt_single above (and we will use that sub-pattern
again below). Sub-pattern lists may contain regex character strings (patterns to match), functions (for
converting the previous capture group), or other sub-pattern lists. The reshaped output is a data table
with gender converted to a factor — this can also be done using tidyr: :pivot_longer:

> tidyr.who.sub.names <- c("diagnosis”, "gender") #L0
> tidyr.who.sub.pattern <- "new_?(.*)_(.)" #L1
> tidyr.who.pattern <- paste@(tidyr.who.sub.pattern, "(.*)") #L2
> tidyr::pivot_longer(#L3
+ who, cols = matches(tidyr.who.pattern), #L4
+ names_to = c(tidyr.who.sub.names, "ages"), #L5
+ names_ptypes = list(gender = factor(levels = c("m", "f"))), #L6
+ names_pattern = tidyr.who.pattern)[1:2,] #L7
A tibble: 2 x 8

country iso2 iso3 year diagnosis gender ages value

<chr> <chr> <chr> <int> <chr> <fct> <chr> <int>
1 Afghanistan AF AFG 1980 sp m 014 NA
2 Afghanistan AF AFG 1980 sp m 1524 NA

In the code above, we first define a sub-pattern variable for the diagnosis and gender capture
groups, as we did using nc. One difference is that the tidyr sub-pattern variable is a string with
un-named capture groups, whereas the nc sub-pattern variable is a list which includes capture group
names as well as a type conversion function. These three parameters are specified as three separate
arguments in tidyr, which results in some separation (e.g., group names defined on L0 and L5 but
corresponding sub-patterns defined on L1 and L2) and repetition (e.g., gender appears on L0 and L6)
in the code. The pattern also must be repeated: first in the cols argument (L4) to specify the set of
input reshape columns, second in the names_pattern argument (L7) to specify the conversion from
input reshape column names to output capture column values.

Now suppose we want to extract two numeric columns from ages, for example, to use as interval-
censored outputs in a survival regression. Using nc we can use the previously defined sub-pattern
(including the previously defined group names and type conversion function) as the first part of a
larger pattern:

> who.typed <- nc::capture_melt_single(who, nc.who.sub.pattern, ages = list(
+ ymin = "@|[0-9]{2}", as.numeric,
+ ymax = "[0-91{0,2}", function(x)ifelse(x == "", Inf, as.numeric(x))))
> who.typed[1:2]
country iso2 iso3 year diagnosis gender ages ymin ymax value
1: Afghanistan AF AFG 1997 sp m 014 0 14 0
2: Afghanistan AF AFG 1998 sp m 014 o 14 30
> who.typed[, .(rows = .N), by = .(ages, ymin, ymax)]

ages ymin ymax rows
1: 014 Q 14 10882
: 1524 15 24 10868
. 2534 25 34 10850

w N

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

77

4: 3544 35 44 10875
5: 4554 45 54 10876
6: 5564 55 64 10851
7 65 65 Inf 10844

Note in the code above that each group name, regex pattern string, and the corresponding type
conversion function appears on the same line — this syntax keeps these three related pieces of
information close together, which makes complex patterns easier to read and build from smaller pieces.
Also, note how an anonymous function is used to convert the values captured in the ymax group to
numeric (and it maps the empty string to Inf). Such custom type conversion functions are supported
by tidyr since version 1.1.0 (early 2020), so we can do:

> tidyr.who.range.pattern <- paste@(tidyr.who.sub.pattern, "((Q|[0-91{2})([0-91{0,2}))")
> tidyr::pivot_longer(
+ who, cols = matches(tidyr.who.range.pattern),

+ names_to = c(tidyr.who.sub.names, "ages"”, "ymin"”, "ymax"),
+ names_transform = list(

+ gender = function(x)factor(x, levels = c("m", "f")),

+ ymin = as.numeric,

+ ymax = function(x)ifelse(x == "", Inf, as.numeric(x))),
+ names_pattern = tidyr.who.range.pattern)[1:7,]

A tibble: 7 x 10

country iso2 1iso03 year diagnosis gender ages ymin ymax value
<chr> <chr> <chr> <int> <chr> <fct> <chr> <dbl> <dbl> <int>
Afghanistan AF AFG 1980 sp m 014 Q 14 NA

1524 15 24 NA
2534 25 34 NA
3544 35 44 NA
4554 45 54 NA
5564 55 64 NA
65 65 Inf NA

Afghanistan AF AFG 1980 sp
Afghanistan AF AFG 1980 sp
Afghanistan AF AFG 1980 sp
Afghanistan AF AFG 1980 sp
Afghanistan AF AFG 1980 sp
Afghanistan AF AFG 1980 sp

N o oA wN =
2 3 3 3 3 3

The code above uses the names_transform argument to define type conversion functions, which
requires some repetition (e.g., ymax and ymin each appear twice).

To conclude this comparison, we have seen that nc syntax makes it easy to read and write complex
patterns because it keeps group-specific names and type conversion functions near the corresponding
sub-patterns. We have also shown that repetition is often necessary with tidyr (e.g., pattern, group
names), whereas such repetition can be avoided by using nc.

Comparison with other packages which support multiple reshape output columns

In this section, we demonstrate the advantages of using nc over several alternatives which support
multiple reshape output columns. A major advantage is that nc directly supports regular expressions
for defining the input reshape columns and output capture columns. Another advantage is that nc
always returns a correct output data set with multiple reshape columns, even when the input columns
are not sorted in a regular order. For example, consider the following simple data set in which the
columns are not in regular order:

> (TC <- data.table::data.table(
+ treatment.age = 13,

+ control.gender = "M",

+ treatment.gender = "F",

+ control.age = 25))

treatment.age control.gender treatment.gender control.age
1: 13 M F 25

It is clear from the table above that the treatment group consists of a teenage female, whereas the
control group consists of a male aged 25 (not the best experimental design, but easy to remember for
the demonstration in this section). Assume we need an output data table with two reshape columns
(age and gender) as well as a capture column (group). The nc syntax we would use is:

> nc::capture_melt_multiple(TC, group = ".*", "[.]", column = ".*")

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

78

group age gender
1: control 25 M
2: treatment 13 F

The correct result is computed above because nc reshapes based on the input column names (the
order of the input columns is not relevant). A naive user may attempt to perform this reshape using
data.table: :patterns:

> data.table::melt(TC, measure.vars = patterns(age = "age"”, gender = "gender"))

variable age gender
1: 1 13 M
2: 2 25 F

First, note that the syntax above requires repetition of age and gender (in names and in pattern
strings). Also, it is clear that the result is incorrect! Actually, the patterns function is working as
documented; it “returns the matching indices” of the provided regex. However, since the input
columns are not sorted in regular order, melt returns an incorrect result (this is an incorrect use of
these functions, not a bug). To get a correct result, we can provide a list of index vectors:

> data.table::melt(TC, measure.vars = list(age = c(1,4), gender = c(3,2)))

variable age gender
1: 1 13 F
2: 2 25 M

This is what nc does internally; it also converts the variable output column to a more inter-
pretable/useful capture column (e.g., group above).

The stats: :reshape function suffers from the same issue as the patterns usage above. Another
issue with this function is that it assumes the output reshape column names are the first part of the
input column names (e.g., Figure 1, W—M1). When input column names have a different structure
(e.g., Figure 1, W—M2), they must be renamed, putting the desired output reshape column names
first:

> TC.renamed <- structure(TC, names = sub("(.*)[.J(C.*)", "\\2.\\1", names(TC)))
> stats::reshape(TC.renamed, 1:4, direction = "long"”, timevar = "group")

group age gender id
1: treatment 13 M 1
2: control 25 F 1

However, the result above still contains incorrect results in the gender column. The correct result
can be obtained by sorting the input column names:

> TC.sorted <- data.frame(TC.renamed)[, sort(names(TC.renamed))]
> stats::reshape(TC.sorted, 1:4, direction = "long", timevar = "group")

group age gender id
1.control control 25 M 1
1.treatment treatment 13 F 1

After renaming and sorting the input columns, the correct result is obtained using stats: : reshape.
Another way to obtain a correct result is with the cdata package:

> cdata::rowrecs_to_blocks(TC, controlTable = data.frame(
+ group = c("treatment”, "control”),

+ age = c("treatment.age”, "control.age"),

+ gender = c("treatment.gender”, "control.gender"),

+ stringsAsFactors = FALSE))

group age gender
1 treatment 13 F
2 control 25 M

The cdata package is very powerful and can handle many more types of data reshaping operations
than nc. However, it requires a very explicit definition of the desired conversion in terms of a control
table, which results in rather verbose code. In contrast, the terse regular expression syntax of nc is a
more implicit approach, which assumes the input columns to reshape have regular names.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

79

Multiple reshape output columns, variable number of input rows

stats::reshape

1.00

0.10~

0.014

Computation time (seconds)

1e+02 le+04 1e+06
Number of rows in wide input data table

Figure 2: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 8 reshape columns and a variable number of rows (x-axis).

To conclude this section, we have discussed some advantages of nc relative to other R packages.
Input columns with regular names do not need to be renamed/sorted for nc functions, whereas
renaming/sorting may be necessary using stats: : reshape. Verbose/explicit control table code is
always necessary with cdata, whereas a terse/implicit regular expression syntax is used with nc to
simplify the definition of reshape operations.

Comparing computation times of functions for wide-to-tall data reshaping

In previous sections, we have shown that the nc package provides a convenient syntax for defining
wide-to-tall reshape operations. In this section, we investigate whether this convenience comes at the
cost of increased computation time. We aim to demonstrate that the computation time required for the
proposed nc package is comparable with other packages for data reshaping. In particular, since nc is
implemented using data.table, we expect that nc should be slightly slower than data.table (by only the
amount of time required for regex matching). In our result figures, we show the median and quartiles
over 10 timings using the microbenchmark package on an Intel Core i7-8700 3.20GHz processor. Note
that these timings include both the regex matching (which should be relatively fast) and the data
reshaping operation (which should be relatively slow). We varied the number of rows/columns in
each experiment by copying/duplicating the rows/columns in each source data set.

First, we performed timings on variants of the iris data with a variable number of rows and
twice the original number of reshape columns (8). The input reshape column names were of the
form day1.Sepal.Length, day2.Sepal.Length, day1.Sepal.Width, etc. Since the desired output has
two reshape columns (Sepal and Petal), we considered packages which support multiple output
columns (cdata, stats, tidyr, nc, data.table). As expected, we observed that all algorithms have similar
asymptotic time complexity (Figure 2). We observed that nc is slightly slower than data.table (by
constant factors), slightly faster than the other packages (cdata, stats), and about the same speed as
tidyr.

Second, we performed similar timings on variants of the iris data with a variable number of
columns and the original number of rows (150). As in the previous experiment, we expected that all
functions would have similar slopes, indicating linear asymptotic time complexity. Surprisingly, we
observed on the log-log plot (Figure 3) that cdata has a larger asymptotic slope than the other packages,
which suggests its time complexity may be super-linear in the number of columns to reshape. The
other packages differed by constant factors, with data.table being fastest, followed by tidyr, nc, cdata,
and finally the slowest stats. All packages except stats performed the operation in less than 1 second
for 1,000 or fewer columns. This comparison confirms the expectation that nc speed is comparable to
other packages.

Third, we performed timings on versions of the WHO data with a variable number of duplicated
rows and the original number of columns (56). We ran reshaping functions from several additional
packages (utils, reshape2, tidyfast) that can compute the desired output table with a single reshape
output column. We computed the amount of time it takes to create zero or four capture output
columns (with additional post-processing steps for tidyfast::dt_pivot_longer, reshape2: :melt,
tidyr::gather, cdata: :unpivot_to_blocks). We expected that functions which require additional
post-processing steps should be slower by constant factors. As we expected, all functions appear to
have similar asymptotic time complexity and differ only in terms of constant factors. For zero capture

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES

80

Multiple reshape output columns, variable number of input columns

le+02

le+01

stats::reshape
1e+00 o

le-01+

1le-02 A

Computation time (seconds)

1e+02 le+04 1e+06
Number of columns in wide input data table

Figure 3: Timings for computing a tall output table with multiple (2) reshape columns from a wide
input table with 150 rows and a variable number of columns to reshape (x-axis).

output columns, the slowest functions were stats: : reshape and cdata: :unpivot_to_blocks, which
were the only ones to take more than one second for 10,000 input rows. The fastest functions were
data.table::melt and tidyfast::dt_pivot_longer (about 10ms for 10,000 input rows). As expected,
for four capture output columns, the functions which require post-processing were slower, and the
fastest functions were data.table: :melt and nc::capture_melt_single.

Finally, we performed similar timings on variants of the WHO data with a variable number of
columns and a fixed number of rows (11). The desired output again has a single reshape output
column, and we again tried computing either zero or four capture output columns. We observed
timings (Figure 5) with similar asymptotic trends as in the previous comparisons. In particular, timings
for most packages appear to be linear in the number of input reshape columns, and timings for cdata
appear to be super-linear for a large number of columns. These data indicate that nc speed is similar
to comparable R packages.

Discussion and conclusions

In this paper, we described the nc package and its new functions for regular expressions and data
reshaping. The nc package allows a user to define a regular expression in R code, along with capture
group names and corresponding type conversion functions. We showed how this syntax makes it easy
to define complex regular expressions in terms of simpler sub-patterns, while providing a uniform
interface to three regex engines (ICU, PCRE, RE2). We showed several examples of how nc can be
used for wide-to-tall data reshaping. We provided a detailed comparison with other data reshaping
functions in terms of syntax, functionality, and computation time.

In all of our speed comparisons, we observed that the speed of nc is similar to other R functions for
wide-to-tall data reshaping. We expected that all R functions would have linear asymptotic timings,
and differ only in constant factors. We were surprised to observe in our empirical timings that the
cdata package appears to have asymptotic time complexity that is super-linear in the number of
columns to reshape. This result suggests that the speed of cdata could be improved by adopting one
of the linear time reshaping algorithms used in the other packages.

The tidyr::pivot_longer function provides a feature set which is most similar to nc data reshap-
ing functions. We showed that both packages could perform the same data reshaping operations, but
nc provides a syntax that reduces repetition in user code. Another advantage is that nc R code allows
sub-pattern lists which contain group names, regex patterns, and type conversion functions, whereas
in tidyr these three related pieces of information must be defined in seperate arguments. Therefore nc
syntax may be preferable in order to ease the definition of complex patterns and to avoid repetition in
user code.

In nc, there are two different functions for wide-to-tall data reshaping: nc: :capture_melt_single
computes a single output reshape column, and nc: : capture_melt_multiple computes multiple out-
put reshape columns. In contrast, other functions that support multiple output reshape columns also
support a single output reshape column (Table 1). It is natural to ask whether these two nc functions
could be combined into a single function that could handle both kinds of output. Of course, it is possi-
ble, but we prefer to keep the two functions separate in order to provide more specific/informative
documentation, examples, and error messages.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

81

Single reshape output column, variable number of input rows

capture.columns: 0 capture.columns: 4
1e+02- &
¥ ©7
‘0\00 _\40\/
- o7 RN tidyr::gather
© NOd R reshape2::melt
c > N
s} S [$
2 Sb@* tidyr::gather
&L 1e+004 < tidyr:pivottonger tidyrpivot_fonger
g reshape2::melt tidyfast::dt_pivot_longer
= nc::capture_melt_single ggég&gcﬁm@ﬁllis\ng\c
c tidyfast::dt_pivot_longer | .
2 data.table:melt
=
&
&
=1
a
€ 1e-024
o
O ——
T T T T T T T T
le+02 1e+03 le+04 le+05 le+02 1e+03 le+04 le+05

Number of rows in wide input data table
Figure 4: Timings for computing a tall output table with a single reshape column from a wide input
table with 56 reshape columns and a variable number of rows (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).

Single reshape output column, variable number of input columns

capture.columns: 0 | capture.columns: 4

le+02

stats:reshape

stats::reshaﬁe

1e+00+

le-02-4

Computation time (seconds)

1e+02 1e+03 1e+04 1e+05 1e+02 1e+03 1e+04 1e+05
Number of columns in wide input data table
Figure 5: Timings for computing a tall output table with a single reshape column from a wide input
table with 11 rows and a variable number of columns to reshape (x-axis). The Left panel shows time to
compute output data table with no capture columns; The Right panel shows time to compute output
data table with four capture columns (typically slower as post-processing steps may be necessary).

We have shown how the nc package provides a powerful and efficient new syntax for wide-to-tall
data reshaping using regular expressions. The inverse operation, tall-to-wide data reshaping, is not
supported. For tall-to-wide reshaping operations, we recommend using the efficient implementation
in data.table: :dcast.

Future work

For future work, we will be interested to explore other operations and R packages/functions which
could be simplified using regular expressions. For example, the tidyr::pivot_longer function
requires some repetition of the pattern (in names_pattern and cols arguments); it could be simplified
by changing the behavior when names_pattern is specified, and cols is not (currently an error, could
instead set cols to the set of columns which match names_pattern).

Another example where there is room for improvement is data.table: :melt, which we have
shown requires some post-processing steps to output capture columns. As a result of this research, we
have proposed changes to data.table: :melt' that allow efficient specification and output of capture
columns. Since nc uses data.table internally, we plan to eventually use these changes for speedups of
nc functions.

Reproducible research statement. The source code for this article can be freely downloaded from
https://github.com/tdhock/nc-article

Ihttps://github.com/Rdatatable/data. table/pull/4731

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/tdhock/nc-article
https://github.com/Rdatatable/data.table/pull/4731

CONTRIBUTED RESEARCH ARTICLES

82

Bibliography

T. Barrett. tidyfast: Fast Tidying of Data, 2020. URL https://CRAN.R-project.org/package=tidyfast.
R package version 0.2.1. [p72]

G. Csérdi. rematch2: Tidy Output from Regular Expression Matching, 2017. URL https://CRAN.R-
project.org/package=rematch?2. R package version 2.0.1. [p70]

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame’, 2019. http:/ /r-datatable.com. [p72]

J. E. E. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2 edition,
2002. [p69]

M. Gagolewski. R package stringi: Character string processing facilities, 2018. URL http://www.
gagolewski.com/software/stringi/. [p70]

T. D. Hocking. Comparing namedcapture with other r packages for regular expressions. R Journal,
2019a. [p69, 70, 72]

T. D. Hocking. namedCapture: Named Capture Regular Expressions, 2019b. R package version 2019.01.14.
[p70]

T.-Y. Huang and B. Zhao. tidyfst: Tidy verbs for fast data manipulation. Journal of Open Source Software,
5(52):2388, 2020. doi: 10.21105/joss.02388. URL https://doi.org/10.21105/joss.02388. [p72]

J. Mount and N. Zumel. cdata: Fluid Data Transformations, 2019. URL https://CRAN.R-project.org/
package=cdata. R package version 1.1.2. [p72]

K. Ushey, J. Hester, and R. Krzyzanowski. rex: Friendly Regular Expressions, 2017. URL https://CRAN.R-
project.org/package=rex. R package version 1.1.2. [p70]

Q. Wenfeng. re2r: RE2 Regular Expression, 2017. URL https://CRAN.R-project.org/package=re2r. R
package version 0.2.0. [p70]

H. Wickham. Reshaping data with the reshape package. Journal of Statistical Software, 21(12):1-20, 2007.
URL http://www. jstatsoft.org/v21/i12/. [p72]

H. Wickham. stringr: Simple, Consistent Wrappers for Common String Operations, 2018. URL https:
//CRAN.R-project.org/package=stringr. R package version 1.3.1. [p70]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ‘spread()” and 'gather()” Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.2. [p70]

Toby Dylan Hocking

School of Informatics, Computing, and Cyber Systems
Northern Arizona University

Flagstaff, Arizona

USA

toby.hocking@nau.edu

ORCID 0000-0002-3146-0865

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=tidyfast
https://CRAN.R-project.org/package=rematch2
https://CRAN.R-project.org/package=rematch2
http://www.gagolewski.com/software/stringi/
http://www.gagolewski.com/software/stringi/
https://doi.org/10.21105/joss.02388
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=cdata
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=rex
https://CRAN.R-project.org/package=re2r
http://www.jstatsoft.org/v21/i12/
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=tidyr
mailto:toby.hocking@nau.edu

CONTRIBUTED RESEARCH ARTICLES

83

Linear Regression with Stationary
Errors: the R Package slm

by Emmanuel Caron, Jérome Dedecker and Bertrand Michel

Abstract This paper introduces the R package slm, which stands for Stationary Linear Models.
The package contains a set of statistical procedures for linear regression in the general context where
the error process is strictly stationary with a short memory. We work in the setting of Hannan (1973),
who proved the asymptotic normality of the (normalized) least squares estimators (LSE) under
very mild conditions on the error process. We propose different ways to estimate the asymptotic
covariance matrix of the LSE and then to correct the type I error rates of the usual tests on the
parameters (as well as confidence intervals). The procedures are evaluated through different sets of
simulations.

Introduction

We consider the usual linear regression model
Y=XB+e¢,

where Y is the n-dimensional vector of observations, X is a (possibly random) n x p design matrix,
B is a p-dimensional vector of parameters, and € = (Ei)lgign is the error process (with zero mean
and independent of X). The standard assumptions are that the ¢;’s are independent and identically
distributed (i.i.d.) with zero mean and finite variance.

In this paper, we propose to modify the standard statistical procedures (tests, confidence intervals,
..) of the linear model in the more general context where the €;’s are obtained from a strictly
stationary process (g;);eN With a short memory. To be more precise, let B denote the usual least
squares estimator of 8. Our approach is based on two papers: the paper by Hannan (1973) who
proved the asymptotic normality of the least squares estimator D(n)(8 — 8) (D(n) being the usual
normalization) under very mild conditions on the design and on the error process; and a recent
paper by Caron (2019) who showed that, under Hannan’s conditions, the asymptotic covariance
matrix of D(n)(3 —) can be consistently estimated.

Let us emphasize that Hannan’s conditions on the error process are very mild and are satisfied
for most of the short-memory processes (see the discussion in Section 4.4 of Caron and Dede
(2018)). Putting together the two above results, we can develop a general methodology for tests
and confidence regions on the parameter 3, which should be valid for most of the short-memory
processes. This is, of course, directly useful for time-series regression, but also in the more general
context where the residuals of the linear model seem to be strongly correlated. More precisely, when
checking the residuals of the linear model, if the autocorrelation function of the residuals shows
significant correlations, and if the residuals can be suitably modeled by an ARMA process, then
our methodology is likely to apply. We shall give an example of such a situation on the "Shanghai
pollution" dataset at the end of the paper.

Hence, the tools presented in the present paper can be seen from two different points of view:

- as appropriate tools for time series regression with a short memory error process

- as a way to robustify the usual statistical procedures when the residuals are correlated.

Let us now describe the organization of the paper. In the next section, we recall the mathematical
background, the consistent estimator of the asymptotic covariance matrix introduced in Caron (2019),
and the modified Z-statistics and y-square statistics for testing the hypothesis on the parameter
B. Next, we present the slm package and the different ways to estimate the asymptotic covariance
matrix: by fitting an autoregressive process on the residuals (default procedure), by means of the
kernel estimator described in Caron (2019) (theoretically valid) with a bootstrap method to choose
the bandwidth (Wu and Pourahmadi (2009)), by using alternative choices of the bandwidth for the
rectangular kernel (Efromovich (1998)) and the quadratic spectral kernel (Andrews (1991)), and
by means of an adaptive estimator of the spectral density via Histograms (Comte (2001)). In a
section about numerical experiments, we estimate the level of a x-square test for a linear model
with random design, with different kinds of error processes, and for different estimation procedures.
In the last section, we apply the package to the "Shanghai pollution" dataset, and we compare the
summary output of slm with the usual summary output of 1m. An extended version of this paper is
available as an arXiv preprint (see Caron et al. (2019)).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=slm

CONTRIBUTED RESEARCH ARTICLES

84

Linear regression with stationary errors

Asymptotic results for the kernel estimator

We start this section by giving a short presentation of linear regression with stationary errors, more
details can be found for instance in Caron (2019). Let § be the usual least squares estimator for the
unknown vector 3. The aim is to provide hypothesis tests and confidence regions for 3 in the non
i.i.d. context.

Let v be the autocovariance function of the error process e: for any integers k& and m, let
(k) = Cov(em, em+k). We also introduce the covariance matrix:

Ino=[v(j - l)hgj,[gm

Hannan (1973) has shown a Central Limit Theorem for 3 when the error process is strictly
stationary, under very mild conditions on the design and the error process. Let us notice that
the design can be random or deterministic. We introduce the normalization matrix D(n) which
is a diagonal matrix with diagonal term d;(n) = ||X,7j H2 for jin {1,...,p}, where X _; is the jth
column of X. Roughly speaking Hannan’s result says in particular that, given the design X, the
vector D(n) (5 —) converges in distribution to a centered Gaussian distribution with covariance
matrix C. As usual, in practice, the covariance matrix C' is unknown, and it has to be estimated.
Hannan also showed the convergence of second order moment:'

n— oo

E (D)3 8)(5-5)'D)'|X) —— €, as.

where
E (D)(8 - 8)(3 -9 D(n)!|X) = D) (X' %) ' X'Tu X (X' X) ' D(n).

In this paper, we propose a general plug-in approach: for some given estimator fn of 'y, we introduce
the plug-in estimator:

C=CT,):=Dn)(X'X) ' X'T,X(X'X)"'D(n),

and we use C to standardize the usual statistics considered for the study of linear regression.

Let us illustrate this plug-in approach with a kernel estimator which has been proposed in Caron
(2019). For some K and a bandwidth h, the kernel estimator I';, j, is defined by

~ i—1
Fun = |5 (57) 1) e !
n,h h Vi—1 1<j.1<n ()

where the residual-based empirical covariance coefficients are defined for 0 < |k| <n —1 by

n—|k|

~ 1 A a
Ve == ¥ i€k (2)

n
Jj=1

For a well-chosen kernel K and under mild assumptions on the design and the error process, it has
been proved in Caron (2019) that

Cr2D(n)(B - B) —=— Np(0p, Ip), (3)

n—oo

for the plug-in estimator Cy, := é(fmhn), for some suitable sequence of bandwidths (hn).

More generally, in this paper, we say that an estimator fn of I'y, is consistent for estimating
the covariance matriz C if C(Ty) is positive definite and if it converges in probability to C. Note

that such a property requires assumptions on the design, see Caron (2019). If ﬁ(fn) is consistent
—1/2

for estimating the covariance matrix C, then é(fn) D(n)(B — B) converges in distribution to a

standard Gaussian vector.

To conclude this section, let us make some additional remarks. The interest of Caron’s recent
paper is that the consistency of the estimator C(I's) is proved under Hannan’s condition on the
error process, which is known to be optimal with respect to the convergence in distribution (see for
instance Dedecker (2015)), and which allows dealing with most short memory processes. However,
the natural estimator of the covariance matrix of 3 based on fn has been studied by many other

IThe transpose of a matrix X is denoted by X*.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

85

authors in various contexts. For instance, let us mention the important line of research initiated by
Newey and West (1987, 1994) and the related papers by Andrews (1991), Andrews and Monahan
(1992), among others. In the paper by Andrews (1991), the consistency of the estimator based
on fn is proved under general conditions on the fourth-order cumulants of the error process, and
a data-driven choice of the bandwidth is proposed. Note that these authors also considered the
case of heteroskedastic processes. Most of these procedures, known as HAC (Heteroskedasticity
and Autocorrelation Consistent) procedures, are implemented in the package sandwich by Zeileis,
Lumley, Berger and Graham, and presented in great detail in the paper by Zeileis (2004). We shall
use an argument of the sandwich package, based on the data-driven procedure described by Andrews

(1991).

Tests and confidence regions

We now present tests and confidence regions for arbitrary estimators fn The complete justifications
are available for kernel estimators, see Caron (2019).

Z-Statistics. We introduce the following univariate statistics:

Z; = ;7 (4)
(4,3)

where C = é(fn) If fn is consistent for estimating the covariance matrix C' and if 8; = 0, the
distribution of Z; converges to a standard normal distribution when n tends to infinity. We directly
derive an asymptotic hypothesis test for testing 3; = 0 against 3; # 0 as well as an asymptotic
confidence interval for ;.

Chi-square statistAics. Let A be an n x k matrix with rank(A) = k. Under Hannan (1973)’s
conditions, D(n)(AS — AB) converges in distribution to a centered Gaussian distribution with
covariance matrix AC AL, If fn is consistent for estimating the covariance matrix C, then Aa (fn)
converges in probability to AC. The matrix AC (fn)At being symmetric positive definite, this yields

W i= (AC(Tn) /2D () A(B = B) —— Ni(Ok, I1)-

This last result provides asymptotical confidence regions for the vector AS. It also provides an
asymptotic test for testing the hypothesis Hg : AB = 0 against H; : AB # 0. Indeed, under the
Ho-hypothesis, the distribution of |[|[W||3 converges to a x?(k)-distribution.

The test can be used to simplify a linear model by testing that several linear combinations
between the parameters 3; are zero, as we usually do for Anova and regression models. In particular,
with A = I, the test corresponds to the test of overall significance.

Introduction to linear regression with the slm package

Using the slm package is very intuitive because the arguments and the outputs of slm are similar to
those of the standard functions 1m, glm, etc. The output of the main function slm is an object of
class "slm", a specific class that has been defined for linear regression with stationary processes. The

"slm" class has methods plot, summary, confint, and predict, see the extended version Caron et al.

(2019) for more details. Moreover, the class "slm" inherits from the "lm" class and thus provides the
output of the classical 1m function.

The statistical tools available in slm strongly depend on the choice of the covariance plug-in
estimator C(T'y,) we use for estimating C. All the estimators I'y, proposed in slm are residual-based
estimators, but they rely on different approaches. In this section, we present the main functionality
of slm together with the different covariance plug-in estimators.

For illustrating the package, we simulate synthetic data according to the linear model:
Y; = B+ P2(log(i) +sin(i) + Z;) + Bai + &i,

where Z is a Gaussian autoregressive process of order 1 and ¢ is the Nonmixing process described
further in the paper. We use the functions generative_model and generative_process respectively

to simulate observations according to this regression design and with this specific stationary process.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=sandwich

CONTRIBUTED RESEARCH ARTICLES

86

R> library(slm)

R> set.seed(42)

R> n = 500

R> eps = generative_process(n,"Nonmixing")

R> design = generative_model(n, "mod2")

R> design_sim = cbind(rep(1,n), as.matrix(design))
R> beta_vec = ¢(2,0.001,0.5)

R> Y = design_sim %*J, beta_vec + eps

Linear regression via AR fitting on the residuals

A large class of stationary processes with continuous spectral density can be well approximated
by AR processes, see for instance Corollary 4.4.2 in Brockwell and Davis (1991). The covariance
structure of an AR process having a closed form, it is thus easy to derive an approximation T AR(p)
of I'y, by fitting an AR process on the residual process. The AR-based method for estimating C' is
the default version of slm. This method proceeds in four main steps:

. Fit an autoregressive process on the residual process € ;
. Compute the theoretical covariances of the fitted AR process ;

1
2
3. Plug the covariances in the Toeplitz matrix fAR(p) ;
4. Compute C= a(fAR(p))‘

The slm function fits a linear regression of the vector Y on the design X and then fits an AR
process on the residual process using the ar function from the stats package. The output of the
slm function is an object of class "slm". The order p of the AR process is set in the argument
model_selec:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = 3)

The estimated covariance is recorded as a vector in the attribute cov_st of regslm, which is an
object of class "slm". The estimated covariance matrix can be computed by taking the Toeplitz
matrix of cov_st, using the toeplitz function.

AR order selection. The order p of the AR process can be chosen at hand by setting model_selec
= p, or automatically with the AIC criterion by setting model_selec = -1.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "fitAR",
+ model_selec = -1)

The order of the fitted AR process is recorded in the model_selec attribute of regslm:

R> regslm@model_selec
[11 2

Here, the AIC criterion suggests to fit an AR(2) process on the residuals.

Linear regression via kernel estimation of the error covariance

The second method for estimating the covariance matrix C' is the kernel estimation method (1)
studied in Caron (2019). In short, this method estimates C via a smooth approximation of the
covariance matrix I'y, of the residuals. This estimation of I'y, corresponds to the so-called tapered
covariance matrix estimator in the literature, see for instance Xiao and Wu (2012), or also to the
"lag-window estimator" defined in Brockwell and Davis (1991), page 330. It applies in particular for
non-negative symmetric kernels with compact support, with an integrable Fourier transform and
such that K(0) = 1. Table 1 gives the list of the available kernels in the package slm.

It is also possible for the user to define his own kernel and use it in the argument kernel_fonc
of the slm function. Below we use the triangle kernel, which assures that the covariance matrix is
positive definite. The support of the kernel K in Equation (1) being compact, only the terms 7;_;
for small enough lag j — [are kept and weighted by the kernel in the expression of FI:n’h, Rather
than setting the bandwidth h, we select the number of (k)’s that should be kept (the lag) with the
argument model_selec in the slm function. Then the bandwidth h is calibrated accordingly, that is
equal to model_selec +1.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=stats

CONTRIBUTED RESEARCH ARTICLES

87

kernel_fonc = kernel definition
rectangular K(z) = Tyz)<1y
triangle K(z) = (1 - [z)1z<1y
trapeze | K(z) = Lyj<p) + 125 (1 [2) Lis<poi<ny

Table 1: Available kernel functions in slm.

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "kernel",
+ model_selec = 5, kernel_fonc = triangle, plot = TRUE)

The plot output by the slm function is given in Figure 1.

ACF
0.4 0.8 1.0

0.2
|

0.0

Figure 1: ACF of the residual process.

Order selection via bootstrap. The order parameter can be chosen at hand as before or
automatically by setting model_selec = -1. The automatic order selection is based on the bootstrap
procedure proposed by Wu and Pourahmadi (2009) for banded covariance matrix estimation. The
block_size argument sets the size of bootstrap blocks, and the block_n argument sets the number
of blocks. The final order is chosen by taking the order which has the minimal risk. Figure 2 gives
the plots of the estimated risk for the estimation of I'y, (left) and the final estimated ACF (right).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st ="kernel",
+ model_selec = -1, kernel_fonc = triangle, model_max = 30,
+ block_size = 100, block_n = 100, plot = TRUE)

The selected order is recorded in the model_selec attribute of the slm object output by the
s1lm function:

R> regslm@model_selec

[1] 10

Order selection by Efromovich’s method (rectangular kernel). An alternative method
for choosing the bandwidth in the case of the rectangular kernel has been proposed in Efromovich
(1998). For a large class of stationary processes with exponentially decaying autocovariance function
(mainly the ARMA processes), Efromovich proved that the rectangular kernel is asymptotically
minimax, and he proposed the following estimator:

k=Jnr
S 1 o kA
P) = 5) ZJ e,

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

88

80
1.0

75
|
08
!

70
|

65
1

£ 'y
£ i ERE
2 O N I I A R
2 S S
T T T T T T T T T T T T
0 5 10 15 20 25 30 0 2 4 6 8 10
lag Lag
(a) Estimated risk error via bootstrap. (b) Estimated ACF for the selected order.

Figure 2: Plots output by slm for the kernel method with bootstrap selection of the order.

with the lag

wr = 22 (11 (tog(m)) 172]

where r is a regularity index of the autocovariance index. In practice, this parameter is unknown
and is estimated thanks to the algorithm proposed in the section 4 of Efromovich (1998). As for the
other methods, we use the residual based empirical covariances 7, to compute fj_ (A).

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "efromovich",
+ model_selec = -1)

Order Selection by Andrews’s method. Another method for choosing the bandwidth has
been proposed by Andrews (1991) and implemented in the package sandwich by Zeileis, Lumley,
Berger and Graham (see the paper by Zeileis (2004)). For the slm package, the automatic choice of
the bandwidth proposed by Andrews can be obtained as follows:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "hac")

The procedure is based on the function kernHAC in the sandwich package. This function computes
directly the covariance matrix estimator of 3, which will be recorded in the slot Cov_ST of the slm
function. Here, we take the quadratic spectral kernel:

25 <sin (6mz/5)

K (z) =
() 12722 6mz/5

— cos (67m/5)> ,

as suggested by Andrews (see Section 2 in Andrews (1991), or Section 3.2 in Zeileis (2004)), but
other kernels could be used, such as Bartlett, Parzen, Tukey-Hamming, among others (see Zeileis
(2004)).

Positive definite projection. Depending on the method used, the matrix c (fn) may not always
be positive definite. It is the case of the kernel method with rectangular or trapeze kernel. To
overcome this problem, we make the projection of C(I',) into the cone of positive definite matrices
by applying a hard thresholding on the spectrum of this matrix: we replace all eigenvalues lower or
equal to zero with the smallest positive eigenvalue of C(T'y). Note that this projection is useless for
the triangle or quadratic spectral kernels because their Fourier transform is non-negative (leading
to a positive definite matrix é(fn)) Of course, it is also useless for the fitAR and spectralproj
methods.

Linear regression via projection spectral estimation

The projection method relies on the ideas of Comte (2001), where an adaptive nonparametric method
has been proposed for estimating the spectral density of a stationary Gaussian process. We use
the residual process as a proxy for the error process, and we compute the projection coefficients
with the residual-based empirical covariance coefficients 4, see Equation (2). For some d € IN*,

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

89

the estimator of the spectral density of the error process that we use is defined by computing the
projection estimators for the residual process on the basis of histogram functions:

d d .
ol = \/;]l[wj/dﬂr(jJrl)/d[: j=0,1,...,d—1.

The estimator is defined by

where the projection coefficients are

n—1
(a) _ [d[F |1 [(7G4 Dr (T
a; \/;(%erzgr[mn(d ‘5““(7) '

The Fourier coefficients of the spectral density are equal to the covariance coefficients. Thus, for
k=1,...,n—1it yields

T =

Ck
2[4 () kr(j+1) kj
(d) | . T (k7
k\ﬁz;)“j {“(d>“<d)]
=

d—1
™ A(d
’YO:CO:Q\/E E ag.)
j=0

This method can be proceeded in the slm function by setting method_cov_st =
"spectralproj":

and for k£ = 0:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = 10, plot = TRUE)

The graph of the estimated spectral density can be plotted by setting plot = TRUE in the s1m function,
see Figure 3.

12
1

10
|

spectral density
6
1

0.0 05 1.0 15 20 25

Figure 3: Spectral density estimator by projection on the histogram basis.

Model selection. The Gaussian model selection method proposed in Comte (2001) follows the
ideas of Birgé and Massart, see for instance Massart (2007). It consists of minimizing the lo penalized
criterion, see Section 5 in Comte (2001):

where ¢ is a multiplicative constant that in practice can be calibrated using the slope heuristic
method, see Birgé and Massart (2007), Baudry et al. (2012) and the R package capushe.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=capushe

CONTRIBUTED RESEARCH ARTICLES

90

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "spectralproj",
+ model_selec = -1, model_max = 50, plot = TRUE)

The selected dimension is recorded in the model_selec attribute of the slm object output by the
s1lm function:

R> regslm@model_selec
(11 8

The slope heuristic algorithm here selects a Histogram on a regular partition of size 8 over the
interval [0, 7] to estimate the spectral density.

Linear regression via masked covariance estimation

This method is a full-manual method for estimating the covariance matrix C by only selecting
covariance terms from the residual covariances 4, defined by (2). Let I be a set of positive integers,
then we consider

A1(k) == T lrerufoy 0< |kl <n—1,

and then we define the estimated covariance marix T 1 by taking the Toeplitz matrix of the vector 4;.

This estimator is a particular example of a masked sample covariance estimator, as introduced by
Chen et al. (2012), see also Levina and Vershynin (2012). Finally, we derive from I'; an estimator
C(FI) for C.

The next instruction selects the coefficients 0, 1, 2 and 4 from the residual covariance terms:

R> regslm = slm(Y ~ X1 + X2, data = design, method_cov_st = "select",
+ model_selec = c(1,2,4))

The positive lags of the selected covariances are recorded in the model_selec argument. Let us
notice that the variance g is automatically selected.

As for the kernel method, the resulting covariance matrix may not be positive definite. If it is
the case, the positive definite projection method described before is used.

Linear regression via manual plugged covariance matrix

This last method is a direct plug-in method. The user proposes his own vector estimator 4 of v, and
then the Toeplitz matrix I, of the vector 4 is used for estimating C with C(Ty,).

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$act
R> regslm = slm(Y ~ X1 + X2, data = design, cov_st = V)

The user can also propose his own covariance matrix I'y, for estimating C.

