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Editorial
by Catherine Hurley

On behalf of the editorial board, I am pleased to present Volume 14 Issue 1 of the R Journal.
This issue heralds a switch from two issues per year to four and is my first as Editor-in-Chief.
The change to four issues per year is in response to the increase in published articles in
recent years. As articles will appear more speedily in a published issue, we will no longer
list pdfs for Accepted articles on The R Journal website.

First, some news about the journal board. Dianne Cook has stepped down as Editor-
in-Chief but continues as an Executive Editor. In her time as EIC she provided excellent
leadership and brought in many advances, most notably the change to the new modern
journal format. One new Associate Editor, Simone Blomberg, has recently joined the team.
We have a new, slimmed-down Editorial advisory board consisting of Henrik Bengtssen,
Gabriela de Quiroz, Michael Kane and Rececca Killick. The board will provide continuity
across changes in the editorial board, offering advice and acting as an independent body to
handle issues of academic integrity.

Behind the scenes, several people are assisting with the journal operations and the new
developments. Mitchell O’Hara-Wild continues to work on infrastructure, and H. Sherry
Zhang continues to develop the rjtools package. In addition, articles in this issue have been
carefully copy edited by Hannah Comiskey.

1 In this issue

News from the CRAN and the R Foundation are included in this issue.

This issue features 22 contributed research articles the majority of which relate to R
packages for modelling tasks. All packages are available on CRAN. Topics covered are:

• Temporal and longitudinal methods

– cpsurvsim: An R Package for Simulating Data from Change-Point Hazard Distri-
butions

– The smoots Package in R for Semiparametric Modeling of Trend Stationary Time
Series

– starvars: An R Package for Analysing Nonlinearities in Multivariate Time Series
– FMM: An R package for modeling rhythmic patterns on oscillatory systems
– tvReg: Time-varying Coefficients in Multi-Equation Regression in R
– Power and Sample Size for Longitudinal Models in R - The longpower Package

and Shiny App

• Estimation and inference

– dglars A Software Tool For Sparse Estimation Of A General Class Of High-
dimensional GLMs

– bayesanova: An R package for Bayesian inference in the analysis of variance via
Markov Chain Monte Carlo in Gaussian mixture models

– RKHSMetaMod: An R package to estimate the Hoeffding decomposition of a
complex model by solving RKHS ridge group sparse optimization problem

– PSweight: An R Package for PropensityScore Weighting Analysis

• Machine learning

– RFpredInterval: An R Package for Prediction Intervals with Random Forests and
Boosted Forests

– fairmodels: A Flexible Tool For Bias Detection, Visualization, And Mitigation
Graphics and Visualisation, Machine Learning & Statistical Learning
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– spherepc: An R Package for Dimension Reduction on a Sphere

• Other topics

– blindrecalc: An R Package for Blinded Sample Size Recalculation
– rmonad: Pipelines you can compute on
– etrm: Energy Trading and Risk Management in R
– fcaR, Formal Concept Analysis with R
– Advancing reproducible research by publishing R markdown notebooks as inter-

active sandboxes using the learnr package

• Applications

– Palmer Archipelago Penguins Data in the palmerpenguins R Package - An
Alternative to Anderson’s Irises

– A Computational Analysis of the Dynamics of R Style Based on 94 Million Lines
of Code from All CRAN Packages in the Past 20 Years

– Measuring the Extent and Patterns of Urban Shrinkage for Small Towns Using R
– Revisiting Historical Bar Graphics on Epidemics in the Era of R ggplot2

Catherine Hurley
Maynooth University

https://journal.r-project.org
r-journal@r-project.org
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A Computational Analysis of the
Dynamics of R Style Based on 108 Million
Lines of Code from All CRAN Packages in
the Past 21 Years
by Chia-Yi Yen, Mia Huai-Wen Chang, Chung-hong Chan

Abstract The flexibility of R and the diversity of the R community leads to a large number of
programming styles applied in R packages. We have analyzed 108 million lines of R code from CRAN
and quantified the evolution in popularity of 12 style-elements from 1998 to 2019. We attribute 3 main
factors that drive changes in programming style: the effect of style-guides, the effect of introducing
new features, and the effect of editors. We observe in the data that a consensus in programming style
is forming, such as using lower snake case for function names (e.g. softplus_func) and <- rather than =
for assignment.

1 Introduction

R is flexible. For example, one can use <- or = as assignment operators. The following two functions
can both be correctly evaluated.

sum_of_square <- function(x) {
return(sum(x^2))

}

sum_oF.square=function(x)
{

sum(x ^ 2)}

One area that can highlight this flexibility is naming conventions. According to the previous
research by Bååth (2012), there are at least 6 styles and none of the 6 has dominated the scene. Beyond
naming conventions investigated by Bååth (2012), there are style-elements that R programmers have
the freedom to adopt, e.g. whether or not to add spaces around infix operators, use double quotation
marks or single quotation marks to denote strings. On one hand, these variations provide programmers
with freedom. On the other hand, these variations can confuse new programmers and can have dire
effects on program comprehension. Also, incompatibility between programming styles might also
affect reusability, maintainability (Elish and Offutt, 2002), and open source collaboration (Wang and
Hahn, 2017).

Various efforts to standardize the programming style, e.g. Google’s R Style Guide (Google, 2019),
the Tidyverse Style Guide (Wickham, 2017), Bioconductor Coding Style (Bioconductor, 2015), are
available (Table 1) 1.

Among the 3 style-guides, the major differences are the suggested naming convention and inden-
tation, as highlighted in Table 1. Other style-elements are essentially the same. These style guides are
based on possible improvement in code quality, e.g. style-elements that improve program comprehen-
sion (Oman and Cook, 1991). However, we argue that one should first study the current situation, and
preferably, the historical development, of programming style variations (PSV) to supplement these
standardization efforts. We have undertaken such a task, so that the larger R communities can have
a baseline to evaluate the effectiveness of those standardization efforts. Also, we can have a better
understanding of the factors driving increase and decrease in PSV historically, such that more effective
standardization efforts can be formulated.

1Bååth (2012) lists also Colin Gillespie’s R style guide. Additional style guides that we found include the style
guides by Henrik Bengtsson, Jean Fan, Iegor Rudnytskyi, Roman Pahl, Paul E. Johnson, Joshua Halls, Datanovia,
and daqana. We focus only on the 3 style guides of Tidyverse, Google and Bioconductor is because these 3 are
arguably the most influential. There are groups of developers (e.g. contributors to tidyverse, Google employees,
and Bioconductor contributors) adhering to these 3 styles.
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Table 1: Three major style-guides and their differentiating style elements (in Bold): Google, Tidyverse
and Bioconductor

Feature Google Tidyverse Bioconductor

Function name UpperCamel snake_case lowerCamel
Assignment Discourage = Discourage = Discourage =

Line length
“limit your code to
80 characters per

line”

“limit your code to
80 characters per

line”
⩽ 80

Space after a
comma Yes Yes Yes

Space around infix
operators Yes Yes Yes

Indentation 2 spaces 2 spaces 4 spaces

Integer Not specified

Not specified
(Integers are not

explicitly typed in
included code

examples)

Not specified

Quotes Double Double Not specified
Boolean values Use TRUE / FALSE Use TRUE / FALSE Not specified
Terminate a line
with a semicolon No No Not specified

Curly braces
{ same line, then a
newline, } on its

own line

{ same line, then a
newline, } on its

own line
Not specified

2 Analysis

Data Source

On July 1, 2020, we cloned a local mirror of CRAN using the rsync method suggested in the CRAN
Mirror HOWTO (CRAN, 2019). 2 Our local mirror contains all contributed packages as tarball files
(.tar.gz). By all contributed packages, we mean packages actively listed online on the CRAN website
as well as orphaned and archived packages. In this analysis, we include all active, orphaned and
archived packages.

In order to facilitate the analysis, we have developed the package baaugwo (Chan, 2020) to extract
all R source code and metadata from these tarballs. In this study, only the source code from the /R
directory of each tarball file is included. We have also archived the metadata from the DESCRIPTION
and NAMESPACE files from the tarballs.

In order to cancel out the over-representation effect of multiple submissions in a year by a particular
package, we have applied the "one-submission-per-year" rule to randomly selected only one submission
from a year for each package. Unless otherwise noticed, we present below the analysis of this "one-
submission-per-year" sample. Similarly, unless otherwise noticed, the unit of the analysis is exported
function. The study period for this study is from 1998 to 2019.

Quantification of PSV

All exported functions in our sample are parsed into a parse tree using the parser from the lintr (Hester
and Angly, 2019) package.

These parse trees were then filtered for lines with function definition and then linted them using
the linters from the lintr package to detect for various style-elements. Style-elements considered in
this study are:

fx_assign Use = as assignment operators

2Regarding the specification of the hardware used for this analysis, please refer to the README file in our
Github repository: https://github.com/chainsawriot/rstyle
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softplusFunc = function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_opencurly An open curly is on its own line

softplusFunc <- function(value, leaky = FALSE)
{

if (leaky)
{

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_infix No spaces are added around infix operators.

softplusFunc<-function(value, leaky=FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value>0L, value, value*0.01))

}
return(log(1L+exp(value)))

}

fx_integer Not explicitly type integers

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0, value, value * 0.01))

}
return(log(1 + exp(value)))

}

fx_singleq Use single quotation marks for strings

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings('using leaky RELU!')
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_commas No space is added after commas

softplusFunc <- function(value,leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L,value,value * 0.01))

}
return(log(1L + exp(value)))

}

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859
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fx_semi Use semicolons to terminate lines

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!");
return(ifelse(value > 0L, value, value * 0.01));

}
return(log(1L + exp(value)));

}

fx_t_f Use T/F instead of TRUE / FALSE

softplusFunc <- function(value, leaky = F) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

fx_closecurly An close curly is not on its own line.

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01)) }

return(log(1L + exp(value))) }

fx_tab Use tab to indent

softplusFunc <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0L, value, value * 0.01))

}
return(log(1L + exp(value)))

}

We have studied also the naming conventions of all included functions. Using the similar technique
of Bååth (2012), we classified function names into the following 7 categories:

• alllower softplusfunc

• ALLUPPER SOFTPLUSFUNC

• UpperCamel SoftPlusFunc

• lowerCamel softPlusFunc

• lower_snake soft_plus_func

• dotted.func soft.plus.func

• other sOfTPluSfunc

The last style-element is line-length. For each R file, we counted the distribution of line-length. In
this analysis, the unit of analysis is line.

If not considering line-length, the remaining 10 binary and one multinomial leave 7,168 possible
combinations of PSVs that a programmer could employ (7 × 210 = 7, 168).

Methodology of community-specific variations analysis

On top of the overall patterns based on the analysis of all functions, the community-specific variations
are also studied. In this part of the study, we ask the question: do local patterns of PSV exist in various
programming communities? To this end, we constructed a dependency graph of CRAN packages by
defining a package as a node and an import/suggest relationship as a directed edge. Communities in
this dependency graph were extracted using the Walktrap Community Detection Algorithm (Pons

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859
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and Latapy, 2005) provided by the igraph package (Csardi and Nepusz, 2006). The step parameter
was set at 4 for this analysis. Notably, we analyzed the dependency graph as a snapshot, which is built
based on the submission history of every package from 1998 to 2019.

By applying the Walktrap Community Detection on the 2019 data, we have identified 931 commu-
nities in this CRAN dependency graph. The purpose of this analysis is to show the PSV in different
communities. We selected the largest 20 communities for further analysis. The choice of 20 is deemed
enough to show these community-specific variations. These 20 identified communities cover 88% of
the total 14,491 packages, which shows that the coverage of our analysis is comprehensive. Readers
could explore other choices themselves using our openly shared data.

Methodology of within-package variations analysis

As discussed in Gillespie and Lovelace (2016), maintaining a consistent style in source code can enable
efficient reading by multiple readers; it is even thought to be a quality of a successful R programmer.
In addition to community-level analysis, we extend our work to the package-level, in which we
investigate the consistency of different style elements within a package. In this analysis, we studied
12 style elements, including fx_assign, fx_commas, fx_integer, fx_semi, fx_t_f, fx_closecurly, fx_infix,
fx_opencurly, fx_singleq, fx_tab, and fx_name. In other words, 11 binary variables (the first 11) and 1
multinomial variable (fx_name) could be assigned to each function within a package.

We quantified the package-level consistency by computing the entropy for each style element.
Given a style element S of an R package Ri, with possible n choices s1, . . . sn (e.g. n = 2 for binary; n =
7 for fx_names), the entropy H(S) is calculated as:

H(S) = −
n

∑
i=1

P(si) log P(si) (1)

P(si) is calculated as the proportion of all functions in Ri with the style element si. For example,
if a package has 4 functions and the S of these 4 functions are 0,0,1,2. The entropy H(S) is −((0.5 ×
log 0.5) + (0.25 × log 0.25) + (0.25 × log 0.25)) = 0.45.

As the value of H(S) is not comparable across different S with a different number of n, we nor-
malize the value of H(S) into H′(S) by dividing H(S) with the theoretical maximum. The maximum
values of H(S) for n = 2 and n = 7 are 0.693 and 1.946, respectively.

Finally, we calculate the H′(S) of all CRAN packages (i.e. R1 . . . Rn, where n equals the number of
all CRAN packages) by averaging the H′(S).

3 Results

We studied more than 108 million lines of code from 17,692 unique packages. In total, 2,249,326
exported functions were studied. Figure 1 displays the popularity of the 10 binary style-elements
from 1998 to 2019. Some style-elements have very clear trends towards a majority-vs-minority pattern,
e.g. fx_closecurly, fx_semi, fx_t_f and fx_tab. Some styles-elements are instead trending towards
a divergence from a previous majority-vs-minority pattern, e.g. fx_assign, fx_commas, fx_infix,
fx_integer, fx_opencurly and fx_singleq. There are two style-elements that deserve special scrutiny.
Firstly, the variation in fx_assign is an illustrative example of the effect of introducing a new language
feature by the R Development Core Team. The introduction of the language feature (= as assignment
operator) in R 1.4 (Chambers, 2001) has coincided with the taking off in popularity of such style-
element since 2001. Up to now, around 20% of exported functions use such style.

Secondly, the popularity of fx_opencurly shows how a previously established majority style
(around 80% in late 90s) slowly reduced into a minority, but still prominent, style (around 30% in late
10s).

Similarly, the evolution of different naming conventions is shown in Figure 2 3. This analysis can
best be used to illustrate the effect of style-guides. According to Bååth (2012), dotted.func style is very
specific to R programming. This style is the most dominant style in the early days of CRAN. However,
multiple style guides advise against the use of dotted.func style and thus a significant declining trend

3’Other’ is the 4th most popular naming convention. Some examples of function names classified as ’other’ are:
Blanc-Sablon, returnMessage.maxim, table_articles_byAuth, mktTime.market, smoothed_EM, plot.Sncf2D, as.igraph.EPOCG,
TimeMap.new, fT.KB, IDA_stable. These functions were classified as ’other’ because of the placement of capital letters.
For packages using an all capitals object class name (e.g. EPOCG) and S3 generic method names (e.g. as.igraph),
their methods are likely to be classified as ’others’. One could also classify these functions as dotted.func. However,
we follow both lintr and Bååth (2012) to classify a function as dotted.func only when no capital letter is used in its
name.
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fx_t_f: Use T/F fx_tab: Tab to indent

fx_semi: ; to terminate lines fx_singleq: ' for strings

fx_integer: Not type integers fx_opencurly: { on own line

fx_commas: No space after , fx_infix: Infix no spaces

fx_assign: = as assignment fx_closecurly: } not on own line
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Figure 1: Evolution in popularity of 10 style-elements from 1998 to 2019.
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is observed. lower_snake and UpperCamel are the styles endorsed by the Tidyverse Style Guide and
the Google’s R Style Guide, respectively. These two styles see an increasing trend since the 2010s,
while the growth of lower_snake is stronger, with almost a 20% growth in the share of all functions in
contrast with the 1-2% growth of other naming conventions. In 2019, lower_snake (a style endorsed
by Tidyverse) is the most popular style (26.6%). lowerCamel case, a style endorsed by Bioconductor, is
currently the second most popular naming convention (21.3% in 2019). Only 7.0% of functions use
UpperCamel, the style endorsed by Google.
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Figure 2: Evolution in popularity of 7 naming conventions from 1998 to 2019.

The evolution of line lengths is tricky to be visualized on a 2-D surface. We have prepared a Shiny
app (https://github.com/chainsawriot/rstyle/tree/master/shiny) to visualize the change in line
distribution over the span of 21 years. In this paper, Figure 3 shows the snapshot of the change in
line length distribution in the range of 40 to 100 characters. In general, developers of newer packages
write with less characters per line. Similar to previous analyses with Python programs e.g.Vanderplas
(2017), artificial peaks corresponding to recommendations from either style-guides, linters, and editor
settings are also observed in our analysis. In 2019, the artificial peak of 80 characters (recommended
by most of the style-guides and linters such as lintr) is more pronounced for lines with comments but
not those with actual code.

Community-based variations

Using the aforementioned community detection algorithm of the dependency graph, the largest 20
communities were extracted. These communities are named by their applications. Table 2 lists the
details of these communities 4.

Using the naming convention as an example, there are local patterns in PSV (Figure 4). For
example, lower_snake case is the most popular naming convention in the "RStudio" community as
expected because it is the naming convention endorsed by the Tidyverse Style-guide. However, only a
few functions exported by the packages from "GUI: Gtk" community uses such convention.

For the binary style-elements, local patterns are also observed (Figure 5). The most salient pattern
is the exceptional high usage of tab indentation in "rJava" and "Bioinformatics" communities, probably
due to influences from Java or Perl. Also, packages in "GUI: Gtk" have an exceptional high usage of
open curly on its own line.

4“Base packages” (core packages come with R) such as methods and utils were included in the dependency
graph. However, the PSV of recommended packages were not analyzed.
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Figure 3: Change in line length distribution of comments (orange) and actual code (green): 2003, 2008,
2013 and 2019.

Table 2: The largest 20 communities and their top 3 packages according to PageRank

Community Number of Packages Top 3 Packages

base 5157 methods, stats, MASS
RStudio 4758 testthat, knitr, rmarkdown
Rcpp 826 Rcpp, tinytest, pinp
Statistical Analysis 463 survival, Formula, sandwich
Machine Learning 447 nnet, rpart, randomForest
Geospatial 367 sp, rgdal, maptools
GNU gsl 131 gsl, expint, mnormt
Graph 103 graph, Rgraphviz, bnlearn
Text Analysis 79 tm, SnowballC, NLP
GUI: Tcl/Tk 55 tcltk, tkrplot, tcltk2
Infrastructure 54 rsp, listenv, globals
Numerical Optimization 51 polynom, magic, numbers
Genomics 43 Biostrings, IRanges, S4Vectors
RUnit 38 RUnit, ADGofTest, fAsianOptions
Survival Analysis 33 kinship2, CompQuadForm, coxme
Sparse Matrix 32 slam, ROI, registry
GUI: Gtk 31 RGtk2, gWidgetstcltk, gWidgetsRGtk2
Bioinformatics 29 limma, affy, marray
IO 28 RJSONIO, Rook, base64
rJava 27 rJava, xlsxjars, openNLP
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Within-package variations

The result shows that the consistency of style elements within a package varies (Figure 6). For example,
style elements like fx_integer, fx_commas, fx_infix, fx_opencurly, and fx_name have less consistency
within a package than fx_tab, fx_semi, fx_t_f, fx_closecurly, fx_singleq, and fx_assign. Based on our
within-package analysis, we noticed that it is rare for a package to use a consistent style in all of its
functions, except those packages with only a few functions. This finding prompts previous concerns
e.g. Oman and Cook (1991); Elish and Offutt (2002); Wang and Hahn (2017); Gillespie and Lovelace
(2016) that these inconsistent style variations within a software project (e.g. in an R package) might
make open source collaboration difficult.
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Figure 6: Average package-level entropy of 12 style elements

In Figure 7, we contextualize this finding by showing the distribution of fx_name in 20 R packages
with the highest PageRank (Page et al., 1999) in the CRAN dependency graph. Many of these packages
have only 1 dominant naming convention (e.g. lower_snake or lowerCamel), but not always. For
instance, functions with 6 different naming conventions can be found in the package Rcpp.

4 Discussion

In this study, we study the PSV in 21 years of CRAN packages across two dimensions: 1) temporal
dimension: the longitudinal changes in popularity of various style-elements over 21 years, and 2)
cross-sectional dimension: the variations among communities of the latest snapshot of all packages
from 1998 to 2019. From our analysis, we identify three factors that possibly drive PSV: the effect of
style-guides (trending of naming conventions endorsed by Wickham (2017) and Google (2019)), the
effect of introducing a new language feature (trending of = usage as assignments after 2001), and the
effect of editors (the dominance of 80-character line limit).

From a policy recommendation standpoint, our study provides important insight for the R De-
velopment Core Team and other stakeholders to improve the current situation of PSV in R. First, the
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introduction of a new language feature can have a very long-lasting effect on PSV. "Assignments with
the = operator" is a feature that introduced by the R Development Core Team to “increase compatibility
with S-Plus (as well as with C, Java, and many other languages)” (Chambers, 2001). This might be a
good intention but it has an unintended consequence of introducing a very persistent PSV that two
major style-guides, Wickham (2017) and Google (2019), consider as a bad style.

Second, style-guides, linters, and editors are important standardizers of PSV. Although we have
not directly measured the use of style-guides, linters, and editors in our analysis 5, we infer their effect
by studying the time trend (Figure 1). Even with these standardizers, programming styles are slow
to change. As indicated by the local PSV patterns, we found in some communities, some package
developers have their own style. Having said so, we are not accusing those developers of not following
the trendy programming styles. Instead, they follow the mantra of “if it ain’t broke don’t fix it”. Again,
from a policy recommendation standpoint, the existence of local PSV patterns suggests there are many
blind spots to the previous efforts in addressing PSV. The authors of the style guides may consider
community outreach to promote their endorsed styles, if they want other communities to adopt their
styles.

Our analysis also opens up an open question: should R adopt an official style-guide akin the PEP-8
of the Python Software Foundation (Van Rossum et al., 2001)? There are of course pros and cons of
adopting an official style-guide. As written by Christiansen (1998), “style can easily become a religious
issue.” It is not our intention to meddle in this “religious issue.” If such an effort would be undertaken
by someone else, the following consensus-based style could be used as the basis. The following is an
example of a function written in such style.

softplus_func <- function(value, leaky = FALSE) {
if (leaky) {

warnings("using leaky RELU!")
return(ifelse(value > 0, value, value * 0.01))

}
return(log(1 + exp(value)))

}

In essence,

• Use snake case

• Use <- to assign, don’t use =

• Add a space after commas

• Use TRUE / FALSE, don’t use T / F

• Put open curly bracket on same line then a newline

• Use double quotation mark for strings

• Add spaces around infix operators

• Don’t terminate lines with semicolon

• Don’t explicitly type integers (i.e. 1L)

• Put close curly bracket on its own line

• Don’t use tab to indent

We must stress here that this consensus-based style is only the most popular style based on our
analysis, i.e. the Zeitgeist (the spirit of the age) 6. We have no guarantee that this style can improve
clarity or comprehensibility. As a final remark: although enforcing a consistent style can improve open
source collaboration (Wang and Hahn, 2017), one must also bear in mind that these rules might need
to be adjusted sometimes to cater for programmers with special needs. For example, using spaces
instead of tabs for indentation can make code inaccessible to visually impaired programmers (Mosal,
2019).

5The usage of style-guides, linters, and editors cannot be directly measured from the record on CRAN. The
maintainers usually do not explicitly state the style-guide they endorsed in their code. Similarly, packages that
have been processed with linters do not import or suggest linters such as lintr, styler or goodpractice. It might
be possible to infer the use of a specific editor such as RStudio in the development version of a package with
signals such as the inclusion of an RStudio Project file. These signals, however, were usually removed in the CRAN
submission of the package. Future research should use alternative methods to measure the usage of these 3 things
in R packages. In this study, similar to other studies, e.g. Bafatakis et al. (2019), we use style compliance as a proxy
to usage of a particular style guide, linter or editor.

6In 2019, 5.35% of all functions are in this Zeitgeist style. Using electoral system as an analogy, this style is having
the plurality (have the highest number of votes) but not the absolute majority (have over 50% of the votes)
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5 Reproducibility

The data and scripts to reproduce the analysis in this paper are available at https://github.com/
chainsawriot/rstyle. An archived version is available at this DOI: http://doi.org/10.5281/zenodo.
4026589.
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rmonad: pipelines you can compute on
by Zebulun Arendsee, Jennifer Chang, and Eve Syrkin Wurtele

Abstract The rmonad package presents a monadic pipeline toolset for chaining functions into stateful,
branching pipelines. As functions in the pipeline are run, their results are merged into a graph of all
past operations. The resulting structure allows downstream computation on node documentation,
intermediate data, performance stats, and any raised messages, warnings or errors, as well as the final
results. rmonad is a novel approach to designing reproducible, well-documented, and maintainable
workflows in R.

1 Background

Pipeline programming is common practice in the R community, with magrittr, pipeR, and wrapr
packages offering infix pipe operators (Bache and Wickham, 2014; Ren, 2016; Mount and Zumel, 2018).
The value on the left of the pipe operator is passed as the first argument to the right-hand function.
This style of programming simplifies code by removing the need to name intermediate values or write
deeply nested function calls. For example, using the magrittr pipe operator, %>%, the expression x %>%
f %>% g is equivalent to g(f(x)). These pipelines are equivalent to applied function compositions
and termed function composition pipelines.

A monadic (Wadler, 1990) pipeline extends composition pipelines by allowing context to be
threaded through the pipeline. Each function call in the pipeline produces both a new value (assuming
successful evaluation) and a computational context surrounding that new value. This new value and
context is then merged with the context of the prior node in the pipeline, allowing past context to
be stored. In this way, monadic pipelines can be automatically self-describing by returning both the
result and a description of the process that created it.

In this paper, we present rmonad, the first explicitly monadic pipeline program developed for the R
language. rmonad captures the history of a pipeline as a graph of all past operations. Each node in the
graph represents either an input or a function. These nodes store the source code, documentation, any
raised messages/warnings/errors, benchmarking info, and arbitrary additional metadata. rmonad
also generalizes the standard linear pipeline to a directed graph with support for branching and
looping pipelines.

rmonad is one of many graph-based workflow tools available to R programmers. The drake
package (Landau, 2017) allows specification of R workflows using Make-family semantics (Stallman
et al., 2002). The R packages tidycwl (Koc et al., 2020) and sevenbridges (Xiao and Yin, 2020) wrap the
Common Workflow Language which allows specification of DAG-based workflows that can be easily
run on high-performance platforms. Many build systems allow execution of R code snippets, such as
Snakemake (Köster and Rahmann, 2012), Nextflow (Di Tommaso et al., 2017) and Cuneiform (Brandt
et al., 2017). Like these programs, rmonad specifies a graph of dependent operations and can handle
large, complex projects. However, rmonad offers a lighter solution, with no dependencies outside
R. In the simplest case, rmonad has no more syntactic complexity than a composition pipeline like
magrittr.

Since rmonad can annotate and summarize intermediate data, it can serve as a provenance tracking
tool. Provenance tracking of data generated through a pipeline is critical for research reproducibility
(Gentleman and Lang, 2007). For example, the provenance manager VisTrails builds directed acyclic
graphs (DAG) of workflows and stores intermediate data objects as external XML files in an external
database (Silva et al., 2010). It also provides a visualization of the workflow (or provenance trail) as it
is being run. By visualizing the workflow in a DAG-like structure, the user can perform exploratory
analysis and retooling on the fly. The R provenance tracking packages archivist (Biecek and Kosinski,
2017), trackr (Becker et al., 2019), and adapr (Gelfond et al., 2018) store manual annotations (metadata)
of data objects as hooks to an external binary or JSON database.

In the following sections, we introduce the rmonad monadic pipeline operator, show how rmonad
generalizes linear pipelines to support branching and nesting, describe how rmonad evaluation allows
pipeline debugging and annotation, tie these ideas together with a case study, and provide an overview
of the application of rmonad to a large-scale project.

2 The monadic pipe operator

A pipeline consists of a series of expressions that are evaluated using upstream data as input. The
context that is passed through an rmonad pipeline is stored as an “Rmonad” S4 object. This object
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consists of a directed graph of the relationships between nodes in the pipelines, a list containing the
information about each node (including the output if it is cached), and a unique identifier for the head
node—the node whose output will be passed to the next operation in the pipeline. Each expression in
the pipeline is evaluated by the special rmonad function, evalwrap, that takes an R expression and
returns an “Rmonad” object. After each new expression in a pipeline is evaluated, the past “Rmonad”
object is merged with the new one (see Algorithm 1).

function evalwrap(x):
metadata <- get_meta(x)
doc <- get_doc(x)
code <- get_code_string(x)
runtime <- time({ result <- run(x) })
isOK <- successful(result)
if isOK then

y <- result$value
mem <- size(result$value)

end
else

y <- NULL
mem <- 0

end
return Rmonad(y, isOK, code, metadata, doc, runtime, mem)

Algorithm 1: Pseudocode for the rmonad eval function, evalwrap. get_meta and get_doc
are functions that parse the input expression to extract the documentation string and
metadata list. get_code_string gets the R code of the function as a string. These three
functions rely on the metaprogramming features of R, which allow functions to operate
on the code of their inputs. The run function is like the standard eval R function except
that it captures error/warning/message output and returns these together with the
output value as a list. $ is used to access a value in a list. successful returns TRUE if
the evaluation raised no error. size returns the memory footprint of an R object. Rmonad
is a constructor for an “Rmonad” object. In summary, evalwrap evaluates a function call,
captures any raised messages, records information about the function and its output,
and returns a new “Rmonad” object.

The rmonad function evalwrap evaluates an R expression and returns an “Rmonad” object. The
type signature of evalwrap is:

evalwrap :: R → M a (1)

The evalwrap function takes the R expression, R, and returns M a, which is the “Rmonad” object
M wrapping the value returned from the evaluation of R. On success, the returned value has type a.
Thus, whereas a composition pipeline would consist of chained functions of type a → b, b → c, c → d,
etc, an rmonad pipeline consists of a → M b, b → M c, c → M d.

Each evaluation step in an rmonad pipeline creates a contextualized object. However, including
the context in the output causes a type conflict. For example, suppose there are functions f and g with
types (a → M b) and (b → M c), respectively. Function f produces an output of type M b, but function
g requires an input of type b. This conflict is resolved through the special evaluation performed within
the monadic pipe operator.

The monadic pipe operator, or the bind operator, has the type signature (Wadler, 1990):

bind :: m b︸︷︷︸
output of f

→ (b → m c)︸ ︷︷ ︸
the function g

→ m c︸︷︷︸
output of g

(2)

where m is a generic monad. The function bind takes an input of type m b and the function g of type
(b → m c). It returns the output of g which has type m c. Many functions of the general type a → m b
can be chained together using this bind function. For example, the call bind(bind(f(x),g),h) would
chain the contextualized results of f through g and then h. The implementation of the bind function
defines how context from m b is passed through the monadic chain to m c.

The simplest possible implementation of the bind function passes no state and is identical to
applied functional composition (e.g., as done in magrittr):
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function stateless_bind(x, g):
if successful(x):

y = extract(x)
z = g(y)
return z

else
return f ail

Algorithm 2: The bind function for a composition pipeline where no context is passed.
successful returns TRUE if the previous operation succeeded. extract returns the
stored value from the monadic wrapper. g operates on the y and returns the wrapped
value z.

The monadic pipeline operator of rmonad, %>>%, has the type signature:

M a︸︷︷︸
lhs

→ (a → b)︸ ︷︷ ︸
rhs

→ M b︸︷︷︸
output

(3)

%>>% is a binary operator where the left hand side (lhs) is an “Rmonad” object (M) wrapping a value
of type a. The right hand side (rhs) is a normal R function that takes an input of type a and, if
successful, returns a value of type b. If lhs stores a failing state (i.e., a prior node in the pipeline raised
an error), then the rhs function is not evaluated and the failed state is propagated. Otherwise, the
value is extracted from lhs and evalwrap then evaluates the rhs function with the lhs value as its
first argument yielding a new “Rmonad” object. Finally, this new object is merged with the prior, lhs
“Rmonad” object. Merging involves joining the node graphs of the old and new “Rmonad” objects,
setting the head of the resulting graph to the head of the new graph, and removing the value stored in
the prior head (see Algorithm 3). The “head” of a graph is critical for branching pipelines (see the
Branching and Nesting section).

function rmonad_bind(lhs, rhs):
h <- head(lhs)
if failed(h) then

return lhs
end
else

r2 <- evalwrap(rhs, value(h))
r3 <- union(lhs, r2)
if failed(r2) then

r3 <- set_value(r3, value(h))
end
return r3

end
Algorithm 3: The %>>% bind function. lhs and rhs are the left hand side and right hand
side of the binary %>>% operator, respectively. lhs is an “Rmonad” object, which is a
graph of past operations. head extracts the current node in the graph that is being acted
on (the “Rmonad” object stores the index of the current head). failed returns TRUE if
the operation stored in its argument raised an error. value returns the data stored in a
node (or in the head node of an “Rmonad” object). evalwrap evaluates an R function
and its arguments and returns a singleton “Rmonad” object (see Algorithm 1). union
merges two “Rmonad” objects, assigning the head of the new object to the head of the
second object. Here the second “Rmonad” object is a singleton, so we are adding one
node to the function graph and making it the new head node. set_value sets the value
of the head node in an “Rmonad” object. rmonad_bind returns a new “Rmonad” object
with a new value on success and the old value on failure.

The difference between %>>% and a true monadic bind operator is that the rhs of a monadic bind
operator is a function (a → M b), whereas the rhs of %>>% is a normal R function. The %>>% operator
essentially transforms the rhs R function into a function that yields the monadic object. This is carried
out within the monadic bind function through the special evaluation offered by evalwrap.

While the primary rmonad operator is the monadic pipe operator, %>>%, several additional opera-
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tors are provided for operating on “Rmonad” objects using pipeline syntax (listed in Table 1).

Operator Description
%>>% pass lhs as initial argument of rhs function
%v>% like %>>% but caches the lhs value
%*>% pass list of arguments from lhs to rhs
%__% rhs starts a new chain that preserves lhs history
%||% use rhs value if lhs is failing
%|>% call rhs on lhs if lhs failed

Table 1: A partial list of the supported operators. lhs and rhs refer to the left-hand and right-hand
sides of the given binary operator. %>>% is the primary monadic chain operator. %v>% is a variant of the
monadic chain operator that always caches its input even on a successful run. The %*>% operator takes
a list of “Rmonad” objects on the left and feeds the values of each as arguments into the function on the
right, linking the history of each input “Rmonad” object to the final “Rmonad” object. This operator is
important in building branching pipelines. The %__% operator is like a semicolon in a programming
language, separating independent pipelines but passing on context. The %||% and %|>%, operators are
used in error recovery.

The %>>% operator by itself can only create linear chains of operations. Mechanisms for lifting this
limitation are introduced in the next section.

3 Branching and Nesting

In a linear pipeline, the output of each internal function is piped to just one downstream function. In
contrast, rmonad allows branching to be formed in one of two main ways: 1) the pipeline’s head may
be reset to an internal node and the pipeline can continue growing from there or 2) multiple pipelines
may be merged.

The first branching method uses the tag function to attach a label to the current head node and
the view function to change the head node to a previously tagged node. An example of a branched
pipeline using these function is shown in Figure 1. A node may be associated with one or more tags.

The second branching method allows multiple pipelines to merged into one. The most direct merge
method uses the %*>% operator to pass the head value from each “Rmonad” object in the left-hand side
list as arguments to the right-hand side function. rmonad also offers a dedicated loop function that
takes an “Rmonad” object containing a list of values, passes each into monadic function, and connects
the histories and final results of each pipeline into a new “Rmonad” node.

The example below demonstrates a loop where nodes where individual elements are dynamically
tagged for later access:

m <- loop(
evalwrap(letters[1:3]),
function(x){ x %>>% paste0("!") %>% tag(c("letters", x)) }

) %*>% paste0
get_value(m, tag="letters")
#> $`letters/c`
#> [1] "c!"
#>
#> $`letters/b`
#> [1] "b!"
#>
#> $`letters/a`
#> [1] "a!"
get_value(m, tag="letters/b")[[1]]
#> "b!"

The elements of the first argument to the loop function (the letters ’a’, ’b’, and ’c’) are passed to loop’s
second argument. The second argument is an anonymous function that adds an exclamation mark to
the input and tags the resulting value. The tags are hierarchical, thus get_value(m,tag="letters")
returns all values with the initial tag ’letters’. Specific values can be accessed like files in a path (e.g.,
"letters/b").

Since rmonad pipelines are branched, there is in general no single output value of the pipeline.
Rather, the data contained in the “Rmonad” object is queried using a family of vectorized getter
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functions. For example, get_value will return a list containing the value stored in each node (or NULL
if no value is stored); get_error returns a list of all error messages, get_warning returns a list of all
warnings, get_code returns a list of all code strings, etc. The code below fails on the ’sqrt’ call and the
failing node can be found by searching for code blocks that were not successfully executed.

m <- "a" %>>% paste("cat") %>>% sqrt
get_code(m)[!get_OK(m)]
#> [[1]]
#> [1] "sqrt"

"x" %>>% paste("a") %>>%
paste("b") %>>%
log %>% plot(label="value")

1 2 3 4
- - - xab

"x" %>>% paste("a") %>% tag("a1") %>>%
paste("b") %>>%
log %>% view("a1") %>>%
paste("c") %>% plot(label="value")

1 2 3 4
- xa - xab

5
xac

Figure 1: rmonad: linear and branched pipelines. The plot functions visualize the graph with values
in nodes if the values are cached and "-" otherwise. The layout of the plots was modified in the vector
editor Inkscape. Top: A linear rmonad pipeline that ends in an error. The pipeline begins at node 1
with the value "x". This is piped into the paste function which concatenates the letter "a". Since the
paste is successful, the result is stored in node 2 and the value in node 1 is deleted to save memory.
The value in node 2 is piped into paste again, concatenating the letter "b" and storing it in node 3. The
value in node 3 is piped into the log function, where an error is raised, terminating this branch, and
storing the final failing value, "x a b", and the error message. The value is only stored at the end node
to avoid storing all intermediate values across a pipeline. That way, values are stored when there are
errors or where explicitly tagged by the user. Bottom: A branched rmonad pipeline and its resulting
graph. From node 2, the “Rmonad” object is piped into the tag function which annotates the head
node (node 2) with the tag "a1" and sets a flag that ensures the value will be cached for later use. After
function 4, the “Rmonad” object is piped into view, which sets the head of the graph to node 2. Lastly,
the value in node 2 is piped into the final paste function that concatenates "c".

In addition to branching, rmonad allows complex pipelines to be built from smaller nested
pipelines defined in normal R functions (see Figure 2). When data is piped into a function that wraps
a nested rmonad pipeline, the input values will be linked to the nodes in the nested pipeline that use
the input. In this way, rmonad enables multilevel debugging. Storing the input to each failed function
at each nest level allows a programmer to step through the code in the failed node using the input
data, without having to rerun the entire pipeline.

4 Evaluation: error handling, metadata, and post-processing

In this section, we expound on how errors are handled in rmonad, how nodes are documented and
annotated, and how post-processing functionality is added to specify log messages, summarize node
output and clean up raised messages.

Exception handling and tracebacks

The core functionality of rmonad is the stateful data piping provided by the monadic operator %>>%.
Linear chains of operations can be constructed with this operator, where each successful node stores
information about the function and results. In the case of an error, rmonad provides access to the
traceback and to the inputs to each failing function. Knowing the error messages and the function
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# Level 2
f <- function(x) {

"<" %v>% paste(x) %v>% paste(">")
}
# Level 1
"A" %v>% paste("B")

%v>% f
%v>% paste("C") %>% plot(label="value")

A AB <AB> <AB>C

< <AB −

Level 1

Level 2

1 2 3 7

4 5 6

Figure 2: rmonad: complex pipelines can be built from smaller nested pipelines. Level 1 is a pipeline
where the node 3 represents the computation performed by the pipeline in Level 2. The nodes contains
values ("A", "AB", etc) if the value is cached by rmonad and contains a "-" if the value is not stored.
Arrows show relationships between the nodes. A black arrow shows data being passed directly to
a new function. A Gray arrow points from a node in a parent pipeline to a node in a child pipeline
that uses its value. The red arrow points from the terminal node in a child pipeline to the node in the
parent pipeline that stores its result. Stepping through the pipeline: Node 1 wraps the character "A",
node 2 appends "B", and node 3 passes "AB" to the function f. Next, within the scope of f, node 4
starts a new pipeline with the value "<", node 5 pastes "<" from node 4 to the local x variable (which is
the value passed from node 2), and finally node 6 appends the closing ">" character. The function f
returns an “Rmonad” object to node 3. The value of node 6 is transferred to node 3 (thus node 6 is
empty, "-"). Finally, node 7 appends "C" and the pipeline finishes successfully.

inputs allows the programmer to step through the failed function and easily diagnose the problem. All
information is stored within the “Rmonad” object, rather than in the ephemeral state of an R session.

Here is a concrete example:

m <- "a cat" %>>% log %>>% sqrt
get_error(m)
#> [[1]]
#> character(0)
#>
#> [[2]]
#> [1] "non-numeric argument to mathematical function"
get_code(m)[[2]]
#> "log"
get_value(m)[[2]]
#> [1] "a cat"

Here an illegal value is passed into the natural log function. rmonad catches this error and saves
the first failing input and error message. The node index and error message of the failing function can
be found with get_error(m), the failing expression can be accessed with get_code, and the inputs to
the failing function can be retrieved with get_value. This approach scales cleanly to large and deeply
nested pipelines.

Parsing code strings, docstrings and metadata lists

rmonad leverages R non-standard evaluation to parse the abstract syntax tree of pipeline functions at
runtime, prior to evaluation of the functions. rmonad extracts 1) the function’s code as a string, 2) an
optional documentation string, and 3) an optional list of metadata. All three items are stored in the
“Rmonad” node. For example:

foo <- function(x){
"This is a docstring"
list(sysinfo = sessionInfo())
return(x)

}
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The first two lines in the function body are the docstring and metadata list, respectively. Each must 1)
be of the appropriate type (string and list, respectively), 2) not be assigned to a variable, and 3) not be
the final line in the function body. Thus foo is a legal R function that can be used naturally outside of
the rmonad context. The docstring and metadata would be “dead” lines of code that are evaluated but
that are not assigned to any variable or returned. When rmonad parses the function before evaluation,
the first two lines will be removed and stored, yielding the following function for evaluation:

function(x){
return(x)

}

The docstring and the function code are stored as simple strings. The metadata list is evaluated
within the function environment, giving it access to function input, and then stored.

The metadata is any list associated with a node. It can be used to store static data such as the
author’s name, a version for the function, arbitrary notes. It can also store report generation parameters
(like code chunks in knitr) (Xie, 2015). Because the list is evaluated, its contents are dynamic, allowing,
for example, session info to be stored or knitr parameters to be a function of the input. Whereas knitr
nests code chunks and their parameters in a text document, rmonad nests text and parameters within
the code.

The metadata can be modified freely even after the pipeline is run, to enable the user to store notes
that are a function of the pipeline results, as well as personal annotations, reminders, or comments on
the results.

Post-processing functions: formatting, summarizing, and logging

A built-in use of the metadata is to add formatters, summarizers, and loggers, which are executed
automatically after a node is run. For example, a pipeline developer might write the following wrapper
around a base 10 log function:

fancy_log10 <- function(x){
list(
format_warnings = function(x, xs) {
sprintf("%s NaNs produced", sum(is.na(x)))

},
format_log = function(x, passing) {
if(passing){
cat("pass\n")

} else {
cat("fail\n")

}
},
summarize = list(len = length)

)
log10(x)

}

When run, the captured warnings are processed by format_warnings and log messages by
format_log, with the following result:

"a cat" %>>% fancy_log10 -> m
#> fail
c(-2,-1,0,1,2) %>>% fancy_log10 -> m
#> pass
get_warnings(m)
#> [[1]]
#> character(0)
#>
#> [[2]]
#> [1] "2 NaNs produced"
> get_summary(m)[[2]]$len
#> 5

In the first case, an illegal value is passed to the fancy_log10 function. This leads to a failure in
the second node, and the logger prints “fail”. In the second case, the user passes the integers between
-2 and 2, storing the result in m. Since these are legal values (from R’s perspective), the logger prints
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the message “pass” after evaluation. When the returned object is printed, the post-processed warning
message “2 NaNs produced” is shown. The result of the summarizing function is accessed through
the get_summary function.

5 Case Study: the Iris data

As an example of a simple branching rmonad pipeline with error, warning and run time handling we
analyzed the Iris dataset (Anderson, 1936; Fisher, 1936). The Iris dataset is often used for case studies
of statistics and machine learning workflows, and consists of features of three species of flowers:
Iris setosa, Iris virginia, and Iris versicolor. Among these features is petal length. We used three statistical
methods, (1) ANOVA, (2) Kruskal-Wallis, and (3) t-test, to determine if petal length is significantly
different across the three Iris species. Some statistical methods are not appropriate for this dataset
without data pre-processing. This case study provides an example of running multiple methods using
a branching rmonad pipeline, while comparing the output and running times of each method.

Normally, a programmer would run the three methods separately using an R script similar to the
following:

# === Load data
data(iris)

# === 3 Statistical Tests (run one at a time)
# (1) Anova
res.aov <- aov(Petal.Length ~ Species, data = iris)
summary(res.aov)

# (2) Kruskal-Wallis
res.kr <- kruskal.test(Petal.Length ~ Species, data = iris)
res.kr

# (3) T-Test
t.test(Petal.Length~Species, data=iris)

Using rmonad tags, data can be branched out to encompass the three statistical tests. Here, the R
variable m stores the output “Rmonad” S4 object. We must initially tag the branch point node (in this
case, the original Iris dataset). Since we gave the first node the tag (“indata”), its value will be cached
and can be accessed with the command get_value(m,tag="indata"). From here, we can access and
pipe (%>>%) the viewed “indata” tag into the different statistical tests, as scripted below and visualized
in Figure 3.

# === rmonad (run together)
m <- {
"iris dataset"
evalwrap(iris, tag="indata")

} %>>% {
"anova"
res.aov <- aov(Petal.Length ~ Species, data = .)
summary(res.aov)

}

m <- {
view(m, "indata")

} %>>% {
"Kruskal-Wallis"
res.kr <- kruskal.test(Petal.Length ~ Species, data = iris)
res.kr

}

m <- {
view(m, "indata")

} %>>% {
"t-test"
t.test(Petal.Length~Species, data=iris)

}
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The above code could have been chained together using %>% get_value(tag="indata") %>%
commands, but instead was separately added to the m rmonad object for ease of reading. From the m
rmonad objects, we can plot the pipeline. In the following command we label the nodes by node id,
documentation, running time, and any errors if they exists.

plot(m, label = function(m){paste(get_id(m),
get_doc(m),
get_time(m),
gsub("character\\(0\\)", "", get_error(m)),
sep=":")})

Figure 3: Using rmonad for three statistical tests. The Iris dataset is piped to (1) ANOVA, (2) Kruskul-
Wallis, and (3) t-test. Node color reflects whether the test ran (green) or threw an error (red). Time
in seconds is shown next to the test name. Errors are annotated on the node. Notice how t-test has
the error: "grouping factor must have exactly 2 levels". Of the two tests without errors, ANOVA ran
slightly slower than Kruskal-Wallis.

In Figure 3, the center node is the iris dataset and has three arrows going outwards toward one red
and two green nodes. Of those, the red node near the top represents the t-test and shows the expected
error “grouping factor must have exactly 2 levels”. Since we are testing the petal length among the
three species, this error is expected. Any errors of the pipeline can also be obtained in a table:

missues(m)
#> id type issue
#> 1 4 error grouping factor must have exactly 2 levels

Going clockwise, ANOVA and Kruskal-Wallis are represented by nodes 2 and 3. The green nodes
indicate that both ran although their running times were different. From their node labels, Kruskal-
Wallis ran in 0.001 ms, slightly faster than ANOVA (0.002). Also note that green nodes only indicate
that the method ran successfully, not the results of that method or statistical significance. The results
of the ANOVA and Kruskal-Wallis test can be pulled out of the pipeline using their Node ID number
and the following commands.

> id=c(2,3) # place id(s) of end result(s) here
> get_value(m)[id]
#> [[1]]
#> Df Sum Sq Mean Sq F value Pr(>F)
#> Species 2 437.1 218.55 1180 <2e-16 ***
#> Residuals 147 27.2 0.19
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> [[2]]
#> Kruskal-Wallis rank sum test
#>
#> data: Petal.Length by Species
#> Kruskal-Wallis chi-squared = 130.41, df = 2, p-value < 2.2e-16

Both tests agree that there is a significant difference between Petal.Length across the three Iris
species. ANOVA ran on the dataset, which means that petal length follows a normal distribution
within each species. Kruskal-Wallis does not assume a normal distribution. The analyst can decide
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which method to use; in this case the conclusion is the same. Figure 3 is an example of a branched
rmonad pipeline comparing three different statistical methods applied to the iris dataset to test a
hypothesis.

6 rmonad in the wild: a comparative genomics case study

An example of a large and complex pipeline that uses rmonad is the orphan gene classification R
pipeline, fagin (Arendsee et al., 2019) (Figure 4). This pipeline compares genes from one species of
interest (the focal species) to genomes of several related species. The first step in the pipeline is to store
the user’s session information, which can be used in debugging if needed. Next, the pipeline loops
across each species, where, for each species, genomes and annotation data are loaded and validated.
Then secondary data (e.g., protein sequences) are derived, and diagnostic summaries are produced
and stored. Next, each of the orphan genes in the focal species is compared to each of the related
species genomes to create 12 features that are used to classify potential evolutionary relatives of each
the focal gene in the target species. Finally, all data for each focal gene is compiled into a description.

The output of this pipeline is a single “Rmonad” object. Further analysis of the pipeline entails a
series of queries against this returned object. Warnings and messages are tabulated into an HTML
report. Tagged summary data is extracted and used to build diagnostic figures. The primary results
are extracted as tabular data and visualized in the final report. Issues with a pipeline can be identified
by searching through the raised warnings stored in the “Rmonad” object. Debugging consists of
identifying the node of failure, extracting the stored inputs to the failing node, and then stepping
through the failing code.

Figure 4: rmonad can handle large projects. Here, rmonad analysis of the fagin pipeline is shown.
Green nodes represent passing; orange nodes raise warnings. The four symmetric subtrees on the
right represent a loop that loads and validates the input data for four plant species. The two sets of
three symmetric subtrees on the left are loops comparing each of the four species (A. thaliana) to the
other three.

7 Conclusion

We implemented a monadic pipeline in R via the rmonad package. rmonad provides an infrastructure
for data analysis and report generation. rmonad stores pipeline results and metadata that can be easily
explored interactively and collated into reports using tools such as the literate programming package
knitr (Xie, 2015) or the HTML report generator Nozzle.R1 (Gehlenborg et al., 2013).
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rmonad integrates a simple profiler into the workflows by automatically capturing the runtime
and memory usage of each node. This feature makes it easier for the pipeline developer to identify
bottlenecks in the code or potential culprits of memory overflow. Often, a coder must add benchmark-
ing code to key locations in a pipeline. rmonad has built-in benchmarking, such that all locations in
the pipeline are automatically tested and performance can be checked post-run.

rmonad provides a powerful tool for creating and resolving issue reports. If an rmonad pipeline
fails, the resulting object will store all failing functions, their raised error/warning messages and
also their inputs. This object can be used to find the error messages, load all inputs to the failing
function, and proceed to step through the code until the bug is found. If the user prepends a node that
stores the local session data (e.g., sessionInfo() %__% ...), the debugger gains access to the state
of the user’s machine (an often-requested item in a bug report). An “Rmonad” object with session
info attached contains everything needed to debug the issue. This streamlines issue resolution by
improving automation and simplifying submission.

Performance has not been a focus of rmonad up to this point. The package currently lacks
support for the re-use of cached values when pipelines are re-run. Also each evaluation step has
a high overhead cost relative to lighter pipeline tools like magrittr. rmonad pipelines tend to be
memory intensive, since they store many intermediate results and metadata in the “Rmonad” objects.
Addressing these performance issues is a major goal for future work.

In summary, rmonad integrates the concepts of a pipeline, a build system, a data structure, and an
low-level report-generating engine. An rmonad project consists of incremental piped operations (like
a pipeline program), supports complex branching projects (like a build system), and produces a data
structure that can be computed on to generate dynamic reports.

8 Availability

rmonad is published under the GPL-3 license and is available on the Comprehensive R Archive Net-
work (CRAN) and on GitHub at https://github.com/arendsee/rmonad. Systematic documentation
of the features with simple examples can be found in the vignettes, available through CRAN.
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A Software Tool For Sparse Estimation Of
A General Class Of High-dimensional
GLMs
by Hassan Pazira, Luigi Augugliaro and Ernst C. Wit

Abstract Generalized linear models are the workhorse of many inferential problems. Also in the
modern era with high-dimensional settings, such models have been proven to be effective exploratory
tools. Most attention has been paid to Gaussian, binomial and Poisson settings, which have efficient
computational implementations and where either the dispersion parameter is largely irrelevant
or absent. However, general GLMs have dispersion parameters ϕ that affect the value of the log-
likelihood. This in turn, affects the value of various information criteria such as AIC and BIC, and has
a considerable impact on the computation and selection of the optimal model.The R-package dglars
is one of the standard packages to perform high-dimensional analyses for GLMs. Being based on
fundamental likelihood considerations, rather than arbitrary penalization, it naturally extends to the
general GLM setting. In this paper, we present an improved predictor-corrector (IPC) algorithm for
computing the differential geometric least angle regression (dgLARS) solution curve, proposed in
Augugliaro et al. (2013) and Pazira et al. (2018). We describe the implementation of a stable estimator of
the dispersion parameter proposed in Pazira et al. (2018) for high-dimensional exponential dispersion
models. A simulation study is conducted to test the performance of the proposed methods and
algorithms. We illustrate the methods using an example. The described improvements have been
implemented in a new version of the R-package dglars.

1 Introduction

High-dimensional inference problems are studies where the number of predictors p for some response
variable is larger than the sample size n. Modern statistical methods developed to study such high-
dimensional data are usually based on combining the objective function with a penalty function (i) to
calculate a solution curve embedded in the parameter space and then (ii) to find a point on that curve
that represents the best compromise between sparsity and predictive behaviour of the model. The
recent statistical literature has a great number of contributions devoted to this problem, such as the
ℓ1-penalty function (Tibshirani, 1996), the SCAD method (Fan and Li, 2001) and the Dantzig selector
(Candes and Tao, 2007).

Augugliaro et al. (2013) proposed a new approach based on the differential geometrical representa-
tion of the likelihood, in particular for a generalized linear model (GLM). The method does not require
an explicit penalty function and is called differential geometric LARS (dgLARS) because it generalizes
the geometrical ideas on which the least angle regression (Efron et al., 2004) is based. Pazira et al.
(2018) extended the dgLARS method to high-dimensional GLMs with exponential dispersion models
and arbitrary link functions. In the same paper, the authors repurposed the classic estimation of the
dispersion parameter in a high-dimensional setting and also proposed a new, more efficient estimatator.
Wit et al. (2020) extended the dgLARS method to sparse inference in relative risk regression models.

From a computational point of view, the main problem of the dgLARS method is related to the
standard predictor-corrector (PC) algorithm developed by Augugliaro et al. (2013) to compute the
implicitly defined solution path. The PC algorithm becomes computationally intractable when working
with thousands of variables because in the prediction step, the number of arithmetic operations needed
to compute the Euler predictor scales as the cube of the number of variables. This leads to a cubic
increase in the run time needed for computing the solution curve.

In this paper we briefly explain an improved version of the PC algorithm, proposed in Pazira et al.
(2018) and Pazira (2020), simply called the improved PC (IPC) algorithm. The IPC algorithm is able
to calculate the solution path in fewer, but more relevant points, greatly reducing the computational
burden. In addition, we use a much more efficient cyclic coordinate descend (CCD) algorithm
(Augugliaro et al., 2012) to calculate a rough dgLARS solution curve for ultra high-dimensional data.
In this paper, we focus on the behaviour of the IPC algorithm. The new version of the R-package
dglars is implemented with both the CCD and IPC algorithms (Augugliaro et al., 2020). The user
can also opt to use the old PC algorithm. The package is available on the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=dglars.

The remaining of this paper is organized as follows. Firstly, we briefly review the differential
geometry underlying the dgLARS method and briefly explain the dispersion parameter estimation
methods. Next, the new functions implemented in the updated version of the dglars package are
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described and shown that they can be used to estimate the dispersion parameter. Then, various
simulation studies are performed to evaluate the performance and run times of the proposed estimation
algorithms. Finally, we use the functions implemented in the dglars package to illustrate its use in an
example data set.

2 Methodological Background

In this section we describe very briefly the dgLARS method and the dispersion parameter estimation
methods. The interested reader is referred to Augugliaro et al. (2014) and Pazira et al. (2018). In
general, the aim of the dgLARS method is to define a continuous model path that attains the highest
likelihood with the fewest number of variables.

Geometric foundation and formal definition

Let Y be a scalar random variable with probability density function belonging to the exponential
family p(y; θ, ϕ) = exp{(yθ − b(θ))/a(ϕ) + c(y, ϕ)}, where θ ∈ Θ ⊆ R is called canonical parameter,
ϕ ∈ Φ ⊆ R+ is called dispersion parameter and a(·), b(·) and c(·, ·) are specific given functions. We
shall assume that Θ is an open set. The expected value of Y is related to the canonical parameter by
the mean value mapping, namely E(Y) = µ = τ(θ) = ∂b(θ)/∂θ, where τ : int(Θ)→ Ω. Similarly, the
variance of Y is related to its expected value by the identity Var(Y) = a(ϕ)V(µ), where V(µ) is the
variance function. Since µ is a reparameterization of the model, in the following paper we denote by
p(y; µ, ϕ) the probability density function of Y. Let X be a p-dimensional vector of random predictors,
a GLM is based on the assumption that the conditional expected value of Y given X is specified by the
identity

g(E(Y|X)) = β0 +
p

∑
m=1

xm βm = x⊤β,

where, with a little abuse of notation, x = (1, x1, . . . , xp)⊤ and g(·) is called link function. For notation
purposes, it is more convenient to denote g−1(x⊤β) as µ(β).

When we work with n independent and identically distributed copies of the pair (Y, X), the
marginal distribution of the random vector Y = (Y1, . . . , Yn)⊤ is an element of the set S = {p(y; µ, ϕ) =
∏n

i=1 p(yi; µi, ϕ) : µ ∈ Ωn, ϕ ∈ R+
}

, which is a minimal and regular exponential family of order n
and can be treated as a differential manifold in which µ is a coordinate system (Amari and Nagaoka,
1985). At each point of S we can attach a tangent space, denoted by Tp(µ)S , defined as the as the linear
vector space spanned by the n score functions ∂iℓ(µ, ϕ; Y) = ∂ log p(Y ; µ, ϕ)/∂µi. As suggested in
Burbea and Rao (1982), each tangent space can be equipped with an inner product: given two tangent
vectors belonging to TµS , say v = ∑n

i=1 vi∂iℓ(µ, ϕ; Y) and w = ∑n
i=1 wi∂iℓ(µ, ϕ; Y), their inner product

is defined to be:

⟨v; w⟩µ = Eµ(v · w) =
n

∑
i=1

viwiE({∂iℓ(µ, ϕ; Y)}2) =
n

∑
i=1

viwi
a(ϕ)V(µi)

. (1)

In order to study the geometrical structure of a GLM, we shall assume that β→ {g−1(x⊤1 β), . . . ,
g−1(x⊤n β)}⊤ = µ(β) is an embedding, then the setM = {p(y; µ(β), ϕ) ∈ S : β ∈ Rp+1, ϕ ∈ R+}
is a p + 1-dimensional submanifold of S . As previously done, the tangent space ofM at the point
p(y; µ(β), ϕ), denoted by Tµ(β)M, is the linear vector space spanned by the p + 1 score functions
∂hℓ(β, ϕ; Y) = ∂ log p(Y ; µ(β), ϕ)/∂βh. Since Tµ(β)M is a linear subspace of Tµ(β)S , the inner product
(1) can also be used to define the inner product between two tangent vectors belonging to Tµ(β)M.
For more details see Augugliaro et al. (2013) and Pazira (2017).

The dgLARS estimator is based on a differential geometric characterization of the Rao score test
statistic, obtained using the inner product between the bases of the tangent space Tµ(β)M and the
tangent residual vector r(β, ϕ, y; Y) = ∑n

i=1 rβ,i ∂iℓ(β, ϕ; Y), where rβ,i = yi − µi(β). Formally, we
have the following identity:

∂hℓ(β, ϕ; Y) = ⟨∂hℓ(β, ϕ; Y); r(β, ϕ, y; Y)⟩µ(β)

= cos(ρh(β, ϕ)) · ||r(β, ϕ, y; Y)||µ(β) · I1/2
h (β, ϕ), (2)

where Ih(β, ϕ) is the Fisher information for βh, and ρh(β, ϕ) is a generalization of the Euclidean
notion of angle between the hth column of the design matrix and the residual vector (rβ,i)i={1,2,...,n}.
Importantly, (2) shows that the gradient of the log-likelihood function does not generalize the equian-
gularity condition proposed in Efron et al. (2004) to define the LARS algorithm, since the latter does
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not consider the variation related to I1/2
h (β, ϕ), which in the case of a GLM is typically not constant.

Using the previous identity, one can see that the signed Rao score test statistic, denoted by rh(β, ϕ),
can be characterized as follows:

rh(β, ϕ) = I−1/2
h (β, ϕ) · ∂hℓ(β, ϕ; Y)

= cos(ρh(β, ϕ)) · ∥r(β, ϕ, y; Y)∥µ(β). (3)

From (3) we shall say that two given predictors, say h and k, satisfy the generalized equiangularity
condition at the point (β, ϕ) when |rh(β, ϕ)| = |rk(β, ϕ)|. Inside the dgLARS theory, the generalized
equiangularity condition is used to identify the predictors that are included in the active set.

As shown in Pazira et al. (2018), the Rao score test statistic can be written as

rh(β, ϕ) = (a(ϕ))−1/2 ∑n
i=1 ∂hµi(β)V−1(µi(β))(yi − µi(β))√

∑n
i=1 V−1(µi(β))∂hµi(β))

= (a(ϕ))−1/2rh(β),

then the equiangularity condition and the dgLARS method can be defined using only the function
rh(β).

Formally, the dgLARS is a method for constructing a path of solutions, indexed by a positive
parameter γ, where the nonzero estimates of each solution can be defined as follows. For any dataset
there exists with probability one a finite decreasing sequence of transitions points, denoted by {γ(j)}.
Such that for any γ ∈ (γ(j); γ(j−1)) the subvector of non-zero estimates, denoted by β̂A(γ), is defined
as the solution to the following non-linear equations

rh(β̂A(γ))− shγ = 0, ∀ h ∈ A, (4)

where A = {h : β̂h(γ) ̸= 0} is called active set and sh = sign(rh(β̂A(γ))). Furthermore, for any
k /∈ A we have that |rk(β̂(γ))| < γ.

At each transition point we have a change in the active set. We shall say that γ(j) is an inclusion
transition point if there exists k /∈ A such that the equiangularity condition is satisfied, which can also
be written as

|rk(β̂A(γ
(j)))| = γ(j). (5)

In this case the active set is updated adding the index k, i.e. the predictor Xk is included in the current
model. As explained in Augugliaro et al. (2013), a generalization of the lasso estimator can be obtained
letting sh = sign(β̂h(γ)), in this way a predictor will be removed from the current model when the
sign of the the associated estimate is not in agreement with the sign of the Rao score test statistic.
Formally, we shall say that γ(j) is an exclusion transition point if there exists h ∈ A such that the
following condition is satisfied:

sign(rh(β̂A(γ
(j)))) ̸= sh. (6)

In this case the active set is updated removing the index h and Xh is removed from the current
model. In Table 1 the pseudo-code of the improved PC algorithm is reported. In order to distinguish
between the two generalizations, in this paper the first one is called dgLARS and dgLASSO denotes
the generalization of the lasso estimator.

Computational aspects: the improved PC algorithm

Computationally, the problem of how to estimate the dgLARS solution curve can be decomposed
into two sub-problems. The first defines an efficient computational method to compute the transition
points, i.e., the values of the tuning parameter corresponding to a change in the active set. In other
words, at each transition points, say γ(j), only one of condition (5) or (6) is satisfied. Note that condition
(6) is only used when the generalization of the lasso estimator is considered. The second problem is to
define an efficient computational method to compute the path of solutions when γ ∈ (γ(j); γ(j−1)).
This sub-problem requires the solution to the following system of non-linear equations:

rh(β̂A(γ))− shγ = 0, ∀ h ∈ A,

with γ ∈ (γ(j); γ(j−1)) and where sh = sign(rh(β̂A(γ))) if we want to compute the dgLARS solution
curve or sh = sign(β̂h(γ)) if the dgLASSO solution curve is required.

Augugliaro et al. (2013) proposed a predictor-corrector (PC) algorithm to solve the two sub-
problems. Although this algorithm can compute the solution curve for moderately large problems,
identifying the transition points is extremely inefficient and can led to a significant increase in computa-
tional time. This problem is highlighted in Pazira et al. (2018) and Pazira (2020), where an improvement
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Table 1: Pseudo-code of the IPC algorithm to compute the dgLARS and dgLASSO solution curves.

Step Algorithm

1 First compute β̂0

2 Set A ← arg maxk/∈A{|rk(β̂0)|} and γ← |rh∈A(β̂0)|
3 Repeat

4 Use (8) to compute△γin and set△γ← △γin

5 If method = “dgLASSO” then

6 use (9) and then (10) to compute△γout and△γ̄, respectively, and

7 set△γ← △γ̄

8 Set γ← γ−△γ

9 Use (7) to compute β̃A(γ) (predictor step)

10 Use β̃A(γ) as starting point to solve system (4) (corrector step)

11 For all k /∈ A compute rk(β̂A(γ))

12 If ∃k /∈ A such that
∣∣∣rk(β̂A(γ))

∣∣∣ > γ then

13 use (11) to compute γ
r f (l)
k and set γ

r f
k ← max

l
{γr f (l)

k }

14 first set△γ← △γ̄− (γ
r f
k − γ) and then γ← γ

r f
k , and go to step 9

15 If ∃k /∈ A such that
∣∣∣rk(β̂A(γ))

∣∣∣ = ∣∣∣rh(β̂A(γ))
∣∣∣ for all h ∈ A(γ), then

16 update A(γ)
17 Until convergence

to the original PC algorithm is also proposed. In order to make this paper self-contained, we briefly
review this algorithm.

Let φ̃A(γ) = φA(γ) − sAγ, where φA(γ) = (rh(β̂A(γ)))
⊤
h∈A and sA = (sh)

⊤
h∈A. Suppose we

have computed the solution of the system (4) at γ, denoted by β̂A(γ), and we want to compute the
next solution at γ− ∆γ ∈ (γ(j); γ(j−1)). In the predictor step, the new solution is approximated by the
following expression:

β̂A(γ− ∆γ) ≈ β̃A(γ− ∆γ) = β̂A(γ)− ∆γ ℑ−1
A (γ) sA, (7)

where ℑA(γ) is the Jacobian matrix of the vector function φA(γ) evaluated at β̂A(γ). In the corrector
step, the approximation (7) is used as the starting point of the algorithm solving the system of
non-linear equations:

rh(β̂A(γ− ∆γ))− sh(γ− ∆γ) = 0, ∀ h ∈ A.

In order to reduce the computational burden needed to compute the entire path of solutions, ∆γ is cho-
sen in such a way that at β̂A(γ− ∆γ) there is a change in the current active set. After straightforward
algebra, γ(j) can be approximated by γ(j−1) − ∆γin where the step size ∆γin is equal to:

∆γin = min
k/∈A

{
γ− rk(β̂A(γ))

1− drk(β̂A(γ))/dγ
;

γ + rk(β̂A(γ))

1 + drk(β̂A(γ))/dγ

}
+

. (8)

When we want to compute the dgLASSO solution curve, exclusion condition (6) must be added in the
computation of the step size. Since the sign of a Rao score test associated with a predictor included
in the current model never changes, condition (6) is equivalent to the following condition: γ(j) is an
exclusion transition point if there exists a h ∈ A such that β̂h(γ

(j)) = 0. Combining approximation (7)
with the previous condition, it is easy to see that the step size corresponding to the first exclusion can
be approximated by the quantity

∆γout = min
h∈A
{β̂h(γ)/dh(γ)}, (9)

where dA(γ) = ℑ−1
A (γ) sA. Then the step size for the dgLASSO solution curve can be approximated
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by the quantity
∆γ̄ = min{∆γin; ∆γout}. (10)

Since the step size ∆γin and ∆γout are obtained using the approximation (7), we also include
an exclusion step for removing incorrectly included variables in the model. Determining how to
implement this exclusion step is the main difference between the PC and IPC algorithms. When an
incorrect variable is included in the model after the corrector step, there exists a non-active variable
such that the absolute value of the corresponding Rao score test statistic is greater than γ. In this
case, the original PC algorithm reduces the step size using a contractor factor cf, whereas the IPC
algorithm applies the Regula-Falsi (rf) method. This method uses information about the function
φ̃k(γ) = rk(β̂A(γ))− γsk, draws a secant from φ̃k(γnew) to φ̃k(γold), and estimates the root as where
it crosses the γ-axis.

From (4), we know that rh(β̂A(γ))− shγ = 0 for all h ∈ A. Indeed, after the corrector step, when
there are non-active variables such that the absolute value of the corresponding Rao score test statistic
is greater than γ, we want to find a point, γr f that is close to the true point transition point, reducing
the number of the points of the solution curve. It is easy to verify that the root γ

r f
k is given by

γ
r f
k =

rk(β̂A(γold)) γnew − rk(β̂A(γnew)) γold

rk(β̂A(γold))− rk(β̂A(γnew)) + (γnew − γold) sk
, ∀k /∈ A (11)

where sk = sign{rk(β̂A(γnew))}. Then the optimal step size is defined as

γr f = {γr f
k : |rk(β̂A(γ))| > γ}.

In total, the main difference between the PC and IPC algorithms is the different techniques used for
adjusting the step size to find the transition points. In At the end of next section we examine the
performance of the IPC algorithm and compare it to the original PC algorithm by using the functions
in the dglars package.

Estimation of the dispersion parameter

Since the dispersion parameter ϕ affects the value of the log-likelihood function, it also impacts the
value of various information criteria such as AIC and BIC. Therefore, model selection considerations
need to take into account the estimation of the dispersion parameter. There are three commonly-
used estimators of the dispersion parameter for ordinary GLMs: deviance, maximum likelihood and
Pearson estimators (McCullagh and Nelder, 1989). For high-dimensional GLMs, Pazira et al. (2018)
proposed two alternative estimators. The first is a generalized version of the Pearson estimator, ϕ̂P (γ),

ϕ̂P (γ) =
1

n− |A|
n

∑
i=1

(yi − g−1(x⊤i β̂A(γ)))
2

V(g−1(x⊤i β̂A(γ)))
. (12)

This estimator is fast, but can be improved by the second proposal of an iterative procedure, called
General Refitted Cross-Validation (GRCV), to attenuate the influence of irrelevant variables with high
spurious correlations.

The idea of the GRCV method is to split the data (yn, Xn×p) randomly into two equal halves

(y(1)
n1 , X(1)

n1×p) and (y(2)
n2 , X(2)

n2×p). Where we assume that the sample size n is even and n1 = n2 = n/2.
In the first stage, the dgLARS method is applied to these two data sets separately to estimate two
solution paths β̂Aj (γ) based on (y(j), X(j)) where j = {1, 2} and |Aj| ≤ min( n

2 − 1, p).
In the second stage, we perform model selection on each training set to determine two small

subsets of selected variables Â1 ⊆ A1 and Â2 ⊆ A2. To do that, we estimate ϕ by the generalized
Pearson estimator (12) on these two data sets separately to obtain valid log-likelihood functions

ℓ(β̂A1 (γ), ϕ̂
(1)
P (γ); y(1)) and ℓ(β̂A2 (γ), ϕ̂

(2)
P (γ); y(2)).

In the third stage, the coefficient β for each subset of the data are re-estimated using the variables

selected on the other subset, i.e., (y(2), X(2)
Â1

) and (y(1), X(1)
Â2

). Since the MLE may not always exist, in
this stage we propose to use the dgLARS method to estimate the coefficients based on the selected
variables β̂Â1

(γ0) and β̂Â2
(γ0) where γ0 is close to zero. If the MLE does exist, then the dgLARS

estimate β̂A(0) is equal to the MLE.

Finally, in the fourth stage, we estimate the dispersion parameter ϕ by the following estimator on
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D1 = (y
(1)
n/2,X

(1)
n/2×p)

D = (yn,Xn×p)

D2 = (y
(2)
n/2,X

(2)
n/2×p)

where |A1| ≤ min(n/2− 1, p) and γ ∈ [0, γmax]

dgLARS is applied to the subset D1 to obtain β̂A1
(γ) Apply dgLARS to D2

use Eq. (9) to obtain φ̂
(1)
P (γ) and then

do model selection to obtain Â1 ⊆ A1

obtain φ̂
(2)
P (γ) using Eq. (9) and then

stage 3

stage 4

apply MLE to D1 with Â2 to obtain β̂
Â2

(0) obtain β̂
Â1

(0) using D2 and Â1

obtain φ̂2(Â1) using Eq. (11)use Eq. (11) to obtain φ̂1(Â2)

φ̂GRCV = φ̂1(Â2) + φ̂2(Â1)

stage 2

stage 1
to obtain β̂A2

(γ)

get Â2 ⊆ A2 by model selection

Figure 1: A general diagram for obtaining the GRCV estimate, a four-stage refitted procedure.

the two data sets (y(2), X(2)
Â1

) and (y(1), X(1)
Â2

);

ϕ̂GRCV (Â1, Â2) = ϕ̂1(Â2) + ϕ̂2(Â1), (13)

where

ϕ̂ζ(Âj) =
1

n− 2|Âj|

n
2

∑
i=1

(
y(ζ)i − g−1

(
(x(ζ)⊤

i,Âj
β̂Âj

(0)
))2

V
(

g−1
(

x(ζ)⊤
i,Âj

β̂Âj
(0)

)) , ζ ̸= j (14)

x(ζ)
i,Âj

is the ith row of the ζth subset of the data X(ζ)

Âj
, |Âj| denotes the cardinality of the set Âj, β̂Âj

(γ)

is the dgLARS estimator at γ ∈ [0, γmax], β̂Âj
(0) is the ML estimate of βÂj

, j = {1, 2} and ζ = {1, 2}.

Figure 1 describes the four step procedure for calculating the GRCV estimate of the dispersion
parameter. Since in the second stage of the GRCV procedure the dispersion parameter has to be
estimated, an iterative procedure can be defined to reduce its dependence on the generalized Pearson
estimator: The algorithm iterates the four steps, such that for the (κ + 1)th iteration the κth GRCV
estimate (ϕ̂

(κ)

GRCV
) is used to compute the new (κ + 1)th GRCV estimate (ϕ̂

(κ+1)

GRCV
), and so on. Furthermore

due to the random cross-validation splits, the estimate contains random variation, and the algorithm
will not numerically converge. Therefore, the median of the final iterates can be used as the final
GRCV estimate (ϕ̂∗

GRCV
).

Pazira et al. (2018) showed that the GRCV estimator ϕ̂∗
GRCV

is more stable and accurate, which leads
to improved overall model selection behaviour.

3 The dglars package: new features

The dglars package (Augugliaro et al., 2020) is a collection of computational tools related to the
inference procedure of the dgLARS method in the R programming environment.

Description of the new dglars() function

Different from the previous version, the new dglars package (version 2.1.6) supports the gaussian,
binomial, poisson, Gamma and inverse.gaussian families with the most commonly used link functions.
The main function of this package, dglars(), is a wrapper function implemented to handle the formula
interface usually used in R to create the n× p model matrix X and the n-dimensional response vector
y;
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Table 2: Some families and their link functions that can be used in the dglars package.

Family Available link functions
gaussian “identity", “log", “inverse"
binomial “logit", “probit", “cauchit", “cloglog", “log"
poisson “log", “identity", “sqrt"
Gamma “inverse", “log", “identity"
inverse.gaussian “1/muˆ2", “inverse", “log", “identity"

dglars(formula, family = gaussian, g, unpenalized, b_wght, data, subset,
contrast = NULL, control = list())

This function is used to compute the dgLARS/dgLASSO solution curve. As in the standard glm
function, the user can specify the family and link functions using the argument family; see the next
section regarding an example of Gamma GLM. This can be a character string naming a family function
or the result of a call to a family function. In the new version of the package, the model can be specified
by combining family and link functions as described in Table 2. By default the gaussian family with
identity link function is used. In the future, the package will be updated with the negative.binomial
family with the link functions log, identity, and sqrt.

The argument control is a named list of control parameters with the following elements:

control = list(algorithm = "pc", method = "dgLASSO", g0 = NULL, nNR= 200,
nv = NULL, eps = 1.0e-05, np = NULL, dg_max = 0, cf = 0.5,
NReps = 1.0e-06, ncrct = 50, nccd = 1.0e+05)

By using the control parameter algorithm it is possible to select the algorithm used to fit the
dgLARS solution curve. Setting algorithm = "pc" selects the default IPC algorithm; the CCD
algorithm is used when algorithm = "ccd" is selected. To reduce the computational time needed to
compute the dgLARS/dgLASSO solution curve, the algorithms have been written in Fortran 90. The
argument method is used to choose between the dgLASSO solution curve (method = "dgLASSO") and
the dgLARS solution curve (method = "dgLARS").

The g0 control parameter is used to define the smallest value of the tuning parameter. By default
this parameter is set to 1.0e-06 when p > n and to 0.05 otherwise. For more details about the other
control parameters and arguments see Augugliaro et al. (2014) and Augugliaro et al. (2020).

When Gaussian, Gamma or inverse Gaussian family is used, dglars() returns the vector of
estimates for the dispersion parameter; by default, the generalized Pearson statistic is used as estimator
but the user can use the function phihat() to specify other estimators. For the binomial and Poisson
family, the dispersion parameter is assumed known and equal to one.

Description of the functions grcv() and phihat()

Since the Gaussian, Gamma and inverse Gaussian error distributions have an additional dispersion
parameter, this package implements the functions grcv() and phihat() to estimate the dispersion
parameter ϕ for high-dimensional GLMs. The first function implements the method explained in the
previous section and can be called as follows:

grcv(object, type = c("BIC", "AIC"), nit = 10, control = list(), trace = FALSE, ...)

where object is a fitted dglars object, type is the measure of goodness-of-fit used in Step 2 of the
algorithm reported in Figure 1. With the current version, the user can choose between the Bayesian
(default) and the Akaike information criteria. The argument nit is used to specify the number
of iterations of the GRCV procedure. The resulting estimate is obtained as the median of the nit
iterations. control is a list of control parameters passed to the function dglars, whereas trace is a
logical variable specifying whether or not information is printed as the GRCV algorithm proceeds.
Finally, the argument ... is used to pass the arguments to the method functions AIC.dglars and
BIC.dglars.

As grcv() is only used to estimate the dispersion parameter using the GRCV estimator, the
function phihat() is specifically developed to handle the all the estimators of the dispersion parameter
available in the dglars package. This function is defined as follows:

phihat(object, type = c("pearson", "deviance", "mle", "grcv"), g = NULL, ...)

where object is a fitted dglars object and type is string specifying the estimator of the dispersion
parameter. The user can select the Pearson estimator (default), the deviance estimator, the MLE
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estimator or the GRCV estimator. The optional argument g is a vector specifying the values of the
tuning parameter γ. If not specified (default), the estimates of the dispersion parameter are computed
for the sequence of models stored in the argument object; for an example see next section. Finally,
the argument ... is used to pass the argument to the function grcv. The function phihat() returns a
vector with the estimates of the dispersion parameter; when type = "grcv" all elements of this vector
are the same, because the GRCV estimator does not depend on the tuning parameter γ whereas the
other three estimators do.

The function phihat() is called by the method functions logLik.dglars(), AIC.dglars() and
coef.dglars():

logLik(object, phi = c("pearson", "deviance", "mle", "grcv"), g = NULL, ...)

AIC(object, phi = c("pearson", "deviance", "mle", "grcv"), k = 2,
complexity = c("df", "gdf"), g = NULL, ...)

coef(object, type = c("pearson", "deviance", "mle", "grcv"), g = NULL, ...)

when the argument phi (or type in coef()) is set to any of the four estimation methods, i.e., “pearson”,
“deviance”, “mle” or “grcv”. In the dglars package, the summary() method:

summary(object, type = c("AIC", "BIC"), digits = max(3, getOption("digits") - 3), ...)

uses the generalized Pearson estimator to define the BIC or AIC values, but the user can use “...” to
pass to the method AIC() the additional arguments needed to compute a more general measure of
goodness-of-fit, e.g., “phi”, “k” or “complexity”.

An example of a Gamma GLM

To gain more insight about the new features of the dglars, we simulated a data set from a Gamma
regression model with the log link function where the sample size is n = 50 and the number of
variables is p = 100. This is a typical high-dimensional setting (p > n). We fix it such that only the
first two predictors influence the response variable.

First we install and load the dglars package in the R session by the codes

R> install.packages("dglars")
R> library("dglars")

The corresponding R code is given by:

R> set.seed(11235)
R> n <- 50
R> p <- 100
R> s <- 2
R> X <- matrix(runif(n = n * p), n, p)
R> bs <- rep(2, s)
R> Xs <- X[, 1:s]
R> eta <- drop(0.5 + Xs %*% bs)
R> mu <- Gamma("log")$linkinv(eta)
R> shape <- 1
R> phi <- 1 / shape
R> y <- rgamma(n, shape = shape, scale = mu * phi)
R> fit <- dglars(y ~ X, family = Gamma("log"),
+ control = list(algorithm = "pc", method = "dgLARS",
+ g0 = 0.5))

We use the argument g0=0.5 in the function dglars to avoid convergence problems coming from the
high-dimensionality of the data. The fit object is a S3 class ‘dglars’, for which the method function
summary.dglars() can be used to obtain more information about the estimated sequence of models.
The following R code shows the output printed by the summary.dglars() method with BIC criterion
and the GRCV estimate for the dispersion parameter.

R> set.seed(11235)
R> summary(fit, type = "BIC", phi = "grcv", control = list(g0 = 0.5))

Call: dglars(formula = y ~ X, family = Gamma("log"), control = list(algorithm = "pc",
method = "dgLARS", g0 = 0.5))
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Sequence g %Dev df BIC Rank
2.5003 0.00000 2 381.6 22

+ X1
1.9828 0.08380 3 378.4 20
1.9827 0.08381 3 378.4 19

+ X2
1.5384 0.20214 4 372.3 8
1.5314 0.20372 4 372.1 7

+ X12
1.3876 0.26004 5 371.3 2
1.3861 0.26060 5 371.2 1 <-

+ X74
1.2834 0.29734 6 372.0 6
1.2833 0.29738 6 372.0 5

+ X31
1.1688 0.33733 7 372.5 9

+ X100
1.1065 0.36541 8 374.0 10

+ X24
0.9437 0.44169 9 371.5 4
0.9413 0.44271 9 371.4 3

+ X71
0.9208 0.45310 10 374.4 11

+ X9
0.8460 0.49003 11 375.2 13
0.8436 0.49117 11 375.1 12

+ X16
0.7450 0.53586 12 375.2 15
0.7447 0.53597 12 375.2 14

+ X64
0.7252 0.54783 13 378.1 18
0.7250 0.54793 13 378.1 17

+ X18
0.5902 0.62506 14 375.4 16

+ X6
0.5821 0.62907 15 379.0 21

+ X36
0.5659 0.63773 16 382.2 23

+ X37
0.5279 0.65923 17 384.3 25
0.5278 0.65929 17 384.3 24

+ X93
0.5000 0.67501 18 386.8 26

Details:
BIC values computed using k = 3.912 and complexity = 'df'
dispersion parameter estimated by 'grcv'

===============================================================

Summary of the Selected Model

Formula: y ~ X1 + X2 + X12
Family: 'Gamma'
Link: 'log'

Coefficients:
Estimate

Int. 1.7494
X1 0.9320
X2 0.5119
X12 0.1749
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Dispersion parameter: 1.044 (estimated by 'grcv' method)
---

g: 1.386
Null deviance: 88.74

Residual deviance: 65.62
BIC: 371.21

Algorithm 'pc' ( method = 'dgLARS' )

From this output, we can see that the dgLARS method first finds the true predictors (X1 and X2)
and then includes the other false predictors. The ranking of the estimated models obtained by the
number of estimated non-zero coefficients as a measure of goodness of fit (complexity = "df") is
also shown. The corresponding best model is identified by an arrow on the right. The formula of
the identified best model, the corresponding estimated coefficients and the estimate of the dispersion
parameter are shown in the second section of the output. These values are obtained at the optimal
value of the tuning parameter γ, which is calculated by the BIC criterion. For example, from the
previous output we can see that the values of the BIC criterion, GRCV estimate and optimal tuning
parameter are 371.21, 1.044 and 1.386, respectively. This section shows that GRCV estimate of the
dispersion parameter is really close to the true value but the selected model contains false predictors,
i.e., X12.

Since the deviance, the MLE and the generalized Pearson estimators of the dispersion parameter
depend on the tuning parameter γ, the values of these estimates can change during the solution
path. The GRCV estimator is computationally more involved, but is fixed across γ. The estimates
can be extracted using the phihat() function. For example, with the following R code we can see the
sequence of values of the tuning parameter with the estimated values of the dispersion parameter by
means of the generalized Pearson, deviance, MLE and GRCV methods. For the GRCV method we
apply the BIC criterion and nit=10 iterations inside the algorithm.

R> set.seed(11235)
R> g <- fit$g
R> phi.grcv <- phihat(fit, type = "grcv", control = list(g0 = 0.5))
R> phi.pear <- phihat(fit, type = "pearson")
R> phi.dev <- phihat(fit, type = "deviance")
R> phi.mle <- phihat(fit, type = "mle")
R> path <- cbind(g, phi.pear, phi.dev, phi.mle, phi.grcv)

R> print(path, digits = 4)
g phi.pear phi.dev phi.mle phi.grcv

[1,] 2.5003 2.2017 1.8111 1.4327 1.044
[2,] 1.9828 1.9604 1.6939 1.3309 1.044
[3,] 1.9827 1.9603 1.6938 1.3309 1.044
[4,] 1.5384 1.6245 1.5065 1.1829 1.044
[5,] 1.5314 1.6197 1.5035 1.1809 1.044
[6,] 1.3876 1.4518 1.4275 1.1085 1.044
[7,] 1.3861 1.4499 1.4264 1.1078 1.044
[8,] 1.2834 1.3472 1.3857 1.0599 1.044
[9,] 1.2833 1.3470 1.3856 1.0598 1.044
[10,] 1.1688 1.2357 1.3365 1.0071 1.044
[11,] 1.1065 1.1848 1.3096 0.9696 1.044
[12,] 0.9437 1.0242 1.1797 0.8659 1.044
[13,] 0.9413 1.0218 1.1775 0.8645 1.044
[14,] 0.9208 1.0189 1.1837 0.8502 1.044
[15,] 0.8460 0.9425 1.1314 0.7988 1.044
[16,] 0.8436 0.9394 1.1289 0.7972 1.044
[17,] 0.7450 0.8419 1.0561 0.7340 1.044
[18,] 0.7447 0.8416 1.0559 0.7338 1.044
[19,] 0.7252 0.8336 1.0560 0.7169 1.044
[20,] 0.7250 0.8334 1.0557 0.7167 1.044
[21,] 0.5902 0.6622 0.8993 0.6045 1.044
[22,] 0.5821 0.6704 0.9144 0.5986 1.044
[23,] 0.5659 0.6676 0.9185 0.5858 1.044
[24,] 0.5279 0.6339 0.8894 0.5537 1.044
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[25,] 0.5278 0.6338 0.8893 0.5536 1.044
[26,] 0.5000 0.6160 0.8740 0.5300 1.044

By the following R code, we can specify the values of the tuning parameter γ to compute the
estimates of the dispersion parameter:

R> set.seed(11235)
R> new_g <- seq(range(fit$g)[2], range(fit$g)[1], by = -0.5)
R> phi.grcv <- phihat(fit, g = new_g, type = "grcv",
+ control = list(g0 = 0.5))
R> phi.pear <- phihat(fit, g = new_g, type = "pearson")
R> phi.dev <- phihat(fit, g = new_g, type = "deviance")
R> phi.mle <- phihat(fit, g = new_g, type = "mle")
R> path <- cbind(new_g, phi.pear, phi.dev, phi.mle, phi.grcv)
R> print(path, digits = 4)

new_g phi.pear phi.dev phi.mle phi.grcv
[1,] 2.5003 2.2017 1.8111 1.4327 1.044
[2,] 2.0003 1.9677 1.6985 1.3340 1.044
[3,] 1.5003 1.6072 1.5117 1.1647 1.044
[4,] 1.0003 1.0817 1.2328 0.9004 1.044
[5,] 0.5003 0.6163 0.8743 0.5302 1.044

Finally, we show the output of function summary.dglars() with the generalized Pearson estimator
for a comparison with the results yielded by the GRCV method.

R> summary(fit, type = "BIC", phi = "pearson")

Call: dglars(formula = y ~ X, family = Gamma("log"), control = list(algorithm = "pc",
method = "dgLARS", g0 = 0.5))

Sequence g %Dev df BIC Rank
2.5003 0.00000 2 382.5 26

+ X1
1.9828 0.08380 3 380.1 25
1.9827 0.08381 3 380.1 24

+ X2
1.5384 0.20214 4 374.4 17
1.5314 0.20372 4 374.3 16

+ X12
1.3876 0.26004 5 373.1 8
1.3861 0.26060 5 373.1 7

+ X74
1.2834 0.29734 6 373.6 10
1.2833 0.29738 6 373.6 9

+ X31
1.1688 0.33733 7 373.7 11

+ X100
1.1065 0.36541 8 375.0 22

+ X24
0.9437 0.44169 9 371.3 3
0.9413 0.44271 9 371.2 2

+ X71
0.9208 0.45310 10 374.1 14

+ X9
0.8460 0.49003 11 373.9 13
0.8436 0.49117 11 373.8 12

+ X16
0.7450 0.53586 12 372.3 6
0.7447 0.53597 12 372.3 5

+ X64
0.7252 0.54783 13 374.9 21
0.7250 0.54793 13 374.9 20

+ X18
0.5902 0.62506 14 368.1 1 <-

+ X6
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0.5821 0.62907 15 371.5 4
+ X36

0.5659 0.63773 16 374.2 15
+ X37

0.5279 0.65923 17 374.8 19
0.5278 0.65929 17 374.8 18

+ X93
0.5000 0.67501 18 376.3 23

Details:
BIC values computed using k = 3.912 and complexity = 'df'
dispersion parameter estimated by 'pearson'

===============================================================

Summary of the Selected Model

Formula: y ~ X1 + X2 + X9 + X12 + X16 + X18 + X24 + X31 + X64 + X71 +
X74 + X100
Family: 'Gamma'
Link: 'log'

Coefficients:
Estimate

Int. 0.6492
X1 1.6660
X2 1.2259
X9 -0.1183
X12 0.5763
X16 -0.0987
X18 -0.1471
X24 0.6490
X31 0.5249
X64 -0.2859
X71 -0.2110
X74 0.0810
X100 -0.6195

Dispersion parameter: 0.6622 (estimated by 'pearson' method)
---

g: 0.5902
Null deviance: 88.74

Residual deviance: 33.27
BIC: 368.05

Algorithm 'pc' ( method = 'dgLARS' )

These outputs show that by using different dispersion estimators one can obtain different final
models. By using the GRCV estimator, the dgLARS method selects a really small model containing the
true predictors, that is y ∼ X1 + X2 + X12, while using the generalized Pearson estimator our final
model contains 12 predictors. We note, however, that the final model selected by the dgLARS method
is very sensitive to the (slightly random) value of the GRCV estimator. Although the GRCV tends to
work better than the generalized Pearson estimator, no strong conclusions should be attached to this
particular example.

Comparing PC and IPC algorithms

In this section we illustrate the difference in performance between the original PC and the new IPC
algorithms; for an extensive simulation study see next section. As we mentioned before, the new
version of the dglars package only implements the IPC and CCD algorithms to compute the dgLARS
solution curve. Therefore, we use the PC algorithm in version 1.0.5 of the package (which can only be
run using R version 2.10) and the IPC algorithm in the latest version (2.1.6) for the comparisons.

We consider the following R code to simulate a Poisson regression model with the canonical link
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function (link = "log"), sample size equal to n = 100 with p = 5 predictors. The corresponding R
code is given by:

R> set.seed(11235)
R> n <- 100
R> p <- 5
R> X <- matrix(abs(rnorm(n * p)), n, p)
R> b <- 1:2
R> eta <- drop(b[1] + (X[, 1] * b[2]))
R> mu <- poisson()$linkinv(eta)
R> y <- rpois(n, mu)

Only the first predictor is set to affect the response variable y. By the following code we estimate
the dgLASSO solution curve using the IPC algorithm:

R> fit_ipc <- dglars(y ~ X, family = poisson,
+ control = list(algorithm = "pc"))

By running the following commands we remove the last version and then install the version 1.0.5
of the package to be able to estimate the dgLASSO solution curve using the PC algorithm. The function
install.packages() can do it for us, such that if the package is already installed, this function replaces
it with the specified package from source:

R> detach(name = "package:dglars", unload = TRUE)
R> remove.packages(pkgs = "dglars")
R> Old_dglars <- "https://cran.r-project.org/src/contrib/Archive/dglars/
+ dglars_1.0.5.tar.gz"
R> install.packages(Old_dglars, repos = NULL, type = "source")
R> library("dglars")
R> fit_pc <- dglars(y ~ ., family = "poisson",
+ control = list(algorithm = "pc"))

By printing the ‘dglars’ object fit_pc for our simulated data set, we can see that the number of
the points composing the dgLASSO solution curve achieved by the PC algorithm is 25;

R> fit_pc

Call: dglars(formula = y ~ X, family = "poisson", control = list(algorithm = "pc"))

Sequence g Dev %Dev df
68.2417 9403.51 0.0000 1

+X1
10.1351 623.36 0.9337 2
3.7587 186.10 0.9802 2
2.6310 143.85 0.9847 2
2.5719 141.99 0.9849 2
2.5718 141.99 0.9849 2

+X4
1.9682 124.04 0.9868 3
1.6730 116.91 0.9876 3
1.5270 113.79 0.9879 3
1.4544 112.34 0.9881 3
1.4182 111.64 0.9881 3
1.4001 111.30 0.9882 3
1.3820 110.96 0.9882 3

+X3
1.1309 104.95 0.9888 4
1.0056 102.37 0.9891 4
0.9430 101.20 0.9892 4
0.9117 100.63 0.9893 4
0.8804 100.09 0.9894 4

+X2
0.5796 93.69 0.9900 5
0.4302 91.44 0.9903 5
0.3557 90.57 0.9904 5
0.3186 90.19 0.9904 5
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0.3000 90.02 0.9904 5
0.2814 89.85 0.9904 5

+X5
0.0001 88.01 0.9906 6

Algorithm pc ( method = dgLASSO ) with exit = 0

The number of the iterations computing the solution points by the PC algorithm and the values of
the tuning parameter can be obtained by the following code:

R> fit_pc$np

[1] 25

R> fit_pc$g

[1] 68.2417321 10.1350645 3.7587453 2.6310292 2.5719482 2.5717722
[7] 1.9681589 1.6729772 1.5269781 1.4543691 1.4181613 1.4000815
[13] 1.3820137 1.1308691 1.0055607 0.9429753 0.9117001 0.8804338
[19] 0.5796210 0.4302023 0.3557410 0.3185725 0.3000037 0.2814428
[25] 0.0001000

By printing fit_ipc, we can see that the IPC algorithm reduces the number of the iterations for
obtaining the solution curve at the change points, leading to significant computational savings.

R> fit_ipc

Call: dglars(formula = y ~ X, family = poisson, control = list(algorithm = "pc"))

Sequence g Dev %Dev n. non zero
68.241732 9403.51 0.0000 1

+ X1
10.135064 623.36 0.9337 2
3.758745 186.10 0.9802 2
2.631029 143.85 0.9847 2
2.571948 141.99 0.9849 2
2.571772 141.99 0.9849 2

+ X4
1.382273 110.97 0.9882 3
1.382018 110.96 0.9882 3

+ X3
0.880438 100.09 0.9894 4

+ X2
0.281457 89.85 0.9904 5
0.281445 89.85 0.9904 5

+ X5
0.000001 88.01 0.9906 6

Algorithm 'pc' ( method = 'dgLASSO' ) with exit = 0

Fewer than half the number of the iterations are needed by the IPC algorithm compared to the PC
algorithm, speeding up the algorithm by a factor of 2.

R> fit_ipc$np

[1] 12

R> fit_ipc$g

[1] 6.824173e+01 1.013506e+01 3.758745e+00 2.631029e+00 2.571948e+00
[6] 2.571772e+00 1.382273e+00 1.382018e+00 8.804378e-01 2.814572e-01
[11] 2.814454e-01 9.999996e-07

From a computational point of view, the main consequence of using the technique used in the
IPC algorithm is a decrease in the run times by adjusting the step size and finding the true transition
points. The next section investigates the overall performance of the IPC algorithm by a simulation
study.
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Table 3: Average CPU times (time) in seconds to compute the solution curve using the IPC and PC
algorithms based on the logistic regression model, and the mean number of points of the solution
curve (q). Standard deviations are in parentheses. The means and standard deviations are trimmed
at the 5% level. The IPC algorithm is always faster than the PC algorithm, and the trimmed mean
number of q yielded by IPC is always lower than those needed in PC.

n = 50 n = 200
IPC PC IPC PC

ρ p time q time q time q time q

0.0

100 0.018 52.011 0.022 79.956 0.250 103.74 0.406 190.74
(0.003) (5.686) (0.005) (12.68) (0.031) (5.439) (0.077) (16.03)

1000 0.193 67.622 0.278 99.267 4.333 165.94 5.489 233.06
(0.023) (6.225) (0.056) (15.51) (0.458) (9.120) (0.935) (20.51)

3000 0.775 72.511 0.854 111.00 15.068 183.47 19.933 256.84
(0.080) (6.469) (0.165) (16.32) (1.351) (8.601) (2.422) (18.17)

5000 1.134 68.933 1.205 97.100 24.219 182.83 31.844 249.78
(0.132) (6.682) (0.232) (16.58) (2.934) (11.08) (5.140) (22.66)

7000 1.553 74.378 1.962 109.52 37.149 190.58 49.291 262.67
(0.190) (6.604) (0.444) (19.62) (3.198) (8.760) (6.439) (19.96)

0.5

100 0.016 49.167 0.022 80.144 0.174 91.178 0.274 162.03
(0.003) (5.613) (0.004) (12.57) (0.022) (5.170) (0.049) (14.02)

1000 0.150 59.311 0.196 81.611 3.129 143.50 4.116 207.72
(0.021) (6.272) (0.048) (13.94) (0.467) (11.39) (0.870) (25.10)

3000 0.642 65.111 0.684 89.100 10.365 154.49 13.933 216.19
(0.067) (7.083) (0.141) (16.59) (1.255) (9.871) (2.611) (23.57)

5000 1.095 69.122 1.212 98.822 18.663 163.66 25.388 225.16
(0.126) (6.505) (0.235) (15.34) (2.355) (10.87) (4.095) (20.52)

7000 1.420 70.844 1.763 102.00 24.742 159.40 33.101 217.87
(0.180) (6.283) (0.321) (14.657) (2.827) (9.858) (5.181) (21.07)

4 Simulation Studies

In this section we present a simulation study to investigate the performance of the improved PC
algorithm implemented in the dglars package. Although the PC and IPC algorithms compute the same
active set, they have different number of arithmetic operations for getting there. The main problem of
the PC algorithm is related to the number of the number of arithmetic operations needed to compute
the solution curve.

Our simulation study is based on a logistic regression model with sample size equal to n = 50, 200.
The number of predictors p follows a sequence of five values 100, 1000, 3000, 5000 and 7000. The
study is based on two different configurations of the covariance structure of the p predictors, that is,
the random vector X = (X1, X2, · · · , Xp)⊤ is sampled from an N(0, Σ) distribution with elements of
Σ satisfying corr(Xi; Xj) = ρ|i−j|, where ρ = 0 or ρ = 0.5. The response vector is simulated using a
model with intercept β0 and regression coefficients β chosen as follows:

β0 = 1 and β = (1, 2, 3, 0, · · · , 0︸ ︷︷ ︸
p−3

).

The R code to replicate our study is reported in the attached file. Table 3 reports the average CPU times
in seconds and the mean number of points of the solution curve (q) coming from 100 simulation runs,
so that all means and their standard deviations are trimmed of the 5% tails. All timings reported were
carried out on a personal computer with Intel Core i5 520M dual-core processor. The proposed IPC
algorithm is always faster than the PC algorithm, regardless of the correlation between the predictors.
This table also displays that, the trimmed mean number of the points of the solution curve yielded
by the IPC algorithm is always lower than those needed in the PC algorithm. Interestingly, when the
correlation among the predictors is stronger (ρ = 0.5) both algorithms are faster than when there is no
correlation. Figure 2 shows the trimmed mean number of the points of the solution curve for the two
algorithms. The IPC algorithm is more efficient than the PC algorithm.
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Figure 2: Simulation study for a logistic regression showing the relationship between the trimmed
mean number of points of the solution curve q for the IPC and PC algorithms at the 5% level. In all
cases, the IPC algorithm is faster than the PC.

5 Application to Example Data

In this section we analyze an example dataset by using the functions available in the dglars package.
We consider the benchmark diabetes data (Efron et al., 2004) to study the sparse structure of an inverse
Gaussian regression model. This dataset was also used in Ishwaran et al. (2010) and is available in the
R package lars:

R> install.packages(pkgs = "lars")
R> data("diabetes", package = "lars")

The response y are quantitative measurements of disease progression for patients with diabetes after
one year. The covariate data include 10 baseline measurements for each patient, recorded in the design
matrix x, such as age, sex, bmi (body mass index), map (mean arterial blood pressure) and six blood
serum measurements: ldl (low-density lipoprotein), hdl (high-density lipoprotein), ltg (lamotrigine),
glu (glucose), tc (triglyceride) and tch (total cholesterol). In addition to (10

2 ) = 45 interactions and
9 quadratic terms (excluding the binary sex variable), the design matrix x2 consists of a total of 64
columns. So, the complete data consists of diabetes progression observations on n = 442 patients
in combination with p = 64 predictor variables. The aim of the study is to identify which of the
covariates are important factors in disease progression.

From previous analyses, it was clear that the disease progression is not appropriately modelled by
a Gaussian. After some goodness-of-fit considerations, we settle on an inverse Gaussian regression
model, which requires us to estimate the dispersion parameter. First, we estimate the optimal value of
the tuning parameter γ by 10-fold cross-validation (CV) using the cvdglars() function, i.e.,

R> library("dglars")
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R> set.seed(11235)
R> cv_diabetes <- cvdglars(y ~ x, family = inverse.gaussian("log"),
+ data = diabetes)
R> cv_diabetes

Call: cvdglars(formula = y ~ x, family = inverse.gaussian("log"), data = diabetes)

Coefficients:
Estimate

Int. 4.9539
xsex -2.0273
xbmi 2.8447
xmap 2.1969
xtc -0.3811
xhdl -2.4124
xltg 3.8501

Dispersion parameter: 0.001141

Details:
number of non zero estimates: 8

cross-validation deviance: 0.06224
g: 0.01533

n. fold: 10

Algorithm 'pc' ( method = 'dgLASSO' )

This output shows that the dgLARS method by the help of the CV criterion selects an inverse
Gaussian regression model with six covariates (sex, bmi, map, tc, hdl and ltg);

R> cv_diabetes$formula_cv
y ~ sex + bmi + map + tc + hdl + ltg

Moreover, the optimal tuning parameter is γ = 0.01533 and the dispersion parameter estimate by the
GRCV method is ϕ̂GRCV = 0.001141. If we had selected the BIC instead of 10-fold cross-validation, we
would have obtained

R> diabetes_dglars <- dglars(y ~ x, family = inverse.gaussian("log"),
+ data = diabetes)
R> set.seed(11235)
R> summary(diabetes_dglars, type = "BIC", phi = "grcv")

Call: dglars(formula = y ~ x, family = inverse.gaussian("log"), data = diabetes)

Sequence g %Dev df BIC Rank
0.505974 0.00000 2 5223 18

+ xbmi
0.481473 0.02290 3 5207 17
0.481262 0.02309 3 5207 16

+ xltg
0.250152 0.26744 4 4986 15
0.233248 0.27846 4 4975 14
0.233174 0.27851 4 4975 13

+ xmap
0.222313 0.28613 5 4974 12

+ xhdl
0.100212 0.36560 6 4906 11
0.099904 0.36572 6 4906 10

+ xsex
0.030320 0.41322 7 4868 2
0.030263 0.41324 7 4868 1 <-

+ xtc
0.014883 0.41892 8 4869 3

+ xglu
0.005757 0.42063 9 4873 4

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 51

+ xtch
0.002389 0.42122 10 4879 6
0.002384 0.42122 10 4879 5

+ xldl
0.001704 0.42199 11 4884 8
0.001691 0.42200 11 4884 7

+ xage
0.000001 0.42272 12 4890 9

Details:
BIC values computed using k = 6.091 and complexity = 'df'
dispersion parameter estimated by 'grcv'

===============================================================

Summary of the Selected Model

Formula: y ~ xsex + xbmi + xmap + xhdl + xltg
Family: 'inverse.gaussian'
Link: 'log'

Coefficients:
Estimate

Int. 4.9495
xsex -1.6834
xbmi 2.7786
xmap 1.9536
xhdl -2.2917
xltg 3.5420

Dispersion parameter: 0.001112 (estimated by 'grcv' method)
---

g: 0.03026
Null deviance: 1.0361

Residual deviance: 0.6079
BIC: 4868.0435

Algorithm 'pc' ( method = 'dgLASSO' )

The fitted model now does not include tc, but does include the other five predictors (sex, bmi,
map, hdl and ltg). In fact, the optimal value of the tuning parameter γ = 0.03026 is somewhat larger
than with cross-validation, as can be expected from the BIC, resulting in a sparser model. The GRCV
estimate of the dispersion parameter ϕ̂GRCV = 001112, due to the stable nature of the GRCV method.
It is also possible to obtain the GRCV estimate directly without a fitted ‘dglrs’ object, by only using
the design matrix x and the response variable y using the following code:

set.seed(11235)
grcv(diabetes_dglars, type = "BIC")

[1] 0.001111604

Since the original PC algorithm is only available for the version 1.0.5 (and older) and the inverse
Gaussian family has only been added to the package from version 2.0.0 onwards, we are not able to
compare the run times and also the number of the iterations computing the solution points for the PC
and IPC algorithms. The run time of the IPC algorithm is given using the following R code:

R> system.time(diabetes_dglars_ipc <- dglars(y ~ x,
+ family = inverse.gaussian("log"), data = diabetes))

user system elapsed
0.016 0.000 0.016

and the number of iterations computing the solution points by the IPC algorithm is
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R> diabetes_dglars_ipc$np

[1] 18

6 Conclusions

In this paper, we have described improvements to the R package dglars for estimating a larger class of
generalized linear models with arbitrary link functions and a general class of exponential dispersion
models. We briefly reviewed the differential geometrical theory underlying the dgLARS method
and briefly explained the dispersion parameter estimation methods. We described some functions
implemented in the new version of the dglars package that can be used to estimate the dispersion
parameter. We also used these functions to compare run times between the new IPC and old PC
algorithms. The simulations showed that the IPC algorithm is significantly faster than the original PC
algorithm. The new version of dglars is available on CRAN.
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bayesanova: An R package for Bayesian
Inference in the Analysis of Variance via
Markov Chain Monte Carlo in Gaussian
Mixture Models
by Riko Kelter

Abstract This paper introduces the R package bayesanova, which performs Bayesian inference in
the analysis of variance (ANOVA). Traditional ANOVA based on null hypothesis significance testing
(NHST) is prone to overestimating effects and stating effects if none are present. Bayesian ANOVAs
developed so far are based on Bayes factors (BF), which also enforce a hypothesis testing stance.
Instead, the Bayesian ANOVA implemented in bayesanova focusses on effect size estimation and
is based on a Gaussian mixture with known allocations, for which full posterior inference for the
component parameters is implemented via Markov-Chain-Monte-Carlo (MCMC). Inference for the
difference in means, standard deviations and effect sizes between each of the groups is obtained
automatically. Estimation of the parameters instead of hypothesis testing is embraced via the region
of practical equivalence (ROPE), and helper functions provide checks of the model assumptions and
visualization of the results.

1 Introduction

This article introduces bayesanova, an R package for conducting a Bayesian analysis of variance
(ANOVA) via Markov Chain Monte Carlo (MCMC) in a Gaussian mixture model. Classic frequentist
analysis of variance is based on null hypothesis significance testing (NHST), which recently has been
shown to produce serious problems regarding the reproducibility and reliability of scientific results
(Benjamin et al., 2018; Colquhoun, 2017, 2019; Wasserstein et al., 2019; Wasserstein and Lazar, 2016).
NHST is based on test statistics, p-values and significance levels α, which are designed to control the
long-term false-positive rate. Still, in a multitude of settings these approaches do in fact lead to an
inflated rate of false-positive results, undermining the validity and progress of science. Examples
include optional stopping of participant recruiting in studies (Carlin and Louis, 2009) or the necessary
testing for violations of distributional assumptions which some frequentist hypothesis tests make
(Rochon et al., 2012).

As a solution to these problems, Bayesian methods have been proposed recently and are since
gaining popularity in a wide range of scientific domains (McElreath and Smaldino, 2015; Kruschke,
2013, 2015). The Bayesian philosophy proceeds by combining the model likelihood f (x|θ) with the
available prior information p(θ) to obtain the posterior distribution f (θ|x) through the use of Bayes’
theorem:

f (θ|x) ∝ f (x|θ) f (θ) (1)

While the Bayesian philosophy thus allows for flexible modeling, inference for the posterior distri-
bution f (θ|x) can be complicated in practice. Therefore, Markov chain Monte Carlo techniques have
been developed, which make use of the facts that (1) constructing a Markov chain which has the
posterior distribution f (θ|x) as its stationary distribution, and (2) drawing samples from this Markov
chain to approximate the posterior f (θ|x) can be used to obtain the posterior numerically.

The bayesanova package is designed as a Bayesian alternative to the frequentist analysis of
variance. By using a Gaussian mixture model and implementing a Markov Chain Monte Carlo
algorithm for this model, full posterior inference can be obtained. This allows for explicit hypothesis
testing between groups as in the frequentist ANOVA, or for estimation of parameters under uncertainty.
The focus in bayesanova is on the latter perspective and avoids explicit hypothesis testing. While
Bayesian versions of the analysis of variance have been proposed recently by Rouder et al. (2012)
and Bergh et al. (2019), these implementations focus on the Bayes factor as a measure of evidence
(van Doorn et al., 2019; JASP Team, 2019). As the Bayes factor suffers from multiple problems, one
of which is its strong dependence on the used priors – see Kamary et al. (2014) and Robert (2016) –
the implementation in bayesanova avoids the Bayes factor and uses a different posterior index, the
region of practical equivalence (ROPE) (Kruschke, 2018), which has lately been shown to have some
desirable properties, in particular in contrast to the Bayes factor (Makowski et al., 2019b).

The plan of the paper is as follows: The next section introduces the analysis of variance in a
frequentist and Bayesian fashion and gives an overview about packages implementing these methods.
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The following section then introduces the novel approach implemented in bayesanova. The details
on the mixture representation of the Bayesian analysis of variance are discussed and scenarios where
bayesanova is designed to be used are detailed. The section thereafter outlines the structure of the
package and details the included functions. The following section presents a variety of examples
and illustrations using real datasets from biomedical and psychological research as well as synthetic
datasets. The last section then provides a summary of the benefits and drawbacks of the used
implementation, as well as future plans for the package.

2 Frequentist and Bayesian analysis of variance

Traditional ANOVA models using NHST via the F-statistic

In applied statistics, the one-way analysis of variance is a method which can be used to compare
means of two or more samples (typically three). The one-way ANOVA assumes numerical (response)
data in each group and (usually) categorical input data like a group indicator in a randomized clinical
trial (RCT). Interpreting the ANOVA as a linear model, one obtains for data yi,j, where i = 1, ..., n is
an index over the experimental units (patients, participants) and j = 1, ..., k an index over treatment
groups

yi,j = µj + εi,j (2)

if the experiment is completely randomized. Here, ε ∼ N (0, σ2) so that εi,j are normally distributed
zero-mean residuals. µj is the mean of treatment group j and yi,j the response variable which is
measured in the experiment.

The one-way ANOVA then tests the null hypothesis H0 that all samples are drawn from popula-
tions with identical means. To do this, (1) two estimates of the population variance are obtained which
rely on various assumptions and (2) an F-statistic is produced by the ANOVA, which is the ratio of
variance calculated among the means to the variance within the samples. The intuition here is that
if group means are drawn from populations with identical means, the variance of the group means
should be smaller than the variance of samples and a high ratio thereby indicates differing means.
Mathematical details on computing the F-statistic can be found in the Appendix.

The one-way ANOVA as detailed above makes several assumptions, the most important of which
are: (1) variances of populations are equal; (2) responses for a given group are independent and
identical distributed random variables; (3) response variable residuals are normally distributed, that is
ε ∼ N (0, σ2).

While Monte Carlo studies have shown that the ANOVA is quite robust to small to medium
violations of these assumptions (Donaldson, 1966), severe violations of assumptions (1)-(3) will result
in inflated rates of false positives and and thereby unreliable results (Tiku, 1971).

Bayesian ANOVA models

Bayesian models for the ANOVA have been developed recently to solve some of the problems of
NHST. The developed models can be categorized broadly into two approaches: The first approach
relies on the Bayes factor as a measure of relative evidence and was developed by Rouder et al. (2012).
The second approach is based on MCMC algorithms like Gibbs sampling in JAGS (Plummer, 2003) or
Hamiltonian Monte Carlo (HMC) in Stan (Carpenter et al., 2017; Stan Development Team, 2020). This
approach was popularized by Kruschke (2015). Here the region of practical equivalence (ROPE) as
introduced by Kruschke (2015) is used for measuring the evidence given the data. Also, an explicit
hypothesis testing stance is avoided.

The approach of Rouder et al. (2012) can be summarized as follows: An independent Cauchy prior
is considered

p(θ) =
p

∏
i=1

1
(1 + θ2

i )π
(3)

for the vector θ = (θ1, ..., θp)′ of the p effects between different groups. For example, in a three-group
setting there would be three effects θ1, θ2 and θ3 corresponding to the effects between the first and
second, first and third, and second and third group. In the case of k = 4 groups, there are p = 6 effects
and so on. The ANOVA is then rewritten as a linear model

y = µ1 + σXθ+ ε (4)

where µ is the grand mean parameter, 1 a column vector of length n with entries equal to 1, θ a column
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vector of the standardized effect size parameters of length p, and X is the n × p design matrix. The
factor σ in σXθ is attributed to the reparameterization according to Jeffreys: Following Jeffreys (1961)
by reparameterizing δ = µ/σ, where δ is the effect size of Cohen (1988), Rouder et al. (2012) rewrote
the observed data sampling distribution as

yi ∼ N (σδ, σ2) (5)

The residuals ε in Equation (4) are defined to be

ε ∼ N (0, σ2 I) (6)

with I being the identity matrix of size n and 0 a column vector of zeros of size n.

Putting a Jeffreys prior p(µ, σ2) = 1/σ2 on the mean and variance, and assuming the following
g-prior structure

θ|G ∼ N (0, G) (7)

which is based on Zellner (1980), where G is a p × p diagonal matrix, the only open aspect remaining
is putting a prior on the diagonal elements gl of G for l = 1, ..., p. (Rouder et al., 2012) chose

gl ∼ Inverse-χ2
1 (8)

so that the marginal prior on the effect size parameter vector θ results in the independent Cauchy
distribution given in Equation (3). Rouder et al. (2012) then showed that the resulting BF10 can be
written as

BF10 =
∫

g
K(n, g)

(
∑i ∑j(yij − ȳ)2 + 1

g (∑i ci ȳ2
i − (∑i ci ȳi)

2/(∑i ci))

∑i ∑j(yij − ȳ)2

)−(N−1)/2

p(g)dg (9)

if a balanced one-way design is used (equal sample sizes in each group). Here, n = (n1, ..., np)′ is the
vector of sample sizes for each effect 1, ..., p, n = ∑i ni is the full sample size, ci = ni/(ni + 1/g) and

K(n, g) =
√

N
(

∏i 1/(1 + gni)

∑i ni/(1 + gni)

)1/2
(10)

In summary, this Bayes factor of Rouder et al. (2012) can be computed via Gaussian quadrature, as it
constitutes a one-dimensional integral after inserting the necessary quantities.

The second approach of a Bayesian ANOVA model can be credited to Kruschke (2015), who uses
the MCMC sampler JAGS (Plummer, 2003) to obtain full posterior inference in his model instead of
relying on the Bayes factor. The reasons for avoiding the Bayes factor as a measure of evidence are that
(1) it depends strongly on the selected prior modeling (Kamary et al., 2014); (2) the Bayes factor states
only relative evidence for the alternative to the null hypothesis (or vice versa) so that even a large
Bayes factor does not indicate that either one of both hypotheses is a good fit for the actual data (Kelter,
2020a,b); (3) it can be located in the same formalism of hypothesis testing the pioneers of frequentist
testing advocated at the time of invention (Robert, 2016; Tendeiro and Kiers, 2019). In addition,
the calculation of the Bayes factor for increasingly complex models can be difficult, as the above
derivations of Rouder et al. (2012) exemplify, see also Kamary et al. (2014). Importantly, the Bayes
factor assigns positive measure to a Lebesgue-null-set which is puzzling from a measure-theoretic
perspective, compare Kelter (2021c), Rao and Lovric (2016), and Berger (1985).