R> v = rep(0,n)
R> v[1:10] = acf(eps, type = "covariance", lag.max = 9)$act
R> V = toeplitz(v)

R> regslm = slm(Y ~ X1 + X2, data = design, Cov_ST

)

Let us notice that the user must verify that the resulting covariance matrix is positive definite.

The positive definite projection algorithm is not used with this method.

Numerical experiments and method comparisons

This section summarizes an extensive study which has been carried out to compare the performances
of the different approaches presented before in the context of a linear model with short range
dependent stationary errors.

Description of the generative models

We first present the five generative models for the errors that we consider in the paper. We choose
different kinds of processes to reflect the diversity of short-memory processes.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

e ARI1 process. The AR1 process is a Gaussian AR(1) process defined by
g — O.7Ei_1 = Wi,

where W; is a standard gaussian distribution A/(0, 1).
o AR12 process. The AR12 process is a seasonal AR(12) process defined by

e;—0.5g;_1—0.2¢;_19 =W,

where W; is a standard Gaussian distribution N'(0,1). When studying monthly datasets, one
usually observes a seasonality of order 12. For example, when looking at climate data, the
data are often collected per month, and the same phenomenon tends to repeat every year.
Even if the design integrates the deterministic part of the seasonality, a correlation of order
12 usually remains present in the residual process.

e MA12 process. The MA12 is also a seasonal process defined by
g = W; +0.5W;_o + 0.3W,;_3 + 0.2W;_12,

where the (W;)’s are i.i.d. random variables following Student’s distribution with 10 degrees
of freedom.

e Nonmixing process. The three processes described above are basic ARMA processes, whose
innovations have absolutely continuous distributions; in particular, they are strongly mixing
in the sense of Rosenblatt (1956), with a geometric decay of the mixing coefficients (in fact,
the MA12 process is even 12-dependent, which means that the mixing coefficient a(k) = 0
if k> 12). Let us now describe a more complicated process: let (Z1,..., Zyn) satisfying the
AR(1) equation

1
Zit1 = E(Zi +Mit1)s

where Z; is uniformly distributed over [0, 1] and the n;’s are i.i.d. random variables with
distribution B(1/2), independent of Z;. The process (Zi)@l is a strictly stationary Markov
chain, but it is not a-mixing in the sense of Rosenblatt (see Bradley (1986)). Let now Qg 2
be the inverse of the cumulative distribution function of a centered Gaussian distribution with
variance o2 (for the simulations below, we choose o2 = 25). The Nonmixing process is then
defined by
& = QO,GQ(ZZ’)'

The sequence (5i)i21 is also a stationary Markov chain (as an invertible function of a stationary
Markov chain). By construction, &; is A'(0, 02)-distributed, but the sequence (g;);>1 is not a
Gaussian process (otherwise, it would be mixing in the sense of Rosenblatt). Although it is
not obvious, one can prove that the process (¢;);>1 satisfies Hannan’s condition (see Caron
(2019), Section 4.2). B

e Sysdyn process. The four processes described above have the property of "geometric decay
of correlations", which means that the v(k)’s tend to 0 at an exponential rate. However, as
already pointed out in the introduction, Hannan’s condition is valid for most of the short
memory processes, even for processes with slow decay of correlations (provided that the
~(k)’s are summable). Hence, our last example will be a non-mixing process (in the sense of
Rosenblatt), with an arithmetic decay of the correlations.

For v €]0, 1], the intermittent map 60~ : [0, 1] — [0, 1] introduced in Liverani et al. (1999) is
defined by

0. (z) = { c(1+2727) if ze[0,1/2]

v 2z—1 if =xe[l/2,1].

It follows from Liverani et al. (1999) that there exists a unique 6~-invariant probability measure
vy. The Sysdyn process is then defined by

E; = 9,27.

From Liverani et al. (1999), we know that on the probability space ([0, 1],v~), the auto-
correlations y(k) of the stationary process (g;);>1 are exactly of order k= (=777 Hence,
(€i)i>1 is a short memory process provided ~y €]0,1/2[. Moreover, it has been proved in
Section 4.4 of Caron and Dede (2018) that (g;);>1 satisfies Hannan’s condition in the whole
short-memory range, that is for v €]0,1/2[. For the simulations below, we took v = 1/4,

which give autocorrelations (k) of order k3.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

92

The linear regression models simulated in the experiments all have the following form:
Y; = B1 + B2(log(i) + sin(z) + Z;) + B3i + &4, for all ¢ in {1,...,n}, (5)

where Z is a Gaussian autoregressive process of order 1 and ¢ is one of the stationary processes
defined above. For the simulations, 1 is always equal to 3. All the error processes presented above
can be simulated with the slm package with the generative_process function. The design can be
simulated with the generative_model function.

Automatic calibration of the tests

It is, of course, of first importance to provide hypothesis tests with correct significance levels or
at least with correct asymptotical significance levels, which is possible if the estimator I'y, of the
covariance matrix I'y, is consistent for estimating C. For instance, the results of Caron (2019) show
that it is possible to construct statistical tests with correct asymptotical significance levels. However,
in practice, such asymptotical results are not sufficient since they do not indicate how to tune the
bandwidth on a given dataset. This situation makes the practice of linear regression with dependent
errors really more difficult than linear regression with i.i.d. errors. This problem happens for several
methods given before ; order choice for the £itAR method, bandwidth choice for the kernel method,
dimension selection for the spectralproj method.

It is a tricky issue to design a data-driven procedure for choosing test parameters in order to
have a correct Type I Error. Note that unlike with supervised problems and density estimation, it is
not possible to calibrate hypothesis tests in practice using cross-validation approaches. We thus
propose to calibrate the tests using well-founded statistical procedures for risk minimization ; AIC
criterion for the fitAR method, bootstrap procedures for the kernel method, and slope heuristics
for the spectralproj method. These procedures are implemented in the slm function with the
model_selec = -1 argument, as detailed in the previous section.

Let us first illustrate the calibration problem with the AR12 process. For T' = 1000 simulations,
we generate an error process of size n under the null hypothesis: Hg : 2 = 3 = 0. Then we use
the fitAR method of the slm function with orders between 1 and 50, and we perform the model
significance test. The procedure is repeated 1000 times, and we estimate the true level of the test by
taking the average of the estimated levels on the 1000 simulations for each order. The results are
given in Figure 4 for n = 1000. A boxplot is also displayed to visualize the distribution of the order
selected by the automatic criterion (AIC).

Non-Seasonal errors

We first study the case of non-Seasonal error processes. We simulate an n-error process according to
the AR1, the Nonmixing, or the Sysdyn processes. We simulate realizations of the linear regression
model (5) under the null hypothesis: Hg : B2 = 83 = 0. We use the automatic selection procedures
for each method (model_selec = -1). The simulations are repeated 1000 times in order to estimate
the true level of the model significance for each test procedure. We simulate either small samples
(n = 200) or larger samples (n = 1000, 2000, 5000). The results of these experiments are summarized
in Table 2.

For n large enough (n > 1000), all methods work well, and the estimated level is around 0.05.

However, for small samples (n = 200), we observe that the £itAR and the hac methods show better
performances than the others. The kernel method is slightly less effective. With this method, we
must choose the size of the bootstrap blocks as well as the number of blocks, and the test results are
really sensitive to these parameters. In these simulations, we have chosen 100 blocks with a size of
n/2. The results are expected to improve with a larger number of blocks.

Let us notice that for all methods and for all sample sizes, the estimated level is much better
than if no correction is made (usual Fisher tests).

Seasonal errors

We now study the case of linear regression with seasonal errors. The experiment is exactly the same
as before, except that we simulate AR12 or MA12 processes. The results of these experiments are
summarized in Table 3.

We directly see that the case of seasonal processes is more complicated than for the non-seasonal
processes especially for the AR12 process. For a small samples size, the estimated level is between
0.17 and 0.24, which is clearly too large. It is, however, much better than the estimated level of the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

93

015 -

Estimated Level

010

. .
s’ 0, "eet

.
-o.oooo'.

Order

|:|~ SEBSBSBEBB008 00

0 10 20 30 40 S0
Order

Figure 4: Estimated level of the test according to the order of the fitted AR process on the residuals
(top) and boxplot of the order selected by AIC, over 1000 simulations. The data has been simulated
according to Model (5) with 81 = 3 and 82 = 83 = 0, with n = 1000.

usual Fisher test, which is around 0.45. The fitAR method is the best method here for the AR12
process because for n > 1000, the estimated level is between 0.06 and 0.07. For efromovich and
kernel methods, a level less than 0.10 is reached but for large samples only. The spectralproj and
hac methods do not seem to work well for the AR12 process, although they remain much better
than the usual Fisher tests (around 19% of rejection instead of 45%).

The case of the MA12 process seems easier to deal with. For n large enough (n > 1000), the
estimated level is between 0.04 and 0.07 whatever the method, except for hac (around 0.15 for
n = 5000). It is less effective for a small sample size (n = 200) with an estimated level around 0.115
for fitAR, spectralproj and efromovich methods.

I.I1.D. errors

To be complete, we consider the case where the ¢;’s are i.i.d., to see how the five automatic methods
perform in that case. We simulate n i.i.d. centered random variables according to the formula:

2 5

& =Wi—1,

where W follows a student distribution with 10 degrees of freedom. Note that the distribution of
the ¢;’s is not symmetric and has no exponential moments. Except for the kernel method, the
estimated levels are close to 5% for n large enough (n > 300). It is slightly worse for small samples,
but it remains quite good for the methods fitAR, efromovich, and hac.

As a general conclusion of this section about numerical experiments and method comparison, we
see that the fitAR method performs quite well in a wide variety of situations and should therefore be
used as soon as the user suspects that the error process can be modeled by a stationary short-memory
process.

Application to the PM2.5 pollution Shanghai Dataset

This dataset comes from a study about fine particle pollution in five Chinese cities. The data are
available on the following website https://archive.ics.uci.edu/ml/datasets/PM2.5+Datatof+
Five+Chinese+Cities#. Here we are interested with the city of Shanghai. We study the regression

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities#
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities#

CONTRIBUTED RESEARCH ARTICLES

94

n Process Method Fisher test | fitAR | spectralproj
ARI1 process 0.465 0.097 0.14
200 NonMixing 0.298 0.082 0.103
Sysdyn process 0.385 0.105 0.118
ARI1 process 0.418 0.043 0.049
1000 NonMixing 0.298 0.046 0.05
Sysdyn process 0.393 0.073 0.077
AR1 process 0.454 0.071 0.078
2000 NonMixing 0.313 0.051 0.053
Sysdyn process 0.355 0.063 0.064
ARI1 process 0.439 0.044 0.047
5000 NonMixing 0.315 0.053 0.056
Sysdyn process 0.381 0.058 0.061
n Method efromovich | kernel hac
Process
AR1 process 0.135 0.149 | 0.108
200 NonMixing 0.096 0.125 | 0.064
Sysdyn process 0.124 0.162 0.12
AR1 process 0.049 0.086 | 0.049
1000 NonMixing 0.053 0.076 | 0.038
Sysdyn process 0.079 0.074 | 0.078
AR1 process 0.075 0.067 | 0.071
2000 NonMixing 0.057 0.067 | 0.047
Sysdyn process 0.066 0.069 | 0.073
ARI1 process 0.047 0.047 | 0.044
5000 NonMixing 0.059 0.068 | 0.05
Sysdyn process 0.057 0.064 | 0.071

Table 2: Estimated levels for the non-seasonal processes.

of PM2.5 pollution in Xuhui District by other measurements of pollution in neighboring districts
and also by meteorological variables. The dataset contains hourly observations between January
2010 and December 2015. More precisely, it contains 52584 records of 17 variables: date, time of
measurement, pollution and meteorological variables. More information on these data is available in
the paper of Liang et al. (2016).

‘We remove the lines that contain NA observations, and we then extract the first 5000 observations.

For simplicity, we will only consider pollution variables and weather variables. We start the study
with the following 10 variables:

R>

R>
R>
R>

The R Journal Vol. 13/1, June 2021

- PM_Xuhui: PM2.5 concentration in the Xuhui district (ug/m?)

- PM_Jingan: PM2.5 concentration in the Jing’an district (ug/m?)

- PM_US.Post: PM2.5 concentration in the U.S diplomatic post (ug/m?)

- DEWP: Dew Point (Celsius Degree)

- TEMP: Temperature (Celsius Degree)

- HUMI: Humidity (%)

- PRES: Pressure (hPa)

- Iws: Cumulated wind speed (m/s)

- precipitation: hourly precipitation (mm)

- Iprec: Cumulated precipitation (mm)

shan = read.csv("ShanghaiPM20100101_20151231.csv", header = TRUE,
sep = ",")

shan = na.omit(shan)

shan_complete = shan[1:5000,c(7,8,9,10,11,12,13,15,16,17)]
shan_complete[1:5,]

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

95

n Process Method Fisher test | fitAR | spectralproj
200 ARI12 process 0.436 0.178 0.203
MA12 process 0.228 0.113 0.113
1000 ARI12 process 0.468 0.068 0.183
MA12 process 0.209 0.064 0.066
2000 ARI12 process 0.507 0.071 0.196
MA12 process 0.237 0.064 0.064
5000 ARI12 process 0.47 0.062 0.183
MAT12 process 0.242 0.044 0.048
n Method efromovich | kernel hac
Process
200 ARI12 process 0.223 0.234 | 0.169
MAT12 process 0.116 0.15 0.222
1000 ARI12 process 0.181 0.124 | 0.179
MA12 process 0.069 0.063 | 0.18
92000 ARI12 process 0.153 0.104 | 0.192
MA12 process 0.058 0.068 | 0.173
5000 ARI12 process 0.1 0.091 | 0.171
MA12 process 0.043 0.057 | 0.147
Table 3: Estimated levels for the seasonal processes.
0 b cess Method Fisher test | fitAR | spectralproj
150 i.i.d. process 0.053 0.068 0.078
300 i.i.d. process 0.052 0.051 0.06
500 i.i.d. process 0.047 0.049 0.053
n Method efromovich | kernel | hac
Process
150 i.i.d. process 0.061 0.124 | 0.063
300 i.i.d. process 0.05 0.095 | 0.052
500 i.i.d. process 0.049 0.082 | 0.056

Table 4: Estimated levels for the i.i.d. process

PM_Jingan PM_US.Post PM_Xuhui DEWP HUMI PRES TEMP Iws

26305 66 70 71 -5 69.00 1023 0 60

26306 67 76 72 -5 69.00 1023 0 62

26308 73 78 74 -4 74.41 1023 0 65

26309 75 7 77 -4 80.04 1023 -1 68

26310 73 78 80 -480.04 1023 -1 70
precipitation Iprec

26305 0 0

26306 0 0

26308 0 0

26309 0 0

26310 0 0

The aim is to study the concentration of particles in Xuhui District according to the other
variables. We first fit a linear regression with the 1m function.

R> reglm = 1lm(shan_complete$PM_Xuhui ~ . ,data = shan_complete)
R> summary.lm(reglm)

Call:
Im(formula = shan_complete$PM_Xuhui ~ ., data = shan_complete)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

Residuals:
Min 1Q Median 3Q Max
-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -54.859483 40.975948 -1.339 0.180690

PM_Jingan 0.596490 0.014024 42.533 < 2e-16 **x*
PM_US.Post 0.375636 0.015492 24.246 < 2e-16 **xx

DEWP -1.038941 0.170144 -6.106 1.10e-09 **x

HUMI 0.291713 0.045799 6.369 2.07e-10 **x*

PRES 0.025287 0.038915 0.650 0.515852

TEMP 1.305543 0.168754 7.736 1.23e-14 **x

Iws -0.007650 0.002027 -3.774 0.000163 x*x*x*
precipitation 0.462885 0.132139 3.503 0.000464 x*x*x*

Iprec -0.125456 0.039025 -3.215 0.001314 x*x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4990 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 8828 on 9 and 4990 DF, p-value: < 2.2e-16

The variable PRES has no significant effect on the PM_Xuhui variable. We then perform a backward
selection procedure, which leads to select 9 significant variables:

R> shan_lm = shan[1:5000,c(7,8,9,10,11,13,15,16,17)]
R> reglm = lm(shan_1m$PM_Xuhui ~ . ,data = shan_lm)
R> summary.lm(reglm)

Call:
Im(formula = shan_1m$PM_Xuhui ~ ., data = shan_1lm)

Residuals:
Min 1Q Median 3Q Max
-132.122 -4.265 -0.168 4.283 176.560

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -28.365506 4.077590 -6.956 3.94e-12 *xx
PM_Jingan 0.595564 0.013951 42.690 < 2e-16 **x*
PM_US.Post 0.376486 0.015436 24.390 < 2e-16 *¥x*
DEWP -1.029188 0.169471 -6.073 1.35e-09 *x*x*
HUMI 0.285759 0.044870 6.369 2.08e-10 *x*x*
TEMP 1.275880 0.162453 7.854 4.90e-15 *x*x*
Ius -0.007734 0.002023 -3.824 0.000133 *x**
precipitation 0.462137 0.132127 3.498 0.000473 *x:x
Iprec -0.127162 0.038934 -3.266 0.001098 **
Signif. codes: O '**x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68 on 4991 degrees of freedom
Multiple R-squared: 0.9409, Adjusted R-squared: 0.9408
F-statistic: 9933 on 8 and 4991 DF, p-value: < 2.2e-16

The autocorrelation of the residual process shows that the errors are clearly not i.i.d., see Figure 5.
We thus suspect the 1m procedure to be unreliable in this context.

The autocorrelation function decreases pretty fast, and the partial autocorrelation function
suggests that fitting an AR process on the residuals should be an appropriate method in this case.
The automatic fitAR method of slm selects an AR process of order 28. The residuals of this AR
fitting look like white noise, as shown in Figure 6. Consequently, we propose to perform a linear
regression with slm function, using the fitAR method on the complete model.

R> regslm = slm(shan_complete$PM_Xuhui ~ . ,data = shan_complete,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

04 05 08

0.3
L

ACF
Partial ACF

02
1

0.1

0.0
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
i
I
i
T
i
I
i
I
i
I
i
I
i
|
]
I
i
I
i

Lag Lag

Figure 5: Autocorrelation function (left) and partial autocorrelation function (right) of the residuals.

<
o |
=
o |
S
L
&)
< <+
S
o~
o
© ey |
S S g S B g .y
T T T T T T
0 10 20 30 40 50
Lag

Figure 6: Autocorrelation function of the residuals for the AR fitting.

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max
-132.139 -4.256 -0.195 4.279 176.450

Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) -54.859483 143.268399 -0.383 0.701783

PM_Jingan 0.596490 0.028467 20.953 < 2e-16 **¥x*
PM_US.Post 0.375636 0.030869 12.169 < 2e-16 ***

DEWP -1.038941 0.335909 -3.093 0.001982 *x*

HUMI 0.291713 0.093122 3.133 0.001733 x**

PRES 0.025287 0.137533 0.184 0.854123

TEMP 1.305543 0.340999 3.829 0.000129 *x*x

Iws -0.007650 0.005698 -1.343 0.179399
precipitation 0.462885 0.125641 3.684 0.000229 x*x*x*

Iprec -0.125456 0.064652 -1.940 0.052323 .

Signif. codes: O '*¥x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.68
Multiple R-squared: 0.9409
chi2-statistic: 8383 on 9 DF, p-value: < 2.2e-16

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

98

Note that the variables show globally larger p-values than with the 1m procedure, and more variables
have no significant effect than with 1m. After performing a backward selection, we obtain the
following results:

R> shan_slm = shan[1:5000,c(7,8,9,10,11,13)]

R> regslm = slm(shan_slm$PM_Xuhui ~ . , data = shan_slm,
+ method_cov_st = "fitAR", model_selec = -1)
R> summary(regslm)

Call:
"slm(formula = myformula, data = data, x = x, y = y)"

Residuals:
Min 1Q Median 3Q Max
-132.263 -4.341 -0.192 4.315 176.501

Coefficients:
Estimate Std. Error z value Pr(>|z]|)

(Intercept) -29.44924 8.38036 -3.514 0.000441 x*x*x*
PM_Jingan 0.60063 0.02911 20.636 < 2e-16 **x*
PM_US.Post 0.375562 0.03172 11.840 < 2e-16 **x*
DEWP -1.052562 0.34131 -3.084 0.002044 x*x*
HUMI 0.28890 0.09191 3.143 0.001671 **
TEMP 1.30069 0.32435 4.010 6.07e-05 *x*x*
Signif. codes: O '**x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.71
Multiple R-squared: 0.9406
chi2-statistic: 8247 on 5 DF, p-value: < 2.2e-16

The backward selection with slm only keeps 5 variables.

Acknowledgements

The authors are grateful to Anne Philippe (Nantes University) and Aymeric Stamm (CNRS - Nantes
University) for valuable discussions.

Bibliography

D. Andrews. Heteroskedasticity and autocorrelation consistent covariant matrix estimation.

Econometrica, 59(3):817-858, 1991. [p&3, 85, 8]

D. W. Andrews and J. C. Monahan. An improved heteroskedasticity and autocorrelation consistent
covariance matrix estimator. Econometrica: Journal of the Econometric Society, pages 953-966,
1992. [p&5]

J.-P. Baudry, C. Maugis, and B. Michel. Slope heuristics: overview and implementation. Statistics
and Computing, 22(2):455-470, 2012. [p89]

L. Birgé and P. Massart. Minimal penalties for gaussian model selection. Probability theory and
related fields, 138(1-2):33-73, 2007. [p89]

R. C. Bradley. Basic properties of strong mixing conditions. In Dependence in probability and
statistics (Oberwolfach, 1985), volume 11 of Progr. Probab. Statist., pages 165-192. Birkh&user
Boston, Boston, MA, 1986. [p91]

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer Science & Business
Media, 1991. [p86]

E. Caron. Asymptotic distribution of least square estimators for linear models with dependent errors.

Statistics, 53(4):885-902, 2019. [p83, 84, 85, 86, 91, 92]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

99

E. Caron and S. Dede. Asymptotic distribution of least squares estimators for linear models with

dependent errors: Regular designs. Mathematical Methods of Statistics, 27(4):268-293, 2018.

[p3, 91]

E. Caron, J. Dedecker, and B. Michel. Linear regression with stationary errors: the R package slm.

arXiv preprint arXiv:1906.06583, 2019. [p83, 85]

R. Y. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an analysis

using matrix concentration inequalities. Information and Inference: A Journal of the IMA, 1(1):

2-20, 2012. [p90]

F. Comte. Adaptive estimation of the spectrum of a stationary gaussian sequence. Bernoulli, 7(2):

267-298, 2001. [p&3, 88, 89]

J. Dedecker. On the optimality of McLeish’s conditions for the central limit theorem. Comptes
Rendus Mathematique, 353(6):557-561, 2015. [p84]

S. Efromovich. Data-driven efficient estimation of the spectral density. Journal of the American
Statistical Association, 93(442):762-769, 1998. [p83, 87, 8§]

E. J. Hannan. Central limit theorems for time series regression. Zeitschrift fir

Wahrscheinlichkeitstheorie und verwandte Gebiete, 26(2):157-170, 1973. [p&3, 84, 85]

E. Levina and R. Vershynin. Partial estimation of covariance matrices. Probability theory and
related fields, 153(3-4):405-419, 2012. [p90]

X. Liang, S. Li, S. Zhang, H. Huang, and S. X. Chen. Pm2.5 data reliability, consistency, and air
quality assessment in five chinese cities. Journal of Geophysical Research: Atmospheres, 121(17):
10-220, 2016. [p94]

C. Liverani, B. Saussol, and S. Vaienti. A probabilistic approach to intermittency. Ergodic theory

and dynamical systems, 19(3):671-685, 1999. [p91]

P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in
Mathematics. Springer-Verlag Berlin Heidelberg, 2007. [p89]

W. K. Newey and K. D. West. A simple, positive-definite, heteroskedasticity and autocorrelation
consistent covariance matrix. Econometrica, 55:703-708, 1987. [p85]

W. K. Newey and K. D. West. Automatic lag selection in covariance matrix estimation. The Review

of Economic Studies, 61(4):631-653, 1994. [p&5]

M. Rosenblatt. A central limit theorem and a strong mixing condition. Proceedings of the National
Academy of Sciences, 42(1):43-47, 1956. [p91]

W. B. Wu and M. Pourahmadi. Banding sample autocovariance matrices of stationary processes.

Statistica Sinica, pages 1755-1768, 2009. [p83, 87]

H. Xiao and W. B. Wu. Covariance matrix estimation for stationary time series. The Annals of
Statistics, 40(1):466-493, 2012. [p&6]

A. Zeileis. Econometric computing with hc and hac covariance matrix estimators. Journal of
Statistical Software, 11(12), 2004. [p85, 88]

Emmanuel Caron

Laboratoire de Mathématiques d’Avignon EA2151
Avignon Université

74 Rue Louis Pasteur, 84029 Avignon France
emmanuel.caron-parte@univ-avignon.fr

URL: http://ecaron.perso.math.cnrs.fr/

Jérome Dedecker

Laboratoire MAP5 UMR 8145

Université Paris Descartes

45 Rue des Saints-Peres, 75006 Paris France
jerome.dedecker@parisdescartes.fr

URL: http://w3.mi.parisdescartes.fr/~jdedecke/

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:emmanuel.caron-parte@univ-avignon.fr
http://ecaron.perso.math.cnrs.fr/
mailto:jerome.dedecker@parisdescartes.fr
http://w3.mi.parisdescartes.fr/~jdedecke/

CONTRIBUTED RESEARCH ARTICLES 100

Bertrand Michel

Laboratoire de Mathématiques Jean Leray UMR 6629
Ecole Centrale Nantes

1 Rue de la Noé, 44300 Nantes France
bertrand.michel@ec-nantes.fr

URL: http://bertrand.michel.perso.math.cnrs.fr

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:bertrand.michel@ec-nantes.fr
http://bertrand.michel.perso.math.cnrs.fr

CONTRIBUTED RESEARCH ARTICLES 101

exPrior: An R Package for the Formulation

of Ex-Situ Priors
by Falk HefSe, Karina Cucchi, Nura Kawa, and Yoram Rubin

Abstract The exPrior package implements a procedure for formulating informative priors of geo-
statistical properties for a target field site, called ex-situ priors and introduced in Cucchi et al. (2019).
The procedure uses a Bayesian hierarchical model to assimilate multiple types of data coming from
multiple sites considered as similar to the target site. This prior summarizes the information contained
in the data in the form of a probability density function that can be used to better inform further
geostatistical investigations at the site. The formulation of the prior uses ex-situ data, where the data
set can either be gathered by the user or come in the form of a structured database. The package is
designed to be flexible in that regard. For illustration purposes and for easiness of use, the package is
ready to be used with the worldwide hydrogeological parameter database (WWHYPDA) Comunian
and Renard (2009).

Introduction

Characterizing the subsurface of our planet is an important task in fields such as geology, hydrogeology,
and soil sciences. Yet compared to many other fields, the characterization of the subsurface is always
burdened by large uncertainties. These uncertainties are caused by the general lack of data and the
large spatial variability of many subsurface properties. The need to represent this uncertainty has led to
the development of the field of geostatistics, wherein parameter values are treated as random variables
defined by their probability distribution function (PDF). Today, the field of geostatistics has reached a
mature state with many textbooks on the topic (Pyrcz and Deutsch, 2002; Rubin, 2003; Kitanidis, 2008)
and a solid number of software tools being available for practitioners (for an overview, see, e.g. Rubin
et al. (2018)). For the R language (R Core Team, 2014), a solid ecosystem for geostatistical analysis
has evolved in the last years (Slater et al., 2019). Packages like geoR (Ribeiro and Diggle, 2001), gstat
(Pebesma, 2004), georob (Papritz et al., 2014), and RGeostats (MINES ParisTech / ARMINES, 2019)
provide a large collection of tools for geostatistical analysis. Moreover, geostatistical databases can be
conveniently accessed with packages like aqp (Beaudette et al., 2013) and textbooks on geostatistics
are starting to provide all their examples in R code (Diggle and Ribeiro, 2007; Banerjee et al., 2014).

Bayesian statistics provides the most appropriate framework to characterize uncertainty in general
(Hefse et al., 2019a). Bayesian methods are able to combine and assimilate data from disparate sources
and jointly represent the different forms of uncertainty. As a result, Bayesian methods are nowadays
increasingly employed in geostatistics and software implementations come as either standalone
versions (Vrugt et al., 2009; Rubin et al., 2010) or R packages like spBayes (Finley et al., 2015), R-INLA
(Lindgren and Rue, 2015), spTimer (Bakar and Sahu, 2015), BayesNSGP (Risser and Turek, 2020), and
anchoredDistr (Savoy et al., 2017).

Yet, there is no package to date, which would provide such tools with the necessary foundation,
i.e. prior distributions for the modeled quantities. Since the prior is the first step of any Bayesian
analysis, its overall importance can hardly be overstated. Moreover, the ability of prior distributions
to represent available background information in a given field makes them an important source
of information that should not be neglected. Integrating them into a Bayesian workflow should
be straightforward since most packages for Bayesian inference allow users to specify their prior
distributions. In addition, the use of informative prior distributions in this field is easy to motivate.
First, the parameters of geostatistical models are typically not simple convenience parameters but
are part of physically-based partial differential equations. As a result, they correspond to real-world,
physical measurements, making it possible to calibrate their prior distributions against empirical
frequencies. Second, geostatistical models are usually site specific, making it conceptually easy to
discriminate between the case-specific data, which should be used to compute the likelihood, and
background data, which could be used to compute the prior distribution. In geostatistics, they are
often called in-situ and ex-situ data, respectively. Calibrating the prior against ex-situ data only,
therefore guarantees a clear separation between likelihood and prior.

To provide practitioners therefore with a tool for prior derivation, this paper introduces the R
package exPrior (HeBe et al., 2019b). It implements the derivation of ex-situ priors, i.e., statistical
distributions of subsurface properties at a given site from ex-situ data collected at similar sites,
following the Bayesian hierarchical model developed by Cucchi et al. (2019). The implementation
is based on the nimble package (de Valpine et al., 2017) itself based on the BUGS language (Lunn
et al., 2009). The objective of the exPrior package is to provide a ready-to-use software tool for

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=georob
https://CRAN.R-project.org/package=aqp
https://CRAN.R-project.org/package=spBayes
https://CRAN.R-project.org/package=spTimer
https://CRAN.R-project.org/package=BayesNSGP
https://CRAN.R-project.org/package=anchoredDistr
https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=nimble
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 102

assimilating ex-situ data into ex-situ priors. This will encourage the use of informative distributions
for practitioners in geosciences that might not be experts in Bayesian hierarchical models and may find
it therefore difficult to work with them otherwise. The focus of this package is on the Gaussian process
(GP) modelling paradigm. Although criticism exists, it is by far the most widely used paradigm, and a
wide range range of software tools exist for the modeling of GPs (Pebesma, 2004). Functions in exPrior
provide wrappers around nimble functions implementing the Bayesian data assimilation framework.
Non-expert practitioners can therefore apply this method without needing to implement the model
itself. Moreover, the package is tightly integrated with two other R packages that help to expand
its functionality. First, the geostatDB package (Hele et al., 2019¢) provides access to a large data
set from the worldwide hydrogeological parameter database (WWHYPDA) Comunian and Renard
(2009). Second, the siteSimilarity package (Kawa et al., 2020) allows for clustering of similar sites and
therefore facilitates a further reduction of uncertainty.

Due to the background of the authors, the examples and data are drawn from stochastic hydro-
geology, i.e., the field of geostatistics concerned with the statistical characterization of groundwater
systems. Yet, the presented package is not confined to this field, and simply using other data or making
slight revisions to the hierarchical model will quickly make the workflow amendable to other fields of
geostatistics as well.

To familiarize the reader with the package, we start in the following by explaining the workflow
for formulating informative prior distributions, where the prior distribution at an unexplored site is
based on data collected from other sites. After that, we explain the package by detailing its structure
and functionalities. Finally, we present several examples of prior derivation based on synthetic data
and on an established database for hydrogeological parameters (Comunian and Renard, 2009).

Ex-Situ Priors

Let us assume that we want to model a specific geostatistical variable x at a target site Sg. Examples
would be hydraulic conductivity, porosity, or permeability. To account for the unavoidable uncertainty,
this variable should be modeled as a random variable X (Pyrcz and Deutsch, 2002; Rubin, 2003;
Kitanidis, 2008). The simplest way to characterize this variable statistically is through its distribution
p(x). Yet, this would leave out any spatial correlations, so most geostatistical analyses try to account
for them by using spatial random field models, typically a GP (Rasmussen and Williams, 2006; Gelfand
and Schliep, 2016). Since such models are fully defined by their parameter vector 6, the aim of
Bayesian inference is to use available, in-situ data y;,, and derive the posterior distribution over these
parameters p(0|y;,,). This posterior represents a compromise between likelihood p(v;,|0) and the prior
distribution p(6), with the likelihood representing the impact of the in-situ data. This, however, leaves
open the specification of the prior distribution.

By definition, the prior distribution characterizes the knowledge about target parameters before
observing in-situ data y;,,. Therefore, y;,, cannot be used for the definition of the prior (Berger, 2006).
On the other hand, using no data and making the prior distribution as vague as possible seems far
too prudent since this would ignore the wealth of background knowledge which exists for virtually
any geostatistical variable. Such background knowledge can come from data collected at other sites
S;,i € 1...1I (see schematic in Figure 1). To distinguish them from the site-specific, in-situ data y;,,
we use the term ex-situ data yey. Our prior pdf for the parameters at a new site Sy could therefore be
based on these ex-situ data p(6|yex). To determine this p(8|y.x), we propose the use of a dedicated
statistical model (more on this below). By virtue of this model, the transfer of information from known
donor sites S; to a new site Sy is a case of Bayesian prediction

plolyes) = [p(o1O)p(olyer)do. ®

According to Eq. 1, the prior distribution p(6|y.x) for a new site Sy is the posterior predictive
distribution of all S; w.r.t. Sg (see schematic in Figure 1). Mathematically, this means p(60|y.x) is derived
by weighing each single predictive distribution p(8|¢) with its corresponding posterior distribution
p(8|yex) and marginalizing over the parameters 8. Please note the difference between the model for X
at site Sy, say a GP defined by 6, and the model used for the transfer of data between sites defined by
9. Since geostatistical data are hierarchical in nature, this model should be hierarchical too (Kruschke,
2010; Gelfand, 2012; Gelman et al., 2013).

Formulation of the hierarchical model

In geostatistics, a common way to conceptualize a hierarchical ordering of the data is by using two
levels (see schematic in Figure 1). The first level represents the population of the (spatially distributed)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=nimble

CONTRIBUTED RESEARCH ARTICLES 103

J\

ARRRX

7171
/g

0
[
[
I
L
I
[
[
I

Figure 1: Schematic of the transfer of data from a number of donor sites S; to a new site Sy. Measure-
ment locations are denoted by circles. The statistical model used for the transfer is denoted by its
parameter vector 0.

local data y; ; available on every given site S; whereas the second level represents the global population
of all available sites. In such a two-level hierarchical model, this relationship is represented such
that the set of parameters @ is split up into two subsets ¢ = (¢,) for level 1 and 2 respectively. The
hierarchical relationship between these two levels is represented by factorizing their joint probability
through the definition of conditional probability p(¢,7) = p(¢|17)p (7). The general formulation of the
two-level model would then look like the following;:

Yij ~ p(yl$i), (2a)
@i ~ p(eln), (2b)
1~ p(n). (20)

This means that each datum y; ; is drawn from a distribution with parameters ¢;, which are specific
to site S; only. This distribution, therefore, represents the local variability of the data found within
a given site or intra-site variability (Eq. 2a). These local parameters ¢; are, in turn, drawn from a
distribution specified by the global parameters called hyperparameters 1. These hyperparameters,
therefore, represent the global variability between sites or inter-site variability (Eq. 2b).

This general formulation allows to flexibly choose parametric models used for all distributions.
Since p(y|¢;) represents the data, this distribution should fit the empirically observed frequencies of
y. Depending on the geostatistical parameter of interest, a user can use, e.g., the normal, log-normal,
multivariate normal, or truncated normal distributions to model parameter behavior. Choosing the
distributions of the hierarchical model itself, i.e., p(¢|1) and p() is less straightforward and should
reflect of mixture of the domain knowledge and statistical expertise. To exemplify this procedure, let
us look at measurements of hydraulic conductivity. These data are often modeled with a log-normal
distribution (Hoeksema and Kitanidis, 1985), while p(¢|7) can be modeled as a normal distribution
(Gelman et al., 2013). The parametric form of p(1) should be specified as vague priors initially, with
the posteriors being determined by the data y,y. Transforming our data into their log-normal form, as
often done, the resulting hierarchical model would then be

yij~ N(pi, o), (3a)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 104

pi ~ N(a, 1), (3b)

(0%, a,7) ~ p(c?)p(a) p(7). (3)

In this example, we assumed that the variance o2 at each site is the same, making the local and
global parameters identical. This assumption is, of course, a simplification but allows to reduce the
number of parameters to be inferred.

Generation of the ex-situ prior distribution

Once the target variable is specified, and the ex-situ data y.y collected, three steps are necessary to
actually calculate the prior distribution. First, the user has to decide on the parametric model for the
distributions and therefore fully specify the hierarchical model according to Eq. 2. Next, the posterior
distributions of the parameters p(¢, 17|yex) are inferred. In exPrior, this is done using the Markov chain
Monte Carlo (MCMC) implementation of NIMBLE. Finally, the ex-situ prior can be determined as the
posterior predictive distribution (see Equation 1).

To familiarize ourselves with this procedure, let us look at these three steps in more detail.

Specifying a hierarchical model The specification of the hierarchical model in exPrior is done in
BUGS code wrapped within the NIMBLE function nimbleCode(). The results are R objects from the
BUGS models. In NIMBLE, every model is represented as a Directed Acyclic Graph (DAG), where
each declaration in the model is a node which can be either deterministic or stochastic. Nodes are
represented as vertices of a DAG, with edges connecting nodes implying dependence relationships.

l l
jp e @ @ @
-~/\/oz7‘ @
normal

Yij ~ N (i, 0?)

Figure 2: Schematic of the example model showing the statistical model on the left as defined in
see Eq. 3 and the corresponding DAG on the right. The arrows show the hierarchical relationships
between the variables. Both the ex-situ data y; ;, and the site-specific mean y; are drawn from normal
distributions. The hyperparameters 7 = (T, a,¢?) are given initially vague hyperpriors to be updated
later by the ex-situ data.

To exemplify this, let us consider the aforementioned model for the log-hydraulic conductivity.
As mentioned, the data at each site are modeled as being drawn from a normal distribution with
every site having the same variance ¢ but site-specific means. This mean value is again drawn from
a normal distribution. Accordingly, « is the global mean of the local means, and T2 represents the

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 105

global variability of the local means. Since no data are used at this point, the hyperpriors of the
hyperparameters 17 = («, T, o) should be non-informative.

The model is therefore declared with five variables: alpha, tau, sigma, mu, and y. Once compiled,
the model contains multiple nodes: one node for each hyperparameter alpha, tau, and sigma, I nodes
for the site-specific means mu[i], and }_; J; nodes for the site measurements y[i, j]. In this model,
the dependent nodes are the ex-situ data y; ;, the yi; values are estimated from these deterministic y; ;.
Similarly, the « and T are estimated from the y;. In cases where the data are provided to genExPrior()
in the form of moments (more on this later), mu[i] is deterministic, as the site-specific means are
already provided in numeric form and not considered to be realizations from any distribution. The
following pseudocode illustrates how the model is declared:

declaration of a hierarchical model in nimbleCode

1. declare prior distributions for hyperparameters
hyperparameters ~ disn(...)

2. declare distributions for site-specific means
for i in 1:1 {
mu[i] ~ disn(hyperparaml, hyperparam2, ...) # distribution of mean mu at site i

3. declare distributions for measurements
for j in 1:J {
y[i,jl ~ disn(mu[i], hyperparam3, ...)
}

}

This pseudocode model denotes the mathematical formulation of the hierarchical model in
BUGS code, where the parameter for site-specific means y; is mu[i], and site-specific variances
Uiz is sigma2[i]. First, hyperparameters alpha and tau are assigned non-informative hyperpriors.
Next, the code loops through each site and assigns the mean mu[i] a distribution whose parameters are
hyperparameters. Finally, each of the J measurements y[i, j] at each site i is assigned a distribution

with parameters mu[i] and hyperparameters.