Kruschke (2015) modeled the Bayesian ANOVA for k groups and n observations y1, ...yn as a
hierarchical Bayesian model, where

yi ∼ N (µ, σ2
y ) (11)

where the standard deviation σy is modelled as

σy ∼ U (L, H) (12)

the mean µi is the linear combination

µ = β0 +
k

∑
j=1

β jxj(i) (13)
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and the coefficients of this linear combination are given as

β0 ∼ N (M0, S0) (14)

β j ∼ N (0, σβ) (15)

where xj(i) is the index for the group the observation yi belongs to. If, for example, yi is in the first
group, x1(i) = 1 and xj(i) = 0 for all j ̸= 1 with j ∈ {1, ..., k}, yielding the group mean µi = β0 + β1
of the first group. Thus, although Equation (11) seems to indicate that there is a single mean µ for
all observations yi, i = 1, ..., n, the mean µ takes k different values depending on which group the
observation yi is located in. These k different values for µ correspond to the different means in the k
groups as shown in Equation (13). The variables L, H, M0, S0 are hyperparameters, and the parameter
β j can be interpreted as the effect size differing from the grand mean β0, which is why the prior on
β j is normal with mean zero so that the expectation of these effect size differences from the grand
mean sum up to zero again. The hyperparameter σβ can either be set constant or given another prior,
extending the multilevel model, where Kruschke (2015) followed the recommendations of Gelman
and Hill (2006) to use a folded t-distribution or a gamma-distribution with non-zero mode.

Inference for the full posterior, that is for the parameters µk, σy, β0, β j∀j, j = 1, ..., k (and σβ, if a
hyperprior like a folded t-distribution or gamma-distribution is used on this parameter) given the
data is provided via the MCMC sampler JAGS (Plummer, 2003), which uses Gibbs sampling to draw
samples from the posterior. Posterior distributions obtained through Gibbs sampling are finally used
to estimate all parameters via 95% Highest-Density-Intervals (HDI). Explicit testing is avoided.

3 Available software

Available software for the traditional ANOVA

Conducting a traditional analysis of variance is possible with an abundance of software, for example
via the stats package (R Core Team, 2020) which is part of the R programming language (R Core Team,
2020).

Available software for the Bayesian ANOVA

The BayesFactor package by Morey and Rouder (2018) provides the Bayesian ANOVA Bayes factor of
Rouder et al. (2012), and various helper functions for analysis of the results.

A simple illustration of the main workflow in the BayesFactor package is given here, using the
ToothGrowth dataset in the datasets package (Cannon et al., 2019). The ToothGrowth dataset contains
three columns: len, the dependent variable each of which is the length of a guinea pig’s tooth after
treatment with vitamin C. The predictor supp corresponds to the supplement type (either orange juice
or ascorbic acid), the predictor dose is the amount of vitamin C administered.

The BayesFactor package’s core function allows the comparison of models M0, ...,Mn with factors
as predictors. The null model without any predictors is most often compared to models including
predictors or even interaction terms using the Bayes factor as detailed above. The function anovaBF
computes several model estimates at once, so that the model with the largest Bayes factor can be
selected. The data are first loaded and the categorial predictors converted to factors:

R> set.seed(42)
R> library(datasets)
R> data(ToothGrowth)
R> head(ToothGrowth,n=3)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5

R> ToothGrowth$dose = factor(ToothGrowth$dose)
R> levels(ToothGrowth$dose) = c('Low', 'Medium', 'High')

Then, a Bayesian ANOVA is conducted using both predictors dose, supp and the interaction term
dose * supp:
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R> library(BayesFactor)
R> bf = anovaBF(len ~ supp * dose, data = ToothGrowth)

Bayes factor analysis
--------------
[1] supp : 1.198757 +- 0.01%
[2] dose : 4.983636e+12 +- 0%
[3] supp + dose : 2.963312e+14 +- 1.59%
[4] supp + dose + supp:dose : 8.067205e+14 +- 1.94%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

The results are shown in form of the Jeffreys-Zellner-Siow (JZS) Bayes factor BF10 detailed pre-
viously. As the BF10 for the model including both predictors supp and dose is largest, the Bayesian
ANOVA favours this model over the null model which includes only the intercept. Thus, as there are
the low, medium and high dose groups and the two supplement groups, in total one obtains 3 × 2 = 6
different groups. The results show that there is strong evidence that the model attesting these six
differing groups is favourable over the null model (and every other model as given in output lines
[1], [2] and [3]).

Note, that this solution is also implemented in the open-source software JASP, for an introduction
see Bergh et al. (2019).

The Bayesian ANOVA model of Kruschke (2015) is not implemented in a software package by now.
Instead, users have to write their own model scripts for JAGS (Plummer, 2003) to run the analysis.
Still, recently the package BANOVA was published by Dong and Wedel (2019), which uses JAGS
(Plummer, 2003) and the Hamiltonian Monte Carlo (HMC) sampler Stan (Carpenter et al., 2017) via
the package RStan (Stan Development Team, 2020) to provide similar inferences without the need to
code the JAGS or Stan models on your own.

Note that in the above example, a traditional ANOVA can easily be fit via

R> summary(aov(len ~ supp * dose, data = ToothGrowth))

Df Sum Sq Mean Sq F value Pr(>F)
supp 1 205.4 205.4 15.572 0.000231 ***
dose 2 2426.4 1213.2 92.000 < 2e-16 ***
supp:dose 2 108.3 54.2 4.107 0.021860 *
Residuals 54 712.1 13.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

which yields similar results, favouring the full model with both predictors and interaction term, as
both predictors and the interaction term are significant.

4 The Bayesian ANOVA model based on Gaussian mixtures

The method used in the bayesanova package is based on estimation of parameters in a Gaussian
mixture distribution. On this mixture a Gibbs sampling algorithm is applied to produce posterior
distributions of all unknown parameters given the data in the Gaussian components, that is for
µj, σj, j = 1, ..., k and for the differences in means µl − µr, l ̸= r and the effect sizes δlr, l ̸= r where
k is the number of groups in the study or experiment. This way, a relatively complete picture of
the situation at hand can be drawn and while the technical aspects are omitted here, the validity of
the procedure stems from standard MCMC theory, see for example Robert and Casella (2004). The
principal idea of mixture models is expressed by Frühwirth-Schnatter (2006):

Consider a population made up of K subgroups, mixed at random in proportion to the relative
group sizes η1, ..., ηK . Assume interest lies in some random feature Y which is heterogeneous
across and homogeneous within the subgroups. Due to heterogeneity, Y has a different probability
distribution in each group, usually assumed to arise from the same parametric family p(y|θ)
however, with the parameter θ differing across the groups. The groups may be labeled through a
discrete indicator variable S taking values in the set {1, ..., K}.
When sampling randomly from such a population, we may record not only Y, but also the
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group indicator S. The probability of sampling from the group labeled S is equal to ηS, whereas
conditional on knowing S, Y is a random variable following the distribution p(y|θS) with θS being
the parameter in group S. (...) The marginal density p(y) is obviously given by the following
mixture density

p(y) =
K

∑
S=1

p(y, S) = η1 p(y|θ1) + ... + ηS p(y|θK)

Clearly, this resembles the situation of the analysis of variance, in which the allocations S are known.
Traditionally, mixtures are treated with missing allocations but in the setting of the ANOVA these are
known, leading to a much simpler scenario. This interpretation also makes sense from a semantic
point: the inherent assumption of a researcher is that the population is indeed made up of k subgroups
in the case of a k-group ANOVA, which differ in a random feature Y which is heterogeneous across
groups and homogeneous within each group. When conducting for example a randomized clinical
trial (RCT), the group indicator S is of course recorded. The clinician will choose the patients according
to a sampling plan, which could be designed to achieve equally sized groups, that is, η1 = η2 = ... = ηk
for k study groups. Thus, when sampling the population with the target of equally sized groups, the
researcher will sample the objects with equal probability from the population. Consider a treatment
one, treatment two and a control group. In this typical setting, the researcher could flip a coin for each
patient in the RCT to assign him or her to one of the two treatment groups or to the control group,
so that with probability η1 = η2 = η3 = 1/3 for any group, the patient is assigned to it. Repeating
this process then leads to the mixture model given above. After the RCT is conducted, the resulting
histogram of observed Y values will finally take the form of the mixture density p(y) above. If there is
an effect in the treatment, this density p(y) will express three modes which in turn result from the
underlying mixture model of the data-generating process.

If unbalanced groups are the goal, weights can be adjusted accordingly, for example η1 = 0.3,
η2 = 0.2 and η3 = 0.5. After fixing the mixture weights η1, η2, η3, the family of distributions for the
mixture components needs to be selected. The above considerations lead to finite mixtures of normal
distributions which ‘occur frequently in many areas of applied statistics such as [...] medicine’ (Frühwirth-
Schnatter, 2006, p. 169). The components p(y|θi) therefore become fN(y; µj, σ2

j ) for j = 1, ..., k in this

case, where fN(y; µj, σ2
j ) is the density of the univariate normal distribution. Parameter estimation in

finite mixtures of normal distributions consists of estimation of the component parameters (µj, σ2
j ), the

allocations Si, i = 1, ..., n and the weight distribution (η1, ..., ηk) based on the available complete data
(yi, Si), i = 1, ..., n. In the case of the Bayesian ANOVA, the allocations Si (where Si = 1 if yi belongs to
the first component, Si = 2 if yi belongs to the second component, until Si = k if yi belongs to the k-th
group) are known for all observations yi, i = 1, ..., n. Therefore, inference reduces to inference for the
density parameters (µj, σ2

j ) of the normal components of the mixture for the j = 1, ..., k groups.

The Bayesian ANOVA model based on Gaussian mixtures is summarized in Figure 1 using the
three-group case as an example:

Figure 1: Three-component Gaussian mixture with known allocations for the Bayesian analysis of
variance

The measured variables yi follow a three-component Gaussian mixture with known allocations.
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Model Purpose Evidence
measure

Computational
aspects

Frequentist
ANOVA

Testing the global hypothesis that
all samples are drawn from pop-
ulations with identical means
against the alternative

F-statistic
and p-
value

Analytic solution

Bayesian ANOVA
of Rouder et al.
(2012)

Test the global hypothesis that the
effect size vector is zero versus the
alternative

Bayes fac-
tor

Numerical inte-
gration required

Bayesian ANOVA
of Kruschke (2015)

Estimation of effect sizes between
groups via ROPE and 95% HPD

ROPE Gibbs sampling in
MCMC sampler
JAGS (or Stan) re-
quired

Bayesian ANOVA
based on Gaussian
mixtures

Estimation of effect sizes between
groups via the ROPE and posterior
probability mass

ROPE Gibbs sampling
without MCMC
sampler JAGS (or
Stan) required

Table 1: Overview about the four ANOVA models

The first group is normally distributed as N (µ1, σ1), the second group as N (µ2, σ2) and the third
group as N (µ3, σ3). The means µ1, µ2 and µ3 are each distributed as µj ∼ N (b0, B0), j = 1, 2, 3 with
noninformative hyperparameters b0 and B0 and the standard deviations σ1, σ2 and σ3 are distributed
as σj ∼ G−1(c0, C0), j = 1, 2, 3 with noninformative hyperparameters c0 and C0. For details, see Kelter
(2021d, 2020c). As the allocations are known, the weights η1, η2 and η3 are known too, and need not
to be estimated, which is why the parameters η1, η2, η3 are not included in the diagram. The model
visualized in Figure 1 can be generalized for an arbitrary number of mixture components, which then
includes nearly arbitrary ANOVA settings for comparison of multiple groups. A definitive advantage
of this model is that inference is obtained for both means and standard deviations, yielding richer
information compared to the testing perspectives which are stressed in traditional or Bayesian ANOVA
models focussing on the Bayes factor. Also, posterior distributions of effect sizes can be obtained via
MCMC, providing an additional layer of information to draw inferences.

Instead of relying on the Bayes factor, the bayesanova package follows the approach of Kruschke
(2018) to use a region of practical equivalence (ROPE). The effect size δ is routinely categorized as
small, medium or large in medical research when δ ∈ [0.2, 0.5), δ ∈ [0.5, 0.8) or δ ∈ [0.8, ∞), see Cohen
(1988). The approach using the ROPE proceeds by taking these categories as regions of practical
equivalence, that is both δ = 0.25 and δ = 0.26 are identified as a small effect because both are inside
the region of practical equivalence [0.2, 0.5) of a small effect δ. The underlying idea is that measuring
effect sizes only makes sense up to a specific precision, which is given by the above categorization of
effect sizes. By studying how much probability mass of the posterior distribution of δ lies inside some
of the above ROPEs [0.2, 0.5), [0.5, 0.8) and [0.8, ∞) of a small, medium and large positive effect for δ
(negative effects analogue), a continuous statement about the most probable effect size δ given the data
can be made. Kruschke originally advocated to use the location of the 95% highest-posterior-density
(HPD) interval in relation to the ROPE to test whether the null value in the middle of the ROPE should
be accepted or rejected for practical purposes. Here, this approach is generalized by switching to the
amount of posterior probability mass inside the ROPE. Detailed examples are provided later in this
paper.

Table 1 provides an overview about the four ANOVA models and their purpose. Although it
appears that the model of Kruschke (2015) and the Gaussian mixture modeling approach proposed
in this paper have the same purpose, they differ in how data yi are assumed to be generated. In the
mixture approach we assume that the sample of nj participants in group j results from a mixture
process, e.g. by flipping a coin, rolling a dice or using any other randomization device (as is the case in
clinical trials when assigning patients to groups according to a double-blinded protocol). Thus, the
process of data generation is not “one has collected nj participants for group j” but “the given sample
of nj participants in group j is assumed to be a realization of a mixture process where with probability
ηj participants are assigned to group j”. Importantly, note that the realization of nj participants in
group j for j = 1, ..., k is expected under the mixture component weight ηj = nj/n, but also entirely
different group sizes nj can result under such a mixture. In fact, the weights ηj = nj/n which are
assumed to be known are the corresponding maximum-likelihood-estimators of the weight parameters
ηj given the sample sizes nj for j = 1, ..., k, but the conceptual focus of the mixture approach is to
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Function Description

bayes.anova Main function of the package, conducts the MCMC algorithm to provide
full posterior inference in the three-component Gaussian mixture model

assumption.check Helper function for checking the assumption of normality in each group
previous to running a Bayesian ANOVA

anovaplot Provides multiple visualizations of the results, including posterior dis-
tributions, difference in means and standard deviations and effect sizes
as well as a full ROPE-analysis

post.pred.check Provides a posterior predictive check for a fitted Bayesian ANOVA
model

Table 2: Outline of the four main functions implemented in bayesanova

closely mimic the randomization process researchers follow when conducting a randomized controlled
trial. Note further that the model of Kruschke assumes homogeneity of variances in contrast to the
Gaussian mixture model, but Kruschke’s model can easily be extended to account for heterogeneity
of variance, rendering this difference less important. Note that both the frequentist ANOVA and the
Bayesian version of Rouder et al. (2012) assume homogeneity of variance across groups.

5 Package structure and implementation

The bayesanova package has four functions. These provide (1) the MCMC algorithm for conducting the
Bayesian ANOVA in the Gaussian mixture model with known allocations, detailed above, (2) checks
of the model assumptions and (3) visualizations of the posterior results for easy interpretation and
communication of research results. Visualizations of the posterior mixture components in comparison
with the original data are provided by the fourth function. An overview is provided in Table 2.

The core function is bayes.anova, which provides the MCMC algorithm to obtain full posterior
inference in a k-component Gaussian mixture model shown in Figure 1 for the special case of k = 3
components. The function implements a Gibbs sampling algorithm, which iteratively updates

1. the means µj|µ−j, σ1, ..., σk, S, y given the other means µ−j and standard deviations σ1, ..., σk as
well as the full data S, y, where S is the indicator vector for the groups the observations y belong
to

2. the standard deviations σj|σ−j, µ1, ..., µk, S, y given the other standard deviations σ−j and means
µ1, ..., µk as well as the full data S, y, where S is again the indicator vector for the groups the
observations y belong to

The details of the Gibbs sampler can be found in Kelter (2020c, 2021d), and the validity of the method
follows from standard MCMC theory, see for example Robert and Casella (2004).

The bayes.anova function takes as input three numerical vectors first, second and third, which
correspond to the observed responses in each of the three groups and provides multiple optional
parameters:

bayes.anova(n=10000, first, second, third,
fourth = NULL, fifth = NULL, sixth = NULL,
hyperpars="custom", burnin=n/2, sd="sd", q=0.1, ci=0.95)

These are the only mandatory input values, and currently six groups are the limit bayesanova
supports. More than three groups can be handed to the function by providing numerical vectors for
the parameters fourth, fifth and sixth.

If no other parameters are provided, the function chooses a default of n=10000 Gibbs sampling
iterations, where the burn-in of the Markov chains is set to burnin=n/2, so that the first 5000 iterations
are discarded. The default setting uses inference for means µj and standard deviations σj, which is
indicated by the parameter sd="sd", but inference for variances σ2

j instead of standard deviations σj can
easily be obtained by setting sd="var". The credible level for all computed credible intervals defaults
to 0.95, indicated by ci=0.95. The two remaining parameters hyperpars and q define preselected
values for the hyperparameters in the prior, to ensure weakly informative priors are used which
influence the analysis as little as possible. For details, see Kelter (2020c, 2021d), but in general these
values apply to a broad range of contexts so that changing them is not recommended. Note, that
another set of hyperparameters based on Raftery (1996) can be selected via hyperpars="rafterys", if
desired.
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After execution, the function returns a dataframe including four Markov chains for each parameter
of the specified size n-burnin, to make subsequent convergence assessment or post-processing of the
MCMC results possible.

The second function is assumption.check. This function runs a preliminary assumption check on
the data, which is recommended before running a Bayesian ANOVA. The model assumptions are
normality in each mixture component, so that the assumption.check function runs Shapiro-Wilk tests
to check for normality (Shapiro and Wilk, 1965). The input parameters are the three numerical vectors
x1, x2 and x3 including the observed responses in the first, second and third group, and the desired
confidence level conf.level for the Shapiro-Wilk tests:

assumption.check(x1, x2, x3, x4 = NULL, x5 = NULL, x6 = NULL, conf.level=0.95)

The default confidence level is 0.95. More than three groups can easily be added by providing values
for x4, x5 and x6.

The third function is anovaplot, which provides a variety of visualizations of results. The function
takes as input a dataframe dataframe, which should be the result of the bayes.anova function detailed
above, a parameter type, which indicates which visualization is desired, a parameter sd, which
indicates if the provided dataframe includes posterior draws of σj or σ2

j and last a parameter ci, which
again defined the credible level used in the computations.

anovaplot(dataframe, type="rope", sd="sd", ci=0.95)

The default values for sd is "sd", and the default credible level is 0.95. The type parameter takes
one of four possible values: (1) type="pars", (2) type="diff", (3) type="effect" and (4) type="rope".
In the first case, posterior distributions of all model parameters are produced, complemented by
convergence diagnostics in form of trace plots, autocorrelation plots and the Gelman-Brooks-Rubin
shrink factor (Gelman and Brooks, 1998), which should be close to one to indicate convergence to
the posterior. In the second case, the posterior distributions of the differences µi − µj, j ̸= i of the
group means and differences σl − σr, l ̸= r of the group standard deviations (or variances, if sd="var"
and the dataframe includes posterior draws of the σ2

j ’s instead of σj’s) are produced, complemented
by the same convergence diagnostics. In the third case, the posterior distributions of the effect sizes
δlr, l ̸= r are produced, which are most often of interest in applied research. In this case, posteriors
are complemented by the same convergence diagnostics, too. The last and fourth case produces a
full ROPE-analysis, which does provide the posteriors of the effect sizes δlr, l ̸= r, but additionally
computes a partitioning of the posterior probability mass into the standardized ROPEs of small,
medium and large (and no) effect sizes according to Cohen (1988), which are the reference standard in
medical and psychological research.

The last function post.pred.check provides a posterior predictive check for a fitted Bayesian
ANOVA model against the original data, which is routine in a Bayesian workflow Gabry et al. (2019).

6 Illustrations and examples

This section provides illustrations and a variety of examples, in which the bayesanova package can be
used and provides richer information than existing solutions.

Tooth growth of guinea pigs treated with vitamin C

The guinea pig dataset from above is used as a first example. The data are included in the dataset
ToothGrowth in the datasets package which is part of R. First, data is loaded and split into three groups,
corresponding to a low, medium and high administered vitamin C dose:

R> library(datasets)
R> data(ToothGrowth)
R> head(ToothGrowth,n=3)

len supp dose
1 4.2 VC 0.5
2 11.5 VC 0.5
3 7.3 VC 0.5

R> library(dplyr)
R> library(tidyr)
R> library(bayesanova)
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R> grp1 = (ToothGrowth %>% filter(dose==0.5) %>% select(len))$len
R> grp2 = (ToothGrowth %>% filter(dose==1.0) %>% select(len))$len
R> grp3 = (ToothGrowth %>% filter(dose==2.0) %>% select(len))$len

Next, we run the assumption checks on the data

R> assumption.check(grp1, grp2, grp3, conf.level=0.95)

Model assumptions checked. No significant deviations from normality detected.
Bayesian ANOVA can be run safely.
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Figure 2: Assumption checks for the ToothGrowth dataset using the assumption.check() function in
bayesanova, showing that data in the three groups can be assumed as normally distributed so that
running the Bayesian ANOVA based on the Gaussian mixture model is justified

Figure 2 shows the histograms and quantile-quantile plots for all three groups produced by assumption.check().
Clearly, there are no large deviations, and no Shapiro-Wilk test was significant at the 0.05 level.

Next, the Bayesian ANOVA can be run via the bayes.anova function. Therefore, the default
parameter values are used, yielding n=5000 posterior draws:

R> set.seed(42)
R> res = bayes.anova(first = grp1, second = grp2, third = grp3)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:-----|:-----|:-----|:-------|
|mu1 |8.69 |10.61 |12.5 |0.91 |
|mu2 |18.05 |19.75 |21.46 |0.84 |
|mu3 |24.94 |26.1 |27.25 |0.57 |
|sigma1 |3.02 |4.07 |5.67 |0.67 |
|sigma2 |2.95 |3.96 |5.43 |0.64 |
|sigma3 |2.43 |3.25 |4.42 |0.52 |
|mu2-mu1 |6.7 |9.15 |11.7 |1.25 |
|mu3-mu1 |13.42 |15.49 |17.67 |1.06 |
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|mu3-mu2 |4.36 |6.34 |8.38 |1.01 |
|sigma2-sigma1 |-2.02 |-0.11 |1.68 |0.93 |
|sigma3-sigma1 |-2.62 |-0.81 |0.74 |0.85 |
|sigma3-sigma2 |-2.46 |-0.71 |0.85 |0.82 |
|delta12 |-5.77 |-4.59 |-3.21 |0.65 |
|delta13 |-9.37 |-8.14 |-6.63 |0.71 |
|delta23 |-4.36 |-3.36 |-2.19 |0.56 |

The results table shows the lower and upper quantile, corresponding to the 100·ci+(100−ci)/2 and
(100−ci)/2 quantiles where ci is the credible level chosen above. Also, the posterior mean and
standard error are given for each parameter, difference of parameters and effect size. The results
clearly show that there are huge differences between the groups: For example, one can immediately
spot that the more vitamin c given, the more tooth growth can be observed via tooth lengths. While
the first group (low dose) has a posterior mean of 10.61 with credible interval [8.69, 10.61], the second
group achieves a mean of 19.75 with credible interval [18.05, 21.46]. The third group has a posterior
mean of even 26.1 with credible level [24.94.27.25]. The posterior estimates for the differences µ2 − µ1,
µ3 − µ1 and µ3 − µ2 show that all groups differ from each other with a very high probability, given
the data.

Note that the information provided is much more fine-grained than in the solutions via the
traditional ANOVA and the Jeffreys-Zellner-Siow based Bayes-factor ANOVA above. While in these
two solutions, one could only infer that the model using both predictors and the interaction term is
the best, now we are given precise estimates of the effect sizes between each group defined by the
dose of vitamin c administered. Note also, that including the second predictor supp is no problem,
leading to a setting which incorporates six groups in the mixture then.

Heart rate data for runners

The second example is from the biomedical sciences and uses the heart rate data from Moore et al.
(2012). In the study, heart rates of female and male runners and generally sedentary participants (not
regularly running) following six minutes of exercise were recorded. The participant’s Gender and
Heart.rate are given and which group he or she belongs to (Group=="Runners" or Group=="Control").
In the study, 800 participants were recruited, so that in each of the four groups given by the combina-
tions of Gender and Group 200 subjects participated.

Therefore, the situation requires a 2 × 2 between subjects ANOVA. Specifically, interest lies in the
hypothesis that heart rate differs between gender and groups. The Bayesian ANOVA of bayesanova
can easily be applied in such an often encountered setting. We first load the data and split them into
the four groups:

R> library(dplyr)
R> hr=read.csv("heartrate.csv",sep=",")
R> head(hr)

Gender Group Heart.Rate
1 Female Runners 119
2 Female Runners 84
3 Female Runners 89
4 Female Runners 119
5 Female Runners 127
6 Female Runners 111

R> femaleRunners = (hr %>% filter(Gender=="Female")
+ %>% filter(Group=="Runners")
+ %>% select(Heart.Rate))$Heart.Rate
R> maleRunners = (hr %>% filter(Gender=="Male") %>% filter(Group=="Runners")
+ %>% select(Heart.Rate))$Heart.Rate
R> femaleControl = (hr %>% filter(Gender=="Female")
+ %>% filter(Group=="Control")
+ %>% select(Heart.Rate))$Heart.Rate
R> maleControl = (hr %>% filter(Gender=="Male") %>% filter(Group=="Control")
+ %>% select(Heart.Rate))$Heart.Rate

Then, we check the model assumptions:

R> assumption.check(femaleRunners, maleRunners, femaleControl, maleControl)
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We can thus safely proceed running the Bayesian ANOVA:

R> set.seed(42)
R> resRunners = bayes.anova(first = femaleRunners, second = maleRunners,
+ third = femaleControl, fourth = maleControl)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:------|:------|:------|:-------|
|mu1 |113.48 |116 |118.5 |1.27 |
|mu2 |102.51 |103.98 |105.55 |0.76 |
|mu3 |145.44 |148.04 |150.52 |1.3 |
|mu4 |127.12 |130.01 |132.82 |1.47 |
|sigma1 |14.38 |15.87 |17.51 |0.8 |
|sigma2 |11.21 |12.35 |13.67 |0.63 |
|sigma3 |14.71 |16.19 |17.85 |0.82 |
|sigma4 |15.46 |17.02 |18.79 |0.85 |
|mu2-mu1 |-14.9 |-12.01 |-9.06 |1.48 |
|mu3-mu1 |28.47 |32.04 |35.6 |1.83 |
|mu4-mu1 |10.19 |14.01 |17.9 |1.96 |
|mu3-mu2 |41.12 |44.05 |46.95 |1.51 |
|mu4-mu2 |22.83 |26.02 |29.21 |1.66 |
|mu4-mu3 |-21.8 |-18.03 |-14.4 |1.92 |
|sigma2-sigma1 |-5.6 |-3.52 |-1.57 |1.02 |
|sigma3-sigma1 |-1.94 |0.32 |2.53 |1.15 |
|sigma4-sigma1 |-1.14 |1.15 |3.51 |1.18 |
|sigma3-sigma2 |1.83 |3.84 |5.85 |1.03 |
|sigma4-sigma2 |2.7 |4.67 |6.8 |1.05 |
|sigma4-sigma3 |-1.48 |0.83 |3.13 |1.17 |
|delta12 |2.4 |3.2 |3.96 |0.4 |
|delta13 |-8.92 |-8.01 |-7.05 |0.48 |
|delta14 |-4.42 |-3.46 |-2.5 |0.49 |
|delta23 |-12.55 |-11.67 |-10.77 |0.45 |
|delta24 |-7.65 |-6.79 |-5.91 |0.45 |
|delta34 |3.52 |4.43 |5.37 |0.48 |

The results reveal multiple insights now. To support the interpretation, we first produce visualisa-
tions of the results via the anovaplot() function:

R> anovaplot(resRunners)

Figure 3 shows the plots produces by the above call to anovaplot(). The first row shows the posterior
distributions of the effect sizes δ12, δ13 and δ23. The second row below is the analysis based on
the ROPE, which partitions the posterior probability mass into the standard ROPES for effect sizes
according to Cohen (1988).

Thus, we can see that for δ12 – which equals the effect size between female runners and male
runners – there is a very large effect with posterior mean 3.2 and 95% credible interval [2.402, 3.96],
confirmed by the fact that 100% of the posterior probability mass are located inside the ROPE of a large
effect according to Cohen (1988) (which includes values ≥ 0.8). Based on the results, the posterior
probability of a large effect between female and male runners given the data is one, which means
female runners have a faster heart beat after exercising six minutes than male runners.

To check if this effect exists also in the control groups, we compare the posterior of δ34, correspond-
ing to the effect size between the female and male controls. The results are given in the right plot of
the third and fourth row in 3 and show that also in the control groups the effect is present. Here, the
effect size is estimated to be even larger than for the runner groups with a posterior mean of 4.427 and
a 95% credible interval [3.517, 5.366]. Thus, regular running seems to reduce the observed heartbeat
differences between males and females in the form of a large effect. We could proceed this way and
compare all other groups, too.

To check the model fit, we use the post.pred.check function, which performs a posterior predic-
tive check against the observed data by drawing reps samples from the posterior distribution and
visualizing the original data’s density with density overlays for the reps sampled posterior predictive
densities of the data:

post.pred.check(anovafit = resRunners, ngroups = 4, out = hr$Heart.Rate ,
reps = 50, eta = c(1/4,1/4,1/4,1/4))

The argument anovafit takes the resulting dataframe of the bayes.anova function as input, the
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Figure 3: Visualisations of the results for the Heart rate dataset using the anovaplot() function in
bayesanova, showing (1) the resulting posterior distributions of the effect sizes between each pair of
groups (first and third row) and (2) the posterior ROPE-analysis for each group comparison (second
and fourth row)

number of groups is specified in ngroups, out is the vector of all data originally observed (no matter
which group), reps is the number of posterior predictive density overlays desired, and eta is the
vector of weights used in the Gaussian mixture. Here, as all four groups include 200 participants, each
weight is 1/4. The resulting posterior predictive check is shown in the left plot of 4, and indicates that
while there is some overdispersion in the center of the posterior predictive distributions simulated,
the overall fit seems reasonable.
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Figure 4: Posterior predictive checks using the post.pred.check function; left: For the runners dataset;
right: For the feelings dataset; in both cases, results show that the overall fit of the Gaussian mixture
model is reasonable

Pleasantness ratings after watching artistic or nude pictures

This example uses data from a study conducted by Balzarini et al. (2017), in which men and women’s
feelings towards their partners after watching either erotic or abstract art pictures were analysed. The
study was published in the Journal of Experimental Social Psychology, and also the average pleasantness
obtained from viewing the pictures was studied, as one of the research questions was whether men
and women rate pleasantness of the pictures differently for nude and abstract art. This leads to a 2 × 2
factorial ANOVA for the variables gender and picture type, coded as Gender and Condition in the
dataframe.

First, data is loaded and split into the four groups of interest:

R> feelings=read.csv("feelings.csv",sep=",")
R> head(feelings)

Gender Age RelLen Condition PartnerAttractiveness
1 Male 43 3.7500 Nudes 21
2 Female 26 3.0000 Nudes 19
3 Female 35 5.2500 Abstract Art 27
4 Female 31 2.0000 Abstract Art 22
5 Female 23 4.0000 Abstract Art 27
6 Male 36 19.9167 Nudes 16
LoveForPartner AveragePleasantness

1 76 5.9375
2 66 4.7500
3 103 6.2500
4 76 5.5625
5 109 2.3750
6 98 5.1250

R> femaleArtistic = (feelings %>% filter(Gender=="Female") %>%
+ filter(Condition=="Abstract Art"))$AveragePleasantness
R> maleArtistic = (feelings %>% filter(Gender=="Male") %>%
+ filter(Condition=="Abstract Art"))$AveragePleasantness
R> femaleNude = (feelings %>% filter(Gender=="Female") %>%
+ filter(Condition=="Nudes"))$AveragePleasantness
R> maleNude = (feelings %>% filter(Gender=="Male") %>%
+ filter(Condition=="Nudes"))$AveragePleasantness

Second, the model assumption of normality in each group is checked:

R> assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude)
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1: In assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude) :
Model assumption of normally distributed data in each group is violated.

All results of the Bayesian ANOVA based on a Gaussian mixture
could therefore be unreliable and not trustworthy.
2: In assumption.check(femaleArtistic, maleArtistic, femaleNude, maleNude) :
Run further diagnostics (like Quantile-Quantile-plots) to check if the
Bayesian ANOVA can be expected to be robust to the violations of normality

This time the function gives a warning, that there are violations of the distributional assumptions.
Investigating the results leads to the conclusion that data in the fourth group deviate from normality,
shown in 5 in the QQ-plot. Still, as all other groups show no strong deviations from normality, we
proceed and are cautious when drawing inferences including any statements involving the fourth
group.
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Figure 5: Histogram and quantile-quantile plot for the fourth group in the feelings dataset, showing
that the assumption of normality is violated

Keeping this in mind, the Bayesian ANOVA is run now with default hyperparameters:

R> set.seed(42)
R> resFeelings = bayes.anova(first = femaleArtistic, second = maleArtistic,
+ third = femaleNude, fourth = maleNude)

|Parameter |LQ |Mean |UQ |Std.Err |
|:-------------|:-----|:-----|:-----|:-------|
|mu1 |4.86 |4.9 |4.95 |0.02 |
|mu2 |4.62 |4.66 |4.69 |0.02 |
|mu3 |4.07 |4.2 |4.34 |0.07 |
|mu4 |5.42 |5.47 |5.53 |0.03 |
|sigma1 |0.98 |1.16 |1.4 |0.11 |
|sigma2 |0.86 |1.02 |1.21 |0.09 |
|sigma3 |1.34 |1.66 |2.06 |0.19 |
|sigma4 |1.06 |1.26 |1.52 |0.12 |
|mu2-mu1 |-0.31 |-0.25 |-0.19 |0.03 |
|mu3-mu1 |-0.85 |-0.7 |-0.56 |0.07 |
|mu4-mu1 |0.5 |0.57 |0.64 |0.04 |
|mu3-mu2 |-0.6 |-0.46 |-0.32 |0.07 |
|mu4-mu2 |0.75 |0.81 |0.87 |0.03 |
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|mu4-mu3 |1.12 |1.27 |1.41 |0.07 |
|sigma2-sigma1 |-0.43 |-0.14 |0.12 |0.14 |
|sigma3-sigma1 |0.1 |0.49 |0.95 |0.21 |
|sigma4-sigma1 |-0.21 |0.1 |0.42 |0.16 |
|sigma3-sigma2 |0.27 |0.64 |1.07 |0.21 |
|sigma4-sigma2 |-0.04 |0.24 |0.55 |0.15 |
|sigma4-sigma3 |-0.84 |-0.39 |0.01 |0.22 |
|delta12 |0.18 |0.24 |0.29 |0.03 |
|delta13 |0.47 |0.6 |0.73 |0.07 |
|delta14 |-0.58 |-0.52 |-0.44 |0.04 |
|delta23 |0.27 |0.41 |0.53 |0.06 |
|delta24 |-0.84 |-0.76 |-0.69 |0.04 |
|delta34 |-1.2 |-1.07 |-0.91 |0.07 |

The results show that differences are now much more subtle than in the previous examples. From the
results one can spot that the means in the first three groups are located nearer to each other than in
the previous examples, and the fourth group differs more strongly from the first three. The standard
deviations do not differ a lot between groups, and the magnitude of the posterior effect sizes is now
smaller, too. To investigate the effect sizes, visualisations are produced first:

R> anovaplot(resFeelings)
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Figure 6: Visualisations of the posterior effect sizes for the feelings dataset using the anovaplot()
function in bayesanova, showing which effects are most probable a posteriori based on a ROPE-
analysis for each pair of groups

Figure 6 shows the plots produces by the above call to anovaplot(). The two left plots show that
with 91.91% probability there is a small effect between the first and second group given the data,
which are the female and male artistic pictures groups. Therefore, with large probability females rate
artistic pictures more pleasant than males, where the effect size itself is small. Still, we could argue
that there is nonnegligible probability of 8.09% that there is no effect at all and therefore not draw any
conclusion depending on the posterior probability we require.
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The middle two plots in 6 show the effect between the female artistic and female nude picture
groups. We can see that based on the posterior distribution of δ13, with 95.98% there is a medium
effect between the two groups given the data. Females rate artistic pictures therefore with a probability
near certainty as more pleasant than nude pictures, where the effect size in terms of standardized
differences between ratings is medium.

The right two plots in 6 show the effect between the male artistic and female nude groups. The
posterior reveals that 96.06% indicate a small effect, which could be interpreted as the fact that males
rate artistic pictures even more pleasant than females rate nude pictures, but the effect size is only
small and the remaining 3.94% posterior probability indicate that there is even a medium effect.

Figure 7 shows the effects which include the fourth group. Due to the violations of distributional
assumptions one need to be cautious now, as the results could be deterred. Still, the two right plots
show the effect size between the female and male nude groups, and indicate that the full posterior
(100%) signals a large negative effect. This means, males rate the pleasantness of nude pictures much
higher than females. Still, the result (as well as the results for δ14 and δ24) are questionable due to the
violation of model assumptions, so we do not proceed here.

The posterior predictive check in the right plot of 4 obtained via

post.pred.check(anovafit = resFeelings, ngroups = 4, out = feelings$AveragePleasantness,
reps = 100, eta = c(58/223,64/223,41/223,60/223))

shows that the overall fit seems reasonable, although there is some room for improvement in the range
of average pleasantness ratings between zero and two, and in the peak between average pleasantness
ratings of four and six. Subdividing the data even further and refitting the ANOVA model with a
higher number of components would be an option to improve the fit. Alternatively, one could discuss
the prior hyperparameters chosen here.
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Figure 7: Visualisations of the posterior effect sizes for the feelings dataset using the anovaplot()
function in bayesanova, showing which effects are most probable a posteriori based on a ROPE-
analysis for each pair of groups

A solution via a traditional ANOVA in this case would yield:
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R> summary(aov(AveragePleasantness ~ Gender * Condition, data = feelings))

Df Sum Sq Mean Sq F value Pr(>F)
Gender 1 10.63 10.629 7.605 0.00631 **
Condition 1 1.27 1.267 0.906 0.34210
Gender:Condition 1 31.15 31.155 22.291 4.18e-06 ***
Residuals 219 306.09 1.398
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Here, the condition is not significant, but the interaction is. The above analysis via the Bayesian mixture
ANOVA made this more explicit: The posteriors for each combination of gender and condition were
derived via MCMC, leading for example to the conclusion that females rate artistic picture as more
pleasant than nude pictures with 95.98% probability for a medium effect size and 4.02% for a small
effect size.

A solution via a Bayes factor based ANOVA would yield:

R> library(BayesFactor)
R> set.seed(42)
R> feelings$Gender = factor(feelings$Gender)
R> feelings$Condition = factor(feelings$Condition)
R> bfFeelings = anovaBF(AveragePleasantness ~ Gender * Condition, data = feelings)

Bayes factor analysis
--------------
[1] Gender : 3.727898 +- 0%
[2] Condition : 0.2532455 +- 0.01%
[3] Gender + Condition : 0.822604 +- 1.01%
[4] Gender + Condition + Gender:Condition : 3048.134 +- 1.14%

Against denominator:
Intercept only

---
Bayes factor type: BFlinearModel, JZS

The conclusions drawn in this case are that the model including both gender, the condition and the
interaction between both is most favourable due to the huge Bayes factor of BF(M4,M0) = 3048.134.
Here too, the information is quite limited compared to the detailed analyses we could obtain from the
Bayesian ANOVA based on the Gaussian mixture model above.

Amyloid concentrations and cognitive impairments

This example uses data from medical research about Alzheimer’s disease. Amyloid-beta (Abeta) is a
protein fragment which has been linked frequently to Alzheimer’s disease. Autopsies from a sample of
Catholic priests included measurements of Abeta (pmol/g tissue from the posterior cingulate cortex)
from three groups: subjects who had exhibited no cognitive impairment before death, subjects who
had exhibited mild cognitive impairment, and subjects who had mild to moderate Alzheimer’s disease.
The original study results were published by Pivtoraiko et al. (2015) in the journal Neurobiology of
Aging and are used here.

The Amyloid dataset is available in the Stat2Data package (Cannon et al., 2019) and includes
a group indicator Group, which takes either one of three values: mAD, which classifies a subject as
having had mild Alzheimer’s disease, MCI, which is a mild cognitive impairment and NCI, which is no
cognitive impairment. Also, the amount of Amyloid-beta from the posterior cingulate cortex is given
in pmol per gram tissue in the variable Abeta.

After loading and splitting the data into the three groups, we run the assumption.check() function:

R> library(Stat2Data)
R> data(Amyloid)
R> head(Amyloid)

Group Abeta
1 NCI 114
2 NCI 41
3 NCI 276
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Figure 8: Model assumption checks for the Amyloid dataset using the assumption.check() function
in bayesanova, showing that the assumption of a Gaussian mixture model is violated

4 NCI 0
5 NCI 16
6 NCI 228

R> NCI = (Amyloid %>% filter(Group=="NCI"))$Abeta
R> MCI = (Amyloid %>% filter(Group=="MCI"))$Abeta
R> mAD = (Amyloid %>% filter(Group=="mAD"))$Abeta
R> assumption.check(NCI, MCI, mAD)

1: In assumption.check(NCI, MCI, mAD) :
Model assumption of normally distributed data in each group is violated.

All results of the Bayesian ANOVA based on a multi-component Gaussian
mixture could therefore be unreliable and not trustworthy.
2: In assumption.check(NCI, MCI, mAD) :
Run further diagnostics (like Quantile-Quantile-plots) to check if the
Bayesian ANOVA can be expected to be robust to the violations of normality

The results in 8 clearly show that the model assumptions are violated. Therefore, it is not recommended
to run a Bayesian ANOVA in this case. A solution via a traditional ANOVA or via a Bayes factor based
ANOVA would not proceed at this point, too.

A small simulation study – Recapturing simulation parameters of synthetic datasets

The next example is more in the veins of a simulation approach. We simulate three-, four-, five- and
six-component Gaussian mixtures with increasing means µj := j and σj = 1. Therefore, the theoretical
parameter values as well as the differences in means and standard deviations and the effect sizes δlr
are known ∀l, r. We simulate 500 datasets with n = 50 observations in each group for each Gaussian
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mixture above, and run the Bayesian ANOVA with default hyperparameters, that is 10000 Gibbs
steps with 5000 burn-in steps, 95% credibility level and standard deviation output. Histograms of the
posterior means for all parameters are shown in 9.
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Figure 9: Recapturing simulation parameters of synthetic datasets with bayes.anova(), showing that
the Gibbs sampler yields consistent estimates of the underlying effect sizes

The results clearly show that even for 500 simulated datasets the true parameters µj = j and
σj = 1 are recaptured for small sample sizes like n = 50 in each group. Also, the differences in means
µl − µr, l ̸= r are near one, and the differences in standard deviations σl − σr, l ̸= r are near zero. The
effect sizes δlr, l ̸= r also are recaptured as expected. More details about the theoretical properties of
the procedure, especially the derivation of the Gibbs sampler for the two-group case can be found in
Kelter (2020c, 2021d). Note that increasing sample sizes in the groups will yield consistent estimates
as a result of MCMC theory Robert and Casella (2004).

7 Conclusion

This paper introduces bayesanova, an R package for conducting a Bayesian analysis of variance
based on MCMC in a Gaussian mixture distribution with known allocations. The Bayesian ANOVA
implemented in bayesanova is based on Gibbs sampling and supports up to six distinct components,
which covers the typical range of ANOVAs used in empirical research.

The package provides four functions to check the model assumptions, run the Bayesian ANOVA,
visualize the results and check the posterior fit. All functions have a variety of optional parameters
to adapt them to a specific workflow or goal. Also, convergence issues can be detected via the built-
in convergence diagnostics of all MCMC results in the anovaplot() function and it is possible to
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post-process the results delivered as raw Markov chain draws by bayes.anova, for example via the R
package bayestestR (Makowski et al., 2019a).

In the paper, multiple examples from medical and psychological research using real datasets were
provided, showing the richness of information provided by the proposed procedure. Also, while
explicit testing (for example via Bayes factors) is not implemented as standard output, it is worth
noting that computing Bayes factors numerically based on the Gaussian mixture model is possible
for example by using numerical techniques such as the Savage-Dickey density ratio (Kelter, 2021a;
Wagenmakers et al., 2010; Dickey and Lientz, 1970; Verdinelli and Wasserman, 1995). However, the
focus of explicit hypothesis testing is replaced in the default output of the procedure by estimation of
the effect sizes between groups (or component density parameters) under uncertainty. If hypothesis
testing is needed, the implemented ROPE can be used for rejecting a hypothesis based on interval
hypothesis tests – compare Kelter (2021b), Linde et al. (2020) and Kruschke (2018) – or by using external
packages like bayestestR (Makowski et al., 2019a) in conjunction with the raw samples provided
by bayes.anova. Also, other indices like the probability of direction (Makowski et al., 2019b) or the
MAP-based p-value (Mills, 2018) can be obtained via the package bayestestR (Makowski et al., 2019a)
if hypothesis testing is desired, for an overview see Kelter (2021a). To offer users the freedom of
choice for their preferred statistical evidence measure, only a ROPE-based estimate of the maximum a
posteriori effect size δ is provided in bayesanova.

A small simulation study showed for the case of three-component Gaussian mixtures, that the
provided MCMC algorithm precisely captures the true parameter values. Similar results hold for the
four- or more-component case, as can easily be checked by adapting the provided R code.

In summary, the bayesanova package provides a novel and easy to apply alternative to existing
packages like stats (R Core Team, 2020) or BayesFactor (Morey and Rouder, 2018), which implement
the traditional frequentist ANOVA and Bayesian ANOVA models based on the Bayes factor.

Future plans include to add prior predictive checks and up to 12-component support, allowing
for 2 × 6 Bayesian ANOVAs. Also, nonparametric mixtures could be applied in the case the model
assumptions are violated, but therefore first theoretical results are necessary.
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Appendix

Details on the F-statistic in frequentist ANOVA

After observing the data, the following quantities are calculated: For group j, j = 1, ..., k, Ij experimental

units are observed and the empirical mean mj = 1/Ij ∑
Ij

l=1 yl j and empirical variance s2
j = 1/(Ij −

1)∑
Ij

l=1(yl j − mj)
2 are calculated (data is assumed to be listed in a table where the groups correspond

to the columns). The sum Σi∈Ij yij and the sum of squares Σi∈Ij (yij)
2 are calculated, to partition the

variance into treatment and error sum of squares

SSTreatment :=
k

∑
j=1

Ij(mj − m)2 SSError :=
k

∑
j=1

(Ij − 1)s2
j (16)

SSTotal :=
k

∑
j=1

n

∑
i=1

(yij − m)2 (17)
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where m := 1/k ∑k
j=1 mj. Standard calculus yields that these sums of squares can be calculated as:

SSTreatment :=
k

∑
j=1

(∑i yij)
2

Ij
−

(∑j ∑i yij)
2

I
SSError :=

k

∑
j=1

∑
i

y2
ij − ∑

j

(∑i yij)
2

Ij
(18)

SSTotal :=
k

∑
j=1

∑
i

y2
ij −

(∑j ∑i yij)
2

I
(19)

Using the corresponding degrees of freedom DFTreatment = k − 1, DFError = n − k and DFTotal = n − 1,
the F-statistic is defined as

F =
MSTreatment

MSError
(20)

where

MSTreatment :=
SSTreatment
DFTreatment

MSError :=
SSError
DFError

(21)

using only the quantities defined above. If the F-statistic is larger than the α-quantile for significance
level α, H0 is rejected.
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tvReg: Time-varying Coefficients in
Multi-Equation Regression in R
by Isabel Casas and Rubén Fernández-Casal

Abstract This article explains the usage of R package tvReg, publicly available for download from the
Comprehensive R Archive Network, via its application to economic and finance problems. The six
basic functions in this package cover the kernel estimation of semiparametric panel data, seemingly
unrelated equations, vector autoregressive, impulse response, and linear regression models whose
coefficients may vary with time or any random variable. Moreover, this package provides methods
for the graphical display of results, forecast, prediction, extraction of the residuals and fitted values,
bandwidth selection and nonparametric estimation of the time-varying variance-covariance matrix
of the error term. Applications to risk management, portfolio management, asset management and
monetary policy are used as examples of these functions usage.

1 Introduction

A very popular research area has been brewing in the field of kernel smoothing statistics applied
to linear models with time-varying coefficients. In econometrics, Robinson (1989) was the first to
analyse these models for linear regressions with time-varying coefficients and stationary variables.
Since then, this literature has extended to models with fewer restrictions in the dependence of the
variables to models with time dependence in the error term and to multi-equation models. Although
these models are potentially applicable to a large number of areas, no comprehensive computational
implementation is, to our knowledge, formally available in any of the commercial programming
languages. The package tvReg contains the aforementioned functionality, input and output interface,
and user-friendly documentation.

Parametric multi-equation linear models have increased in popularity in the last decades due to an
increase in access to multiple datasets. Their application extends to, perhaps, every field of quantitative
research. Just to mention some, they are found in biostatistics, finance, economics, business, climate,
linguistics, psychology, engineering and oceanography. Panel linear models (PLM) are widely used
to account for the heterogeneity in the cross-section and time dimensions. Seemingly unrelated
equations (SURE) and vector autoregressive models (VAR) are the extensions of linear regressions and
autoregressive models to the multi-equation framework. Programs with these algorithms are found in
all major programming languages. Particularly in R, the package plm (Croissant and Millo, 2018, 2008)
contains a comprehensive functionality for panel data models. The package systemfit (Henningsen
and Hamann, 2007) allows the estimation of coefficients in systems of linear regressions, both with
equation error terms correlated among equations (SURE) or uncorrelated. Finally, the package vars
(Pfaff, 2008) provides the tools to fit VAR models and impulse response functions (IRF). All these
functions assume that the coefficients are constant. This assumption might not be true when a time
series runs for a long period, and the relationships among variables do change. The package tvReg is
relevant in this case.

In comparison to parametric models, the appeal of nonparametric models is their flexibility and
robustness to functional form misspecification, with spline-based and kernel-based regression methods
being the two main nonparametric estimation techniques, (e.g. Eubank, 1999). However, fully non-
parametric models are not appropriate when many regressors are in play, as their rate of convergence
decreases with the number of regressors, the infamous “curse of dimensionality”. In the case of
cross-section data, a popular alternative to avoid this problem are the generalised additive models
(GAM), introduced by Hastie and Tibshirani (1993). The GAM is a family of semiparametric models
that extends parametric linear models by allowing for non-linear relationships of the explanatory
variables and still retaining the additive structure of the model. In the case of time-series data, the
most suitable alternative to nonparametric models is the linear models whose coefficients change over
time or follow the dynamics of another random variable. This functionality is coded in R, within the
single-equation framework, in packages mgm (Haslbeck and Waldorp, 2020), and MARSS (Holmes
et al., 2012). Package tvReg uses the identical kernel smoothing estimation as package mgm when
using a Gaussian kernel to estimate a VAR model with varying coefficients (TVVAR). However, the
interpretation of their results is different because they are aimed at different audiences. The mgm
focuses in the field of network models, producing network plots to represent relationships between
current variables and their lags. Whereas the tvReg focuses in the field of economics where a direct
interpretation of the TVVAR coefficients is not meaningful and may be done via the time-varying
impulse response function (TVIRF) instead. Models with coefficients varying over time can also be
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expressed in state space form, which assumes that the coefficients change over time in a determined
way for example, as a Brownian motion. These models can be estimated using the Kalman filter or
Bayesian techniques, for instance (Liu and Guo, 2020; Primiceri, 2005). Packages MARSS and bvarsv
(Krueger, 2015) implement this approach based on the Carter and Kohn (1994) algorithm to estimate
the TVVAR. On top of all this and as far as we can tell, the tvReg is the only package containing tools
to estimate time-varying coefficients seemingly unrelated equation (TVSURE) and panel linear models
(TVPLM) in R.

Simply, the main objective of the tvReg is to provide tools to estimate and forecast linear models
with time-varying coefficients in the framework of kernel smoothing estimation, which may be difficult
for the nonspecialised end-user to code. For completion, the tvReg also implements methods for
the time-varying coefficients linear model (TVLM) and the time-varying coefficients autoregressive
(TVAR) model. Often, these can be estimated using packages gam (Hastie, 2022) and mgcv (Wood,
2017), which combine (restricted) marginal likelihood techniques in combination with nonparametric
methodologies. However, the advantage of using the tvReg is that it can handle dependency and any
kind of distribution in the error term because it combines least squares techniques with nonparametric
methodologies. An example of this is shown in Section Standard usage of tvLM.

Summing up, this paper presents a review of the most common time-varying coefficient linear
models studied in the econometrics literature during the last two decades, their estimation using
kernel smoothing techniques, the usage of functions and methods in the package tvReg, and their
latest applications. Along these lines, Table 1 offers a glimpse at the tvReg full functionality, displaying
a summary of its methods, classes and functions.

Function Class Function and Methods for class Based on
tvPLM "tvPLM" tvRE, tvFE, coef, confint, fitted,

forecast, plot, predict, print, resid,
summary

plm::plm

tvSURE "tvsure" tvGLS, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

systemfit::systemfit

tvVAR "tvvar" tvAcoef, tvBcoef, tvIRF, tvOLS, tvPhi,
tvPsi, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

vars::VAR

tvIRF "tvirf" coef, confint, plot, print, summary vars::irf
tvLM "tvlm" tvOLS, bw, coef, confint, fitted,

forecast, plot, predict, print, resid,
summary

stats::lm

tvAR "tvar" tvOLS, bw, coef, confint, fitted,
forecast, plot, predict, print, resid,
summary

stats::ar.ols

Table 1: Structure of the package tvReg.

2 Multi-equation linear models with time-varying coefficients

A multi-equation model formed by a set of linear models is defined when each equation has its own
dependent variable and possible different regressors. Seemingly unrelated equations, panel data
models and vector autoregressive models are included in this category.

Time-varying coefficients SURE

The SURE was proposed by Zellner (1962) and is referred to as the seemingly unrelated equations
model (SURE). The SURE model is useful to exploit the correlation structure between the error terms
of each equation. Suppose that there are N linear regressions of different dependent variables,

Yt = Xtβ(zt) + Ut i = 1, . . . , N t = 1, . . . , T, (1)

where Yt = (y1t . . . yNt)
⊤ with yi = (yi1, . . . , yiT)

⊤ denotes the values over the recorded time period
of the i − th dependent variable. Each equation in (1) may have a different number of exogenous
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variables, pi. The regressors matrix, Xt = diag(x1t . . . xNt) with Xi = (xi1, . . . , xipi ) for equation
i and βzt = (β1(zt)

⊤, ..., βN(zt)
⊤)⊤ is a vector of order P = p1 + p2 + . . . + pN . The error vector,

Ut = (u1t . . . uNt)
⊤, has zero mean and covariance matrix E(UtU⊤

t ) = Σt with elements σii′t.

It is important to differentiate between two types of smoothing variables: 1) zt = τ = t/T is the
rescaled time with τ ∈ [0, 1], and 2) zt is the value at time t of the random variable Z = {zt}T

t=1. In
other words, time-varying coefficients may be defined as unknown functions of time, β(zt) = f (τ),
or as unknown functions of a random variable, β(zt) = f (zt). The estimation of the TVSURE has
been studied by Henderson et al. (2015) when for a random zt and by Orbe et al. (2005) and Casas
et al. (2019) for zt = τ. These estimators are consistent and asymptotically normal under certain
assumptions on the size of the bandwidth, kernel regularity and error moments, and dependency.
Details are left out of this text as can be easily found in the related literature.

The estimation of system (1) may be done separately for each equation as if there is no correlation
in the error term across equations, i.e. system (1) has a total of N different TVLM with possibly N
different bandwidths, bi. In this case, the time-varying coefficients are obtained by combining the
ordinary least squares (OLS) and the local polynomial kernel estimator, which is extensively studied
in Fan and Gijbels (1996). The result is the time-varying OLS denoted by TVOLS herein. Two versions
of this estimator are implemented in tvReg: i) the TVOLS that uses the local constant (lc) kernel
method, also known as the Nadaraya-Watson estimator; and ii) the TVOLS which uses the local linear
(ll) method. Focussing in the single equation i, and assuming that βi(·) is twice differentiable, an

approximation of βi(zt) around z is given by the Taylor rule, βi(zt) ≈ βi(z) + β
(1)
i (z)(zt − z), where

β
(1)
i (z) = dβi(z)/dz is its first derivative. The estimates resolve the following minimisation:

(β̂i(zt), β̂
(1)
i (zt)) = arg min

θ0,θ1

T

∑
t=1

[
yi − X⊤

i θ0 − (zt − z)X⊤
i θ1

]2
Kbi

(zt − z).

Roughly, these methodologies fit a set of weighted local regressions with an optimally chosen window
size. The size of these windows is given by the bandwidth bi, and the weights are given by Kbi

(zt − z) =
b−1

i K( zt−z
bi

), for a kernel function K(·). The local linear estimator general expression is(
β̂i(zt)

β̂
(1)
i (zt)

)
=

(
ST,0(zt) S⊤

T,1(zt)

ST,1(zt) ST,2(zt)

)−1 (
TT,0(zt)
TT,1(zt)

)
(2)

with

ST,s(zt) =
1
T

T

∑
i=1

X⊤
i Xi(zi − zt)

sK
(

zi − zt
bi

)

TT,s(zt) =
1
T

T

∑
i=1

X⊤
i (zi − zt)

sK
(

zi − zt
bi

)
yi

and s = 0, 1, 2. The particular case of the local constant estimator is calculated by β̂i,t = S−1
T,0(zt)TT,0(zt)

and it is only necessary that βi(·) has one derivative.

A second option is to use the correlation matrix of the error term in the estimation of system
(1). This is called the time-varying generalised least squares (TVGLS) estimation. Its mathematical
expression is the same as (2) with the following matrix components:

ST,s(zt) =
1
T

T

∑
i=1

X⊤
i K1/2

B,it Σ−1
i K1/2

B,it Xi(Zi − zt)
s

TT,s(zt) =
1
T

T

∑
i=1

X⊤
i K1/2

B,it Σ−1
i K1/2

B,it Yi(Zi − zt)
s, (3)

where KB,it = diag(Kb1,it, ..., KbN ,it) and Kbi ,it = (Tbi)
−1K((Zi − zt)/(Tbi)) is the matrix of weights

introducing smoothness according to the vector of bandwidths, B = (b1, . . . , bN)⊤. Note that this
minimisation problem accounts for the time-varying structure of the variance-covariance matrix of the
errors, Σt.

The TVGLS assumes that the error variance-covariance matrix is known. In practice, this is unlikely
and it must be estimated, resulting in the Feasible TVGLS estimator (TVFGLS). This estimator consists
of two steps:

Step 1 Estimate Σt based on the residuals of a line by line estimation (i.e, when Σt is the identity
matrix). If Σt is known to be constant, the sample variance-covariance matrix from the residuals
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is a consistent estimator of it. If Σt changes over time, a nonparametric estimator such the
one explained in Section Estimating a time-varying variance-covariance matrix is a consistent
alternative.

Step 2 Estimate the coefficients of the TVSURE by plugging in Σ̂t from step 1 into Equation (3).

To ensure a good estimation of Σt, the iterative TVFLGS may be used. First, do steps 1-2 as above to
obtain the residuals from step 2, and repeat step 2 until the estimates of Σt converge or the maximum
number of iterations is reached.