The flexibility of this formulation allows the data y.x to be assimilated in a full MCMC hierarchical
model, as explained in the next section.

Estimating posterior values of parameters in the hierarchical model Parameters in the hierarchical
model are estimated from the data provided by the user, using MCMC. Once the model and the vari-
ables are declared, the hierarchical model is compiled using nimble: :compileNimble (). The MCMC
object is configured, built, and compiled using nimble: : configureMCMC(), nimble: :buildMCMC(), and
nimble::compileNimble(), respectively and run using the run method of the compiled object. This
method calculates an MCMC chain, the result of the estimation step. To improve numerical efficiency,
NIMBLE includes a library of algorithms and a compiler that generates C++ for declared models and
functions. Once a model is declared, nimbleCode is generated as C++ code, compiled, and reloaded
into R.

The values in the compiled model are declared with data that are supplied by the user when
running the function. For example, if a user inputs a data frame of measurements, each of the y[i, j]
is defined with its corresponding data point. If a user provides moments, then each of the mu[i]
is defined with its provided value. Once a model is compiled, genExPrior() envokes the MCMC
sampler, which estimates the posterior distributions of the parameters.

Predicting the prior Now that the ex-situ data are assimilated, our hierarchical model is fully
conditioned on all available data. Normally, this would conclude a Bayesian inference. Yet as explained
above, the posterior distribution has to be used to compute the predictive posterior distribution of the
target variable at a new site (see Eq 1). In exPrior, this is simply done by drawing realizations of the
target variable from distributions specified by the hierarchical model and parameterized by values
sampled from the MCMC chains from the previous step. The final predictive posterior distribution is
then estimated using kernel density estimation.

Associated packages

To support the functionality of exPrior, we provide two additional R packages on the GitHub account.
First, the geostatDB package provides real-world data on subsurface measurements, which can

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 106

therefore be used directly for the derivation of informed prior distributions. Second, the siteSimilarity
package allows users to determine a cluster of similar sites to focus on the most relevant data only and
therefore reducing the overall uncertainty. Since both these packages provide benefits independently
of exPrior, they will remain independent for the foreseeable future.

Real-world data: The geostatDB package

In this package, we provide real-world, geostatistical data from the WorldWide HYdrogeological
Parameters DAtabase WWHYPDA (Comunian and Renard, 2009). This database has been designed
to store values of the most important properties of earth materials and has been developed with the
purpose of offering a complement of information in hydrogeological studies where there is a lack of
data. To the best of the authors” knowledge, the WWHYPDA is the largest open-source database of
hydrogeological parameters. Currently it contains a total of 20,523 subsurface measurements of 6
geostatistical parameters spanning 128 sites. A complete description and schematic of the database in
its original form can be found in Comunian and Renard (2009).

Due to its size, as well as to facilitate further additions to the database, we use a dedicated
R package geostatDB to host the data from WWHYPDA. This package is not yet on CRAN, but
the latest release version can be found on https://github.com/GeoStat-Bayesian/geostatDB (Heflle
etal., 2019¢). To exemplify the usage and impact of real-world data, we furnished exPrior with an
example data set on porosity values from sandy aquifers. Its usage is described in Section 2.4.2 below.

geostatDB itself includes the WWHYPDA as an SQLite database, converted from the online
MySQL database. The reasons for using SQLite are efficiency and accessibility. First, both SQL
and SQLite databases can be easily read into R, while maintaining their original structure. SQLite
specifically can be included in R packages without the need for a server, making it accessible to the
user. A downside of this decision is that a user who updates the SQLite database in geostatDB does
so without making changes to the original database, hosted on https://www.wwwhypda.org. Thus,
those who wish to contribute to the WWHYPDA are currently encouraged to do so by submitting data
online.

It is important to note that data quality steps need to be implemented before applying the statistical
algorithm to this database. Figure 3 contains two visualizations that describe the data present in
the WWHYPDA, created in R. This visualization was done using the function getData() from the
geostatDB package. The code can be found in the associated vignette of the package at https:
//github.com/GeoStat-Bayesian/geostatDB/blob/master/vignettes/explore_data.Rmd.

The notion of site similarity: The siteSimilarity package

In order to reduce the uncertainty in the prior distribution as much as possible, it is beneficial to focus
only on data coming from sites which are similar to the one under investigation. It is therefore crucial
to have a sound notion of site similarity. The siteSimilarity package uses hierarchical agglomerative
clustering to categorize sites into clusters based on observable characteristics, such as environment
type or rock type. Using the schematic in Figure 1, only those sites similar to site Sy would be used as
donor sites. Currently, the clustering achieves only a modest reduction in uncertainty when using a
leave-one-out validation. This is caused by the overall limited number of sites, which, after clustering,
get even more reduced. Yet the algorithm already provides the user with a tangible benefit, which is
projected to increase as more and larger data sets with more sites become available.

Examples

Having now formally explained the workflow and associated packages of exPrior, we will illustrate
said workflow with a series of examples. Starting with an easy inference problem, we will then explain
how to use the included data, how to account for autocorrelation, and finally how to use soft data, in
particular bounds, for the inference.

Please note that all examples given in the following only refer to the distribution of the expected
quantity itself, e.g., porosity. This does, however, not mean that the parameters of a GP cannot be
inferred since ¢ and ¢ are nodes in the hierarchical model and can be derived from it. On the other
hand, higher-order statistics, like correlation length or anisotropy, are usually considered homogeneous
across a given site and are consequentially not hierarchical. They can, therefore, be inferred using the
classical estimation procedure.

The following four examples correspond to four vignettes, which can be found on the GitHub
account of the exPrior package at https://github.com/GeoStat-Bayesian/exPrior/blob/master/

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://github.com/GeoStat-Bayesian/geostatDB
https://CRAN.R-project.org/package=exPrior
https://www.wwwhypda.org
https://github.com/GeoStat-Bayesian/geostatDB/blob/master/vignettes/explore_data.Rmd
https://github.com/GeoStat-Bayesian/geostatDB/blob/master/vignettes/explore_data.Rmd
https://CRAN.R-project.org/package=exPrior
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes

CONTRIBUTED RESEARCH ARTICLES 107

Kernel Density Estimates of Porosity in Six Sites
30-
20~
10-

30-
20-
10-

30- site_id
20-

10- s

22: . 100
10- [0

30-
20-
10-

86

density
o
E

00T

TOT

30-
20-
10-

20T

0.0 0.2 0.4
msr_value

Distribution of Hydraulic Conductivity in Different Rock Types

250-
200~
rt_name
150~ Basalt
e Chalk
3
8 Coal
100 - Greensand
Limestone
50-
0-
12 -10 -8 -6 -4 -2

log(K)

Figure 3: The two visualizations are made using the data from the WWHYPDA, obtained using the
function getData() from the geostatDB package. The first figure shows the distribution of porosity
values at several sites, derived using kernel density estimation. The second figure shows a set of
histograms describing the distribution of hydraulic conductivity values for different material types.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes

CONTRIBUTED RESEARCH ARTICLES

108

vignettes.

Input ex-situ data for assimilation

from database or external source

> viewInfo ()
> exdata <- data.frame (val, site_id)
> exdata<- getData(param, site, > exdata <- data.frame(val, site_id,
rockType) type)
v

Determine arange of values to
evaluate the prior

v

> theta <- seq(from, to, by)
v
Compute the ex-situ prior for the] (Optional) Visualize results
targetsite
v : v
> resExPrior <-
genExPrior (exdata exdata,
theta theta)

Figure 4: A flowchart showing the workflow of the user of exPrior. A user first expresses ex-situ
data as an R dataframe. The user then determines the range of values at which to compute a prior
(usually the minimum and maximum values of a parameter). Finally, the user uses genExPrior() to
compute the ex-situ prior for a target site. The user has the options of using built-in plotting functions
to visualize results.

The general workflow, which is followed in all of these examples, is visualized in Figure 4. First, a
user has to represent the ex-situ data in the form of an R dataframe object. These data can be manually
entered, like explained in Section 2.4.1, taken from the included data, like explained in Section 2.4.2, or
being supplied though some additional database. Next, the user would enter as an R vector object
a range of values at which to estimate the prior distribution. This range is typically the minimum
and maximum values of the parameter of interest (for example, porosity takes values between 0 and
1). Finally, the user would input the ex-situ data and specified range into the function genExPrior(),
which outputs a prior and the distributions of hyperparameters of the model. The user has the options
of using built-in plotting functions to visualize results.

Example 1: Using exPrior with synthetic data

To familiarize the reader with this general workflow, let us start with a simple example using only a
few synthetic data (on a log 10 scale) from three arbitrarily labeled sites Sq, Sy, and S3. The source code
for the corresponding vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/
blob/master/vignettes/using_genExPrior.Rmd. The goal is to derive the ex-situ prior for target site
Sp with the following code:

> exdata <- data.frame(val = c(c(-2,-3,-4), c(-2,-1), c(-6,-7,-2,-3)),
+ site_id = c(rep('S1',3), rep('S2',2), rep('S3',4)))
> ex_prior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

By following the above workflow, we started with generating an R dataframe exdata for the
ex-situ data. Then, we entered the range over which to estimate the variable f as an R vector theta.
The actual computation of the ex-situ prior is finally performed by the function genExPrior(). To
investigate the output of this function, exPrior provides a number of plotting functions.

> plotHyperDist(ex_prior)
> plotExPrior(ex_prior)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes
https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/using_genExPrior.Rmd
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/using_genExPrior.Rmd
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 109

0.25
0.8

020 0.10

0.6
0.2

0.15

o variable
[} [} 24 3
EE — PO
— p(6ly)
o1 0.10
: 0.05
0.2
0.05
0.0 0.0
-10-5 0 5 10 0.00.51.01.52.0 0.00.51.01.52.0
o] T o 0.00
-10 -5 0 5 10
— p(@) — p(aly — p(® — p(tly — p(@) — p(aly theta

Figure 5: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ prior computed using the data assimilation framework (blue curve) against
the uninformative prior (black curve).

In this little example, the first command plotHyperDist plots the posterior distributions of the
hyperparameters «, T, and o (see Figure 5 left panel). This captures the impact of the data on the
Bayesian hierarchical model. The second command plotExPrior shows the ex-situ data from the three
sites jointly with the predicted prior distribution for the new site Sy (see Figure 5 right panel). As can
be seen, the essentially flat, uninformative prior got updated into a much sharper, informative prior
representing a much-reduced uncertainty.

Example 2: Using exPrior with real-world data

As introduced above, exPrior provides real-world, geostatistical data from the WWHYPDA. Let us
exemplify its use and impact on the inference by first importing the data on porosity. As above, the
associated vignette can be found at https://github.com/GeoStat-Bayesian/exPrior/blob/master/
vignettes/real_world_data.Rmd.

> load(file="data/df_porosity.rda")

These real-world data are now loaded into the workspace and can be used to compute the ex-situ
prior using the ‘exPrior’ function as describe in above example

> resExPrior = genExPrior(exdata = df_porosity, theta = seq(from=0, to=1, by=0.01))

Here, the range of the theta vector reflects the common-sense intuition that porosity values can
only exist between 0 and 1. This change should also be reflected in the used model

Yij ~ ®(pi,0%,0,1), (4a)
pi ~ N (1), (4b)
(0%,,7) ~ p(o*)p(x)p(7). (4c)

Equation (4a) makes this change clear, such that the data are drawn from a truncated normal
distribution. Since the boundaries are fixed, the hierarchical model itself still has the same number of
parameters, and the other parts of the model remain the same.

After the completion of exPrior, we can visualize again the posteriors of the model as well as the
prior of 6 using plotExPrior.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/real_world_data.Rmd
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/real_world_data.Rmd

CONTRIBUTED RESEARCH ARTICLES 110

10.0 125
3
10.0 900
7.5
75 5
600 iabl
o 50 o o g variable
S - %(e)
5.0 — p(6ly)
. 300 .
25
0.0 0.0 0
0.00.2B.50.75.00 0.00.51.01.52.0 0.00.51.01.52.0
a T o 0
0.00 0.25 0.50 0.75 1.00
— p(@) — p(al — p(® — p(tly — p(@) — p(aly theta

Figure 6: Informative (blue) and non-informative (black) priors computed with genExPrior() using
real-world, ex-situ data of porosity in sand stone.

Compared to Figure 5, the results in Figure 6 show some relevant differences. In particular, the
hyperpriors seen in the left panel of Figure 6 are much more peaked, resulting in near-certainty
about their value. This is due to the large amount of evidence provided by the data. Since the
parameter distributions on the higher levels in a hierarchical model represent the uncertainty about the
parameters on the lower ones, it can be said that the results of this inference capture the uncertainty of
porosity in sandstone with high certainty. This means that the prior distribution in the right panel of
Figure 6 is very close to the statistical uncertainty for the hypothetical population of all porosity values
in sandstone aquifers in general. As can be seen in this figure, this distribution is strongly peaked
between 0.2 and 0.3. Using this prior therefore provides a practitioner with a sound foundation for the
geostatistical inference of the in-situ porosity.

Example 3: Accounting for spatial autocorrelation in ex-situ data

In most cases, ex-situ data used in the analysis are spatially correlated since measurements are usually
collected in a clustered way (Rubin, 2003; Pyrcz and Deutsch, 2002). The data assimilation model
outlined in 2.2.1 can, in principle, account for patterns of spatial variability by using multivariate
distributions as site-specific distributions. As above, the associated vignette can be found at https:
//github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/spatial_correlation.Rmd. To
account for this spatial correlation, let us use a revised version of the hierarchical model from Equation

)
Yij ~ N,), (5a)
pi ~ N (e, 7), (5b)
Z:ozexp<—%), (5¢)
(02 A, a,7) ~ p(a®)p(A)p(a)p(T). (5d)

The relevant adjustment can be seen in Equation (5a), where the data are no longer modeled to
be drawn from a univariate normal distribution but a multivariate distribution instead. The main
difference is the replacement of the variance o2 by the covariance X. In our example, this covariance is
modeled as an isotropic exponentially decaying function, with a characteristic length scale A. This
function means that measurements being taken at large distances / are essentially independent,
and no relevant difference to the simple univariate model from Equation (3) would exist. However,
measurements taken at distances & similar or smaller to A exhibit substantial correlation and must be

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/spatial_correlation.Rmd
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/spatial_correlation.Rmd

CONTRIBUTED RESEARCH ARTICLES

111

P Count P Count
0.4 N
1C 0.3 0
- p(O) - p(O)
03 -75 — poly) -75 — ploly)
0.2
02 -5.(5
Site Site
0.1
s1 s1
0.1 -25 o 25 s2
s3 s3
0.0 -0.0 0.0 -0.0
10 5 0 5 10 -10 5 0 5 10

] (]

Figure 7: Informative (blue) and non-informative (black) priors computed with genExPrior (). The
left panel shows the prior without accounting for spatial correlation, whereas the right panel shows
the prior accounting for spatial correlation (right panel). The colored bars represent the ex-situ data
from the three different sites.

assimilated accordingly. Failing to do so would result in an underestimation of the actual uncertainty,
a phenomenon which is known in the literature as pseudoreplication (Hurlbert, 1984; Legendre, 1993).
Due to the additional parameter, the model has now 4 hyperparameters, which need to be inferred.

To exemplify the workflow with this revised hierarchical model, let us use synthetic data coming
again from three different sites only. To generate data with spatial correlation, we used the gstat
package. These synthetic data were then transformed to have different mean values for each site.

> set.seed(1)

> xy <- data.frame("x" = sample(seq(0.00,1.00,0.01),22),
+ "y" = sample(seq(0.00,1.00,0.01),22))
> model = vgm(psill=1, range=1, model="Exp')
>
>

g.dummy <- gstat(formula=z~1, locations=~x+y, dummy=TRUE, beta=1, model=model, nmax=20)

exdata_spatial <- predict(g.dummy, newdata=xy, nsim=1)

To adapt this data frame from gstat to the format needed for exPrior, we have to change one of the
column names and add the site’s id.

colnames(exdata_spatial)[3] <- "val”

exdata_spatial\$site_id = c(rep(”S1", 10), rep("S2", 5), rep("S3", 7))
exdata_spatial[1:10, 'val'] <- exdata_spatiall 1:10, 'val'l - 3
exdata_spatial[11:15, 'val'] <- exdata_spatial[11:15, 'val']l - 2.5
exdata_spatial[16:22, 'val'] <- exdata_spatiall[16:22, 'val']l - 3.5

V V V V V

With these data, we can now generate the ex-situ prior distribution. To tell exPrior to account for
the spatial correlation in the data, we have to toggle the spatialCoordinates flag in the genExPrior()
function to TRUE.

> resExPrior = genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1),
+ spatialCoordinates = TRUE)
> plotExPrior(resExPrior, plotExData = TRUE)

To compare the effects of accounting for spatial correlation, we provide plots of the ex-situ prior
with spatialCoordinates being both set to FALSE and TRUE (see the left and right panel in Figure 7,
respectively). As can be seen, both priors look overall similar in shape. The main difference is that
the latter shows a somewhat increased uncertainty, i.e., a wider variance, which can be seen by the
increased mode of the distribution. The fact that the more realistic model produces more uncertain
results may seem counterintuitive at first. However, the aim of statistical inference is not to reduce the
uncertainty as much as possible but to correctly capture the uncertainty in the used data and the model.
As mentioned above, this problem of not accounting for possible correlations between measurements
is called pseudoreplication and can have serious consequences by leading to overconfident statistical
analyses.

Example 4: Assimilating Multiple Data Types

As mentioned above, exPrior is written in a flexible manner, such that it can assimilate data that come
in the form of measurements, bounds, or moments (see schematic in Figure 2). To exemplify this

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=gstat
https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 112

1.00
0.15
0.3
0.3
0.75
0.2 0.10
0.2 .
a a o 050 o variable
B =}
EE — PO
— p(6ly)
0.1 0.1
0.25 005
0.0 0.004
0.0
-10-5 0 5 10 0.00.51.01.52.0 0.00.51.01.52.0
o] T o 0.00
-10 -5 0 5 10
— p(@) — p(aly — p@® — p(tly, — p(@) — p(al theta

Figure 8: The left panel shows the distributions of the hyperparameters alpha, tau, and sigma. The
right panel shows ex-situ data from three synthetic sites S1, Sp, and S3. The blue curve is the ex-situ
prior computed using the data assimilation framework, while the black curve is the uninformative
prior.

flexibility, let us use in this example synthetic data from three sites labeled S1, S2, and S3. From Site
51, we have data in the form of bounds, where the minimum value of a hydrogeological property
of S1 is 2, and its maximum value is 4. Site S2 has data in the form of moments, where the first
moment, or site mean, is 2, while the second moment, or site variance, is 0.1. Finally, site S3 has
three measurements. Again, the associated vignette can be found at https://github.com/GeoStat-
Bayesian/exPrior/blob/master/vignettes/multi_type_data.Rmd. The code below shows how to
format the data in R such that it can be read into genExPrior().

> exdata_S1 <- data.frame(val=c(2,4), site_id=rep('S1',2),

+ type=c('bound.min', 'bound.max"))

> exdata_S2 <- data.frame(val=c(2,0.1), site_id=rep('S2',2),
+ type=c('moment.1', 'moment.2'))

> exdata_S3 <- data.frame(val=c(2,3,4), site_id=rep('S3"',3),
+ type=c('meas', 'meas', 'meas'))

> exdata <- rbind(exdata_S1, exdata_S2, exdata_S3)

As in previous examples, the data frame exdata_multitype as well as the vector theta can be
input directly into genExPrior() as such

> resExPrior <- genExPrior(exdata = exdata, theta = seq(from=-10, to=10, by=0.1))

Finally, we can visualize the results resExPrior again using the plotHyperDist and plotExPrior
functions.

> plotHyperDist(resExPrior)
> plotExPrior(resExPrior)

The resulting hyperparameters and ex-situ prior distributions look very similar to the simple
example from Section 2.4.1 (compare Figure 5 to Figure 8). This comparison shows that data in the form

of bounds and moments can have a similar impact on the inference and how they can be assimilated
by exPrior.

Summary

In this paper, we have introduced the R package exPrior, which contains methods for assimilating
ex-situ data to generate prior probabilities for geostatistical parameters. We explain the formulation

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/multi_type_data.Rmd
https://github.com/GeoStat-Bayesian/exPrior/blob/master/vignettes/multi_type_data.Rmd
https://CRAN.R-project.org/package=exPrior

CONTRIBUTED RESEARCH ARTICLES 113

of a prior distribution as a Bayesian Hierarchical Model (Section 2.2.1) and its implementation using
NIMBLE, an R package created for efficient hierarchical modeling. We illustrate the model through a
number of examples where exPrior can be used, including univariate and multivariate models (Section
2.4.3), as well as the assimilation of multiple data types (2.4.4). The package also contains data from
the WWHYPDA, an open-source, hydrogeological database that provides valuable information for
hydrogeological modeling. The goal of this package is to provide methods to facilitate geostatistical
modeling, as well as to encourage the open-source and open-data movements between scientists.

Acknowledgements

This work has been partly funded by the German Research Foundation (DFG) under grant HE 7028/2-
1, "What we talk about when we talk about uncertainty." Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the DFG.

Bibliography

K. S. Bakar and S. K. Sahu. spTimer: Spatio-Temporal Bayesian Modeling Using R. Journal of Statistical
Software, 63(15):32, 2015. ISSN 1548-7660. doi: 10.18637 /jss.v063.i15. [p101]

S. Banerjee, B. P. Carlin, and A. E. Gelfand. Hierarchical Modeling and Analysis for Spatial Data. Chapman
& Hall/CRC Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, 2nd
edition, Sep 2014. [p101]

D. Beaudette, P. Roudier, and A. O’Geen. Algorithms for quantitative pedology: A toolkit for soil
scientists. Computers & Geosciences, 52:258 — 268, 2013. ISSN 0098-3004. doi: https:/ /doi.org/10.
1016/j.cageo.2012.10.020. [p101]

J. Berger. The Case for Objective Bayesian Analysis. Bayesian Analysis, 1(3):385-402, 2006. ISSN
1931-6690. doi: 10.1214/06-BA115. [p102]

A. Comunian and P. Renard. Introducing wwhypda: a world-wide collaborative hydrogeological
parameters database. Hydrogeology Journal, 17(2):481-489, 2009. ISSN 1435-0157. doi: 10.1007/510040-
008-0387-x. [p101, 102, 106]

K. Cucchi, F. He3e, N. Kawa, C. Wang, and Y. Rubin. Ex-situ priors: A Bayesian hierarchical framework
for defining informative prior distributions in hydrogeology. Advances in Water Resources, 126:65 —
78,2019. ISSN 0309-1708. doi: 10.1016/j.advwatres.2019.02.003. [p101]

P. de Valpine, D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. T. Lang, and R. Bodik. Programming
With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE. Journal
of Computational and Graphical Statistics, 26(2):403—413, 2017. doi: 10.1080/10618600.2016.1172487.

[p101]
P.]. Diggle and P.]. Ribeiro. Model-based Geostatistics. Springer, 1rst edition, 2007. [p101]

A. O. Finley, S. Banerjee, and A. E. Gelfand. spBayes for Large Univariate and Multivariate Point-
Referenced Spatio-Temporal Data Models. Journal of Statistical Software, 63(13):1-28, 2015. ISSN
1548-7660. doi: 10.18637 /jss.v063.i13. [p101]

A. E. Gelfand. Hierarchical modeling for spatial data problems. Spatial Statistics, 1(Supplement C):30 —
39, 2012. ISSN 2211-6753. doi: 10.1016/j.spasta.2012.02.005. [p102]

A.E. Gelfand and E. M. Schliep. Spatial statistics and Gaussian processes: A beautiful marriage. Spatial
Statistics, 18(A, SI):86-104, Nov 2016. ISSN 2211-6753. doi: 10.1016/j.spasta.2016.03.006. [p102]

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis.
Chapman & Hall/CRC Texts in Statistical Science (Book 106). Chapman and Hall/CRC, 3 edition,
2013. [p102, 103]

F. Hele, A. Comunian, and S. Attinger. What we talk about when we talk about uncertainty. Toward a
unified, data-driven framework for uncertainty characterization in hydrogeology. Frontiers in Earth
Science, 2019a. doi: 10.3389/feart.2019.00118. [p101]

F. Hef3e, K. Cucchi, and N. Kawa. Geostat-bayesian/exprior: First release, Nov. 2019b. URL https:
//doi.org/10.5281/zenodo. 3544517. [p101]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=exPrior
https://doi.org/10.5281/zenodo.3544517
https://doi.org/10.5281/zenodo.3544517

CONTRIBUTED RESEARCH ARTICLES 114

F. Hefle, K. Cucchi, and N. Kawa. Geostat-bayesian/geostatdb: First release, Oct. 2019c. URL
https://doi.org/10.5281/zenodo.3473022. [p102, 106]

R. J. Hoeksema and P. K. Kitanidis. Analysis of the spatial structure of properties of selected aquifers.
Water Resources Research, 21(4):563-572, 1985. ISSN 1944-7973. doi: 10.1029/WR021i004p00563.

[p103]

S. H. Hurlbert. Pseudoreplication and the design of ecological field experiments. Ecological Monographs,
54(2):187-211, 1984. ISSN 00129615. URL http://www. jstor.org/stable/1942661. [p111]

N. Kawa, K. Cucchi, and F. Hefle. Geostat-bayesian/sitesimilarity: First release, Sept. 2020. URL
https://doi.org/10.5281/zenodo.4059706. [p102]

P. Kitanidis. Introduction to Geostatistics: Applications in Hydrogeology. Cambridge University Press,
2008. [p101, 102]

J. K. Kruschke. Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press, 2010. [p102]

P. Legendre. Spatial Autocorrelation: Trouble or New Paradigm? Ecology, 74(6):1659-1673, Sep 1993.
ISSN 0012-9658. doi: {10.2307/1939924}. [p111]

F. Lindgren and H. Rue. Bayesian Spatial Modelling with R-INLA. Journal of Statistical Software, 63(19):
1-25, Jan 2015. ISSN 1548-7660. doi: 10.18637 /jss.v063.i19. [p101]

D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best. The bugs project: Evolution, critique and future
directions. Statistics in Medicine, 28(25):3049-3067, 2009. ISSN 1097-0258. doi: 10.1002/sim.3680.

[p101]

MINES ParisTech / ARMINES. RGeostats: The Geostatistical R Package. Free download from:
http://cg.ensmp.fr/rgeostats, 2019. [p101]

A. Papritz, C. Schwierz, and M. Papritz. georob. https://CRAN.R-project.org/package=georob, 2014.
[p101]

E.]. Pebesma. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7):683 —
691, 2004. ISSN 0098-3004. doi: 10.1016/j.cageo.2004.03.012. [p101, 102]

M. J. Pyrcz and C. V. Deutsch. Geostatistical Reservoir Modeling. Oxford University Press, 2002. [p101,
102, 110]

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014. URL http://www.R-project.org/. [p101]

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006. [p102]
P.]. Ribeiro and P. J. Diggle. geoR: a package for geostatistical analysis. R-News, 1:15-18, 2001. [p101]

M. D. Risser and D. Turek. Bayesian inference for high-dimensional nonstationary gaussian processes,
2020. [p101]

Y. Rubin. Applied Stochastic Hydrogeology. Oxford University Press, USA, 2003. [p101, 102, 110]

Y. Rubin, X. Chen, H. Murakami, and M. Hahn. A Bayesian approach for inverse modeling, data
assimilation, and conditional simulation of spatial random fields. Water Resources Research, 46, Oct 6
2010. ISSN 0043-1397. doi: {10.1029/2009WR008799}. [p101]

Y. Rubin, C.-E. Chang, J. Chen, K. Cucchi, B. Harken, F. He8e, and H. Savoy. Stochastic hydrogeology’s
biggest hurdles analyzed and its big blind spot. Hydrology and Earth System Sciences Discussions,
2018:1-36, 2018. doi: 10.5194/hess-2018-290. [p101]

H. Savoy, F. HefSe, and Y. Rubin. anchoredDistr: a Package for the Bayesian Inversion of Geostatistical
Parameters with Multi-type and Multi-scale Data. The R Journal, 9(2):6-17,2017. doi: 10.32614/R]J-
2017-034. [p101]

L. J. Slater, G. Thirel, S. Harrigan, O. Delaigue, A. Hurley, A. Khouakhi, I. Prosdocimi, C. Vitolo,
and K. Smith. Using R in hydrology: a review of recent developments and future directions.
Hydrology and Earth System Sciences, 23(7):2939-2963, 2019. doi: 10.5194/hess-23-2939-2019. URL
https://www.hydrol-earth-syst-sci.net/23/2939/2019/. [p101]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.5281/zenodo.3473022
http://www.jstor.org/stable/1942661
https://doi.org/10.5281/zenodo.4059706
http://cg.ensmp.fr/rgeostats
http://www.R-project.org/
https://www.hydrol-earth-syst-sci.net/23/2939/2019/

CONTRIBUTED RESEARCH ARTICLES 115

J. Vrugt, C. ter Braak, H. Gupta, and B. Robinson. Equifinality of formal (dream) and informal (glue)
bayesian approaches in hydrologic modeling? Stochastic Environmental Research and Risk Assessment,
23(7):1011-1026, 2009. ISSN 1436-3240. doi: 10.1007/s00477-008-0274-y. [p101]

Falk HefSe

Institute of Earth and Environmental Sciences
University Potsdam

Potsdam, Germany

ORCiD: 0000-0002-2547-8102
falk.hesse@ufz.de

Karina Cucchi

Department of Civil and Environmental Engineering
University of California, Berkeley

Berkeley, CA, USA

karina.cucchi@berkeley.edu

Nura Kawa

Department of Statistics
University of California, Berkeley
Berkeley, CA, USA

currently at:

Leuven Statistics Research Centre,
KU Leuven,

Leuven, Belgium
nkawa@berkeley.edu

Yoram Rubin

Department of Civil and Environmental Engineering
University of California, Berkeley

Berkeley, CA, USA

rubin@ce.berkeley.edu

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:falk.hesse@ufz.de
mailto:karina.cucchi@berkeley.edu
mailto:nkawa@berkeley.edu
mailto:rubin@ce.berkeley.edu

CONTRIBUTED RESEARCH ARTICLES 116

penPHcure: Variable Selection in
Proportional Hazards Cure Model with
Time-Varying Covariates

by Alessandro Beretta and Cédric Heuchenne

Abstract We describe the penPHcure R package, which implements the semiparametric proportional-
hazards (PH) cure model of Sy and Taylor (2000) extended to time-varying covariates and the variable
selection technique based on its SCAD-penalized likelihood proposed by Beretta and Heuchenne
(2019a). In survival analysis, cure models are a useful tool when a fraction of the population is likely to
be immune from the event of interest. They can separate the effects of certain factors on the probability
of being susceptible and on the time until the occurrence of the event. Moreover, the penPHcure
package allows the user to simulate data from a PH cure model, where the event-times are generated
on a continuous scale from a piecewise exponential distribution conditional on time-varying covariates,
with a method similar to Hendry (2014). We present the results of a simulation study to assess the
finite sample performance of the methodology and illustrate the functionalities of the penPHcure
package using criminal recidivism data.

Introduction

In contrast to other statistical methods, survival analysis models are designed to model the time to
an event of interest (e.g., death or occurrence of a disease in medical studies). A typical feature of
time-to-event data is the presence of right censoring, an incomplete information problem that arises
when a subject is lost to follow-up or does not experience the event before the end of the study. In
these cases, it is unknown whether the subject will eventually experience the event and when it will
occur, given that it can occur. The most common assumption of standard survival analysis models is
that the whole population will sooner or later experience the event of interest. However, in practice,
this may not be the case because a fraction of the population may be immune (i.e., not susceptible) to
this event. Cure models, also known as split population duration models or limited-failure population models,
were developed to handle this kind of situation. They allow us to investigate the effects of some
covariates (e.g., type of treatment, stage of the tumor, sex, or age) on the probability to be susceptible
to the event of interest (i.e., incidence), and on the survival time conditional on being susceptible (i.e.,
latency).

Originally, cure models were introduced in the medical literature by Boag (1949) and Berkson
and Gage (1952), but they have been used in several other disciplines during the years. In reliability
engineering, Meeker (1987) investigates the failure of solid-state electronic components (e.g., integrated
circuits). In social science, Schmidt and Witte (1989) investigate the timing of return to prison for a
sample of prison releases, and they use it to make predictions of whether or not individuals return to
prison. In finance, Cole and Gunther (1995) analyze the determinants of commercial bank failures in
the United States; in credit scoring, Tong et al. (2012) predict defaults on a portfolio of UK personal
loans. In political science, Svolik (2008) studies the likelihood that a democracy consolidates and the
timing of authoritarian reversals in democracies that are not consolidated. In marketing, Polo et al.
(2011) investigate the drivers of customer retention in a liberalizing market, using data for a sample of
650 consumers in the Spanish mobile phone industry. In the literature, several variants of cure models
have been proposed (see Amico and Van Keilegom (2018) for a comprehensive survey), which belong
to two main families: mixture cure models and promotion time cure models.

In this article, we present the penPHcure package (Beretta and Heuchenne, 2019b), which im-
plements the semiparametric proportional-hazards (PH) mixture cure model of Sy and Taylor (2000)
extended to time-varying covariates, where the incidence and latency distributions are modeled by a
logistic regression and a Cox’s PH model (Cox, 1972), respectively. The penPHcure package contains
two main functions: penpHcure, to estimate the regression coefficients, their confidence intervals using
the basic/percentile bootstrap method, and to perform variable selection using the SCAD-penalized
likelihood technique proposed by Beretta and Heuchenne (2019a); and penpHcure.simulate to simu-
late data from a PH cure model, where the event-times are generated on a continuous scale from a
piecewise exponential distribution conditional on time-varying covariates, using a method similar to
the one described in Hendry (2014).

At the time of writing this article, we are unaware of other R packages for estimation of semi-
parametric PH mixture cure models with time-varying covariates and, above all, that enable the
user to perform variable selection. In the context of cure models for right-censored data, available

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=penPHcure

CONTRIBUTED RESEARCH ARTICLES 117

R packages include: the flexsurvcure package (Amdahl, 2019) for estimation of parametric mixture
and non-mixture cure models with time-invariant covariates using time-to-event distributions from
the flexsurv package (Jackson, 2016); the nltm package (Garibotti et al., 2019) for estimation of the
semiparametric PH cure model with time-invariant covariates of Tsodikov et al. (2003), as well as other
nonlinear transformation models for analyzing survival data using the method of Tsodikov (2003);
and the smcure package (Cai et al., 2012) for estimation of the semiparametric PH cure model and the
accelerated failure time cure model with time-invariant covariates and the spduration package (Beger
et al.,, 2018) that implements a parametric cure model with time-varying covariates using Weibull
and Log-Logistic latency distributions. Compared to spduration, the penPHcure package has some
advantages: the latency distribution is modeled by a more flexible semiparametric Cox’s PH model;
the response variable and the time to the event of interest are continuous; and, above all, it allows
the user to simultaneously select variables and estimate their parameters using a variable selection
technique based on SCAD penalties.

The remainder of this article is structured as follows:

* Methodology. We present the PH cure model with time-varying covariates implemented in the
penPHcure function when the argument pen. type is set equal to "none"” (default);

— Variable selection. We present the variable selection technique based on SCAD penalties
implemented in the penPHcure function when pen. type=="SCAD";

— Data generation. We describe the algorithm implemented in the penPHcure.simulate
function, which generates data from a PH cure model with time-varying covariates.

o Simulation study. We analyze the finite sample performance of the PH cure model estimates and
its variable selection technique implemented in the penPHcure function.

» An application to Criminal Recidivism data. We provide an example of practical use of the
penPHcure function to analyze a real data set.

Methodology

Let Y be a Bernoulli random variable indicating whether an individual is susceptible (Y = 1) or
immune (Y = 0) to the event of interest with probability p = P(Y = 1). Let T be the time to event,
defined only when Y = 1. Assuming that a fraction of the population is immune to the event of
interest, the marginal survival function of T is defined as

S(t) = (1—p)+pS(tY =1),

where p is the incidence (i.e., probability of being susceptible) and S(¢|Y = 1) is the latency (i.e.,
survival function conditional on being susceptible).

The incidence is modeled by a logistic regression model:

__epxb)
T 1+exp(x'b)’

where x is a vector of time-fixed covariates (including the intercept) and b a vector of unknown
coefficients. Whereas the latency is modeled by a Cox’s PH model:

S(HY = 1,2(t)) = exp (7 /ot ho(u)ez’(u)ﬁdu) ,

where z(t) is a vector of time-varying covariates (we denote by z(t) the full history of the covariates up
to time f), B is a vector of unknown coefficients, and hy(t) is an arbitrary baseline conditional hazard
function.

Let O = {(t;,0;,2;(t;),x;);i = 1,...,n} denote the observed data, where ¢; is the event/censoring
time and ¢; is the censoring indicator, which takes value 1 if ¢; is uncensored and 0 otherwise. Since
we know that y; = 1 when §; = 1, but y; is unobserved when J; = 0, we can estimate the unknown
parameters 6 = (b, B, ho) using the Expectation-Maximization (EM) algorithm (Dempster et al., 1977).
The complete-data likelihood can be written as

n (5, u Yi
¢ (b,B0) = T Tp(x [t plo)] = x T T [po(t)e 6] y[])
i=1

i=1

L1(b) L2 (B ho)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=flexsurvcure
https://CRAN.R-project.org/package=flexsurv
https://CRAN.R-project.org/package=nltm
https://CRAN.R-project.org/package=smcure
https://CRAN.R-project.org/package=spduration

CONTRIBUTED RESEARCH ARTICLES 118

i.e., the product between the incidence component L; depending on a set of time-fixed covariates x;,
and the latency component L, depending on a set of time-varying covariates z/(t).

Given some starting values 09, the m-th iteration of the EM algorithm consists of two steps:

E step. Compute the expectation of the complete-data likelihood with respect to the conditional

distribution of the y;’s given the current parameter estimates 9"V and the observed data O.
This expectation is obtained by replacing the y;’s in (1) by their expectation

p(i)S(EY =1,2(t))
1= pOa) +pOa)SHY = 1,2(1))

Note that we removed the dependence of the theoretical functions on the estimated parameters
to simplify the notation.

A = e[,

8"V, 0] =5+ (1-5)

M step. Maximize the expected complete-data likelihood with respect to b, B, and the function hy.

Given (™ = {ngm), e nﬁ,m)}, the incidence component L; in (1) is maximized using the
Newton-Raphson method as in the classical logistic regression model. Whereas the latency
component L; in (1) is maximized using a profile likelihood approach. The latter involves two
steps: (i) the baseline conditional hazard function is estimated nonparametrically by

o 1
ho(t) = - ,
(tg) —)) Tiex, m" eI

fort e (f(];l), t(]>], (2)

where t (1) < ... < t() are the k ordered event times and R; is the risk set at t(_].) (i.e., the set of all

individuals who did not experience the event of interest and have not been censored just prior
to time £); and then (ii) the function hg in L; is replaced by its estimator given in (2) to obtain
the following partial likelihood, which does not depend on the function kg anymore,

k eZilt;)B

h(ol") -1

=1 Ticr, m" e)P

®)

Finally, the latency component is estimated by maximizing (3) with respect to . In case of tied
event-times, (2) and (3) can be rewritten using the Breslow (1974) or Efron (1977) approximation
as in the standard Cox’s PH model.

The EM algorithm terminates whenever Hf)(m) —pmY H2 < eand Hi}<m> - ﬁ(
€ is a tolerance threshold (by default 10~°).

-1
")Hz < €, where

Variable selection

When the number of available covariates is large, fitting all possible subsets to find the most relevant
covariates would be too time consuming. Beretta and Heuchenne (2019a) proposed a regularization
method based on the maximization of a penalized version of the complete-data log-likelihood

n+1 q2
(€ (2, A2) = 4 (0) = 1 pa, ([6]) +£2 (B ho) = L. pa (1B,
j=2 1

e (b;Ar) & (BhoiAz)

where ¢ denotes a log-likelihood and p,(.) a SCAD penalty function, which role is to shrink the
small coefficients toward zero. We assume that the g1 and g, covariates in the incidence and latency
component, respectively, have been standardized, such that the coefficients in b and B are on the same
scale. The Smoothly Clipped Absolute Deviation (SCAD) penalty function (Fan and Li, 2001) is given

by
Alzﬁj\,] 2 if |B;] < A
Z1)A2—(|Bi|—ar)
pa(lBil) = % if A < [Bj] <al,
(e)X if |8 > a)

for some a > 2 and A > 0. As explained by Fan and Li (2001, 2002) in the context of linear regression,
generalized linear models, Cox’s PH model, and frailty models, the SCAD estimator has three desir-
able properties: unbiasedness (do not penalize to much large coefficients), sparsity, and continuity.
Moreover, with a proper choice of the tuning parameters (A, a), it also possesses what is known as
the “oracle property”, meaning that the SCAD estimator is asymptotically equivalent to the oracle

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 119

estimator (i.e., an estimator with only the relevant variables with nonzero coefficients).

For fixed values of the tuning parameters (A1, Ay, a1, a,), estimates of 6 can be obtained using an
EM algorithm close to the one described in the previous section. The only difference lies in the M-step.
Given that the penalized log-likelihoods ¢} (b; A1) and 75 (B; A;), where 75 (B; A,) is the logarithm of
(3), are non-concave and non-differentiable at the origin, b and § are now estimated using the MM
algorithm of Hunter and Li (2005) based on a perturbed Local Quadratic Approximation (LQA) of the
penalty function. By default, when the argument pen. type of the function penPHcure is set equal to
"SCAD", the initial values for b and f are vectors with all elements equal to zero. Otherwise, the user
can specify other values (e.g., the estimated coefficients of the model with all covariates) using the
argument SV.

Regarding the choice of the tuning parameters, following the suggestion of Fan and Li (2001), we

keep a1 = a; = 3.7, and given a set of possible values for (A1, Ay), we select the ones that minimize
the following Akaike (AIC) or Bayesian (BIC) Information Criteria:

AIC (A1, Ap) = =20 (), A,) +2v; and

BIC (/\1,)\2) = -2/ (é)\ll)\z) + 11’1(71)1/,

where /¢ ((:) A\,) i the observed data log-likelihood evaluated at the penalized MLE 0 M), and v is the
number of nonzero coefficients, identified as the number of coefficients with an absolute value greater
than a given threshold (by default 10~°).

Data generation

Let S = {s1,5,...,57} be a partition of the time scale forming J + 1 intervals (0,s1], (s1,52], ..., (S7—1,57],
(s7,00]. Define a vector of time-varying covariates piecewise constant in each interval: z(t) = z i
for t € (sj_1,s;]. Consider a transformation g, such that g(0) = 0, g(t) is strictly increasing for
t>0,and g*1 (t) is differentiable. In the implementation of the penPHcure.simulate function, we use
g(t) = t1/7, where the parameter - can be specified by the user via the argument gamma, which by
default is equal to 1. According to Hendry (2014), if we generate a random variable V as a piecewise
exponential distribution with density function given by

j—1

fv(t) = HeXp{*/\z 7 (s) — g (s} exp{ A lt =7 (si-1)]}, fort € (g7 (sj-1),87 (5))],

where A; = exp(z}ﬁ) is the constant hazard in the interval (¢! (sj,l),g_l (sj)], then g(V) follows
a Cox’s PH model with time-varying covariates with a baseline hazard function given by hy(t) =
% [¢71(t)]. This method is part of the algorithm implemented in the penPHcure.simulate function
to simulate data from a PH cure model with time-varying covariates (see Table 1 for a detailed
description).

Require: N, sample size; S, partition of the time scale; g(t), variable transformation; b,
incidence coefficients; B, latency coefficients.
fori=1,..,Ndo
1. Generate a vector x; from an arbitrary distribution;
2. Generate y; from a Bernoulli distribution with probability p(x;);
3. Generate z; = {z;1,2;>,...z;;} from an arbitrary distribution;
4. Generate v; from a piecewise exponential distribution with density fy (t);
5. Compute w; = g(v;) ;
6. Generate c; from an arbitrary distribution;
if y; = 0 or w; > c; then

ti=c¢j;
(51' =0;
else
ti = wj;
51' =1
end if
end for

return {(#;,0;,2;,x);i =1,..,N}
Table 1: Data generation algorithm: PH cure model with time-varying covariates

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 120

Simulation study

In this section, we present the results of a simulation study conducted to assess the finite sample
performance of the PH cure model estimation and its variable selection technique implemented in
the penPHcure function. The event-times follow a Cox’s PH model with baseline hazard function
ho(t) = 3t? and 8 time-varying covariates. These covariates are constant within | = 30 equally-spaced
intervals (0,s1], (s1,52], ..., (5j-1,5]], where s; = 0.2 and s; = 6. They follow a multivariate normal
distribution zjj ~ N(0,X), where Zpg = 0.5"’*‘7', for p,q = 1, ...,8. The censoring times follow an
exponential distribution truncated above 6 and with parameter A¢. The cure indicators are generated
from a logistic regression model with 8 time-fixed covariates that follow a multivariate normal
distribution x; ~ N(0, Z), where £, ; = 0.5/P=4l, for p,q = 1, .., 8. Finally, the regression coefficients
vectors are set equal to B, = (—0.7,0,1,0,—0.5,0.75,0,0)" and by = (by, 15,0, —0.75,0, —1.5,0,0.75,0)’.

We consider 6 simulation settings, with different levels of censoring and proportions of non-
susceptible individuals (expressed as a fraction of the sample size), depending on different values
of bp and Ac (see Table 2). For each of these settings, we generated 500 replications using the
penPHcure. simulate function for different sample sizes N = {250,500,1000}. Then, for all simulated
datasets, we use the penPHcure function to (i) fit a standard PH cure model with all covariates (FULL),
(ii) fit a standard PH cure model with the covariates associated to the non-zero coefficients only (ORA-
CLE), and (iii) to perform variable selection using the regularization method with SCAD penalties and
tuning parameters chosen according to the BIC criterion. The possible values of the tuning parameters
(A1, A7) are obtained with the function exp(seq(-6,-1,length.out = 10)), whereas (a1, ;) are kept
equal to 3.7. Furthermore, we use the coxph function in the survival package (Therneau, 2015) to fit
the classical Cox’s PH model with the covariates associated to the non-zero coefficients only (COX).

Censoring Cure Ac bo

Low (40%) High (30%) 0.02 145
Low (40%) Medium (20%) 03 235
Medium (60%) High (45%) 035 0.35
Medium (60%) Medium (30%) 0.75 1.45
High (80%) High (60%) 095 -0.7
High (80%) Medium (40%) 155 0.7

Table 2: Simulation settings (censoring and cure are expressed as fractions of all individuals).

The performance is measured in terms of Mean Estimation Error (MEE) and average number of
correct and incorrect zeros identified by the variable selection technique (SCAD). In particular, the

estimation error for the incidence component is computed as E [(p(x) — po(x))z] , where p(x) and
po(x) are the estimated and true probabilities of being susceptible. Whereas the estimation error
for the latency component is computed as E {(SA(T|Y =1)—So(T|Y = 1))2}, where $(T|Y = 1) and
So(T|Y = 1) are the estimated and true survival functions conditional on being susceptible.

In Figures 1 and 2, we provide the MEEs for the incidence and latency components, respectively,
while in Figure 3, we provide the average number of correct and incorrect zeros. From those figures,
we can see that the PH cure model estimation and its variable selection technique implemented in the
penPHcure function perform reasonably well. For an increase of the sample size or a decrease of the
level of censoring, the MEE decreases, and the number of correct (resp. incorrect) zeros converges to 4
(resp. 0). The MEEs of the ORACLE model are always the lowest ones, but we notice that the ones of
the SCAD method tend towards them as the sample size increases. It is important to note that, for a
fixed level of censoring, we observe higher MEEs in the case of a lower fraction of cured individuals.
The worst results are obtained in situations of high censoring and low cure rates, but it is enough to
increase the sample size to obtain better results. This is evidence of the fact that a cure model should
always be applied to data with a sufficient number of non-susceptible individuals. Last but not the
least important, we note that the use of the classical Cox’s PH model (COX) leads to very high errors.
This was expected since the model is wrongly specified as it ignores the existence of cured subjects.

Finally, in Table 3, we also present the coverage probabilities of the estimated 95% confidence
intervals for the ORACLE model using the basic and percentile bootstrap methods with 500 resamples.
In most cases, the basic bootstrap method outperforms the percentile bootstrap method, especially for
the smallest sample sizes, with coverage probabilities closer to the 95% nominal level.

The R code used to obtain the results in Figures 1 to 3 (resp. Table 3) are provided in Section 2
(resp. Section 3) of the supplementary material (‘beretta-heuchenne.R’). Moreover, in the file ‘beretta-
heuchenne-suppl.pdf’, we provide a table with all the results contained in Figures 1 to 3.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES 121

Cens. Low Cens. Medium Cens. High

0.03- o
= c
2 0.02- @
E I (%;
c 0.01- =2
o
80_00-‘h-— lhh ‘h FULL
£ SCAD
@ 0.03- o ORACLE
c @
‘“ 0 02- <

g
0 01- §
0.00 - ‘ ‘ - - h ‘

N} Q Q N} QO
P & LS ri” @Q &
Sample size

Figure 1: Results of the simulations: mean estimation errors (incidence component).

Cens. Low Cens. Medium Cens. High
0.0100-
_ 0.0075- o
o s
= 0.0050- %
€ 0.0025- S
S FULL
g 0.0000- SCAD
W 0.0075- e cox
C (0]
S 0.0050- e
= Q
- =
0.0025 g
0.0000-

I\ IS NN O
® 09 & of’ <o° 0° P &S
Sample size

Figure 2: Results of the simulations: mean estimation errors (latency component).

Cens. Low Cens. Medium Cens. High

TR

Correct (Latency)

Incorrect (Incidence)
l l l l l l l l l o

Q Q Q Q Q Q
‘OQ QQ "lig o \QQ "ﬁ) S \QQ

Number of zeros
ybiH ainn

wnipa 81n)

Sample size

Figure 3: Results of the simulations: average number of correct/incorrect zeros identified by the
variable selection technique (SCAD).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

122

cens cure N Method ‘ by by by bs by ‘ B1 B2 B3 Ba
0.40 0.30 250 basic 097 097 098 097 097 | 096 097 096 094
perc 0.9 091 094 091 094 | 093 094 095 094
500 basic 097 095 095 094 09 | 096 096 096 0.96
perc 091 091 094 092 094 | 094 091 095 095
1000 basic 095 096 095 097 097 | 093 095 095 096
perc 094 094 093 095 097 | 093 095 095 095
0.40 0.20 250 basic 095 096 099 096 097 | 096 097 097 0.96
perc 089 09 094 091 093 | 094 096 096 096
500 basic 098 097 097 097 098 | 095 096 096 0.96
perc 093 094 094 094 094 | 094 094 093 093
1000 basic 097 096 096 095 095 | 094 093 096 095
perc 095 094 094 093 094 | 094 094 096 095
0.60 0.45 250 basic 098 095 096 096 097 | 098 098 097 097
perc 095 091 093 093 094 | 093 094 094 094
500 basic 098 095 094 097 096 | 094 094 096 095
perc 096 093 094 092 093 | 094 092 095 095
1000 basic 095 096 096 095 095 | 095 094 093 095
perc 095 094 094 093 094 | 094 092 094 093
0.60 0.30 250 basic 096 094 098 094 099 | 097 096 096 0.96
perc 089 09 091 0.8 093 | 094 094 095 095
500 basic 096 097 098 095 097 | 096 096 095 095
perc 094 091 094 093 093 | 095 096 095 095
1000 basic 096 096 096 095 096 | 096 095 095 0.96
perc 095 094 094 092 094 | 094 094 094 095
0.80 0.60 250 basic 099 097 098 097 097 | 097 096 097 097
perc 094 091 092 091 092 | 094 092 096 094
500 basic 098 095 097 095 097 | 097 096 098 0.98
perc 094 093 095 093 094 | 095 094 095 096
1000 basic 096 095 096 094 096 | 096 095 094 096
perc 093 095 094 093 095 | 095 094 093 093
0.80 040 250 basic 098 095 099 0.98 1 097 096 099 0.99
perc 092 088 091 091 093 | 095 093 097 095
500 basic 097 095 097 096 098 | 096 096 097 096
perc 094 09 093 091 093 | 094 094 096 094
1000 basic 096 096 097 095 095 | 098 095 093 0.96
perc 096 095 095 094 093 | 094 094 093 093

Table 3: Results of the simulations: coverage probabilities.

An application to Criminal Recidivism data

In this section, we illustrate the use of the penPHcure R package using a Criminal Recidivism dataset,
which contains a sample of 432 inmates released from Maryland state prisons and followed for one
year after release (Rossi et al., 1980). The aim of this study was to investigate the relationship between
the time to first arrest after release and some covariates observed during the follow-up period. In
particular, to study the effect of providing financial aid at the moment of release. The original source
of the data is the Rossi dataset in the RemdrPlugin.survival package (Fox and Carvalho, 2012), which

has been converted into a counting process format and included in the penPHcure package.

Let us load and illustrate the dataset:

> library(penPHcure)
> data("cpRossi”, package = "penPHcure")
> head(cpRossi)

g~ w N =

6

1 0 20 yes
2 Q 9 no
2 9 14 no
2 14 17 yes
3 Q 16 no
3 16 17 no
> str(cpRossi)
'data.frame': 1405 obs.
$ id int

of

id tstart tstop arrest fin

no
no
no
no
no
no

age
27
18
18
18
19
19

race wexp mar paro prio educ emp

black
black
black
black
other
other

no
no
no
no
yes
yes

13 variables:

1222333444 ...

The R Journal Vol. 13/1, June 2021

no
no
no
no
no
no

yes
yes
yes
yes
yes
yes

3
8
8
8
13
13

3 no
4 no
4 yes
4 no
3 no
3 yes

ISSN 2073-4859

https://CRAN.R-project.org/package=RcmdrPlugin.survival

CONTRIBUTED RESEARCH ARTICLES 123

$ tstart: int 00 9 14 0 16 17 @ 4 21

$ tstop : int 20 9 14 17 16 17 25 4 21 31

$ arrest: Factor w/ 2 levels "no","yes": 2112112111 ...
$ fin : Factor w/ 2 levels "no","yes": 1111111222 ..

$ age :int 27 18 18 18 19 19 19 23 23 23

$ race : Factor w/ 2 levels "black”,"other”: 1111222111
$ wexp : Factor w/ 2 levels "no","yes": 1111222222

$ mar : Factor w/ 2 levels "yes","no": 2222222111

$ paro : Factor w/ 2 levels "no","yes": 2222222222

$ prio :int 3888131313111

$ educ : Factor w/ 3 levels "3","4","5": 1222111333...
$ emp : Factor w/ 2 levels "no","yes": 1121121121

The object cpRossi is a data.frame in counting process format with 1405 observations for 432
individuals on 13 variables. The id variable provides the unique identification number for every
individual in the study. The variables tstart and tstop denote the time interval of the observation
(measured in weeks). The variable arrest denotes whether the individual has been arrested during
the 1-year follow-up period. The remaining explanatory variables are described hereafter.

e fin. Financial aid received after release: yes or no;

* age. Age in years at the time of release;

¢ race. Race of the individual: black or other;

¢ wexp. Full-time work experience before incarceration: yes or no;

* mar. Married at the time of release: yes or no;

* paro. Released on parole: yes or no;

* prio. Number of convictions prior to incarceration;

* educ. Level of education: <=9th degree (“3”), 10th or 11th degree (“4”), or >=12th degree (“5”);

* emp. Working full time during the observed time interval: yes or no. This is the only variable
which is varying over time (e.g., the individual with id = 2 did not work full time during the
first 9 weeks after release, then he did for 5 weeks, and, finally, he has been arrested after 3
weeks without working full time).

Using the penPHcure function, by default, we can fit the standard PH cure model. First, we use
a formula object with the response on the left of the tilde operator and the explanatory variables
to be included in the latency component on the right. The response is a survival object returned
by the Surv(tstart,tstop,arrest) function. Then, using the argument cureform, we specify the
explanatory variables to be included in the incidence component. By default, these covariates are
set equal to the last observation, but in this case, we set the argument which.X = "mean” to compute
the time-weighted average over the full history. Finally, setting the argument inference = TRUE,
we conduct inference about the parameter estimates via bootstrapping (by default, 100 bootstrap
resamples). The user can increase/decrease the number of bootstrap resamples with the argument
nboot.

> set.seed(123) # for reproducibility

> fit <- penPHcure(Surv(tstart,tstop,arrest)~fin+age+race+twexp+mar+paro+prio+teduc+emp,
+ cureform = ~fin+aget+race+wexp+mar+paro+prio+educ+emp,

+ data = cpRossi,which.X = "mean”,inference = TRUE)

Initializing PH cure model with time-varying covariates...

Number of individuals: 432

Censoring proportion: 0.736

Tied failure times: TRUE

Number of unique failure times: 49

Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...
Fitting standard PH cure model with time-varying covariates... Please wait...
Performing inference via bootstrapping... Please wait ...

| | 100%
DONE!

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 124

This call to the penPHcure function returned an object of class "PHcure”, and we can print a
summary of the results using the summary method. By default, confidence intervals are computed
using the basic bootstrap method (the alternative is percentile bootstrap) and a confidence level of 95%.
In order to control these features, the user can provide the arguments conf.int and conf.int.level,
respectively.

> summary(fit)

Sample size: 432

Censoring proportion: 0.7361111
Number of unique event times: 49
Tied failure times: TRUE

log-likelihood: -643.65

+++ Cure (incidence) coefficient estimates +++
+++ and 95% confidence intervals x +++
Estimate 2.5% 97.5%
(Intercept) 1.136709 -34.041743 9.769052
finyes -0.455199 -2.299870 12.188817
age -0.067715 -0.382429 0.413001
raceother -0.100950 -2.988104 35.336024
wexpyes 0.251663 -3.257339 2.193371
marno 0.261947 -15.041406 35.102574
paroyes -0.041289 -3.156395 1.659637
prio 0.068443 -0.285553 ©.237089
educ4 -0.570782 -2.614311 2.532353
educh -1.163257 -39.473732 34.360612
empyes -0.860659 -3.299354 1.216299
+++ Survival (latency) coefficient estimates +++
+++ and 95% confidence intervals x +++
Estimate 2.5% 97.5%
finyes 0.062630 -1.427436 1.446067
age 0.046192 -0.067209 0.176043
raceother -0.759985 -2.770654 0.720247
wexpyes -0.552549 -1.672866 0.576657
marno 0.123655 -2.327914 1.600195
paroyes 0.040388 -0.816177 1.110058
prio 0.048407 -0.107942 0.195763
educ4 0.588156 -0.545885 1.881803
educh 0.838098 -2.527512 5.118107
empyes -1.431782 -1.980471 -0.781978

* Confidence intervals computed by the basic
bootstrap method, with 100 replications.

As you can see, only one covariate (emp) in the latency component is statistically significant (the
95% confidence interval does not include zero). The negative sign of the estimated coefficient implies
that the individuals working full time after release have a lower risk of being rearrested (among the
individuals susceptible to be rearrested). The lack of significance of the other covariates might be
explained by the small sample size, the high level of censoring (only 114 out of 432 individuals have
been rearrested), or by potential confounding factors.

We now perform variable selection with the proposed SCAD-penalized likelihood method to
check whether other covariates may be relevant to explain incidence and latency. First, we specify
the possible values of the tuning parameters (using the argument pen. tuneGrid) and set the starting

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 125

values equal to the coefficient estimates from the unpenalized model (using the argument SV). Then,
we still use the penPHcure function, but we now include the argument pen.type = "SCAD".

> pen.tuneGrid <- list(CURE = list(lambda = seq(0.01,0.12,by=0.01),

3.7),
list(lambda = seq(0.01,0.12,by=0.01),
3.7

)
SURV
7))

SV <- list(b=fit$b,beta=fit$beta)
tuneSCAD <- penPHcure(Surv(tstart,tstop,arrest)~fintage+racetwexp+mar+paro+prio+educ+emp,
cureform = ~fin+age+race+wexp+mar+paro+prio+educ+emp,
data = cpRossi,which.X = "mean”,pen.type = "SCAD",
pen.tuneGrid = pen.tuneGrid,SV = SV)

+ + + V V + + 4+

Initializing PH cure model with time-varying covariates...

Number of individuals: 432

Censoring proportion: 0.736

Tied failure times: TRUE

Number of unique failure times: 49

Number of covariates in the survival component: 10
Number of covariates in the cure component: 10

Checking starting values...

Tuning SCAD-penalized PH cure model with time-varying covariates... Please wait...
iter aCURE aSURV lambdaCURE lambdaSURV AIC BIC df
1 3.70 3.70 0.01 0.01 1319.1625 1384.2573 16
2 3.70 3.70 0.01 0.02 1319.1625 1384.2573 16
3 3.70 3.70 0.01 0.03 1316.0665 1360.8192 11
4 3.70 3.70 0.01 0.04 1318.0458 1358.7300 10
5 3.70 3.70 0.01 0.05 1318.0457 1358.7300 10
(omitted rows) ... - (omitted rows)
140 3.70 3.70 0.12 0.08 1325.5349 1333.6718 2
141 3.70 3.70 0.12 0.09 1325.5349 1333.6718 2
142 3.70 3.70 0.12 0.10 1325.5349 1333.6718 2
143 3.70 3.70 0.12 0.11 1325.5349 1333.6718 2
144 3.70 3.70 0.12 0.12 1325.5349 1333.6718 2
DONE!

This time, the call to the penPHcure function returned an object of class "penPHcure”. We can print
a summary of the results using the summary method, and, by default, the fitted model with the lowest
BIC criterion is returned.

> summary (tuneSCAD)

+++ PH cure model with time-varying covariates +++
+++ [Variable selection] +++
Sample size: 432

Censoring proportion: ©.7361111

Number of unique event times: 49

Tied failure times: TRUE

Penalty type: SCAD

Selection criterion: BIC

+++ Tuning parameters +++
Cure (incidence) --- lambda: .09
a: 3.7

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

126

Survival (latency) - lambda: .05
a: 3.7

BIC = 1329.481

+++ Cure (incidence) +++

+++ [Coefficients of selected covariates] +++
Estimate

(Intercept) 1.776907

age -0.076498

+++ Survival (latency) +++

+++ [Coefficients of selected covariates] +++

Estimate

prio 0.101202
empyes -1.537286

The Bayesian Information Criterion is minimized for A; = 0.09 and A; = 0.05. In this case, the
covariate age is selected in the incidence component. The negative sign of the estimated coefficient
implies that younger individuals are more susceptible to be rearrested. The covariates prio and emp
are selected in the latency component. The positive sign of the estimated coefficient (prio) implies that
a higher number of convictions prior to incarceration increases the risk of being rearrested (among the
individuals susceptible to be rearrested).

Let us now have a look at the fitted model with the lowest AIC criterion:

> summary(tuneSCAD,crit.type = "AIC")

+++ PH cure model with time-varying covariates +++
+++ [variable selection] +++
Sample size: 432

Censoring proportion: ©.7361111

Number of unique event times: 49

Tied failure times: TRUE

Penalty type: SCAD

Selection criterion: AIC

+++ Tuning parameters +++
Cure (incidence) --- lambda: ©0.06
a: 3.7

Survival (latency) - lambda: .03
a: 3.7

AIC = 1310.79

+++ Cure (incidence) +++

+++ [Coefficients of selected covariates] +++
Estimate

(Intercept) 1.829260

finyes -0.585638

age -0.067130

educh -0.887636

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 127

+++ Survival (latency) +++

+++ [Coefficients of selected covariates] +++
Estimate

raceother -0.586626

prio 0.103746

empyes -1.552737

The Akaike Information Criterion is minimized for A; = 0.06 and A1 = 0.03. As expected the AIC
criterion selected a less penalized and more complex model. In the incidence component, also the
covariates fin and educ have been selected. The negative signs imply that individuals who received
financial aid or with a high level of education (>=12th degree) are less susceptible to be rearrested. In
the latency component, also the covariate race has been selected. The negative coefficient implies that
individuals of a race other than black have a lower risk of being rearrested (among the individuals
susceptible to be rearrested).

Conclusion

In survival analysis studies, it may be the case that a fraction of the population is likely to be not
susceptible to the event of interest. In this article, we presented the penPHcure R package, which
implements the semiparametric proportional-hazards (PH) cure model of Sy and Taylor (2000) ex-
tended to time-varying covariates. This model can measure the effects of some covariates on the
probability of being susceptible and on the time until the occurrence of the event. The penPHcure
package is composed of two main functions: penpHcure, to estimate the regression coefficients, their
confidence intervals using the basic/percentile bootstrap method and to perform variable selection
using the SCAD-penalized likelihood technique proposed by Beretta and Heuchenne (2019a); and
penpHcure.simulate to simulate data from a PH cure model with time-dependent covariates. We first
explained the methodology behind these functions and presented the results of a simulation study to
assess its finite-sample performance. Then, we illustrated the use of the penPHcure function through
an example based on the Criminal Recidivism dataset.

Availability

The latest release and a development version of the penPHcure package are respectively avilable on
CRAN and at https://github.com/a-beretta/penPHcure.

Bibliography

J. Amdahl. flexsurvcure: Flexible Parametric Cure Models, 2019. URL https://CRAN.R-project.org/
package=flexsurvcure. R package version 1.0.0. [p117]

M. Amico and I. Van Keilegom. Cure models in survival analysis. Annual Review of Statistics and
Its Application, 5(1):311-342, 2018. URL https://doi.org/10.1146/annurev-statistics-031017-
100101. [p116]

A. Beger, D. Chiba, D. W. Hill, Jr,, N. W. Metternich, S. Minhas, and M. D. Ward. spduration:
Split-Population Duration (Cure) Regression, 2018. URL https://CRAN.R-project.org/package=
spduration. R package version 0.17.1. [p117]

A. Beretta and C. Heuchenne. Variable selection in proportional hazards cure model with time-varying
covariates, application to us bank failures. Journal of Applied Statistics, 46(9):1529-1549, 2019a. URL
https://doi.org/10.1080/02664763.2018.1554627. [pl16, 118, 127]

A. Beretta and C. Heuchenne. penPHcure: Variable Selection in PH Cure Model with Time-Varying
Covariates, 2019b. URL https://CRAN.R-project.org/package=penPHcure. R package version 1.0.2.

[pl16]

J. Berkson and R. P. Gage. Survival curve for cancer patients following treatment. Journal of the American
Statistical Association, 47(259):501-515, 1952. URL https://doi.org/10.2307/2281318. [p116]

J. W. Boag. Maximum likelihood estimates of the proportion of patients cured by cancer therapy.
Journal of the Royal Statistical Society: Series B (Methodological), 11(1):15-44, 1949. URL https://doi.
org/10.1111/3.2517-6161.1949.tb00020. x. [p116]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://github.com/a-beretta/penPHcure
https://CRAN.R-project.org/package=flexsurvcure
https://CRAN.R-project.org/package=flexsurvcure
https://doi.org/10.1146/annurev-statistics-031017-100101
https://doi.org/10.1146/annurev-statistics-031017-100101
https://CRAN.R-project.org/package=spduration
https://CRAN.R-project.org/package=spduration
https://doi.org/10.1080/02664763.2018.1554627
https://CRAN.R-project.org/package=penPHcure
https://doi.org/10.2307/2281318
https://doi.org/10.1111/j.2517-6161.1949.tb00020.x
https://doi.org/10.1111/j.2517-6161.1949.tb00020.x

CONTRIBUTED RESEARCH ARTICLES 128

N. Breslow. Covariance analysis of censored survival data. Biometrics, 30(1):89-99, 1974. URL
https://doi.org/10.2307/2529620. [p118]

C. Cai, Y. Zou, Y. Peng, and J. Zhang. smcure: Fit Semiparametric Mixture Cure Models, 2012. URL
https://CRAN.R-project.org/package=smcure. R package version 2.0. [p117]

R. A. Cole and J. W. Gunther. Separating the likelihood and timing of bank failure. Journal of Banking
& Finance, 19(6):1073 — 1089, 1995. URL https://doi.org/10.1016/0378-4266(95)98952-M. [p116]

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 34(2):187-220, 1972. URL https://doi.org/10.2307/2985181. [p116]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38, 1977. URL
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x. [p117]

B. Efron. The efficiency of cox’s likelihood function for censored data. Journal of the American Statis-
tical Association, 72(359):557-565, 1977. URL https://doi.org/10.1080/01621459.1977.10480613.

[p118]

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties.
Journal of the American Statistical Association, 96(456):1348-1360, 2001. URL https://doi.org/10.
1198/016214501753382273. [p118, 119]

J. Fan and R. Li. Variable selection for cox’s proportional hazards model and frailty model. Annals of
Statistics, 30(1):74-99, 2002. URL https://doi.org/10.1214/a0s/1015362185. [p118]

J. Fox and M. Carvalho. The remdrplugin.survival package: Extending the r commander interface to
survival analysis. Journal of Statistical Software, Articles, 49(7):1-32, 2012. URL https://doi.org/10.
18637/3s5.v049.107. [p122]

G. Garibotti, A. Tsodikov, and M. Clements. nltm: Non-Linear Transformation Models, 2019. URL
https://CRAN.R-project.org/package=nltm. R package version 1.4.2. [p117]

D. Hendry. Data generation for the cox proportional hazards model with time-dependent covariates:
a method for medical researchers. Statistics in medicine, 33:436—454, 2014. URL https://doi.org/
10.1002/sim.5945. [p116, 119]

D. R. Hunter and R. Li. Variable selection using mm algorithms. The Annals of Statistics, 33(4):1617-1642,
08 2005. URL https://doi.org/10.1214/009053605000000200. [p119]

C. Jackson. flexsurv: A platform for parametric survival modeling in R. Journal of Statistical Software,
70(8):1-33,2016. URL https://doi.org/10.18637/jss.v070.108. [pl117]

W. Q. Meeker. Limited failure population life tests: Application to integrated circuit reliability.
Technometrics, 29(1):51-65, 1987. URL https://doi.org/10.1080/00401706.1987.10488183. [p116]

Y. Polo, F. J. Sese, and P. C. Verhoef. The effect of pricing and advertising on customer retention in a
liberalizing market. Journal of Interactive Marketing, 25(4):201 — 214, 2011. URL https://doi.org/10.
1016/3j.intmar.2011.02.002. [p116]

P. H. Rossi, R. A. Berk, and K. J. Lenihan. 2 - historical background of the transitional aid research
project experiments. In P. H. Rossi, R. A. Berk, and K. J. Lenihan, editors, Money, Work, and Crime,
pages 21 —46. Academic Press, 1980. URL https://doi.org/10.1016/B978-0-12-598240-5.50009-
0. [p122]

P. Schmidtand A. D. Witte. Predicting criminal recidivism using ‘split population’ survival time models.
Journal of Econometrics, 40(1):141 — 159, 1989. URL https://doi.org/10.1016/0304-4076(89)90034~
1. [pl16]

M. Svolik. Authoritarian reversals and democratic consolidation. American Political Science Review, 102
(2):153-168, 2008. URL https://doi.org/10.1017/50003055408080143. [p116]

J. P.Sy and J. M. G. Taylor. Estimation in a cox proportional hazards cure model. Biometrics, 56(1):
227-236,2000. URL https://doi.org/10.1111/3.0006-341X.2000.00227.x. [p116, 127]

T. M. Therneau. A Package for Survival Analysis in S, 2015. URL https://CRAN.R-project.org/
package=survival. version 2.38. [p120]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.2307/2529620
https://CRAN.R-project.org/package=smcure
https://doi.org/10.1016/0378-4266(95)98952-M
https://doi.org/10.2307/2985181
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1080/01621459.1977.10480613
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1214/aos/1015362185
https://doi.org/10.18637/jss.v049.i07
https://doi.org/10.18637/jss.v049.i07
https://CRAN.R-project.org/package=nltm
https://doi.org/10.1002/sim.5945
https://doi.org/10.1002/sim.5945
https://doi.org/10.1214/009053605000000200
https://doi.org/10.18637/jss.v070.i08
https://doi.org/10.1080/00401706.1987.10488183
https://doi.org/10.1016/j.intmar.2011.02.002
https://doi.org/10.1016/j.intmar.2011.02.002
https://doi.org/10.1016/B978-0-12-598240-5.50009-0
https://doi.org/10.1016/B978-0-12-598240-5.50009-0
https://doi.org/10.1016/0304-4076(89)90034-1
https://doi.org/10.1016/0304-4076(89)90034-1
https://doi.org/10.1017/S0003055408080143
https://doi.org/10.1111/j.0006-341X.2000.00227.x
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

CONTRIBUTED RESEARCH ARTICLES 129

E. N. Tong, C. Mues, and L. C. Thomas. Mixture cure models in credit scoring: If and when borrowers
default. European Journal of Operational Research, 218(1):132-139, 2012. URL https://doi.org/10.
1016/j.ejor.2011.10.007. [pﬂ6]

A. Tsodikov. Semiparametric models: a generalized self-consistency approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 65(3):759-774, 2003. URL https://doi.org/10.
1111/1467-9868.00414. [p117]

A. D. Tsodikov, J. G. Ibrahim, and A. Y. Yakovlev. Estimating cure rates from survival data: An
alternative to two-component mixture models. Journal of the American Statistical Association, 98(464):
1063—1078,2003.[JRIJhttps://doi.org/1@.1198/@1622145@3@@@@@@1@@7.[p117]

Alessandro Beretta

Centre for Quantitative Methods and Operations Management (QuantOM)
HEC Liége

Rue Louvrex, 14 - 4000 Liége

Belgium

a.beretta@uliege.be

Cédric Heuchenne

Centre for Quantitative Methods and Operations Management (QuantOM)
HEC Liége

Rue Louvrex, 14 - 4000 Liége

Belgium

c.heuchenne@uliege.be

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1016/j.ejor.2011.10.007
https://doi.org/10.1016/j.ejor.2011.10.007
https://doi.org/10.1111/1467-9868.00414
https://doi.org/10.1111/1467-9868.00414
https://doi.org/10.1198/01622145030000001007
mailto:a.beretta@uliege.be
mailto:c.heuchenne@uliege.be

CONTRIBUTED RESEARCH ARTICLES 130

The bdpar Package: Big Data Pipelining
Architecture for R

by Miguel Ferreiro-Diaz, Tomds R. Cotos-Ydfiez, José R. Méndez and David Ruano-Ordds

Abstract In the last years, big data has become a useful paradigm for taking advantage of multiple
sources to find relevant knowledge in real domains (such as the design of personalized marketing
campaigns or helping to palliate the effects of several fatal diseases). Big data programming tools and
methods have evolved over time from a MapReduce to a pipeline-based archetype. Concretely the use
of pipelining schemes has become the most reliable way of processing and analyzing large amounts of
data. To this end, this work introduces bdpar, a new highly customizable pipeline-based framework
(using the OOP paradigm provided by R6 package) able to execute multiple preprocessing tasks over
heterogeneous data sources. Moreover, to increase the flexibility and performance, bdpar provides
helpful features such as (i) the definition of a novel object-based pipe operator (%>|%), (ii) the ability to
easily design and deploy new (and customized) input data parsers, tasks, and pipelines, (iii) only-once
execution which avoids the execution of previously processed information (instances), guaranteeing
that only new both input data and pipelines are executed, (iv) the capability to perform serial or
parallel operations according to the user needs, (v) the inclusion of a debugging mechanism which
allows users to check the status of each instance (and find possible errors) throughout the process.

Introduction

Social networks and instant messaging applications have arguably become an essential part of the
human experience. In fact, nowadays, more than 60% of the population from industrialized countries
use these mechanisms to communicate or share information. This phenomenon emerged due to
(i) the declining costs of computers and storage systems by a factor of more than 200 (Engineering,
1984), (ii) an exponential increase in processing speed and computer hardware capabilities (Iansiti and
Khansa, 1995), (iii) the emergence of high-throughput and fully-available communication networks
(Dorogovtsev and Mendes, 2013), and (iv) certain human needs such as keeping interconnected and
having permanent access to the data (Kabeer, 2005).

This scenario has promoted an exponential growth in the amount of data generated and stored in
the last decade. Concretely, the latest reports from 2018 showed that around 2.16EB (exabytes) of data
are created every day (Domo-Data, 2019; VCloud, 2019), and trends are showing that the growth of
available information is four times higher than the world economy (VCloud, 2019). Indeed, 90% of the
total world data have been created in the last two years alone (IBM, 2019).

In addition to the availability of unlimited sources and tools to generate, exchange, and handle
information, the lack of a standardized way of representing data has led to a massive increase in
unstructured information. In fact, approximately 80% of the existing data is unstructured (VCloud,
2019; IBM, 2019). The data obtained from a single source are usually insufficient to carry out a suitable
decision making-process. However, the ability to take advantage of the combination of data from
multiple (and unstructured) sources requires the execution of preprocessing operations that guarantee
a unified data format. The need for facilitating the management and exploitation of vast amounts
of heterogeneous data (in terms of data types and formats) within a reasonable elapsed time and
cost-effective manner led to the emergence of the Big Data era (Mervis, 2012; Labrinidis and Jagadish,
2012).

Big Data is an abstract concept used to refer to the use of new programming paradigms able to
handle large volumes of information and the execution of data mining tasks by taking advantage of
parallel programming schemes over large computer clusters (IBM et al., 2011; Brown et al., 2011). In this
context, MapReduce (Wu et al., 2014; Miner and Shook, 2012) is the most popular programming model
to develop, execute and deploy Big Data analyses on large clusters. However, its batch-processing
nature forces uploading data to the system (cluster) every time is analyzed, even when the input data
has been previously utilized. This requirement (i) makes this programming paradigm unsuitable
when leading with real-time streaming sources and (ii) avoids achieving full use of the computational
capabilities and resources since clusters are idle while the data is being loaded. In order to solve these
limitations, the utilization of pipelining schemes for big data processing was recently introduced by
Di Tommaso (2019). This concept (extrapolated from the electronic domain) is focused on dividing
the whole data analysis process into a set of computationally simple tasks (O'Donovan et al., 2015)
whereby the required information for each task is handled exclusively, which avoids the (pre)loading
of unnecessary information. This advantage has prompted the emergence of multiple enterprises
offering cloud pipeline-based data analysis services such as BDB Solutions for Big Data (Solutions,

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=R6

CONTRIBUTED RESEARCH ARTICLES 131

2019), AWS Amazon Data Pipeline (Amazon, 2019) or Google Cloud Dataflow (Google, 2019). These
services allow users to build highly customized pipelines using a simple graphical interface, even if
their technical skills are basic. Despite the great advantages of these services, their cloud-oriented
nature causes customers to be reluctant to use them due to (i) the full control of the pipeline by the
company offering the service, (ii) data privacy and security concerns (since information is executed in
a foreign infrastructure), and (iii) the difficulty of assessing and calculating the cost of computational
resources required to process data through the defined pipeline.

In order to cope with these problems, several customers decided to change the third-party cloud-
based service to a proprietary solution by designing and implementing their own pipelining tools.
Meanwhile, multiple open-source offline Big Data Pipeline frameworks emerged from the academic
community to make this new paradigm available to everybody (Di Tommaso, 2019). However, as
can be observed from the list shown in (Di Tommaso, 2019), despite the great number of available
solutions, the majority are developed using Java language (>90%) while only a few belong to the R
ecosystems. Among these, two packages should be mentioned, repo (Napolitano, 2020) and drake
(Landau, 2018). The former one is a data-centered pipeline focused on solving bioinformatics data
problems (specific-purpose application). Conversely, the latter is a generic pipeline tool that provides
similar functionality to the GNU Make utility. As can be seen, despite both applications are focused
on the same concept (pipelines), the target, implementation schema, and provided functionalities are
quite divergent. In addition, we found some important issues that are not addressed by the actual
pipelines tools such as (i) lack of a pure object-oriented (OO) implementation to facilitate the use and
reduce the learning curve for people coming from object-oriented environments, (ii) the absence of an
application based on the pipelining concept used by the well-known magrittr package (Bache and
Wickham, 2020) (focused on UNIX pipes), (iii) the use of a black-box implementation which hampers
users to easily trace and debug both code and the intermediate results.

This scenario motivated us to design and implement bdpar, a framework capable of unifying and
preprocessing heterogeneous data through the development and execution of customizable pipelines.
To this end, our package allows automatizing the management of a large amount of information
by segmenting data into a sequence of simple and indivisible tasks (divide and conquer paradigm).
Specifically, bdpar allows to (i) use or develop content extractors (such as SMS or email parsers), (ii)
use and implement new preprocessing tasks (pipes), (iii) define customization pipelines (set of tasks)
to achieve the desired (structured) output, (iv) visualize the intermediate results achieved by each
instance after being processed by the tasks comprising the pipeline (white-box implementation), (v)
prevent the re-execution of previously computed instances and tasks, and finally (vi) execute the
pipeline following both a sequential or parallel paradigm.