Time-varying coefficients panel data models

Panel data linear models (PLM) are a particular case of SURE models with the same variables for each
equation but measured for different cross-section units, such as countries, and for different points
in time. All equations have the same coefficients apart from the intercept which can be different
for different cross-sections. Therefore, the data from all cross-sections can be pooled together. The
individual effects, αi, account for the heterogeneity embedded in the cross-section dimension. This
package only take into account balanced panel datasets, i.e. with the same number of data points for
each cross-section unit.

Coefficient dynamics can be added to classical PLM models using a time-varying coefficients panel
data model, TVPLM. Recent developments in this kind of models can be found in Sun et al. (2009);
Dong, C. Jiti Gao, J. and Peng, B. (2015); Casas et al. (2021); Dong et al. (2021) among others, with
general model,

yit = αi + x⊤it β(zt) + uit i = 1, . . . , N, t = 1, . . . , T. (4)

Note that the smoothing variable only changes in the time dimension, not like in the SURE model
where it changed over i and t. The three estimators of Equation (4) in the tvReg are:

1. The time-varying pooled ordinary least squares (TVPOLS) has the same expression than estima-
tor (2) with the following terms:

ST,s(zt) =X⊤K∗
b,tX(Z − zt)

s

TT,s(zt) =X⊤K∗
b,tY(Z − zt)

s, (5)

where K∗
b,t = IN ⊗ diag{Kb(z1 − zt), . . . , Kb(zT − zt)}. Note that it is not possible to ignore the

panel structure in the semiparametric model because the coefficients change over time. The
consistency and asymptotic normality of this estimator needs the classical assumptions about
the kernel and the regularity of the coefficients, available in the related literature.

2. The time-varying random effects (TVRE) estimator is also given by Equation (5) with a non-
identity Σ:

ST,s(zt) =X⊤K∗1/2
b,t Σ−1

t K∗1/2
b,t X(Z − zt)

s

TT,s(zt) =K∗1/2
b,t Σ−1

t K∗1/2
b,t Y(Z − zt)

s. (6)

Note that this is a simpler case of (3) with the same bandwidth for all equations. The variance-
covariance matrix is estimated in the same way using the residuals from the TVPOLS and it
may be an iterative algorithm until convergence of the coefficients.

3. The time-varying fixed effects (TVFE) estimator. Unfortunately, the transformation for the
within estimation does not work in the time-varying coefficients model because the coefficients
depend on time (Sun et al., 2009, explain the issue in detail). Therefore, it is necessary to make
the assumption that ∑N

i=1 αi = 0 for identification. The terms in the TVFE estimator are:

ST,s(zt) =X⊤Wb,tX(Z − zt)
s

TT,s(zt) =X⊤Wb,tY(Z − zt)
s, (7)

where Wb,t = D⊤
t K∗

b,tDt, Dt = INT − D(D⊤K∗
b,tD)−1D⊤K∗

b,t, D = (−1N−1, IN−1)
⊤ ⊗ 1T , and 1k

is the unity vector of length k. The fixed effects are given by, α̂ = (D⊤K∗
b,tD)−1D⊤K∗

b,t(Y−X⊤β).
Finally, α̂i =

1
T ∑T

t=1 αit for i = 2, . . . , N.

Time-varying coefficient VAR model

Macroeconomic econometrics experienced a revolution when Sims (1980) presented the vector au-
toregressive (VAR) model: a new way of summarising relationships among several variables while
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getting around the problem of endogeneity of structural models. The VAR model has lagged values
of the dependent variable, yt, as regressors to which further exogenous variables can be added as
regressors. Unless the model is constrained, all variables are the same for every equation, which
simplifies the algebra. The model coefficients and variance-covariance matrix may be estimated by
maximum likelihood, OLS or GLS. VAR coefficients and the variance-covariance matrix do not have
a direct economic interpretation. However, it is possible to use them to recover a structural model
by imposing a number of restrictions and so analyse the transmission of a shock, for example, a new
monetary policy, to the macroeconomy using the impulse response function (IRF). Lütkepohl (2005)
dive into the theoretical properties of these models in detail.

The TVVAR(p) is an N-dimensional system of time-varying autoregressive processes of order p
like

Yt = A0,t + A1,tYt−1 + . . . + Ap,tYt−p + Ut, t = 1, 2, . . . , T. (8)

In Equation (8), Yt = (y1t, . . . , yNt)
⊤ and coefficient matrices at each point in time Aj,t = (aj

1t, . . . , aj
Nt),

j = 1, . . . , p are of dimension N × N. Then, notation Aj,t means that the elements of this matrix
are unknown functions of either the rescaled time value, τ, or of a random variable at time t. The
innovation, Ut = (u1t, . . . , uNt), is an N-dimensional identically distributed random variable with
E(Ut) = 0 and possibly a time-varying positive definite variance-covariance matrix, E(UtU⊤

s ) =
Σt, for t = s, E(UtU⊤

s ) = 0 otherwise. Here, matrix Aj,t is a function of τ, then process (8) is locally
stationary in the sense of Dahlhaus (1997), which occurs when the functions in matrices Aj,t are
constant or change smoothly over time. Then, process (8) at time t has a well defined unique solution
given by the Wold representation,

ȳt =
∞

∑
j=0

Φj,tUt−j, (9)

such that |Yt − ȳt| → 0 almost surely. Matrix Φ0,t = IN and matrix Φs,t = ∑s
j=1 Φs−j,t Aj,t for horizons

s = 1, 2, . . . As for the constant model, Φs,t are the time-varying coefficient matrices of the impulse
response function (TVIRF). Its element (t, i, j) may be interpreted as the expected response of yi,t+s to
an exogenous shock of yj,t ceteris paribus lags of yt when the innovations are orthogonal. Otherwise,
an orthogonal TVIRF can be found as Ψj,t = Φj,tPt for Σt = PtP⊤

t , the Cholesky decomposition of Σt
at time t. More theoretical details in Yan et al. (2021).

In the macroeconomic literature, the Bayesian estimation of process (8) has attracted a lot of
attention in recent years driven by results in Cogley and Sargent (2005); Primiceri (2005) and Kapetanios
et al. (2012). In their approach, the coefficients are assumed to follow a random walk. Recently,
Kapetanios et al. (2017) studied the inference of the local constant estimator of a TVVAR(p) for large
sets, and they found an increase in the forecast accuracy in comparison to the forecast accuracy of the
VAR(p).

3 Standard usage of tvSURE

The main argument of this function is a list of formulas, one for each equation. The formula follows the
format of formula in the package systemfit, which implements estimators of parametric multi-equation
models with constant coefficients. The tvSURE wraps the tvOLS and tvGLS methods to estimate the
coefficients of system (1). The tvOLS method is used by default, calculating estimates for each equation
independently with different bandwidths, bw. The user is able to enter a set of bandwidths or a single
bandwidth to be used in the estimation instead. The tvGLS method has argument Sigma where a
known variance-covariance matrix of the error can be entered in Equation (3). Otherwise, if Sigma
= NULL, the variance-covariance matrix Σt is estimated using function tvCov, which is discussed in
Section Estimating a time-varying variance-covariance matrix.

In addition to formula, function tvSURE has other arguments to control and choose the desired
estimation procedure:

Smoothing random variable
All methods assume by default that the coefficients are unknown functions of τ = t/T and
therefore argument z is set to NULL. The user can modify this setting by entering a numeric
vector in argument z with the values of the random smoothing variable over the corresponding
time period. Note that the current version only allows one single smoothing random variable, z,
common for all equations; and balanced panels.

Bandwidth
When argument bw is set to NULL, it is automatically selected by leave-one-out cross-validation.
It is possible to select it by leave-k-out cross-validation (Chu and Marron, 1991) by setting
argument cv.block = k (k=0 by default). This minimisation can be slow for large datasets, and
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it should be avoided if the user knows an appropriate value of the bandwidth for the required
problem.

Kernel type
The three choices for this argument are tkernel = "Triweight" (default), tkernel = "Epa" and
tkernel = "Gaussian". The first two options refer to the Triweight and Epanechnikov kernels,
which are compact in [-1, 1]. The authors recommend the use of either of those two instead of
the Gaussian kernel which, in general, requires more calculations.

Degree of local polynomial
The default estimation methodology is the Nadaraya-Watson or local constant, which is set as
(est = "lc") and it fits a constant at each interval defined by the bandwidth. The argument est
= "ll" can be chosen to perform a local linear estimation (i.e., to fit a polynomial of order 1).

Singular fit
The tvOLS method used in the estimation wraps the lm.wfit method, which at default allows
the fitting of a low-rank model, and the estimation coefficients can be NAs. The user can change
the argument singular.ok to FALSE, so that the program stops in case of a low-rank model.

The user can restrict certain coefficients in the TVSURE model using arguments R and r. Note
that the restriction is done by setting those coefficients to a constant. Furthermore, argument method
defines the type of estimator to be used. The possible choices in argument method are:

1. "tvOLS" for a line by line estimation, i.e, with Σ the identity matrix.

2. "tvGLS" to estimate the coefficients of the system using Σt, for which the user must enter it in
argument Sigma. Argument Sigma takes either a symmetric matrix or an array. If Sigma is a
matrix (constant over time) then it must have dimensions neq × neq, where neq is the number of
equations in the system. If Σt changes with time, then argument Sigma is an array of dimension
neq × neq × obs, where the last dimension measures the number of time observations. Note that
if the user enters a diagonal variance-covariance matrix with diagonal values different from
one, then a time-varying weighted least squares is performed. If method ="tvGLS" is entered
but Sigma = NULL, then tvSURE is fitted as if method = "tvOLS" and a warning is issued.

3. "tvFGLS" to estimate the coefficients of the system using an estimate of Σt. By default, only one
iteration is performed in the estimation, unless argument control indicates otherwise. The user
can choose the maximum number of iterations or the level of tolerance in the estimation of Σt.
See example the below for details.

The package systemfit contains the Kmenta dataset, which was first described in Kmenta (1986),
to show the usage of the function systemfit to fit SURE models. This example has two equations:
i) a demand equation, which explains how food consumption per capita, consump, depends on the
ratio of food price, price; and disposable income, income; and ii) a supply equation, which shows
how consumption depends on price, ratio prices received by farmers to general consumer prices,
farmPrice; and a possible time trend, trend. Mathematically, this SURE model is

consumpt =β10 + β11 pricet + β12incomet + u1t

consumpt =β20 + β21 pricet + β22 f armPricet + β23t + u2t. (10)

The code below defines the system of equations using two formula calls which are put into a "list".

> data("Kmenta", package = "systemfit")
> eqDemand <- consump ~ price + income
> eqSupply <- consump ~ price + farmPrice + trend
> system <- list(demand = eqDemand, supply = eqSupply)

Two parametric models are fitted to the data using the function systemfit: one assuming that
there is no correlation of the errors setting (the default), OLS.fit below; and another one assuming the
existence of correlation in the system error term setting method = "SUR", FGLS1.fit below. Arguing
that the coefficients in (10) may change over time, the corresponding TVSUREs are fitted by using the
the function tvSURE with the default in the argument method and by method = "tvFGLS", respectively.
They are denoted by TVOLS.fit and TVFGLS1.fit.

> OLS.fit <- systemfit::systemfit(system, data = Kmenta)
> FGLS1.fit <- systemfit::systemfit(system, data = Kmenta, method = "SUR")
> TVOLS.fit <- tvSURE(system, data = Kmenta)
> TVFGLS1.fit <- tvSURE(system, data = Kmenta, method = "tvFGLS")

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 85

In the previous chunk, the FGLS and TVFGLS estimators use only one iteration. However, the
user can choose the iterative FGLS and the iterative TVFGLS models, which estimate the coefficients
iteratively until convergence. The convergence level can be chosen with the argument tol (1e-05 by
default) and the argument maxiter with the maximum number of iterations. The following chunk
illustrates its usage:

> FGLS2.fit <- systemfit::systemfit(system, data = Kmenta, method = "SUR",
+ maxiter = 100)
> TVFGLS2.fit <- tvSURE(system, data = Kmenta, method = "tvFGLS",
+ control = list(tol = 0.001, maxiter = 100))

Some of the coefficients can be restricted to have a certain constant value in tvSURE. This can aid
statistical inference to test certain conditions. See an example of this below. Matrix R has as many
rows as restrictions in r and as many columns as regressors in the model. In this case, Model (10) has
7 coefficients which are ordered as they appear in the list of formulas. Note that the time-varying
coefficient of the variable trend is redundant when an intercept is included in the second equation
of the TVSURE. Therefore, we want to restrict its coefficient to zero. For illustration, we also impose
β11,t − β21,t = 0.5:

> Rrestr <- matrix(0, 2, 7)
> Rrestr[1, 7] <- 1; Rrestr[2, 2] <- 1; Rrestr[2, 5] <- -1
> qrestr <- c(0, 0.5)
> TVFGLS.rest <- tvSURE(system, data = Kmenta, method = "tvFGLS",
+ R = Rrestr, r = qrestr,
+ bw = TVFGLS1.fit$bw, bw.cov = TVFGLS1.fit$bw.cov)

Application to asset management

Several studies have argued that the three-factor model by Fama and French (1993) does not explain
the whole variation in average returns. In this line, Fama and French (2015) added two new factors
that measure the differences in profitability (robust and weak) and investment (conservative and
aggressive), creating their five-factor model (FF5F). This model has been applied in Fama and French
(2017) to analyse the international markets. A time-varying coefficients version of the FF5F has been
studied in Casas et al. (2019), whose dataset is included in the tvReg under the name of FF5F. The
TVFF5F model is

Rit − RFit =ait + bit (RMit − RFit) + sit SMBit + hit HMLit

+ rit RMWit + cit CMAit + uit, (11)

where Rit refers to the price return of the asset of certain portfolio for market i at time t, RFt is the
risk free return rate, and RMt represents the total market portfolio return. Therefore, Rit − RFit is the
expected excess return and RMit − RFit is the excess return on the market portfolio. The other factors,
SMBt stands for “small minus big” and represents the size premium, HMLt stands for “high minus
low” and represents the value premium, RMWt is a profitability factor, and CMAt accounts for the
investment capabilities of the company. Finally, the error term structure is

E(uitujs) =


σiit = σ2

it i = j, t = s
σijt i ̸= j, t = s
0 t ̸= s.

The FF5F dataset has been downloaded from the Kenneth R. French (2016) data library. It contains
the five factors from four different international markets: North America (NA), Japan (JP), Europe
(EU), and Asia Pacific (AP). For the dependent variable, the excess returns of portfolios formed on size
and book-to-market have been selected. The period runs from July 1990 to August 2016 and it has a
monthly frequency. The data contains the Small/Low, Small/High, Big/Low and Big/High portfolios.
The factors in the TVFF5F model explain the variation in returns well if the intercept is statistically
zero. The lines of code below illustrate how to fit a TVSURE to the Small/Low portfolio.

> data("FF5F")
> eqNA <- NA.SMALL.LoBM - NA.RF ~ NA.Mkt.RF + NA.SMB + NA.HML + NA.RMW + NA.CMA
> eqJP <- JP.SMALL.LoBM - JP.RF ~ JP.Mkt.RF + JP.SMB + JP.HML + JP.RMW + JP.CMA
> eqAP <- AP.SMALL.LoBM - AP.RF ~ AP.Mkt.RF + AP.SMB + AP.HML + AP.RMW + AP.CMA
> eqEU <- EU.SMALL.LoBM - EU.RF ~ EU.Mkt.RF + EU.SMB + EU.HML + EU.RMW + EU.CMA
> system2 <- list(NorthA = eqNA, JP = eqJP, AP = eqAP, EU = eqEU)
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> TVFF5F <- tvSURE(system2, data = FF5F, method = "tvFGLS",
+ bw = c(0.56, 0.27, 0.43, 0.18), bw.cov = 0.12)

The package tvReg also includes the functionality to compute confidence intervals for the coef-
ficients of class attributes "tvlm", "tvar", "tvplm", "tvsure" and "tvirf" by extending the confint
method. The algorithm in Fan and Zhang (2000) and Chen et al. (2017) to calculate bootstrap con-
fidence intervals has been adapted for all these class attributes. Argument level is set to 0.95 (95%
confidence interval) by default. Argument runs (100 by default) is the number of resamples used
in the bootstrapping calculation. Note that the calculation using runs = 100 can take long, so we
suggest to try a small value in runs first to get an initial intuition of the results. Because coefficients are
time-varying, only wild bootstrap residual resampling is implemented. Two choices of wildbootstrap
are allowed in argument tboot: the default one proposed in Mammen (1993) (tboot = "wild"); and
the standard normal (tboot = "wild2").

In the backend code, coefficient estimates from all replications are stored in the BOOT variable. In
this way, calculations are not done again if the user chooses a different level for the same object.
In the chunk below, the confint method calculates the 90% confidence interval of the object TVFF5F.
Posteriorly, the 95% interval is calculated quickly because the resample calculations in the first interval
are re-used for the second.Thus, the 90% confidence interval calculation takes around 318 seconds
with a 2.2 GHz Intel Core i7 processor and the posterior 95% confidence interval takes only around 0.7
seconds.

> TVFF5F.90 <- confint(TVFF5F, level = 0.90)
> TVFF5F.95 <- confint(TVFF5F.90)

The plot method is implemented for each of the six class attributes in tvReg. For example, the
95% confidence intervals of the intercept for the North American, Japanese, Asia Pacific and European
markets Figure 1 are with plot statement below, that produces four independent plots of the first
variable (the intercept in this case) in each equation due to argument vars = 1.

> plot(TVFF5F.95, vars = 1)

The user can also choose to plot the coefficients of several variables and/or equations. Plots will
be grouped by equation, with a maximum of three variables per plot. The piece of code below show
how to plot the coefficients of the second and third variables from the Japan market equation, which
results can be seen in Figure 2.

> plot(TVFF5F.95, vars = c(2, 3), eqs = 2)

4 Standard usage of tvPLM

The tvPLM method is inspired by the plm method from the package plm. It converts data into an
object of the class attribute "pdata.frame" using argument index to define the cross-section and time
dimensions. If index = NULL (default), the two first columns of data define the dimensions. The tvPLM
wraps the tvRE and tvFE methods to estimate the coefficients of time-varying panel data models.

The user can provide additional optional arguments to modify the default estimation. See section
2.3 for details on arguments z, bw, est and tkernel. Furthermore, argument method defines the
estimator used. The possible choices based on package plm choices are: "pooling" (default), "random"
and "within".

Application to health policy

The income elasticity of healthcare expenditure is defined as the percentage change in healthcare
expenditure in response to the percentage change in income per capita. If this elasticity is greater
than one, then healthcare expenditure grows faster than income, as luxury goods do, and is driven
by market forces alone. The heterogeneity of health systems among countries and time periods
have motivated the use of panel data models, for example in Gerdtham et al. (1992) who use a FE
model. Recently, Casas et al. (2021) have investigated the problem from the time-varying panel models
perspective using the TVFE estimation. In addition to the income per capita, measured by the log
GDP, the authors use the proportion of population over 65 years old, the proportion of population
under 15 years old and the share of public funding of healthcare. The income elasticity estimate with a
FE implemented in the plm is greater than 1, a counter-intuitive result. This issue is resolved using
the TVFE implemented in the tvReg. The code below estimates coefficients with the parametric and
semiparametric models:
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Figure 1: Intercept estimates of a Small/Low portfolio in the four markets (left to right, top to bottom:
North America, Japan, Asia Pacific and Europe). The solid lines indicate the estimates, the grey bands
are their 95% bootstrap confidence intervals and the red dashed lines indicate zero. Only the Asia
Pacific market intercepts are statistically different from zero during a large period, implying that the
FF5F does not explain excess returns well for the Asia Pacific market.

> data("OECD")
> elast.fe <- plm::plm(lhe ~ lgdp + pop65 + pop14 + public, data = OECD,
+ index = c("country", "year"), model = "within")
> elast.tvfe <- tvPLM (lhe ~ lgdp + pop65 + pop14 + public, data = OECD,
+ index = c("country", "year"), method = "within",
+ bw = 0.67)
> elast.fe <- confint(elast.fe)
> elast.tvfe <- confint(elast.tvfe)

Figure 3 shows the elasticity estimates using the FE and TVFE estimators. The constant coefficients
model (dashed line) suggests that healthcare is a luxury good (over 1), while the time-varying
coefficients (solid line) model suggests it is a value under 0.8.

5 Standard usage of tvVAR and tvIRF

A TVVAR(p) model is a system of time-varying autoregressive equations of order p. The dependent
variable, y, is of the class attribute "matrix" or "data.frame" with as many columns as equations.
Regressors are the same for all equations and they contain an intercept if the argument type = "const"
(default) or not if type = "none"; lagged values of y; and other exogenous variables in exogen.
Econometrically, the tvOLS method is called to calculate the estimates for each equation independently
using one bandwidth per equation. The user can choose between automatic bandwidth selection; or
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Figure 2: Coefficient estimates of excess returns on the market portfolio (JP.Mkt.RF) and JP.SMB factors
for a Small/Low portfolio in the Japan market. The solid line indicates the estimates and the grey
bands are their 95% bootstrap confidence intervals. It seems that the effect of the market return over
the asset return increases slightly over time, while the effect of the size premium over the asset return
has an inverted U shape over the time period.
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Figure 3: Comparison of income elasticity of healthcare expenditure in OECD countries. The dashed
line with a dark grey band corresponds to the FE estimate and its 95% bootstrap confidence interval,
while the solid line with a light band corresponds to the TVFE estimates and their 95% confidence
intervals. There is a clear difference in the elasticity estimates of the two models.

entering a one value in bw, meaning that all equations will be estimated with the same bandwidth; or
a vector of bandwidths, one for each equation. The tvVAR returns a list of the class attribute tvvar,
which can be used to estimate the TVIRF model with the function tvIRF.

Application to monetary policy

The assessment and forecast of the effects of monetary policy on macroeconomic variables, such as
inflation, economic output and employment is commonly modelled using the econometric framework
of VAR and interpreted by the IRF. In recent years, scholars of macroeconometrics have searched
intensely for a way to include time variation in the coefficients and covariance matrix of the VAR
model. The reason for this is that the macroeconomic climate evolves over time and effects of monetary
policy must be identified locally rather than globally. In the Bayesian framework, Primiceri (2005) used
the Carter and Kohn (1994) algorithm to fit the TVP-VAR to this monetary policy problem. Results of
the latter can be replicated with the functions in the package bvarsv and compared with results in the
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tvReg that fits the following TVVAR(4):

inft = a1
t +

4

∑
i=1

b1
it inft−i +

4

∑
i=1

c1
it unet−i +

4

∑
i=1

d1
it tbit−i + u1

t

unet = a2
t +

4

∑
i=1

b2
it inft−i +

4

∑
i=1

c2
it unet−i +

4

∑
i=1

d2
it tbit−i + u2

t

tbit = a3
t +

4

∑
i=1

b3
it inft−i +

4

∑
i=1

c3
it unet−i +

4

∑
i=1

d3
it tbit−i + u3

t .

Central banks commonly regulate the money supply by changing the interest rates to keep a stable
inflation growth. The R code below uses macroeconomic data from the United States, exactly the
one used in Primiceri (2005), with the following three variables: inflation rate (inf), unemployment
rate (une) and the three months treasury bill interest rate (tbi). For illustration, a VAR(4) model is
estimated using the function VAR from the package vars, a TVVAR(4) model is estimated using the
function tvVAR from the package tvReg and a TVP-VAR(4) model is estimated using the function
bvar.sv.tvp from the package bvarsv. Furthermore, their corresponding impulse response functions
with horizon 20 are calculated to forecast how the inflation responds to a positive shock in interest
rates. The TVVAR(4) can also be estimated with function tvmvar from R package mgm, which will give
the same coefficient estimates than the tvVAR for the Gaussian kernel and same bandwidth. However,
package mgm does not have an impulse response function and, for this reason, it is left out of the
example.

> data(usmacro, package = "bvarsv")
> VAR.usmacro <- vars::VAR(usmacro, p = 4, type = "const")
> TVVAR.usmacro <- tvVAR(usmacro, p = 4, bw = c(1.14, 20, 20), type = "const")
> TVPVAR.usmacro <- bvarsv::bvar.sv.tvp(usmacro, p = 4, pdrift = TRUE, nrep = 1000,
+ nburn = 1000, save.parameters = TRUE)

The user can provide additional optional arguments to modify the default estimation. See Section
Standard usage of tvSURE to understand the usage of arguments bw, tkernel, est and singular.ok.
In addition, the function tvVAR has the following arguments:

Number of lags
The number of lags is given by the model order set in the argument p.

Exogen variables
Other exogenous variables can be included in the model using the argument exogen, which
accepts a vector or a matrix with the same number of rows as the argument y.

Type
The default model contains an intercept (i.e., it has a mean different from zero). The user can set
argument type = "none", so the model has mean zero.

The variance-covariance matrix from the residuals of a TVVAR(p) can be used to calculate the
orthogonal TVIRF. The plot method for object of class attribute "tvvar" displays as many plots as
equations, each plot with the fitted and residuals values as it is shown in Figure 4 obtained with:

> plot(TVVAR.usmacro)

Figure 4 shows the residuals of the inflation equation that has a mean close to zero and the fitted
values are fitting the observed values closely.

Function tvIRF estimates the TVIRF with main argument, x, which is an object of class attribute
"tvvar" returned by the function tvVAR. The user can provide additional optional arguments to modify
the default estimation as explained below.

Impulse and response variables
The user has the option to pick a subset of impulse variables and/or response variables using
arguments impulse and response.

Horizon
The horizon of the TVIRF coefficients can be chosen by the user with argument n.ahead, the
default is 10.

Orthogonal TVIRF
The orthogonalised impulse response function is computed by default (ortho = TRUE). In the
orthogonal case, the estimation of the variance-covariance matrix of the errors is estimated as
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Figure 4: Returns and fitted values of object TVVAR.usmacro for the inflation equation. The dots in the
top plot represent the observed values and the red line represents the fitted values, while the black
line in the bottom plot represents the returns of the estimation. The model fits the observed values
well and the returns appear to have zero mean and constant variance.

time-varying (ortho.cov = "tv") by default (see Section Estimating a time-varying variance-
covariance matrix for theoretical details). Note that the user can enter a value of the bandwidth
for the variance-covariance matrix estimation in bw.cov. It is possible to use a constant variance-
covariance matrix by setting ortho.cov = "const".

Cumulative TVIRF
If the user desires to obtain the cumulative TVIRF values, then argument cumulative must be
set to TRUE.

Following the previous example, the lines of code below estimate the IRF using the package vars,
the TVP-IRF using the package bvarsv and the TVIRF using the package tvReg.

> IRF.usmacro <- vars::irf(VAR.usmacro, impulse = "tbi", response = "inf", n.ahead = 20)
> TVIRF.usmacro <- tvIRF(TVVAR.usmacro, impulse = "tbi", response = "inf", n.ahead = 20)
> TVPIRF.usmacro <- bvarsv::impulse.responses(TVPVAR.usmacro, impulse.variable = 3,
+ response.variable = 1, draw.plot = FALSE)

A comparison of impulse response functions from the three estimations is plotted in Figure 5,
whose R code is shown below:

> irf1 <- IRF.usmacro$irf[["tbi"]]
> irf2 <- TVIRF.usmacro$irf[["tbi"]]
> irf3 <- TVPIRF.usmacro$irf
> ylim <- range(irf1, irf2[150,,], irf3[50,])
> plot(1:20, irf1[-1], ylim = ylim, main = "Impulse variable: tbi from 1990Q2",
+ xlab ="horizon", ylab ="inf", type ="l", lwd = 2)
> lines(1:20, irf2[150,,-1], lty = 2, lwd = 2)
> lines(1:20, irf3[50,], lty = 3, lwd = 2)

Figure 5 displays the IRF, the TVIRF and the TVP-IRF (the two latter at time 150 in our database,
which corresponds to the second quarter of 1990) for horizons 1 to 20. The IRF and TVIRF follow a
similar pattern: a positive shock of one unit in the short-term interest rates (tbi) during 1990Q2 results
in an initial drop in inflation during the first three months, followed by an increase for two or three
months and finally in a steady decrease until it plateaus one year after. The left plot shows an increase
in inflation during the first three months and a drop after.

The confint method is also implemented for the class attribute "tvirf". Remember that the
TVIRF model contains one impulse response function for each data time record. So, the full plot of
TVIRF would have as many lines as the number of rows in the dataset. Instead, the plot method
displays only one line by default, the mean value of all those impulse response functions and it issues
a warning. The user can enter one or several values into argument obs.index to plot the IRF at the
desire point(s) in time.
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Figure 5: Estimated response of inflation (inf) to an increase in interest rates (tbi) of one unit during
1990Q2.The dashed line correspond to the IRF estimates, the solid line to the TVIRF and the dotted
line to the Bayesian estimates. It appears that the Bayesian estimates are very different from those of
the other two models.

6 Estimating a time-varying variance-covariance matrix

The time-varying variance-covariance matrix of two or more series is estimated nonparametrically in
tvReg. Given a random process yi = (yi1, . . . , yiT)

⊤, such that E(yit) = 0 and E(yityi′t′ ) = σii′t if t = t′

and zero otherwise. Thus, the variance-covariance matrix for time t is denoted by Σt with elements
σii′ ,t with 1 ≤ i, i′ ≤ N. Given that Σt is locally stationary, its local linear estimator is defined by

vech(Σ̃τ) =
T

∑
t=1

vech(y⊤t yt)Kh(t − τ)
s2 − s1 (τ − t)

s0s2 − s2
1

(12)

where sj = ∑T
t=1(τ − t)jKb(τ − t) for j = 0, 1, 2. As shown previously, Kb(·) is a symmetric kernel

function heavily concentrated around the origin, τ = t/T is the focal point and b is the bandwidth
parameter. Note that a single bandwidth is used for all co-movements, which ensures that Σ̃τ is
positive definite.

The user must be aware that the local linear estimator can return non-positive definite matrices for
small samples. Although the local constant estimator, calculated when s1 = s2 = 1 in (12), does not
have as good asymptotic properties in the boundaries as the local linear estimator, it always provides
positive definite matrices, which is a desirable property of an estimator of a variance-covariance matrix.
Therefore, it is the default estimator in the function tvCov.

The function tvCov is called by the function tvIRF to calculate the orthogonal TVIRF, and by the
function tvSURE for method = "tvFGLS" to estimate the variance-covariance matrix of the error term.
The function tvCov can generally be used to estimate the time-varying covariance matrix of any two
or more series.

Application to portfolio management

Aslanidis and Casas (2013) consider a portfolio of daily US dollar exchange rates of the Australian
dollar (AUS), Swiss franc (CHF), euro (EUR), British pound (GBP), South African rand (RAND),
Brazilian real (REALB) and Japanese yen (YEN), over the period from January 6, 1999 until May 7, 2010
(T = 2855 observations). This dataset contains the standarised rates after “devolatilisation”; i.e., after
standarising the rates using the GARCH(1,1) estimates of the volatility and it is available in the tvReg
under the names of CEES. A portfolio consisting of these currencies is well diversified containing
some safe haven currencies, active and liquid currencies and currencies that perform well in times of
high interest rates. The estimation of the correlation matrix among these currencies is essential for
portfolio management. The model is

rp,t =ω⊤
t rt

hp,t =ω⊤
t Htωt
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where rp,t and hp,t are the return and variance of the portfolio at time t. Variable ωt is a vector with
the weight of each currency in the portfolio strategy at time t. The portfolio variance-covariance
matrix is denoted by Ht, and it may vary with time for a dynamic investment strategy. This matrix
can be estimated using the function tvCov and then used in risk management, for example to calculate
the Value-at-risk, denoted by VaR in the financial literature. The VaR, not be confused with the
VAR, measures the level of financial risk of a portfolio, asset or firm. The VaR of an asset X, with
distribution function FX , at the confidence level α is defined as VaRα = inf{x : FX(x) > α}. Commonly,
the distribution function of X is assumed to be Gaussian with unknown variance. In a portfolio
framework, the variance-covariance matrix is estimated to calculate the VaR of a portfolio together
with the portfolio weights (omega in the code below). The portfolio weights are the percentage of the
total portfolio investment in each asset and can be chosen to be constant or changing over time. In the
code below, weights are calculated by minimum variance at each point in time. The estimated VaR of
this example portfolio is shown in Figure 6.

> data(CEES)
> VaR <- numeric(nrow(CEES))
> Ht <- tvCov(CEES[, -1], bw = 0.12)
> e <- rep (1, ncol(CEES)-1)
> for (t in 1:nrow(CEES)){
+ omega <- solve(Ht[,,t])%*%e/((t(e)%*%solve(Ht[,,t])%*%e)[1])
+ VaR[t] <- abs(qnorm(0.05))*sqrt(max(t(omega)%*%Ht[,,t]%*%omega,0))
+ }
> plot(as.Date(CEES[, "Date"]), VaR, type ="l", xlab = "year",
+ ylab = expression(VaR[t]), main="VaR of CEES over time")

2000 2002 2004 2006 2008 2010
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1.
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year
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Figure 6: Dynamics of the Value-at-risk of the CEES exchange rates portfolio over time. The solid line
represents the VaR. It appears that the risk of potential financial losses of this portfolio increased up to
year 2005, decreasing then until 2008 and turn up again afterwards.

7 Single-equation linear models with time-varying coefficients

A varying coefficients linear model (TVLM) is generally expressed by

yt = x⊤t β(zt) + ut, t = 1, . . . , T, (13)

where yt is the response or dependent variable, xt = (x1t, x2t, . . . , xdt)
⊤ is a vector of regressors at

time t, β(zt) is the vector of coefficients at time t and ut is the error term which satisfies E(ut|xt) = 0
and E(u2

t |xt) = σ2. There are not enough degrees of freedom in the TVLM for a meaningful OLS
estimation, but it may be estimated with the TVOLS displayed in Equation 2. The particular case of
xt = (yt−1, yt−2, . . . , yt−p) corresponds to the time-varying autoregressive model, TVAR(p), which is
also estimated with the TVOLS.

The case of zt = τ = t/T was firstly studied in Robinson (1989) for stationary processes and
generalised to nonstationary processes and correlated errors by Chang and Martinez-Chombo (2003)
and Cai (2007) among others. Recently, Chen et al. (2017) apply it to the Heterogeneous Auto-
Regressive (HAR) model of Corsi (2009) for the realized volatility of S&P 500 index returns. It is a very
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flexible approach, but forecasts are not consistent because there is no information from the dependent
variable at time T + 1. On the other hand, the case of a random zt has been studied for iid or stationary
processes by Hastie and Tibshirani (1993) and Cai et al. (2000); and nonstationary regressors or/and
nonstationary zt have been studied by Chang and Martinez-Chombo (2003), Cai et al. (2009), Zhang
and Wu (2012), Sun et al. (2013) and Gao and Phillips (2013). Das (2005) and Xiao (2009) have used the
approach for instrumental variables and cointegration. In summary, this estimator is consistent and
asymptotically normal for several types of dependency of {(xt, zt, ut)}.

8 Standard usage of tvLM

The function tvLM fits a TVLM using the tvOLS method. The tvLM follows the standards of the function
lm with main arguments formula and data. The only mandatory argument is formula, which should
be a single formula for a single-equation model. This arguments follows the standard regression
formula in R. The function tvLM returns an object of the class attribute tvlm. This model is in some
cases a GAM-type model which is implemented in the comprehensive and well-established mgcv
package. The mgcv uses a methodology different from kernel smoothing to estimate the varying
coefficients, involving splines and quasi-maximum likelihood estimation. The advantage of using
kernel smoothing techniques to estimate the TVLM is that it can handle dependency and any kind of
distribution in the error term. For illustration of this difference between the two packages in relation
to the TVLM, the following model is generated:

yt = β1tx1t + β2tx2t + ut, t = 1, . . . , T, (14)

where β1t = sin(2πτ) and β2t = 2τ with τ = t/T and T = 1000. The regressors, x1t ∼ t2 (symmetric)
and x2t ∼ χ2

4, are independent of the error term, ut ∼ χ2
2 which has an exponential dependency in

the covariance matrix given by Cov(ut, ut+h) = e−|h|/10 and does not follow an exponential-family
distribution. The LM, TVLM and GAM models are fitted to the data. The process generation and the
fitting of a classical LM, a TVLM and a GAM are shown in the following chunk. Figure 7 compares
the different estimates with the true β1t, β2t. As expected, the estimates from lm are constant and lie
around the average of all β1t and β2t, while the estimates of tvLM and gam follow the dynamics of
the varying coefficients. Besides the estimates of gam fit β1t well, but not β2t although the latter is a
simple linear function. This issue is caused by the autocorrelated error term with a non-exponential
distribution. On the other hand, the tvLM, although it requires for a longer computation time, it is able
to fit both coefficients well.

> tau <- seq(1:1000)/1000
> d <- data.frame(tau, beta1 = sin(2 * pi * tau), beta2 = 2 * tau,
+ x1 = rt(1000, df = 2), x2 = rchisq(1000, df = 4))
> error.cov <- exp(-as.matrix(dist(tau))/10)
> error <- t(chol(error.cov)) %*% rchisq(N, df = 2)
> d <- transform(d, y = x1 * beta1 + x2 * beta2 + error)
> lm1 <- stats::lm(y ~ x1 + x2, data = d)
> TVLM1 <- tvLM(y ~ x1 + x2, data = d, bw = 0.05, est ="ll")
> gam1 <- mgcv::gam(y ~ s(tau, by = x1) + s(tau, by = x2), data = d)

In addition to formula, the function tvLM has the arguments described in Section Standard usage of
tvSURE above. Also methods confint, fitted, print, plot, residuals and summary are implemented
for class "tvlm".

The summary method displays: (i) a summary of all coefficient values over the whole time period,
(ii) the value of the bandwidth(s), and (iii) a measure of goodness-of-fit, pseudo-R2. The latter is
printed for the class attributes "tvsure", "tvplm", "tvvar", "tvlm" and "tvar" and it is calculated
with the classical equation,

R2 = 1 − ∑T
t=1(yt − ŷ)2

∑T
t=1(yt − ȳ)2

,

where yt is the dependent variable, ȳ is its mean and ŷt are the fitted values. For multiple equation
models, one pseudo-R2 is calculated for each equation.

9 Standard usage of tvAR

A TVAR model is a particular case of TVLM whose regressors contain lagged values of the dependent
variable, y. The number of lags is given by the model order set in the argument p. Other exogenous
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Figure 7: Comparison of the lm, tvLM and gam estimates of β1t and β2t. The true values are plotted
in black, the red lines represent the lm estimates, the green lines refer to the tvLM estimates and the
blue lines represent the gam estimates. This result suggests that the TVLM is preferable for modelling
non-linear varying coefficients under strong dependency.

variables can be included in the model using the argument exogen, which accepts a vector or a matrix
with the same number of rows as the argument y. An intercept is included by default unless the
user enters type = "none" into the function call. Econometrically, this function also wraps the tvOLS
estimator, which needs a bandwidth bw that is automatically selected when the user does not enter
any number. An object of the class attribute "tvar" is returned by the function tvAR.

The user can provide additional optional arguments to modify the default estimation of the
function tvAR. See Section Standard usage of tvSURE to understand the usage of arguments bw, tkernel,
est and singular.ok and Section Standard usage of tvVAR and tvIRF to understand the usage of
argument type. In addition, the function tvAR has the following argument:

Coefficient restrictions
An autoregressive process of order p does not necessarily contain all the previous p lags of yt.
Argument fixed, with the same format as in the function arima from the package stats, permits
to impose these restrictions. The order of variables in the model is: intercept (if any), lag 1, lag 2,
. . ., lag p and exogenous variable (if any). By default, the argument fixed is a vector of NAs
with length the number of coefficients in the model. The user can enter a vector in the argument
fixed with zeros in the positions corresponding to the restricted coefficients.

Application to risk management

The realized variance (RV) model was popularised in the financial literature by Andersen and Bollerslev
(1998), who show that the use of intraday data can offer an accurate forecast of daily variance. It
is defined as RVt = ∑N

i=1 r2
it, where rit is the price return at minute i of day t. The autocorrelation

function of the RV also shows signs of long memory in the process, which can be accounted for by the
heterogeneous RV (HAR) model of Corsi (2009):

RVt = β0 + β1RVt−1 + β2RVt−1|t−5 + β3RVt−1|t−22 + ut. (15)

Here, RVt−1|t−k = 1
k ∑

j
i=1 RVt−i. In this model, the current RVt depends on its immediately previous

value, RVt−1, its medium-term memory factor, RVt−1|t−5 and its long-term memory factor, RVt−1|t−22.
Basically, the HAR model may be seen as an AR(1) model with two exogenous variables.

It is likely that changes in the business cycles affect the coefficients in (15). Chen et al. (2017) coined
the time-varying coefficient HAR, whose coefficients are functions of the rescaled time period. The
RV dataset contains daily variables running from January 3, 1990 until December 19, 2007 that have
been computed from 5 minute intraday data from Store (2017). This period coincides with the period
in Bollerslev et al. (2009). The variable names in this dataset are RV, RV_lag, RV_week, RV_month and
RQ_lag_sqrt and correspond to the RVt, RVt−1, RVt−1|t−5, RVt−1|t−22 and RQ1/2

t−1 in Model (15).

> data("RV")
> RV2 <- head(RV, 2000)
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> HAR <- with(RV2, arima(RV, order = c(1, 0, 0), xreg = cbind(RV_week, RV_month)))
> TVHAR<- with(RV2, tvAR(RV, p = 1, bw = 0.8, exogen = cbind(RV_week, RV_month)))

Bollerslev et al. (2016) extended the Model (15) to control for the effect of the realized quarticity
(RQ) on the relationship between the future RV and its near past values. They present the HARQ
model,

RVt =β0 + (β1 + β1QRQ1/2
t−1) RVt−1 + β2 RVt−1|t−5 + β3 RVt−1|t−22 + ut. (16)

The HARQ model is a HAR model whose RVt−1 term’s coefficient is a linear function of the squared
root of RQ at time t − 1. The RQ changes over time and it will be larger during periods of more
uncertainty. Casas et al. (2018) appreciated that the variation of this coefficient may not be linear and
proposed the TVHARQ model,

RVt = β0(zt) + β1(zt) RVt−1 + β2(zt) RVt−1|t−5 + β3(zt) RVt−1|t−22 + ut, (17)

where the smoothing variable, zt = RQ1/2
t−1. This model is a TVAR(1) process and can be estimated

with the function tvAR or with the function tvLM as it is shown in the chunk below.

> HARQ <- with(RV2, lm(RV ~ RV_lag + I(RV_lag*RQ_lag_sqrt) + RV_week + RV_month))
> TVHARQ <- with(RV2, tvAR(RV, p = 1, exogen = cbind(RV_week, RV_month),
+ z = RQ_lag_sqrt, cv.block = 10))

10 Prediction and forecast in time-varying coefficient models

Estimation is a useful tool to understand the patterns and processes hidden in known data. Prediction
and forecast are the mechanisms to extend this understanding to unknown data. Although the two
terms are often used indistinctively, the term prediction is broader than the term forecast which is
reserved for time-series models and consists on using historical data to infer the future. For example,
we speak of predicting values from a linear regression fitted to cross-sectional data and of forecasting
future values from an AR(p) model.

The prediction of the dependent variable at time T + h (horizon of length h) in a linear regression
is ŷT+h = x⊤T+h β̂ for h ≥ 1. Future values, xT+h, must be known to calculate the prediction. In time
series, the prediction of future values has a slightly different nature and then is when we use the
word forecast. The regressors in the 1-step-ahead forecast are known, but they are effectively unknown
for for longer horizons and must be forecasted first. For example, given yt = 5 − 0.5yt−1 + ut for
t = 1, . . . , T; the 1-step-ahead forecast is ŷ∗T+1 = 5 − 0.5yT with known yT . However, the 2-step-ahead
forecast is ŷ∗T+2 = 5 − 0.5ŷ∗T+1, which uses the previous forecast value, ŷ∗T+1.

In the tvReg, we refer to prediction when zt is a random variable and to forecast when zt = τ. Note
that future values of the conditional variable, zT+h, must be given for prediction. For example, the
prediction problem ŷT+h = x⊤T+h β̂(zt) for h ≥ 1 requires the future values xT+h and zT+h. Whereas,
the forecast problem ŷ∗T+h = x⊤T+h β̂(T + h) requires only the future values xT+h. Thus, the predict
and forecast methods in tvReg are slightly different.

11 Standard usage of predict and forecast

The forecast method is implemented for the class attributes "tvsure", "tvplm", "tvar", "tvlm" and
"tvar". As an example, the three days ahead forecast of model TVHAR, evaluated in Section Application
to risk management using the first 2000 values of the dataset RV, is provided in the lines of code
below. This is a TVAR(1) model with two exogenous variables, RV_week and RV_month. The argument
newexogen requires three values of these exogenous variables and variable n.ahead = 3.

> newexogen <- cbind(RV$RV_week[2001:2003], RV$RV_month[2001:2003])
> forecast(TVHAR, n.ahead = 3, newexogen = newexogen)

[1] 2.200921e-05 2.566854e-05 2.466637e-05

The forecast method requires the argument object. In addition, other arguments are necessary,
some of them depending on the class attribute of object.

Forecast horizon The argument n.ahead is a scalar with the forecast horizon. By default, it is set to 1.
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Type of forecast It is possible to run either an increasing window forecast (default), when the argu-
ment winsize = 0 or a rolling window forecast with a window size defined in the argument
winsize.

newdata
These arguments belong to the forecast methods and it is a "vector", "data.frame" or
"matrix" containing the new values of the regressors in the model. It is not necessary to
enter the intercept. Note that this newdata does not refer to the variables in exogen which might
be part of the "tvar" and "tvvar" objects. Those must be included in newexogen, if needed.

newexogen
This argument appears in the forecast method for the class attributes "tvar" and "tvvar"
and it must be entered when the initial model contains exogen variables. It is a "vector",
"data.frame" or "matrix".

The predict method is implemented for the same class attributes than the forecast. It does not
require arguments n.ahead and winsize, but arguments newdata and newexogen are defined as in
forecast. In addition, new values of the smoothing variable must be entered into the argument newz.
This must be of the class attribute "vector" or "numeric". The code below, predicts three future values
of the TVHAR model fitted above.

> newdata <- RV$RV_lag[2001:2003]
> newexogen <- cbind(RV$RV_week[2001:2003], RV$RV_month[2001:2003])
> newz <- RV$RQ_lag_sqrt[2001:2003]
> predict(TVHARQ, newdata, newz, newexogen = newexogen)

[1] 1.741663e-05 2.402516e-05 2.088794e-05

The example below shows the usage of the forecast and predict methods for the class attribute
"tvsure".

The lines of code below forecast three values for model TVOLS.fit evaluated in Section Standard
usage of tvSURE. The method needs a set of new values in the argument newdata, which must have
the same number of columns as the original dataset.

> newKmenta <- data.frame(consump = c(95, 100, 102), price = c(90, 100, 103),
+ farmPrice = c(70, 95, 103), income = c(82, 94, 115),
+ trend = c(21:23))
> forecast(TVOLS.fit, newdata = newKmenta, n.ahead = 3)

demand supply
[1,] 97.92300 95.32852
[2,] 98.94076 103.48589
[3,] 105.36951 106.26576

In case the smoothing variable in the model is a random variable, the predict method for the
class attribute "tvsure" requires also a new set of values in argument newz. The chunk below first
fits a TVSURE model, tvOLS.z.fit, to the Kmenta data with the same system of equations as in the
TVOLS.fit, but with random variable as the smoothing variable, which is generated as an ARMA(2,2)
process. Three values of the dependent variable are predicted with the predict method. In addition
to new values in the argument newdata, it requires a set of new smoothing values in the argument
newz. It returns the predicted values as a matrix with as many columns as equations in the system.

> nobs <- nrow (Kmenta)
> smoothing <- arima.sim(n = nobs + 3, sd = sqrt(0.1796),
+ list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)))
> smoothing <- as.numeric(smoothing)
> tvOLS.z.fit <- tvSURE(system, data = Kmenta, z = smoothing[1:nobs])
> newSmoothing <- tail(smoothing, 3)
> predict(tvOLS.z.fit, newdata = newKmenta, newz = newSmoothing)

demand supply
[1,] 100.0195 96.50136
[2,] 100.3919 105.29293
[3,] 106.1426 107.97822

The forecast and predict methods for the rest of the class attributes in the package follow similar
patterns, and further examples can be found in the documentation of the tvReg.
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12 Summary

Research of time-varying coefficient linear models and their estimation using kernel smoothing
methods has seen a great theoretical development during the last two decades. Our own work in this
field has served as inspiration to code the tvReg because we encounter a lack of computer applications
with this functionality. Indeed, we expect that this package empowers empirical researchers working
with regression and time series models with a computing tool that allows for more flexible models.

Within the R framework: (i) the tvReg extends functions in the R packages systemfit, plm and vars;
(ii) it extends functions lm, ar.ols and arima to allow for varying coefficients; (iv) it complements R
packages mgcv and gam for the linear regression model by providing a consistent estimator of this
model for in case of dependency and a general distribution in the error term; (v) it complements R
package mgm by adding the time-varying impulse response (TVIRF) function which is commonly
used in macroeconomics; and (vi) it complements R package bvarsv and MARSS which estimate the
TVVAR and TVIRF within the state-space framework. In addition, the confint, fitted, forecast,
plot, predict, print, resid and summary methods are implemented for all class attributes in the tvReg
and will allow the user to conveniently produce their research output. In any case, the user is able
to produce customised plots and summaries from the returns of the functions, whose elements are
accessible in the same manner as other R "list" objects.

Finally, the tvReg shows multiple applications in economics and finance. Specifically in asset
management, portfolio management, risk management, health policy and monetary policy. The
methods and datasets permit to verify results in Aslanidis and Casas (2013); Casas et al. (2018, 2019,
2021). Models in this paper are used in other fields too. For example, Reikard (2009) uses the TVLM to
forecast the wave energy flux and Haslbeck et al. (2021) uses the TVVAR in different applications in
psychology. The tvReg is therefore not only relevant and original but also timely.
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RKHSMetaMod: An R Package to
Estimate the Hoeffding Decomposition of
a Complex Model by Solving RKHS Ridge
Group Sparse Optimization Problem
by Halaleh Kamari, Sylvie Huet and Marie-Luce Taupin

Abstract In this paper, we propose an R package, called RKHSMetaMod, that implements a procedure
for estimating a meta-model of a complex model. The meta-model approximates the Hoeffding
decomposition of the complex model and allows us to perform sensitivity analysis on it. It belongs to
a reproducing kernel Hilbert space that is constructed as a direct sum of Hilbert spaces. The estimator
of the meta-model is the solution of a penalized empirical least-squares minimization with the sum of
the Hilbert norm and the empirical L2-norm. This procedure, called RKHS ridge group sparse, allows
both to select and estimate the terms in the Hoeffding decomposition, and therefore, to select and
estimate the Sobol indices that are non-zero. The RKHSMetaMod package provides an interface from
the R statistical computing environment to the C++ libraries Eigen and GSL. In order to speed up
the execution time and optimize the storage memory, except for a function that is written in R, all
of the functions of this package are written using the efficient C++ libraries through RcppEigen and
RcppGSL packages. These functions are then interfaced in the R environment in order to propose a
user-friendly package.

1 Introduction

Consider a phenomenon described by a model m depending on d input variables X = (X1, ..., Xd).
This model m from Rd to R may be a known model that is calculable in all points of X, i.e. Y = m(X),
or it may be an unknown regression model defined as follows:

Y = m(X) + ε, (1)

where the error ε is assumed to be centered with a finite variance, i.e. E(ε) = 0 and var(ε) < ∞. The
components of X are independent with a known law PX = ∏d

a=1 PXa on X , a subset of Rd. The number
d of components of X may be large. The model m may present high complexity as strong non-linearities
and high order interaction effects, and it is assumed to be square-integrable, i.e. m ∈ L2(X , PX).
Based on the data points {(Xi, Yi)}n

i=1, we estimate a meta-model that approximates the Hoeffding
decomposition of m. This meta-model belongs to a reproducing kernel Hilbert space (RKHS), which
is constructed as a direct sum of the Hilbert spaces leading to an additive decomposition including
variables and interactions between them (Durrande et al., 2013). The estimator of the meta-model is
calculated by minimizing an empirical least-squares criterion penalized by the sum of two penalty
terms: the Hilbert norm and the empirical norm (Huet and Taupin, 2017). This procedure allows us to
select the subsets of variables X1, ..., Xd that contribute to predict Y. The estimated meta-model is used
to perform sensitivity analysis, and therefore, to determine the influence of each variable and groups
of them on the output variable Y.

In the classical framework of the sensitivity analysis, the function m is calculable in all points of X,
and one may use the method of Sobol (1993) to perform the sensitivity analysis on m. Let us briefly
introduce this method:
The independency between the components of X leads to write the function m according to its
Hoeffding decomposition (Sobol, 1993; Van der Vaart, 1998):

m(X) = m0 +
d

∑
a=1

ma(Xa) + ∑
a<a′

ma,a′ (Xa, Xa′ ) + ... + m1,...,d(X). (2)

The terms in this decomposition are defined using the conditional expected values:

m0 = EX(m(X)), ma(Xa) = EX(m(X)|Xa)−m0;

ma,a′ (Xa, Xa′ ) = EX(m(X)|Xa, Xa′ )−ma(Xa)−ma′ (Xa′ )−m0, · · ·

These terms are known as the constant term, main effects, interactions of order two and so on. Let P be
the set of all subsets of {1, ..., d} with dimension 1 to d. For all v ∈ P and X ∈ X , let Xv be the vector
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with components Xa, a ∈ v. For a set A let |A| be its cardinality, and for all v ∈ P , let mv : R|v| → R

be the function associated with Xv in Equation (2). Then Equation (2) can be expressed as follows:

m(X) = m0 + ∑
v∈P

mv(Xv). (3)

This decomposition is unique, all terms mv, v ∈ P are centered, and they are orthogonal with respect
to L2(X , PX). The functions m and mv, v ∈ P in Equation (3) are square-integrable. As any two terms
of decomposition (3) are orthogonal, by squaring (3) and integrating it with respect to the distribution
of X, a decomposition of the variance of m(X) is obtained as follows:

var(m(X)) = ∑
v∈P

var(mv(Xv)). (4)

The Sobol indices associated with the group of variables Xv, v ∈ P are defined by:

Sv = var(mv(Xv))/var(m(X)). (5)

For each v, the Sv expresses the fraction of the variance of m(X) explained by Xv. For all v ∈ P , when
|v| = 1, the Svs are referred to as the first order indices; when |v| = 2, i.e. v = {a, a′} and a ̸= a′, they
are referred to as the second order indices or the interaction indices of order two (between Xa and Xa′ );
and the same holds for |v| > 2.

The total number of the Sobol indices to be calculated is equal to |P| = 2d − 1, which raises
exponentially with the number of the input variables d. When d is large, the evaluation of all the
indices can be computationally demanding and even not reachable. In practice, only the indices of
order not higher than two are calculated. However, only the first and second order indices may not
provide a good information on the model sensitivities. In order to provide better information on
the model sensitivities, Homma and Saltelli (1996) proposed to calculate the first order and the total
indices defined as follows:
Let Pa ⊂ P be the set of all the subsets of {1, ..., d} including a, then STa = ∑v∈Pa

Sv. For all
a ∈ {1, ..., d}, the STa denotes the total effect of Xa. It expresses the fraction of variance of m(X)
explained by Xa alone and all the interactions of it with the other variables. The total indices allow us
to rank the input variables with respect to the amount of their effect on the output variable. However,
they do not provide complete information on the model sensitivities as do all the Sobol indices.

The classical computation of the Sobol indices is based on the Monte Carlo methods (see for
example: Sobol (1993) for the main effect and interaction indices, and Saltelli (2002) for the main effect
and total indices). For models that are expensive to evaluate, the Monte Carlo methods lead to a high
computational burden. Moreover, in the case where d is large, m is complex and the calculation of
the variances (see Equation (4)) is numerically complicated or not possible (as in the case where the
model m is unknown) the methods described above are not applicable. Another approach consists
in approximating m by a simplified model, called a meta-model, which is much faster to evaluate
and to perform sensitivity analysis on it. Beside the approximations of the Sobol indices of m at a
lower computational cost, a meta-model provides a deeper view of the input variables effects on the
model output. Among the meta-modelling methods proposed in the literature, the expansion based
on the polynomial Chaos (Wiener, 1938; Schoutens, 2000) can be used to approximate the Hoeffding
decomposition of m (Sudret, 2008). The principle of the polynomial Chaos is to project m onto a basis
of orthonormal polynomials. The polynomial Chaos expansion of m is written as (Soize and Ghanem,
2004):

m(X) =
∞

∑
j=0

hjϕj(X), (6)

where {hj}∞
j=0 are the coefficients, and {ϕj}∞

j=0 are the multivariate orthonormal polynomials associ-
ated with X which are determined according to the distribution of the components of X. In practice,
expansion (6) shall be truncated for computational purposes, and the model m may be approximated
by ∑vmax

j=0 hjϕj(X), where vmax is determined using a truncation scheme. The Sobol indices are obtained
then by summing up the squares of the suitable coefficients. Blatman and Sudret (2011) proposed a
method for truncating the polynomial Chaos expansion and an algorithm based on the least angle
regression for selecting the terms in the expansion. In this approach, according to the distribution of
the components of X, a unique family of orthonormal polynomials {ϕj}∞

j=0 is determined. However,
this family may not be necessarily the best functional basis to approximate m well.

Gaussian Process (GP) can also be used to construct meta-models as highlighted in Welch et al.
(1992), Oakley and O’Hagan (2004), Kleijnen (2007, 2009), Marrel et al. (2009), Durrande et al. (2012),
and Le Gratiet et al. (2014). The principle is to consider that the prior knowledge about the function
m(X), can be modelled by a GP Z(X) with a mean mZ (X) and a covariance kernel kZ (X, X′). To
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perform sensitivity analysis from a GP model, one may replace the model m(X) with the mean of the
conditional GP and deduce the Sobol indices from it. A review on the meta-modelling based on the
polynomial Chaos and the GP is presented in Le Gratiet et al. (2017).

Durrande et al. (2013) considered a class of the functional approximation methods similar to the
GP and obtained a meta-model that satisfies the properties of the Hoeffding decomposition. They
proposed to approximate m by functions belonging to a RKHSH which is a direct sum of the Hilbert
spaces. Their RKHS H is constructed in a way that the projection of m onto H, denoted f ∗, is an
approximation of the Hoeffding decomposition of m. The function f ∗ is defined as the minimizer over
the functions f ∈ H of the criterion EX(m(X)− f (X))2.

Let ⟨., .⟩H be the scalar product inH, let also k and kv be the reproducing kernels associated with
the RKHSH and the RKHSHv respectively. The properties of the RKHSH insures that any function
f ∈ H, f : X ⊂ Rd → R is written as the following decomposition:

f (X) = ⟨ f , k(X, .)⟩H = f0 + ∑
v∈P

fv(Xv), (7)

where f0 is constant, and fv : R|v| → R is defined by fv(X) = ⟨ f , kv(X, .)⟩H. For more details on the
RKHS construction and the definition of the Hilbert norm see Section "RKHS construction" in the
Appendix (supplementary materials).