This paper provides a full description of the main functionalities and resources of the bdpar
package. The current version is 3.0.1, and an updated list (with the whole collection of resources)
is available in the vignette document and the reference manual. The following section provides a
complete description of the package structure and functionalities. Then, the use of the package is
described, and finally, an illustrative case study is provided.

Package structure and operation

In order to exploit the main advantages and strengths of the object-oriented paradigm (such as
maintainability, modularity, or inheritance), the bdpar package was fully developed using R6 classes
(package R6 (Chang, 2019b)). Particularly, bdpar was implemented using R6 classes due to its high
performance and ease of use when compared with other alternatives (such as S3 or S4) (Chang (2019a);
Wickham (2019)). From an operational point of view, R6 classes implemented in bdpar package are
divided into three different categories: (i) data extraction functionalities; (ii) pipe-based operations;
and finally (iii) bdpar framework configuration utilities.

The first category (data extraction methods) comprises all methods responsible for automatically
detect the format and parse contents according to the inner structure of data gathered from input
sources. The second category encapsulates the functionality of extracting features from the parsed
information. By default, the bdpar framework provides a complete data preprocessing flow comprising
18 different tasks. Additionally, bdpar allows for the easy creation of new customized data flows by
combining multiple tasks (object-based pipes). Finally, the third category of methods allows handling
the configuration parameters needed for the proper operation of both the bdpar framework and some
tasks using third-party functions (such as credentials for rtweet (Kearney, 2019) or tuber (Sood, 2019)).

In order to improve the readability of the code and facilitate the comprehension of each imple-
mented class, a naming convention was adopted. Methods included in the data extraction category
are labeled using Extractor as a prefix, followed by the type (or structure) of the input source (e.g.,
ExtractorEml and ExtractorSms methods are able to parse text contents from emails and SMS, re-

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=repo
https://CRAN.R-project.org/package=drake
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=rtweet
https://CRAN.R-project.org/package=tuber

CONTRIBUTED RESEARCH ARTICLES

132

spectively). Finally, pipe-based functionalities are named using the operation name followed by the
suffix Pipe (e.g., ToLowerPipe and FindHashtagPipe are tasks designed to convert text characters to
lowercase and detect Twitter hashtags from textual contents, respectively).

As stated before, the bdpar framework is focused on designing, implementing, and deploying
customized processing flows for the big data domain. In order to handle the information obtained
from the input sources, the package uses a specific structure called Instance, which is responsible for
storing the properties extracted by each pipe comprising the processing flow. To provide an insightful
view of our bdpar framework, Figure 1 provides a graphical representation of its inner operation,
which is divided into two main stages: (i) data loading and (ii) pipeline executing.

—u

Data Loading Pipeline Executing

y Q /—‘ ‘.“g pipeline handling output generating
» : -
,@.@4.@4\ S

Sw

4 q J _
g ,,’,d » nstonces .l-ul s 8
©

@‘ ExtractorSMS

ExtractorTwtid

2

! o

) |

>

_ . e
' pipes < -

€E:3 ExtractorCustom ’ @I‘K\b‘gl ‘

[1] [2]

Figure 1: Description of bdpar two-stage execution process. The first stage is responsible for loading
the dataset, while the second stage is in charge of executing the pipes comprising the user-defined
preprocessing tasks.

As shown in Figure 1, the first stage comprises the loading of the required extractors accord-
ing to the type of input data. By default, bdpar provides four different types of extractors: (i)
ExtractorSMS is able to extract the textual contents exchanged through Short Message Service (SMS);
(ii) ExtractorTwtid is capable of obtaining the text from Twitter entries (tweets); (iii) ExtractorEML can
be used to gathering raw content from the body of email messages, and finally (iv) ExtractorYtbid
allows extracting the comments published on the YouTube platform. Additionally, to increase the com-
patibility of bdpar with other data formats, the framework allows for the easy design and deployment
of new customized extractors (by using a simple OOP inheritance relation).

Once the content is successfully extracted from the raw sources, the second stage is automatically
initiated by bdpar. This stage comprises the execution of two steps: (i) pipeline handling; and (ii)
output generating. The former is in charge of performing unified data processing by executing a
specific set of pipes (also named pipeline) over the previously extracted content. It should be noted
that each pipe included in the pipeline is represented as an object (inherited from GenericPipe class)
responsible for performing a specific operation (task) over the input data. The second step (called
output generating) transforms the preprocessed data into a specific output format (e.g., into a CSV
structure). Moreover, bdpar allows users to develop new specific output-generation methods to
achieve the desired output.

As can be realized from the pipeline handling stage shown in Figure 1, the pipe-based structure
provides great flexibility and versatility to users since it allows users to easily (i) modify existing
pipelines by adding or removing pipes, (ii) develop new pipes implementing additional tasks, or (iii)
design and deploy new customized pipelines. To assist users in the creation and deployment of new
pipelines, bdpar provides a set of 18 combinable pipes implementing basic preprocessing tasks for text
sources. As can be seen in Table 1, tasks included in bdpar are divided into two different categories:
(i) transformer tasks which are able to perform operations that successively alter the original content
(such as lowercase conversion or emoticon finding), and (ii) maintainers which are responsible for
executing operations that do not affect the current content (such as storing the extension of the input
data).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

133

Pipe name

Pipe type

Name of computed

property

Description

GuessDatePipe

File2Pipe

FindUserNamePipe

FindHashtagPipe
FindUrlPipe

FindEmoticonPipe

FindEmojiPipe
GuesslLanguagePipe
ContractionPipe
AbbreviationPipe

SlangPipe

ToLowerCasePipe

InterjectionPipe

StopWordPipe

TargetAssigningPipe
StoreFileExtPipe
MeasurelLengthPipe

TeeCSVPipe

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Maintainer

Maintainer

Maintainer

Maintainer

”date”

"source"

"userName"

"hashtag"
"URLs"

"emoticon"

"Emojis"

"language"

"contractions"
"abbreviation"

"langpropname”

"interjection”

"stopWord"

"target"
"extension"

"length"

Obtains the date and time
based on the type and
structure of the input
data.

Obtains the source based
on the type and structure
of the input data.

Detects and extracts
usernames from textual
sources.

Detects and obtains hash-
tags from input data.
Uses regular expressions
to find URLSs in text.
Identifies and extracts
emoticons from textual
sources.

Transforms emojis to its
textual representation.
Tries to guess the lan-
guage of a specific text.
Transforms previously de-
tected contractions.
Expands detected abbrevi-
ations.

Identifies slang words to
its corresponding formal
speech.

Converts the input source
to lowercase characters.
Detects and extracts in-
terjections from textual
sources.

Recognizes and obtains
stop words from textual
sources.

Identifies the target class
of the data.

Guess the extension of the
input data.

Computes the length of a
given text.

Transforms the final result
into a CSV format file.

Table 1: Pipes provided by bdpar framework.

Additionally, each pipe provides a property name field where the computed property will be
stored. To increase flexibility, property names can be specified by users or leave it by default (see
names described in Table 1). Finally, pipes definition in Table 1 were sorted to match the execution
order defined in the pipeline included by default in bdpar (named as DefaultPipeline)

Moreover, to increase the reliability of the pipeline, bdpar allows defining the execution order of
each task comprising the specified pipeline. During the definition of a pipeline, we should specifically
take into account the possible interdependence between pipes (e.g., language-dependent tasks should
be executed after GuessLanguagePipe). To solve this situation and ensure the proper creation and
execution of the pipelining process, bdpar provides a pipe-orchestration system. This mechanism is

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 134

automatically invoked when the pipeline is executed and traverses all tasks comprising the pipeline to
evaluate two types of interdependencies: (i) always-before (or ‘a priori dependence’) and (ii) not-after
(or “a posteriori dependence’). The first constraint is used when a specific pipe requires the previous
execution of other tasks to ensure its proper operation (for instance, AbbreviationPipe needs to know
the text language, so it should not be executed before GuessLanguagePipe). Conversely, the second
type of restriction is used to indicate the tasks that cannot be started after the execution of the current
one (for instance, the recognition of contractions should not be run after changing text characters to
lowercase or removing punctuation marks). Both restrictions are automatically managed through the
checkCompatibility method included in the Instance class.

Furthermore, in order to ensure the proper execution of tasks implemented through R6 classes
within the pipeline, bdpar implements an object-oriented customized operator (denoted as %>|%)
inspired by the implementation of the primitive forward-pipe operator (%>%) provided by the magrittr
package (Bache and Wickham, 2020). Particularly, the execution of this new operator implies some
inner operations such as (i) discarding an Instance (left-side operand) whenever an error occurs during
the data processing flow, (ii) automatically manage pipes dependencies between pipes, (iii) simplifying
the invocation of the associated pipe task (right-side operand) by hiding its explicit call, (iv) facilitate
debugging issues by showing log messages with different levels of granularity, (v) the ability to
display the intermediate computation results of each instance throughout the whole preprocessing
flow and (vi) the capability to avoid the re-execution of previously processed pipelines. To this end,
the operator transparently calls the pipe method defined in the pipe object. These functionalities allow
improving the processing capabilities (in terms of speed, performance, and usability) of the application
by preventing the problems derived from the (potential) existence of errors during the pipelining
process and shorten pipelining definition by taking advantage of the customized operator capabilities.
To increase the customization capabilities, bdpar allows easy development and deployment of new
user-defined pipelines. To ensure full compatibility of new user-defined pipelines bdpar provides
a reference class called GenericPipeline. Additionally, to simplify the use of the framework, bdpar
provides a predefined pipeline (named DefaultPipeline) containing all the pipes included in Table 1.

Finally, once all Instance objects are processed, the output generation stage starts. As can be seen
from Figure 1, this stage is responsible for storing the results achieved after executing the pipeline
process over each (valid) Instance. Although this stage allows the use of customized storage and
output-representation methods (implemented by user), bdpar provides two methods able to (i) save
the achieved output into an external CSV file (using TeeCSVPipe pipe) or (ii) internally store in memory
a set of preprocessed Instance objects (default output).

In order to exemplify the structure and operation of an object-based pipeline in bdpar, we have
included below a code snippet comprising 13 different text processing tasks (implemented as pipe
objects).

instance %>|%
TargetAssigningPipe$new() %>|% StoreFileExtPipe$new() %>|%
GuessDatePipe$new() %>|% File2Pipe$new() %>|%
MeasureLengthPipe$new("length_before_cleaning_text") %>|%
FindUrlPipe$new() %>|% FindEmojiPipe$new() %>|% GuesslLanguagePipe$new() %>|%
SlangPipe$new() %>|% ToLowerCasePipe$new() %>|%
InterjectionPipe$new() %>|% StopWordPipe$new() %>|%
MeasurelLengthPipe$new("length_after_cleaning_text") %>|% TeeCSVPipe$new()

To facilitate the understanding of the pipelining process, the code included above assumes that
each input data has been successfully loaded and stored in an Instance object (denoted as instance).
As can be seen from the code snippet, each instance is processed through all the tasks comprising this
pipeline. Specifically, the first 13 ones perform different preprocessing operations over each instance,
while the latest one stores the achieved results into a CSV file.

Using bdpar package

The package can be installed and attached as described in the code included below (please refer to the
‘README’ file to access the latest and development versions).

install.packages("bdpar")
library(bdpar)

Please note that the core functionalities of bdpar require the previous installation of six R packages
(described in the ‘Imports’ field included in the ‘DESCRIPTION’ file). In addition, some optional tasks
(mainly belonging to specific data-processing pipes) used certain packages (indicated on the ‘Suggest’

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 135

field included in the ‘DESCRIPTION’ file) and should also be installed in order to ensure its proper
operation. It should be taken into account that in case of needing all the dependencies, the argument
dependencies = TRUE should be included in the command install.packages.

Executing bdpar framework

In order to guarantee a high level of flexibility, bdpar can be easily executed by using two different
ways (i) following an OOP paradigm or (ii) using a classical function call approach. Below is include a
code snippet describing both scenarios.

bdpar <- Bdpar$new()

bdpar$execute(path, extractors= ExtractorFactory$new(),
pipeline= DefaultPipeline$new(), cache= TRUE,
verbose= FALSE, summary= FALSE)

a) Executing bdpar using OOP paradigm

output <- line(path, extractors = ExtractorFactory$new(),
pipeline= DefaultPipeline$new(), cache= TRUE,
verbose= FALSE, summary= FALSE)

b) Executing bdpar following a function-based approach.

As can be depicted, both execution methods require the same six arguments since runPipeline is
a wrapper function which encapsulates bdpar execution using the OOP paradigm. The first argument
is mandatory since it is used to specify the directory or file(s) path where the raw input data is located.
The second parameter indicates the extractors required to parse the input sources. If not defined, bdpar
automatically invokes the default ExtractorFactory$new() object which initializes the four extractors
provided by bdpar framework. Following, the third argument is used to determine the sequence of
preprocessing tasks that should be executed (pipeline) to achieve the desired output (featured dataset).
If the argument is not assigned, bdpar executes DefaultPipeline$new() object which implements
an error-safe pipeline comprised of 18 tasks described in Table 1. The fourth one is used to enable
(or disable) bdpar not-re-execution functionality (defined as N-RE). Particularly, this feature is able to
detect which instances, tasks, and even pipelines were previously executed with a view to avoiding
their re-execution. Moreover, the penultimate argument is used to indicate (if needed) the generation
of a log output showing different levels of granularity (DEBUG, INFO, WARN, ERROR, FATAL). It should
be noted that DEBUG level allows displaying the intermediate results achieved by each instance after
being processed by the tasks comprising the pipeline. This is very useful to detect the location of
possible errors. Finally, the latter argument allows showing (if needed) a detailed summary of all the
operations and tasks performed during the pipeline execution.

Developing new functionalities

As previously stated, the design of the software architecture of bdpar is focused on facilitating the
customization of any stage of the process (data loader and pipeline executor). Specifically, bdpar allows
users to: (i) defining new types of input data parses, (ii) creating new pipes, and (iii) implementing
and deploying new preprocessing tasks.

Regarding the first aspect, the development of new content parsers involves two stages: (i) the
implementation of a customized extractor by overriding solely the methods of the Instance class that
are necessary to load the input and (ii) the registration of the created extractor so it can be loaded
by the bdpar framework. Two code fragments to detail the development and registration of a new
customized parsers is included below.

ExtractorImage <- R6::R6Class(
classname = "ExtractorImage”,
inherit = Instance,
public = list(

initialize = function(path) {
super$initialize(path)

h

obtainSource = function() {
source <- imager::load.image(super$getPath())
super$setSource(source)
super$setData(source)

1)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 136

a) Implementation of new ExtractorImage parser.

extractors <- ExtractorFactory$new()
extractors$registerExtractor(extension= c("jpeg”, "png"),
extractor= ExtractorImage)

b) Dynamic extractor registration operation in bdpar.

As can be seen, the first code snippet describes the formal structure of a new extractor. Particu-
larly, ExtractorImage is able to load an image into an Instance object. To accomplish this task, the
obtainSource method loads (by invoking load. image () method) an image from the file path received
as a parameter of the class constructor (super$getPath()). Then, the loaded image is stored in the
source variable of the Instance superclass (by invoking super$setSource () method) and is assigned
to the data variable by calling to super$setData() method. The data field is used to store the result of
each task comprising the pipeline.

Moreover, the second fragment of code exemplifies the registration of the previously created
extractor in bdpar framework. As can be depicted, this operation is performed by a simple call to the
registerExtractor method included in ExtractorFactory class. Due to the one-to-one dependency
between each extractor and the different input formats, bdpar requires the definition of a specific exten-
sion (or set of extensions) to discern which type of extractor should execute. Also, ExtractorFactory
provides two additional methods (i) getAllExtractors, which shows all registered extractors in bdpar
framework and (ii) removeExtractor, which deletes a specific data extractor. Finally, to avoid parsing
errors, unsupported input contents by registered extractors are automatically ignored by bdpar.

For the creation and deployment of new preprocessing tasks, bdpar provides an abstract class
named GenericPipe. This type of class is very common in OOP to ensure all subclasses (pipes) follow
the same structure and implement the methods defined in the superclass (GenericPipe). Particularly,
GenericPipe defines two main methods that should be included in each subclass: (i) initialize and
(ii) pipe. The former includes three optional parameters that are propertyName, which refers to the spe-
cific name to the output value computed in the task, alwaysBeforeDeps, and notAfterDeps, which han-
dles two types of dependencies between pipes ("always-before" and "not-after", respectively). Finally,
the pipe method is used to implement the behavior of the new task. Below we include a code snippet
exemplifying how to develop a basic image-preprocess pipeline. Concretely, we design three pipes:
(i) Image2Pipe responsible for invoking the obtainSource method provided in the ExtractorImage
parser, (i) ImageCroppingPipe in charge of halving the image, and (iii) ImageRotatePipe, which rotates
the image 30 degrees clockwise.

Image2Pipe <- R6::R6Class(
name = "Image2Pipe”,
inherit = GenericPipe,
public = list(
initialize = function(propertyName=
alwaysBeforeDeps= list(),
notAfterDeps= list()) {
super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)

nn
’

}’

pipe = function(instance) {
instance$obtainSource()
instance

1))

ImageCroppingPipe <- R6::R6Class(
"ImageCroppingPipe”,
inherit = GenericPipe,
public = list(
initialize = function(propertyName=
alwaysBeforeDeps= list("Image2Pipe"),
notAfterDeps= list()) {
super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)

nn
’

}’
pipe = function(instance) {
data <- instance$getData()
data <- imager::imsub(data, x > height/2)
instance$setData(data)
instance

10D

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 137

ImageResizePipe <- R6::R6Class(
"ImageResizePipe”,
inherit = GenericPipe,
public = list(
initialize = function(propertyName=
alwaysBeforeDeps= list("Image2Pipe"),
notAfterDeps= list()) {
super$initialize(propertyName, alwaysBeforeDeps, notAfterDeps)

nn
’

3,
pipe = function(instance) {
data <- instance$getData()
data <- imager::imrotate(data, 30)
instance$setData(data)
instance

100D

As can be seen, the Image2Pipe class stores the loaded image into a new instance. Follow-
ing, ImageCroppingPipe and ImageResizePipe class apply different image manipulation functions
(imager: :imsub, imager: : imrotate) to halve and rotate the images, respectively. Following the result,
of each pipe is stored into a specific field of the Instance object (by calling the instance$setData()
method). To ensure proper operation of both tasks, image content should be previously loaded
into an instance object (by invoking Image2Pipe associated task). To this end, a priori dependence
with Image2Pipe has been defined in the initialize method of both pipes. As mentioned before,
to facilitate the development and execution of pipes, dependencies between pipes are automatically
managed by the object-oriented pipe operator (%> | %). Finally, in order to develop robust pipelines,
instance objects should be invalidated when an error occurs, or the requirements are not satisfied
(such as the storage of empty data or non-identification of textual language).

Finally, bdpar allows users to customize existing pipelines and develop new ones from scratch. In
order to motivate the usage of bdpar regardless of user programming skills, the framework allows
to manually or dynamically design new pipelines. The first method requires the creation of a new
class (inheriting from GenericPipeline) which implements the execute method defined in the parent
class. Moreover, to ensure proper management of (possible) execution errors (such as invalidated
instances), a try-catch function should be included. Additionally, bdpar allows customizing the log
messages (if needed) by calling the bdpar.log() function. Below we include an example showing
how a customized pipeline is manually created.

TestPipeline <- R6::R6Class(
classname = "TestPipeline”,
inherit = GenericPipeline,
public = list(
initialize = function() ,
execute = function(instance)
message("[TestPipeline][execute][Info] ", instance$getPath())
tryCatch(
instance %>|% Image2Pipe$new() %>|%
ImageCroppingPipe$new() %>|% ImageResizePipe$new(),
error = function(e)
bdpar.log(message = paste@(instance$getPath(),"” :
level= "ERROR”,
className= class(self)[1],
methodName= "execute")
instance$invalidate()

n

, paste(e)),

)

return(instance)

))

On the other hand, the dynamic method allows the creation of custom pipelines by simply
indicating a list containing the pipe objects to be used. To achieve a higher level of flexibility dynamic,
the model provides two ways of defining pipelines: (i) during the object instantiation or (ii) by calling
the add function. A simple example describing how the previous pipeline is created following the
dynamic method is included below.

pipeline <- DynamicPipeline$new(pipeline= list(Image2Pipe$new(),

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 138

ImageCroppingPipe$new(),
ImageResizePipe$new()))

a) Pipeline definition during object instantiation.

pipeline <- DynamicPipeline$new()
pipeline$add(list(Image2Pipe$new(), ImageCroppingPipe$new(),
ImageResizePipe$new()))

b) Pipeline creation using the add method.

Additionally, the dynamic method provides six methods able to extend the pipeline customization
capabilities: (i) add(pipe,pos=NULL), which adds new pipe object(s) to the pipeline flow at a certain
position (or at the end if not defined), (ii) removeByPos(pos), which removes a pipe object at a
given position, (iii) removeByPipe(pipe.name) responsible for erasing a pipe object by name, (iv)
removeAll () capable of releasing all pipe objects from the pipeline, (v) get () returning a list containing
the pipe objects comprising the pipeline, and finally, (vi) print () which displays the pipes comprised
in the pipeline.

As can be realized from both methods, the manual definition of pipelines allows users to have
greater control and insight over the pipeline (such as personalizing error-handling methods or the
inclusion of new user-defined object-oriented pipeline operators). Conversely, the dynamic mode
enables users to define optimal pipelines without expert knowledge of R6 and OOP concepts.

Managing bdpar configuration options

bdpar.Options included in bdpar allows managing configuration parameters to customize the be-
havior of available tasks and indicate parameters needed for the proper operation of pipes and/or
content extractors (such as path locations for slang dictionaries or credentials required by Twitter or
Youtube APIs, respectively). Moreover, to easily search and access the configuration, bdpar.Options
stores parameters following a key-value pair structure. As can be deducted, the key parameter is
used to uniquely identify a configuration entry. In order to facilitate the management of configuration
parameters, bdpar.Options provides four main methods: (i) bdpar.Options$add(key, value), which
adds a new configuration entry, (ii) bdpar.Options$set(key, value) used to modify the value of an
existing configuration parameter, (iii) bdpar.Options$remove (key), which removes an entry matching
a specific name, and finally, (iv) bdpar.Options$reset() used to restore bdpar.Options to its initial
state (default options). Table 2 describes the configuration options included in bdpar.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 139

Assigned .
Type Key by default Description
twitter.consumer.key
twitter.consumer.secret
twitter.access.token X
API credentials twitter.access.token.secret Set of keys negd to
connect to Twitter
. and Youtube API
youtube.app.id X
youtube.app.password
cache.youtube.path Path to temporary
API cache cache.twitter.path x place extracted data
Defines the out-
Pipe parameters teeCSVPipe.output.path Vv put file path for

TeeCSVPipe

Indicates the content-
Extractor options extractorEML.mpaPartSelected Vv type to parse on multi-
part emails

Indicates the path to
N-RE handler cache.folder Vv store the intermediate
results

Selects the number of
Parallel settings ~ numCores Vv cores used to execute
the pipelines

resources.abbreviations.path
resources.contractions.path

Resource files resources.interjections.path Vv
resources.slangs.path
resources.stopwords.path

Location for the dif-
ferent language dic-
tionaries (slang, con-
tractions, .. .)

Table 2: Structure of bdpar configuration options.

As can be seen from Table 2, configuration options are divided into seven categories: (i) API
credentials, (ii) API cache, (iii) pipe parameters (iv) Extractor options, (v) instance cache handler,
(vi) parallel settings, and (vii) resource files. It is important to take into account that values for API
credentials are not provided by default due to the inexistence of publicly available access keys for both
Youtube and Twitter (only for private use with prior approval). Following, the optional API cache
configuration entries are responsible for designating temporal locations to store information obtained
after executing the content extractors. Defining cache paths API ensures that duplicated sources are
executed only once (avoids parsing duplicated inputs).

Moreover, pipe parameters and extractor options allow specifying configuration values needed
to guarantee the proper execution of pipes and extractors, respectively. Particularly, default "extrac-
torEML.mpaPartSelected" entry allows defining which content-type (text/plain or text/html) should
be extracted in multipart emails while "teeCSVPipe.output.path” indicates the location to store the
CSV file generated by TeeCSVPipe pipe.

In addition, the not-re-execution handler allows defining the path to store the information required
for the proper operation of the not-re-execution functionality. Despite this, the feature is very useful
to reduce both unnecessary computation costs and time consumption that requires extra storage
space. Therefore, bdpar allows the deletion of the intermediate results by invoking the specific
bdpar.Options$cleanCache () method.

Following, parallel settings category is used to define the configuration values to handle paral-
lelization in bdpar. Concretely, "numCores" entry allows defining the number of CPU cores to be
used when a pipeline is executed. By default, bdpar is configured following a sequential paradigm
(numCores = 1). Additionally, to ensure proper use of CPU resources bdpar provides a mechanism to
verify whether the number of assigned CPU cores is compatible with the hardware specifications or not.
If the assigned CPU cores are not valid, bdpar will be executed using the most optimal configuration
according to the hardware specifications.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 140

The last category comprises different dictionaries needed to perform multiple language-dependent
operations (such as contraction detection or stopwords removal). Dictionaries provided by default
ensure the compatibility of bdpar from 8 to 50 different languages (depending on the text-mining
operation selected).

A case study

In order to illustrate the functionality of the bdpar package from a more realistic perspective, we
developed a case study to show the most frequent words from a heterogeneous dataset collection
(containing SMS and emails). The dataset comprises 20 emails (eml format) and 20 SMS in plain
text from the nutritional and health domain. Moreover, to ensure straightforward reproducibility,
(i) all the resources used are included in the package, and the pipeline provided by the package
(DefaultPipeline) was selected to perform the content preprocessing flow, and (ii) resulting dataset
was stored into a structured CSV file. Once the pipeline was executed, 18 new columns were generated
from the outputs acquired after executing some pipeline tasks (labeled according to the property
names described in Table 1). For instance, the execution of FindEmojiPipe forces the creation (if not
exists) of a new column (named "emojis") containing the emojis found for each instance (or blank if
not found).

To carry out the case of study, word frequencies were computed over the text content generated
after executing the whole pipeline tasks (stored in the data column). Additionally, some previous
text-cleaning operations were performed over the preprocessed text prior to executing the computation
of the word frequencies (using word-cloud plots). Concretely, words were reduced to their stem form
(stemDocument), punctuation marks were deleted, and numbers were removed (using the tm package
(Feinerer et al., 2008)). Finally, for comparison purposes, frequencies were calculated both individually
and jointly (see Figures 2 and 3)

#Execute bdpar framework

bdpar::runPipeline(path= system.file(“example”, package= “bdpar”),
cache= FALSE)

#lLoad CSV generated after executing bdpar

dataset <- read.csv(file= bdpar.Options$get("teeCSVPipe.output.path”),

n,.n

sep= ";", stringsAsFactors= FALSE)

#Separate instances by type
sms <- dataset[dataset$extension == "tsms",]
eml <- dataset[dataset$extension == "eml”,]
Function to clean text and compute frequencies
word.frec <- function(data) {
corpus <- tm::VCorpus(VectorSource(data))
corpus <- tm::tm_map(corpus, removePunctuation)
corpus <- tm::tm_map(corpus, removeNumbers)
corpus <- tm::tm_map(corpus, stemDocument)
sorted <- sort(rowSums(as.matrix(tm::TermDocumentMatrix(corpus))),
decreasing = TRUE)
return(data.frame(word = names(sorted), freq = sorted))
3
sms.words <- word.frec(sms$data)
eml.words <- word.frec(eml$data)
all.words <- word.frec(dataset$data)
Wordcloud for sms and emails
par (mfrow=c(1,2))
wordcloud: :wordcloud(words= sms.words$word, freq= sms.words$freq,
min.freg= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))
wordcloud: :wordcloud(words= eml.words$word, freq= eml.words$freq,
min.freg= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))
par(mfrow=c(1,1))
#Wordcloud for all instances (sms and email)
wordcloud: :wordcloud(words= dataset.words$word, freg= all.words$freq,
min.freg= 1, max.words= 100, random.order= FALSE,
rot.per= .5, colors= RColorBrewer::brewer.pal(8, "Dark2"))

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=tm

CONTRIBUTED RESEARCH ARTICLES 141

Figure 2 graphically represents the results achieved after performing an individualized analysis
of each dataset (SMS and emails). Conversely, Figure 3 represents the frequencies achieved when
analyzing both datasets together. Observing Figure 2, we see that frequencies of words included in
SMS messages are lower than those included in emails. This is mainly due to the limited length of SMS
messages (up to 160 characters). Therefore, the word frequency in Figure 3 has increased considerably,
mainly owing to the joint evaluation of both datasets.

shelter long foll unprocess
secret labor 2 junk total ollow gt

lasagna > S & italian day Play . cer culinari
: g2 5he 3 sl e 2
g g laugh . famili © S convers & = walk - year T ld — 9 activ
S Scggcola wo cgd € o) amount watch
Ec 8§80 & 5bus 20 53 today § person = _podi e dinner
ng c % E ;_nd_' o blg - train g Q ° oil ; s fish 8 le) 8 1)

X = = =R I © reci -
285355 chines IV O friend 583 - £S5 effect comn g E @ P_g%
£EcEoy 5% £ 282 h Ith Qfeelo¢'°
£5°3% 288% s mwblog_z ea ealthi 2

5.2 8 €83 - oy § £ 2

Sobes _ o 3 o B productE > .26 g

L parti & ¥ & <8 5 = > tips s &
o S o ro¥ 83 = |busdl mi 9] o L =Y
c a 20 lea Te
8 _4 g %;C: love cook % enjoy daili 5 g creat @ |ngred| xe);el](.:fles] 3
888t EgGdinner passion g ££ deam = eat cook € S § oolor §

© GBfeel £ % idé/\ 3 back 258 leader PTOCESS group E young sponsor 5

P ar ® . -5
reﬁd 8 E5 2 %ch_ocol teq Share televis ema"chlldren il high-5 £ 8
© gset & favourit fruit satisfi ve3 found veget @ D e free 8 2
c . work O import £ 2
peopl g punish safe approach restaur Q. understand SE

?g_ wine communiti - nutrient prefer ©raN9

role fight
Frecuency Frecuency
W 1-3 @ 4 @ 10 @@ 28 m1-13 @13-25 W27 W46 101

Figure 2: Wordcloud for SMS (left) and email (right).

culinari

i
£ cheaper unhealthi
- televis _
g suppos 8= Year nutrient B
ggwalkppd) EU SPONSOT et X g
£ 8 busi= m o effectamount & E
_ 85 artic € @ write—=:5 blog ©2
c o
import 8
L2 Sbuy |otQ feel 8 %éﬁezog g
<] .
&8Edsodohes @l 2 € 2z.3 2 8
T €5 c852 8
Q =T g o
friend © g o > :‘) °
= 0
o style & g » 5995
8,8 8% @ 9§82
ds g ¢ . 32
o © o
22° 8% § healthi x o § 8 g
58 g - 8 com 85588,
3 dp 5 chidren= &5 & 00 5§
g °der § jivebodi § 5 = SE 2 &
type g E recip £ = 2 activ g
week O JO‘n dlnner restaur cplay 8
g s
fructos m\unch @ =
2 E
Frecuency

E 116 @ 17-29 @ 56 | 129

Figure 3: Wordcloud for SMS and email jointly.

Keeping in mind the functionality provided by bdpar (demonstrated through the current case
study), it is easy to deduce that the application of data mining techniques over unstructured data
could be easily addressed by taking advantage of the functionality of our framework. Some big data
operations that could be addressed by taking advantage of bdpar are the clustering of documents
using token features, the classification of documents, or the retrieval of documents for specific queries.

Conclusions and future work

In this work, we introduced bdpar, a pipe-based R framework to facilitate the creation of unified
datasets from heterogeneous sources. Our framework allows users to (i) define new content extractors
(data parsers), (ii) develop and deploy new preprocessing tasks (pipes), and (iii) define and build
customized interconnected task flows (pipelines). Additionally, to save computational resources and

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 142

increase execution speed, bdpar provides an optimized pipe operator (noted as %>I%) capable of
aborting the processing of an instance if an error was detected. Finally, a case study was developed to
demonstrate the capability of the framework to preprocess and unify heterogeneous data into a single
CSV file.

Future work is focused on two main aspects: (i) the development of semantic-based tasks able
to explode the semantic relationships between synsets and; (ii) the capability to represent using a
graph-based visualization the pipes comprising each pipeline, and (iii) the analysis of textual polarity
and sentiment analysis.

Acknowledgements

The work of Tomés R. Cotos-Yéafiez has been partially supported by the projects IN2017-84658-C2-1-R
and PID2020-118101GB-100 of the Spanish Ministry of Industry. David Ruano-Ordds has been sup-
ported by a post-doctoral fellowship from Xunta de Galicia (POSB-2021/024). Additionally, the work
of José R. Méndez was partially funded by the project Semantic Knowledge Integration for Content-
Based Spam Filtering (TIN2017-84658-C2-1-R) from the Spanish Ministry of Economy, Industry, and
Competitiveness (SMEIC), State Research Agency (SRA) and the European Regional Development
Fund (ERDF). SING group thanks CITI (Centro de Investigacién, Transferencia e Innovacién) from
the University of Vigo for hosting its IT infrastructure. Finally, we thank the reviewers for their deep
appropriate suggestions to improve the quality of the manuscript.

Bibliography

A. Amazon. AWS Amazon Data Pipeline. https://aws.amazon.com/es/datapipeline, 2019. Accesed:
2019-05-6. [p131]

S. M. Bache and H. Wickham. magrittr: A Forward-Pipe Operator for R, 2020. URL https://CRAN.R-
project.org/package=magrittr. R package version 2.0.1. [p131, 134]

Brown, Brad, M. Chui, and J. Manyika. Are you ready for the era of ‘big data’. McKinsey Quarterly, 4
(1):24-35, 2011. [p130]

W. Chang. R6 and Reference Class performance tests, 2019a. URL https://r6.r-1ib.org/articles/
Performance.html. R6 package version 2.4.1. [p131]

W. Chang. Ré6: Encapsulated Classes with Reference Semantics, 2019b. URL https://CRAN.R-project.
org/package=R6. R package version 2.4.0. [p131]

P. Di Tommaso. Awesome pipeline. https://github.com/pditommaso/awesome-pipeline,2019. [p130,
131]

Domo-Data. Domo-data never sleeps 6.0. https://www.domo.com/solution/data-never-sleeps-6,
2019. Accesed: 2019-04-05. [p130]

S. Dorogovtsev and J. Mendes. Evolution of Networks: From Biological Nets to the Internet and WWW.
OUP Oxford, 2013. ISBN 9780191004407. URL https://books.google.es/books?id=FFLTAgAAQBAJ.

[p130]

N. A. 0. Engineering. Cutting Edge Technologies. The National Academies Press, Washington, DC, 1984.
ISBN 978-0-309-03489-0. doi: 10.17226/286. URL https://doi.org/10.17226/286. [p130]

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25
(5):1-54, March 2008. URL http://www. jstatsoft.org/v25/105/. [p140]

Google. Google cloud dataflow. https://cloud.google.com/solutions/big-data, 2019. Accesed:
2019-05-6. [p131]

M. Iansiti and T. Khansa. Technological Evolution, System Architecture and the Obsolescence of
Firm Capabilities. Industrial and Corporate Change, 4(2):333-361, 03 1995. ISSN 0960-6491. doi:
10.1093/icc/4.2.333. URL https://doi.org/10.1093/icc/4.2.333. [p130]

IBM. IBM Big Data Success Stories. http://public.dhe.ibm.com/software/data/sw-1library/big-
data/ibm-big-data-success.pdf, 2019. Accesed: 2019-04-8. [p130]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://aws.amazon.com/es/datapipeline
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://r6.r-lib.org/articles/Performance.html
https://r6.r-lib.org/articles/Performance.html
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://github.com/pditommaso/awesome-pipeline
https://www.domo.com/solution/data-never-sleeps-6
https://books.google.es/books?id=FFL1AgAAQBAJ
https://doi.org/10.17226/286
http://www.jstatsoft.org/v25/i05/
https://cloud.google.com/solutions/big-data
https://doi.org/10.1093/icc/4.2.333
http://public.dhe.ibm.com/software/data/sw-library/big-data/ibm-big-data-success.pdf
http://public.dhe.ibm.com/software/data/sw-library/big-data/ibm-big-data-success.pdf

CONTRIBUTED RESEARCH ARTICLES 143

IBM, P. Zikopoulos, and C. Eaton. Understanding Big Data: Analytics for Enterprise Class Hadoop and
Streaming Data. McGraw-Hill Osborne Media, 1st edition, 2011. ISBN 0071790535, 9780071790536.
[p130]

N. Kabeer. Introduction: The search for inclusive citizenship: Meanings and expressions in an
interconnected world. 2005. [p130]

M. W. Kearney. rtweet: Collecting Twitter Data, 2019. URL https://cran.r-project.org/package=
rtweet. R package version 0.6.9. [p131]

A. Labrinidis and H. V. Jagadish. Challenges and opportunities with big data. Proc. VLDB Endow., 5
(12):2032-2033, Aug. 2012. ISSN 2150-8097. doi: 10.14778/2367502.2367572. URL https://doi.org/
10.14778/2367502.2367572. [p130]

W. M. Landau. The drake R package: a pipeline toolkit for reproducibility and high-performance
computing. Journal of Open Source Software, 3(21), 2018. URL https://doi.org/10.21105/joss.
005560. [p131]

J. Mervis. Agencies rally to tackle big data. Science, 336(6077):22-22, 2012. ISSN 0036-8075. doi: 10.
1126 /science.336.6077.22. URL https://doi.org/10.1093/10.1126/science.336.6077.22. [p130]

D. Miner and A. Shook. MapReduce Design Patterns: Building Effective Algorithms and Analytics for
Hadoop and Other Systems. O'Reilly Media, Inc., 1st edition, 2012. ISBN 1449327176, 9781449327170.

[p130]

F. Napolitano. repo: A Data-Centered Data Flow Manager, 2020. URL https://CRAN.R-project.org/
package=repo. R package version 2.1.5. [p131]

P. O'Donovan, K. Leahy, K. Bruton, and D. T.]. O’Sullivan. An industrial big data pipeline for data-
driven analytics maintenance applications in large-scale smart manufacturing facilities. Journal of
Big Data, 2(1):25, 2015. ISSN 2196-1115. doi: 10.1186/s40537-015-0034-z. URL https://doi.org/10.
1186/540537-015-0034-2. [p130]

B. Solutions. BDB Solutions for Big Data. https://www.bdb.ai/big-Data-Pipeline, 2019. Accesed:
2019-05-6. [p130]

G. Sood. tuber: Access YouTube from R, 2019. URL https://CRAN.R-project.org/package=tuber. R
package version 0.9.8. [p131]

VCloud. Vcdoud news. http://www.vcloudnews.com/every-day-big-data-statistics-2-5-
quintillion-bytes-of-data-created-daily/, 2019. Accesed: 2019-04-17. [p130]

H. Wickham. Advanced R, Second Edition. CRC Press, 2019. ISBN 9780815384571. URL https://adv-
r.hadley.nz/. [p131]

X. Wu, X. Zhu, G. Wu, and W. Ding. Data mining with big data. IEEE Transactions on Knowledge
and Data Engineering, 26(1):97-107, Jan 2014. ISSN 1041-4347. doi: 10.1109/TKDE.2013.109. URL
https://doi.org/10.1109/TKDE.2013.109. [p130]

Miguel Ferreiro-Diaz

Department of Computer Science

SING Research Group, University of Vigo, Spain

CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

miguel.ferreiro.diaz@uvigo.es

Tomds R. Cotos-Ydriez

Department of Statistics and Operations Research

SiDOR Research Group, University of Vigo

CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

ORCiD: 0000-0002-7732-6565

cotos@uvigo.es

José R. Méndez
Department of Computer Science
SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://cran.r-project.org/package=rtweet
https://cran.r-project.org/package=rtweet
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.21105/joss.00550
https://doi.org/10.21105/joss.00550
https://doi.org/10.1093/10.1126/science.336.6077.22
https://CRAN.R-project.org/package=repo
https://CRAN.R-project.org/package=repo
https://doi.org/10.1186/s40537-015-0034-z
https://doi.org/10.1186/s40537-015-0034-z
https://www.bdb.ai/big-Data-Pipeline
https://CRAN.R-project.org/package=tuber
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
https://adv-r.hadley.nz/
https://adv-r.hadley.nz/
https://doi.org/10.1109/TKDE.2013.109
mailto:miguel.ferreiro.diaz@uvigo.es
mailto:cotos@uvigo.es

CONTRIBUTED RESEARCH ARTICLES 144

CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

ORCiD: 0000-0002-1935-4760

moncho.mendez@uvigo.es

David Ruano-Ordds

Department of Computer Science

SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Spain
CINBIO - Centro de Investigaciones Biomédicas, University of Vigo, Campus Universitario Lagoas-Marcosende,
36310 Vigo, Spain

ORCiD: 0000-0002-6050-373X

drordas@uvigo.es

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:moncho.mendez@uvigo.es
mailto:drordas@uvigo.es

CONTRIBUTED RESEARCH ARTICLES 145

Unidimensional and Multidimensional
Methods for Recurrence Quantification

Analysis with crqa
by Moreno 1. Coco, Dan Menster, Giuseppe Leonardi, Rick Dale and Sebastian Wallot

Abstract Recurrence quantification analysis is a widely used method for characterizing patterns in
time series. This article presents a comprehensive survey for conducting a wide range of recurrence-
based analyses to quantify the dynamical structure of single and multivariate time series and capture
coupling properties underlying leader-follower relationships. The basics of recurrence quantification
analysis (RQA) and all its variants are formally introduced step-by-step from the simplest auto-
recurrence to the most advanced multivariate case. Importantly, we show how such RQA methods can
be deployed under a single computational framework in R using a substantially renewed version of
our crqa 2.0 package. This package includes implementations of several recent advances in recurrence-
based analysis, among them applications to multivariate data and improved entropy calculations
for categorical data. We show concrete applications of our package to example data, together with a
detailed description of its functions and some guidelines on their usage.

Introduction

In the current article, we present the updated 2.0 version of the R package crqa to perform many
variants of recurrence-based analyses (Coco and Dale, 2014), including some very recent develop-
ments for the treatment of multivariate and categorical data. Recurrence-based techniques allow the
quantification of temporal structure and generalized autocorrelation properties of individual time
series (Webber and Zbilut, 1994; Zbilut and Webber, 1992), the quantification of bivariate relationships,
and coupling between two time series (Zbilut et al., 1998; Marwan and Kurths, 2002), as well as the
quantification of multidimensional dynamics of multivariate time series (Wallot et al., 2016b; Wallot
and Monster, 2018). Recurrence-based techniques originate from the description and analysis of
dynamical systems (Marwan et al., 2007; Marwan and Kurths, 2002) and have been widely applied to
data from physics (Alex et al., 2015; Ambrozkiewicz et al., 2019; Donner and Thiel, 2007; Hilarov, 2017;
Zolotova and Ponyavin, 2006), physiology (Marwan et al., 2002; Langbein et al., 2004; Thomasson et al.,
2001; Mestivier et al., 2001; Menster et al., 2016; Timothy et al., 2017), and psychology (Abney et al.,
2014; Coco et al., 2018, 2016; Shockley et al., 2003; Wallot et al., 2019; Wijnants et al., 2012; Pagnotta
et al., 2020), to name a few fields.

The real success of recurrence-based analyses has revolved around their power of capturing the
dynamics of complex and non-stationary time series data and of time series exhibiting qualitatively
different patterns along with their temporal evolution (Marwan et al., 2007). This is because recurrence-
based analyses are model-free techniques that make few assumptions and hence are well suited for
the analysis of complex systems. Moreover, recurrence-based analyses are versatile and can be applied
to interval-scale data as well as nominal data, continuously sampled data, and inter-event data alike
(Dale et al., 2011; Zbilut et al., 1998).

The new version of the crqa package features the integration of major developments in recurrence
analysis, such as its extension to multidimensional data, as well as a key simplification of its design
and a marked improvement of the underlying computational procedures. It includes useful new
functions, including a tool for mining the parameter settings for continuous data and piece-wise
computation of recurrence plots to mitigate the computational cost of long time series.

The remainder of this article is divided into two broad sections. In the first section, we provide
a concise introduction to the core concepts of recurrence analysis from the simplest case of auto-
recurrence of a unidimensional time series to the most complex case of multidimensional cross-
recurrence, which is now integrated into the new version of the crqa package. In the second section,
we showcase example applications of the different analysis methods using empirical data, hence
providing a hands-on tutorial for how to use the different functions of the package.

Methodological background

In section 2.2.1, we briefly introduce the framework of recurrence quantification analysis (RQA
hereafter) with the simplest case of a unidimensional time series. Then, in section 2.2.2, we discuss

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 146

how RQA can be applied to two different unidimensional times series. Finally, in sections 2.2.3 and
2.2.4 we explain how RQA methods can be extended to multidimensional data.

Recurrence quantification analysis (RQA)

The concept of recurrence is at the heart of all recurrence-based analyses (Marwan and Kurths, 2002;
Trulla et al., 1996), which mostly apply to time series or sequenced data (but see Wallot and Leonardi
(2018b)). As we will see, recurrences are often defined in terms of phase space coordinates, not directly
in terms of the values of a single time series, but the concept is easily demonstrated using this case—a
single time series or sequence—as a starting point. Loosely speaking, a recurrence is the repetition of a
value in a sequence of data points. More precisely, recurrence in a time series x, with n data points
X1,X2,...,Xy is defined as:

o 1 X; = x]- .
R;jj { 0 :xi#xj i,j=12,...n (1)

The above equation defines the elements R;; of the recurrence matrix R in terms of identical
repetitions. Such a definition is useful for a nominal sequence, where there are categorical elements
that are either identical or not, and so no meaningful ‘distance’ norm among categories can be defined
(see section 2.3.3.1 for an application to text data). In order to define recurrences for continuous data,
we need to establish a threshold parameter (or radius parameter) ¢, which provides the width of a
tolerance band in the chosen distance norm within which similar but not identical values in a time
series are counted as recurrent:

1 :|xj—xj| <e

R;i = ! = i,i=1,2,...n 2

l {O :|xz-—]‘|>E J ()

Setting a threshold is necessary in most cases for empirical data because such data feature intrinsic

fluctuations as well as measurement error (Marwan et al., 2007). Using recurrences as defined

above, we can convert any unidimensional time series x into a recurrence plot (RP), which is a
two-dimensional portrait of its dynamics expressed through its recurrence characteristics.

Figure 1 shows some examples of time series of various complexity (i.e., a sinusoidal, a chaotic
attractor, and white noise) and their associated RPs, given some value for the threshold parameter ¢.

If a time series x constitutes the one-dimensional measurement of an underlying multidimensional
system, and the dynamics of the underlying dimensions are co-dependent, then these underlying
dimensions can be recovered via the method of time-delayed embedding from the unidimensional
time series (Packard et al., 1980; Takens, 1981). In these cases, the time series x is delayed (or lagged)
by a certain number of data points, 7, and the number of times such delays are applied to x depends
on an embedding dimension parameter m. The time-shifted copies of x, x¢, x2,.. <X (j—1)7, CAN NOW
be integrated into a single m-dimensional phase space, which shows the recovered multidimensional
dynamics behind the measured unidimensional time series (Figure 2).

If the time series data comes from a multidimensional system, embedding the data into a higher
dimensional phase space before the computation of an RP will improve the quantification of the
dynamics of the systems from which that time series was recorded (Marwan et al., 2007). Now,
with embedded data, recurrences are defined not in terms of the individual values of the original,
unidimensional time series x but in terms of coordinates in m-dimensional phase space. It is possible
to construct a total of N = n — (m — 1)7 points in phase space, with the following coordinates:

Xy = (X1, X147, X1427, - - -rx1+(m71)'r)

Xo = (X2, X241, X2427/ - - - X2 (m—1)7)
Xie = (X, Xkt Xkt 277 - - -0 Xkt (m—1))

XN = (xN/xN+T/xN+2T/' . '/x”)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 147

1200
1200
1200

400 600 800 1000
400 600 800 1000
600 800 1000

400

200
200
200

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
s s 3
8 8 8
2 /s s 7/ e e

VA4
|, g g
8| 7z 2 7 = e
s 7/
2 s
o s 7/ 2 i3
3 7/
8
/7 3 3
7 3 3
§ /7
7 7 § §
/7 7
3 / 7 7/
s s
& VAR S]
7 s 7/
/7 7z 7
o ° o
0 200 400 600 800 1000 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Figure 1: The three-time series in the first row (A) — a periodical sine wave, one of the dimensions
of the chaotic Lorenz attractor and a white noise signal — were subjected to recurrence analysis
without dimensional embedding. That is, the recurrence plots depict recurrences based on the values
of the one-dimensional time series (B). The third row (C) shows their associated recurrence plots with
dimensional embedding (the sine wave was embedded in 2 dimensions, the Lorenz attractor and the
white noise signal in 3 dimensions).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

148

dimension 2

C Dimension 2 of the reconstructed 2-D phase space
is a 1-lagged version of the original time-series

1.09%

0.5 1

0.0 1

-0.5 1

A Reconstruction of a trajectory
in a 2-D phase space portrait
1.0
0.5 1
0.0
Recurrences of th¢ point
(Xg: X 4
0.5 1
-1.0 4
—_
-1.0 -0.5 0. 0.5 1.0
dimengion 1
04 X0,
1 —_ —o
,__’—o——""’/x
10 4 _—o0 X 6
£, 9
°\o\°\%
20 4 ——
P
o<o’°""°/
O o
0.
30 1 ——0— o o
00,0
°_—_-—°‘—'
40 go—>"°
°\°\o
-—0

Figure 2: Graphical exemplification of the embedding method. A unidimensional time series (B)—
here represented with time running along the y-axis—is embedded in two-dimensional phase space
(A) by choosing as the second dimension (C) of every point in panel B the 7-lagged value (here T = 3)
of the very same original unidimensional time series (B). After selecting an appropriate value of the
threshold (or radius) parameter (here ¢ = 0.25), recurrence analysis can be applied to the trajectory in
the two-dimensional phase space (A), and a recurrence plot is generated (D). In the recurrence plot

T]] 1
-1.0 -0.5 0.0 0.5 1.0
Dimension 1 of the reconstructed 2-D
phase space is the original time-series

(D), the recurrence points around the coordinates of (X9;X9.) are highlighted in red color.

The R Journal Vol. 13/1, June 2021

ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 149

In terms of points in the m-dimensional phase space, the elements of the recurrence matrix are

then given by
o 1 :||Xi7X]'||S€ ;.
Ri={o X xise 1R @
where || - || is a distance norm in the m-dimensional phase space and ¢ is the threshold used to

determine whether the points are close enough in phase space to be considered recurring or not.
Examples of embedding and the resulting RPs are shown in Figure 1, lower panel, and in Figure 2,
panel D. Note, however, that in the process of phase space reconstruction, the number of coordinates
available in phase space is less than the number of data points in the original time series, the difference
being equal to n — N = 7(m — 1). Moreover, the resulting phase space portraits do not exactly reflect
the true underlying multidimensional dynamics but are isomorphic to them (Garland et al., 2016). For
continuous time series (i.e., not categorical), the delay 7, the embedding dimension m and the radius &
are usually unknown and have to be estimated from the data. T can be obtained by examining the
average mutual information function (AMI) of x (Fraser and Swinney, 1986), and the false-nearest-
neighbor function (FNN) of x, given some value for 7, can, in turn, be used to determine m (Kennel
et al., 1992). The radius ¢ is then chosen to achieve the desired proportion of recurrence points that is
expected given the type of data at hand (Webber Jr and Zbilut (2005); see Wallot and Menster (2018)
for practical information on parameter estimation). The crqa package implements functions to carry
out parameter estimation semi-automatically.

RPs are a very useful visualization to qualitatively explore the dynamics of a time series. However,
their main advantage is that they provide the basis to quantify the dynamics of a time series based
on the patterns of recurrence points found in the plot (Zbilut and Webber, 1992). There are various
measures that can be computed from RPs. Here, we briefly describe a selection of measures, including
the most common ones, that are implemented in the new version of the crqa package.

The most basic measure is the recurrence rate (RR) or percentage recurrence, which is defined as
the sum of all recurrence points in an RP divided by the area of that RP. RR provides a measure for
how many individual values of a time series—or its phase space coordinates—recur over time:

1 N
RR = N Y Ry (5)
ij=1

All other measures characterize dynamics by exploiting the patterns of recurrences along with
the vertical and diagonal structures of the RP (see Table 1 for a concise summary of the measures). In
particular, measures based on diagonal-line structures reflect repetitions of the trajectories of the time
series, whereas measures based on vertical-line structures focus on the states during which a time
series slows down its dynamics. The entropy of the time series can also be computed on the basis of
diagonal and vertical line structures of the RP. In version 2.0 of the crqa package, we include a novel
entropy measure, which is based on the distribution of the areas of the rectangular structures in an RP
generated from categorical time series. This measure provides a more accurate estimation of entropy
over the classic diagonal-line entropy for categorical time series that predominantly evolve in terms of
changes of states (Leonardi, 2018).

Cross-recurrence quantification analysis (CRQA)

Until now, we focused on quantifying the dynamics of a system by way of recurrences of a single
time series. However, the concept of recurrence can be extended to that of cross-recurrence, which
extends the univariate recurrence analysis to a bivariate analysis technique that allows quantification
of the temporal coupling properties or similarity of two time series (Zbilut et al., 1998; Marwan et al.,
2007). In other words, cross-recurrence is the recurrence of a value in a time series x, with data points
X1,X2,..., Xy with the values of a time series y, with data points y1, >, ..., y,. Formally:

_ 1 :|xi*yj|§€ s
CRUf{ 0 i|xi—yj|>€ i,j=12,...n (6)

As for Equation 2, a threshold parameter ¢ is applied to identify similar, but not necessarily
identical, values that are recurrent across the two time series. As in the univariate case, this parameter
can be set to values closer to 0, forcing cross-recurrences to be identical values, such as between two
nominal (categorical) sequences. Also, in the case of cross-recurrence analysis, the two time series x
and y can be embedded before computing the cross-recurrence plot (CRP):

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 150

Measure Abbreviation Definition
1 N

Recurrence Rate RR N2 ‘21 Rjj
i,j=

N N
Determinism DET Y. IP(1) / Y IP(1)
:lmin

=1
N N
Average Diagonal Line Length L Y. 1Py /Y, P(D)
l:lmin l:lmin
Maximum Diagonal Line Length maxL max({li}f\il), N =) P()
lzlmin
N
Diagonal Line Entropy ENTR - Y p()logp(l)
l:lmin
N N
Laminarity LAM Y. wP(v) /) vP(v)
U=Umin =1
N N
Trapping Time TT Y. oP(v) Y. P(v)
U=Umin U=Umin
Na
Categorical Area-based Entropy catH — Y p(a)logp(a)
a>1

Table 1: Summary and definition of RQA measures. Here, | is some diagonal line length on the
recurrence plot, i.e., the number of diagonally adjacent recurrence points; P(I) is the histogram or
frequency distribution of such diagonal line lengths; p(I) is the probability of some diagonal line
length; v is some vertical line length on the recurrence plot, i.e., the number of vertical adjacent
recurrence points; P(v) is the histogram or frequency distribution of such diagonal line lengths; Imin
and v, are the minimum diagonal and vertical line lengths included in the measures (> 2); a is the
value of the area of a rectangular recurrence block generated in a categorical recurrence analysis; p(a)
is the probability of the recurrence blocks of area a.

T Xi=Yl<e ..
CRI.].,{ 0 ZHXz‘*Y;‘H>€ i,j=12,...N 7)

Commonly;, it is expected that x and y have the same number of data points, and that the delay
and embedding dimension parameters, T and m, have to be the same too (see Wallot and Menster
(2018); Wallot and Leonardi (2018a) for practical aspects of parameter estimation)'. The recurrence
measures obtained from cross-recurrence quantification analysis are calculated in the same way as for
the univariate recurrence quantification analysis (see Table 1). However, the values for cross-recurrence
now reflect the coupled dynamics of the two time series (Shockley et al., 2002) rather than the dynamics
of an individual time series in univariate RQA. There is a key difference between RPs and CRPs. RPs
always have recurrence points all along the main diagonal line of the plot (so-called line of identity,
LOI), because a time series is by definition recurrent with itself at lag 0, which is what recurrences
along the main diagonal reflect (i.e., x; = x; when i = j). This is not necessarily the case for CRPs as
two time series are not necessarily synchronized (x; need not be the same as y; when i = j). If the time
series are not synchronized, cross-recurrences around the main diagonal are absent or sparse. The
presence of a full LOI in a CRP implies that the dynamics of the two time series are identical or that
they have a strictly linear relationship to each other.

Multidimensional recurrence quantification analysis (MdRQA)

Multidimensional recurrence quantification analysis (MdRQA) is one of the recent extensions of RQA
(Wallot et al., 2016b) that is now also available in the crqa package. MdRQA allows the analysis
of multidimensional time series z with samples z1, zy, ..., z,, where each point (sample) in z has d
dimensions:

!t is possible for x and y to be different lengths, and so to produce a rectangular CRP, but this is very rare in
practice and it introduces some complications in computing synchrony measures

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 151

zr = (2k1, 22/ - -+ 1 Zk,d) 8)

Here, recurrences are defined on the d-dimensional coordinate space made up of the points of z:

1 :llzi—z]| <e .
Rij—{ 0 1|\Zi—zj'||>€ i,j=1,2,...n 9)

Like their unidimensional counterparts, multidimensional time series can be embedded into a
higher dimensional space. The logic of estimating the delay and embedding dimension parameters, T
and m, are the same as with univariate RQA (Wallot, 2017; Wallot and Leonardi, 2018a). However,
suppose one has multivariate time series and wants to estimate embedding parameters for those time
series. In that case, one should use the multivariate embedding functions which are also provided
with the new version of the crqa package, because they provide superior estimates of embedding
parameters for multidimensional time series (Wallot and Menster, 2018).

Depending on the underlying data, MdRQA can, in principle, be used for two different purposes.
On the one hand, MdRQA can be used to quantify a multidimensional construct, such as physiological
arousal, by simultaneously looking at its different measurable dimensions (e.g., heart rate, breathing,
and body temperature). This would be the multivariate version of how univariate RQA quantifies the
dynamics of a single unidimensional time series (e.g., breathing alone). On the other hand, MARQA
can be used to examine the shared dynamics of multiple individual time series, such as, for example,
three electrodermal signals measured from three members of a team performing a collaborative task.
Here, MARQA variables would be interpreted as capturing higher-order inter-correlative properties
between the three signals at the level of the group (Wallot et al., 2016b).

In either case, one has to make a decision about whether to normalize the different dimensions of
the time series or not. If each dimension of the multidimensional time series is normalized, for example,
z-scored, it would effectively give each time series equal weight for the definition of recurrence. In
particular, if one does not know how the different time series interact, or if they are measured
on different scales without regard to their potential effects on one another, then normalization is
recommended. Otherwise, the risk is to assign a greater weight to the time series bearing greater
variance. If one is certain that the values of each dimension of the multidimensional time series
are already properly scaled with regard to each other, such as when simultaneously analyzing the
three dimensions of the Lorenz system (Lorenz, 1963), then one needs not—and perhaps should
not—normalize the dimensions.

Multidimensional cross-recurrence quantification analysis (MdCRQA)

Multidimensional cross-recurrence quantification analysis (MdCRQA) extends MARQA in the same
way that CRQA extends RQA. Effectively, MACRQA allows for the computation of cross-recurrences
between two multidimensional time series x and y (Wallot, 2019), where cross-recurrences are defined
between the two d-dimensional coordinate spaces between the points of x and y:

xi = (2i1,2i2,---,Zid) (10)
Yi = (Zj,lrzj,Z/'--/Zj,d) (11)

1 s xi—yllse
CRU—{ 0 Z||Xi—y]'\|>€ ,j=12,...n (12)

It is important that the different dimensions of the two multivariate time series enter the analysis
in the same order. For the example of physiological arousal, if the heart rate is the first dimension
in x, breathing is the second dimension in x, and body temperature is the third dimension in x, then
heart rate also needs to be the first dimension in y, breathing needs to be the second dimension in
y, and accordingly body temperature needs to be the third dimension in y. Otherwise, the resulting
MdACRQA measure will not be interpretable.

Unidimensional and multidimensional cross-recurrence analysis can also be performed in a time-
dependent manner. This so-called windowed cross-recurrence analysis is conceptually very similar
to windowed cross-correlation analysis as in Boker et al. (2002), and it can be used to track how
cross-recurrence changes over the time course. To that end, one simply partitions the time series of
interest into a number of overlapping or non-overlapping sub-series and calculates CRPs for each of
the sub-series. For each CRP, i.e., each sub-series of the original time series, the recurrence measures
are calculated, which allows tracking changes in cross-recurrence over time.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 152

>
w

&1 &
8
=
o | Q
< T o
x s
o 1 g
o
o
= E S \
' o o
&
< | 0
¥ 81 aS \Y
o
-~ .&..Aooo
@ o
T T T T L} L} L} L} L]
0 500 1000 1500 2000 -20 -10 0 10 20
time Lag

Figure 3: Illustration of DCRP. Time series of two of the three dimensions from the Lorenz system,
one in red, the other one in black (A). After computation of their CRP, one can define their diagonal
cross-recurrence profile (DCRP) in order to quantify their time-lagged coupling properties (B). As can
be seen, the two time series are most strongly coupled at around the lags of 5 to 9, where a peak in the
DCRP can be observed.

The diagonal cross-recurrence profile (DCRP)

Finally, from cross-recurrence plots of either two unidimensional time series (i.e., CRQA) or two
multidimensional time series (i.e., MACRQA), it is possible to extract the diagonal cross-recurrence
profiles (DCRPs) and use them to capture leader-follower-relationships (Dale et al., 2011; Marwan
et al.,, 2007). To that end, one has to specify a window size w for the number of lags on the recurrence
plot that one wants to investigate. For example, a window-size of 10 data-points, i.e., w = 10 would
span recurrences of & 10 diagonals from the LOL Specifically, this procedure determines the cross-
recurrence rates of each diagonal, CRy,, by summing up all cross-recurrence points that fall along such
diagonal and divide them by their length:

CRy = Now Y. Ry, (13)

The DCRP permits quantification of the recurrence rate over different relative lags between two
time series. If the peak of cross-recurrences falls along the central diagonal, the line of synchronization
(LOS), then this suggests strong coupling at lag 0 between the two time series. If the peak of cross-
recurrences falls instead on one of the diagonals off the LOS, it indicates that the dynamics of one
time series follow the dynamics of the other time series by some lag equal to that diagonal position
(Figure 3).

Note, however, interpreting the lags in terms of the sampling rate of the underlying measured time
series only applies to CRPs based on unembedded (often categorical) time series. If the time series
are embedded, this means that the observed lag is based on coordinates that are made up of several
data points from the respective original time series, and hence introduces a degree of uncertainty with
regard to the precise time interval of the lag when one tries to map particular recurrence points back
to data points of the original time series. In addition, the leader-follower interpretation of the lags
cannot be granted the status of a causal interpretation. For example, a parent can deliberately ‘lag’
their behavior behind that of their child. In such a case, it would be odd to say definitively that the
child’s behavior is causing the parent’s behavior. For this reason, the DCRP has to be interpreted with
caution and is best treated as a general description of relative temporal relationships.

Package design

The crqa package is available from the Comprehensive R Archive Network (CRAN) at https://cran.
r-project.org/web/packages/crga/index.html. The software is written in R with the exception of
the spdiags function, which contains a section written in Fortran. The main function is crqa, which
takes its name from the package. This function performs all types of recurrence quantification analyses
discussed in the previous section, and it returns the actual recurrence plot, along with the measures
listed in Table 1 extracted from it. Here is how to call this primary function, with arguments and
defaults:

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://cran.r-project.org/web/packages/crqa/index.html
https://cran.r-project.org/web/packages/crqa/index.html

CONTRIBUTED RESEARCH ARTICLES

153

Argument

Description

Usage Notes

ts1 and ts2
delay
embed

rescale

radius

normalize

mindiagline

minvertline

tw
whiteline

recpt

side

method

metric

datatype

The input time series, either unidimensional
or multidimensional time series

A constant indicating the number of time
points used to lag the time series

A constant indicating the number of embed-
ding dimensions applied to the time series
Whether the distance matrix on which recur-
rence is evaluated should be rescaled and
how

A constant used to decide whether the dis-
tance between two points is small enough to
be considered recurrent

Normalize the time series

The minimum number of contiguous points
along the diagonals to consider the system
into a recurrent state

The minimum number of contiguous points
along the vertical lines to consider the system
into a recurrent state

The Theiler window parameter

A logical flag to calculate (TRUE) or not
(FALSE) empty vertical lines.

Alogical flag indicating whether measures of
cross-recurrence are calculated directly from
a recurrent plot (TRUE) or not (FALSE)

A string indicating the side of the recurrence
plot on which recurrence measures should
be calculated

A string to indicate the type of recurrence
analysis to perform

A string to indicate the type of distance met-
ric used

A string (continuous or categorical) to indi-
cate the nature of the data type

If auto-recurrence is used (see method = rga), then t1 and
t2 should be the same time series.
It corresponds to the T of the equations.

It corresponds to the m of the equations.

If rescale = 0, keep the distance matrix as is; if rescale =
1, rescale the distance matrix to its mean; if rescale = 2,
rescale to distance matrix to its maximum value.

For categorical time series, the radius needs to be set at
values smaller than 1. For continuous time series, the value
of the radius needs to tailored to the type of data and its
range.

if normalize = @, keep the time series at their original scale;
if normalize = 1, normalize the time series to unit interval;
if normalize = 2, z-score the time series.

The default value is usually 2, as it takes a minimum of two
points to define any line.

The default value is usually 2, as it takes a minimum of two
points to define any line.

It defines the number of diagonals off the line of identity
that are excluded from recurrence quantification.

The default is FALSE, as the calculation of such lines adds
on the time of computation.

It is mostly useful if the user wants to compute joint-
recurrence analysis. The RP or CRP is supplied in place of
ts1, and ts2 needs to be assigned as NA.

For side = upper, recurrence measures are calculated on
the upper triangle of the RP, for side = lower on the lower
triangle of the RP, for size = both on the full RP. Note,
the line of identity is automatically excluded for upper and
lower setting.

For method = rga, Auto-recurrence is calculated, i.e., a uni-
dimensional series; for method = crqa, cross-recurrence is
calculated; for method = mdcrqga, multidimensional recur-
rence is calculated. Note, the default value is crqa.

To see the list of all other possible metrics, see the help for
the rdist function. Note, the default is euclidean.

If the time series contain categorical information, it will
automatically be recoded into a continuous integer-based
time series with a warning sent to the user.

Table 2: Overview of the arguments that can be used in crqa to set up the recurrence quantification
analysis.

crqa(tsl, ts2, delay, embed, rescale = @, radius, normalize = @, mindiagline = 2,
minvertline = 2, tw = @, whiteline = FALSE, recpt = NULL, side = "upper”,
method = "crga”, metric = "euclidean"”, datatype = "continuous")

Several arguments in this function allow the user to refine aspects of the computation. For example,
the user can modify the metric to obtain the distance matrix when estimating recurrence or the settings
of thresholds to accept contiguous points as recurring (see Table 2 for the list of arguments of crga with
a brief explanation of each). drpfromts can be used to obtain the diagonal cross-recurrence profile,
and this function is built using the crga at its core. In fact, most arguments stay exactly the same,
and we will illustrate the additional arguments that are specific to this function when describing it.
Likewise, the functions wincrga and windowdrp are built on the main function crga and are used to
compute windowed cross-recurrence. The package also contains functions, such as optimizeParam, to
automatically estimate the settings for the three main parameters of RQA analyses, i.e., radius ¢, delay
7, and embedding dimension m, for continuous measures. As recurrence quantification analysis is
heavy on memory requirements, the package features a function (piecewiseRQA) which can be used
to break down the analysis of long time series into smaller and more manageable chunks that are
computationally more tractable. Finally, the package provides the user with functions to simulate
data from classic examples of dynamical systems, such as the Lorenz (lorenzattractor) or categorical
series with different distributions (simts). In what follows, we briefly describe the data available with
the package. These data are used to illustrate the different functionalities of the crqa package.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 154

Related Packages

A search of CRAN shows very few other packages offering alternative methods to compute recurrence
quantification analysis. In particular, tseriesChaos, nonlinearTseries, and RHRV. The function recurr
in tseriesChaos computes a recurrence plot for a (section of) a single unidimensional time series, but
it does not compute any derived measures from the plot characterizing the dynamics of the system,
nor does it handle cross recurrence plots or any of the many extensions to simple recurrence plots
provided by our crqa package. Going a little further, the function rqa in nonlinearTseries returns key
measures from the recurrence plots (e.g., recurrence rate) and quick visualization of the recurrence
plot (available also with the function RecurrencePlot). Finally, the function RecurrencePlot in RHRV
is simply a wrapper built on the function in nonlinearTseries with the same name but specifically
tailored to electrocardiogram data. The functions available in nonlinearTseries provide very basic
functionality in terms of the range of metrics available and optimization routines. They do not allow
the user to examine diagonal structures for leader-follower analyses, nor explore the evolution of
recurrence rate using windowed methods. All such features are integrated into crqa, which, to the best
of our knowledge, is the most comprehensive statistical package to perform recurrence quantification
analysis in R.

Data

Different types of categorical and continuous time series, both unidimensional and multidimensional,
are available with the package. The command load(crga) will load the data into the R workspace. In
particular, we include a nursery rhyme “The wheels on the bus” by Verna Hills to illustrate the most
basic recurrence quantification analysis. This text is a vector of 120 strings (i.e., the words of the song),
and as it is extremely simple and highly repetitive, it makes it a very good example to illustrate the
core concept of recurrence. Then, we move on to cross-recurrence quantification analysis and include
in the data object of the package eye-tracking data from the study by Richardson and Dale (2005). In
this study, a narrator describes the characters of a TV series (Friends) to a listener, who will have to
later answer some comprehension questions about them, while their eye-movement is co-registered.
Here, we use a single trial of this study, which is stored as a data frame of 2,000 observations of six
possible screen locations that are looked at by the narrator and the listener. These are numerically
coded from 1 to 6, representing a 2x3 visual gridz. This data will also be used to illustrate diagonal and
windowed cross-recurrence. Finally, we illustrate multidimensional cross-recurrence analysis using
the hand movement data from the study by Wallot et al. (2016a). In this study, dyads were instructed
to cooperate in a complex LEGO joint construction task under different conditions, while their hand
movements and heart rates were co-registered. Again, we select only a single trial of hand-movement
from the turn-taking condition. The data frame comprises 5,799 observations from two participants
(P1 and P2) for the dominant (_d) and non-dominant (_n) hand.

Using the crqa package
ROA

As explained in section 2.2.1, RQA entails computing the auto-recurrence of a unidimensional time
series. In the context of the nursery rhyme, we expect clear phases of recurrence to emerge because the
words greatly repeat. In order to run this analysis, we use the main function crga and specify in the
argument method that we are running an RQA analysis (method = "rqa"”). As the data that we use
is categorical, we need to specify in the argument datatype that the nature of the data is categorical
(datatype = "categorical"”). This will automatically recode the categorical states of the series (i.e.,
the words) into unique numerical integers so that recurrence can be computed using a radius that has
to be smaller than 1 (e.g., radius = 0.01) so that we can capture the recurrence of identical words.
For categorical RQA, the delay and embedding dimension have to be set to 1 (delay = 1; embed =
13.). We also need to set the Theiler window parameter to 1 (tw = 1) so that we can exclude the LOI
from all recurrence measures. Finally, the same unidimensional time series has to be input both as ts1
and ts2 to obtain its auto-recurrence.

2There are two more states, 10 and 11, to indicate when the listener or the narrator blinked or looked outside of
the screen or to identify possible blinks. They are coded with a different number so that these two states will not
recur when the radius is set near 0.

3If embedding dimension is set to higher values,this becomes equivalent to doing recurrence on n-grams,where
m = n. In fact,this interpretation of categorical recurrence creates bridges to traditional natural language process-
ing,summarized in Dale et al. (2018)

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=tseriesChaos
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=RHRV
https://CRAN.R-project.org/package=tseriesChaos
https://CRAN.R-project.org/package=crqa
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=RHRV
https://CRAN.R-project.org/package=nonlinearTseries
https://CRAN.R-project.org/package=nonlinearTseries

CONTRIBUTED RESEARCH ARTICLES 155

1o 120

100

Time
60

§E5EE8E82¢8525¢8%

Words = £

Figure 4: Recurrence quantification of the nursery rhyme ‘wheels on the bus’. On the left panel, we
show the full recurrence and the red box indicates the region of RP that is zoomed in on the right
panel.

res <- crga(text, text, delay = 1, embed = 1, rescale, radius = 0.01, normalize,
mindiagline, minvertline, tw = 1, whiteline, recpt, side, method = "rqga",
metric = "euclidean”, datatype = "categorical”)

We can use the plotting function plotRP to visualize the resulting recurrence plot. This function
provides some basic arguments to change the size of the points in the plot (pcex), the color (cols), or
their type (pch), which are taken verbatim from the generic plot function.

RP <- res$RP

parC <- list(unit = 10, labelx = "Time", labely = "Time", cols = "black”, pcex = .5,
pch = 15, las = @, labax = seq(@, nrow(RP), 10),
labay = seq(@, nrow(RP), 10))

plotRP(RP, parC)

In order to get a closer understanding of recurrences, we zoom in into a segment of the text, re-run
the crga() function, and visualize it (Figure 4). We add the labels of the axes (x,y), print the words
vertically using the las argument, and decrease the temporal unit argument to print each individual
word on the axes.

text_zoom <- text[81:110]

ans_zoom <- crga(text_zoom, text_zoom, delay, embed, rescale, radius, normalize,
mindiagline, minvertline, tw, whiteline, recpt, side, method, metric,
datatype)

RP <- ans_zoom$RP

parC$labay <- parC$labax <- text_zoom

parC$las <- 2

parC$unit <- 1

parC$labelx <- parC$labely <- "Words”

plotRP(RP, parC)

As it can be clearly seen in Figure 4, the bulk of recurrence in that portion is driven by the repeated
use of the single word wah. When looking at a few measures associated with the RP, we observe an
overall determinism of 85.4%, which implies that the system is fairly repetitive, an average diagonal
line length of 3.88, which implies that on average, there are sequences of four words that repeat, and a
maximum diagonal length of 9, which means that the longest sequence repeating is made of 9 words.
Some measures such as determinism or the average diagonal line length depending on the setting of
the argument mindiagline (equivalent to I,y in Table 1). The default value of this argument is 2, as
two contiguous points form a line, but it can depend on the type of data (e.g., words vs. eye-movement)
or the sample rate at which it is acquired (55 Hz vs. 1,000 Hz). For example, if we have acquired data
at 1,000 Hz, we would practically have one data point every 2 ms. This means that if we use a default
mindiagline of 2, we would be considering as lines any states that contiguously repeat over a 4 ms
window. This value would certainly be unrealistic for some type of responses that unfolds over a
longer period of time (e.g., an eye-movement fixation lasts for an average of 200 ms).

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 156

Cross Recurrence Diagonal Cross Recurrence Windowed Cross Recurrence

30

Recurrence Rate %
Recurrence Rate %

15
0

- PR 3 2 4 0 1z 3 o w2 w4 % e
Time (sec.) Lag (seconds) Time (seconds)

Figure 5: Cross-recurrence using a single trial of eye-movement data measured on a listener and
a narrator. On the left panel, we visualize the full cross-recurrence plot. The transparent red band
represents the lags around the line of coincidence that have been used to calculate the diagonal
cross-recurrence plot (center panel), whereas the transparent blue squares within it are the overlapping
windows used to compute the windowed cross-recurrence profile (right panel).

CRQA:crqga

As already explained in section 2.2.2, cross-recurrence is an extension of auto-recurrence to two
different unidimensional time series. In order to run a cross-recurrence analysis with the crqa package,
we simply need to change the method argument to method = "crga”. Here, we illustrate its use through
two time series of eye-movement data explained in section 2.3.2. Also, we input two different time
series of eye-movement data, narrator and listener, rather than just one. An optional argument that
is available in the crga function is the side (upper, lower, or both) of the recurrence plot on which
recurrence measures are computed. This may be useful, for example, for researchers interested in
leader-follower dynamics (see Figure 5, left panel, for the visualization of the cross-recurrence plot).

Diagonal-CRQA: drpfromts

In section 2.2.2, we explained what diagonal cross-recurrence is and how it can be used. In the crga
package, this measure is computed by the function drpfromts, which utilizes the same arguments
of the main crqa function plus an additional argument, windowsize, to define the number of lags
(or diagonals) around the line of synchronization (LOS) of the CRP over which recurrence rate is
computed. In the example visualized in Figure 5, center panel, we have chosen a window of 100 lags,
which spans about +3 seconds around the LOS. We can clearly see that the peak recurrence is shifted
by ~ 1 second from the LOS, i.e., lag 0. This reflects the time taken by the listener to look at the same
panel the narrator was looking at—namely, about 1 second for a listener to “catch up” to the speaker.

res <- drpfromts(narrator, listener, windowsize = 100, radius = 0.001,
delay = 1, embed = 1, rescale = @, normalize = @, mindiagline = 2,
minvertline = 2, tw = @, whiteline = F, recpt = F, side = "both",
method = "crga”, metric = "euclidean”, datatype = "continuous")

Windowed-CRQA: windowdrp

Windowed cross-recurrence captures the evolution of recurrence rate over time. In the context of
the eye-movement data, this measure reflects how consistently listener and narrator are looking at
the same scene location at any given point in time. More importantly, the windowed methodology
reveals how recurrence changes over time (refer to section 2.2.5 for more details). We use the function
windowdrp to compute this measure, which again shares the same arguments of crqa, plus three more
that are specific to it. In particular, we have to set: (a) the size of the window that slides over the
time-course, e.g., windowsize = 109, (b) the step that we want this window to move, e.g., windowstep =
20, and (c) the number of lags4 within the window of interest over which recurrence rate is computed,
e.g., lagwidth = 50. In Figure 5, right panel, we observe that the recurrence rate grows over time,
which means that the narrator and the listener tend to look more and more at the same panels as the
trial progresses.

“Note, that the number of lags cannot be greater than the size of the window.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 157

res <- windowdrp(narrator, listener, windowstep = 20, windowsize = 100, lagwidth = 50,
radius = 0.001, delay = 1, embed = 1, rescale = @, normalize = 0,
mindiagline = 2, minvertline = 2, tw = @, whiteline = F, side = "both"”,
method = "crqga”, metric = "euclidean”, datatype = "continuous")

MdCRQA

Finally, we compute multidimensional cross-recurrence by setting the method argument, i.e., method
= "mdcrga”. Note, in order to compute multidimensional recurrence, the user needs to provide the
same data frame as input to both ts1 and ts2. This method is also available for drpfromts and
windowdrp. Applied to the hand movement data, we first restructure the data of the two participants
into independent sets. We re-use the same parameter settings of Wallot et al. (2016a) to compute
MACRQA and leave all other arguments with their default values.

P1 <- cbind(handset$P1_TT_d, handset$P1_TT_n)

P2 <- cbind(handset$P2_TT_d, handset$P2_TT_n)

res <- crga(P1, P2, delay = 5, embed = 2, rescale = @, radius = 0.1,
normalize = @, mindiagline = 10, minvertline = 10, tw = 0,
whiteline, recpt, side, method = "mdcrqa”, metric, datatype)

Breaking down the computation: piecewiseRQA

Often, researchers are interested in time series which contain several thousands of observations.
Sometimes the dimensionality of these time series can be reduced without losing too much information,
such as by down-sampling. This strategy may not always be possible or serve the researcher’s purpose.
Recurrence quantification analysis can require more RAM than is available in standard laptops or
personal workstations, making it nearly impossible to run. In the new version of the crqa package, we
provide the user with the piecewiseRQA function, which can be used to compute all different variants
of recurrence quantification analysis described above on long time series. Conceptually, this function
divides the time series into blocks, obtains a recurrence plot for each individual block, and then fills
the original recurrence plot with all such sub-blocks, before computing the measures.’