For all v ∈ P , the functions fv(Xv) are centered and for all v ̸= v′, the functions fv(Xv) and fv′ (Xv′ )
are orthogonal with respect to L2(X , PX). Therefore, the decomposition of the function f presented
in Equation (7) is its Hoeffding decomposition. As the function f ∗ belongs to the RKHS H, it is
decomposed as its Hoeffding decomposition, f ∗ = f ∗0 + ∑v∈P f ∗v , and each function f ∗v approximates
the function mv in Equation (3). The number of the terms f ∗v that should be estimated in the Hoeffding
decomposition of f ∗ is equal to |P| = 2d − 1, which may be huge since it rises very quickly by
increasing d. In order to deal with this problem, in the regression framework, one may estimate f ∗ by
a sparse meta-model f̂ ∈ H. To this end, the estimation of f ∗ is done on the basis of n observations by
minimizing a least-squares criterion suitably penalized in order to deal with both the non-parametric
nature of the problem and the possibly large number of functions that have to be estimated. In the
classical framework of the sensitivity analysis one may calculate a sparse approximation of f ∗ using
least-squares penalized criterion as it is done in the non-parametric regression framework. In order to
obtain a sparse solution of a minimization problem, the penalty function should enforce the sparsity.
There exists various ways of enforcing sparsity for a minimization (maximization) problem, see for
example Hastie et al. (2015) for a review. Some methods, such as the Sparse Additive Models (SpAM)
procedure (Ravikumar et al., 2009; Liu et al., 2009) are based on a combination of the l1-norm with
the empirical L2-norm: ∥ f ∥n,1 = ∑d

a=1 ∥ fa∥n, where ∥ fa∥2
n = ∑n

i=1 f 2
a (Xai)/n, is the squared empirical

L2-norm of the univariate function fa. The Component Selection and Smoothing Operator (COSSO)
method developed by Lin and Zhang (2006) enforces sparsity using a combination of the l1-norm
with the Hilbert norm: ∥ f ∥H,1 = ∑d

a=1 ∥ fa∥Ha . Instead of focusing on only one penalty term, one may
consider a more general family of estimators, called the doubly penalized estimator, which is obtained
by minimizing a criterion penalized by the sum of two penalty terms. Raskutti et al. (2009, 2012)
proposed a doubly penalized estimator, which is the solution of the minimization of a least-squares
criterion penalized by the sum of a sparsity penalty term and a combination of the l1-norm with the
Hilbert norm:

γ∥ f ∥n,1 + µ∥ f ∥H,1, (8)

where γ, µ ∈ R are the tuning parameters that should be suitably chosen.

Meier et al. (2009) proposed a related family of estimators, based on the penalization with the
empirical L2-norm. Their penalty function is the sum of the sparsity penalty term, ∥ f ∥n,1, and a
smoothness penalty term. Huet and Taupin (2017) considered the same approximation functional
spaces as Durrande et al. (2013), and obtained a doubly penalized estimator of a meta-model which
approximates the Hoeffding decomposition of m. Their estimator is the solution of the least-squares
minimization penalized by the penalty function defined in Equation (8) adapted to the multivariate
setting,

γ∥ f ∥n + µ∥ f ∥H, with ∥ f ∥n = ∑
v∈P
∥ fv∥n, ∥ f ∥H = ∑

v∈P
∥ fv∥Hv . (9)

This procedure, called RKHS ridge group sparse, estimates the groups v that are suitable for predicting
f ∗, and the relationship between f ∗v and Xv for each group. The obtained estimator, called RKHS
meta-model, is used then to estimate the Sobol indices of m. This approach renders it possible to
estimate the Sobol indices for all groups in the support of the RKHS meta-model, including the
interactions of possibly high order, a point known to be difficult in practice.
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In this paper, we introduce an R package, called RKHSMetaMod, that implements the RKHS
ridge group sparse procedure. The functions of this package allows us to:

(1) calculate the reproducing kernels and their associated Gram matrices (see Section Calculation
of the Gram matrices),

(2) implement the RKHS ridge group sparse procedure and a special case of it, called the RKHS
group lasso procedure (when γ = 0 in the penalty function (9)), in order to estimate the terms f ∗v
in the Hoeffding decomposition of the meta-model f ∗ leading to an estimation of the function
m (see Section Optimization algorithms),

(3) choose the tuning parameters µ and γ (see Equation (9)), using a procedure that leads to obtain
the best RKHS meta-model in terms of the prediction quality,

(4) estimate the Sobol indices of the function m (see Section Estimation of the Sobol indices).

The current version of the package supports uniformly distributed input variables on X = [0, 1]d.
However, it could be easily adapted to datasets with input variables from another distribution by
making a small modification to one of its functions (see Remark 3 of Section Calculation of the Gram
matrices).

Let us give a brief overview of the related existing statistical packages to the RKHSMetaMod
package. The R package sensitivity is designed to implement sensitivity analysis methods and
provides the approaches for numerical calculation of the Sobol indices. In particular, Kriging method
can be used to reduce the number of the observations in global sensitivity analysis. The function
sobolGP of the package sensitivity builds a Kriging based meta-model using the function km of the
package DiceKriging (Roustant et al., 2012), and estimates its Sobol indices. This procedure can also
be done using the function km and the function fast99 of the package sensitivity (see Section 4.5. of
Roustant et al. (2012)). In this case, the idea is once again to build a Kriging based meta-model using the
function km and then estimate its Sobol indices using the function fast99. In both cases the true function
is substituted by a Kriging based meta-model and then its Sobol indices are estimated. In the sobolGP
function, the Sobol indices are estimated by the Monte Carlo integration, while the fast99 function
estimates them using the extended-FAST method (Saltelli et al., 1999). To reduce the computational
burden when dealing with large datasets and complex models, in RKHSMetaMod package, we
propose to use the empirical variances to estimate the Sobol indices (see Section Estimation of the
Sobol indices). Besides, the estimation of the Sobol indices in the RKHSMetaMod package is done
based on the RKHS meta-model which is a sparse estimator. It is beneficial since instead of calculating
the Sobol indices of all groups v ∈ P , only the Sobol indices associated with the groups in the support
of the RKHS meta-model are computed (see Section Estimation of the Sobol indices). Moreover, the
functions sobolGP and fast99 provide the estimation of the first order and the total Sobol indices
only, while the procedure in the RKHSMetaMod package makes it possible to estimate the high order
Sobol indices. The R packages DiceKriging and DiceOptim (Deep Inside Computer Experiments
Kriging/Optim) (Roustant et al., 2012) implement the Kriging based meta-models to estimate complex
models in the high dimensional context. They provide different GP (Kriging) models corresponding
to the Gaussian, Matérn, Exponential and Power-Exponential correlation functions. The estimation
of the parameters of the correlation functions in these packages relies on the global optimizer with
gradient genoud algorithm of the package rgenoud (Mebane and Sekhon, 2011). These packages do
not implement any method of the sensitivity analysis themselves. However, some authors (see Section
4.5. of Roustant et al. (2012) for example) perform sensitivity analysis on their estimated meta-models
by employing the functions of the package sensitivity. The R package RobustGaSP (Robust Gaussian
Stochastic Process) (Gu et al., 2019) approximates a complex model by a GP meta-model. This package
implements marginal posterior mode estimation of the GP model parameters. The estimation method
in this package insures the robustness of the parameter estimation in the GP model, and allows one
also to identify input variables that have no effect on the variability of the function under study. The R
package mlegp (maximum likelihood estimates of Gaussian processes) (Dancik and Dorman, 2008)
provides functions to implement both meta-modelling approaches and sensitivity analysis methods. It
obtains maximum likelihood estimates of the GP model for the output of costly computer experiments.
The GP models are built either on the basis of the Gaussian correlation function or on the basis of the
first degree polynomial trend. The sensitivity analysis methods implemented in this package include
Functional Analysis of Variance (FANOVA) decomposition, plot functions to obtain diagnostic plots,
main effects, and second order interactions. The prediction quality of the meta-model depends on
the quality of the estimation of its parameters and more precisely the estimation of parameters in the
correlation functions (Kennedy and O’Hagan, 2000). The maximum likelihood estimation of these
parameters often produce unstable results, and as a consequence, the obtained meta-model may have
an inferior prediction quality (Gu et al., 2018; Gu, 2019). The RKHSMetaMod package is devoted to the
meta-model estimation on the RKHSH. It implements the convex optimization algorithms to calculate
meta-models; provides the functions to compute the prediction error of the obtained meta-models;
performs the sensitivity analysis on the obtained meta-models and more precisely calculate their Sobol
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indices. The convex optimization algorithms used in this package are all written using C++ libraries,
and are adapted to take into account the problem of high dimensionality in this context. This package
is available from the Comprehensive R Archive Network (CRAN) (Kamari, 2019).

The organization of the paper is as follows: In the next Section, we describe the estimation method.
In Section Algorithms, we present in details the algorithms used in the RKHSMetaMod package.
Section RKHSMetaMod through examples includes two parts: In the first part, Section Simulation
study, the performance of the RKHSMetaMod package functions is validated through a simulation
study. In the second part, Section Comparison examples, the comparison in terms of the predictive
accuracy between the RKHS meta-model and the Kriging based meta-models from RobustGaSP (Gu
et al., 2019) and DiceKriging (Roustant et al., 2012) packages is given through two examples.

2 Estimation method

In this Section, we present: the RKHS ridge group sparse and the RKHS group lasso procedures (see
RKHS ridge group sparse and RKHS group lasso procedures), the strategy of choosing the tuning
parameters in the RKHS ridge group sparse algorithm (see Choice of the tuning parameters), and
the calculation of the empirical Sobol indices of the RKHS meta-model (see Estimation of the Sobol
indices).

RKHS ridge group sparse and RKHS group lasso procedures

Let us denote by n the number of observations. The dataset consists of a vector of n observations
Y = (Y1, ..., Yn), and a n× d matrix of features X with components (Xai, i = 1, ..., n, a = 1, ..., d) ∈ Rn×d.
For some tuning parameters γv, µv, v ∈ P , the RKHS ridge group sparse criterion is defined by,

L( f ) =
1
n

n

∑
i=1

(
Yi − f0 − ∑

v∈P
fv(Xvi)

)2
+ ∑

v∈P
γv∥ fv∥n + ∑

v∈P
µv∥ fv∥Hv , (10)

where Xv represents the matrix of variables corresponding to the v-th group, i.e. Xv = (Xvi, i =

1, ..., n, v ∈ P) ∈ Rn×|P|, and where ∥ fv∥n is the empirical L2-norm of fv defined by the sample

{Xvi}n
i=1 as ∥ fv∥n =

√
∑n

i=1 f 2
v (Xvi)/n.

The penalty function in the criterion (10) is the sum of the Hilbert norm and the empirical norm,
which allows us to select few terms in the additive decomposition of f over sets v ∈ P . Moreover, the
Hilbert norm favours the smoothness of the estimated fv, v ∈ P .
Let F = { f : f = f0 + ∑v∈P fv, fv ∈ Hv, ∥ fv∥Hv ≤ rv, rv ∈ R+} be the set of functions. Then the
RKHS meta-model is defined by,

f̂ = arg min
f∈F

L( f ). (11)

According to the Representer Theorem (Kimeldorf and Wahba, 1970), the non-parametric functional
minimization problem described above is equivalent to a parametric minimization problem. Indeed,
the solution of the minimization problem (11) belonging to the RKHSH is written as f = f0 + ∑v∈P fv,
where for some matrix θ = (θvi, i = 1, ..., n, v ∈ P) ∈ Rn×|P| we have for all v ∈ P ,

fv(.) =
n

∑
i=1

θvikv(Xvi, .), and ∥ fv∥2
Hv

=
n

∑
i,i′=1

θviθvi′kv(Xvi, Xvi′ ). (12)

Let ∥.∥ be the Euclidean norm (called also L2-norm) in Rn, and for each v ∈ P , let Kv be the n× n Gram
matrix associated with the kernel kv(., .), i.e. (Kv)i,i′ = kv(Xvi, Xvi′ ). Let also K1/2 be the matrix that
satisfies t(K1/2)K1/2 = K, and let f̂0 and θ̂ be the minimizers of the following penalized least-squares
criterion:

C( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 +
√

n ∑
v∈P

γv∥Kvθv∥+ n ∑
v∈P

µv∥K1/2
v θv∥.

Then the estimator f̂ defined in Equation (11) satisfies,

f̂ (X) = f̂0 + ∑
v∈P

f̂v(Xv) with f̂v(Xv) =
n

∑
i=1

θ̂vikv(Xvi, Xv).

Remark 1 The constraint ∥ fv∥Hv ≤ rv is crucial for theoretical properties, but the value of rv is generally
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unknown and has no practical usefulness. In this package, it is not taken into account in the parametric
minimization problem.

For each v ∈ P , let γ′v and µ′v be the weights that are chosen suitably. We define γv = γ× γ′v and
µv = µ× µ′v with γ, µ ∈ R+.

Remark 2 This formulation simplifies the choice of the tuning parameters since instead of tuning 2× |P|
parameters γv and µv, v ∈ P , only two parameters γ and µ are tuned. Moreover, the weights γ′v and µ′v, v ∈ P
may be of interest in practice. For example, one can take weights that increase with the cardinal of v in order to
favour the effects with small interaction order between variables.

For the sake of simplicity, in the rest of this paper for all v ∈ P the weights γ′v and µ′v are assumed to
be set as one, and the RKHS ridge group sparse criterion is then expressed as follows:

C( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 +
√

nγ ∑
v∈P
∥Kvθv∥+ nµ ∑

v∈P
∥K1/2

v θv∥. (13)

If we consider only the second part of the penalty function in the criterion (13) ( i.e. set γ = 0), we
obtain the RKHS group lasso criterion as follows:

Cg( f0, θ) = ∥Y− f0 In − ∑
v∈P

Kvθv∥2 + nµ ∑
v∈P
∥K1/2

v θv∥, (14)

which is a group lasso criterion (Yuan and Lin, 2006) up to a scale transformation.

In the RKHSMetaMod package, the RKHS ridge group sparse algorithm is initialized using the
solutions obtained by solving the RKHS group lasso algorithm. Indeed, the penalty function in the
RKHS group lasso criterion (14) insures the sparsity in the solution. Therefore, for a given value
of µ, by implementing the RKHS group lasso algorithm (see Section RKHS group lasso), a RKHS
meta-model with few terms in its additive decomposition is obtained. The support and the coefficients
of a RKHS meta-model which is obtained by implementing the RKHS group lasso algorithm will be
denoted by Ŝ f̂Group Lasso

and θ̂Group Lasso, respectively. From now on, we denote the tuning parameter in
the RKHS group lasso criterion by:

µg =
√

nµ. (15)

Choice of the tuning parameters

While dealing with an optimization problem of a criterion of the form (13), one of the essential steps
is to choose the appropriate tuning parameters. Cross-validation is generally used for that purpose.
Nevertheless in the context of high-dimensional complex models, the computational time for a cross-
validation procedure may be prohibitively high. Therefore, we propose a procedure based on a single
testing dataset:

• we first choose, a grid of values of the tuning parameters µ and γ;
Let µmax be the smallest value of µg (see Equation (15)), such that the solution to the minimiza-
tion of the RKHS group lasso problem for all v ∈ P is θv = 0. We have,

µmax = max
v

(
2∥K1/2

v (Y−Y)∥
)

/
√

n. (16)

In order to set up the grid of values of µ, one may find µmax and then a grid of values of µ could
be defined by µl = µmax/(

√
n× 2l) for l ∈ {1, ..., lmax}. The grid of values of γ is chosen by the

user.

• next, for the grid of values of µ and γ, we calculate a sequence of estimators. Each estimator
associated with the pair (µ, γ) in the grid of values of µ and γ, denoted by f̂(µ,γ), is the solution
of the RKHS ridge group sparse optimization problem or the RKHS group lasso optimization
problem if γ = 0.

• finally, the obtained estimators f̂(µ,γ) are evaluated using a testing dataset, {(Ytest
i , Xtest

i )}ntest

i=1 .

The prediction error associated with each estimator f̂(µ,γ) is calculated by,

ErrPred(µ, γ) =
ntest

∑
i=1

(Ytest
i − f̂(µ,γ)(Xtest

i ))2/ntest,
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where for S f̂ being the support of the estimator f̂(µ,γ) we have,

f̂(µ,γ)(Xtest) = f̂0 + ∑
v∈S f̂

n

∑
i=1

θ̂vikv(Xvi, Xtest
v ).

The pair (µ̂, γ̂) with the smallest value of the prediction error is chosen, and the estimator f̂(µ̂,γ̂)
is considered as the best estimator of the function m, in terms of the prediction error.

In the RKHSMetaMod package, the algorithm to calculate a sequence of the RKHS meta-models,
the value of µmax, and the prediction error are implemented as RKHSMetMod, mu_max, and PredErr
functions, respectively. These functions are described in Section "Overview of the RKHSMetaMod
functions" (supplementary materials), and illustrated in Example 1, Example 2, and Examples 1, 2, 3,
respectively.

Estimation of the Sobol indices

The variance of the function m is estimated by the variance of the estimator f̂ . As the estimator f̂
belongs to the RKHSH, it admits the Hoeffding decomposition and,

var( f̂ (X)) = ∑
v∈P

var( f̂v(Xv)), where ∀v ∈ P , var( f̂v(Xv)) = EX( f̂ 2
v (Xv)) = ∥ f̂v∥2

2.

In order to reduce the computational cost in practice, one may estimate the variances of f̂v(Xv), v ∈ P
by their empirical variances. Let f̂v. be the empirical mean of f̂v(Xvi), i = 1, ..., n, then:

v̂ar( f̂v(Xv)) =
1

n− 1

n

∑
i=1

( f̂v(Xvi)− f̂v.)
2.

For the groups v that do not belong to the support of f̂ , we have Ŝv = 0 and for the groups v that
belong to the support of f̂ , the estimators of the Sobol indices of m are defined by,

Ŝv = v̂ar( f̂v(Xv))/ ∑
v∈P

v̂ar( f̂v(Xv)).

In the RKHSMetaMod package, the algorithm to calculate the empirical Sobol indices Ŝv, v ∈ P
is implemented as SI_emp function. This function is described in Section "Companion functions"
(supplementary materials) and illustrated in Examples 1, 2, 3.

3 Algorithms

The RKHSMetaMod package implements two optimization algorithms: the RKHS ridge group sparse
(see Algorithm 2) and the RKHS group lasso (see Algorithm 1). These algorithms rely on the Gram
matrices Kv, v ∈ P that have to be positive definite. Therefore, the first and essential step in this
package is to calculate these matrices and insure their positive definiteness. The algorithm of this
step is described in the next Section. The second step is to estimate the RKHS meta-model. In the
RKHSMetaMod package, two different objectives based on different procedures are considered to
calculate this estimator:

1. The RKHS meta-model with the best prediction quality.
The procedure to calculate the RKHS meta-model with the best prediction quality has been
described in Section Choice of the tuning parameters: a sequence of values of the tuning
parameters (µ, γ) is considered, and the RKHS meta-models associated with each pair of the
values of (µ, γ) are calculated. For γ = 0, the RKHS meta-model is obtained by solving
the RKHS group lasso optimization problem, while for γ ̸= 0 the RKHS ridge group sparse
optimization problem is solved to calculate the RKHS meta-model. The obtained estimators are
evaluated by considering a new dataset and the RKHS meta-model with the minimum value of
the prediction error is chosen as the best estimator.

2. The RKHS meta-model with at most qmax groups in its support, i.e. |S f̂ | ≤ qmax.
First, the tuning parameter γ is set as zero. Then, a value of µ for which the number of groups
v ∈ P in the solution of the RKHS group lasso optimization problem is equal to qmax, is
computed. This value of µ will be denoted by µqmax. Finally, the RKHS meta-models containing
at most qmax groups in their support are obtained by implementing the RKHS ridge group
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sparse algorithm for a grid of values of γ ̸= 0 and µqmax. This procedure is described in more
details in Section RKHS meta-model with qmax active groups.

Calculation of the Gram matrices

The available kernels in the RKHSMetaMod package are: Gaussian kernel, Matérn 3/2 kernel,
Brownian kernel, quadratic kernel and linear kernel. The usual presentation of these kernels is given in
Table 1. The choice of kernel, that is done by the user, determines the functional approximation space.

Kernel type Mathematical formula for u ∈ Rn, v ∈ R RKHSMetaMod name
Gaussian ka(u, v) = exp(−∥u− v∥2/2r2) "gaussian"
Matérn 3/2 ka(u, v) = (1 +

√
3|u− v|/r) exp(−

√
3|u− v|/r) "matern"

Brownian ka(u, v) = min(u, v) + 1 "brownian"
Quadratic ka(u, v) = (uTv + 1)2 "quad"
Linear ka(u, v) = uTv + 1 "linear"

Table 1: List of the reproducing kernels used to construct the RKHSH. The range parameters r in the
Gaussian and Matérn 3/2 kernels are assumed to be fixed and set as 1/2 and

√
3/2, respectively. The

value 1 is added to the Brownian kernel to relax the constraint of nullity at the origin (Durrande et al.,
2013).

For a chosen kernel, the algorithm to calculate the Gram matrices Kv, v ∈ P in the RKHSMetaMod
package, is implemented as calc_Kv function. This algorithm is based on three essential points:

(1) Modify the chosen kernel:
In order to satisfy the conditions of constructing the RKHS H described in Section "RKHS
construction" of the Appendix (supplementary materials), these kernels are modified according
to Equation "(2)" (see the Appendix (supplementary materials)). Let us take the example of the
Brownian kernel:
The RKHS associated with the Brownian kernel ka(Xa, X′a) = min(Xa, X′a) + 1 is well known to
beHa = { f : [0, 1]→ R is absolutely continuous, and f (0) = 0,

∫ 1
0 f ′(Xa)

2dXa < ∞}, with the

inner product ⟨ f , h⟩Ha =
∫ 1

0 f ′(Xa)h′(Xa)dXa. Easy calculations lead to obtain the Brownian
kernel as follows,

k0a = min(Xa, X′a) + 1− (3/4)(1 + Xa − X2
a /2)(1 + X′a − X′2a /2).

The RKHS associated with kernel k0a is the set H0a = { f ∈ Ha :
∫ 1

0 f (Xa)dXa = 0}, and we
haveH = 1+ ∑v∈P Hv = { f : [0, 1]d → R : f = f0 + ∑v∈P fv(Xv), with fv ∈ Hv}.

Remark 3 In the current version of the package, we consider the input variables X = (X1, ..., Xd) that
are uniformly distributed on [0, 1]d. In order to consider the input variables that are not distributed
uniformly, it suffices to modify a part of the function calc_Kv related to the calculation of the kernels
k0a, a = 1, ..., d. For example, for X = (X1, ..., Xd) being distributed with law PX = ∏d

a=1 Pa on
X =

⊗d
a=1 Xa ⊂ Rd, the kernel k0a associated with the Brownian kernel is calculated as follows,

k0a = min(Xa, X′a) + 1−
(
∫
Xa
(min(Xa, U) + 1)dPa)(

∫
Xa
(min(X′a, U) + 1)dPa)

(
∫
Xa

∫
Xa
(min(U, V) + 1)dPadPa)

.

The other parts of function calc_Kv remain unchanged.

(2) Calculate the Gram matrices Kv for all v:
First, for all a = 1, ..., d, the Gram matrices Ka associated with kernels k0a are calculated using
Equation "(2)" (see the Appendix (supplementary materials)), (Ka)i,i′ = k0a(Xai, Xai′ ). Then,
for all v ∈ P , the Gram matrices Kv associated with kernel kv = ∏a∈v k0a are computed by
Kv =

⊙
a∈v Ka.

(3) Insure the positive definiteness of the matrices Kv:
The output of function calc_Kv is one of the input arguments of the functions associated with the
RKHS group lasso and the RKHS ridge group sparse algorithms. Throughout these algorithms
we need to calculate the inverse and the square root of the matrices Kv. In order to avoid the
numerical problems and insure the invertibility of the matrices Kv, it is mandatory to have these
matrices positive definite. One way to render the matrices Kv positive definite is to add a nugget
effect to them. That is, to modify matrices Kv by adding a diagonal with a constant term, i.e.
Kv + epsilon× In. The value of epsilon is computed based on the data and through a part of
the algorithm of the function calc_kv. Let us briefly explain this part of the algorithm:
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For each group v ∈ P , let λv,i, i = 1, ..., n be the eigenvalues associated with the matrix Kv. Set
λv,max = maxiλv,i and λv,min = miniλv,i. For some fixed value of tolerance tol, and for each
matrix Kv, if "λv,min < λv,max×tol", then, the eigenvalues of Kv are replaced by λv,i+epsilon,
with epsilon being equal to λv,max×tol. The value of tol is set as 1e−8 by default, but one may
consider a smaller or a greater value for it depending on the kernel chosen and the value of n.

The function calc_Kv is described in Section "Companion functions" (supplementary materials) and
illustrated in Example 2.

Optimization algorithms

The RKHS meta-model is the solution of one of the optimization problems: the minimization of the
RKHS group lasso criterion presented in Equation (14) (if γ = 0), or the minimization of the RKHS
ridge group sparse criterion presented in Equation (13) (if γ ̸= 0). In the following, the algorithms to
solve these optimization problems are presented.

RKHS group lasso

A popular technique for doing group wise variable selection is group lasso. With this procedure,
depending on the value of the tuning parameter µ, an entire group of predictors may drop out of
the model. An efficient algorithm for solving group lasso problem is the classical block coordinate
descent algorithm (Boyd et al., 2011; Bubeck, 2015). Following the idea of Fu (1998), Yuan and Lin
(2006) implemented a block wise descent algorithm for the group lasso penalized least-squares under
the condition that the model matrices in each group are orthonormal. A block coordinate (gradient)
descent algorithm for solving the group lasso penalized logistic regression is then developed by Meier
et al. (2008). This algorithm is implemented in the R package grplasso available from CRAN (Meier,
2020). Yang and Zou (2015) proposed a unified algorithm named group wise majorization descent
for solving the general group lasso learning problems by assuming that the loss function satisfies a
quadratic majorization condition. The implementation of their work is done in the gglasso R package
available from CRAN (Yang et al., 2020).

In order to solve the RKHS group lasso optimization problem, we use the classical block coordinate
descent algorithm. The minimization of criterion Cg( f0, θ) (see Equation (14)) is done along each
group v at a time. At each step of the algorithm, the criterion Cg( f0, θ) is minimized as a function
of the current block’s parameters, while the parameters values for the other blocks are fixed to their
current values. The procedure is repeated until convergence. This procedure leads to Algorithm 1 (see
the Appendix (supplementary materials) for more details on this procedure). In the RKHSMetaMod

Algorithm 1 RKHS group lasso algorithm:

1: Set θ0 = [0]|P|×n
2: repeat
3: Calculate f0 = argmin f0

Cg( f0, θ)

4: for v ∈ P do
5: Calculate Rv = Y− f0 −∑v ̸=w Kwθw

6: if 2∥K1/2
v Rv∥/

√
n ≤ µg then

7: θv ← 0
8: else
9: θv ← argminθv

Cg( f0, θ)
10: end if
11: end for
12: until convergence

package, the Algorithm 1 is implemented as RKHSgrplasso function. This function is described in
Section "Companion functions" (supplementary materials) and illustrated in Example 2.

RKHS ridge group sparse

In order to solve the RKHS ridge group sparse optimization problem, we propose an adapted block
coordinate descent algorithm. This algorithm is provided in two steps:

Step 1 Initialize the input parameters by the solutions of the RKHS group lasso algorithm for each value
of the tuning parameter µ, and implement the RKHS ridge group sparse algorithm through the
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active support of the RKHS group lasso solutions until it achieves convergence. This step is
provided in order to decrease the execution time. In fact, instead of implementing the RKHS
ridge group sparse algorithm over the set of all groups P , it is implemented only over the
groups in the support of the solution of the RKHS group lasso algorithm, Ŝ f̂Group Lasso

.

Step 2 Re-initialize the input parameters with the obtained solutions of Step 1 and implement the
RKHS ridge group sparse algorithm through all groups in P until it achieves convergence. This
second step makes it possible to verify that no group is missing in the output of Step 1.

This procedure leads to Algorithm 2 (see the Appendix (supplementary materials) for more details
on this procedure). In the RKHSMetaMod package the Algorithm 2 is implemented as pen_MetMod

Algorithm 2 RKHS ridge group sparse algorithm:
1: Step 1:
2: Set θ0 = θ̂Group Lasso and P̂ = Ŝ f̂Group Lasso

3: repeat
4: Calculate f0 = argmin f0

C( f0, θ)

5: for v ∈ P̂ do
6: Calculate Rv = Y− f0 −∑v ̸=w Kwθw

7: Solve J∗ = argmint̂v∈Rn{J(t̂v), such that ∥K−1/2
v t̂v∥ ≤ 1}

8: if J∗ ≤ γ then
9: θv ← 0

10: else
11: θv ← argminθv

C( f0, θ)
12: end if
13: end for
14: until convergence
15: Step 2:
16: Implement the same procedure as Step 1 with θ0 = θ̂old, P̂ = P▷ θ̂old is the estimation of θ in Step

1.

function. This function is described in Section "Companion functions" (supplementary materials) and
illustrated in Example 2.

RKHS meta-model with at most qmax groups in its support

By considering some prior information about the data, one may be interested in a RKHS meta-model
f̂ with the number of groups in its support not greater than some "qmax". In order to obtain such an
estimator, we provide the following procedure in the RKHSMetaMod package:

• First, the tuning parameter γ is set as zero and a value of µ for which the solution of the RKHS
group lasso algorithm, Algorithm 1, contains exactly qmax groups in its support is computed.
This value is denoted by µqmax.

• Then, the RKHS ridge group sparse algorithm, Algorithm 2, is implemented by setting the
tuning parameter µ equal to µqmax and a grid of values of the tuning parameter γ > 0.

This procedure leads to Algorithm 3. This algorithm is implemented in the RKHSMetaMod package,
as function RKHSMetMod_qmax (see Section "Main RKHSMetaMod functions" (supplementary materials)
for more details on this function).

Remark 4 As both terms in the penalty function of criterion (13) enforce sparsity to the solution, the estimator
obtained by solving the RKHS ridge group sparse associated with the pair of the tuning parameters (µqmax, γ >
0) may contain a smaller number of groups than the solution of the RKHS group lasso optimization problem (i.e.
the RKHS ridge group sparse with (µqmax, γ = 0)). And therefore, the estimated RKHS meta-model contains
at most "qmax" groups in its support.

4 RKHSMetaMod through examples

Simulation study

Let us consider the g-function of Sobol (Saltelli et al., 2009) in the Gaussian regression framework, i.e.
Y = m(X) + ε. The error term ε is a centered Gaussian random variable with variance σ2, and m is the
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Algorithm 3 Algorithm to estimate RKHS meta-model with at most qmax groups in its
support:

1: Calculate µmax = maxv 2∥K1/2
v (Y−Y)∥/

√
n

2: Set µ1 = µmax and µ2 = µmax/rat ▷ rat is setted by user.
3: repeat
4: Implement RKHS group lasso algorithm, Algorithm 1, with µi = (µ1 + µ2)/2
5: Set q = |Ŝ f̂Group Lasso

|
6: if q > qmax then
7: Set µ1 = µ1 and µ2 = µi
8: else
9: Set µ1 = µi and µ2 = µ2

10: end if
11: until q = qmax or i > Num ▷ Num is setted by user.
12: Implement RKHS ridge group sparse algorithm, Algorithm 2, with (µ = µqmax , γ > 0)

g-function of Sobol defined over [0, 1]d by,

m(X) =
d

∏
a=1

|4Xa − 2|+ ca

1 + ca
, ca > 0. (17)

The Sobol indices of the g-function can be expressed analytically:

∀v ∈ P , Sv =
1
D ∏

a∈v
Da, Da =

1
3(1 + ca)2 , D =

d

∏
a=1

(Da + 1)− 1.

Set c1 = 0.2, c2 = 0.6, c3 = 0.8 and (ca)a>3 = 100. With these values of coefficients ca, the variables
X1, X2 and X3 explain 99.98% of the variance of function m(X) (see Table 4).

In this Section, three examples are presented. In all examples, the value of Dmax is set as three. Ex-
ample 1 illustrates the use of the RKHSMetMod function by considering three different kernels, "matern",
"brownian", and "gaussian" (see Table 1), and three datasets of n ∈ {50, 100, 200} observations and
d = 5 input variables. The larger datasets with n ∈ {1000, 2000, 5000} observations and d = 10
input variables are studied in Examples 2 and 3. In each example, two independent datasets are
generated: (X, Y) to estimate the meta-models, and (XT, YT) to estimate the prediction errors. The
design matrices X and XT are the Latin Hypercube Samples of the input variables that are generated
using maximinLHS function of the package lhs available at CRAN (Carnell, 2021):

library(lhs); X <- maximinLHS(n, d); XT <- maximinLHS(n, d)

The response variables Y and YT are calculated as Y = m(X) + ε and YT = m(XT) + εT , where ε, and
εT are centered Gaussian random variables with σ2 = (0.2)2:

a <- c(0.2, 0.6, 0.8, 100, 100, 100, 100, 100, 100, 100)[1:d]
g=1; for (i in 1:d) g = g*(abs(4*X[,i]-2)+a[i])/(1+a[i])
sigma <- 0.2
epsilon <- rnorm(n, 0, sigma^2); Y <- g + epsilon
gT=1; for (i in 1:d) gT = gT*(abs(4*XT[,i]-2)+a[i])/(1+a[i])
epsilonT <- rnorm(n, 0, sigma^2); YT <- gT + epsilonT

Example 1 RKHS meta-model estimation using RKHSMetMod function:

In this example, three datasets of n points maximinLHS over [0, 1]d with n ∈ {50, 100, 200} and d = 5
are generated, and a grid of five values of tuning parameters µ and γ is considered as follows:

µ(1:5) = µmax/(
√

n× 2(2:6)), γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0).

For each dataset, the experiment is repeated Nr = 50 times. At each repetition, the RKHS meta-models
associated with the pair of tuning parameters (µ, γ) are estimated using the RKHSMetMod function:

Dmax <- 3; kernel <- "matern" # kernel <- "brownian" # kernel <- "gaussian"
gamma <- c(0.2, 0.1, 0.01, 0.005, 0); frc <- 1/(0.5^(2:6))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

These meta-models are evaluated using a testing dataset. The prediction errors are computed for them
using the PredErr function. The RKHS meta-model with minimum prediction error is chosen to be the
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best estimator for the model. Finally, the Sobol indices are computed for the best RKHS meta-model
using the function SI_emp:

Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, Err)

The vector mu is the values of the tuning parameter µ that are calculated throughout the function
RKHSMetMod. It could be recovered from the output of the RKHSMetMod function as follows:

mu <- vector()
l <- length(gamma); for(i in 1:length(frc)){mu[i] <- res[[(i-1)*l+1]]$mu}

The performance of this method for estimating a meta-model is evaluated by considering a third
dataset (m(Xthird

i ), Xthird
i ), i = 1, ..., N, with N = 1000. The global prediction error is calculated as

follows:

Let f̂r(.) be the best RKHS meta-model obtained in the repetition r, r = 1, ..., Nr, then

GPE =
1

Nr

Nr

∑
r=1

1
N

N

∑
i=1

( f̂r(Xthird
i )−m(Xthird

i ))2.

The values of GPE obtained for different kernels and values of n are given in Table 2. As expected

n 50 100 200
GPEm 0.13 0.07 0.03
GPEb 0.14 0.10 0.05
GPEg 0.15 0.10 0.07

Table 2: Example 1: The columns of the table correspond to the different datasets with n ∈
{50, 100, 200} and d = 5. Each line of the table, from up to down, gives the value of GPE obtained for
each dataset associated with the "matern", "brownian" and "gaussian" kernels, respectively.

the value of GPE decreases as n increases. The lowest values of GPE are obtained when using the
"matern" kernel.

In order to sum up the behaviour of the procedure for estimating the Sobol indices, we consider
the mean square error (MSE) criterion obtained by ∑v(∑

Nr
r=1(Ŝv,r − Sv)2/Nr), where for each group v,

Sv denotes the true values of the Sobol indices, and Ŝv,r is the empirical Sobol indices of the best RKHS
meta-model in repetition r. The obtained values of MSE for different kernels and values of n are given
in Table 3. As expected, the values of MSE are smaller for larger values of n. The smallest values are

n 50 100 200
MSEm 75.12 46.72 28.22
MSEb 110.71 84.99 41.06
MSEg 78.22 94.67 67.02

Table 3: Example 1: The columns of the table correspond to the different datasets with n ∈
{50, 100, 200} and d = 5. Each line of the table, from up to down, gives the value of MSE ob-
tained for each dataset associated with the "matern", "brownian" and "gaussian" kernels, respectively.

obtained when using the "matern" kernel.

The means of the empirical Sobol indices of the best RKHS meta-models through all repetitions
for n = 200 and "matern" kernel are displayed in Table 4. It appears that the estimated Sobol indices

v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum
Sv 43.30 24.30 19.20 5.63 4.45 2.50 0.57 99.98
Ŝv,. 46.10 26.33 20.62 2.99 2.22 1.13 0.0 99.39

Table 4: Example 1: The first line of the table gives the true values of the Sobol indices ×100. The
second line gives the mean of the estimated empirical Sobol indices (Ŝv,. = ∑Nr

r=1 Ŝv,r/Nr) ×100 greater
than 10−2 calculated over fifty simulations for n = 200 and "matern" kernel. The sum of the Sobol
indices is displayed in the last column.

are close to the true ones, nevertheless, they are overestimated for the main effects, i.e. groups
v ∈ {{1}, {2}, {3}}, and underestimated for the interactions of order two and three, i.e. groups
v ∈ {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Note that the strategy of choosing the tuning parameters is based
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on the minimization of the prediction error of the estimated meta-model, which may not minimize the
error of estimating the Sobol indices.

Taking into account the results obtained for this Example 1, the calculations in the rest of the
examples is done using only the "matern" kernel.

Example 2 A time-efficient strategy to obtain the "optimal" tuning parameters when dealing with large
datasets:

A dataset of n points maximinLHS over [0, 1]d with n = 1000 and d = 10 is generated. First, we use
functions calc_Kv and mu_max to compute the eigenvalues and eigenvectors of the positive definite
matrices Kv, and the value of µmax, respectively:

kernel <- "matern"; Dmax <- 3
Kv <- calc_Kv(X, kernel, Dmax, TRUE, TRUE)
mumax <- mu_max(Y, Kv$kv)

Then, we consider the two following steps:

1. Set γ = 0 and, µ(1:9) = µmax/(
√

n× 2(2:10)). Calculate the RKHS meta-models associated with
the values of µg = µ×

√
n by using the function RKHSgrplasso. Gather the obtained RKHS

meta-models in a list, res_g (while this job could be done using the function RKHSMetMod by
setting γ = 0, in this example, we use the function RKHSgrplasso in order to avoid the re-
calculation of Kv’s at the next step). Thereafter, for each estimator in res_g, the prediction error
is calculated by considering a new dataset and using the function PredErr. The value of µ with
the smallest error of prediction in this step is denoted by µi. Let us implement this step:
For a grid of values of µg, a sequence of the RKHS meta-models are calculated and gathered in
the res_g list:

mu_g <- c(mumax*0.5^(2:10))
res_g <- list(); resg <- list()
for(i in 1:length(mu_g)){
resg[[i]] <- RKHSgrplasso(Y, Kv, mu_g[i], 1000, FALSE)
res_g[[i]] <- list("mu_g"=mu_g, "gamma"=0, "MetaModel"=resg[[i]])

}

Output res_g contains nine RKHS meta-models and they are evaluated using a testing dataset:

gamma <- c(0); Err_g <- PredErr(X, XT, YT, mu_g, gamma, res_g, kernel, Dmax)

The prediction errors of the RKHS meta-models obtained in this step are displayed in Table 5.
It appears that the minimum prediction error corresponds to the solution of the RKHS group

µg 1.304 0.652 0.326 0.163 0.081 0.041 0.020 0.010 0.005
γ = 0 0.197 0.156 0.145 0.097 0.063 0.055 0.056 0.063 0.073

Table 5: Example 2: Prediction errors associated with the RKHS meta-models computed in step 1.

lasso algorithm with µg = 0.041, so µi = 0.041/
√

n.

2. Choose a smaller grid of values of µ, (µ(i−1), µi, µ(i+1)), and set a grid of values of γ > 0.
Calculate the RKHS meta-models associated with each pair of the tuning parameters (µ, γ) by
the function pen_MetMod. Calculate the prediction errors for the new sequence of the RKHS
meta-models using the function PredErr. Compute the empirical Sobol indices for the best
estimator. Let us go back to the implementation of the example and apply this step 2:
The grid of the values of µ in this step is (0.081, 0.041, 0.020)/

√
n. The RKHS meta-models

associated with this grid of the values of µ are gathered in a new list resgnew. We set γ(1:4) =

(0.2, 0.1, 0.01, 0.005), and we calculate the RKHS meta-models for this new grid of the values of
(µ, γ) using pen_MetMod function:

gamma <- c(0.2, 0.1, 0.01, 0.005); mu <- c(mu_g[5], mu_g[6], mu_g[7])/sqrt(n)
resgnew <- list()
resgnew[[1]] <- resg[[5]]; resgnew[[2]] <- resg[[6]]; resgnew[[3]] <- resg[[7]]
res <- pen_MetMod(Y, Kv, gamma, mu, resgnew, 0, 0)

The output res is a list of twelve RKHS meta-models. These meta-models are evaluated using
a new dataset, and their prediction errors are displayed in Table 6. The minimum prediction
error is associated with the pair (0.020/

√
n, 0.01), and the best RKHS meta-model is then

f̂(0.020/
√

n,0.01).
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µ 0.081/
√

n 0.041/
√

n 0.020/
√

n
γ = 0.2 0.153 0.131 0.119
γ = 0.1 0.098 0.079 0.072
γ = 0.01 0.065 0.054 0.053
γ = 0.005 0.064 0.054 0.054

Table 6: Example 2: Obtained prediction errors in step 2.

The performance of this procedure for estimating the Sobol indices is evaluated using the
relative error (RE) defined as follows:
For each v, let Sv be the true value of the Sobol indices displayed in Table 4 and Ŝv be the
estimated empirical Sobol indices. Then

RE = ∑
v
|Ŝv − Sv|/Sv. (18)

In Table 7 the estimated empirical Sobol indices, their sum, and the value of RE are displayed.

v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum RE
Ŝv 42.91 25.50 20.81 4.40 3.84 2.13 0.00 99.60 1.64

Table 7: Example 2: The estimated empirical Sobol indices ×100 greater than 10−2. The last two
columns show ∑v Ŝv and RE, respectively.

The obtained RE for each group v is smaller than 1.64%, therefore, the estimated Sobol indices in this
example are very close to the true values of the Sobol indices displayed in the first row of Table 4.

Example 3 Dealing with larger datasets:

Two datasets of n points maximinLHS over [0, 1]d with n ∈ {2000, 5000} and d = 10 are generated. In
order to obtain one RKHS meta-model associated with one pair of the tuning parameters (µ, γ), the
number of coefficients to be estimated is equal to n×vMax= n× 175. Table 8 gives the execution
time for different functions used throughout the Examples 1-3. In all examples we used a cluster
of computers with: 2 Intel Xeon E5-2690 processors (2.90GHz) and 96Gb Ram (6x16Gb of memory
1600MHz). As we can see, the execution time increases fast as n increases. In Figure 1 the plot

(n, d) calc_Kv mu_max RKHSgrplasso pen_MetMod |S f̂ | sum

(100,5) 0.09s 0.01s 1s 2s 18 ∼ 3s
2s 3s 19 ∼ 5s

(500,10) 33s 9s 247s 333s 39 ∼ 10min
599s 816s 64 ∼ 24min

(1000,10) 197s 53s 959s 1336s 24 ∼ 42min
2757s 4345s 69 ∼ 2h

(2000,10) 1498s 420s 3984s 4664s 12 ∼ 2h:56min
12951s 22385s 30 ∼ 10h:20min

(5000,10) 34282s 6684s 38957s 49987s 11 ∼ 36h:05min
99221s 111376s 15 ∼ 69h:52min

Table 8: Example 3: The kernel used is "matern". The execution time for the functions RKHSgrplasso
and pen_MetMod is displayed in each row for two pairs of values of the tuning parameters (µ1 =
µmax/(

√
n× 27), γ = 0.01) on up, and (µ2 = µmax/(

√
n× 28), γ = 0.01) on below. In the column |S f̂ |,

the number of groups in the support of each estimated RKHS meta-model is displayed.

of the logarithm of the time (in seconds) versus the logarithm of n is displayed for the functions
calc_Kv, mu_max, RKHSgrplasso and pen_MetMod. It appears that, the algorithms of these functions
are of polynomial time O(nα) with α ⋍ 3 for the functions calc_Kv and mu_max, and α ⋍ 2 for the
functions RKHSgrplasso and pen_MetMod.

Taking into account the results obtained for the prediction error and the values of (µ̂, γ̂) in Example
2, in this example, only two values of the tuning parameter µ(1:12) = µmax/(

√
n× 2(7:8)), and one

value of the tuning parameter γ = 0.01 are considered. The RKHS meta-models associated with the
pair of values (µi, γ), i = 1, 2 are estimated using the RKHSMetMod function:
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Figure 1: Example 3: Timing plot for d = 10, n ∈ {100, 300, 500, 1000, 2000, 5000}, and different
functions of the RKHSMetaMod package. The logarithm of the execution time (in seconds) for the
functions RKHSgrplasso and pen_MetMod is displayed for two pairs of values of the tuning parameters
(µ1 = µmax/(

√
n× 27), γ = 0.01) in solid lines, and (µ2 = µmax/(

√
n× 28), γ = 0.01) in dashed lines.

kernel <- "matern"; Dmax <- 3
gamma <- c(0.01); frc <- 1/(0.5^(7:8))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

The prediction error and the empirical Sobol indices are then calculated for the obtained meta-models
using the functions PredErr and SI_emp:

mu <- vector(); mu[1] <- res[[1]]$mu; mu[2] <- res[[2]]$mu
Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, NULL)

Table 9 gives the estimated empirical Sobol indices as well as their sum, the values of RE (see Equation
(18)), and the prediction errors associated with the obtained estimators. For n = 5000 we obtained the

n v {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} sum RE Err

2000 Ŝv;(µ1,γ) 45.54 24.78 21.01 3.96 3.03 1.65 0.00 99.97 2.12 0.052
Ŝv;(µ2,γ) 45.38 25.07 19.69 4.36 3.66 1.79 0.00 99.95 1.79 0.049

5000 Ŝv;(µ1,γ) 44.77 25.39 20.05 4.49 3.38 1.90 0.00 99.98 1.81 0.049
Ŝv;(µ2,γ) 43.78 24.99 19.56 5.43 3.90 2.32 0.00 99.98 1.29 0.047

Table 9: Example 3: The estimated empirical Sobol indices×100 greater than 10−2 associated with each
estimated RKHS meta-model is printed. The last three columns show ∑v Ŝv, RE, and the prediction
error (Err), respectively. We have µ1 = µmax/(

√
n× 27), µ2 = µmax/(

√
n× 28) and γ = 0.01.

smaller values of RE and prediction error (Err). So as expected, the estimation of the Sobol indices as
well as the prediction quality are better for larger values of n.

In Figure 2 the result of the estimation quality and the Sobol indices for the dataset with n equal
to 5000, d equal to 10, and (µ2, γ) are displayed. The line y = x in red crosses the cloud of points
as long as the values of the g-function are smaller than three. When the values of the g-function are
greater than three, the estimator f̂ tends to underestimate the g-function. Concerning the Sobol indices
obtained by the estimator f̂ , as illustrated in the right-hand plot, with the exception of groups {1},
{2}, {3}, {1, 2}, {1, 3}, and {2, 3} for which we obtained significant values of the sobol indices, for all
other groups the estimated sobol indices are very small and almost zero.
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Figure 2: Example 3: On the left, the RKHS meta-model versus the g-function is plotted. On the right,
the empirical Sobol indices in the y-axis and vMax= 175 groups in the x-axis are displayed.

Comparison examples

This section includes two examples. In the first example we reproduce an example from paper Gu
et al. (2019) and compare the prediction quality of the RKHS meta-model with the GP (Kriging)
based meta-models from the RobusGaSP (Gu et al., 2019) and DiceKriging (Roustant et al., 2012)
packages. The objective is to evaluate the quality of the RKHS meta-model and to compare it with
methods recently proposed for approximating complex models. In the first example we consider
one-dimensional model and focus on the comparison between the true model and the estimated
meta-model. In the second example we reproduce an example from paper Roustant et al. (2012) which
allows us to compare the prediction quality of the RKHS meta-model with the Kriging based meta-
model from DiceKriging package, as well as the estimation quality of the Sobol indices in our package
with the well-known package sensitivity. For the sake of comparison between the three methods, the
meta-models are calculated using the same experimental design and outputs, and the same kernel
function available in three packages is used. However, in packages RobustGaSP and DiceKriging
the range parameter r (see Table 1) in the kernel function is estimated by marginal posterior modes
with the robust parameterization and by MLE with upper and lower bounds, respectively, while it is
assumed to be fixed and set as

√
3/2 in the RKHSMetaMod package.

Example 4 "The modified sine wave function":

We consider the 1-dimensional modified sine wave function defined by m(X) = 3sin(5πX) +
cos(7πX) over [0, 1]. The same experimental design as described in Gu et al. (2019) is considered: the
design matrix X is a sequence of 12 equally spaced points on [0, 1], and the response variable Y is
calculated as Y = m(X):

X <- as.matrix(seq(0,1,1/11)); Y <- sinewave(X)

where sinewave function is defined in Gu et al. (2019). We build the GP based meta-models by the
RobustGaSP and the DiceKriging packages using the constant mean function and kernel Matérn 3/2:

library(RobustGaSP)
res.rgasp <- rgasp(design=X, response=Y, kernel_type="matern_3_2")
library(DiceKriging)
res.km <- km(design=X, response=Y, covtype="matern3_2")

As d = 1, we have Dmax = 1. We consider the grid of values of µ(1:9) = µmax/(
√

n× 2(2:10)) and
γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0). The RKHS meta-models associated with the pair of values (µi, γj),
i = 1, · · · , 9, j = 1, · · · , 5 are estimated using the RKHSMetMod function:

kernel <- "matern"; Dmax <- 1
gamma <- c(0.2, 0.1, 0.01, 0.005,0); frc <- 1/(0.5^(2:10))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)
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Given a testing dataset (XT, YT), the prediction errors associated with the obtained RKHS meta-
models are calculated using the PredErr function, and the best RKHS meta-model is chosen to be the
estimator of the model m(X):

XT <- as.matrix(seq(0,1,1/11)); YT <- sinewave(XT)
Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)

To compare these three estimators in terms of the prediction quality, we perform prediction on 100 test
points, equally spaced in [0, 1]:

predict_X <- as.matrix(seq(0,1,1/99))
#prediction with the GP based meta-models:
rgasp.predict <- predict(res.rgasp, predict_X)
km.predict <- predict(res.km, predict_X, type='UK')
#prediction with the best RKHS meta-model:
res.predict <- prediction(X, predict_X, kernel, Dmax, res, Err)

The prediction results are plotted in Figure 3. The black circles that correspond to the prediction
from the RKHSMetMod package are closer to the real output than the green and the blue circles
corresponding to the predictive means from the RobustGaSP and DiceKriging packages. The meta-

Figure 3: Example 4: Prediction of the modified sine wave function with 100 test points, equally
spaced in [0, 1]. The x-axis is the real output and the y-axis is the prediction. The black circles are the
prediction from RKHSMetMod, the green circles are the predictive mean from RobustGaSP, and the
blue circles are the predictive mean from DiceKriging.

model results are plotted in Figure 4. The prediction from the RKHSMetaMod package plotted as
the black curve is much more accurate as an estimate of the true function (plotted in red) than the
predictive mean from the RobustGaSP and DiceKriging packages plotted as the blue and green
curves, respectively. As already noted by Gu et al. (2019), for that sine wave example, the meta-model
from the DiceKriging package "degenerates to the fitted mean with spikes at the design points".

Example 5 "A standard SA 8-dimensional example":

We consider the 8-dimensional g-function of Sobol implemented in the package sensitivity: the func-
tion m(X) as defined in Equation (17) with coefficients c1 = 0, c2 = 1, c3 = 4.5, c4 = 9, (ca)a=5,6,7,8 =
99. With these values of coefficients ca, the variables X1, X2, X3 and X4 explain 99.96% of the variance
of function m(X) (see Table 10).

We consider the same experimental design as described in Roustant et al. (2012): the design
matrices X and XT are 80-point optimal Latin Hypercube Samples of the input variables generated
by the optimumLHS function of package lhs, and the response variables Y and YT are calculated as
Y = m(X), and YT = m(XT) using sobol.fun function of the package sensitivity:

n <- 80; d <- 8
library(lhs); X <- optimumLHS(n, d); XT <- optimumLHS(n, d)
library(sensitivity); Y <- sobol.fun(X); YT <- sobol.fun(XT)
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Figure 4: Example 4: The red curve is the graph of the modified sine wave function with 100 test
points, equally spaced in [0, 1]. The black curve is the prediction produced by the RKHSMetaMod
package. The blue curve is the predictive mean by the DiceKriging package, and the green curve is
the predictive mean produced by the RobustGaSP package.

Let us first consider the RKHS meta-model method. We set Dmax= 3, and we consider the grid of
values of µ(1:9) = µmax/(

√
n× 2(2:10)), and γ(1:5) = (0.2, 0.1, 0.01, 0.005, 0). The RKHS meta-models

associated with the pair of values (µi, γj), i = 1, · · · , 9, j = 1, · · · , 5 are estimated using the RKHSMetMod
function:

kernel <- "matern"; Dmax <- 3
gamma <- c(0.2, 0.1, 0.01, 0.005,0); frc <- 1/(0.5^(2:10))
res <- RKHSMetMod(Y, X, kernel, Dmax, gamma, frc, FALSE)

Given the testing dataset (XT, YT), the prediction errors associated with the obtained RKHS meta-
models are calculated using PredErr function, and the best RKHS meta-model is chosen to be the
estimator of the model m(X). Finally, the Sobol indices are computed for the best RKHS meta-model
using the function SI_emp:

Err <- PredErr(X, XT, YT, mu, gamma, res, kernel, Dmax)
SI <- SI_emp(res, Err)

Secondly, let us build the GP based meta-model. We use the km function of the package DiceKriging
with the constant mean function and kernel Matérn 3/2:

library(DiceKriging)
res.km <- km(design = X, response = Y, covtype = "matern3_2")

The Sobol indices associated with the estimated GP based meta-model are calculated using fast99
function of the package sensitivity:

SI.km <- fast99(model = kriging.mean, factors = d, n = 1000,
q = "qunif", q.arg = list(min = 0, max = 1), m = res.km)

where kriging.mean function is defined in Roustant et al. (2012).

The result of the estimation with the best RKHS meta-model and the Kriging based meta-model is
drawn in Figure 5. The black circles that correspond to the best RKHS meta-model are closer to the
real output than the blue circles corresponding to the GP based meta-model from the DiceKriging
package. Another way to evaluate the prediction quality of the estimated meta-models is to consider
the mean square error of the fitted meta-model computed by ∑80

i=1(m(Xi)− f̂ (Xi))
2/80. We obtained

3.96% and 0.07% for the Kriging based meta-model and the RKHS meta-model, respectively, which
confirms the good behavior of the RKHS meta-model.

The estimated Sobol indices associated with the RKHS meta-model and the Kriging based meta-
model are given in Table 10. As shown, with RKHS meta-model, we obtained non-zero values for the
interactions of order two. Concerning the main effects, excepting the first one, the estimated Sobol
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Figure 5: Example 5: The x-axis is the real output and the y-axis is the fitted meta-model. The
black circles are the meta-model from RKHSMetMod and the blue circles are the meta-model from
DiceKriging.

v {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {1, 2, 3} {1, 2, 4} sum
Sv 71.62 17.90 2.37 0.72 5.97 0.79 0.24 0.20 0.06 0.07 0.02 99.96
Ŝv 75.78 17.42 1.71 0.47 4.00 0.05 0.07 0.28 0.09 0.00 0.00 99.87
Ŝkmv 71.18 15.16 1.42 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 88.20

Table 10: Example 5: The true values of the Sobol indices ×100 greater than 10−2 are given in the first
raw. The estimated Sobol indices associated with the RKHS meta-model (Ŝv) and the Kriging based
meta-model (Ŝkmv ) are given in second and third rows, respectively.

indices with the RKHS meta-model are closer to the true ones. However, the interactions of order
three are ignored by both meta-models. For a general comparison of the estimation quality of the
Sobol indices, one may consider the criterion RE defined in Equation (18), which is equal to 7.95 for
the Kriging based meta-model, and 5.59 for the RKHS meta-model. Comparing the values of RE, we
can point out that the Sobol indices are better estimated with the RKHS meta-model in that model.

5 Summary and discussion

In this paper, we proposed an R package, called RKHSMetaMod, that estimates a meta-model of a
complex model m. This meta-model belongs to a reproducing kernel Hilbert space constructed as
a direct sum of Hilbert spaces (Durrande et al., 2013). The estimation of the meta-model is carried
out via a penalized least-squares minimization allowing both to select and estimate the terms in the
Hoeffding decomposition, and therefore, to select the Sobol indices that are non-zero and estimate
them (Huet and Taupin, 2017). This procedure makes it possible to estimate the Sobol indices of high
order, a point known to be difficult in practice. Using the convex optimization tools, RKHSMetaMod
package implements two optimization algorithms: the minimization of the RKHS ridge group sparse
criterion (13) and the RKHS group lasso criterion (14). Both of these algorithms rely on the Gram
matrices Kv, v ∈ P and their positive definiteness. Currently, the package considers only uniformly
distributed input variables. If one is interested by another distribution of the input variables, it suffices
to modify the calculation of the kernels k0a, a = 1, ..., d in the function calc_Kv of this package (see
Remark 3). The available kernels in the RKHSMetaMod package are: Gaussian kernel (with the
fixed range parameter r = 1/2), Matérn kernel (with the fixed range parameter r =

√
3/2), Brownian

kernel, quadratic kernel and linear kernel (see Table 1). With regard to the problem being under
study, one may consider other kernels or kernels with different values of the range parameter r and
add them easily to the list of the kernels in the calc_Kv function. For the large values of n and d the
calculation and storage of eigenvalues and eigenvectors of all the Gram matrices Kv, v ∈ P require
a lot of time and a very large amount of memory. In order to optimize the execution time and also
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the storage memory, except for a function that is written in R, all of the functions of RKHSMetaMod
package are written using the efficient C++ libraries through RcppEigen and RcppGSL packages.
These functions are then interfaced with the R environment in order to contribute a user friendly
package.
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Measuring the Extent and Patterns of
Urban Shrinkage for Small Towns Using R
by Cristiana Vîlcea, Liliana Popescu and Alin Clincea

Abstract Urban shrinking is a phenomenon as common as urban expansion nowadays and it affects
urban settlements of all sizes, especially from developed and industrialized countries in Europe,
America and Asia. The paper aims to assess the patterns of shrinkage for small and medium sized
towns in Oltenia region (Romania), considering demographic, economic and social indicators with
a methodological approach which considers the use of different functions and applications of R
packages. Thirteen selected indicators are analysed to perform the multivariate analysis on Principal
Component Analysis using the prcomp() function and the ggplot2 package to visualize the patterns
of urban shrinkage. Two composite indicators were additionally created to measure the extent of
urban shrinkage: CSI (Composite Shrinking Index) and RDC (Regional Demographic Change) for
two-time intervals. Based on the CSI, three major categories of shrinking were observed: persistent
shrinkage, mild shrinking or slow evolution toward shrinking, where the vast majority of towns are
found (including mining towns, where there still is a delayed restructuring of state-owned enterprises,
and towns characterised by the agrarization of local economies), and stagnant/stabilized shrinkage.

1 Introduction

Shrinking cities, considered up until recently a politically taboo subject in Europe, systematically
disregarded as a dominant development trend of some urban areas (Wiechmann, 2007; Nelle et al.,
2017), and a stigmatized topic in planning research (Pallagst, 2010), are ever more present among the
research topic of various scholars throughout the world, as well as the agenda of public authorities
and policy makers. Thus, the concept of shrinking cities differs from the classic notion of urban decline
since new processes are at stake (Cunningham-Sabot et al., 2014).

From a historical perspective, the current period of shrinkage is distinguishable from the earlier
period of decline and an earlier period of growth as well, mainly due to the prevalence of population
loss, less so in its severity and not in its persistence or lack thereof (Beauregard, 2013). Today, the
concept of shrinking cities connotes the urban degenerative effects of the breakdown of Fordist ag-
glomeration economies, as well as the effects of urban agglomerative and dissipative forces associated
with the global diffusion of contemporary, post-Fordist systems of production (Audirac, 2014).

Beginning with the 20th century, shrinking cities have developed continuously into a global phe-
nomenon, being located mainly in Central Europe, the US, Japan and Eastern European transformation
countries (Oswalt and Rieniets, 2006). They tend to have a common industrial past and are now faced
with large challenges as a result of economic restructuring (Urban Audit, 2007). In Europe, the number
of growing cities has been falling steadily since the 1960s, while almost a quarter (24%) of the cities
have registered a medium-term decline (almost half of all the Russian, Polish and Romanian cities
with a population over 200,000 inhabitants) and more than a third showed a clear downturn since 1990
(Turok and Mykhnenko, 2007). Still, the phenomenon is not equally spread throughout Europe, some
countries and regions being more affected, i.e. post socialist countries, where almost half of cities can
be described as shrinking (Wiechmann and Wolff, 2013), while others, such as France, experiencing a
more-limited intensity in terms of number of cities affected and population loss (Wolff et al., 2013).

Since the publication of Die Schrympfende Stadt (the Shrinking City) (Göb, 1977) and Coping with
City Shrinkage (Breckenfeld, 1978), some of the ways of understanding the city have changed in
emphasis. Researchers’ efforts have focused on capturing the main features of the phenomenon due to
its role in the reconfiguration of the urban space, which resulted in a substantial literature on urban
shrinking that is undoubtedly an incontrovertible and increasingly important phenomenon, and a
major challenge for future urban policies (Agirre-Maskariano, 2019; Bernt et al., 2012; Mallach et al.,
2017; Nelle et al., 2017; Pallagst, 2010; Wiechmann and Bontje, 2015; Wiechmann and Wolff, 2013).

The last two decades saw an emergence of a corpus of research and projects designed to assess
general causes and models of shrinkage. Several authors identify four to five major drivers for
shrinkage, which are often found in a combination of two or more of these causes: i) suburbaniza-
tion (flight of people and jobs to the suburbs, hollowing out of the core city, triggered by urban
sprawl)(Wiechmann, 2006; Wiechmann and Bontje, 2015; Cunningham-Sabot et al., 2014; Audirac,
2014; Reckien and Martinez-Fernandez, 2011; Wiechmann and Bontje, 2015), ii) economic decline and
industrial transformation (Wiechmann, 2006; Rink et al., 2010; Haase et al., 2014), iii) demographic
change (e.g. falling birth rates, outmigration in rural depopulation areas) (Rink et al., 2010; Haase
et al., 2014; Wiechmann and Bontje, 2015); iv) structural upheaval (economic reorganization, collapse
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of an entire political system, unrest, resettlements) and environmental pollution (Wiechmann, 2006;
Haase et al., 2014; Cunningham-Sabot et al., 2014; Wiechmann and Bontje, 2015).

Over the past decades, shrinkage has become a "normal pathway" of development for cities and
regions all across Europe (Rink et al., 2010). Recent writing and research on the shrinking cities have
also focused on indicators of urban shrinkage, which should be necessarily dynamic and capable
of detecting medium-term tendencies, distinguishing between episodic or acute shrinkage (when
developments fluctuate in a certain period, but have an overall negative evaluation) and continuous
or chronic shrinking (Wolff and Wiechmann, 2014). Since population loss, which is an initial clue of
urban processes and a major indicator for urban shrinkage, does not encompass the various aspects
of the phenomenon, there is a continuous focus on indicators to measure shrinking cities. They can
be summarized into three main categories: demographic indicators, economic indicators and social
indicators.

Among the demographic indicators, migration, population natural increase and a shifting popula-
tion structure (ageing and feminization) are key factors of population decline, highly connected to
other social, economic and built environment variables (Turok and Mykhnenko, 2007; Guimarães et al.,
2015; Haase et al., 2016; Bănică et al., 2017; Cauchi-Duval et al., 2017; Hartt, 2018). Indicators related
to economic changes (employment, unemployment, firms, services) are more difficult to gather and
raise issues in terms of comparability among countries (Martinez-Fernandez et al., 2015), but should
not be neglected as the economic decline is among the drivers of shrinkage. Social indicators usually
considered when analysing shrinkage refer either to households (housing permit rates, housing start
rate, number of households) (Bontje, 2004; Wolff and Wiechmann, 2014; Guimarães et al., 2015; Lauf
et al., 2016; Hartt, 2018), or to the number of students enrolled in education units (Guimarães et al.,
2015). This decreases attractiveness of a city as an educational place. Consequently, it causes a de-
creasing number of students enrolled in compulsory education levels and the closure of educational
institutions (Wolff and Wiechmann, 2014).

Most of the studies regarding shrinking cities focus on larger urban centres, exceeding two hundred
thousand inhabitants. However, many of the spatial planning and development strategies of the
European Union focus on small and medium-sized towns, often seen as the chronic patients of
regional policy, constantly in need of care but never getting well (Wirth et al., 2016). Most of the
French shrinking cities are small urban areas, with less than 50,000 inhabitants, while in Germany the
most dramatic decrease occurs in medium sized cities (Martinez-Fernandez et al., 2015). In Hungary,
almost every small town has shrunk during at least the last decade (Pirisi et al., 2015). In Romania, the
discussion within urban planning has also begun, despite focusing on some larger towns, researchers
from various fields drawing attention to this issue (Bănică et al., 2017; Jucu et al., 2016; Jucu and
Pavel, 2019; Păun Constantinescu, 2019; Popescu, 2014; Schoenberg and Constantin, 2014; Stoica et al.,
2020a,b) since the Romanian towns clearly witness a decline on short or medium term, which is
uneven, but in perpetuum (Păun Constantinescu, 2013).

2 Data and methods

The multidimensional concept of shrinking cities has a comprehensive meaning, as the drivers which
determine this process are complex (demographic, economic, social). Therefore official statistics
from the last three censuses (1992, 2002, 2011) and from 2018 were used to calculate indicators. We
applied simple standard formulae in population geography regarding the demographic and economic
phenomena such as population natural increase, feminization, migration, ageing, unemployment,
i.e. k1-k6 and construct composite indices. All indices used in the analysis of this phenomenon were
based on their importance and relationship to each other and to the concept itself. After a thorough
documentation focusing on other studies referring to shrinking cities (Haase et al., 2016; Hartt, 2018;
Mallach et al., 2017; Rink et al., 2010; Wiechmann and Bontje, 2015; Wiechmann and Wolff, 2013) we
selected a series of demographic and socio-economic indicators that met the criteria of availability and
relevance for the study. Availability and consistency of data for small Romanian towns represented
a major issue, as there are missing time series and uneven statistics. Thus, in order to perform the
calculation without errors caused by missing values, authors imputed these missing values with zero,
as the frequency of missingness was not high and it was observed that zero imputing does not affect
the results of the study. This major issue played an important role in the selection of the best indicators
considered for the multivariate analysis and the aggregation method. The chosen indicators vary in
terms of measurement unit, as they are expressed as absolute or computed data (Table 1), but we also
weighted their strengths and weaknesses.

The work flow consists in several stages, the main step concentrating on the creation and use of
the composite indicators (CSI and RDC) (Figure 1).

As defined by OECD (2008) in the Glossary of Statistical terms "a composite indicator is obtained
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Selected indices M.U. Assigned code

Demographic indicators

migration rate ‰ k1
rate of natural increase ‰ k2
feminization index % k3
elderly population % k4
mean age % k5

Economic indicators

unemployment rate % k6
employees number k7

Social indicators

households number k8
libraries number k9
doctors number k10
students number k11
education number k12
hospital beds number k13

Table 1: The selection of indicators used for aggregation.

Figure 1: Overall workflow for the research methodology, depicting the main steps of the process,
from the selection of indicators to the resulting aggregate indices.

from the combination of individual indicators into a single index, on the basis of an underlying model of the
multidimensional concept that is being measured".

The study uses two types of composite indices to observe and analyse the dynamics of the shrinking
process specific for the cities in the South West Development Region of Oltenia. The first composite
indicator used is the Regional Demographic Change (RDC) obtained by applying the methodology
described by Tivig et al. (2008) in the Final Report of the Mapping Regional Demographic Change and
Regional Demographic Location Risk in Europe. The RDC index was initially used to describe the process
of ageing and shrinking of the population in 27 European states from 264 regions. We adapted the
methodology to compute this index for 34 towns located in the South West Development Region of
Oltenia. The RDC index captures the extent and time-path of demographic change by accounting
for two of its dimensions: population ageing with the perspective of shrinking. The RDC index
is calculated using raw indicators for age, like the mean age, and population size like population
density. Based on these two indicators for population age and density, the ageing and shrinking
process are calculated and assessed in absolute terms for each town and three periods of time (please
see research data, sheet mean_age and density for calculated data). Thus, the index was calculated
for 3 time-intervals: 1992-2018; 2018-2030 and 1992-2030. In order to be able to make cross-period
comparison, a rescaling was necessary. For analyzing the relative position of the towns within the
region in terms of ageing and shrinking the values computed previously had been z-standardized
(Tivig et al., 2008). If the RDC index shows the demographic change that takes place in the small towns
under analysis, the RDC type indicate whether their population ages faster or slower and grows less
or shrinks as compared to the average of the region. The four types of the RDC-index were applied to
one regional dimension (South West Development Region of Oltenia) and represented showing the
overall trend (1992-2030) and the future trend (2018-2030).
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The second composite indicator (CSI) was created based on thirteen sub-indices (k1. . . 13) computed
for all 34 towns located in the study area and aggregated into a single index using the additive
method (Gan et al., 2017; Nardo et al., 2005; OECD, 2008; Saisana and Tarantola, 2002; Syrovátka and
Schlossarek, 2019). The additive aggregation method, and especially the weighted arithmetic mean,
is the widest used method (Gan et al., 2017; Pollesch and Dale, 2015) as it sums up the normalized
values of sub-indicators. The Principal Component Analysis (PCA) was performed to analyse the
correlation between the sub-indicators. We intended to use similar indicators as in other studies
(Table 1), but approach a different method and process data in R. The multiple packages make this
language a powerful tool for data processing and visualization (Barry, 2018) with multiple possibilities
of application, especially in spatial analysis (Lovelace et al., 2019). As the sub-indicators had different
measurement scales, variable standardization was handled using the option scale=true in prcomp().
Complying with the minimum required rule of 3:1 (Jollands, 2003), the use of this method allows
summarizing the entire set of individual indicators (Paul et al., 2013; Jolliffe and Cadima, 2016), while
preserving the maximum possible proportion of the total variation in the original data set (Sharma,
1996). The PCA results were represented using the ggplot2 package (Kassambara, 2017; Wickham,
2016).

3 Results

PCA was used to analyse the interrelationships among all thirteen variables (Table 1) observed in 34
small towns located in Oltenia region, in two reference years 1992 and 2018. The main characteristic of
this method is the reduction of a great number of variables to a smaller number (principal components),
as linear combinations of the variables in the multivariate set, with minimum loss of information.
Principal components outputs where computed using prcomp() for an improved numerical accuracy
and displayed using screeplot().

Figure 2: Scree plot of the principal components. The graphic representation of variances allows for
easier selection of relevant components.

Analysing the scree plots, there are small differences in the eigenvalues of the components com-
paring the two years observed (Figure 2). If we use the Kaiser criterion, we see that only the first four
(1992), respectively three (2018) components have eigenvalues greater than 1. But these components
explain only 79.5% of the variation in the data for 1992 and 73.2% for 2018 and usually a cumulative
proportion of at least 85%, that explain an acceptable level of variance, is obtained by the first five
principal components. The fourth and fifth eigenvalues of the principal components in 2018 are only
close to the value of 1. Therefore, values which are greater than 0.75 are considered as "strong". For an
acceptable level of variance, we selected the first five principal components for analysis (Table 2).

Preliminary data analysis indicates a small difference in variance and proportion for the first
five components, in the two reference years (Table 3). The data showed that the highest value of the
variable is 0.690, respectively 0.634 (Table 4), therefore we considered that the level of correlation
between each component is important above the value of 0.3.

For this set of results, the first principal component is strongly correlated with almost all the
original variables of the social and economic factors in 1992 and 2018. It has exclusively negative
correlations with almost all (except unemployment rate) variables observed in 2018. So, this component
measures primarily the social-economic factors that influence the shrinking process of small cities. The
second component measures the demographic dimension of shirking, as it has negative correlations for
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1992 PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) PC(9) PC(10) PC(11) PC(12) PC(13)

Std. dev. 2.40 1.48 1.16 1.04 0.95 0.83 0.63 0.47 0.40 0.37 0.29 0.21 0.15
Variance 0.44 0.17 0.10 0.08 0.07 0.05 0.03 0.02 0.01 0.01 0.01 0.00 0.00
Cumulative 44.2% 61.0% 71.3% 79.5% 86.5% 91.7% 94.8% 96.5% 97.8% 98.8% 99.5% 99.8% 100.0%

2018 PC(1) PC(2) PC(3) PC(4) PC(5) PC(6) PC(7) PC(8) PC(9) PC(10) PC(11) PC(12) PC(13)

Std. dev. 2.39 1.57 1.16 0.97 0.92 0.75 0.62 0.56 0.45 0.30 0.27 0.21 0.18
Variance 0.44 0.19 0.10 0.07 0.07 0.04 0.03 0.02 0.02 0.01 0.01 0.00 0.00
Cumulative 44.0% 62.9% 73.2% 80.4% 86.9% 91.3% 94.3% 96.6% 98.2% 98.8% 99.4% 99.7% 100.0%

Table 2: Summary of Principal Component Analysis (PCA) used for the selection of principal compo-
nents. The components with a cumulative variance above 0.75 are considered "strong".

PC1 PC2 PC3 PC4 PC5

1992 44.2% 61.0% 71.3% 79.5% 86.5%
2018 44.0% 62.9% 73.2% 80.4% 86.9%

change -0.0018 0.0188 0.0190 0.0083 0.0042

Table 3: Changes in the variances of the first five principal components in the analyzed time interval:
1992-2018.

the rate of natural increase and positive correlations for the rest of the demographic variables like the
feminization index, the percent of elders and the mean age. This fact suggests that the five criteria in
1992 and six in 2018 vary together, increasing or decreasing. The third and fourth components indicate
correlations with both economic and demographic variables. The third component has negative
correlations in 1992 and positive in 2018 for the migration rate and unemployment rate. In 2018, the
third component is also strongly correlated with the number of employees. The fourth component
shows a shift in correlations, as they are positive in 1992 with the introduction of a variable from the
social sector (number of schools) and negative in 2018 for the demographic variables, but positive
for the unemployment rate. The fifth component indicates also several changes in 2018 as compared
to 1992, because in 2018 it has correlations only for the social variables (positive for the number of
doctors and hospital beds and negative correlations for the number of libraries and schools) (Table 4).

The scope of this analysis is to identify the directions (principal components) along which the
variation in the data is the highest. As the first two components account for most of the variance in the
date, to achieve this goal, the dimensionality of the multivariate data was reduced into two principal
components, in order to be able to visualize them graphically. The two graphs were generated in R us-
ing the ggplot2, ggrepel, gridExtra and readxl packages (see shrinking_cities.r from supplemental
material).

The graphic visualization of the results allows to analyse the variance of the variables and the
change in direction trends for 1992 and 2018. Analysing the scores of the second principal component
versus the scores of the first principal component, we notice that, in 1992, the first principal component
has large positive associations with the number of houses, libraries, doctors, pupils, schools and
hospital beds and negative associations with the number of employees. So, it measures mainly the
social dimension of the cities as shrinkage factors. The second component measures primarily the

Principal Component (1992) Principal Component (2018)

Variable PC(1) PC(2) PC(3) PC(4) PC(5) PC(1) PC(2) PC(3) PC(4) PC(5)

k1 0.076 -0.338 -0.644 0.064 -0.419 0.407 -0.035 -0.648 -0.476 -0.023
k2 0.000 -0.588 -0.175 -0.713 -0.042 0.128 -0.613 -0.013 -0.614 -0.084
k3 -0.350 0.642 -0.129 -0.522 0.278 -0.621 0.600 -0.153 -0.015 0.133
k4 -0.711 0.557 0.089 -0.113 -0.240 0.338 0.843 -0.279 -0.047 -0.158
k5 -0.483 0.636 0.215 0.128 -0.130 0.043 0.893 0.164 -0.154 -0.010
k6 0.233 0.487 -0.708 0.142 -0.096 0.094 -0.384 -0.671 0.528 -0.060
k7 0.903 -0.175 0.223 0.170 0.125 -0.757 -0.215 0.397 -0.021 0.186
k8 0.935 0.212 0.051 0.064 -0.022 -0.936 -0.031 0.045 0.001 -0.210
k9 0.683 0.266 0.145 -0.056 -0.546 -0.832 0.071 -0.183 -0.095 -0.342
k10 0.806 0.355 -0.322 -0.054 0.186 -0.841 0.045 -0.286 -0.037 0.366
k11 0.947 0.020 0.148 0.015 0.005 -0.900 -0.067 -0.083 -0.005 -0.211
k12 0.697 0.175 0.313 -0.433 -0.323 -0.871 -0.030 -0.011 -0.018 -0.395
k13 0.798 0.239 -0.140 -0.104 0.337 -0.783 0.004 -0.238 -0.116 0.517

Table 4: The first five values of the principal components for the variables k1-k13 in 1992 and 2018.
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demographic dimension as it has large positive loadings on the rate of elders and mean age (Figure 3,
1992). This aspect is changing entirely in 2018, if we observe the directions along which we have the
highest variance of the date. Thus, the demographic variables (migration rate and elders) strongly
influence component 1, while the social-economic variables influence the second component. For a
better view of differences amongst towns, the points representing the urban settlements, vary in size
and intensity according to the values of the third and fourth components (Figure 3, 2018).

Figure 3: Principal Components Analysis of shrinkage indicators

The changes in population, especially the processes of ageing and shrinking, have a direct influence
on the socio-economic dimension of settlements. As in most European countries, the ageing of the
population is a phenomenon that characterizes almost all the settlements in Romania and will continue,
but with different intensities; however, ageing greatly varies among the towns considered for analysis.
The dimension of shrinking is given by the decrease in the number of inhabitants, which is better
expressed by the decrease in the population density. The data indicated that, same as the ageing
process, depopulation is another characteristic of the selected towns.

We used the RDC index to compare, at regional level, the dimension of ageing and shrinking of all
34 small towns located in Oltenia. Three time-intervals were considered (1992-2018 - past; 2018-2030 -
future and 1992-2030 - overall) to show the overall and the future trend (Figure 4).

Figure 4: Future (2018-2030, left) and Overall (1992-2030, right) trends of Regional Demographic
Change (RDC-type) for small towns in South-West Development Region of Oltenia

After examining the population trend for every town, we identified four categories, differentiated
by ageing, population evolution and shrinking. This shows that some towns are more resilient to
shrinkage than others, due to a combination of factors. However, there is clear evidence that a
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significant number of towns (about 40%) are shrinking, while 80% face a fast-ageing process of the
population.

The results indicated that there are some demographic changes between the future trend and the
overall trend. If the share of towns included in the first two categories remains unchanged during
the two analysed periods, their number shows a slight change for the fourth and third types. These
results indicate that some settlements will pass in the future from higher growth and slower ageing
(type III) to higher growth and faster ageing (IV) (Figure 4 & Table 5).

RDC type Description
Future trend

2018-2030
Overall trend

1992-2030

I Faster ageing. Shrinking/Lower growth 11 towns 32% 11 towns 32%
II Slower ageing. Shrinking/Lower growth 2 towns 6% 2 towns 6%

III Slower ageing. Higher growth 4 towns 12% 2 towns 6%
IV Faster ageing. Higher growth 17 towns 50% 19 towns 56%

Table 5: Percent of towns according to the four types of RDC

Using the composite indicator (CSI) we computed the values for the beginning and present period
and analysed the dimension of change for all 34 towns at demographic and social-economic levels for
the future period (2030). The indicator includes all thirteen sub-indices (Table 1) considered important
in the shrinking process of cities. The values of CSI for 1992 and 2018 were calculated using the
following formula:

CSI =
n

∑
i=1

ki − min (ki)

n (max (ki)− min (ki))
(1)

where:
n: subindicator count
ki: selected subindicator
min (ki): minimum value of subindicator
max (ki): maximum value of subindicator

To observe the shrinking trend of small towns for future period, the values for year 2030 were
calculated based on the computed values of CSI for 1992, 2002, 2011 and 2018 using the forecast
function in Microsoft Office Excel to predict the values for 2030. Standard deviation (St.dev.) values
were calculated to observe highest values. The results were compared and represented, observing that
thirteen towns have high variations and St.dev. values > 0.04 (Table 6 & Figure 5).

Towns 1992 2018 2030 St.dev. Towns 1992 2018 2030 St.dev.

Băiles, ti 0.599 0.554 0.529 0.036 Vânju-Mare 0.298 0.318 0.307 0.010
Bechet 0.235 0.189 0.202 0.023 Bals, 0.551 0.593 0.629 0.039
Calafat 0.623 0.568 0.514 0.055 Corabia 0.555 0.486 0.482 0.041
Dăbuleni 0.297 0.400 0.446 0.076 Drăgănes, ti-Olt 0.306 0.301 0.327 0.014
Filias, i 0.559 0.491 0.431 0.064 Piatra-Olt 0.245 0.247 0.249 0.002
Segarcea 0.347 0.339 0.340 0.004 Potcoava 0.157 0.248 0.294 0.070
Tismana 0.342 0.291 0.238 0.052 Scornices, ti 0.418 0.365 0.410 0.028
Turceni 0.349 0.329 0.374 0.022 Băbeni 0.269 0.291 0.374 0.055
Bumbes, ti-Jiu 0.373 0.326 0.338 0.025 Băile Govora 0.255 0.232 0.237 0.012
Novaci 0.393 0.414 0.422 0.015 Băile Olănes, ti 0.277 0.245 0.263 0.016
T, icleni 0.259 0.225 0.220 0.021 Bălces, ti 0.350 0.236 0.214 0.073
Târgu Cărbunes, ti 0.419 0.458 0.539 0.061 Berbes, ti 0.196 0.196 0.222 0.015
Motru 0.495 0.531 0.572 0.039 Brezoi 0.296 0.281 0.302 0.011
Rovinari 0.356 0.365 0.427 0.038 Călimănes, ti 0.321 0.385 0.447 0.063
Baia de Aramă 0.290 0.323 0.335 0.024 Drăgăs, ani 0.572 0.630 0.709 0.069
Ors, ova 0.337 0.476 0.547 0.107 Horezu 0.341 0.441 0.485 0.074
Strehaia 0.361 0.267 0.236 0.065 Ocnele Mari 0.231 0.200 0.190 0.021

Table 6: The computed values of CSI for each town, showing shrinkage in 1992, 2018 and the 2030
forecast.

4 Discussions

As we initially calculated the RDC index for all 34 towns to analyse the dimension of shrinking, we
deem necessary to use a more complex index to include economic and social dimensions. Tivig et al.
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Figure 5: Variation of CSI values for the reference period

(2008) analyses the dimension of shrinking using only demographic indices, classifying cities in four
categories. However, the scientific literature considers the topic of shrinking cities as a more complex
process, which involves social and economic factors (Bernt et al., 2012; Martinez-Fernandez et al., 2015;
Wolff and Wiechmann, 2014).

Besides the general factors, local features also contribute to the shrinking process of cities, especially
for smaller ones. Therefore, we deem necessary to also use another, more complex, composite indicator.
After comparing the results, we concluded that only six towns undergo a clear shrinking process,
falling into the category of persistent shrinkage, while eighteen have a moderate or slow evolution
toward shrinking (recent or mild shrinkage). There are also ten settlements that had a linear, almost
stagnant, evolution for the entire reference period with the same future trend (Figure 6).

Figure 6: City types according to CSI

According to CSI values the towns can be classified in three categories: persistent shrinkage, a
mild evolution towards shrinkage and stagnant shrinkage. The first category includes only 6 towns,
which is less than a fifth of the analysed towns, and except for Ors, ova, they did not benefit during
the communist period from any state-owned flagship companies and did not have any significant
industrial base. This category varies largely in terms of population size, population loss, economic
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activities and rural/urban characteristics. The smaller and more rural in character the town, the greater
the pressure on shrinkage is. Just as in other regions, the regional and local economic restructuring
alter the urban communities (Jucu et al., 2016).

A mild/slow evolution toward shrinkage characterizes the towns of Băiles, ti, Bechet, Calafat,
Tismana, Bumbes, ti, Novaci, T, icleni, Târgu Cărbunes, ti, Filias, i, Motru, Rovinari, Baia de Aramă, Vânju
Mare, Bals, , Corabia, Scornices, ti, Călimănes, ti and Drăgăs, ani. There is a diversity of different town
types (resourced-based mining towns, old ports, rural small towns, some tourism activities), scattered
throughout the entire region, testifying that there are multiple factors causing shrinkage. Few of these
towns have managed to keep their industrial activities due to the strategic importance of their power
plants for the production of electricity. Most of them did not succeed to foster any new economic
activities, nor modernise traditional branches, so there were no major new investments since the 1980s.
This situation may be partially attributed to the towns location and poor accessibility, but also lack
of entrepreneurial culture and poor administration that was hardly able to cope with the economic
decline and transition to the market economy.

A stagnant/stabilized shrinkage was noted for ten towns (Figure 6). Some of these towns have kept
and developed some forms of tourism activities (holiday homes, private camps, accommodation and
leisure facilities), benefiting from considerable investments following various programmes financed
by the EU for fostering the tourism sector.

Small towns that relied heavily on agriculture, forestry or mining activities will continue to be
affected by shrinking, which will definitely put a stain on their physical and social structure, the need
for viable alternatives to smart shrinkage being of utmost importance.

This analysis provides empirical confirmation that many small towns in Oltenia are in fact shrink-
ing, despite different economic and demographic background, and that mainly the demographic
indicators (population decrease, out-migration and ageing), followed by economic ones, are the most
important factors for urban shrinkage in the region. However, these towns do not only face loses of
population, but also a mismatch between the physical urban structure and the population needs.

What are the main causes for shrinking in the case of small and medium towns in Oltenia? After
analysing the situation in other European countries, we can definitely say that the experience of this
region has some specifics, as the urban shrinkage is not caused by suburbanization and to a larger
extent, neither by deindustrialization. In 1992, most (3/4) of the small and medium-small towns in the
region had a location quotient of industry below the urban average of 1.029 (Popescu, 2014), which
might in part explain this situation. Moreover, these towns were ranked much lower in the urban
hierarchy and had limited economic options, hosting mainly local resource-based industries.

Shrinking is rather caused by the overlapping of simultaneous demographic processes - out-
migration, drops in birth rates, ageing (which leads to population decline) and economic difficulties
(loss of jobs, lack of private companies, lack of entrepreneurial culture, heavy reliance on agriculture
and subsidies from the government).

The current study provides a critical analysis on the extent of shrinking phenomenon that severely
affects more than a third of the small and medium-size towns in the region of Oltenia and the outcomes
of the post-socialist urban changes. In the long run, this shrinkage will definitely affect labour and the
social and technical infrastructure, putting a great strain on the local budgets.

5 Conclusions

During the last decade, the issue of shrinking cities is pervasive for the research interest of academics
and the political discourse of many countries. Unfortunately, despite the evident urban decline of small
Romanian towns, from both the economic and demographic perspective during the last 3 decades,
the politicians and authorities seem to miss the extent of this phenomenon, which has become rather
common in Romania and Oltenia region as well.

The decrease in size of the population, the increase of the mean age and the ageing of the population
has repercussions on the economy by reducing the labour force. It also influences the values of social
criteria directly influencing the number of households, number of schools or the school population. The
evolution of settlements may also correlate with the local factors like their proximity to a disfavoured
area or to a dominantly rural area.

The thirteen indicators taken into consideration reflect demographic, economic and social aspects
that point to vulnerabilities and lack of adaptability in Romanian shrinking cities (Bănică et al., 2017)
rather than to aspects of resilience capacity. Also, the indicators were thought-out to be used as a
base-model in analysing the dimension of a complex phenomenon like urban shrinking for other
case studies which may include larger urban settlements. Of course, depending on other factors,
the indicators considered for analysis may be modified. The three types of shrinkage testify for the
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existence of different patterns (rhythms, trajectories, effects), which means that there is no miracle
solution that could be applied to all the towns.

What are the alternatives for smart urban shrinkage? Considering that shrinking is seldom a rapid
process, and it rather takes place over generations, providing the luxury of time to adapt the planning
and designing process, the condition of shrinking does not have to be a terminal diagnosis for a small
town (Fugate, 2007). Numerous studies point to the need for the involvement of communities to
promote the principle of re-growing smaller and more sustainable. Another solution might focus on
the assumed decision for turning to rural, considering the opportunity of using European funds and
projects for rural development.

There are no policies for shrinking cities at national or regional level, despite the numerous
strategies for sustainable development, which fail to acknowledge the extent and severity of this
phenomenon, affecting mainly small and medium-size towns. All the strategies for development seem
to disregard the context and consequences of urban shrinkage, choosing to focus instead mainly on
economic growth, which seems to evade almost all these towns during the last decades. These towns
lack any capacity to cope with the consequences of urban shrinkage, their development strategies
lacking both awareness and preparedness to actively respond to this issue.
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blindrecalc - An R Package for Blinded
Sample Size Recalculation
by Lukas Baumann, Maximilian Pilz, and Meinhard Kieser

Abstract Besides the type 1 and type 2 error rate and the clinically relevant effect size, the sample
size of a clinical trial depends on so-called nuisance parameters for which the concrete values are
usually unknown when a clinical trial is planned. When the uncertainty about the magnitude of these
parameters is high, an internal pilot study design with a blinded sample size recalculation can be
used to achieve the target power even when the initially assumed value for the nuisance parameter is
wrong. In this paper, we present the R-package blindrecalc that helps with planning a clinical trial
with such a design by computing the operating characteristics and the distribution of the total sample
size under different true values of the nuisance parameter. We implemented methods for continuous
and binary outcomes in the superiority and the non-inferiority setting.

1 Introduction

Determining the sample size that is necessary to achieve a certain target power is a fundamental step
in the planning phase of every clinical trial. The sample size depends on the type 1 error rate α, the
type 2 error rate β, the effect size ∆ and so-called nuisance parameters, which are parameters that
affect the distribution of the test statistic but are not of interest in the test problem. While the type
1 and type 2 error rates are usually predetermined and the minimal clinically important effect size
is known, there is often uncertainty about the magnitude of the nuisance parameters, such as the
variance of the data σ2 for tests with continuous outcomes or the overall response rate p for tests with
binary outcomes.

Consider, as an example, the meta analysis by Nakata et al. (2018) that compares minimally
invasive preservation with splenectomy during distal pancreatectomy. Among others, the overall
morbidity of the two groups is compared and data from 13 studies are reported (cf. Figure 2(c) in
Nakata et al. (2018)). Within these 13 studies, overall morbidity rates pooled over both groups between
0.10 and 0.62 are reported. This illustrates the high uncertainty about the “true” overall morbidity rate,
which is the nuisance parameter in this setting.

In these cases, an internal pilot study design with blinded sample size recalculation can be used.
In such a design, the nuisance parameter is estimated in a blinded way (i.e., without using information
about the group assignment of the patients) after a certain number of outcome data is available, and
the sample size is recalculated using this information (Wittes and Brittain, 1990). While in principle
blinded sample size recalculation could be done without any a priori sample size calculation, it is
still advisable to calculate an initial sample size based on the best guess for the nuisance parameter
available in the planning phase and to determine when to recalculate the sample size based on this
initial calculation. This is done to avoid conducting the recalculation too early (so that there is still a
great uncertainty about the magnitude of the nuisance parameter when recalculation is performed), or
too late (so that there may be no room for adjusting the sample size any longer as the recalculated
sample size is already exceeded). Using this method to recalculate the sample size is an attractive
option because the cost in terms of additional sample size is very small (depending on the outcome)
and in most scenarios the type 1 error rate is unaffected by the blinded sample size recalculation.
Hence, whenever there is uncertainty about the value of a nuisance parameter and the logistics of the
trial allow it, blinded sample size recalculation can be used. Meanwhile, this is even recommended by
regulatory authorities. For instance, the Committee for Medical Products for Human Use (CHMP)
(2006) states that “(w)henever possible, methods for blinded sample size reassessment (. . . ) should be
used”.

Methods to reassess the sample size in a blinded manner in an internal pilot study design have
been developed for a variety of outcomes. Based on the early work by Stein (1945), Wittes and Brittain
(1990) introduced the internal pilot study design for continuous outcomes. Their work was extended
in different manners by different authors (cf. among others Birkett and Day (1994), Denne and Jennison
(1999), and Kieser and Friede (2000)). In all these papers, the main task is to re-estimate the variance of
a continuous outcome in a blinded way. These ideas can be applied to binary outcomes as well where
the re-estimated nuisance parameter is the overall response rate over both treatment arms. Associated
methods were, for instance, presented by Gould (1992) and Friede and Kieser (2004) for superiority
trials and by Friede et al. (2007) for non-inferiority trials.

However, despite the clear benefit of a blinded sample size recalculation and a great number
of publications on that topic, blindrecalc is to the knowledge of the authors the first R-package on
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CRAN, and thus a freely available software, that helps with the planning of a clinical trial with such a
design by computing the operating characteristics and the distribution of the total sample size of the
study. The package can be used for pre-planned and midcourse implemented blinded sample size
reassessments in order to evaluate the potential scenarios the blinded sample size re-estimation may
imply. For continuous outcomes, we implemented the t-test for superiority trials and the shifted t-test
for non-inferiority trials. For binary outcomes, we implemented the chi-squared test for superiority
trials and the Farrington-Manning test for non-inferiority trials.

The structure of the paper is as follows: In the Statistical methods section, we explain the general
way of proceeding when conducting a trial with an internal pilot study and how to obtain a blinded
estimate of the nuisance parameter for continuous and binary outcomes. The structure of the package
is introduced in Package structure. We demonstrate how blindrecalc can be utilized to plan a trial
with an internal pilot study design and blinded sample size recalculation in Usage and example. In
Development principles, we outline the principles of the development process and how we ensure the
quality of our code. Finally, a brief Conclusion complements this paper.

2 Statistical methods

The general procedure for planning and conducting a trial with a blinded sample size recalculation is
as follows: At first, an initial sample size ninit is calculated by using a best guess for the value of the
nuisance parameter. The sample size for the first stage of the trial, n1, is then calculated as a fraction of
ninit, e.g., 0.25, 0.5 or 0.75. After n1 observations are available, the total sample size nrec is recalculated
in a blinded way based on the available data. The final total sample size n is then determined as:

n = min (max (n1, nrec) , nmax) ,

where nmax is a prespecified maximal sample size. This is called the unrestricted design with upper
boundary. A restricted design would use ninit as a lower boundary (Wittes and Brittain, 1990). Often
nmax is set to a multiple of ninit. The special case of nmax = ∞ results in the unrestricted design (Birkett
and Day, 1994). After the final total sample size is calculated, the n2 = n − n1 observations for the
second stage are gathered. Finally, the specified statistical test can be conducted with the data of all n
patients.

In the following, we shortly introduce the implemented tests and how to obtain a blinded estimate
of the nuisance parameter in each case.

Continuous outcomes

Assume a clinical two-arm trial with normally distributed outcomes where a higher value is deemed
to be favorable, with mean values µE (experimental group) and µC (control group) and common
unknown variance σ2. The outcome of interest is the mean difference ∆ := µE − µC. By introducing a
non-inferiority margin δ > 0, the test problem is given by

H0 : ∆ ≤ −δ vs. H1 : ∆ > −δ.

The null hypotheses can be tested by a shifted t-test taking the non-inferiority margin δ into account.
Note that the special case δ = 0 corresponds to the standard t-test for superiority. The approximate
total sample size for a one-sided t-test to detect a mean difference of ∆ = ∆∗ > −δ with a power of
1 − β while controlling the type 1 error rate at level α equals

n = nE + nC =
(1 + r)2

r

(
z1−α/2 + z1−β

)2
σ2

(∆∗ + δ)2 .

Here, r refers to the allocation ratio of the sample sizes between the experimental and the control
group, i.e., r = nE/nC, and z1−q denotes the 1 − q quantile of the standard normal distribution.

In this framework, the nuisance parameter is the unknown variance σ2. Due to potential uncer-
tainty on the value of σ2, it seems appropriate to re-estimate it in a blinded interim analysis to ensure
that the desired power level is met. Inserting σ̂2 observed mid-course into the above sample size
formula may lead to a more reasonable sample size for the respective trial than sticking to the value
assumed in the planning stage. There exist different methods for estimating σ2 in a blinded manner
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(Zucker et al., 1999). In blindrecalc, the one-sample variance estimator is implemented. It is defined as

σ̂2 :=
1

n1 − 1 ∑
j∈{E,C}

n1,j

∑
k=1

(
xj,k − x̄

)2
,

where xj,k is the outcome of patient k in group j, n1,j denotes the first-stage sample size in group j, i.e.,
n1 = n1,E + n1,C, and x̄ equals the mean over all n1 observations. Since the patient’s group allocation
is not considered when computing σ̂2, blinding is maintained when using this variance estimator.

In the superiority case, i.e., if δ = 0, blinded sample size reassessment can be performed without
relevant type 1 error rate inflation (Kieser and Friede, 2003). In the non-inferiority case, however, the
type 1 error rate may be inflated by the internal pilot study design and a correction of the applied
significance level may become necessary to protect the nominal type 1 error rate at level α (Friede and
Kieser, 2003). In particular, this inflation arises if the sample size recalculation is performed too early,
i.e., if n1 is chosen too small.

Interestingly, the cost of this procedure in terms of sample size is quite low. Since the one-sample
variance estimate slightly overestimates the variance, an increase in sample size arises. However,
this increase amounts to only 8 patients with α = 0.025 and β = 0.2 or 12 patients with the same
significance level and β = 0.1 (Friede and Kieser, 2001). In return, the sample size recalculation
procedure implies that the trial’s power meets the target value 1 − β for a wide range of values of σ2.

Lu (2016) gives closed formulas for the exact distribution of the test statistic of the two-sample
t-test in this setting. This allows the simulation of error probabilities and of the sample size distribution
in an acceptable amount of time. The proposals made by Lu (2016) are implemented in blindrecalc.
Thus, the design characteristics for continuous outcomes presented in blindrecalc are obtained by
simulation and not by exact computation. This is the case for for binary outcomes that are presented
in the following.

Binary outcomes

In a superiority trial with binary outcomes where a higher response probability is assumed to be
favorable, the one-sided null and alternative hypothesis are

H0 : pE ≤ pC vs. H1 : pE > pC,

where pE and pC denote the event probabilities in the experimental and the control group, respectively.
While several tests exist for this test problem, the widely used chi-squared test is implemented in
blindrecalc. The sample size for this test can be approximated with the formula (Kieser, 2020):

n =
1 + r

r

(
z1−α/2

√
(1 + r) · p0 · (1 − p0) + z1−β

√
r · pC,A · (1 − pC,A) + pE,A · (1 − pE,A)

)2

∆2 .

Again, r denotes to the allocation ratio of the sample sizes, and z1−α/2 and z1−β are the 1 − α/2 and
the 1 − β quantiles of the standard normal distribution. Furthermore, pC,A and pE,A are the response
probabilities in the control and the experimental group under the assumed alternative, p0 is the overall
response probability, i.e., p0 = (pC,A + r · pE,A) / (1 + r), and ∆ is the effect under the alternative,
i.e. ∆ = pE,A − pC,A. The nuisance parameter here is p0, which can be estimated in a blinded way
after n1 observations with

p̂0 =
X1,E + X1,C
n1,E + n1,C

,

where X1,E and X2,C denote the number of observed events in the experimental and the control group
and n1,E and n1,C represent the first-stage sample sizes in the two groups. Blinded estimates of the event
rates in each group can then be obtained by p̂C,A = p̂0 − ∆ · r/ (1 + r) and p̂E,A = p̂0 + ∆/ (1 + r).
These estimates are used to recalculate the sample size. The benefit of the blinded recalculation is that
the desired power can be maintained, even if the initially assumed value for p0 was wrong.

It is well known that the chi-squared test in a fixed design does not maintain the nominal sig-
nificance level, hence the same can be expected for a chi-squared test with a blinded sample size
recalculation. In fact, Friede and Kieser (2004) showed that the actual levels of the test with and
without recalculating the sample size are very close.

In a non-inferiority trial, the null and alternative hypothesis are

H0 : pE − pC ≤ −δ, H1 : pE − pC > −δ,

where δ > 0 is the fixed non-inferiority margin. The most commonly used test for this problem was
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proposed by Farrington and Manning (1990). An approximate sample size formula for this test is

n =
1 + r

r
·

(
z1−α/2

√
r · p̃C · (1 − p̃C) + p̃E · (1 − p̃E) + z1−β

√
r · pC,A · (1 − pC,A) + pE,A · (1 − pE,A)

)2

(∆ + δ)2 ,

where p̃E and p̃C are large sample approximations of the restricted maximum likelihood estimators
under the null hypothesis restriction pE − pc = −δ (see the Appendix of Farrington and Manning
(1990) for the computation). The same formulas as for the chi-squared test can be used to estimate
p̂E and p̂C in a blinded way, and these estimates have to be used to obtain blinded estimates ˆ̃pE and
ˆ̃pC for the restricted maximum likelihood estimates. Plugging these estimates into the sample size
formula gives the re-estimated sample size.

Like the chi-squared test, the Farrington-Manning test is also no exact test and can exceed the
nominal significance level. Friede et al. (2007) showed that in general no further inflation of the type
1 error rate is caused by blinded re-estimation of the sample size. Nevertheless, it is possible for
the chi-squared test as well as for the Farrington-Manning test to choose the nominal significance
level smaller than α in order to protect the type 1 error rate at level α. Such an adjustment of α is
implemented in blindrecalc for the binary and the continuous case.

3 Package structure

When a clinical trial with an internal pilot study is planned, it is essential to know the characteristics
of the applied design. To this end, the performance in terms of achieved power levels, type I error
rates, and sample size distribution has to be known for different values of the nuisance parameter and
the first-stage sample size n1. The package blindrecalc provides all necessary tools that are needed to
plan a trial with a blinded sample size recalculation with only a small number of functions, which
makes using the package very accessible.

blindrecalc makes use of R’s S4 class system. This allows the application of the same methods for
different design classes and facilitates the usage of the package. Furthermore, this approach makes the
package easily extendable without any changes in the current source code.

The usage of blindrecalc is intended to be as intuitive as possible. To obtain characteristics of a
blinded sample size recalculation procedure, two steps have to be made. At first, the user has to define a
design object to indicate which test and which characteristics such as the desired type 1 and type 2 error
rates are to be applied. To this end, the three functions setupChiSquare, setupFarringtonManning,
and setupStudent exist to define a design object of the class corresponding to the respective test.

Secondly, the trial characteristic of interest can be calculated. Currently, the following methods are
implemented: The method toer allows the computation of the actual type 1 error rate for different
values of the nuisance parameter and the sample size of the internal pilot study. By means of
adjusted_alpha, the adjusted significance level can be calculated that can be applied as nominal
significance level when strict type 1 error rate control is desired. The method pow computes the
achieved power of the design under a given set of nuisance parameters or internal pilot sample sizes.
With n_fix, the sample size of the corresponding fixed design can be computed. Finally, the method
n_dist provides plots and summaries of the distribution of the sample size. For all these methods
(except for n_dist), the logical parameter recalculation allows to define whether a fixed design or a
design with blinded sample size recalculation is analyzed.

4 Usage and example

For each test, there is a setup function (e.g., setupChiSquare for the chi-squared test) that creates an
object of the class of the test. Each setup function takes the same arguments:

• alpha: The one-sided type 1 error rate.
• beta: The type 2 error rate.
• r: The allocation ratio between experimental and control group, with a default of 1.
• delta: The difference in effect size between alternative and null hypothesis.
• alternative: Whether the alternative hypothesis contains greater (default) or smaller values

than the null.
• n_max: The maximal total sample size, with a default value of Inf.

In this example, the nuisance parameter is the overall response rate p. A difference in response
rates between the two treatment groups of ∆ = pE − pC = 0.2 is to be detected. Using blindrecalc, a
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chi-squared test that achieves a power of 1 − β = 0.8 to detect this effect of ∆ = 0.2 and that uses a
nominal type 1 error rate of α = 0.025 can be set up by

design <- setupChiSquare(alpha = 0.025, beta = 0.2, delta = 0.2)

The sample size for a fixed design given one or multiple values of the nuisance parameter (argu-
ment nuisance) can then be calculated with the function n_fix:

n_fix(design, nuisance = c(0.2, 0.3, 0.4, 0.5))
#> [1] 124 164 186 194

The function toer calculates the actual level of a design with blinded sample size recalculation or
of a fixed design (logical argument recalculation) given either one or more values of the total sample
size in a fixed or the sample size for the first stage in a recalculation design (argument n1) or one or
more values of the nuisance parameter. Note that all functions are only vectorized in one of the two
arguments n1 and nuisance. In this example, it is assumed that the internal pilot study contains half
of the fixed sample size that would be needed if the overall response rate p equals 0.2. In this setting,
blindrecalc can be used to compare the actual levels of a fixed design and a recalculation design with
the same parameters.

n <- n_fix(design, nuisance = 0.2)
p <- seq(0.1, 0.9, by = 0.01)
toer_fix <- toer(design, n1 = n, nuisance = p, recalculation = FALSE)
toer_ips <- toer(design, n1 = n/2, nuisance = p, recalculation = TRUE)

In Figure 1, the type 1 error rate in dependence of the nuisance parameter is depicted for the designs
with and without sample size recalculation. Note that, as mentioned in Section Binary outcomes, the
level of significance exceeds the pre-defined level of α = 0.025 in both cases. If strict control of the type
1 error rate is desired, the function adjusted_alpha can be used to to calculate an adjusted significance
level, such that the nominal significance level is preserved.

adj_sig <- adjusted_alpha(design, n1 = n/2, nuisance = p, precision = 0.0001,
recalculation = TRUE)

design@alpha <- adj_sig
toer_adj <- toer(design, n1 = n/2, nuisance = p, recalculation = TRUE)

In this example, the adjusted significance level equals 0.0232 for the trial with internal pilot
study, i.e., using this value as nominal level ensures that the actual significance level does not exceed
α = 0.025. Figure 1 demonstrates that the type 1 error rate is protected at level α = 0.025 if the adjusted
significance level is applied.

In the setting of binary outcomes, adjusting the level such that the nominal type 1 error rate
is protected for any realization of the nuisance parameter in its domain [0, 1] is feasible. However,
when the nuisance parameter has an infinite domain, such as the variance in the case of continuous
outcomes, this is not possible. The solution in these cases is to compute a (1 − γ) confidence interval
of the nuisance parameter in the blinded interim analysis and adjust the significance level such that
the actual level is below α − γ for all values in this confidence interval (Friede and Kieser, 2011). If this
approach is applied, the user can set the parameter gamma.

To calculate the power of either the internal pilot study design or the fixed design, the function pow
can be used. Again, the function is vectorized in either n1 or nuisance. This function can be used to
compare the power values of the two designs under different actual values of the nuisance parameter.

pow_fix <- pow(design, n1 = n, nuisance = p, recalculation = FALSE)
pow_ips <- pow(design, n1 = n/2, nuisance = p, recalculation = TRUE)

As we can see in Figure 2, the power achieved by the internal pilot study design is very close to
the target power of 0.8 in most cases. Only when the overall response rate is very close to 0 or 1, the
power is exceeded. On the other hand, the fixed design is much more sensitive to the actual value
of the nuisance parameter and the actual power can either be way too large or way too small if the
sample size was calculated under wrong assumptions.

Finally, the distribution of the total sample size can be computed under different assumptions
on the nuisance parameter with the function n_dist. This is particularly useful for the planning of
internal pilot study designs since it allows the investigation of what could happen in a certain clinical
trial and helps the applicant to prepare for different scenarios.

p <- seq(0.2, 0.8, by = 0.1)
n_dist(design, n1 = n/2, nuisance = p, plot = TRUE)
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Figure 1: Actual significance level for different nuisance parameters with (right panel) and without
(left panel) adjustment of the nominal significance level. In the adjusted case, the actual level is below
the desired level (red line) for all nuisance parameters in contrast to the un-adjusted case.
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Figure 2: Power values for different nuisance parameters for a fixed design and a design with blinded
sample size recalculation. The design with recalculation meets the target power (red line) for a wider
range of nuisance parameters.
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Figure 3: Distribution of the sample size for a design with blinded sample size recalculation in
dependence of the nuisance parameter. For more extreme values of the nuisance parameter the
variance of the sample size distribution becomes larger.

#> p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8
#> Min. 62.000 78.0000 124.0000 158.0000 124.0000 78.0000 62.000
#> 1st Qu. 108.000 152.0000 182.0000 196.0000 182.0000 152.0000 108.000
#> Median 124.000 170.0000 192.0000 198.0000 192.0000 170.0000 124.000
#> Mean 125.021 164.6057 188.4801 196.5075 188.4801 164.6057 125.021
#> 3rd Qu. 138.000 178.0000 196.0000 200.0000 196.0000 178.0000 138.000
#> Max. 190.000 200.0000 200.0000 200.0000 200.0000 200.0000 190.000

By default, n_dist prints a summary of the sample size distribution for each nuisance parameter.
With plot = TRUE, a series of boxplots is drawn (cf. Figure 3). Since the maximum sample size
is obtained if the overall response rate is estimated to be 0.5 in the sample size recalculation, this
maximum can occur under any true value of the nuisance parameter (except for 0 and 1), albeit with
very small probability. For this reason, sample sizes that occur with a probability of less than 0.01%
are ignored. This is not the case for continuous outcomes since there, the sample size distributions are
determined by simulation.

For continuous outcomes, i.e., the (shifted) t-test, the functional content of blindrecalc is the same
as in the binary case that was presented in this example. The only difference is that in the continuous
case, the numbers are computed by simulation. Thus, the user can set the parameters iters, defining
the number of simulation iterations, and seed, the random seed for the simulation.

5 Development principles

The utilization of R’s object-oriented programming capabilities implies that the example that was
presented for the chi-squared test could very similarly be applied to the Farrington-Manning test or
the t-test. Besides using S4 classes, the following development principles of blindrecalc should be
briefly described.

All calculations for binary outcomes are exact and require nested for-loops. Since for-loops are
known to be very slow in R, all computation-intensive functions for the chi-squared test and the
Farrington-Manning test are implemented in C++ via the Rcpp package (Eddelbuettel and François,
2011) to speed up the calculations significantly.

blindrecalc is developed open-source on GitHub.com. The entire source code can be found at
https://github.com/imbi-heidelberg/blindrecalc. This allows anyone to contribute to blindrecalc
and, furthermore, provides maximal transparency. To ensure a certain quality of the provided code,
blindrecalc is checked by unit tests using the package covr (Hester, 2020). The unit tests compare
numbers for the sample size, type 1 error rate, and power calculated with blindrecalc with numbers
from peer-reviewed publications and, furthermore, check the technical functionality of the package
such as vectorization and display of error messages. Thus, the unit tests do not only monitor the
technical accuracy of the package’s results but also their content-related correctness. The current
version blindrecalc 0.1.3 achieves a code coverage of 100%, i.e., each line of the source code is checked
by at least one unit test.
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6 Conclusion

In this paper, we introduced the R-package blindrecalc that can be used to plan clinical trials with
a blinded sample size recalculation in an internal pilot study design when either continuous or
binary outcomes in a superiority or non-inferiority setting are of interest. We introduced the basic
methodology of internal pilot studies and explained how the package can be used to calculate the
operating characteristics of a trial with such a design.

The scope of blindrecalc can simply be extended due to its modular character. Blinded sample size
recalculation can be applied to many different types of clinical trials. For instance, there exists research
on further kinds of outcomes (e.g., see Friede and Schmidli (2010) for count data) or on different study
designs (e.g., see Golkowski et al. (2014) for bioequivalence trials). The implementation of internal
pilot studies for such cases in blindrecalc is an exciting area of future work.
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Revisiting Historical Bar Graphics on
Epidemics in the Era of R ggplot2
by Sami Aldag, Dogukan Topcuoglu and Gul Inan

Abstract This study is motivated by an article published in a local history magazine on “Pandemics
in the History”. That article was also motivated by a government report involving several statistical
graphics which were drawn by hand in 1938 and used to summarize official statistics on epidemics
occurred between the years 1923 and 1937. Due to the aesthetic information design available on these
historical graphs, in this study, we would like to investigate how graphical elements of the graphs such
as titles, axis lines, axis tick marks, tick mark labels, colors, and data values are presented on these
graphics and how to reproduce these historical graphics via well-known data visualization package
ggplot2 in our era.

1 Introduction

In August 2018, a local history journal named “Social History” published an issue on “Pandemics in
the History” which left a deep effect on the world, created new public policies, and, in turn, reshaped
state-society relations over the globe (Toplumsal Tarih, 2018). The issue involves several articles
specifically on the pandemics such as plague, malaria, cholera, diphtheria, trachoma, syphilis, and
tuberculosis, where the content of the articles were accompanied by rich historical photographs and
visualizations.

The article entitled “Fight against syphilis that forgot to embrace in the era of early Republic” by
Malkoc (2018) in this issue specifically took our attention since this article involves several aesthetically
attractive statistical column bar graphics, which were assumed to be drawn by hand with the help
of a ruler, with a citation to a government report published in 1938. A deep investigation of this 620-
page government report, which is also available online at https://acikerisim.tbmm.gov.tr/handle/
11543/553, revealed that it has a section where the Ministry of Health reported official statistics related
to all health policy actions taken and health services provided to improve the public health between
the years 1923 and 1937. While most of the official statistics were summarized in tabular form, around
forty different statistical bar graphics were also used to visually summarize the official statistics related
to various epidemic diseases such as smallpox, trachoma, malaria, and syphilis which occurred in the
country between the years 1923 and 1937. While doing so, it was obvious that the government officials
put a special emphasis on the information design on the graphics at that time. A further investigation
through discussions with several academics studying on the history of graphic design also revealed
that using aesthetically designed statistical graphics were already common in the country in late 1800’s
parallel to the globe (Durmaz, 2017). Here we note that well-known early examples of visualization
of official statistics over the globe include Statistical Atlas of the United States in late 1800’s, Album
de Statistique Graphique, and Graphical Statistical Atlas of Switzerland 1897–2017 where selected
illustrative examples are available in Friendly (2008).

Furthermore, statistical graphics were also used by the Goverment officials as an effective com-
munication tool to inform the society who had low literacy skills during that period (Sengul, 2017).
This argument is still true during the Covid-19 pandemic. With the help of technological advances in
data visualization software in our era, government officials, authorities, and media intensively use
(mostly interactive) data visualization tools to release pandemic related statistics to the public in a
very short time to keep the society informed (e.g., please visit GitHub account of the Civil Protection
Department of the Italian government given at del Consiglio dei Ministri (2020) and the GIS based
interactive dahsboard of Coronavirus Resource Center at Johns Hopkins University (2020)). Hence, as
in the past, during the Covid-19 pandemic over the globe, data visualization continues to be the most
effective way of sharing information and informing society (McCoy, 2020).

On the other hand, while statisticians and graphic designers may have different priorities on
what makes a good graphic (Gelman and Unwin, 2013; Quito and Kopf, 2020), reading graphics,
understanding the information design behind them and interpreting them require practice of data
literacy for the society (e.g., use of semi logarithmic graphs for visualizing rate of change of Covid-19
infections has been a long discussion (Garthwaite, 2020)). In this sense, motivated by i) VanderPlas
et al. (2019) who revisited, reinterpreted, and reproduced some novel charts from 1870 Statistical Atlas
with moden technology, ii) the exhibition entitled "Speak to the Eyes", curated by Durmaz (2017)
which revisited and turned some historical graphics on justice statistics in 1920’s into motion graphics,
and iii) Matthew (2019) who revisited and reproduced W.E.B. Du Bois’in visualizations on social
and economic life of African-Americans in 1900’s via R, in this study, we would like to revisit and

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://acikerisim.tbmm.gov.tr/handle/11543/553
https://acikerisim.tbmm.gov.tr/handle/11543/553
https://www.census.gov/history/www/programs/geography/statistical\ _atlases.html
https://gallica.bnf.fr/ark:/12148/bpt6k990638x.r=
https://gallica.bnf.fr/ark:/12148/bpt6k990638x.r=
https://www.bfs.admin.ch/bfs/en/home/statistics/regional-statistics/atlases/graphical-statistical-atlas-switzerland-1897-2017.html


CONTRIBUTED RESEARCH ARTICLE 147

reproduce the historical column bar graphics used to visualize official statistics on epidemics occurred
in our country between the years 1923 and 1937 via R. For that reason, the aim of this study is to
investigate i) how graphical elements of the historical column bar graphs such as titles, axis lines, axis
tick marks, tick mark labels, bar colors, and data values are presented on these graphics and ii) how to
reproduce these 1938-made and hand-drawn graphics via well-known data visualization software
ggplot2 (Wickham et al., 2020) in our era.

The subsequent sections of the paper are organized as follows: We give general information on
the graphical elements of column bar graphics and we talk about the column bar graphics used in
this study. Then we also give redesigned versions some of the selected historical graphics. Finally, we
finish with some concluding remarks.

2 An overview on graphical elements of a column bar

The bar chart was first invented by William Playfair to visualize the imports and exports of Scotland
between seventeen countries in year 1871 and was first published in his book entitled "Commercial
and Political Atlas" in 1876 (please visit Figure C in Beniger and Robyn (1978)). In a general sense,
column bar graphics are a statistical visualization technique used to present quantitative information
through a series of vertical rectangles. They are mostly used to display and compare data values of
multiple groups over time (Harris, 2000). Column bars mostly have a quantitative linear scale on
the vertical axis. The height of each column in a bar graph is proportional to the numerical value it
represents so that the viewer make a visual comparison between the columns. When the vertical axis
is not available in the graph, the actual data value which each column represents can be either placed
inside the column or at the top of the column. Alignment of the data value can be done horizontally or
vertically, depending on the space available on the graph.