For example, if we are handling a time series of 10,000 observations, we could divide it into
10 blocks of 1,000 observations each. piecewiseRQA has exactly the same arguments that we have
already encountered in the main crga function but has an additional two that are used to control
the size of the block, e.g., blockSize = 100, and the argument typeRQA, which can take two options,
either full or diagonal. If the value for typeRQA is diagonal, only the diagonal cross-recurrence will
be computed; if full, the recurrence measures will be obtained out of the full plot(’. In Figure 6,
we visualize the computational speed (left panel) and memory demand (right panel) on simulated
time series of sinusoids of increasing size and compare what happens if we run the piecewiseRQA,
also with blocks of increasing size, as compared to running the main crqa function. We can clearly
see that for time series of increasing length, memory demands are kept lower by the piecewiseRQA
function as compared to the crqa. However, we can also see that there is a wide variance for blocks of
different sizes. Therefore, it may be wise to explore the block sizes to find the one that can optimize
the computational performance over a single trial before running the piecewise recurrence analysis on
an entire dataset.

Estimating starting parameters: optimizeParam

The last function we showcase is optimizeParam, which helps the user exploring the space of values
for the parameters of delay, embedding dimension and radius to compute recurrence quantification
on continuous-valued time series. In particular, optimizeParam first estimates the average mutual
information (AMI) of either the unidimensional or multidimensional time series and chooses the
value that minimizes it. Then, it takes such a delay value and evaluates the embedding dimensions
maximizing the false-nearest neighbors (FNN)’. As a last step, optimizeParam applies the values of
delay and embedding dimension obtained to find a radius which returns a recurrence rate within
a minimum and maximum value established by the user. We apply optimizeParam() to simulated

5This function is similar to the crp_big function in the long-standing CRP-toolbox for MATLAB by Marwan
and colleagues: http://tocsy.pik-potsdam.de.

6Currently, the windowed cross-recurrence is not implemented to work with the piecewiseRQA.

7Users can also access the functions to compute delay (MdDelay) and embedding dimensions (MdFnn) indepen-
dently of optimizeParam

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

http://tocsy.pik-potsdam.de.

CONTRIBUTED RESEARCH ARTICLES 158

Speed s Memory
o
~ | o 1000 B
° 1500
g * g4 2000 f]
@ | 2500 ®
L3 3000 @
o
o le) —~ S+ 3500
2 2 37 = 4000
— ® = | 4500
o) g | @ 5000
o J
3 ol ° 2810 5500
=8 £ 2 6000 *
£ x 3 g |= 6500 °
i = Sqe ful
o x ©
N ©
° 8 =8,
~ N
e 4
o A
) * s1e
P
T T T T T T T T T T
3000 4000 5000 6000 7000 3000 4000 5000 6000 7000
Number of Data Points Number of Data Points

Figure 6: Evaluating the speed (time in seconds, left panel) and memory (peak RAM in MB, right
panel) performance of crqa() and piecewiseRQA() for simulated data of increasing size (from 3000 to
7000 data points). We compare the use of blocks of different sizes (from 1000 to 6500 in increments of
500, coded using color and point type) with the case of running crqa() on the entire sequence of data
points.

sinusoids to show the unidimensional case, and to the hand movement data of Wallot et al. (2016a) to
show the multidimensional case.

In order to set up the estimation of the delay and embedding dimensions for unidimensional time
series, the user has to decide how to choose the value of average mutual information (i.e., typeami =
mindip, the lag at which minimal information is observed, or typeami = maxlag, the maximum lag at
which minimal information is observed) and the relative percentage of information gained in FNN,
relative to the first embedding dimension, when higher embeddings are considered (i.e., fnnpercent).
Then, as crga is integrated into the optimizeParam to estimate the radius, most of the arguments are
the same (e.g., mindiagline or tw), except the number of values of that are considered (i.e., radiusspan
= 100).

ts1 <- seq(@.1, 200, .1)

ts1 <- sin(ts1) + linspace(@, 1,length(ts1))

ts2 <- tsli

par <- list(method = "rga"”, metric = "euclidean”, maxlag = 20, radiusspan = 100,
normalize = @, rescale = 4, mindiagline = 10, minvertline = 10, tw = 0,
whiteline = FALSE, recpt = FALSE, side = "both", datatype = "continuous”,
fnnpercent = 10, typeami = "mindip")

results <- optimizeParam(tsl, ts2, par, min.rec = 2, max.rec = 5)

print(unlist(results))

radius emddim delay
0.17 2 18

For multidimensional series, the user needs to specify the right RQA method (i.e., method =
"mdcrga”). Then, for the estimation of the delay via AMI: (1) nbins, which is the number of breaks
used to define the bins within which the two-dimensional histogram (or frequency distribution) of the
original and delayed time series are computed, and (2) the criterion to select the delay (firstBelow
to use the lowest delay at which the AMI function drops below the value set by the threshold
argument, and localMin to use the position of the first local AMI minimum). The estimation of the
embedding dimensions instead needs the following arguments: (1) maxEmb, which is the maximum
number of embedding dimensions considered, (2) noSamples, which is the number of randomly drawn
coordinates from phase space used to estimate the percentage of false-nearest neighbors, (3) Rtol,
which is the first distance criterion for separating false neighbors, and (4) Atol, which is the second
distance criterion for separating false neighbors. The radius is estimated as before.

par$method <- "mdcrqga”
par$nbins <- 50

par$criterion <- "firstBelow”
par$threshold <- 1.6
par$maxEmb <- 20

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 159

par$numSamples <- 500

par$Rtol <- 10

par$Atol <- 2

results <- optimizeParam(P1, P2, par, min.rec = 2, max.rec = 5)
print(unlist(results))

radius emddim delay
0.032 11 2

Conclusion

This paper describes recurrence quantification analysis, a statistical method to characterize the nonlin-
ear dynamics of a system. It has received a growing interest from researchers across very different
fields from physiology to psychology because of its flexibility, ease of application, and explanatory
power. In particular, we explain recurrence analysis from the simplest case of auto-recurrence of a
unidimensional time series to the most complex case of multidimensional cross-recurrence. More
importantly, we presented a significantly updated version of the crqa to perform all different variants
of recurrence analysis described in the theoretical section of this manuscript. We showcased the
different functions available in crqa with real data of categorical and continuous nature, and illustrated
how starting parameters for continuous data could be obtained (i.e., radius, embedding dimension,
and delay) as well as handling long time series in a memory-efficient way using additional functions
available in crqa.

It is useful to end with some observations regarding the broader relevance of the package presented
here. The RQA methodology and the updated crqa tap into a number of evolving problems in data
analysis across various disciplines. For example, there is a drive to improve measures and models
of multimodal data (Abawajy, 2015; Dale, 2015; Lahat et al., 2015), including multi-person measures
(Cooke et al., 2013; Lopez Pérez et al., 2017; Schilbach et al., 2013; von Zimmermann and Richardson,
2016; Wallot et al., 2016a). RQA and its multidimensional counterpart implemented in our package
constitute an extraordinarily expansive analysis tool for exploring varied kinds of complex and
multidimensional data. In addition, a demand for more dynamic quantitative analyses has now
also penetrated into the social sciences (Chemero, 2011; Friedenberg, 2009; Spivey, 2008; Ward, 2002;
Pagnotta et al., 2020). crga is designed to be a comprehensive analysis package for studying the
dynamics of diverse systems, especially systems that exhibit high degrees of interdependence, and
that show signatures in their dynamics that are critical for understanding them.

Acknowledgments
SW acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation)-WA 3538/4-1. MIC acknowledges support from the Fundacao para a Ciéncia e Tecnologia
under grant agreement PTDC /PSI-ESP /30958 /2017.

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 160

Bibliography

J. Abawajy. Comprehensive analysis of big data variety landscape. International journal of parallel,
emergent and distributed systems, 30(1):5-14, 2015. [p159]

D. H. Abney, A. S. Warlaumont, A. Haussman, J. M. Ross, and S. Wallot. Using nonlinear methods to
quantify changes in infant limb movements and vocalizations. Frontiers in psychology, 5:771, 2014.
[p145]

P. Alex, S. Arumugam, K. Jayaprakash, and K. Suraj. Order-chaos—order—chaos transition and
evolution of multiple anodic double layers in glow discharge plasma. Results in Physics, 5:235-240,
2015. [p145]

B. Ambrozkiewicz, Y. Guo, G. Litak, and P. Wolszczak. Dynamical response of a planetary gear system
with faults using recurrence statistics. In Topics in Nonlinear Mechanics and Physics, pages 177-185.
Springer, 2019. [p145]

S. M. Boker, J. L. Rotondo, M. Xu, and K. King. Windowed cross-correlation and peak picking for the
analysis of variability in the association between behavioral time series. Psychological methods, 7(3):
338, 2002. [p151]

A. Chemero. Radical embodied cognitive science. MIT press, 2011. [p159]

M. I. Coco and R. Dale. Cross-recurrence quantification analysis of categorical and continuous time
series: an r package. Frontiers in psychology, 5:510, 2014. URL https://doi.org/10.3389/fpsyg.
2014.00510. [p145]

M. L. Coco, L. Badino, P. Cipresso, A. Chirico, E. Ferrari, G. Riva, A. Gaggioli, and A. D"Ausilio.
Multilevel behavioral synchronization in a joint tower-building task. IEEE Transactions on Cognitive
and Developmental Systems, 9(3):223-233, 2016. [p145]

M. I. Coco, R. Dale, and F. Keller. Performance in a collaborative search task: The role of feedback and
alignment. Topics in cognitive science, 10(1):55-79, 2018. [p145]

N. J. Cooke, J. C. Gorman, C. W. Myers, and J. L. Duran. Interactive team cognition. Cognitive science,
37(2):255-285, 2013. [p159]

R. Dale. An integrative research strategy for exploring synergies in natural language performance.
Ecological Psychology, 27(3):190-201, 2015. [p159]

R. Dale, A. S. Warlaumont, and D. C. Richardson. Nominal cross recurrence as a generalized lag
sequential analysis for behavioral streams. International Journal of Bifurcation and Chaos, 21(04):
1153-1161, 2011. URL https://doi.org/10.1142/S0218127411028970. [p/l45, 152]

R. Dale, N. D. Duran, and M. Coco. Dynamic natural language processing with recurrence quantifica-
tion analysis. arXiv preprint arXiv:1803.07136, 2018. [p154]

R. Donner and M. Thiel. Scale-resolved phase coherence analysis of hemispheric sunspot activity: a
new look at the north-south asymmetry. Astronomy & Astrophysics, 475(3):L33-L36, 2007. [p145]

A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual infor-
mation. Phys. Rev. A, 33:1134-1140, Feb 1986. URL https://doi.org/10.1103/PhysRevA.33.1134.
[p149]

J. Friedenberg. Dynamical psychology: Complexity, self-organization and mind. ISCE Publishing, 2009.
[p159]

J. Garland, E. Bradley, and]J. D. Meiss. Exploring the topology of dynamical reconstructions. Physica
D: Nonlinear Phenomena, 334:49 — 59, 2016. URL https://doi.org/10.1016/7.physd.2016.03.006.
Topology in Dynamics, Differential Equations, and Data. [p149]

V. Hilarov. Detection of the fracture zone by the method of recurrence plot. Physics of the Solid State, 59
(12):2401-2406, 2017. [p145]

M. B. Kennel, R. Brown, and H. D. I. Abarbanel. Determining embedding dimension for phase-
space reconstruction using a geometrical construction. Phys. Rev. A, 45:3403-3411, Mar 1992. URL
https://doi.org/10.1103/PhysRevA.45.3403. [p149]

D. Lahat, T. Adali, and C. Jutten. Multimodal data fusion: an overview of methods, challenges, and
prospects. Proceedings of the IEEE, 103(9):1449-1477, 2015. [p159]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.3389/fpsyg.2014.00510
https://doi.org/10.3389/fpsyg.2014.00510
https://doi.org/10.1142/S0218127411028970
https://doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1016/j.physd.2016.03.006
https://doi.org/10.1103/PhysRevA.45.3403

CONTRIBUTED RESEARCH ARTICLES

161

J. Langbein, G. Niirnberg, and G. Manteuffel. Visual discrimination learning in dwarf goats and
associated changes in heart rate and heart rate variability. Physiology & behavior, 82(4):601-609, 2004.

[p145]

G. Leonardi. A method for the computation of entropy in the recurrence quantification analysis of
categorical time series. Physica A: Statistical Mechanics and its Applications, 512:824 — 836, 2018. ISSN
0378-4371. URL https://doi.org/10.1016/j.physa.2018.08.058. [p149]

D. Lépez Pérez, G. Leonardi, A. NiedZzwiecka, A. Radkowska, J. Raczaszek-Leonardi, and P. Tomalski.
Combining recurrence analysis and automatic movement extraction from video recordings to study
behavioral coupling in face-to-face parent-child interactions. Frontiers in psychology, 8:2228, 2017.

[p159]

E. N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2):130-141, 1963.
[p151]

N. Marwan and J. Kurths. Nonlinear analysis of bivariate data with cross recurrence plots. Physics
Letters A, 302(5-6):299-307, 2002. [p145, 146]

N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths. Recurrence-plot-based Measures
of Complexity and their Application to Heart-rate-variability Data. Physical Review E, 66(2):026702,
aug 2002. doi: 10.1103/PhysRevE.66.026702. [p145]

N. Marwan, M. C. Romano, M. Thiel, and J. Kurths. Recurrence plots for the analysis of complex
systems. Physics Reports, 438(5):237 — 329, 2007. ISSN 0370-1573. URL https://doi.org/10.1016/7.
physrep.2006.11.001. [p145, 146, 149, 152]

D. Mestivier, H. Dabiré, and N. P. Chau. Effects of autonomic blockers on linear and nonlinear indexes
of blood pressure and heart rate in shr. American Journal of Physiology-Heart and Circulatory Physiology,
281(3):H1113-H1121, 2001. [p145]

D. Manster, D. D. Hakonsson, J. K. Eskildsen, and S. Wallot. Physiological evidence of interpersonal
dynamics in a cooperative production task. Physiology & Behavior, 156:24 — 34, 2016. URL https:
//doi.org/10.1016/j.physbeh.2016.01.004. [p145]

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a time series. Physical
review letters, 45(9):712,1980. URL https://doi.org/10.1103/PhysRevlett.45.712. [p146]

M. Pagnotta, K. N. Laland, and M. L. Coco. Attentional coordination in demonstrator-observer dyads
facilitates learning and predicts performance in a novel manual task. Cognition, 201:104314, 2020.
[p145, 159]

D. C. Richardson and R. Dale. Looking to understand: The coupling between speakers’ and listeners’
eye movements and its relationship to discourse comprehension. Cognitive science, 29(6):1045-1060,
2005. [p154]

L. Schilbach, B. Timmermans, V. Reddy, A. Costall, G. Bente, T. Schlicht, and K. Vogeley. Toward a
second-person neuroscience 1. Behavioral and brain sciences, 36(4):393-414, 2013. [p159]

K. Shockley, M. Butwill, J. P. Zbilut, and C. L. J. Webber. Cross recurrence quantification of coupled
oscillators. Physics Letters A, 305:59-69, 2002. [p150]

K. Shockley, M.-V. Santana, and C. A. Fowler. Mutual interpersonal postural constraints are involved
in cooperative conversation. Journal of Experimental Psychology: Human Perception and Performance,
29(2):326, 2003. [p145]

M. Spivey. The continuity of mind. Oxford University Press, 2008. [p159]

F. Takens. Detecting strange attractors in turbulence. In D. Rand and L.-S. Young, editors, Dynamical
Systems and Turbulence, Warwick 1980, pages 366-381, Berlin, Heidelberg, 1981. Springer Berlin
Heidelberg. URL https://doi.org/10.1007/BFb0091924. [p146]

N. Thomasson, T. J. Hoeppner, C. L. Webber Jr, and J. P. Zbilut. Recurrence quantification in epileptic
eegs. Physics Letters A, 279(1-2):94-101, 2001. [p145]

L. T. Timothy, B. M. Krishna, and U. Nair. Classification of mild cognitive impairment eeg using
combined recurrence and cross recurrence quantification analysis. International Journal of Psychophys-
iology, 120:86-95, 2017. [p145]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1016/j.physa.2018.08.058
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physbeh.2016.01.004
https://doi.org/10.1016/j.physbeh.2016.01.004
https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1007/BFb0091924

CONTRIBUTED RESEARCH ARTICLES 162

L. Trulla, A. Giuliani, J. Zbilut, and C. Webber Jr. Recurrence quantification analysis of the logistic
equation with transients. Physics Letters A, 223(4):255-260, 1996. [p146]

J. von Zimmermann and D. C. Richardson. Verbal synchrony and action dynamics in large groups.
Frontiers in Psychology, 7:2034, 2016. [p159]

S. Wallot. Recurrence quantification analysis of processes and products of discourse: A tutorial in r.
Discourse Processes, 54(5-6):382-405, 2017. URL https://doi.org/10.1080/0163853X.2017.1297921.

[p151]

S. Wallot. Multidimensional cross-recurrence quantification analysis (mdcrqa) — a method for quanti-
fying correlation between multivariate time-series. Multivariate Behavioral Research, 54(2):173-191,
2019. URL https://doi.org/10.1080/00273171.2018.1512846. [p151]

S. Wallot and G. Leonardi. Analyzing multivariate dynamics using cross-recurrence quantification
analysis (crqa), diagonal-cross-recurrence profiles (dcrp), and multidimensional recurrence quantifi-
cation analysis (mdrqa) — a tutorial in r. Frontiers in Psychology, 9:2232, 2018a. ISSN 1664-1078. URL
https://doi.org/10.3389/fpsyg.2018.02232. [p150, 151]

S. Wallot and G. Leonardi. Deriving inferential statistics from recurrence plots: A recurrence-based
test of differences between sample distributions and its comparison to the two-sample kolmogorov-
smirnov test. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(8):085712, 2018b. URL
https://doi.org/10.1063/1.5024915. [p146]

S. Wallot and D. Menster. Calculation of average mutual information (ami) and false-nearest neighbors
(fnn) for the estimation of embedding parameters of multidimensional time series in matlab. Frontiers
in psychology, 9, 2018. URL https://doi.org/10.3389/fpsyg.2018.01679. [p145, 149, 150, 151]

S. Wallot, P. Mitkidis, J. J. McGraw, and A. Roepstorff. Beyond synchrony: joint action in a complex
production task reveals beneficial effects of decreased interpersonal synchrony. PloS one, 11(12):
e0168306, 2016a. [p154, 157, 158, 159]

S. Wallot, A. Roepstorff, and D. Menster. Multidimensional recurrence quantification analysis (mdrqa)
for the analysis of multidimensional time-series: A software implementation in matlab and its
application to group-level data in joint action. Frontiers in psychology, 7:1835, 2016b. URL https:
//doi.org/10.3389/fpsyg.2016.01835. [p145, 150, 151]

S. Wallot,]. T. Lee, and D. G. Kelty-Stephen. Switching between reading tasks leads to phase-transitions
in reading times in 11 and 12 readers. PloS one, 14(2):e0211502, 2019. [p145]

L. M. Ward. Dynamical cognitive science. MIT press, 2002. [p159]

C. L. Webber and J. P. Zbilut. Dynamical assessment of physiological systems and states using
recurrence plot strategies. Journal of Applied Physiology, 76(2):965-973, 1994. URL https://doi.org/
10.1152/jappl.1994.76.2.965. [p145]

C. Webber Jr and J. Zbilut. Recurrence quantification analysis of nonlinear dynamical systems. national
science foundation, washington dc, usa. chapter 2, methods for the behavioral sciences, eds. m. riley
and g. van orden, 2005. URL https://nsf.gov/pubs/2005/nsf05057/nmbs/nmbs. jsp. [p149]

M. Wijnants, F. Hasselman, R. Cox, A. Bosman, and G. Van Orden. An interaction-dominant perspective
on reading fluency and dyslexia. Annals of dyslexia, 62(2):100-119, 2012. [p145]

J. P. Zbilut and C. L. Webber. Embeddings and delays as derived from quantification of recurrence plots.
Physics Letters A, 171(3):199 — 203, 1992. URL https://doi.org/10.1016/0375-9601(92)90426-M.
[p145, 149]

J. P. Zbilut, A. Giuliani, and C. L. Webber. Detecting deterministic signals in exceptionally noisy
environments using cross-recurrence quantification. Physics Letters A, 246(1):122 — 128, 1998. ISSN
0375-9601. URL https://doi.org/10.1016/50375-9601(98)00457-5/. [p145, 149]

N. Zolotova and D. Ponyavin. Phase asynchrony of the north-south sunspot activity. Astronomy &
Astrophysics, 449(1):L1-L4, 2006. [p145]

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://doi.org/10.1080/0163853X.2017.1297921
https://doi.org/10.1080/00273171.2018.1512846
https://doi.org/10.3389/fpsyg.2018.02232
https://doi.org/10.1063/1.5024915
https://doi.org/10.3389/fpsyg.2018.01679
https://doi.org/10.3389/fpsyg.2016.01835
https://doi.org/10.3389/fpsyg.2016.01835
https://doi.org/10.1152/jappl.1994.76.2.965
https://doi.org/10.1152/jappl.1994.76.2.965
https://nsf.gov/pubs/2005/nsf05057/nmbs/nmbs.jsp
https://doi.org/10.1016/0375-9601(92)90426-M
https://doi.org/10.1016/S0375-9601(98)00457-5/

CONTRIBUTED RESEARCH ARTICLES 163

Moreno 1. Coco

School of Psychology
University of East London
E154LZ, London, UK
E-mail: M.Coco@uel .ac.uk

Dan Monster

School of Business and Social Sciences
Aarhus University

DK-8210, Aarhus V, Denmark
ORCiD: 0000-0001-9639-8823
E-mail: danm@econ. au.dk

Giuseppe Leonardi

Institute of Psychology

University of Economics and Human Sciences in Warsaw
01-043, Warsaw, Poland

E-mail: g.leonardi@vizja.pl

Rick Dale

Department of Communication
University of California, Los Angeles
CA 90005, Los Angeles, USA
E-mail: rdale@ucla.edu

Sebastian Wallot

Department of Language and Literature

Max Planck Institute for Empirical Aesthetics
GR-60322, Frankfurt a.M., Germany

E-mail: sebastian.wallot@ae.mpg.de

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

mailto:M.Coco@uel.ac.uk
mailto:danm@econ.au.dk
mailto:g.leonardi@vizja.pl
mailto:rdale@ucla.edu
mailto:sebastian.wallot@ae.mpg.de

CONTRIBUTED RESEARCH ARTICLES 164

clustcurv: An R Package for Determining
Groups in Multiple Curves

by Nora M. Villanueva, Marta Sestelo, Luis Meira-Machado and Javier Roca-Pardifias

Abstract In many situations, it could be interesting to ascertain whether groups of curves can be
performed, especially when confronted with a considerable number of curves. This paper introduces
an R package, known as clustcurv, for determining clusters of curves with an automatic selection of
their number. The package can be used for determining groups in multiple survival curves as well as
for multiple regression curves. Moreover, it can be used with large numbers of curves. An illustration
of the use of clustcurv is provided, using both real data examples and artificial data.

Keywords: multiple curves, number of groups, nonparametric, survival analysis, regression models,
cluster

Introduction

A problem often encountered in many fields is the comparison of several populations through specific
curves. Typical examples, considered by a number of authors, are given by the comparison of survival
curves in survival analysis, children growth curves in pediatrics, or the comparison of regression
curves in regression analysis. In many of these studies, it is very common to compare a large number
of curves between groups, and methods of summarizing and extracting relevant information are
necessary. A common approach is to look for a partition of the sample into a number of groups in
such a way that curves in the same group are as alike as possible but as distinct as possible from
those in other groups. This process is also known as curve clustering. A hypothesis test can be used
to ascertain that the curves in the same group are equal. A fundamental and difficult problem in
clustering curves is the estimation of the number of clusters in a dataset.

Traditionally, the comparison of these functions is performed using parametric models through
the comparison of the resulting model parameters. This approach, however, requires the specification
of the parametric model, which is often difficult and may be considered a disadvantage. Several
nonparametric methods have been proposed in the literature to compare multiple curves. In the
area of survival analysis, for example, several nonparametric methods have been proposed to test
for the equality of survival curves for censored data. The most well-known and widely used to
test the null hypothesis of no difference in survival between two or more independent groups was
proposed by Mantel (1966). An alternative test that is often used is the Peto & Peto (Peto and Peto,
1972) modification of the Gehan-Wilcoxon test (Gehan, 1965). Several other variations of the log-rank
test statistic using weights on each event time have been proposed in the literature (Tarone and Ware,
1977; Harrington and Fleming, 1982; Fleming et al., 1987) as well as other procedures to compare these
survival curves based on different measures, as can be the medians (Chen and Zhang, 2016). There
exists an extensive literature on curve comparison in the framework of regression analysis. In this
context, several nonparametric tests have been proposed to test the equality of the mean functions,
Hp:mp = -+ =m;. Hall and Hart (1990) proposed a bootstrap test, while Hérdle and Mammen (1993)
Hardle and Marron (1990) suggested a semiparametric approach based on kernel smoothing. Other
relevant papers on this topic are King et al. (1991) , Delgado (1993) , Kulasekera (1995) , Young and
Bowman (1995), Dette and Neumeyer (2001), Pardo-Fernandez et al. (2007) , Srihera and Stute (2010),
among others. A good review on this topic can be seen in the paper by Neumeyer and Dette (2003).

When the null hypothesis of equality of curves is rejected, leading to the clear conclusion that
at least one curve is different, it can be interesting to ascertain whether curves can be grouped or
if all these curves are different from each other. In this setting, one naive approach would be to
perform pairwise comparisons. In this line are the papers by Rosenblatt (1975), Gonzalez-Manteiga
and Cao (1993), Hardle and Mammen (1993), Dette and Neumeyer (2001) who proposed alternative
tests of the null hypothesis of equality of curves obtained from pairwise comparisons of the estimators
of the regression functions. A similar statistic was also considered by King et al. (1991). Pairwise
comparisons between group levels with corrections for multiple testing are also possible in the
framework of survival analysis. Among others, this can be achieved with the pairwise_survdiff of
the package survminer (Kassambara et al., 2019). However, in any case, this approach would lead
to a large number of comparisons without the possibility of determining groups with similar curves.
Results for such a test can tell us that all combinations are different, or just one pair. When the number
of curves to be compared increase, so does the difficulty of interpretation.

For partitioning a given set of curves into a set of K groups of curves (i.e., K clusters), Villanueva
et al. (2019) propose an adaptation of the K-means methodology. K-means is probably the most

The R Journal Vol. 13/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=clustcurv
http://CRAN.R-project.org/package=survminer

CONTRIBUTED RESEARCH ARTICLES 165

commonly used clustering method for splitting a dataset into a set of K groups with a very simple
and fast algorithm. Furthermore, it can efficiently deal with very large data sets. One potential
disadvantage of K-means clustering is that it requires the number of clusters to be pre-specified. A
method is proposed by Villanueva et al. (2019) to determine the number of clusters.

The development of clustcurv R package has been motivated by recent contributions that account
for these problems, in particular, the methods proposed by Villanueva et al. (2019) to determine
groups in multiple survival curves and those introduced by Villanueva et al. (Manuscript submitted
for publication, 2019) in the framework of regression curves. The clustcurv R package attempts to
answer the following two questions: (i) given a potential large sample of curves, what is the best
value for the number of clusters? (ii) What is the best subdivision of the sample curves into a given
number of K clusters? To facilitate the task of selecting the optimal number of clusters as well as the
composition of the clusters, it is essential to have software for implementing the proposed methods
in an environment that researchers will find user-friendly and easily understandable. We believe
that our package can answer this aim by providing several user-friendly functions. The package
clustcurv is freely available from the Comprehensive R Archive Network (CRAN) at https://cran.r-
project.org/web/packages/clustcurv

Three data sets were chosen for illustration of the software usage with real data. The first two
datasets show the applicability of the proposed methods for obtaining clusters of survival curves.
These applications were chosen to solve two real problems in the study of recurrence of breast cancer
patients and survival of myeloma cancer. To illustrate the package usage in the regression context we
used real data from a Barnacle’s Growth study conducted in Galicia, Spain. Simulated data were also
used to illustrate the package capabilities in a more complicated scenario.

The remainder of the paper is structured as follows: Section 2 briefly reviews methods for selecting
the number of clusters and the nonparametric test used; Section 3 explains the use of the main functions
and methods of clustcurv; Section 4 gives an illustration of the practical application of the package
using real and simulated data; and finally, the last section concludes with a discussion and possible
future extensions of the package.

An overview of the methodology

In this section, we briefly review the methodological background of the clustcurv package. As it
solves problems addressed in the field of survival analysis and regression analysis, firstly, the notation
and the nonparametric estimation procedures for both contexts are exposed. Then, the procedure for
determining groups of curves is explained in detail, considering a general framework which includes
the aforementioned contexts. Briefly, our procedure is described as follows. First, the | curves are
estimated by nonparametric estimators. Second, given a number of K groups, the optimal possible
assignment of | curves into K groups is chosen by means of a heuristic algorithm. Third, the optimal
number of groups is determined using an automatic bootstrap-based testing procedure.

Notation and estimation procedure in the survival context

We will assume the J-sample general random censorship model where observations are made on #;
individuals from population j(j = 1,...,]). Denote n = 2]121 n; and suppose that the observations
from the 7 individuals are mutually independent. Let Tj; be an event time corresponding to an
event measured from the start of the follow-up of the i-th subject (i = 1,...,n;) in the sample j, and
assume that T}; is observed subject to a (univariate) random right-censoring variable C;; assumed to be
independent of T;;. Due to the censoring, rather than T;;, we observe (Tij, Aij), where Tij = min(Ti]-, Cz-]-),
Ajj = I(T;j < Cjj), where I(-) is the indicator function.

Since the censoring time is assumed to be independent of the process, the survival functions,
S;(t) = P(T; > t), may be consistently estimated by the Kaplan-Meier estimator (Kaplan and Meier,
1958) based on the (T"], Aj). The Kaplan-Meier estimator or the Product-Limit estimator is a nonpara-
metric method frequently used to estimate survival for censored data. Let f; < fp <... <tp, m; <n;
denote the distinct ordered failure times from population j (j = 1,...,]), and let d,, be the number of
events from population j at time ¢,. Then, the Kaplan-Meier estimator of survival (for population j) is

~ dy
Si(t) = ul‘[ﬂ (1— Rj(tu)),

where R;(t) = Zln; 11 (Tl] > t) denote the number of individuals at risk just before time ¢, among
individuals from population j. The Kaplan-Meier estimate is a step function with jumps at event times.

The R Journal Vol. 13/1, June ISSN 2073-4859

https://cran.r-project.org/web/packages/clustcurv
https://cran.r-project.org/web/packages/clustcurv

CONTRIBUTED RESEARCH ARTICLES 166

The size of the steps depends on the number of events and the number of individuals at risk at the
corresponding time. Under this setup, we will be interested to determine clusters in multiple survival
curves.

Notation and estimation procedure in the regression context

Let (X, Y;) be] independent random vectors, and assume that they satisfy the following nonparamet-
ric regression models, forj =1,...,],

Y = mi(X;) +ej (1)

where the error variable ¢; has mean zero, and m;(X;) = E(Y}|X;) is the unknown regression function.
We do not make any assumptions about the error distribution.

The regression models in (1) can be estimated using several approaches, such as methods based on
regression splines (de Boor, 2001), Bayesian approaches (Lang and Brezger, 2004), or local polynomial
kernel smoothers (Wand and Jones, 1995; Fan and Gijbels, 1996). In this package, local linear kernel
smoothers, as implemented in the npregfast package, are used.

Determining groups of nonparametric curves

As noted earlier, several authors have proposed different methods that can be used to compare
estimates of nonparametric functions of multiple samples. The null hypothesis is that all the curves
have identical functions, Hy : /1 = ... = F;. However, if this hypothesis is rejected, there are no
available procedures that let determine groups among these curves, that is, to assess if the levels
{1,...,]} can be grouped in K groups (G, ..., Gx) with K <], so that F; = Fjforalli,j € Gy, for
eachk =1,...,K. Note that (Gy, ..., Gg) must be a partition of {1,...,]}, and therefore must satisfy
the following conditions:

glU...UgK:{l,...,]} and giﬂgj:@, Vl#]G{l,,K} 2)

We propose a procedure to test, for a given number K, the null hypothesis Hy(K) that at least one
partition exists (G, ..., Gk) so that all the conditions above are verified. The alternative hypothesis
Hy(K) is that for any (Gy, ..., Gk), exists at least a group Gy in which F; # G; for somei,j € Gy.

The cited testing procedure is based on the J-dimensional process

where, forj=1,...,],

K o~ o~
Uj(z) = kZ [Fi(z) = Ck(2)] Ijegyy-
-1

and Cy is the pooled nonparametric estimate based on the combined Gy-partition sample.

The following test statistics were considered in order to test Hy(K): a Cramér-von Mises type
statistic

Dcym = mm /UZ
1/ /Kj 1

and a modification of it based on the L; norm proposed in the Kolmogorov-Smirnov test statistic

Dgs = mm / |Uj(z)|dz,
G, /ng 1

where R is the support of the lifetime distribution or the support of the independent variable in case
of survival or regression, respectively.

In order to approximate the minimizers involved in the test statistics, we propose the use of
clustering algorithms. Particularly, in the case of D¢y, defined in terms of the L-distance, we propose
the use of the K-means (Macqueen, 1967). However, for obtaining the values of Dgg, defined in this
case in terms of the Lj-norm, a variation of the K-means where instead of calculating the mean for each
group to determine its centroid, it calculates the median, the k-medians —suggested by Macqueen
(1967) and developed by Kaufman and Rousseeuw (1990)— would be more appropriate. In both
cases, the carried-out procedure is equivalent: the functions }'] (j =1,...,]) have to be estimated

The R Journal Vol. 13/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=npregfast

CONTRIBUTED RESEARCH ARTICLES 167

in a common grid of size Q leading to a matrix of (J x Q) dimension, where each row corresponds
with the estimates of the j curve in the Q positions of the grid. Then, this matrix will be the input of
both heuristic methods, K-means and K-medians, and from these, the “best” partition (G, ..., Gg) is
obtained.

Finally, the decision rule based on D consists of rejecting the null hypothesis if D is larger than the
(1 — w)-percentile obtained under the null hypothesis. To approximate the distributions of the test
statistic under the null hypothesis, resampling methods such as the bootstrap introduced by Efron
(1979) can be applied.

The testing procedure used here involves the following steps:

1. Using the original sample, forj = 1,...,Jandi =1,..., n;, estimate the functions J-"] in a
nonparametric way and in a common grid using each sample separately. Then, using the
proposed algorithms, obtain the “best" partition (G, ...,Gk). With it, obtain the estimated
curves Cy using a pooled nonparametric estimator based on the combined partition samples
(i.e., the estimator obtained by applying the nonparametric estimator to the combined partition
samples).

2. Obtain the D value as explained before.

3. Draw bootstrap samples using a bootstrap procedure. In the survival context, follow step 3.(a),
and in the regression context, follow step 3.(b):
(a) Forb=1,...,B(e.g., B =1000), and foreach j € G, draw (Tl"]b, Aﬁ’) (Tz*}’,A*b) (T:l;,A])
by independent sampling n; times with replacement from the empirical distribution func-

tion, F, putting mass nk_1 (n, = Z]] 11il{jeg,y) at each point (T,],A i), with j € Gi.
Note that this procedure is a pooled bootstrap, i.e., bootstrap from the pooled-combined

partition sample given by the null hypothesis Hy(K).
. . b *b
(b) Forbf1,...,B,andforeach]egk,draw{< i1, Y7 >} P {(z]/Y >}7 where

b
Y = ch i) fegy +&W°

being €;; the null errors under the Hy(K) obtained as
K ~
€= <Yij - Ck(Xij)> Iiicgys
k=1

and the variables Wy b, W, b are independent for the observed sample and i.i.d. with
E (Wi*b) =0, Var(Wi*b) = 1, and third moment equals to 1. A common choice is to
consider a binary variable with probabilities P{Wl.*h =(1-+5)/2} = (5++/5)/10and
P{W;¥ = (1+V/5)/2} = (5 +/5)/10, which corresponds to the golden section. Note that
we have used the wild bootstrap here (Wu, 1986; Liu, 1988; Mammen, 1993) because this
method is valid both for homoscedastic and for heteroscedastic models where the variance
of the error is a function of the covariate.

4. Let D*! be the test statistic obtained from the bootstrap samples after applying step 1 and 2 to
the cited bootstrap samples.

Since in step 3 the bootstrap resamples are constructed under the null hypothesis of K groups,
this mechanism approximates the distribution of the test statistic under the null hypothesis. If we
denote D*() for the order statistics of the values D*., ..., D*B obtained in step 4, then p*({(1-a)B])
approximates the (1 — a)-quantile of the distribution of D under the null hypothesis.

It is important to highlight that repeating this procedure, testing Hy(K), from K = 1 onwards until
a certain null hypothesis is not rejected allows us to determine the number of K groups automatically.
Note that however, that unlike the previous test decision, this latter one is not statistically significant
(strong evidences for rejecting the null hypothesis are not given). The whole procedure is briefly
described step by step in Algorithm 1.

Finally, note that, under survival and regression scenarios, the proposed procedure for the determi-
nation of groups in multiple curves may be translated as a test of multiple hypotheses where a set of
K p-values corresponding to the K null hypotheses, Hy(1), Hy(2), ..., Hy(K) are given. Even though
several methods have been proposed to deal with this problem (see, e.g., Dudoit and van der Laan
(2008) for an introduction to this area), there are still open challenges because there is no information
about the minimum number of tests needed to apply these techniques. In any case, we have decided

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 168

Algorithm 1: k-nonparametric curves algorithm

1. With the original sample, forj=1,...,Jandi=1,..., nj, and using the

nonparametric estimator obtain]?]
2. Initialize with K = 1 and test Hy(K):

2.1 Obtain the “best” partition Gy, . . ., Gk by means of the k-means or k-medians
algorithm.

2.2 Fork=1,...,K, estimate CAk and retrieve the test statistic D.
2.3 Generate B bootstrap samples and calculate D*, forb=1,...,B.

24 if D > D*1=% then
reject Hy(K)
K=K+1
go back to 2.1

else

accept Hy(K)
end

3. The number K of groups of equal nonparametric curves is determined.

to propose a possible approach to apply some of these well-known techniques as Bonferroni, Holm
(Holm, 1979), etc. As the problem is still open, we feel that the final user must be able to decide to
apply them by means of an argument included in the functions of the package. The challenge in the
present context is that the number of hypotheses that are going to be tested is unknown in advance. In
order to solve this we propose that, after having increased K in the algorithm, the null hypothesis for
“smaller K’s” has to be re-tested simultaneously with Hy(K).

Package structure and functionality

The clustcurv package is a shortcut for “clustering curves” for being this its major functionality: to
provide a procedure that allows users to determine groups of multiple curves with an automatic
selection of their number. The package enables both survival and regression curves to be grouped, and
it is designed along lines similarly into both contexts. In addition, in view of the high computational
cost entailed in these methods, parallelization techniques are included to become feasible and efficient
in real situations.

The functions within the clustcurv package are described in Table 1. Briefly, there are two main
types of functionalities: (i) to determine groups of multiple curves with the automatic selection of their
number with regclustcurves or survclustcurves functions and (ii) to determine groups of curves,
given a number K, with kregcurves or ksurvecurves functions. The S3 object obtained from whatever
previous functions is the argument required as input for autoplot, which returns a graphical output
based on ggplot2 package. Numerical summaries of the fitted objects can be obtained by using print
or summary.

Since the two most important functions in this package are survclustcurv and regclustcury, the
arguments of these functions are shown in Table 2. Note that the ksurvcurves kregcurves functions
are just a simplified version of the previous two. Users can automatically obtain the optimal number
of groups of multiple curves by means of survclustcurves and regclustcurves. Nevertheless, in
those situations where the user knows in advance the number of groups, it is possible to obtain
the assignment of the curves into the corresponding group, by means of the function ksurvcurves
or kregcurves. In both functions, a common argument is the algorithm, which returns the best
assignments of the curves into the groups to which they belong. At the moment, the algorithms to
solve this optimization problem can be K-means or K-medians, through the argument algorithm =
'kmeans' or algorithm = 'kmedians'.

Furthermore, in order to address the high computational burden, the functions survclustcurves,
regclustcurves, ksurvcurves and kregcurves have been programmed in parallel to compute the
bootstrap-based testing procedure. The input command required for the use of parallelization is
cluster = TRUE. The number of cores for parallel execution is fixed using the number of CPU

The R Journal Vol. 13/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 169

cores on the current host minus one unless it is specified by the user (ncores = NULL). Then,
registerDoParallel of the doParallel package is used to register the parallel backend. The par-
allel computation is performed by the foreach function of foreach package.