The scale on the horizontal axis is generally categorical or sequential (e.g. time series) and tick marks
may or may not be used on the horizontal axis. The width of columns and the spacing between the
columns are generally kept uniform over columns in a graph. The data series belonging to different
groups are generally differentiated with each other by assigning different colors or patterns to the
groups. The differentiation in colors and/or patterns are also reflected into the legend keys to help the
viewer to identify the quantitative information displayed in the graph. Furthermore, the information
on the legend keys is ordered as it appears on the graph. The legends can be placed anywhere on
the graph, but the closer to the information they represent, the more convenient for the viewer to
decode the information on the graph. Grid lines at the background are not generally preferred since
rectangular bars are very dominant visual objects. The background color may contrast the color of the
columns to increase communication between the graph and the viewer. We illustrate these graphical
elements in Figure 1.

3 Column bar graphics used in this study

Due to World War I (1914-1918) and then Independence War (1919-1922), the country, which was
founded in 1923, had to simultaneously deal with many infectious diseases such as smallpox, malaria,
plague, syphilis, trachoma, tuberculosis, leprosy, and typhus. Due to the increasing number of
infectious diseases and infected people, the government had to develop new public health policies and
offer health care services through launching new hospitals, training health care workers (including
medical doctors, nurses and so on), and producing disease diagnostic kits, drugs, serum, and vaccines.
In spite of many impossibilities, the government had achieved great success in prevention of infectious
diseases during the period of 1923-1937. In 1938, all the efforts, especially the ones on the workload of
hospitals and then on vaccine administration in the country, were summarized officially and these
official statistics were visualized through statistical column bar graphics along with the tabular raw
data in the government report. We should note that the government report does not provide any
additional information or explanation related to these graphics.

In this study, among these historical column bar graphics, we investigated and reproduced nine
of them. We provide the original graphics alongside the reproduced graphics as well. In this sense,
we categorize them into five main parts with respect to the number of data series available as well as
grouping structure of the bars (e.g., overlapped, side-by-side, and paired bar graphs). We also kindly
invite readers to look at the R codes available as a Supplementary material while investigating the
graphics.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 148

Figure 1: An anatomy of a column bar graph.

Bar graph with one data series

In the bar graphs with one data series, bars are used to compare a single numerical variable per item
or category. Figure 2 gives the amount of smallpox vaccine administered in various regions of the
country between the period 1925 and 1937. Smallpox is a deadly infectious disease accompanied by
lesions filled with thick liquid appearing on the face, mouth, nose, and body of a person. Within the
early days of exposure, it had been shown that the vaccination can prevent or lessen the severity of
the disease. For that reason, the vaccination was mandatory for new borns, at schools, and at some
workplaces. Note that these vaccines were distributed for free to prevent the disease.

In Figure 2, we can see that the background color of the figure is white. There is no vertical axis
and related information on the vertical axis (e.g., axis line, axis title, axis tick marks, and tick mark
labels). We can get the frequencies of each column bar through the data values placed inside the
columns. Consequently, the column bar heights are directly proportional to the data values they
represent. Since the height of the columns are taller and take space in the figure plotting area, the data
values are placed vertically inside the columns. The horizontal axis refers to the time interval with
linear increments without having an axis title. Due to the white background color of the figure, the
column bars are filled in with black color whereas the data values are colored in white for contrast.
Due to a large number of column bars and lack of space, bar widths and the spacing between columns
are kept short and the labels of the horizontal axis tick marks are displayed vertically.

Since the heights of the columns of the graph are directly proportional to the data value they
represent, the geom_col() layer right after the main ggplot() call in ggplot2 is used to produce Figure 3.
The data values are placed onto the graphic via an annotate() layer. The white background is obtained
via theme_classic() layer. The structure of the graph is mostly obtained through modifying the
components of theme() layer such as axis.line, axis.title, axis.ticks, and axis.text in ggplot2,
in addition to geom_col() layer. The main figure title consists of four lines. However, the first three
line and the last line of the title have different font types, sizes, and faces (i.e., italic and unitalic texts).
For that reason, several annotate() layers are further used to run the full title rather than ggtitle()
or labs() layer which assumes a uniform text structure over the multiple lines. Finally, we can see
that the number of smallpox vaccines administered increased over the years.

Overlapped bar graphs with two data series

Figure 4 presents the service of hospitals and dispensaries within the Department of Control of
Trachoma between the years 1925 and 1937 with respect to the number of inpatient treatments
performed (in black) and the number of surgeries performed for treating trachoma (in white).
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Figure 2: Historical figure on "Smallpox vaccine administered in various regions of the country,
between the period 1925-1937" retrieved from https://acikerisim.tbmm.gov.tr/handle/11543/553.

Trachoma is an infectious eye disease caused by a bacteria and is transmitted among humans
through shared use of items used for cleaning face. If it is not treated at the earlier stages, it may lead
to damages in eye cornea or even to blindness. In the early stages of trachoma, antibiotics may be
effective to eliminate the infection, whereas surgery may be required at the later stages.

As in Figure 2, the background color of the Figure 4 is white and there is no vertical axis and
any information related to the vertical axis (e.g., axis line, axis title, axis tick marks, and tick mark
labels). The columns of both groups are overlapped 100% and the column bar heights are directly
proportional to the data values they represent. The data set for the number of inpatient treatments is
always shorter than the data set for the number of surgeries performed for treating trachoma over the
years 1925 and 1937. Thus, the columns for inpatient treatments are positioned in front of the columns
for the number of surgeries performed. However, the disparity between the heights of both groups
is manipulated through assigning a strong color, black, to the number of inpatient treatments, and a
recessive color, white, to the number of outpatient treatments, which is a common strategy in graphic
design (White, 1984). This emphasis is also reflected in the legend keys such that the legend keys are
ordered according to color, not alphabetically.

The data values for the surgery group between the years 1925 and 1931 are placed vertically at the
top of the columns. Those between the years 1932 and 1937 are placed inside the columns vertically
due to lack of space in the plotting region, whereas the data values for the number of inpatient
treatments are always placed vertically inside the column. All the data values for each group are
in black since the background color is white. Due to the reasonable number of column bars in the
plotting area, the width of the column bars and the inter-bar spacing between them are now increased.

Unlike Figure 2, there are no labels for the horizontal axis tick marks now. However, the third
line of main graph title gives the clue that horizontal axis starts from 1925 and goes to 1937. As the
reviewer pointed out, we think that horizontal tick mark labels here were unintentionally forgotten
since this is the only bar graph with missing horizontal tick mark labels in the government report.
However, this may result in a cognitive effort for the viewer if the viewer would like to know the
exact information for the number of inpatient treatments and/or the number of surgeries performed
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Figure 3: Reproduced figure on "Smallpox vaccine administered in various regions of the country,
between the period 1925-1937".

throughout the years, especially for the years in the middle of 1925 and 1937. In that case, the viewer
has to count the number of bars to get precise information. On the other hand, if the interest is on
the overall trend of the number of inpatient treatments and/or the number of surgeries performed
over the years, then comparing the heights of the bars visually will eliminate this problem. If there
is not enough space to place all the tick marks on the horizontal axis, then two design choices can
be followed here: 1) placing all the labels with some vertical shift such as 90 degree or 45 degree
alignment, or 2) starting labeling at the year 1925 and labeling the years with one year apart.

In Figure 5, the 100% overlapping structure of column bars is obtained via setting argument
position = "identity" in geom_col() layer. Note that the look of Figure 5 requires arrangement of
the levels of grouping factor in the data with order of inpatient treatments and surgeries performed,
respectively. This grouping variable is also mapped into fill and alpha arguments of the aesthetics
of the main ggplot() call since the fill-in colors of the bars and transparency level of the bars should
be matched with the levels of this grouping variable. In addition to modifying several components of
theme() layer, assigning “black” color to the inpatient treatments and “white” color to the surgeries
performed via scale_fill_manual() layer, and then assigning low level of transparency “1” to the
black color of inpatient treatments and high level of transparency “0” to the white color of surgeries
performed via scale_alpha_manual() layer would yield the final look of the figure. Hence, the order
of elements of the vector of colors in scale_fill_manual() layer and the order of elements of the
vector of transparency in scale_alpha_manual() layer are matched with the order of the levels of the
grouping variable. Lastly, if transparency were not added to the plot, the color of the second level of
the grouping variable will be displayed only due to the overlapping structure of the column bars.

The white line segment in the first column of Figure 5 is integrated via an annotate() layer
along with rect argument. On the other hand, three-lined main graph title is run with labs() and
annotate() layers due the italicized font structure of the middle line compared to the unitalicized font
structure of the first and the last lines. Lastly, we can say that both the number of inpatient treatments
and the number of surgeries performed increased considerably over the years.

Figure 6 shows the service of the Zonguldak Government Hospital between the years 1924 and 1937
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Figure 4: Historical figure on "The service of hospitals and dispensaries within the Department of
Control of Trachoma, 1925-1937" retrieved from https://acikerisim.tbmm.gov.tr/handle/11543/
553 (■ The number of inpatient treatments □ The number of surgeries performed).

with respect to the number of inpatient treatments (in black) and the number of outpatient treatments
(in white). The data value for the number of outpatient treatment is not available in 1924 and is coded
as NA in the data. While the columns for the number of inpatient treatments are taller than that
of outpatient treatment over the period 1925 and 1932, the columns for the number of outpatient
treatments are taller than that of inpatient treatments over the period 1933 and 1937. To increase the
dominance of the number of inpatient treatments over the number of outpatient treatments, the former
group is colored in black.

In year 1932, the number of outpatient treatments is close to the number of inpatient treatments
in magnitude, where the frequencies are 725 and 815 respectively. Since there is not enough space to
place the number 725 vertically inside the bars, it is aligned horizontally and colored in white due to
the black background color. To be consistent with white front-positioned outpatient treatment bars,
all the data labels of outpatient treatments are placed horizontally between 1925 to 1932 and then
vertically onwards. This approach gives a practical information design approach.

The R code structure of Figure 7 is very challenging and is not straightforward since geom_col(posi
tion = "identity") assumes that difference between two data series over the years takes a uniform
behaviour, i.e., it assumes that a series is always either greater than the other one, or always less
than the other one. If it is not so, geom_col(position = "identity"), scale_fill_manual(), and
scale_alpha_manual() layers cannot handle the zig-zag pattern in the difference of data series when
drawing bars. This problem actually opens a research door for ggplot2.

Figure 8 represents the workload of private hospitals between the years 1926 and 1937 with respect
to the number of inpatient treatments (in black) and the number of outpatient treatments (in white).
Except the year 1926, the columns for the number of inpatient treatments are always shorter than the
columns for the number of outpatient treatments. In 1926, the number of inpatient treatments is 17, 700,
which is greater then the number of outpatient treatments, 16, 009. The columns, which are positioned
in the front, are shifted to the left, resulting in around 70% overlapping. Due their front position and
stronger color, the number of inpatient treatments take the attention of the viewer. On the other hand,
since the data values for the number of outpatient treatments is just twice of the data values for the
number of inpatient treatments in the years 1927 and 1928, the heights of the column bars are close to
each other and hence there is not enough space to place the data values for the number of inpatient
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Figure 5: Reproduced figure on "The service of hospitals and dispensaries within the Department of
Control of Trachoma, 1925-1937" (■ The number of inpatient treatments □ The number of surgeries
performed).

treatments in the column bars vertically. To avoid overlapping of two data labels, the front data labels
are placed horizontally, which is a practical approach. This information gives us an another idea that
alignment of data values according to space available in Figures 6 and 8 is reasonable. However, as
the reviewer pointed out, this inconsistencies i.e., aligning texts horizontally then vertically, is visually
distracting and may decrease the readability.

The R code structures of Figures 5 and 9 are very similar to each other. The 70% overlapping
position of columns bars in Figure 9 is adjusted through setting position = position_dodge(width
= 0.3) in geom_col() layer. Furthermore, in year 1926, the column of outpatient treatment is less
than that of inpatient treatment, which is vice versa in the subsequent bars. As we discussed a
similar problem for Figure 7, geom_col(position = "identity") could not handle this and the white
rectangular column bar in year 1926 is drawn manually via annotate() layer with rect argument.

In Figures 4, 6, and 8, the legend is placed vertically at the top-left of the plotting area, since the
overall structure of the graphs are left-skewed and the legend keys are ordered according to color, not
alphabetically. Furthermore, in Figures 4-9, the double apostrophe, " , in the title of second legend
key is a typographic symbol, called a ditto mark, which is used for repeated words above it. In
hand-written texts, ditto mark is used to save time and effort from the writer. Since the government
report includes around forty figures, this may be the reason why ditto mark is also used in the legend
key titles. While this approach also reduces the amount of ink used in the figures, it does not distort
the readability of the graph. However, we should note that in today’s technology, the repetitive words
can be typed as needed with less effort.

We would like to note that the Figures 4, 6, and 8 may look like as if they were stacked bar graphs.
However, since the government report published in 1938 includes the raw tabular data in it, we are
100% confident to say that these figures are overlapped bar graphs. Furthermore, we would also like to
note that in stacked bar charts, the height of the column bar gives the total frequency of all groups on
a given year. If one needs the frequency of a specific group on that year, then an additional arithmetic
operation such as subtraction should be done to calculate it. Keeping in mind that these graphs are
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Figure 6: Historical figure on "The service of the Zonguldak Government Hospital, 1924-1937"
retrieved from https://acikerisim.tbmm.gov.tr/handle/11543/553 (■ The number of inpatient
treatments □ The number of outpatient treatments).

Figure 7: Reproduced figure on "The service of the Zonguldak Government Hospital, 1924-1937"
(■ The number of inpatient treatments □ The number of outpatient treatments).

presented to the public who has a low level of literacy, doing an extra mathematical work in stacked
bar charts would add a computational burden to the viewer, which may not be possible for the viewer
at that time.

Another distinction between overlapped bar graphs and stacked bar graphs is that overlapped bar
graphs are used to display the comparison between two closely related numerical variables over an
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Figure 8: Historical figure on "The workload of private hospitals, 1926-1937" retrieved
from https://acikerisim.tbmm.gov.tr/handle/11543/553 (■ The number of inpatient treatments
□ The number of outpatient treatments).

Figure 9: Reproduced figure on "The workload of private hospitals, 1926-1937" (■ The number of
inpatient treatments □ The number of outpatient treatments).
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item/category (here it is years), whereas stacked bar graphs are used to display comparison at least
two complementary numerical variables over an item/category. As we can see from the Figures 4, 6,
and 8, the variables of interests, which are inpatient vs outpatient or inpatient vs surgeries performed,
are closely related to each other, not directly mutually exclusive events. Furthermore, the offset
(dodging) in the Figure 8 also confirms that columns are overlapped.

Lastly, the increasing trends in the number of inpatient treatments in Figures 6 and 8 may indicate
that the hospital bed capacity increased over the years, whereas a stabile trend shows that the hospital’s
bed capacity did not change over the years. On the other hand, increasing trends in the number of
outpatient treatments may indicate an increase in general service capacity of the hospital.

Grouped side-by-side bar graphs with two data series

Figure 10 represents the workload of sample hospitals between the years 1924 and 1937. There are
also two groups here: inpatient and outpatient treatments, colored in black and white respectively.
Figure 10 is different from previous ones since the columns for inpatient and outpatient treatments
for the same year are now placed side-by-side accordingly. This can be done by setting the argument
position = position_dodge2() in the geom_col() layer. The grouping variable is mapped into fill
argument of the aesthetics of the main ggplot() call so that color of the levels of the grouping variable
can be assigned manullay in scale_fill_manual() layer.

There is only one column in the year 1924 because there is no information available for the
outpatient treatment in 1924. It is coded as NA in the data. The length of the column bars for the
number of inpatient treatments are shorter than those of the outpatient treatments over the years.
However, to increase the dominance of the number of inpatient treatments over the number of
outpatient treatments, the inpatient treatment group is colored in black and placed ahead of outpatient
treatment group, an information design stragety which we learned from White (1984). The data values
for both groups are placed at the top of columns vertically due to enough space in the plotting area.

The Figures 6 and 10 are good examples that geom_col() layer in ggplot2 can handle missing
values in the data. In other words ggplot2can handle unequal length of data series for a given category
(here it refers to a given year) while sketching overlapped and side-by-side bar graphs. On the other
hand, a literature survey revealed that the Zonguldak Government Hospital in the Figure 6 and the
sample hospitals in the Figure 10 were launched in 1924 as the second-stage hospitals in the cities
offering inpatient services with specialized health workers such as doctors, nurses, and laboratory
services. In the cities where these hospitals were available, a person with medical complications
was initially admitted to the small hospitals with low health care capacity as the first-stage hospitals,
and only the ones who needed inpatient services in a specialized medical area were transferred to
the second-stage hospitals. For that reason, there is no data value for outpatient treatments in the
Figures 6 and 10 in 1924. After 1924, due to on-going efforts improving health care policies and
hospital capacities, these main hospitals started to offer both outpatient and inpatient treatments.

Figure 12 represents the laboratory workload for Malaria struggle between the years 1925 and 1937.
The white color refers to the number of blood tests performed and the black color refers to the number
of diagnoses. As in Figure 10, in Figure 12, the paired columns for the same year are now placed
side-by-side. The columns for the number of blood tests are taller than the columns for the number of
diagnoses over the years 1925 and 1937. Placing the number of blood tests ahead of the number of
diagnoses enables us to compare how many blood tests resulted in a positive Malaria diagnosis (like
today, the world is now comparing “the number of Covid-19 tests performed” with “the number of
positive test results”). Although the number of diagnoses is smaller, coloring it in black increased its
importance and softened the disparity between the sizes of the pair, which is an information design
principle given in White (1984). Since the number of diagnoses falls behind the number of blood tests,
vertically placing the horizontal axis tick mark labels in black color makes an illusion and increases
the dominance of the number of diagnoses (in black) in the graphic.

The data values for the number of diagnoses are easily placed at the top of columns vertically
due the shorter length of corresponding columns. However, while the data values for the number of
blood tests are placed at the top of the column vertically between the years 1925 and 1928, the data
values for the number of blood tests between the years 1929 and 1935 are placed inside the column
bars vertically due to the space limitation in the plotting region.

In the Figures 10 and 12, the space between groups of bars is increased and now equals to the
width of a single bar in a given group. On the other hand, space between bars within a group is not
available.

The legends in the Figures 10 and 12 are placed vertically at the top-left of the figures since the
overall structure of graphs are left-skewed. Note that the ordering in the group colors are also reflected
in the legend keys as well. For example, in Figure 12, the first legend is in white and the second one is
in black. Here we note that in the Figures 11 and 13, the legend key order is inherited from the order of
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Figure 10: Historical figure on "The workload of sample hospitals, 1924-1937" retrieved
from https://acikerisim.tbmm.gov.tr/handle/11543/553 (■ Inpatient treatment □ Outpatient
treatment).

Figure 11: Reproduced figure on "The workload of sample hospitals, 1924-1937" (■ Inpatient treatment
□ Outpatient treatment).

the level of the grouping variable in each plot and this grouping variable is declared in fill argument
of the aesthetics of the main ggplot() call. The color of the legend keys are also matched with the
color of the corresponding level of the grouping variable which was assigned in scale_fill_manual
layer(). Lastly, from Figures 12, we can say that the government kept administrating blood tests over
the years with an increasing trend and nearly 10% of them were being turned out to be positive.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://acikerisim.tbmm.gov.tr/handle/11543/553


CONTRIBUTED RESEARCH ARTICLE 157

Figure 12: Historical figure on "The laboratory workload for Malaria struggle, 1925-1937" re-
trieved from https://acikerisim.tbmm.gov.tr/handle/11543/553 (□ The number of blood tests
■ The number of diagnoses).

Figure 13: Reproduced figure on "The laboratory workload for Malaria struggle, 1925-1937" (□ The
number of blood tests ■ The number of diagnoses).

Grouped side-by-side bar graph with more than two data series

Figure 14 represents the drugs sent by the Department of Control of Syphilis to cities for treatment
between the period 1926 and 1937. Syphilis is a sexually transmitted disease caused by a bacteria and
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it has bee a very serious public health problem in the world since 1800’s. Several antibiotic-based
drugs were used to cure the Syphilis.

In the Figure 14 we can see that there are four different drug types: Arsenobenzol, Bizmopen,
Mercury, and Iodine, where they are filled in with black color, white color, textured with vertical lines,
and textured with dots, respectively. This textured design is specifically called hatching in graphic
design.

To emphasize grouping over the years, the horizontal axis is broken into segments. It can also
be seen from the figure that there were Bizmopen and Mercury drugs in 1926 only; there were
Arsenobenzol, Bizmopen, and Mercury drugs between the years 1927 and 1933, and afterwards, the
fourth drug Iodine came out in 1934. Regardless of the number of drugs available at a specific year,
the width of grouping is always kept uniform over the years 1926 and 1937.

The data series for the groups are placed side-by-side, which can be done by setting argument
position = position_dodge() in the geom_col() layer. The order in the placement of the groups is
also reflected in the legend keys. A side note is also attached to the graph telling that “The counts show
kilo”. Adding captions to the graphs is possible via caption argument in labs() layer of ggplot2.

On the other hand, we should say that some of the raw materials of these four drugs were imported
from abroad, the treatment of syphilis was mandatory and free. Similarly, these four drugs were
distributed free to the patients. In the Figure 14 the columns for the Mercury filled with vertical lines
are very eye-catching due to their taller heights. While Wong (2016) says that Mercury had been
commonly used to cure Syphilis until discovery of penicillin around 1940’s , Mumyakmaz (2020)
reported that the mercury was the most effective drug to treat the patients (95% effective), and the
Iodine was the second effective drug.

The Figure 14 is a good example for use of hatching for differentiating the data groups when there
is no color option or color printing was not easy or economical in 1938. However, this resulted in a
challange that textured patterns are not allowed in the core functions of the ggplot2 package. For
that reason, we used several annotate() layers along with segment argument to integrate hatches
with vertical lines and dots into the column bars. Since we did hatching manually, we could not
synchronize textured patterns in the column bars with the legend keys. As a consequence of this,
several annotate() layers with rect argument for drawing the legend boxes, several annotate()
layers with segment argument for filling the textured patterns in legend keys, and several annotate()
layers with text argument for typing the legend key titles were used.

We also provided three different historical column bar graphics along with R codes in the Supple-
mentary material for further interest.

Figure 14: Historical figure on "The drugs sent by the Department of Control of Syphilis to cities
for treatment, 1926-1937" retrieved from https://acikerisim.tbmm.gov.tr/handle/11543/553 (■
Arsenobenzol □ Bizmopen (textured pattern with vertical lines) Mercury Iodine).
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Figure 15: Reproduced figure on "The drugs sent by the Department of Control of Syphilis to cities for
treatment, 1926-1937" (■ Arsenobenzol □ Bizmopen (textured pattern with vertical lines) Mercury

Iodine).

Paired bar graphs with two data series

Figure 16 shows the total number of serums and vaccines, which are produced and consigned, at the
Central Hygiene Institute for the years between 1930 and 1937. The Central Hygiene Institute was a
reference laboratory in the country launched for producing serum and vaccine for several infectious
diseases such as rabies, typhoid, and whooping cough.

Figure 16 breaks down the data into two panels as produced (left-panel) and cosigned (right-panel)
through a vertical axis. The left side of vertical axis is for the number of produced serum and vaccine
items in kilogram and the right side of the vertical axis is for the number of consigned serum and
vaccine items in kilogram. Under each panel, the data set for serum (in black) and vaccine (in white)
are displayed via overlapping columns from 1930 to 1937. The legend keys for serum (in black) and
vaccine (in white) are separated horizontally. Note that this is the first time a vertical axis appears in a
graph and it is placed at the center of the graph. It denotes the years with the title “Yillar” and descends
from 1937 to 1930. Since the columns of recent years are taller than the columns of earlier years, which
also shows the continuing success of the institute, reversing the order of years (starting from the recent
year 1937) makes the graphic to look like a population pyramid. Furthermore, although data values
are annotated to the column bars, a horizontal axis with tick marks and tick mark labels are also
available. The tick mark labels show the respective counts, which are not linear in magnitude, going
from 0 to 4500 with unequal increments. The horizontal axis title “SAYISI” refers to the “Frequency”.
This is the first time we have a horizontal axis title as well. The text aligned with 45 degree at the left
panels refers to the “PRODUCED (IN KILO)” and the one with 135 degree at the right refers to the
“CONSIGNED IN (KILO)”, which are symmetric to each other with respect to the vertical axis. We can
consider this graph as a paired bar graph having a double horizontal axis with a common vertical axis.
Lastly, here we can see that the country was very successful both at producing and consigning vaccine
in 1930’s due to increasing trend over the years.

Due to high infant mortality rates in the early years of the country, special effort was devetod the
health care of mother and child. Figure 18 shows the service of birth and childcare houses for women
and children between the period 1926 and 1937. As in Figure 16, the vertical axis breaks down the data
into two panels as inpatient services (left-panel) and outpatient services (right-panel). Then for each
panel, the data set for child and woman are displayed over the years 1926 and 1937 as side-by-side
column bars in black and white colors, respectively. As in Figure 16, the vertical axis at the center
denotes years by “Yillar” starting from 1937 and descending to 1926. The tick marks on horizontal
axis show the respective frequencies with linear increments. The tick mark labels at left side of the
horizontal axis represents the numbers in terms of “Thousands”, going from 0, then to 1, 2, 3, 4, and
5000. Similarly, tick mark labels at the right side of the horizontal axis represents the numbers in terms
of “Ten Thousands”, going from 0, then to 10, 20, 30, 40, and 50, 000. Due to space limitation on the
horizontal axis, the last three digits of the numbers are not used, except the last numbers (5, 000 at the

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 160

Figure 16: Historical figure on "The service of produced and consigned serum and vaccine in
kilogram at the Central Hygiene Institute, 1930-1937" retrieved from https://acikerisim.tbmm.gov.
tr/handle/11543/553 (The left-panel is for produced items and the right-panel is for consigned times;
■ Serum □ Vaccine).

Figure 17: Reproduced figure on "The service of produced and consigned serum and vaccine in
kilogram at the Central Hygiene Institute, 1930-1937" (The left-panel is for produced items and the
right-panel is for consigned times; ■ Serum □ Vaccine).

left and 50, 000 at the right). This looks like a promising example for information design of displaying
very large numbers on graphics when there is no space to integrate all the text into the plotting area.
Integration of these tick mark labels is done via labels argument of scale_y_continuous() layer in
ggplot2. The paired bar graphs in the Figures 17 and 19 can be plotted via using multiple geom_col()
layers with some extra aesthetic work in ggplot2 package. Here we should note that to be able to
assign a pyramid look to the graph, the data is visualized with an illusion since height of the left-panel
bars are actually pretty much smaller than the ones at right-panel. Lastly, we can say that the country
was also succesful at taking care of childs and mothers with an increasing number of inpatient and
outpatient services over the years.

4 Redesign of historical bar graphics in modern era

The historical graphics given above enable us to investigate the trends of several numerical variables
over time and make comparisons between these numerical variables through column bar graphics.
We can also re-visualize these graphics with the help of modern data visualization principles and
software technology to increase the readibility and effectiveness of the graphs through increasing the
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Figure 18: Historical figure on "The service of birth and childcare houses, 1926-1937" retrieved from
https://acikerisim.tbmm.gov.tr/handle/11543/553 (The left-panel is for inpatient services and the
right-panel is for outpatient services; ■ Child □ Woman).

Figure 19: Reproduced figure on "The service of birth and childcare houses, 1926-1937" (The left-panel
is for inpatient services and the right-panel is for outpatient services; ■ Child □ Woman).

data-ink ratio given below:

Data-ink ratio =
Ink used to describe the data
Ink used to visualize graph

.
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The higher the ratio, the better the visualization comes out. Since the nature of the data in the
historical graphics given in this paper is time series, line grahs can also be alternatively used to
visualize the same data with a higher data-ink ratio. For example, as we discussed in Figure 6, the
pattern of the number of inpatient treatments and the number of outpatient treatments over time
cannot be detected easily and requires some cognitive effort due to the data structure and overlapping
column bar design. In Figure 20, we used a multi-line plot to display the number of patients treatments
and that of outpatient treatments between 1924 and 1937 with geom_line() layer. A regular line is
now used to represent the number of inpatient treatments, whereas a dashed line is preferred for the
number of outpatient treatments. Color is not assigned to lines so that the graphic is visually more
accessible. Unlike Figure 6, a vertical axis along with axis labels with linear increments from 0 to 5000
is used to quantify the frequencies. The last data values of two data group are placed on the figure
only. The legend is removed from the figure and data group categories are annotated next to the line
of interest to decrease the ink used to identify non-data values. Unlike Figure 6, in Figure 20, it is now
more clearly seen that the number of outpatient services is not available in the year 1924, both data
groups have an increasing trend over the years, and the difference between quantities of the number
of inpatient treatments and that of outpatient treatments is non-negative until the year 1932, then
it is negative onwards. Furthermore, reducing the overall ink used to draw the graphic also results
in a decrease in computational burden to implement this graphic. The amount of lines required to
implement new figure decreased from 48 lines (2297 characters) to 26 lines (1091 characters) (please
have a look at the R codes in the Supplementary to implement Figures 7 and 20).

With the plotly package, Figure 20 can be further turned into an interactive graphic for web-based
publications, where the data values and other components of the graphic are interacted with mouse-
over and can be removed and added back with mouse clicks. However, interactive graphs cannot be
feasible for hard-copy prints.

Figure 20: An alternative illustration of "The service of the Zonguldak Government Hospital, 1924-
1937" ( The number of inpatient treatments The number of outpatient treatments).

Another example can be the Figure 14, where the amount of four different drugs, namely, Ar-
senobenzol, Bizmopen, Mercury, and Iodine, sent by the Department of Control of Syphilis to cities for
treatment is displayed. In Figure 14, it is easy to compare the amount of four different drugs to each
other for a given year. This design choice eliminates the ability to investigate trends in the amount
of a specific drug supplied over the years. To investigate the relationship between and within the
drug categories, we can prefer displaying the amount of each drug over the years separately through
faceting with facet_wrap() layer.

Figure 21 gives the amount of Arsenobenzol, Bizmopen, Mercury, and Iodine, sent by the Depart-
ment of Control of Syphilis as a facet line plot, where each sub-panel refers to an individual drug
category. We can differentiate the drug categories via stripe titles. Each sub-panel now sits on a
common horizontal axis, that’s years from 1925 to 1937, and a common vertical axis changing from to
0 to the largest possible value in the overall data. Hence, we can clearly and fairly investigate the trend
of each drug over the years, and compare drug amounts for a given year. Faceting also enables us to
avoid hatching and using legends, resulting in a decrease in the computational burden to implement
this figure such that the amount of lines required to code new figure decreased from 101 lines (4520
characters) to 34 lines (1441 characters) (please have a look at the R codes in the Supplementary
material to implement Figures 15 and 21).

Lastly, Figure 18 shows the service of birth and childcare houses between the years 1926 and 1937.
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Figure 21: An alternative illustration of "The drugs sent by the Department of Control of Syphilis
to cities for treatment, 1926-1937" (The upper-left panel is Arsenobenzol, the upper-right panel is
Bizmopen, the lower-left panel is Mercury, and the lower-rightpanel is Iodine).

The inpatient and the outpatient services are further divided into two categories: Child and Woman.
The original design of the graph resembles a population pyramid with the help of creating an illusion
that the left-panel (for inpatient services) and the right-panel (for outpatient services) are symmetric
to each other over the vertical axis, when they are not. Indeed, while the left horizontal axis spans
from 0 to 5000, the right horizontal axis from 0 to 50000 with linear increments. Eliminating 0 strings
from horizontal axis labels also contributes this confusion. In the end, as we discussed earlier, this
perceptional illusion results in an aesthetically pleasing, but misleading graph. On the other hand,
since left and right panels do not share a common horizontal axis, faceting will not result in a fair
comparison between panels as done in Figure 21. Alternatively, Figure 18 can be split into two sub-line
plots with the same horizontal axis, that’s the years from 1926 to 1937, and with different vertical axis
giving the relative frequencies for inpatient services and outpatient services, respectively. This leads to
the Figure 22 which gives more realistic comparison between child and women in terms of inpatient
and outpatient services received. Lastly, the amount of lines required to code new figure decreased
from 80 lines (3578 characters) to 55 lines (2150 characters) (please have a look at the R codes in the
supplementary material to implement Figures 19 and 22).

For a detailed discussion on effectiveness of graphics, chart design, perception and cognition, we
kindly invite readers to read Cleveland and McGill (1986) and Vanderplas et al. (2020).

5 Conclusion

In this study, our aim was two-fold: first understanding the information design behind the historical
column bar graphics drawn with hand and published in late 1930’s, and then, if possible, reproducing
these graphics with the help of the advances in data visualization technologies in our era, namely,
through ggplot2 package.

While we were dealing with these historical graphics to reproduce them in ggplot2 package, we
were mostly challanged with i) multi-line titles with different font styles, ii) textured patterns, and iii)
data groups where the difference of the frequencies is not monotonic over the years.

In a multi-line title or any multi-line text within a figure plotting area such as tick mark labels, data
labels, legends, and so on, if interest is on changing font face i.e., making text bold or italic, then simple
Markdown syntax would be integrated into text and rendered with the help of element_markdown()
layer in the ggtext package (Wilke, 2020). However, if more aesthetic changes such as font family
type, size, or color are needed in the text, then the text can be manipulated appropriately with the
corresponding HTML tags, and rendered with element_textbox() layer in the ggtext package. We also
provided R codes to produce the multi-lines in the Figure 2 and 14 in the supplementary material.

On the other hand, ggpattern package (FC, 2020) provides geometric based patterns such as stripe,
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Figure 22: An alternative illustration of "The service of birth and childcare houses, 1926-1937" (The
upper-panel is for inpatient services and the right-panel is for outpatient services; Child

Woman).

crosshatch, or circle to ggplot2 objects with geom_col_pattern() layer. If a specific pattern is required
in bars, then geom_pattern_manual() layer enables to assign the desired pattern to a specific bar. This
order is reflected into the legend keys as well. For comparison, we reproduced the Figure 15 with
ggpattern and presented it in Figure 23. The amount of lines to produce Figure 23 is now 51 (2171
characters), where R codes are available in the supplementary material.

Unfortunately, the last challenge requires more work which can be considered as a future study.

Figure 23: An alternative illustration of "The drugs sent by the Department of Control of Syphilis to
cities for treatment, 1926-1937" (■ Arsenobenzol □ Bizmopen (textured pattern with vertical lines)
Mercury Iodine).

In today’s Covid-19 pandemic, we also saw that data visualization helped us to better understand
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the Covid-19 related statistics, i.e., the number of confirmed cases, the number of recovered cases, the
number of active cases, and the number of deaths. It can be said that John Burn-Murdoch’s Financial
Times charts played a leading role in the visualization of Covid-19 related statistics through line charts.
With the help of today’s technological advances in data visualization, many other media outlets such
as New York Times and the Guardian take advantage of zoomable and scrollable graphics for visually
attractive story telling. Furthermore, unlike the past, GIS-based interactive data visualization examples
such as CNN health’s Covid-19 tracker (Wolfe et al., 2021) came into play for spatially investigating
the progress of the disease and/or vaccination. Nevertheless, understanding all these visualizations
from the viewer’s side requires data literacy.

What we experienced during the Covid-19 pandemic also enabled us to better understand the
historical graphics used in our study. When we were dealing with these graphics back in late 2019, it
was our limited understanding of how important the workload and capacity of hospitals was during
an epidemic or a pandemic and how important the services of government, private, and mobile
hospitals were for carrying the workload in the fight against the infectious diseases in order to “flatten
the curve”. Furthermore, we also learned that, as in the Figure 13, while epidemics take a very long
time to be diminished from the world and even if the ratio of “the number of blood tests” to “the
number of positive test results” is getting larger over the years, increasing the test capacity was also
an old school approach yielding the idea “The more tests the better prevention is”.

Lastly, we can conclude that neither pandemics, nor the data visualization is new to our world. As
in the past and today, statistical graphics and data visualization play a vital bridge role between the
authorities and the public during global issues such as health.
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spherepc: An R Package for Dimension
Reduction on a Sphere
by Jongmin Lee, Jang-Hyun Kim and Hee-Seok Oh

Abstract Dimension reduction is a technique that can compress given data and reduce noise. Recently,
a dimension reduction technique on spheres, called spherical principal curves (SPC), has been pro-
posed. SPC fits a curve that passes through the middle of data with a stationary property on spheres.
In addition, a study of local principal geodesics (LPG) is considered to identify the complex structure
of data. Through the description and implementation of various examples, this paper introduces an R
package spherepc for dimension reduction of data lying on a sphere, including existing methods, SPC
and LPG.

1 Introduction

This paper aims to introduce an R package spherepc that considers several dimension reduction
techniques on a sphere, which encompass recently developed approaches such as SPC and LPG as
well as some existing methods, and discuss how to implement these methods through spherepc.

Dimension reduction methods are widely used in various fields, including statistics and machine
learning, by efficiently compressing data and removing noise (Benner et al., 2005). As one of the
dimension reduction methods, the principal curves of Hastie and Stuetzle (1989) are suitable for fitting
a curve or a surface of data in Euclidean space, which go through the middle of the data. Hauberg
(2016) proposed an algorithm to find the principal curves in Riemannian manifolds based on the
concept of the original principal curves. However, the principal curves proposed by Hauberg (2016)
no longer represent the data continuously because of the approximation of the projection step required
to fit the curves.

Recently, Lee et al. (2021a) proposed a new method, termed spherical principal curves (SPC), that
constructs principal curves, ensuring a stationary property on spheres. SPC is useful for representing
circular or waveform data with smaller reconstruction errors than conventional methods, including
principal geodesic analysis (Fletcher et al., 2004), exact principal circle (Lee et al., 2021a), and principal
curves proposed by Hauberg (2016). However, SPC has the disadvantage of being sensitive to
initialization. As a result, there are some data structures that SPC does not apply to, for example, data
with spirals, zigzags, or branches like tree-shape. A localized version of SPC called local principal
geodesics (LPG) is being developed to resolve such a problem. A function for LPG is also provided in
the package spherepc. Research on the LPG is underway in progress.

To the best of our knowledge, no available R packages offer the methods of dimension reduction
and principal curves on a sphere. The existing R packages providing principal curves, such as
princurve (Hastie and Weingessel, 2015) and LPCM (Einbeck et al., 2015), are available only on
Euclidean space, not on a sphere or (Riemannian) manifold. In addition, most dimension reduction
methods on manifolds (Huckemann et al., 2010; Panaretos et al., 2014; Liu et al., 2017) involve
somewhat complex optimizations. The proposed package spherepc for R provides the state-of-the-
art principal curve technique on the sphere (Lee et al., 2021a) and comprehensively collects and
implements the existing methods (Fletcher et al., 2004; Hauberg, 2016).

The rest of this paper is organized as follows. The following section introduces the existing methods
for dimension reduction on the sphere and relevant functions covered in the package spherepc, which
is available on CRAN. Furthermore, their usages are discussed with examples in detail. Then, the
spherical principal curves proposed by Lee et al. (2021a) and principal curves of Hauberg (2016)
are briefly described. In addition, implementations of the SPC() and SPC.Hauberg() functions in
the spherepc are presented. The subsequent section discusses the local principal geodesics (LPG)
with the implementation of various simulated data, demonstrating its promising usability. In the
application session, all the mentioned methods are performed to analyze real seismological data.
Finally, conclusions are given in the last section.

2 Existing methods

Principal geodesic analysis

Principal geodesic analysis (PGA) proposed by Fletcher et al. (2004) can be regarded as a generalization
of principal component analysis (PCA) to Riemannian manifolds. In particular, Fletcher et al. (2004)
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performed dimension reduction of data on the Cartesian product space of the manifolds. In detail, the
data are projected onto the tangent spaces at the intrinsic means of each component of the manifolds;
thus, the given data are approximated as points on Euclidean vector space, and subsequently, PCA is
applied to the points. As a result, the dimension reduction can be performed through the inverse of
the tangent projections.

The principal geodesic analysis can be implemented by the PGA() function available in the spherepc.
The detailed usage of the PGA() function is described as follows.

PGA(data, col1 = "blue", col2 = "red")

Before using the PGA() function, it requires loading the packages rgl (Adler and Murdoch, 2020),
sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017). The following codes yield an
implementation of the PGA() function.

#### for all simulated datasets, longitude and latitude are expressed in degrees
#### example 1: half-great circle data
> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)
> sigma <- 2 # noise level
> half.circle <- circle[circle[, 1] < 0, , drop = FALSE]
> half.circle <- half.circle + sigma * rnorm(nrow(half.circle))
> PGA(half.circle)

#### example 2: S-shaped data
# the dataset consists of two parts: lon ~ Uniform[0, 20],
# lat = sqrt(20 * lon - lon^2) + N(0, sigma^2),
# lon ~ Uniform[-20, 0], lat = -sqrt(-20 * lon - lon^2) + N(0, sigma^2)
> n <- 500
> sigma <- 1 # noise level
> lon <- 60 * runif(n)
> lat <- (60 * lon - lon^2)^(1/2) + sigma * rnorm(n)
> simul.S1 <- cbind(lon, lat)
> lon2 <- -60 * runif(n)
> lat2 <- -(-60 * lon2 - lon2^2)^(1/2) + sigma * rnorm(n)
> simul.S2 <- cbind(lon2, lat2)
> simul.S <- rbind(simul.S1, simul.S2)
> PGA(simul.S)

Because a principal geodesic is always a great circle, the PGA() function is suitable for identifying the
global data trend. The implementations of half-circle and S-shaped data are displayed in Figure 1,
where the principal geodesic properly extracts the global trends in the half-great circle and S-shaped
data, while it cannot identify the circular variations in the S-shaped case. In addition, the arguments
and outputs of the PGA() function are described in Tables 1 and 2.

Figure 1: From left to right, half-great circle and S-shaped data (blue) and the results (red) of principal
geodesic analysis (PGA). The principal geodesic detects the global trends of the noisy half-great circle
and the S-shaped data but cannot identify the circular variation of the S-shaped data.
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Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

col1 color of data. The default is blue.
col2 color of the principal geodesic line. The default is red.

Table 1: Arguments of the PGA().

Output Description

plot plotting of the result in 3D graphics.
line spatial locations (longitude and latitude by degrees) of points in the princi-

pal geodesic line.

Table 2: Outputs of the PGA().

Principal circle

In a spherical surface, as shown in Figure 1, the principal geodesic analysis always results in a great
circle, which cannot be sufficient to identify the non-geodesic structure of data. The circle on a sphere
that minimizes a reconstruction error is called a principal circle, where the reconstruction error is
defined as the total sum of squares of geodesic distances between the circle and data points. However,
the existing method for generating the principal circle is still based on the tangent space approximation
and its inverse process, thereby leading to numerical errors. Lee et al. (2021a) have proposed an exact
principal circle in an intrinsic way and its practical algorithm based on gradient descent. The details
are described in Section 3 of Kim et al. (2020) and Appendix B of Lee et al. (2021b). The spherepc
package provides the PrincipalCircle() function to implement the intrinsic principal circle. Its usage
is followed by

PrincipalCircle(data, step.size = 1e-3, thres = 1e-5, maxit = 10000).

Argument Description

data matrix or data frame consisting of spatial locations (longitude and latitude
denoted by degrees) with two columns.

step.size step size of gradient descent algorithm. For convergence of the algorithm,
step.size is recommended to be below 0.01. The default is 1e-3.

thres threshold of the stopping condition. The default is 1e-5.
maxit maximum number of iterations. The default is 10000.

Table 3: Arguments of the PrincipalCircle().

The arguments of the PrincipalCircle() are described in Table 3, and its output is a three-
dimensional vector, where the first and second components are longitude and latitude (represented
by degrees), respectively. The last one is the radius of the principal circle. To display the circle, the
GenerateCircle() function should be implemented. Its usage is followed by

GenerateCircle(center, radius, T = 1000).

The output of the GenerateCircle() function is a matrix consisting of spatial locations (longitude
and latitude by degrees) with two columns, which can be plotted by the sphereplot::rgl.sphgrid()
and sphereplot::rgl.sphpoints() functions from the sphereplot package (Robotham, 2013). Note
that the sphereplot package depends on the rgl package (Adler and Murdoch, 2020). The detailed
arguments of the GenerateCircle() function are described in Table 4.

The following codes implement principal circles by the PrincipalCircle() and GenerateCircle()
functions.

## for all the following examples, longitude and latitude are denoted by degrees
#### example 1: half-great circle data
> circle <- GenerateCircle(c(150, 60), radius = pi/2, T = 1000)
> half.great.circle <- circle[circle[, 1] < 0, , drop = FALSE]
> sigma <- 2 # noise level
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Argument Description

center center of circle with spatial locations (longitude and latitude denoted by
degrees).

radius radius of circle. It should be range from 0 to π.
T the number of points that make up a circle. The points in a circle are equally

spaced. The default is 1000.

Table 4: Arguments of the GenerateCircle().

> half.great.circle <- half.great.circle + sigma * rnorm(nrow(half.great.circle))
## find a principal circle
> PC <- PrincipalCircle(half.great.circle)
> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)
## plot the half-great circle data and principal circle
> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")
> sphereplot::rgl.sphpoints(half.great.circle, radius = 1, col = "blue", size = 9)
> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

#### example 2: circular data
> n <- 700 # the number of samples
> sigma <- 5 # noise level
> x <- seq(-180, 180, length.out = n)
> y <- 45 + sigma * rnorm(n)
> simul.circle <- cbind(x, y)
## find a principal circle
> PC <- PrincipalCircle(simul.circle)
> result <- GenerateCircle(PC[1:2], PC[3], T = 1000)
## plot the circular data and principal circle
> sphereplot::rgl.sphgrid(col.lat = "black", col.long = "black")
> sphereplot::rgl.sphpoints(simul.circle, radius = 1, col = "blue", size = 9)
> sphereplot::rgl.sphpoints(result, radius = 1, col = "red", size = 6)

The results of the principal circle are shown in Figure 2. As one can see, the principal circle identifies
the circular patterns of the noisy half-great circle and circular dataset well.

Figure 2: Half-great circle data and circular data (blue) and the results (red) of the principal circle from
left to right. The principal circle can identify the relatively small circular structure (right) and the great
circle structure (left).

3 Spherical principal curves

Principal curves proposed by Hastie and Stuetzle (1989) can be considered as a nonlinear generalization
of the principal component analysis in the sense that the principal curves pass through the middle of
given data and reserve a stationary property. The curve is a smooth function from a one-dimensional
closed interval to a given space; then, a curve f is said to be a principal curve of X or self-consistent if
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the curve satisfies
f (λ) = E

(
X | λ f (X) = λ

)
,

where f (λ f (x)) is the closest (projection) point in the curve f from the point x.

Hauberg (2016) provided an algorithm for principal curves on Riemannian manifolds. However,
Hauberg (2016) used approximations for finding the closest point of each data point, which may lead
to numerical errors. Recently, Lee et al. (2021a) presented theoretical results of principal curves on
spheres and a practical algorithm for constructing principal curves without any approximations, called
spherical principal curves (SPC), thereby causing the given data to be represented more precisely and
smoothly compared to principal curves of Hauberg (2016). In the both ways of extrinsic and intrinsic
approaches, the method of SPC updates curves on the spherical surfaces to represent the given data
and fits curves that satisfy the stationary conditions. For more details, refer to Kim et al. (2020) or Lee
et al. (2021a).

The package spherepc provides the SPC() function for implementing spherical principal curves
and the SPC.Hauberg() function for principal curves of Hauberg (2016). The usage of the SPC()
function is as follows.

SPC(data, q = 0.05, T = nrow(data), step.size = 1e-3, maxit = 30,
type = "Intrinsic", thres = 1e-2, deletePoints = FALSE,
plot.proj = FALSE, kernel = "quartic", col1 = "blue",
col2 = "green", col3 = "red").

The usage of the SPC.Hauberg() function is the same as that of the SPC() function. Before implement-
ing the SPC() and SPC.Hauberg() functions, it requires loading the rgl (Adler and Murdoch, 2020),
sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017) packages. To implement the SPC()
and SPC.Hauberg() functions, we consider the waveform data used in Liu et al. (2017), Kim et al.
(2020), and Lee et al. (2021a). The generating equation of waveform is

ϕ = α · sin( f θ · π/180) + 10,

where ϕ, θ, α, and f denote the longitude, latitude in degrees, amplitude and frequency of the
waveform, respectively. θ is uniformly sampled from the interval [−180, 180] and a Gaussian random
noise from N(0, σ2) is added on each ϕ where σ = 2, 10. The generating waveform data and
implementations of the SPC() and SPC.Hauberg() functions are as follows.

#### longitude and latitude are expressed in degrees
#### example: waveform data
> n <- 200
> alpha <- 1/3; freq <- 4 # amplitude and frequency of wave
> sigma1 <- 2; sigma2 <- 10 # noise levels
> lon <- seq(-180, 180, length.out = n) # uniformly sampled longitude
> lat <- alpha * 180/pi * sin(freq * lon * pi/180) + 10 # latitude vector
## add Gaussian noises on the latitude vector
> lat1 <- lat + sigma1 * rnorm(length(lon))
> lat2 <- lat + sigma2 * rnorm(length(lon))
> wave1 <- cbind(lon, lat1); wave2 <- cbind(lon, lat2)
## implement Hauberg's principal curves to the waveform data
> SPC.Hauberg(wave1, q = 0.05)
## implement SPC to the (noisy) waveform data
> SPC(wave1, q = 0.05)
> SPC(wave2, q = 0.05)

The above codes generate the results in Figure 3. As one can see, the SPC() and SPC.Hauberg()
functions identify the waveform pattern of the simulated data. Especially, the SPC() generates a
smoother curve. The detailed arguments and outputs of the SPC() are described in Tables 5 and 6,
respectively, which are the same for the SPC.Hauberg().

Options for spherical principal curves

There are some options for the SPC() and SPC.Hauberg() functions. In particular, we implement using
the arguments plot.proj and deletePoints, described in Table 5. If plot.proj = TRUE is used, then
the projection line for each data point is plotted. If the argument deletePoints = TRUE is performed,
the SPC() function deletes the points in curves that do not have adjacent data for each expectation step
required to fit the principal curves, returning an open curve, i.e., a curve with endpoints. As a result,
the principal curves are more parsimonious since a redundant part of the resulting curves is removed.
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Figure 3: Left and middle: The waveform data (blue) and the results (red) of Hauberg’s principal
curves (left) and spherical principal curves. Right: The noisy waveform data (blue) and the result (red)
of spherical principal curves. All cases are implemented with q = 0.05. The two methods find the true
waveform of the data well. In particular, the spherical principal curve tends to be smoother.

Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

q numeric value of the smoothing parameter. The parameter plays the same
role, as the bandwidth does in kernel regression, in the SPC function. The
value should be a numeric value between 0.01 and 0.5. The default is 0.1.

T the number of points making up the resulting curve. The default is 1000.
step.size step size of the PrincipalCircle function. The default is 0.001. The result-

ing principal circle is used as an initialization of the SPC function.
maxit maximum number of iterations. The default is 30.
type type of mean on the sphere. The default is "Intrinsic" and the other choice

is "Extrinsic".
thres threshold of the stopping condition. The default is 0.01.
deletePoints logical value. The argument is an option of whether to delete points or

not. If deletePoints is FALSE, this function leaves the points in curves
that do not have adjacent data for each expectation step. As a result, the
function usually returns a closed curve, i.e. a curve without endpoints. If
deletePoints is TRUE, this function deletes the points in curves that do not
have adjacent data for each expectation step. As a result, The SPC function
usually returns an open curve, i.e. a curve with endpoints. The default is
FALSE.

plot.proj logical value. If the argument is TRUE, the projection line for each data
point is plotted. The default is FALSE.

kernel kind of kernel function. The default is the quartic kernel, and the alternative
is indicator or Gaussian.

col1 color of data. The default is blue.
col2 color of points in principal curves. The default is green.
col3 color of resulting principal curves. The default is red.

Table 5: Arguments of the SPC().

The SPC.Hauberg() function also contains the same options. For implementing these two arguments,
the following codes are performed through real earthquake data.

> data(Earthquake)
# collect spatial locations (longitude and latitude denoted by degrees) of data
> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: plot the projection lines (option of plot.proj)
> SPC(earthquake, q = 0.1, plot.proj = TRUE)

#### example 2: open principal curves (option of deletePoints)
> SPC(earthquake, q = 0.04, deletePoints = TRUE)
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Output Description

plot plotting of the result in 3D graphics.
prin.curves spatial locations (denoted by degrees) of points in the resulting principal

curves.
line connecting lines between points in prin.curves.
converged whether or not the algorithm converged.
iteration the number of iterations of the algorithm.
recon.error sum of squared distances between the data and their projections.
num.dist.pt the number of distinct projections.

Table 6: Outputs of the SPC().

The results are illustrated in Figure 4. The left panel shows a closed principal curve (red) with projection
lines (black) of each data point onto the curve, and the right panel displays an open principal curve
due to the option deletePoints = TRUE. It is a parsimonious result because the redundant part on the
upper right side of the sphere is removed.

Figure 4: Left: Projection result (black) of SPC with q = 0.1. The spherical principal curve (red)
continuously represents the earthquake data (blue). Right: The open curve of SPC with q = 0.04 and
deletePoints=TRUE. The less q is, the more the curve overfits the data.

4 Local principal geodesics

Suppose that observations have a non-geodesic structure. Then the PGA may not be beneficial to
represent such data because PGA always results in a geodesic line. To overcome this problem, we
consider performing PGA locally and repeatedly to detect the non-geodesic and complex structures of
data, which can be interpreted as a localized version of the PGA and SPC. The newly proposed method
is called local principal geodesics (LPG). The main idea behind the LPG is that non-geodesic structures
can be regarded as a part of geodesic when viewed locally. Although there is no reference to the LPG
because research on LPG is underway, there is a localized principal curve method on Euclidean space
(Einbeck et al., 2005), which is similar to LPG and may share some motivation with the LPG. For more
details, refer to Einbeck et al. (2005).

The package spherepc offers the LPG() function to recognize various data structures, such as
spirals, zigzag, and tree data. The usage of the function is

LPG(data, scale = 0.04, tau = scale/3, nu = 0, maxpt = 500,
seed = NULL, kernel = "indicator", thres = 1e-4, col1 = "blue",
col2 = "green", col3 = "red").

Like the previous functions, before the LPG() function is implemented, it requires to load the rgl (Adler
and Murdoch, 2020), sphereplot (Robotham, 2013), and geosphere (Hijmans et al., 2017) packages.
The detailed arguments and outputs of this function are described in Tables 7 and 8. We implement
the following code to apply the LPG() function to the spiral, zigzag, and tree simulated data illustrated
in Figures 5, 6, and 7.
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## longitude and latitude are expressed in degrees
#### example 1: spiral data
> set.seed(40)
> n <- 900 # the number of samples
> sigma1 <- 1; sigma2 <- 2.5; # noise levels
> radius <- 73; slope <- pi/16 # radius and slope of the spiral
## polar coordinate of (longitude, latitude)
> r <- runif(n)^(2/3) * radius; theta <- -slope * r + 3
## transform to (longitude, latitude)
> correction <- (0.5 * r/radius + 0.3) # correction of noise level
> lon1 <- r * cos(theta) + correction * sigma1 * rnorm(n)
> lat1 <- r * sin(theta) + correction * sigma1 * rnorm(n)
> lon2 <- r * cos(theta) + correction * sigma2 * rnorm(n)
> lat2 <- r * sin(theta) + correction * sigma2 * rnorm(n)
> spiral1 <- cbind(lon1, lat1); spiral2 <- cbind(lon2, lat2)
## plot the spiral data
> rgl.sphgrid(col.lat = 'black', col.long = 'black')
> rgl.sphpoints(spiral1, radius = 1, col = 'blue', size = 12)
## implement the LPG to (noisy) spiral data
> LPG(spiral1, scale = 0.06, nu = 0.1, seed = 100)
> LPG(spiral2, scale = 0.12, nu = 0.1, seed = 100)

Figure 5: Left: Spiral data (blue) and the result (red) of LPG with scale = 0.06 and nu = 0.1. Right:
Noisy spiral data (blue) and the result (red) of LPG with scale = 0.12 and nu = 0.1. Local principal
geodesics represent the spiral patterns of the (noisy) spiral data. The larger the noise is, the larger scale
is required.

#### example 2: zigzag data
> set.seed(10)
> n <- 50 # the number of samples is 6 * n = 300
> sigma1 <- 2; sigma2 <- 5 # noise levels
> x1 <- x2 <- x3 <- x4 <- x5 <- x6 <- runif(n) * 20 - 20
> y1 <- x1 + 20 + sigma1 * rnorm(n); y2 <- -x2 + 20 + sigma1 * rnorm(n)
> y3 <- x3 + 60 + sigma1 * rnorm(n); y4 <- -x4 - 20 + sigma1 * rnorm(n)
> y5 <- x5 - 20 + sigma1 * rnorm(n); y6 <- -x6 - 60 + sigma1 * rnorm(n)
> x <- c(x1, x2, x3, x4, x5, x6); y <- c(y1, y2, y3, y4, y5, y6)
> simul.zigzag1 <- cbind(x, y)
## plot the zigzag data
> sphereplot::rgl.sphgrid(col.lat = 'black', col.long = 'black')
> sphereplot::rgl.sphpoints(simul.zigzag1, radius = 1, col = 'blue', size = 12)
## implement the LPG to the zigzag data
> LPG(simul.zigzag1, scale = 0.1, nu = 0.1, maxpt = 45, seed = 50)

## noisy zigzag data
> set.seed(10)
> z1 <- z2 <- z3 <- z4 <- z5 <- z6 <- runif(n) * 20 - 20
> w1 <- z1 + 20 + sigma2 * rnorm(n); w2 <- -z2 + 20 + sigma2 * rnorm(n)
> w3 <- z3 + 60 + sigma2 * rnorm(n); w4 <- -z4 - 20 + sigma2 * rnorm(n)
> w5 <- z5 - 20 + sigma2 * rnorm(n); w6 <- -z6 - 60 + sigma2 * rnorm(n)
> z <- c(z1, z2, z3, z4, z5, z6); w <- c(w1, w2, w3, w4, w5, w6)
> simul.zigzag2 <- cbind(z, w)
## implement the LPG to the noisy zigzag data
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> LPG(simul.zigzag2, scale = 0.2, nu = 0.1, maxpt = 18, seed = 20)

Figure 6: Left: zigzag data (blue). Middle: zigzag data (blue) and the result (red) of with scale = 0.1 and
nu = 0.1. Right: Noisy zigzag data (blue) and the result (red) of LPG with scale = 0.2, and nu = 0.1.
Local principal geodesics extract the zigzag structures of the (noisy) zigzag data properly. The larger
the noise is, the larger scale is needed.

Note that the LPG() function may return several curves. We now implement the function in a
complex simulation dataset composed of several curves. As shown in the left panel of Figure 7, the
tree object has twenty-six geodesic (linear) structures consisting of one stem, five branches, and twenty
subbranches. It is not informative to show the generating formula for the tree dataset. Instead, we
provide its generating code with explanatory notes as follows.