Function Description

survclustcurves Main function for determining groups of multiple survival curves and
selecting automatically the optimal number of them.

regclustcurves Main function for determining groups of multiple regression curves
ecting automatically the optimal number of them.

ksurvcurves Main function for determining groups of survival curves, given a
number of groups K.

kregcurves Main function for determining groups of regression curves, given a
number of groups K.

summary Method of the generic summary function for kcurves and

clustcurves objects (both survival and regression context), which
returns a short summary.

print Method of the generic print function for kcurves and clustcurves
objects, which prints out some key components.
autoplot Visualisation of clustcurves and kcurves objects with ggplot2 (Wick-

ham et al., 2019) graphics. Provides the plots for the estimated non-
parametric curves grouped by color (optional) and their centroids
(mean curve of the curves pertaining to the same group).

Table 1: Summary of functions in the clustcurv package.

Illustrative examples

In this section, we illustrate the use of clustcurv package using some real and simulated data. In the
case of the survival context, the proposed methods were applied to the German breast cancer data
included in the condSURV package and to the multiple myeloma data freely available as part of
the survminer package. For the regression analysis, the clustcurv package includes a data set called
barnacle5 with measurements of rostro-carinal length and dry weight of barnacles collected from five
sites of Galicia (northwest of Spain). Additionally, in order to show the behaviour of the method in a
more complicated scenario, an example with simulated data is also provided.

Application to German Breast Cancer Study Data

In this study, a total of 686 patients with primary node-positive breast cancer were recruited between
July 1984 and December 1989, and 16 variables were measured such as the age of the patient (age),
menopausal status (menopause), hormonal therapy (hormone), tumour size (size, in mm), tumor
grade (grade), and the number of positive nodes (nodes). In addition to these and other variables,
the recurrence-free survival time (rectime, in days) and the corresponding censoring indicator (0 —
censored, 1 — event) were also recorded.

We will use these data to illustrate the package capabilities to build clusters of survival curves
based on the covariate nodes (grouped from 1 to > 13). An excerpt of the data. frame with one row
per patient is shown below:

> library(condSURV)
> library(clustcurv)
> data(gbcsCS)
> head(gbcsCS[, c(5:10, 13, 14)])
age menopause hormone size grade nodes rectime censrec

1 38 1 1 18 3 5 1337 1
2 52 1 20 1 1 1420 1
3 47 1 1 30 2 1 1279 1
4 40 1 1 24 1 3 148 0
5 64 2 2 19 2 1 1863 0
6 49 2 2 56 1 3 1933 0

The first three patients have developed a recurrence shown by censrec variable equals to 1, unlike
the following three, which take the value of 0. This variable, along with the other two, rectime and

The R Journal Vol. 13/1, June ISSN 2073-4859

http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=condSURV

CONTRIBUTED RESEARCH ARTICLES

170

survclustcurves() arguments

time
status

kvector
kbin
nboot

algorithm

alpha
cluster

ncores

seed
multiple

multiple.method

A vector with variable of interest, i.e. survival time.

A vector with censoring indicator of the survival time of the process; 0 if the total time
is censored and 1 otherwise.

A vector with categorical variable indicating the population to which the observations
belongs.

A vector specifying the number of groups of curves to be checking. By default it is
NULL.

Size of the grid over which the survival functions are to be estimated.

Number of bootstrap repeats.

A character string specifying which clustering algorithm is used, i.e., K-means
("kmeans') or K-medians ('kmedians').

A numeric value, particularly, the signification level of the hypothesis test.

A logical value. If TRUE (default) the code is parallelized. Note that there are cases
without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine — 1.

Seed to be used in the procedure.

Alogical value. If TRUE (not default), the resulted pvalues are adjusted by using one
of several methods for multiple comparisons.

Correction method: 'bonferroni', "holm', "hochberg', "hommel', 'BH', 'BY'

regclustcurves() arguments

N X

kvector
kbin

h

nboot

algorithm

alpha
cluster

ncores

seed
multiple

multiple.method

A vector with variable of interest, i.e. response variable.

A vector with independent variable.

A vector with categorical variable indicating the population to which the observations
belongs.

A vector specifying the number of groups of curves to be checking. By default it is
NULL.

Size of the grid over which the survival functions are to be estimated.

The kernel bandwidth smoothing parameter.

Number of bootstrap repeats.

A character string specifying which clustering algorithm is used, i.e.,, K-means
("kmeans') or K-medians ('kmedians').

A numeric value, particularly, the signification level of the hypothesis test.

A logical value. If TRUE (default) the code is parallelized. Note that there are cases
without enough repetitions (e.g., a low number of initial variables) that R will gain in
performance through serial computation. R takes time to distribute tasks across the
processors also it will need time for binding them all together later on. Therefore, if
the time for distributing and gathering pieces together is greater than the time needed
for single-thread computing, it could be better not to parallelize.

An integer value specifying the number of cores to be used in the parallelized proce-
dure. If NULL, the number of cores to be used is equal to the number of cores of the
machine — 1.

Seed to be used in the procedure.

A logical value. If TRUE (not default), the resulted pvalues are adjusted by using one
of several methods for multiple comparisons.

Correction method: 'bonferroni', "holm', "hochberg', '"hommel', 'BH', 'BY"'

Table 2: Arguments of survclustcurves and regclustcurves

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 171

nodes, will be taken into account for applying the methods described in Section 2.2. The number of
positive nodes has been grouped from 1 to > 13 because of its low numbers onwards. Below, the steps
for this preprocessed are shown:

> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

187 11@ 79 57 41 33 36 20 20 19 15 13 1 35 8 5 5 5 3 1
23 24 26 30 33 35 36 38 51
1 2 1 1 1 1 1 1 1

> gbcsCS[ghcsCS$nodes > 13, 'nodes'] <- 14
> gbcsCS$nodes <- factor(gbcsCS$nodes)

> levels(gbcsCS$nodes)[14]<- '>13"

> table(gbcsCS$nodes)

1 2 3 4 5 6 7 8 9 10 11 12 13 >13
187 110 79 57 41 33 36 20 20 19 15 13 11 45

Estimates of the survival curves are obtained using the survclustcurves function. This function
allows determining groups using the optimization algorithm K-means or K-medians. The function
will verify if data has been introduced correctly and will create a 'clustcurves' object. The first three
arguments must be introduced, where time is a vector with event-times, status for their corresponding
indicator statuses, and x is the categorical covariate.

As we mentioned, note that the proposed procedure may deal with the problem of testing multiple
hypotheses, particularly relevant when the categorical variable has many levels. Thus, if the user
wants to apply some correction, it is possible to specify multiple = TRUE and select some of the
well-known techniques such as Bonferroni, Holm, etc., by means of the argument multiple.method.

The output of this function is the assignment of the survival curves to the group to which they
belong and an automatic selection of their number. The following input commands provide an
example of this output using the K-medians algorithm:

> fit.gbcs <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmedians',
cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Checking 3 clusters...

Finally, there are 3 clusters.
> summary(fit.gbcs)

Call:

survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, algorithm = "kmedians”, cluster = TRUE,
seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

Factor's levels:
[11 "1* »2» nym mgn wgn ngn mgn ngn ngu nygr M1 mypm mq3w
[14] ”>13H

Clustering factor's levels:
[1J11133332322222

Testing procedure:
HO Tvalue pvalue
1 1 95.68626 0.000
2 2 56.03966 0.018
3 3 33.63386 0.830

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 172

Available components:
[1]1 "num_groups” "table"” "levels” "cluster” "centers” "curves”
[7]1 "method” "data" "algorithm” "call”

The graphical representation of the fit can be easily obtained with the function autoplot. Specifying
the argument groups_by_color = FALSE, the estimated survival curves for each level of the factor
nodes by means of the Kaplan-Meier estimator can be drawn. The assignment of the curves to the
three groups can be observed in Figure 1 simply typing groups_by_color = TRUE. As expected, the
survival of patients can be influenced by the number of lymph nodes. The patients’ recurrence time
rises with the decrease of lymph nodes. Note that having 3 or fewer positive nodes seems to be related
to higher recurrence-free probabilities. Patients with 9 or more positive nodes are more likely to
develop a recurrence. The group of patients with 8 positive nodes was assigned to the group with
highest recurrence probabilities. Though this was unexpected, further analysis confirm the poor and
unexpected behavior.

100% = —[

75% - strata

‘ — 1

Survival
o
g
s

25%- — >3

0% -
6 ldDG ZObO
Time
Figure 1: Estimated survival curves for each of the levels of the variable nodes. A specific color is

assigned for each curve according to the group to which it belongs using the K-medians algorithm (in
this case, three groups, K = 3).

Equivalently, the following piece of code shows the input commands and the results obtained
with the algorithm = 'kmeans'. However, the number of groups and the assignments are different
from those obtained with the 'kmedians'. Although this situation is not so common, in some real
applications, it can happen.

> fit.gbcs2 <- survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,
x = gbcsCS$nodes, nboot = 500, seed = 300716, algorithm = 'kmeans',
cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Finally, there are 2 clusters.

> fit.gbcs2

Call:
survclustcurves(time = gbcsCS$rectime, status = gbcsCS$censrec,

x = gbcsCS$nodes, nboot = 500, algorithm = "kmeans”, cluster = TRUE,
seed = 300716)

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 173

Clustering curves in 2 groups

Number of observations: 607
Cluster method: kmeans

The corresponding plot is shown in Figure 2. Note that having 9 or more positive nodes seems
to be related to a lower recurrence-free survival than having 9 or less, with the exception of the

survival curve for those patients with 8 positive nodes, which was assigned to the group with highest
recurrence probabilities.

100% = —E

strata

l — 1

50% =

Survival

6 ldOO 2050
Time
Figure 2: Estimated survival curves for each of the levels of the variable nodes. A specific color is

assigned for each curve according to the group to which it belongs using the K-means algorithm (in
this case, two groups, K = 2).

It is important to highlight that given a fixed value of K, one may also be interested in determining
the group to which each survival function belongs. This is possible by means of the ksurvcurves
function by considering, for example, the argument k = 3.

> ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,
seed = 300716, algorithm = 'kmedians', k = 3)

Call:

ksurvcurves(time = gbcsCS$rectime, status = gbcsCS$censrec, x = gbcsCS$nodes,
k = 3, algorithm = "kmedians”, seed = 300716)

Clustering curves in 3 groups

Number of observations: 640
Cluster method: kmedians

More information related to the output above can be obtained running the summary function.

Application to Multiple Myeloma Study Data

In this case, a study of the survival in patients with multiple myeloma (MM) cancer was conducted.
256 individuals were included from the start of the follow-up to whom were analyzed and collected 16
variables. This data set is freely available in the survminer package. Below, it is shown the first rows
of the data. frame with columns such as treatment (treatment), life state indicator (event; censored —
0; 1 - dead), survival time (time, in months), among others.

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 174

> library(survminer)
> data(myeloma)
> head(myelomal[,1:5])
molecular_group chriq2i_status treatment event time

GSM50986 Cyclin D-1 3 copies T2 0 69.24
GSM50988 Cyclin D-2 2 copies TT2 0 66.43
GSM50989 MMSET 2 copies T2 0 66.50
GSM50990 MMSET 3 copies TT2 1 42.67
GSM50991 MAF <NA> T2 0 65.00
GSM50992 Hyperdiploid 2 copies TT2 0 65.20

In this example, it is interesting to analyze if the survival in patients with MM disease is the same
for the different molecular subgroups. If there is an effect of the molecular subgroups on the survival,
future therapies that might exploit molecular insights should lead to an improvement in outcome for
patients with these types of disease (Zhan et al., 2006).

Below, a summary of the results of the survclustcurves function obtained with time, event, and
molecular_group as input variables and for both kmedians and kmeans algorithms are shown.

> fit.mye <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmedians', cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Finally, there are 2 clusters.
> summary(fit.mye)

Call:

survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, algorithm = "kmedians”,
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmedians

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid” "Low bone disease”
[5] "MAF" "MMSET" "Proliferation”

Clustering factor's levels:
[1J1111122

Testing procedure:
HO Tvalue pvalue

1T 1 31.31603 0.026

2 2 14.94269 0.682

Available components:
[1] "num_groups” "table" "levels” "cluster” "centers” "curves”
[7] "method” "data" "algorithm” "call”

> fit.mye2 <- survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, seed = 300716,
algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Finally, there are 2 clusters.

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES

175

> summary(fit.mye2)

Call:

survclustcurves(time = myeloma$time, status = myeloma$event,
x = myeloma$molecular_group, nboot = 500, algorithm = "kmeans",
cluster = TRUE, seed = 300716)

Clustering curves in 2 groups

Number of observations: 248
Cluster method: kmeans

Factor's levels:
[1] "Cyclin D-1" "Cyclin D-2" "Hyperdiploid” "Low bone disease”
[5]1 "MAF" "MMSET" "Proliferation”

Clustering factor's levels:
[1J1111122

Testing procedure:
H0 Tvalue pvalue

1 1 4.500272 0.032

2 21.108812 0.730

Available components:
[1]1 "num_groups” "table"” "levels” "cluster” "centers"” "curves”
[7]1 "method” "data" "algorithm” "call”

When comparing the results obtained through the two methods (kmeans, kmedians), it is seen
that the obtained number of clusters is the same (2 groups), even the assignment of the curves to the
groups.

In particular, results obtained reveal that MMSET level and Proliferation level are associated with
a high-risk or damage on the lifetime, while MAF, Low bone disease, Hyperdiploid, Cycline D-1, and
Cycline D-2 have higher survival probabilities. This is observed in the plot shown in Figure 3, which
can be obtained using the following input command:

> autoplot(fit.mye, groups_by_color = TRUE)

Application to Barnacle’s Growth Study Data

This study was conducted on the Atlantic coast of Galicia (Northwest Spain), which consists of an
approximately 1000km long shoreline with extensive rocky stretches exposed to tidal surges and wave
action that are settled by the Pollicipes pollicipes (Gmelin, 1789) populations targeted for study. A total
of 5000 specimens were collected from five sites of the region’s Atlantic coastline and corresponded to
the stretches of coast where this species is harvested: Punta do Mouro, Punta Lens, Punta de la Barca,
Punta del Boy and Punta del Alba. Two biometric variables of each specimen were measured: RC
(Rostro-carinal length, maximum distance across the capitulum between the ends of the rostral and
carinal plates) and DW (Dry Weight). This data set (barnacle5) is available in the clustcurv package.
The idea of this study is to know the relation between RC and DW variables along the coast, i.e.,
to analyze if the barnacle’s growth is similar in all locations or by contrast, if it is possible to detect
geographical differentiation in growth. A sample of the dataset is shown as follow:

> data("barnacle5")
> head(barnacle5)

DW RC F
1 0.52 12.0 laxe
2 1.46 18.9 laxe
30.05 6.4 laxe
4 0.17 9.4 laxe
5 0.05 6.2 laxe
6 0.41 12.2 laxe

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 176

1
strata
~— CyclinD-1

~—— CyclinD-2

— Hyperdiploid

Survival

— Low bone disease
— MAF
60% - — MMSET

—— Proliferation

Time

Figure 3: Estimated survival curves for each of the levels of the variable molecular group. A specific
color is assigned for each curve according to the group to which it belongs using the K-medians
algorithm, two groups, K = 2.

For each location (F), nonparametric regression curves were estimated to modeling the dependence
between RC and DW. In order to determine groups, we used the proposed methodology in Subsection
2.2.2. Through executing the next piece of code, the following results can be obtained: one estimated
curve was attributed to the first group (Punta Lens), two estimated curves were assigned to group
2 (Punta de la Barca and Punta del Boy), and the other two belong to group 3 (Laxe do Mouro and
Punta del Alba) (Figure 4). In this example, the regclustcurves function was used with algorithm =
'kmeans' and the input variables y, x, z.

> fit.bar <- regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,
nboot = 500, seed = 300716, algorithm = 'kmeans', cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Checking 3 clusters...

Finally, there are 3 clusters.

> summary(fit.bar)

Call:

regclustcurves(y = barnacle5$DW, x = barnacle5$RC, z = barnacle5$F,
nboot = 500, algorithm = "kmeans”, cluster = TRUE, seed = 300716)

Clustering curves in 3 groups

Number of observations: 5000
Cluster method: kmeans

Factor's levels:
[1] "laxe” "lens" "barca” "boy" "alba"

Clustering factor's levels:
[1] 21332

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 177

Testing procedure:

Ho Tvalue pvalue
1 1 0.94353014 0.000
2 2 0.15463483 0.034
3 3 0.02348982 0.422

Available components:
[1] "num_groups” "table"” "levels” "cluster” "centers"” "curves”
[7]1 "method” "data" "algorithm” "call”

As can be seen, Figure 4 obtained using the following input command. The specimens from
Punta de la Barca and Punta del Boy have similar morphology, wide and short. This is due to these
zones present similar oceanographic characteristic, such as exposed rocky shore to waves and highly
articulated. Unlike, the barnacles collected from Laxe do Moure and Punta del Alba are narrow and
long because they are less exposed locations. Finally, Punta Lens is an intermediate coast, alternating
sections of steep coast with large sand.

> autoplot(fit.bar, groups_by_color = TRUE)

levels
— laxe
— lens
— barca
— boy

—— alba

X

Figure 4: Estimated regression curves for each of the levels of the factor. A specific color is assigned
for each curve according to the group to which it belongs using the K-means algorithm (in this case,
three groups, K = 3).

Application to simulated data

Finally, this subsection reports the capabilities of the clustcurv package in a more complicated simu-
lated scenario. We consider the regression models given in (1) for j = 1,...,30, with

Xj+1 if j<5
X]2+1 if 5<;j<10
2'sin (2 X;) if 10<;j<15
(X)) =]
mj(X;) 2 sin (X;) if 15< <20 ©)
2sin(X;)+ae’ if 20<j<25
1 if j> 25,

where 4 is a real constant, X; is the explanatory covariate drawn from a uniform distribution [-2, 2],
and ¢; is the error distributed in accordance to a N(0,0j(x)). We have considered the heteroscedastic

scenario where ;(x) = 0.5+ 0.05m;(x) - N(0,1.5).

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 178

We explore the methodology considering the null hypothesis Hy(5) of assignment of the m; curves
into five groups (K = 5). To show the performance of our procedure, two values were considered
for a, 0 and 0.4. It should be noted that the value a = 0 corresponds to the null hypothesis, while
if a = 0.4 the number of groups is six. Particularly, we have defined an unbalanced scenario with
unequal sample sizes for each j curve, particularly, (n1,7,...,1;) ~ Multinomial(#; p1, p2,..., pj)

being pj = p;f/ Z]]':1 p]*, with p}“ randomly drawn from {1,1.5,2,2.5,3} and n = 5000. Note that we
propose this procedure for generating the 1; in order to obtain a completely unbalanced study.

The code for the generation of this dataset with 2 = 0 can be found below:
> m <- function(x, j) {

y <- numeric(length(x))
y[j <= 5] <= x[j <= 5] + 1

y[j >5& j<=10] <-x[j>5&j<=10] ~ 2 +1

y[j > 10 & j <= 15] <= 2 * sin(2 * x[j > 10 & j <= 15]) #- 4

y[j > 15 & j <= 20] <- 2 % sin(x[j > 15 & j <= 20])

y[j > 20 & j <= 25] <= 2 % sin(x[j > 20 & j <= 25]) + a * exp(x[j > 20 & j <= 25])

y[j > 25] <- 1
return(y)

seed <- 300716
set.seed(seed)
n <- 5000
a<-20.0

X <= runif(n, -2, 2)

prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)
prob <- prob/sum(prob)

f <- sample(1:30, n, replace = TRUE, prob = prob)

N <- length(unique(f))

error <- rnorm(n,@,1.5)

y <-m(x, f) + (0.5 + 0.05 x m(x, f)) * error

data <- data.frame(x, y, f)

VV V VYV VYV YVVYVYVYV

In order to determine groups of the generated curves, the user has to execute the next piece of
code. As expected, when a = 0, the number of groups selected is five.

data$f, nboot = 500,

> fit.sim <- regclustcurves(x = data$x, y = data$y, z =
= TRUE, seed = 300716)

algorithm = 'kmedians', cluster
Checking 1 cluster...
Checking 2 clusters...
Checking 3 clusters...
Checking 4 clusters...
Checking 5 clusters...

Finally, there are 5 clusters.
> fit.sim

Call:
regclustcurves(y = data$y, x = data$x, z = data$f, nboot = 500,
algorithm = "kmedians”, cluster = TRUE, seed = 300716)

Clustering curves in 5 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim, groups_by_colour = TRUE, centers = TRUE)

Additionally, for different values of a (a > 0), our procedure should determine 6 groups. For
instance, for a = 0.4, it selects the true number of groups (K = 6) typing the commands below:

> seed <- 300716
> set.seed(seed)
> n <- 5000

> a<-0.4

>

X <= runif(n, -2, 2)

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 179

> prob <- sample(c(1, 1.5, 2, 2.5, 3), 30, replace = TRUE)

> prob <- prob/sum(prob)

> f <- sample(1:30, n, replace = TRUE, prob = prob)

> N <- length(unique(f))

> error <- rnorm(n,9,1.5)

>y <-m(x, f) + (0.5 + 0.05 * m(x, f)) % error

> data2 <- data.frame(x, y, f)

> fit.sim2 <- regclustcurves(x = data2$x, y = data2$y, nboot = 500, seed = 300716,
z = data$f, algorithm = 'kmedians', cluster = TRUE)

Checking 1 cluster...

Checking 2 clusters...

Checking 3 clusters...

Checking 4 clusters...

Checking 5 clusters...

Checking 6 clusters...

Finally, there are 6 clusters.
> fit.sim2

Call:
regclustcurves(y = data2$y, x = data2$x, z = data$f, nboot = 500,
algorithm = "kmedians”, cluster = TRUE, seed = 300716)

Clustering curves in 6 groups

Number of observations: 5000
Cluster method: kmedians
> autoplot(fit.sim2, groups_by_colour = TRUE, centers = TRUE)

Figures 5 and 6 show the results with the simulated data with 2 = 0 and a = 0.4, respectively.
In this situation, the true number of groups is equal to 5 and 6. As can be appreciated, our method
seems to perform reasonably well for both values of a. For a = 0, the null hypothesis Hy(5) is
accepted, curves assigned to each group are plotted with the same color. In the case of 2 = 0.4, the null
hypothesis Hy(6) is accepted. Therefore, there are 6 groups of regression curves. Note that in both
plots, the centroids are colored in black because in the autoplot function, the argument centers =
TRUE.

Conclusion and further extensions of the R package

This paper discussed the implementation of some methods developed for determining groups of
multiple nonparametric curves in the R package clustcurv. In particular, the methods proposed are
focused on the framework of regression analysis and in the framework of survival analysis. In the
context of survival analysis, we restrict ourselves to survival curves. Hopefully, future versions of the
package will extend the methodology to determine groups in risk functions, cumulative hazard curves,
or density functions. The current version of the package implements two optimization algorithms, the
well-known K-means and K-medians. It can be interesting to let the user choose far from those, such
as Means-Shift or K-medoids algorithms.

Acknowledgements

The authors acknowledge financial support by the Spanish Ministry of Economy and Competitiveness
(MINECO) through project MTM2017-89422-P and MTM2017-82379-R (funded by (AEI/FEDER, UE).
Thanks to the Associate Editor and the referee for comments and suggestions that have improved this

paper.

Bibliography

Z. Chen and G. Zhang. Comparing survival curves based on medians. BMC Medical Research
Methodology, 16(1):33, 2016. ISSN 1471-2288. doi: 10.1186/s12874-016-0133-3. URL http://dx.doi.
org/1®.1186/312874*@16*@133*3.[p164]

The R Journal Vol. 13/1, June ISSN 2073-4859

http://dx.doi.org/10.1186/s12874-016-0133-3
http://dx.doi.org/10.1186/s12874-016-0133-3

CONTRIBUTED RESEARCH ARTICLES 180

4- \ levels

-1 — 19
-—2 — 20
— 3 — 21
4 — 22
-— 5 — 23
— 6 — 24
- 7 — 25
2-
— 8 — 26
> -9 — 27
— 10 — 28
- 11 — 29
- 12 — 30
- 13 — G1
— 14 — G2
0- — 15 — G3
— 16 — G4
— 17 — G5

— 18

N
i
o-

-

~

Figure 5: Estimated regression curves for each of the levels of the variable f with a = 0. A specific color
is assigned for each curve according to the group to which it belongs using the K-means algorithm (in
this case, five groups, K = 5). Black curves are the centroids of each group.

1 m 1°
4-
-— 2 — 20
— 3 — 21
— 4 — 22
— 5 — 23
6 — 24
7 — 25
8 — 26
2-
> 9 — 27
10 — 28
— 11 — 29
- 12 — 30
— 13 — G1
- 14 — G2
— 15 — G3
0-
— 16 — G4
— 17 — G5
— 18 — G6

Figure 6: Estimated regression curves for each of the levels of the variable f with a = 0.4. A specific
color is assigned for each curve according to the group to which it belongs using the K-means algorithm
(in this case, six groups, K = 6). Black curves are the centroids of each group.

The R Journal Vol. 13/1, June ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 181

C. A. de Boor. A Practical Guide to Splines. Springer Verlag, New York, 2001. [p166]

M. A. Delgado. Testing the equality of nonparametric regression curves. Statistics and Probability
Letters, 17:199-204, June 1993. [p164]

D. Dette and N. Neumeyer. Nonparametric analysis of covariance. The Annals of Statistics, 29:1361-1400,
2001. [p164]

S. Dudoit and M. J. van der Laan. Multiple Testing Procedures with Applications to Genomics. Springer
Series in Statistics. Springer, New York, 2008. [p167]

B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7:1-26, 1979. [p167]

J. Fan and I. Gijbels. Local polynomial modelling and its applications. Number 66 in Monographs on
statistics and applied probability series. Chapman & Hall, 1996. [p166]

T.R. Fleming, D. P. Harrington, and M. O’Sullivan. Supremum versions of the log-rank and generalized
wilcoxon statistics. Journal of the American Statistical Association, 82(397):312-320, 1987. ISSN 01621459.
URL http://www. jstor.org/stable/2289169. [p164]

E. A. Gehan. A generalized wilcoxon test for comparing arbitrarily singly censored samples. Biometrika,
52:203-223, 1965. ISSN 00063444. URL http://www. jstor.org/stable/2333825. [pl64]

W. Gonzélez-Manteiga and R. Cao. Testing the hypothesis of a general linear model using nonpara-
metric regression estimation. Test, 2(1):223-249, 1993. [p164]

P. Hall and J. D. Hart. Bootstrap test for difference between means in nonparametric regression. Journal
of the American Statistical Association, 85(412):1039-1049, Dec. 1990. [p164]

W. Hérdle and E. Mammen. Testing parametric versus nonparametric regression. Annals of Statistics,
21:1926-1947, 1993. [p164]

D. P. Harrington and T. R. Fleming. A class of rank test procedures for censored survival data.
Biometrika, 69(3):553, 1982. doi: 10.1093/biomet/69.3.553. URL +http://dx.doi.org/10.1093/
biomet/69.3.553. [p164]

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:
65-70,1979. [p168]

E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association, 53:457-481, 1958. [p165]

A. Kassambara, M. Kosinski, P. Biecek, and S. Fabian. survminer: Drawing Survival Curves using 'gg-
plot2’. R package version 0.4.6,2019. URL https://cran.r-project.org/web/packages/survminer.

[p164]

L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley,
1990. [p166]

E. King, J. D. Hart, and T. E. Wehrly. Testing the equality of two regression curves using linear
smoothers. Statistics and Probability Letters, 12(3):239-247, 1991. ISSN 0167-7152. [p164]

K. B. Kulasekera. Comparison of regression curves using quasi-residuals. Journal of the American
Statistical Association, 90(431):1085-1093, 1995. ISSN 01621459. [p164]

S. Lang and A. Brezger. Bayesian p-splines. Journal of Computational and Graphical Statistics, 13:183-212,
2004. [p166]

R. Y. Liu. Bootstrap Procedures under some Non-L.L.D. Models. The Annals of Statistics, 16(4):1696-1708,
1988. URL http://www. jstor.org/stable/2241788. [p167]

J. B. Macqueen. Some methods of classification and analysis of multivariate observations, volume 1. Proceed-
ings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Univ. of Calif.
Press), 1967. [p166]

E. Mammen. Bootstrap and Wild Bootstrap for High Dimensional Linear Models. The Annals of
Statistics, 21(1):255-285, 1993. URL http://www. jstor.org/stable/3035590. [p167]

N. Mantel. Evaluation of survival data and two new rank order statistics arising in its consideration.
Cancer Chemotherapy Reports, 50(3):163-170, 1966. [p164]

The R Journal Vol. 13/1, June ISSN 2073-4859

http://www.jstor.org/stable/2289169
http://www.jstor.org/stable/2333825
+ http://dx.doi.org/10.1093/biomet/69.3.553
+ http://dx.doi.org/10.1093/biomet/69.3.553
https://cran.r-project.org/web/packages/survminer
http://www.jstor.org/stable/2241788
http://www.jstor.org/stable/3035590

CONTRIBUTED RESEARCH ARTICLES 182

N. Neumeyer and H. Dette. Nonparametric comparison of regression curves: An empirical process
approach. The Annals of Statistics, 31(3):880-920, 2003. ISSN 00905364. [p164]

J. C. Pardo-Fernandez, I. Van Keilegom, and W. Gonzélez-Manteiga. Testing for the equality of k
regression curves. Statistica Sinica, 17:1115-1137, 2007. [p164]

R. Peto and J. Peto. Asymptotically efficient rank invariant test procedures (with discussion). Journal
of the Royal Statistical Society, Series A, 135:185-206, 1972. [p164]

M. Rosenblatt. A quadratic measure of deviation of two-dimensional density estimates and a test of
independence. The Annals of Statistics, 3(1):1-14, 01 1975. [p164]

R. Srihera and W. Stute. Nonparametric comparison of regression functions. Journal of Multivariate
Analysis, 101:2039-2059, October 2010. ISSN 0047-259X. [p164]

R. E. Tarone and J. Ware. On distribution-free tests for equality of survival distribution. Biometrika, 64:
156-160, 1977. [p164]

N. M. Villanueva, M. Sestelo, and L. Meira-Machado. A Method for Determining Groups in Multiple
Survival Curves. Statistics in Medicine, 38:366-377, 2019. [p164, 165]

N. M. Villanueva, M. Sestelo, C. Ordofiez, and J. Roca-Pardifias. An Approach to Determine Groups of
Multiple Regression Curves. Manuscript submitted for publication, 2019. [p165]

M. P. Wand and M. C. Jones. Kernel Smoothing. Chapman & Hall: London, 1995. [p166]

H. Wickham, W. Chang, L. Henry, T. L. Pedersen, K. Takahashi, C. Wilke, K. Woo, and H. Yutani.
ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R package version
3.2.1,2019. URL https://cran.r-project.org/web/packages/ggplot2. [p169]

C. FE. J. Wu. Jackknife, Bootstrap and other resampling methods in regression analysis. The Annals of
Statistics, 14(4):1261-1295, 1986. doi: 10.2307/2241454. URL http://dx.doi.org/10.2307/2241454.
[pl67]

S. G. Young and A. W. Bowman. Nonparametric analysis of covariance. Biometrics, 51:920-931, 1995.
[p164]

F. Zhan, Y. Huang, S. Colla, J. P. Stewart, I. Hanamura, S. Gupta, J. Epstein, S. Yaccoby, J. Sawyer,
B. Burington, E. Anaissie, K. Hollmig, M. Pineda-Roman, G. Tricot, F. van Rhee, R. Walker, M. Zan-
gari, J. Crowley, B. Barlogie, and J. Shaughnessy, John D. The molecular classification of multiple
myeloma. Blood, 108(6):2020-2028, 09 2006. ISSN 0006-4971. doi: 10.1182/blood-2005-11-013458.
[p174]

Nora M. Villanueva

Department of Statistics and OR,
SiDOR research group & CINBIO
University of Vigo, Spain

ORCiD: 0000-0001-8085-2745
http://noramvillanueva.github.io
nmvillanueva@uvigo.es

Marta Sestelo

Department of Statistics and OR,
SiDOR research group & CINBIO
University of Vigo, Spain

ORCiD: 0000-0003-4284-6509
http://sestelo.github.io
sestelo@uvigo.es

The R Journal Vol. 13/1, June ISSN 2073-4859

https://cran.r-project.org/web/packages/ggplot2
http://dx.doi.org/10.2307/2241454
http://noramvillanueva.github.io
mailto:nmvillanueva@uvigo.es
http://sestelo.github.io
mailto:sestelo@uvigo.es

CONTRIBUTED RESEARCH ARTICLES 183

Luts Meira-Machado
Department of Mathematics
Centre of Mathematics
University of Minho, Portugal
Imachado@math.uminho.pt

Javier Roca-Pardifias

Department of Statistics and OR,
SiDOR research group & CINBIO
University of Vigo, Spain
roca@uvigo.es

The R Journal Vol. 13/1, June ISSN 2073-4859

mailto:lmachado@math.uminho.pt
mailto:roca@uvigo.es

CONTRIBUTED RESEARCH ARTICLES 184

Benchmarking R packages for Calculation

of Persistent Homology
by Eashwar V. Somasundaram, Shael E. Brown, Adam Litzler, Jacob G. Scott, and Raoul R. Wadhwa

Abstract Several persistent homology software libraries have been implemented in R. Specifically,
the Dionysus, GUDHI, and Ripser libraries have been wrapped by the TDA and TDAstats CRAN
packages. These software represent powerful analysis tools that are computationally expensive and, to
our knowledge, have not been formally benchmarked. Here, we analyze runtime and memory growth
for the 2 R packages and the 3 underlying libraries. We find that datasets with less than 3 dimensions
can be evaluated with persistent homology fastest by the GUDHI library in the TDA package. For
higher-dimensional datasets, the Ripser library in the TDAstats package is the fastest. Ripser and
TDAstats are also the most memory-efficient tools to calculate persistent homology.

Introduction

Topological data analysis (TDA) is a broad set of methodologies that characterizes structural features
of datasets inspired by topological principles. It has a broad range of usage, from viral evolution to
physical chemistry (Chan et al., 2013; Offroy and Duponchel, 2016). Within the umbrella of TDA,
persistent homology represents an algebraic approach to understanding the number, characteristics,
and persistence of structural features in an n-dimensional point cloud. In the basic workflow of
persistent homology, a series of simplicial complexes are generated on point clouds to characterize
topological features. There are several methods to generate these complexes on point clouds. In this
paper, we focus on persistent homology of the Vietoris-Rips and alpha complexes, which use simplicial
complexes to approximate topologic relationships in point clouds. The exact method of constructing
these complexes is described in the Mathematics section. Essentially, we measure features that are
discovered by the algorithm at a particular stage and disappear at a later stage. The difference between
these stages is persistence. Features with larger persistence more likely represent real geometric
patterns rather than noise.

There are several C++ libraries available to researchers that calculate alpha and Vietoris-Rips
complexes, such as Dionysus, GUDHI, and Ripser (Morozov, 2018; Maria et al., 2016; Bauer, 2019).
These libraries have been wrapped in R by the TDA and TDAstats packages (Fasy et al., 2019; Wadhwa
et al., 2018). Although useful, calculating persistent homology for large datasets is often limited due to
computational complexity (Otter et al., 2017). As a result, researchers often limit persistent homology
analysis to lower dimensions. However, ignoring features in higher dimensions may cause significant
information loss, underutilizing persistent homology’s capabilities. Here, we aim to benchmark two
R packages - TDA and TDAstats - and enable researchers to most efficiently calculate persistent
homology in R.

Mathematics of Persistent Homology

An n-dimensional simplex is the convex hull of n + 1 points in a Euclidean space. More intuitively, an
n-dimensional simplex is the simplest n-dimensional object (e.g., a 0-simplex is a point, a 1-simplex
is a line, a 2-simplex is a triangle, 3-simplex is a tetrahedron). These simplices can be glued together
on common sub-simplices to form a simplicial complex (e.g., two triangles sharing a common side).
In a simplicial complex, topological features will arise that can be characterized by Betti numbers.
Each Betti number, denoted by By, k counts the number of features in dimension k. By counts the
number of connected components, By counts refer to loops, By counts the number of voids, and so on
(Edelsbrunner and Harer, 2008).

There are several different methods to construct a simplicial complex on a given point cloud S, but
this paper focuses on the Vietoris-Rips and alpha complexes. The Vietoris-Rips complex is perhaps
the most common method for constructing a simplicial complex to calculate persistent homology
(Hausmann, 1996). In a point cloud of k points in 2 dimensions, a distance parameter, § > 0, can
be used to draw a circle of diameter § around every point in S. For point clouds in 3 dimensions,
spheres of diameter J are drawn around each point. For dimensions k greater than 3, a k-dimensional
hypersphere is drawn around each point. The remainder of this explanation will focus on the 2-
dimensional case. If J is sufficiently large, then some of the resulting circles may intersect. In this case,
a line is drawn to connect the points at the center of the intersecting circles. When a triple of points
is connected, we add a triangle (2-simplex). When a quadruple of points are connected, we add a

The R Journal Vol. 13/1, June 2021 ISSN 2073-4859

https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDAstats
https://CRAN.R-project.org/package=TDA
https://CRAN.R-project.org/package=TDAstats

CONTRIBUTED RESEARCH ARTICLES 185

P 'y W 'y W
° . .
. .
L]
. . ° . . A - A
. . o
L] L] \

Figure 1: Basic Visualization of the Vietoris-Rips Complex. For a given parameter, J, 5-diameter
circles are drawn around each point. If two circles intersect, a point is drawn between their centers. As
¢ continues to grow, more circles intersect, filling out the simplicial complex. Features on the simplicial
complex appear and die as J increases. These features” dimensions, birth, and death are recorded in an
nx3 matrix. Eventually, the full convex hull is drawn, ending the "filtration" process.

tetrahedron (3-simplex) and so forth. However, we only add simplices at most of the dimension of
the space of the point clouds (e.g., only up to 3-simplices are added in a 3-dimensional point cloud).
This group of points and lines form the skeleton of a simplicial complex. For each distance parameter,
6, there will be a single simplicial complex associated with it. As ¢ increases, different topological
features may appear, persist, and eventually disappear.

Once 6 reaches the maximum Euclidean distance between any pair of points in the point cloud, a
convex hull will form around all k points creating a (k — 1)-dimensional simplex. A 3-column matrix
can be created recording the dimension of each feature, the ¢ at which that feature appeared, and the &
at which it disappeared. This matrix characterizes the persistent homology of that point cloud.

Alpha complexes provide another method to generate simplicial complexes on the point cloud
S. For alpha complexes, we partition the whole space in which the data resides into cells such that
each cell contains exactly one data point x, and the cell of that data point is the set of all points closer
to x than any other data points. Such a partition is also known as a Voronoi diagram. The nerve of a
Voronoi diagram is equivalent to the Delaunay Triangulation (Edelsbrunner and Miicke, 1994). Alpha
complexes are simplicial complexes that are subsets of the Delaunay Triangulation. The parameter, «,
can describe the radius of a ball (dimension matches dimension of the space) of each point in the point
cloud S much, like § describes the diameter of a circle in the Vietoris-Rips complex. We first intersect
the « radius balls with their own Voronoi cell and then search for intersections of these subsetted balls
to form simplices. Once « is large enough, the full Delaunay Triangulation is formed. In between these
stages, the birth and death of features at certain values of « can be captured in a 3-column persistent
homology matrix much like the Vietoris-Rips complex. One key difference from the Vietoris-Rips
complex is that edges can only form between neighboring points in the alpha complex.

In both methods, the boundary matrix records all simplicial complexes for each parameter value
(6 for Vietoris-Rips complexes and « for alpha complexes). Calculating persistent homology is divided

\%4

Figure 2: Basic visualization of the Alpha complex. For a given a, a-radius balls are drawn around
each point, and the union of the balls is taken. Then, an intersection between this union of a-balls and
the Vornoi diagram is taken. A connecting segment is drawn between points in adjacent Voronoi cells
once the a-ball fills out the Voronoi diagram. As a grows, more circles fill out the Voronoi cells. Once «
is large enough, the Delaunay Triangulation is fo