#### example 3: tree dataset
## the tree dataset consists of stem, branches and subbranches
## generate stem
> set.seed(10)
> n1 <- 200; n2 <- 100; n3 <- 15 # the number of samples in

# a stem, a branch, and a subbrach
> sigma1 <- 0.1; sigma2 <- 0.05; sigma3 <- 0.01 # noise levels
> noise1 <- sigma1 * rnorm(n1); noise2 <- sigma2 * rnorm(n2)
> noise3 <- sigma3 * rnorm(n3)
> l1 <- 70; l2 <- 20; l3 <- 1 # length of stem, branches, and subbranches
> rep1 <- l1 * runif(n1) # repeated part of stem
> stem <- cbind(0 + noise1, rep1 - 10)
## generate branch
> rep2 <- l2 * runif(n2) # repeated part of branch
> branch1 <- cbind(-rep2, rep2 + 10 + noise2); branch2 <- cbind(rep2, rep2 + noise2)
> branch3 <- cbind(rep2, rep2 + 20 + noise2)
> branch4 <- cbind(rep2, rep2 + 40 + noise2)
> branch5 <- cbind(-rep2, rep2 + 30 + noise2)
> branch <- rbind(branch1, branch2, branch3, branch4, branch5)
## generate subbranches
> rep3 <- l3 * runif(n3) # repeated part in subbranches
> branches1 <- cbind(rep3 - 10, rep3 + 20 + noise3)
> branches2 <- cbind(-rep3 + 10, rep3 + 10 + noise3)
> branches3 <- cbind(rep3 - 14, rep3 + 24 + noise3)
> branches4 <- cbind(-rep3 + 14, rep3 + 14 + noise3)
> branches5 <- cbind(-rep3 - 12, -rep3 + 22 + noise3)
> branches6 <- cbind(rep3 + 12, -rep3 + 12 + noise3)
> branches7 <- cbind(-rep3 - 16, -rep3 + 26 + noise3)
> branches8 <- cbind(rep3 + 16, -rep3 + 16 + noise3)
> branches9 <- cbind(rep3 + 10, -rep3 + 50 + noise3)
> branches10 <- cbind(-rep3 - 10, -rep3 + 40 + noise3)
> branches11 <- cbind(-rep3 + 12, rep3 + 52 + noise3)
> branches12 <- cbind(rep3 - 12, rep3 + 42 + noise3)
> branches13 <- cbind(rep3 + 14, -rep3 + 54 + noise3)
> branches14 <- cbind(-rep3 - 14, -rep3 + 44 + noise3)
> branches15 <- cbind(-rep3 + 16, rep3 + 56 + noise3)
> branches16 <- cbind(rep3 - 16, rep3 + 46 + noise3)
> branches17 <- cbind(-rep3 + 10, rep3 + 30 + noise3)
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> branches18 <- cbind(-rep3 + 14, rep3 + 34 + noise3)
> branches19 <- cbind(rep3 + 16, -rep3 + 36 + noise3)
> branches20 <- cbind(rep3 + 12, -rep3 + 32 + noise3)
> sub.branches <- rbind(branches1, branches2, branches3, branches4, branches5,
+ branches6, branches7, branches8, branches9, branches10, branches11, branches12,
+ branches13, branches14, branches15, branches16, branches17, branches18,
+ branches19, branches20)
## tree dataset consists of stem, branch, and subbranches
> tree <- rbind(stem, branch, sub.branches)
## plot the tree dataset
> sphereplot::rgl.sphgrid(col.lat = 'black', col.long = 'black')
> sphereplot::rgl.sphpoints(tree, radius = 1, col = 'blue', size = 12)
## implement the LPG function to the tree dataset
> LPG(tree, scale = 0.03, nu = 0.2, seed = 10)

Figure 7: Tree data (blue) and the result (red) of LPG with scale = 0.03 and nu=0.2. The LPG function
captures the complex structures of the data well, provided that scale and nu are properly chosen.

As displayed in Figures 5, 6, and 7, the LPG() function identifies the non-geodesic or complex
patterns of the simulated datasets well as long as the parameters of scale and nu are properly chosen.
The arguments and outputs of the function are respectively described in Tables 7 and 8.

Argument Description

data matrix or data frame consisting of spatial locations with two columns. Each
row represents longitude and latitude (denoted by degrees).

scale scale parameter for this function. The argument is the degree to which the
LPG function expresses data locally; thus, as the scale grows, the result of
the LPG becomes similar to that of the PGA function. The default is 0.4.

tau forwarding or backwarding distance of each step. It is empirically recom-
mended to choose a third of scale, which is the default of this argument.

nu parameter to alleviate bias of resulting curves. nu represents the viscosity of
the given data and it should be selected in [0, 1). The default is zero. When
nu is close to 1, the curve usually swirls similarly to the motion of a large
viscous fluid. The argument maxpt can control the swirling.

maxpt maximum number of points in each curve. The default is 500.
seed random seed number.
kernel kind of kernel function. The default is the indicator kernel, and the alterna-

tive is quartic or Gaussian.
thres threshold of the stopping condition for the IntrinsicMean function in the

process of the LPG function. The default is 1e-4.
col1 color of data. The default is blue.
col2 color of points in the resulting principal curves. The default is green.
col3 color of the resulting curves. The default is red.

Table 7: Arguments of the LPG().
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Output Description

plot plotting of the result in 3D graphics.
num.curves the number of resulting curves.
prin.curves spatial locations (represented by degrees) of points in the resulting curves.
line connecting lines between points in prin.curves.

Table 8: Outputs of the LPG().

5 Application

Figure 8: The distribution of significant earthquakes (8+ Mb magnitude), and their three-dimensional
visualization.

We use earthquake data from the U.S. Geological Survey, which has collected significant earth-
quakes (8+ Mb magnitude) around the Pacific Ocean since 1900. As shown in Figure 8, the data contain
77 observations distributed in the borders between the Eurasian, Pacific, North American, and Nazca
tectonic plates. The data have three features: the observations are distributed globally, scattered, and
form non-geodesic structures. Because the tectonic plates are constantly moving in different directions,
identifying the hidden patterns of borders is useful in geostatistics and seismology, as noted in Biau
and Fischer (2011); Mardia (2014). It can be possible to identify the borders of plates by applying
dimension reduction methods to the earthquake data.

To apply the aforementioned dimension reduction methods to the earthquake data, we use the
following code.

> data(Earthquake)
#### collect spatial locations (longitude and latitude by degrees) of data
> earthquake <- cbind(Earthquake$longitude, Earthquake$latitude)

#### example 1: principal geodesic analysis (PGA)
> PGA(earthquake)

#### example 2: principal circle
## get center and radius of principal circle
> circle <- PrincipalCircle(earthquake)
## generate the principal circle
> PC <- GenerateCircle(circle[1:2], circle[3], T = 1000)
## plot the principal circle
> sphereplot::rgl.sphgrid(col.long = "black", col.lat = "black")
> sphereplot::rgl.sphpoints(earthquake, radius = 1, col = "blue", size = 12)
> sphereplot::rgl.sphpoints(PC, radius = 1, col = "red", size = 9)

Examples 1 and 2 implement the principal geodesic and the principal circle, respectively. As illustrated
in Figure 9, the principal geodesic (left) fails to identify the variations of the earthquake data. The
principal circle (right) captures the global trend of the data, whereas the circle could not extract the
local variations of the data.
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Figure 9: Earthquake data (blue) and the results (red) of the principal geodesic analysis and principal
circle, from left to right. The principal geodesic fails to find the non-geodesic feature of the data, and
the principal circle captures the circular pattern but cannot identify the local variations of the data.

Figure 10: Earthquake data (blue) and implementation results (red) with q = 0.1 of the SPC.Hauberg
and SPC functions, respectively, from left to right. Both methods can represent the non-geodesic
feature of the earthquake data. The spherical principal curve particularly tends to be smoother.

#### example 3: spherical principal curves and principal curves of Hauberg
> SPC.Hauberg(earthquake, q = 0.1) # principal curves of Hauberg
> SPC(earthquake, q = 0.1) # spherical principal curves

Example 3 fits the spherical principal curve and Hauberg’s principal curve with q = 0.1. As shown in
Figure 10, both methods identify the curved feature of the earthquake data. The spherical principal
curve particularly tends to be more continuous than Hauberg’s principal curve.

#### example 4: spherical principal curves with q = 0.15, 0.1, 0.03, and 0.02
> SPC(earthquake, q = 0.15)
> SPC(earthquake, q = 0.1)
> SPC(earthquake, q = 0.03)
> SPC(earthquake, q = 0.02)

Example 4 applies the spherical principal curve to the earthquake data with varying q = 0.15, 0.1, 0.03, 0.02.
The parameter q plays a role in the bandwidth of the SPC() function. As shown in Figure 11, the
smaller q is, the rougher the curve is. On the contrary, the larger q is, the smoother the curve is.

#### example 5: local principal geodesics (LPG)
> LPG(earthquake, scale = 0.5, nu = 0.2, maxpt = 20, seed = 50)
> LPG(earthquake, scale = 0.4, nu = 0.3, maxpt = 22, seed = 50)

Lastly, example 5 implements the LPG() function with different scale and nu. As shown in Figure 12,
the function represents the curved pattern of the data, illustrating the slightly different features.
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Figure 11: From left to right and top to bottom: Earthquake data (blue) and the results (red) of the
SPC with q = 0.15, 0.1, 0.03 and 0.02. The larger the parameter q is, the smoother the curve is, while it
tends to underfit the data. Conversely, the smaller the parameter q is, the rougher the curve is.

Figure 12: From left to right, earthquake data (blue) and the results of the LPG function with scale = 0.5,
nu=0.2 and scale = 0.4, nu=0.3. Both the local principal geodesics implemented by different parameters
recognize the non-geodesic and scattered pattern of the data, illustrating the different features.

6 Conclusions

In this paper, the R package spherepc has implemented various dimension reduction methods on a
sphere. It includes not only principal geodesic analysis (PGA), principal circle, and principal curves
of Hauberg (2016) as existing methods but also spherical principal curves (SPC) and local principal
geodesics (LPG) as new approaches. The spherepc package has demonstrated its usefulness by
applying the functions to several simulation examples and real earthquake data. We believe that the
spherepc is helpful for applications in various fields, ranging from statistics to engineering, such as
geostatistics, image analysis, pattern recognition, and machine learning.
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The smoots Package in R for
Semiparametric Modeling of Trend
Stationary Time Series
by Yuanhua Feng, Thomas Gries, Sebastian Letmathe and Dominik Schulz

Abstract This paper is an introduction to the new package in R called smoots (smoothing time series),
developed for data-driven local polynomial smoothing of trend-stationary time series. Functions for
data-driven estimation of the first and second derivatives of the trend are also built-in. It is first applied
to monthly changes of the global temperature. The quarterly US-GDP series shows that this package
can also be well applied to a semiparametric multiplicative component model for non-negative time
series via the log-transformation. Furthermore, we introduced a semiparametric Log-GARCH and a
semiparametric Log-ACD model, which can be easily estimated by the smoots package. Of course,
this package applies to suitable time series from any other research area. The smoots package also
provides a useful tool for teaching time series analysis, because many practical time series follow an
additive or a multiplicative component model.

1 Introduction

This paper provides an introduction to a new package in R called smoots (version 1.0.1, Feng and
Schulz, 2019) for data-driven local polynomial smoothing of trend-stationary time series. This package
is developed based on the R codes for the practical implementation of the proposals in Feng et al.
(2020). Detailed discussion on the methodology and the development of the algorithms may be
found in that work. Here, the main algorithm is a fully data-driven IPI (iterative plug-in, Gasser
et al., 1991) approach for estimating the trend under stationary time series errors, where the variance
factor in the asymptotically optimal bandwidth is estimated by another IPI-approach for a lag-window
estimator of the spectral density following Bühlmann (1996). Numerous sub-algorithms determined by
different options, such as the choice of the order of local polynomial, the choice of the kernel weighting
functions and the choice of the so-called inflation factors for estimating the bias in the asymptotically
optimal bandwidth, are included. Further functions for data-driven estimation of the first and second
derivatives of the trend are also developed by adapting the idea of Feng (2007). A related proposal
may be found in Francisco-Fernández et al. (2004). The algorithms included in the smoots package
differ to their proposal in several ways. (1) The IPI-algorithm is usually superior to the DPI (see
Beran et al., 2009, for detailed discussion in models with i.i.d. errors). (2) In Francisco-Fernández et al.
(2004) the variance factor is estimated under an AR(1) model, which is usually a misspecification. (3)
Data-driven estimation of the derivatives are also included in the current package. Moreover, the user
can obtain any estimate with fixed bandwidths chosen beforehand. A function for kernel smoothing is
also built-in for comparison.

The smoots package complements the Comprehensive R Archive Network (CRAN), as already
existing base R functions or CRAN packages for local polynomial smoothing either do not implement
an automated bandwidth selection or, if such bandwidth algorithms do exist, they are only suitable for
data with i.i.d. (independently and identically distributed) errors, which is an assumption that is often
violated for time series. In more detail, notwithstanding that the stats package offers the functions
lowess() and loess() for computing the local polynomial estimates of the regression function given
one or multiple predictor variables, a smoothing bandwidth has to be selected arbitrarily in both cases.
Similar functionality is provided by the locpol (Ojeda Cabrera, 2018), KernSmooth (Wand, 2021) and
lokern (Herrmann and Maechler, 2021) packages, however, derivative estimation approaches and
various bandwidth selection algorithms for the regression function, such as the leave-one-out estimator
(Allen, 1974) and the plug-in algorithm by Ruppert et al. (1995), are built into them. Moreover, within
lokern, the bandwidth for estimating the first or second derivative of the regression function can be
selected automatically. Nevertheless, these traditional data-driven bandwidth selection approaches
are only suitable in case of data with i.i.d. errors (Hart, 1991; Altman, 1990; Opsomer, 1997) and
can therefore often not be considered for time series. Explicit CRAN packages for detrending a time
series nonparametrically are rmaf (Qiu, 2015) and mFilter (Balcilar, 2019). While with rmaf, a fully
data-driven refined moving average and a cubic smoothing spline, which requires a manually selected
smoothness parameter, can be applied, the trend as well as the cyclical component of a time series can
be extracted with the filters implemented in the mFilter package like the Baxter-King (Baxter and King,
1999) or Hodrick-Prescott (Hodrick and Prescott, 1997) filters among others. However, all filtering
functions in the mFilter package are not fully data-driven. Instead, they make use of default values
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recommended within scientific literature. Thus, to our knowledge, there are not any packages on
CRAN that implement a data-driven local polynomial regression for the trend of a time series or its
derivatives.

The methodological and computational background for the smoots package is summarized briefly
hereinafter. For further details we refer the reader to Feng et al. (2020) and references therein. Our focus
is to illustrate the wide application spectrum of the smoots package for semiparametric modeling of
time series. We propose to estimate the nonparametric trend using the current package in the first stage
and to fit e.g. an ARMA model to the residuals with the standard arima() function of the stats package
in R. This idea is first shown with monthly Northern Hemisphere temperature changes data obtained
from the website of the National Aeronautics and Space Administration (NASA). Then the proposal
is applied to the log-transformation of the quarterly US-GDP data, retrieved from the website of the
Federal Reserve Bank of St. Louis, using a semiparametric log-local-linear growth model. Moreover,
two new semiparametric models for financial time series are proposed to show further application
of this package. Firstly, a Semi-Log-GARCH model is defined by introducing a scale function into
the Log-GARCH (logarithmic GARCH) (Pantula, 1986; Geweke, 1986; Milhøj, 1987). The latter is a
special extension of the seminal ARCH (autoregressive conditional heteroskedasticity, Engle, 1982)
and GARCH (generalized ARCH, Bollerslev, 1986) models and is just a slightly restricted ARMA
model for the log-transformation of the squared returns (see e.g. Sucarrat, 2019). The usefulness of the
Log-GARCH has recently been rediscovered by Francq et al. (2013). The application of this proposal is
illustrated by the DAX returns collected from Yahoo Finance. Secondly, a Semi-Log-ACD model is
proposed as an extension of the Type I Log-ACD (Bauwens and Giot, 2000), which is closely related to
the Semi-Log-GARCH. Like the ACD (autoregressive conditional duration, Engle and Russell, 1998)
model, the Semi-Log-ACD can be applied to different non-negative financial data, such as realized
volatilities and trading volumes. In this paper, this new model is applied to the CBOE Volatility
Index (VIX) obtained from Yahoo Finance. Datasets for all of those examples are built in the proposed
package. The smoots package can be applied to suitable time series from other research areas. In
addition, the smoots package provides a useful tool for teaching time series analysis, which helps a
lecturer to obtain automatically detrended real data examples to show the application of parametric
time series models.

The methods and IPI-algorithms are summarized in the following two sections. The general usage
of the R functions is then described in another section. Three further sections illustrate the applications
of those functions in simple cases and with respect to the Semi-Log-GARCH and the Semi-Log-ACD.

2 Local polynomial regression for time series

The main algorithm of the smoots package is a fully automatic non-parametric procedure for estimating
a deterministic trend in an additive time series model with observations yt, t = 1, ..., n. The data
under consideration can for example be from environmental statistics, economics or finance. The basic
nonparametric time series model is defined by

yt = m (xt) + ξt, (1)

where xt = t/n denotes the rescaled time, m is a smooth function and ξt is a zero mean stationary
process. This model defines a nonparametric approach for trend-stationary time series. Let γξ (τ)
denote the acf (autocovariances) of ξt. Under the regularity conditions given in Bühlmann (1996), a
data-driven IPI-algorithm for estimating the variance factor in the asymptotically optimal bandwidth
can be developed. As indicated by Feng et al. (2020), the required conditions are fulfilled by an ARMA
process with finite eighth moment. However, models with long-memory errors are excluded by those
assumptions.

The local polynomial estimator of m(ν) (x), the ν-th derivative of m, is obtained by minimizing

Q =
n

∑
t=1

yt −
p

∑
j=0

bj (x) (xt − x)j


2

W
(

xt − x
h

)
, (2)

where h is the bandwidth, W is a second order kernel function with compact support [−1, 1] and is
used here as the weighting function, and p is the order of polynomial. It is assumed that p − ν is odd.
We have m̂(ν) (x) = ν!b̂ν (x), which is asymptotically equivalent to some kernel regression with a k-th
order kernel K (u) and automatic boundary correction, where k = p + 1. In this paper, the following
weighting functions are considered:

W (u) = Cµ

(
1 − u2

)µ
I[−1,1] (u) , (3)
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where Cµ is a standardization constant that is indeed irrelevant for calculating the weights in (3) and
µ = 0, 1, ..., is a smoothness parameter. For automatic bandwidth selection using the smoots package,
only µ = 0, 1, 2 and 3 are allowed, corresponding to the use of the uniform, Epanechnikov, bisquare
and triweight kernels, respectively.

An IPI-algorithm is developed based on the asymptotically optimal bandwidth hA, which is the
minimizer of the AMISE (asymptotic mean integrated squared error):

AMISE (h) = h2(k−ν)
I
[
m(k)

]
β2

(k!)2 +
2πc f (db − cb) R (K)

nh2ν+1 , (4)

where I
[
m(k)

]
=

∫ db
cb

[
m(k) (x)

]2
dx, β =

∫ 1
−1 ukK (u) du, R (K) =

∫ 1
−1 K2 (u) du, c f = f (0) is the

value of the spectral density at the frequency zero and 0 ≤ cb < db ≤ 1 are introduced to reduce the
effect of the estimates at the boundary points. Then we have

hA = n− 1
2k+1

 2ν + 1
2 (k − ν)

2πc f (k!)2 (db − cb) R (K)

I
[
m(k)

]
β2

 1
2k+1

. (5)

After estimating and removing the nonparametric trend, any suitable parametric model can be
fitted to the residuals for further econometric analysis. For instance, we can assume that ξt follows an
ARMA model:

ξt = φ1ξt−1 + ... + φrξt−r + ψ1εt−1 + ... + ψsεt−s + εt, (6)

where εt are i.i.d. innovations. A semiparametric ARMA (Semi-ARMA) model is then defined by (1)
and (6).

3 The proposed IPI-algorithms

Since both c f and I
[
m(k)

]
in (5) are unknown, we need to obtain and insert appropriate estimates of

these two quantities into this formula to achieve a selected bandwidth ĥA. However, the estimation of

c f and I
[
m(k)

]
requires the use of two additional bandwidths. Hence, iterative bandwidth selection

procedures should be employed. The estimation of I
[
m(k)

]
is not influenced by the correlation

structure, which can be simply obtained by means of established IPI-algorithms for models with
independent errors. Consequently, solely a comprehensive review of the estimation approach for c f
will be given.

Data-driven estimation of c f

Let rt,V = yt − m̂V denote the residuals obtained from a pilot estimate using a bandwidth hV and
denote the sample acf calculated from rt,V by γ̂ (l). In this paper we propose to use the following
lag-window estimator of c f :

ĉ f ,M =
1

2π

M

∑
l=−M

wl γ̂ (l) , (7)

where wl = l/ (M + 0.5) are weights calculated according to some lag-window with the window-
width M. And, M will be selected by the following IPI-algorithm proposed by Feng et al. (2020), which
is adjusted from that of Bühlmann (1996).

i) Let M0 = [n/2] be the initial window-width, where [·] denotes the integer part.

ii) Global steps: Estimate
∫ (

f (λ)2
)

dλ in the j-th iteration following Bühlmann (1996). Denote

by
∫

f (1) (λ) dλ the integral of the first generalized derivative of f (λ). Estimate it using the

window-width M′
j =

[
Mj−1/n2/21

]
, the proposal in Bühlmann (1996) and the Bartlett-window.

Obtain Mj by inserting this quantity into Eq. (5) in Bühlmann (1996). Carry out this procedure
iteratively until convergence is reached or until a maximum of 20 iterations. Denote the selected
M by M̂G.

iii) Local adaptation at λ = 0: Calculate
∫

f (1) (λ) dλ again using M′ =
[

M̂G/n2/21
]
. Obtain the

finally selected window-width M̂ by inserting the estimates into the formula of the local optimal
bandwidth at λ = 0 in (5) of Bühlmann (1996).
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It is proposed to use the Bartlett-window throughout the whole algorithm for simplicity. If M̂
converges, it is usually not affected by the starting value M0. Hence, any 1 ≤ M0 ≤ [n/2] can be used
in the proposed algorithm.

The IPI-algorithm for estimating m

In this subsection the data-driven IPI-algorithm for selecting the bandwidth for local linear and local
cubic estimators m̂, with k = 2 and 4, respectively, under correlated errors will be described. Note that,
although the variance factor c f can be estimated well from residuals of m̂, Feng et al. (2020) showed
that the asymptotically optimal bandwidth for estimating c f should be CF · hA, not hA itself, where

CF =

{
2k

[
2K (0)
R (K)

− 1
]}1/(2k+1)

(8)

is a correction factor to obtain the asymptotically optimal bandwidth for estimating ĉ f from ĥ, which
is the same as given in Feng and Heiler (2009) and is always bigger than 1. Theoretically, c f should
be estimated from rt,V obtained with the bandwidth CF · ĥ. The proposed main IPI-algorithm for
selecting the bandwidth proceeds as follows.

i) Start with an initial bandwidth h0 given beforehand.

ii) Obtain rt,V using hj−1 or CF · hj−1 and estimate c f from rt,V as proposed above.

iii) Let α = 5/7 or 5/9 for p = 1, and α = 9/11 or 9/13 for p = 3, respectively. Estimate I
[
m(k)

]
with hd,j = hα

j−1 and a local polynomial of order pd = p + 2. We obtain

hj =

 [k!]2

2kβ2

2πĉ f (db − cb) R (K)

I
[
m̂(k)

]
1/(2k+1)

· n−1/(2k+1). (9)

iv) Increase j by 1. Repetitively carry out Steps ii) and iii) until convergence is reached or until for
example J = 20 iterations are achieved. Let ĥ = hj be the selected bandwidth.

In the developed package the initial bandwidth h0 = 0.15 for both p = 1 and p = 3 is used. Also, for
both p = 1 and p = 3, the default value cb = 1 − db = 0.05 is proposed to reduce the effect of the
estimates at the boundary points. That is, the bandwidth is selected only using 90% of the observations
in the middle part. The bandwidth hd,j = hα

j−1 for estimating the k-th derivative is roughly fixed using

a so-called EIM (exponential inflation method). The first α value is chosen so that I
[
m̂(k)

]
and hence ĥ

will achieve their optimal rates of convergence. Now, the algorithm will be denoted by AlgA. If the
second α value is used, m̂(k), but not ĥ, will achieve its optimal rate of convergence. This algorithm is
called AlgB. And ĥ selected by AlgB is larger than that by AlgA. For further details on those topics we
refer the reader to Feng et al. (2020).

Data-driven estimation of m′ and m′′

The proposed IPI-algorithm can be easily adapted to select bandwidths for estimating m̂(ν). In the
following, only the cases with ν = 1 or 2 are considered, where c f is estimated by means of a data-
driven pilot estimate m̂ of the order pp, say. Then m(ν) will be estimated with p = ν + 1 and k = ν + 2.
As before, m(k) for calculating the bias factor will be estimated with pd = p + 2 and a correspondingly
inflated bandwidth. This leads to the following two-stage procedure.

i) In the first stage ĉ f is obtained by the main IPI-algorithm with pp = 1 or pp = 3.

ii) Then an IPI-procedure as proposed above to select the bandwidth for estimating m(ν) according
to (5) is carried out with fixed ĉ f obtained in i).

Note that m̂(ν) is asymptotically equivalent to some kernel estimator with boundary correction. Explicit
forms of the equivalent kernels for estimating m(ν) in the middle part may be found in Müller (1988).
The corresponding inflation factors (i.e. the α values) are determined by p or k.
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4 Practical implementation in R

The package smoots developed based on the algorithms described in the last section consists of five
directly usable functions, two S3 methods and four datasets as examples. The first four functions
are called msmooth(), tsmooth(), gsmooth() and knsmooth(), designed for estimating the trend in
different ways. Data-driven estimation can be carried out by each of the first two functions, where
msmooth() is a user-friendlier simplified version of tsmooth(). Local polynomial estimation of m(ν)

and kernel smoothing of m with an arbitrary bandwidth fixed beforehand can be carried out by
gsmooth() and knsmooth(), respectively. In the first case, one should choose p such that p − ν is
odd to avoid the boundary problem. Those functions allow a flexible application of this package
by an experienced user. Data-driven estimation of the first or second derivative can be obtained by
dsmooth().

The functions for selecting the bandwidth will be described in more detail. Moreover, for simplicity,
shared arguments between functions will only be discussed once. With

tsmooth(y, p, mu, Mcf, InfR, bStart, bvc, bb, cb, method),

the trend in equidistant and trend-stationary time series with short-memory can be estimated via an
automated local polynomial. Its arguments are as follows.

• y is the input time series.

• p reflects the order of polynomial and currently only p = 1 (local linear) and p = 3 (local cubic)
are selectable.

• mu corresponds to the smoothness parameter µ of the second order kernel function (3) used for
weighting. Only 0, 1, 2 and 3 are valid options.

• Mcf defines the method for estimating c f . For Mcf = "NP", the default, c f is estimated nonpara-
metrically as described in the section Data-driven estimation of c f . If "AR", "MA" or "ARMA" are
selected, ξt in model (1) is assumed to follow an AR, MA or ARMA process, respectively, during
the bandwidth selection and thus, c f is estimated parametrically.

• InfR sets the inflation rate α considered for the bandwidth (see also Step iii) in the section The
IPI-algorithm for estimating m). The options are InfR = "Opt", which corresponds to α = 5/7
for a local linear and α = 9/11 for a local cubic regression, InfR = "Nai" with α = 5/9 and
α = 9/13 for local linear and local cubic regressions, respectively, and InfR = "Var", which
always sets α = 1/2.

• bStart is the (relative) starting bandwidth for the bandwidth selection algorithm. The default is
bStart = 0.15. Note that ĥ is usually not affected by the initial value.

• With the argument bvc the estimation of c f can be adjusted even further. By setting bvc = "Y",
the bandwidth for estimating c f will be enlarged by the factor CF as in (8). CF is omitted for bvc
= "N".

• bb describes the boundary method. If bb = 0 is selected, the number of observations considered
for smoothing is decreasing towards the boundaries, while it is constant throughout for bb = 1.

• cb is the proportion of observations at each boundary that is omitted in the bandwidth selection
process.

• Via method the final smoothing method, after the bandwidth has been selected, can be defined.
The default method = "lpr" corresponds to local polynomial estimates, whereas with method =
"kr" a kernel regression is conducted.

A simplified version of tsmooth() for estimating a time series trend with a data-driven local
polynomial is

msmooth(y, p, mu, bStart, alg, method),

which shares most of its arguments with tsmooth(). The only unknown argument is alg.

• alg defines specific argument settings of tsmooth() as named subalgorithms. The two algo-
rithms AlgA and AlgB described in the section The IPI-algorithm for estimating m can be directly
chosen by alg = "A" and alg = "B", respectively.

In accordance with Feng et al. (2020), we propose the use of AlgA with the optimal inflation factor for
local linear regression. For local cubic regression with a moderate n, AlgB with the stronger inflation
factor should be used. If n is big enough, e.g. bigger than 400, the combination of p = 3 and AlgA
will also lead to suitable results. In case when slight over smoothing is wished/required, the inflation
factor "Nai" or even "Var" should be employed.

To estimate the first or second derivative of a time series trend with a data-driven local polynomial,
the function
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dsmooth(y, d, mu, pp, bStart.p, bStart)

should be employed. With this function, the first and second derivatives are always estimated using a
local quadratic and local cubic regression, respectively. To obtain ĉ f , a data-driven pilot estimate of
the trend function via tsmooth() is computed.

• d specifies the order of derivative of the trend that will be estimated. Currently, d = 1 and d =
2 are valid options.

• pp corresponds to the order of polynomial considered for the pilot estimate of the trend function.
pp = 1 and pp = 3 are available.

• bStart.p is the starting bandwidth for the data-driven pilot estimate of the trend.

Note that here, bStart is the initial bandwidth considered in the bandwidth selection for the derivative
series. For further details on the functions we refer the reader to the user’s guideline for this package.
Beside the above functions, two S3 methods are also built in the package: a print() and a plot()
method for objects of class "smoots", a newly introduced class of objects created by the smoots
package. They allow for a quick and detailed overview of the estimation results. The "smoots" objects
themselves are generally lists consisting of different components such as input data and estimation
results.

5 Simple application of smoots

In this and the next two sections, the wide applicability of the above mentioned functions will be
illustrated by four real data examples. Those datasets are built in the package so that the reader can
also use them. They are: tempNH, gdpUS, dax and vix, which contain observations of the mean monthly
temperature changes of the Northern Hemisphere, the US GDP and daily financial data of the German
stock index (DAX) and the CBOE Volatility Index (VIX), respectively. For further information see
also the documentation on the data within the smoots package. Since the package is available on
CRAN, the commands install.packages("smoots") and library(smoots) can be used to install it
and attach it within the current R environment.

Direct application of the Semi-ARMA

To show the application of the additive Semi-ARMA model defined by (1) and (6), the time series of
the mean monthly Northern Hemisphere temperature changes from 1880 to 2018 (NHTM) is chosen.
The data are downloaded from the website of the NASA. For this purpose, the function tsmooth() is
applied. The used settings of the arguments for this function are equivalent to those in algorithm A
with p = 1.

tempChange <- smoots::tempNH$Change
est_temp <- smoots::tsmooth(tempChange, p = 1, mu = 2, Mcf = "NP", InfR = "Opt",
bStart = 0.1, bvc = "Y", method = "lpr")

d1_temp <- smoots::dsmooth(tempChange, d = 1, mu = 2, pp = 3, bStart.p = 0.2,
bStart = 0.15)

d2_temp <- smoots::dsmooth(tempChange, d = 2, mu = 3, pp = 1, bStart.p = 0.1,
bStart = 0.2)

Figure 1(a) shows the observations together with the estimated trend. Here, the selected bandwidth is
0.1221. We see, the estimated trend fits the data very well. In particular, the trend increases steadily
after 1970 that might be a signal for possible global warming in the last decades. The residuals are
displayed in Figure 1(b), which look quite stationary. This indicates that Model (1) is a suitable
approach for this time series. Moreover, Figures 1(c) and 1(d) illustrate the data-driven estimates of
the first and second derivatives of the trend respectively, which fit the features of the trend function
very well and provide us further details about the global temperature changes.

arma1 <- stats::arima(est_temp$res, order = c(1, 0, 1), include.mean = FALSE)

Consequently, an ARMA(1, 1) model is fitted to the residual series ξ̃t = yt − m̂(xt) using the arima()
function in R, which results in

ξ̃t = 0.7489ξ̃t−1 − 0.3332εt−1 + εt. (10)

We see, the dependence of errors is dominated by a strong positive AR parameter with a moderate
negative MA coefficient.
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Figure 1: The NHTM series and the estimated trend are displayed in (a). The residuals, as well as the
estimated first and second derivatives are shown in (b), (c) and (d), respectively.

A semiparametric log-local-linear growth model

A well-known approach in developing economics is the log-linear growth model. Assume that
the log-transformation of a macroeconomic time series follows Models (1) and (6), we achieve a
semiparametric local polynomial, in particular a local-linear extension of this theory. To show this
application, the series of the quarterly US-GDP from the first quarter of 1947 to the second quarter
of 2019, downloaded from the Federal Reserve Bank of St. Louis, is chosen. Data-driven local linear
regression is applied to estimate the trend from the log-data using AlgA with the selected bandwidth
0.1325. A kernel regression estimate using the same bandwidth is also carried out for comparison.

l_gdp <- log(smoots::gdpUS$GDP)
gdp_t1 <- smoots::msmooth(l_gdp, p = 1, mu = 1, bStart = 0.1, alg = "A",
method = "lpr")

gdp_t2 <- smoots::msmooth(l_gdp, p = 1, mu = 1, bStart = 0.1, alg = "A",
method = "kr")

gdp_d1 <- smoots::dsmooth(l_gdp, d = 1, mu = 1, pp = 1, bStart.p = 0.1,
bStart = 0.15)

gdp_d2 <- smoots::dsmooth(l_gdp, d = 2, mu = 1, pp = 1, bStart.p = 0.1,
bStart = 0.2)

The results together with the log-data are displayed in Figure 2(a). We see that the two trend estimates
in the middle part coincide with each other. They differ from each other only at the boundary points
and the kernel estimate is affected by a clear boundary problem. Thus, the local linear method should
be used. Residuals of this estimate are shown in Figure 2(b). Again, the estimated first and second
derivatives are given in Figures 2(c) and 2(d), respectively, which help us to discover more detailed
features of the economic development in the US.

arma2 <- stats::arima(gdp_t1$res, order = c(1, 0, 1), include.mean = FALSE)

Furthermore, the following ARMA(1, 1) model is obtained from the residuals:

ξ̃t = 0.9079ξ̃t−1 + 0.2771εt−1 + εt. (11)
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Figure 2: The log-transformed GDP series and the estimated trends are displayed in (a). The residuals
based on the estimated local linear trend, as well as the estimated first and second derivatives are
shown in (b), (c) and (d), respectively.

6 The Semi-Log-GARCH model

Most of the GARCH extensions, including the Log-GARCH (Pantula, 1986; Geweke, 1986; Milhøj, 1987),
are defined for stationary return series. Recently, Francq et al. (2013) rediscovered the usefulness of the
Log-GARCH. In practice it is however found that the unconditional variance of financial returns may
change slowly over time and are hence non-stationary. To overcome this problem a semiparametric
GARCH (Semi-GARCH) approach is proposed by Feng (2004), by defining the return series as a
product of a (deterministic) smooth scale function and a GARCH model. Another well-known closely
related approach is the Spline-GARCH introduced by Engle and Rangel (2008). In this paper we
will introduce a Semi-Log-GARCH (semiparametric Log-GARCH), defined as a Log-GARCH with
a smooth scale function. We propose to estimate the scale function in the Semi-Log-GARCH model
based on the log-transformation of the squared returns as proposed by Engle and Rangel (2008).

Denote the centralized returns by rt, t = 1, ..., n. The Semi-Log-GARCH model is defined by

rt =
√

v (xt)ζt with ζt =
√

htηt and (12)

ln (ht) = ω +
l

∑
i=1

αi ln
(

ζ2
t−i

)
+

s

∑
j=1

β j ln
(

ht−j

)
, (13)

where v (xt) > 0 is a smooth local variance component, ht > 0 are conditional variances and ηt are
i.i.d. random variables with zero mean and unit variance. It is assumed that ζt also has unit variance
and ζt ̸= 0 almost surely, so that the model is well-defined. Let yt = ln

(
r2

t
)
, ξt = ln

(
ζ2

t
)
− µlz

and m (xt) = ln [v (xt)] + µlz, where µlz = E
[
ln

(
ζ2

t
)]

. We see that the log-transformation of r2
t of

the Semi-Log-GARCH model has the form yt = m (xt) + ξt, which is a special case of Model (1).
Furthermore, define εt = ln

(
η2

t
)
− µle with µle = E

[
ln

(
η2

t
)]

, which are i.i.d. zero mean innovations
in the stationary process ξt. According to Francq and Sucarrat (2018), ξt has the following ARMA
representation:

ξt =
l∗

∑
i=1

φiξt−i +
s

∑
j=1

ψjεt−j + εt (14)

with l∗ = max(l, s). Thus, the Semi-Log-GARCH model is equivalent to a Semi-ARMA of the log-
transformation of r2

t with the restriction that the AR order should not be less than the MA order. Hence,
this model can be simply estimated using the smoots package and the arima() function of the stats
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package. To obtain the total volatilities σt =
√

v (xt) ht, we suggest to utilize the three-step estimation
procedure as proposed in Section 3.3 of Sucarrat (2019), however, we recommend to explicitly conduct
the auxiliary regression in Step 1 in Sucarrat (2019) by using a data-driven local polynomial.

i) Obtain estimates of the nonparametric trend function m̂ (xt) in yt via the smoots package.
ii) Fit an ARMA(l∗, s) model (14) to the residuals ξ̃t = yt − m̂ (xt), for example with the arima()

function of the stats package, and compute the ARMA residuals ε̂t.

iii) Consider µ̂le = − ln
[

1
n ∑n

i=1 exp (ε̂i)
]

as an estimator of the log-moment E
[
ln

(
η2

t
)]

. Then the
total volatilities are estimated as

σ̂t = exp
{[

ξ̃t − ε̂t + m̂ (xt)− µ̂le
]

/2
}

. (15)

Estimates of the conditional volatilities are also calculable similarly by following the same three-
step procedure while replacing (15) with

√
ĥt = exp

[(
ξ̃t − ε̂t + µ̂lz − µ̂le

)
/2

]
, where we suggest

µ̂lz = − ln
[

1
n ∑n

i=1 exp
(
ξ̃i
)]

. An important characteristic of the illustrated estimation procedure is
that explicit estimates of the Log-GARCH parameters ω, αi, for 1 ≤ i ≤ p, and β j, for 1 ≤ j ≤ q,

are not required for computing σ̂t or
√

ĥt (Sucarrat, 2019). If, however, necessary, estimates could
be derived by considering the relationships between the coefficients in (13) and (14), which are
αi = φi + ψi, β j = −ψj, where the non-existing coefficients are assumed to be zero, and ω =(

1 − ∑l∗
i=1 φi

)
µlz −

(
1 + ∑s

j=1 ψj

)
µle. Note that the parametric part of the Semi-Log-GARCH can

also be estimated directly using the R package lgarch (Sucarrat, 2015). Nonetheless, this approach will
not be considered in the current paper.

In the following, the DAX series from 1990 to July 2019 downloaded from Yahoo Finance is
chosen to show the application of the Semi-Log-GARCH model. Note that an observed return can
be sometimes exactly zero. To overcome this problem, the log-transformation is calculated for the
squared centralized returns, which are a.s. non-zero. This would even be a necessary treatment, if the
returns had a very small, but non-zero mean.

# Calculate the centralized log-returns
dax_close <- smoots::dax$Close; dax <- diff(log(dax_close))
rt <- dax - mean(dax); yt <- log(rt ^ 2)

Subsequently, the previously described estimation procedure according to Sucarrat (2019) is imple-
mented by estimating the trend function in the logarithm of the squared returns yt with the function
msmooth() of the smoots package. More specifically, a local cubic trend is fitted, while employing
AlgA.

# Step 1: Estimate the trend in the log-transformed data using 'smoots'
estim3 <- smoots::msmooth(yt, p = 3, alg = "A")
m_xt <- estim3$ye

# Step 2: Fit an ARMA model to the residuals
xi <- estim3$res
arma3 <- arima(xi, order = c(1, 0, 1), include.mean = FALSE)

# Step 3: Estimate further quantities and the total volatilities
mu_le <- -log(mean(exp(arma3$residuals)))
vol <- exp((xi - arma3$residuals + m_xt - mu_le) / 2)

For reference, estim3.2 <- smoots::msmooth(yt, p = 1, alg = "A") is called, i.e. a local linear trend
under consideration of AlgA is estimated as well. The centralized log-returns and the log-transformed
data with the two estimated trends (local linear: blue; local cubic: red) are displayed in Figures 3(a)
and 3(b). Moreover, the selected bandwidths are 0.0869 and 0.1013, respectively. Results in Figure 3(b)
indicate that the unconditional variance of the DAX-returns changes slowly over time. Ultimately, the
local cubic trend is chosen for further analysis, because here the results of the local linear approach
are over-smoothed. The following ARMA(1, 1) model (see Step 2 in the code) is obtained from the
residuals of the log-data

ξ̃t = 0.9692ξ̃t−1 − 0.9221εt−1 + εt, (16)

whereas the re-transformed Log-GARCH(1, 1) formula is given by

ln (ht) = 0.0685 + 0.0471 ln
(

ζ2
t−1

)
+ 0.9221 ln (ht−1) (17)

following the idea of Sucarrat et al. (2016). The estimated conditional volatility (
√

ĥt) and total
volatility (σ̂t) series are displayed in Figures 3(c) and 3(d).
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Figure 3: The demeaned DAX returns are displayed in (a). The log-transformed squared returns and
the estimated trends are shown in (b). Based on the estimated local cubic trend, the corresponding
estimated conditional and total volatilities are illustrated in (c) and (d), respectively.

7 The Semi-Log-ACD model

A more general framework for modeling non-negative financial time series is the ACD (autoregressive
conditional duration, Engle and Russell, 1998) model, which corresponds to a squared GARCH
model and can be applied to both high-frequency or daily financial data. Logarithmic extensions of
this approach were introduced by Bauwens and Giot (2000), where the Type I definition (called a
Log-ACD) corresponds to a squared form of the Log-GARCH. Semiparametric generalization of the
Log-ACD (Semi-Log-ACD) was defined and applied to different kinds of non-negative financial data
by Forstinger (2018). In this paper, the application of the Semi-Log-ACD model will be illustrated by
the CBOE Volatility Index (VIX) from 1990 to July 2019, denoted by Vt, t = 1, ..., n. The data was again
downloaded from Yahoo Finance. The Semi-Log-ACD model for Vt is defined by

Vt = g (xt) λtet, (18)

where ut = λtet follows a Log-ACD and g ≥ 0 is a smooth mean function in Vt, λt ≥ 0 is the
conditional mean and et is an i.i.d. series of non-negative random variables. It is assumed that
E (λt) = E (et) = 1. Further investigation on this model can be carried out similarly to that on
the Semi-Log-GARCH model by replacing r2

t , ht and η2
t there with Vt, λt and et, respectively. The

Semi-Log-ACD model can be similarly estimated. Discussion of those details is omitted. For further
information we refer the reader to Forstinger (2018) and references therein.

# Calculate the logarithm of the index
V <- smoots::vix$Close; lnV <- log(V)
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Figure 4: The VIX series is displayed in (a). The log-transformed index and the estimated trends are
shown in (b). Based on the estimated local linear trend, the corresponding estimated conditional and
total means are illustrated in (c) and (d), respectively.

# Step 1: Estimate the trend in the log-transformed data using 'smoots'
estim4 <- smoots::msmooth(lnV)
estim4.2 <- smoots::msmooth(lnV, p = 3, alg = "B")
m_xt <- estim4$ye

# Step 2: Fit an ARMA model to the residuals
xi <- estim4$res
arma4 <- arima(xi, order = c(1, 0, 1), include.mean = FALSE)

# Step 3: Estimate further quantities and the total means
mu_le <- -log(mean(exp(arma4$residuals)))
means <- exp(xi - arma4$residuals + m_xt - mu_le)

The original series of Vt is shown in Figure 4(a). The trend was estimated from the log-transformation
of Vt using both AlgA and AlgB with the selected bandwidths 0.0771 and 0.1598, respectively. The data
(black), the local linear trend (red) and the local cubic trend (blue) are displayed in Figure 4(b). The
results using both algorithms are quite similar, except the local cubic estimates are smoother. From
the residuals of the local linear approach the following ARMA(1, 1) model (see Step 2 in the code) is
obtained:

ξ̃t = 0.9626ξ̃t−1 − 0.0707εt−1 + εt. (19)

Subsequently, the estimated log-form of the conditional mean function is given by

ln (λt) = 0.0010 + 0.8919 ln (ut−1) + 0.0707 ln (λt−1) . (20)
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The estimated conditional means and the total means in the original data by the local linear approach
are shown in Figures 4(c) and 4(d). We see the results fit the data very well. This model can be applied
for forecasting the VIX in the future.

8 Concluding remarks

In this paper the methodological background for developing the R package smoots (version 1.0.1)
is summarized. The usage of the main functions in this package is explained in detail. To show the
wide applicability of this approach two new semiparametric models for analyzing financial time series
are also introduced. Data examples show that the proposed approach can be applied to different
kinds non-stationary time series and the developed R package works very well for data-driven
implementation of those semiparametric time series models. In particular, non-negative time series
following a semiparametric multiplicative model can be easily estimated via the log-transformation.
It is found that the errors in some examples could exhibit clear long memory. However, the current
package is developed under short memory assumption. It is hence worthy to study the possible
extension of the current approach to semiparametric time series models with long memory errors.
Further extensions of the proposals in this paper, such as the development of suitable forecasting
procedures and tools for testing stationarity of the errors or linearity of the deterministic trend, should
also be studied in the future and included in future versions of the smoots package.

9 Computational details

The numerical results in this paper were obtained using R 4.1.1 with the smoots 1.0.1 package and
the stats 4.1.1 package. R itself and all packages used are available from CRAN at https://CRAN.R-
project.org/.

Acknowledgments: This work was supported by the German DFG project GZ-FE-1500-2-1. The data
used were downloaded from different public sources as indicated in the contexts. We are grateful to
the CRAN-network for great help during the publication of the R package smoots. We would also like
to thank Dr. Marlon Fritz for helpful discussions.
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cpsurvsim: An R Package for Simulating
Data from Change-Point Hazard
Distributions
by Camille J. Hochheimer and Roy T. Sabo

Abstract Change-point hazard models have several practical applications, including modeling pro-
cesses such as cancer mortality rates and disease progression. While the inverse cumulative distribu-
tion function (CDF) method is commonly used for simulating data, we demonstrate the shortcomings
of this approach when simulating data from change-point hazard distributions with more than a scale
parameter. We propose an alternative method of simulating this data that takes advantage of the
memoryless property of survival data and introduce the R package cpsurvsim which implements both
simulation methods. The functions of cpsurvsim are discussed, demonstrated, and compared.

1 Introduction: Simulating from time-to-event processes in R

When modeling time-to-event processes, especially over long periods of time, it is often unreasonable
to assume a constant hazard rate. In these cases, change-point hazard models are applicable. The
majority of research surrounding change-point hazard models focuses on the Cox proportional hazards
and piecewise exponential models with one change-point (Yao, 1986; Gijbels and Gurler, 2003; Wu
et al., 2003; Rojas et al., 2011; Dupuy, 2006), likely due to the straightforward extension for including
fixed and time-varying covariates (Zhou, 2001; Hendry, 2014; Montez-Rath et al., 2017a; Wong et al.,
2018). Research on hazard models with multiple change-points is also expanding as these models have
a wide range of applications in fields such as medicine, public health, and economics (Liu et al., 2008;
Goodman et al., 2011; He et al., 2013; Han et al., 2014; Qian and Zhang, 2014; Cai et al., 2017). In the
interest of simulating time-to-event data featuring trends with multiple change-points, Walke (2010)
presents an algorithm for simulating data from the piecewise exponential distribution with fixed type I
censoring using the location of the change-points, the baseline hazard, and the relative hazard for each
time interval in between change-points. As the research surrounding parametric change-point hazard
models with multiple change-points continues to grow, likewise does the need to simulate data from
these distributions. Simulation is also a powerful and popular tool for assessing the appropriateness
of a model for one’s data or conducting a power analysis.

Several R packages available from the Comprehensive R Archive Network (CRAN) provide
functions for simulating time-to-event data in general, with a heavy focus on the Cox model. Some of
the more popular packages are provided in Table 1, which expands on the METACRAN compilation
(Allignol and Latouche, 2020). Although considerably smaller in scope, a few R packages provide
functions for simulating data with change-points. CPsurv has functionality for simulating both
nonparametric survival data and parametric survival data from the Weibull change-point distribution
but requires existing data as an argument and only allows for one change-point (Krügel et al., 2017).
SimSCRPiecewise simulates data using the piecewise exponential hazard model within the Bayesian
framework, however, this method requires at least one covariate as an argument (Chapple, 2016).

Our package cpsurvsim allows users to simulate data from a both the exponential and Weibull
hazard models with type I right censoring allowing for multiple change-points (Hochheimer, 2021).
cpsurvsim provides two methods for simulating data, which are introduced in the following section.
The first method draws on Walke (2010), using the inverse hazard function to simulate data. The
second employs the memoryless simulation method, the details of which are also discussed in the next
section. We then demonstrate how to simulate data using cpsurvsim and compare the performance of
these methods through a simulation study with the motivation of enabling users to determine which
method is best for their data.
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Package Title Brief Description

coxed Simulates data for the Cox model using the flexible-hazard
method and allows for the inclusion of time-varying covariates
(Kropko and Harden, 2019)

CPsurv Simulates one change-point for non-parametric survival analysis
or parametric survival analysis using the Weibull distribution
(Krügel et al., 2017)

cpsurvsim Simulates data with multiple change-points from the exponential
and Weibull distributions (Hochheimer, 2021)

discSurv Simulates survival data from discrete competing risk models
(Welchowski and Schmid, 2019)

gems Simulates data from multistate models and allows for
non-Markov models that account for previous events
(Blaser et al., 2015)

genSurv Gives users the option to generate data with a binary,
time-dependent covariate
(Araújo et al., 2015; Meira-Machado and Faria, 2014)

ipred Provides a function for simulating survival data for tree-
structured survival analysis (Peters and Hothorn, 2019)

MicSim Performs continuous time miscrosimulations to simulate life
courses (Zinn, 2018)

PermAlgo Uses a permutational algorithm to generate time-to-event data
allowing for the inclusion of several time-dependent covariates
(Sylvestre et al., 2010)

prodlim Has functions for simulating right censored non-parametric
survival data with two covariates and with or without competing
risks (Gerds, 2018)

simMSM Uses inversion sampling to simulate data from multi-state
models allowing for non-linear baseline hazards, time-varying
covariates, and dependence on past events (Reulen, 2015)

simPH Simulates data from Cox proportional hazards models
(Gandrud, 2015)

simsurv Simulates data from various parametric survival distributions,
2-component mixture distributions, and user-defined hazards
(Brilleman, 2019)

SimSCRPiecewise Uses Bayesian estimation to simulate data from the piecewise
exponential hazard model allowing for the inclusion of covariates
(Chapple, 2016)

SimulateCER While not a formal R package, this package extends the methods
found in PermAlgo and can be downloaded from GitHub
(Montez-Rath et al., 2017b)

survsim Allows users to simulate time-to-event, competing risks, multiple
event, and recurrent event data (Moriña and Navarro, 2014)

Table 1: R packages for simulating time-to-event data
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2 Simulating data from popular change-point hazard models

The piecewise exponential model with multiple change-points (τk, k = 1, . . . , K) can be expressed as

f (t) =


θ1 exp{−θ1t} 0 ≤ t < τ1

θ2 exp{−θ1τ1 − θ2(t − τ1)} τ1 ≤ t < τ2
...
θK+1 exp{−θ1τ1 − θ2(τ2 − τ1)− . . . − θK+1(t − τK)} t ≥ τK

(1)

with corresponding hazard function

h(t) =


θ1 0 ≤ t < τ1

θ2 τ1 ≤ t < τ2
...

...
θK+1 t ≥ τK .

(2)

We draw on the work of Walke (2010) in that we use the inverse hazard function to simulate survival
time t. Walke (2010) uses a baseline hazard and relative hazards to simulate each time interval between
change-points, whereas our simulation is based on the value of the scale parameter (θi, i = 1, . . . , K + 1)
corresponding to each interval as specified by the user. Starting with the relationship between the
cumulative density function (CDF) and the cumulative hazard function (F(t) = 1 − exp(−H(t))
where H(t) =

∫
h(t)dt) and noting that F(t) = U where U is a uniform random variable on (0,1),

we derive t = H−1(− log(1 − U)). Seeing as x = − log(1 − U) ∼ Exp(1), we can simulate random
variables from the exponential distribution and plug them into the inverse hazard function to get
simulated event time t. With this in mind, the inverse cumulative hazard function for the exponential
change-point hazard model with four change-points is

H−1(x) =



x
θ1

0 ≤ x < A
x−A

θ2
+ τ1 A ≤ x < A + B

x−A−B
θ3

+ τ2 A + B ≤ x < A + B + C
x−A−B−C

θ4
+ τ3 A + B + C ≤ x < A + B + C + D

x−A−B−C−D
θ5

+ τ4 x ≥ A + B + C + D

(3)

where A = θ1τ1, B = θ2(τ2 − τ1), C = θ3(τ3 − τ2), and D = θ4(τ4 − τ3). In cpsurvsim, this method
of simulating time-to-event data is considered the CDF method. An end-of-study time horizon (or
maximum measurement time) is specified by the user and all simulated event times with values
greater than the end time are censored at that point (type I right censoring).

The Weibull distribution is another popular parametric model for survival data due to its flexibility
to fit a variety of hazard shapes while still satisfying the proportional hazards assumption. Note that
when γ = 1, it is identical to the exponential distribution. The Weibull change-point model has the
probability density function

f (t) =



θ1tγ−1 exp{− θ1
γ tγ} 0 ≤ t < τ1

θ2tγ−1 exp{− θ2
γ (tγ − τ

γ
1 )−

θ1
γ τ

γ
1 } τ1 ≤ t < τ2

...
θK+1tγ−1 exp{− θK+1

γ (tγ − τ
γ
K )−

θK
γ (τγ

K − τ
γ
K−1)− . . . − θ1

γ τ
γ
1 } t ≥ τK

(4)

with corresponding hazard function

h(t) =


θ1tγ−1 0 ≤ t < τ1

θ2tγ−1 τ1 ≤ t < τ2
...

...
θK+1tγ−1 t ≥ τK .

(5)

As with the exponential model, event times can be simulated using the inverse hazard function (shown
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Function Hazard model Simulation method

exp_cdfsim Piecewise constant Inverse hazard function
exp_memsim Piecewise constant Memoryless
weib_cdfsim Weibull change-point Inverse hazard function
weib_memsim Weibull change-point Memoryless

Table 2: Summary of functions for simulating data using cpsurvsim

here with four change-points)

H−1(x) =



( γ
θ1

x)1/γ 0 ≤ x < A
[ γ

θ2
(x − A) + τ

γ
1 ]

1/γ A ≤ x < A + B
[ γ

θ3
(x − A − B) + τ

γ
2 ]

1/γ A + B ≤ x < A + B + C
[ γ

θ4
(x − A − B − C) + τ

γ
3 ]

1/γ A + B + C ≤ x < A + B + C + D
[ γ

θ5
(x − A − B − C − D) + τ

γ
4 ]

1/γ x ≥ A + B + C + D

(6)

where A = θ1
γ τ

γ
1 , B = θ2

γ (τγ
2 − τ

γ
1 ), C = θ3

γ (τγ
3 − τ

γ
2 ), and D = θ4

γ (τγ
4 − τ

γ
3 ).

Zhou (2001) touches on the idea of the memoryless property as a means of interpreting the
piecewise exponential model, however, we take this one step further by using this property to simulate
data from change-point hazard models. In survival analysis, the memoryless property states that
the probability of an individual experiencing an event at time t is independent of the probability
of experiencing an event up to that point. Likewise, the probability of an event occurring after a
change-point is independent of the probability that the event occurs before the change-point.

Our memoryless simulation method uses this extension of the memoryless property in that data
between change-points are simulated from independent exponential or Weibull hazard distributions
with scale parameters θi corresponding to each time interval. Participants with simulated survival
times past the next change-point are considered surviving at least to that change-point and then an
additional survival time is simulated for them in the next time interval. Total time to event is calculated
as the sum of time in each interval between change-points, with those surviving past the study end
time censored at that point. Survival times within each interval are calculated using the inverse hazard
of the independent exponential or Weibull function representing that time period. In this way, the
inverse hazard and memoryless methods are equivalent when there are no change-points.

3 The cpsurvsim package

The cpsurvsim package can be installed from CRAN. Functions for simulating data are summarized
in Table 2

As an example of the functions exp_cdfsim and weib_cdfsim, which simulate data using the
inverse hazard method from the exponential and Weibull distributions, respectively, consider the
following:

library(cpsurvsim)
dta1 <- exp_cdfsim(n = 50, endtime = 100, theta = c(0.005, 0.01, 0.05),
+ tau = c(33, 66))
head(dta1)

time censor
1 100.00000 0
2 85.99736 1
3 78.21772 1
4 71.03138 1
5 100.00000 0
6 82.71520 1

dta2 <- weib_cdfsim(n = 50, endtime = 100, gamma = 2,
+ theta = c(0.0001, 0.0002, 0.0001), tau = c(33, 66))
head(dta2)
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time censor
1 11.36844 1
2 100.00000 0
3 81.04904 1
4 100.00000 0
5 71.93590 1
6 56.40275 1

When simulating using the memoryless method, we use the following calls from cpsurvsim:

dta3 <- exp_memsim(n = 50, endtime = 100, theta = c(0.005, 0.01, 0.05),
+ tau = c(33, 66))
head(dta3)

time censor
1 93.64262 1
2 63.47413 1
3 84.54253 1
4 89.01574 1
5 73.92685 1
6 23.67631 1

dta4 <- weib_memsim(n = 50, endtime = 100, gamma = 2,
+ theta = c(0.0001, 0.0002, 0.0001), tau = c(33, 66))
head(dta4)

time censor
1 59.47848 1
2 100.00000 0
3 62.08739 1
4 100.00000 0
5 100.00000 0
6 100.00000 0

As seen in these examples, all four functions return a dataset with the survival times and a censoring
indicator.

4 Comparison of simulation methods

To compare the performance of the inverse hazard method with the memoryless method under
different settings, we conducted a simulation study using cpsurvsim. We simulated data with one,
two, three, and four change-points using both the exponential and Weibull distributions. In our
simulation, time t ranged from 0-100 and change-points occurred at various times within that range.
Sample sizes of 50, 100, and 500 were tested and values of θ were chosen to demonstrate differences
between the simulation methods when the hazard rate changes (e.g., smaller to larger hazard versus
larger to smaller hazard). For the Weibull simulations, we set γ = 2. We conducted 10,000 simulations
of each setting. We are primarily interested in comparing the ability of these two simulation methods
to simulate data with the correct change-points τi. Therefore, we compared how often the estimated
value (τ̂i) was within a 10% range, in this case [τi − 5, τi + 5] based on our time range. We also
evaluated whether the known values of τi fell within the 95% confidence interval of the average
simulated values for both methods as well as discuss bias in the model parameters. This simulation
study was conducted in R 3.6.1.

When simulating from the exponential distribution, these two simulation methods had comparable
accuracy in terms of the location of the change-points (see Figure 1). Sample size, however, had a large
impact on the accuracy regardless of the simulation method. When estimating one change-point with
a sample size of 50, there were a few simulation templates where less than a third of estimates τ̂ were
within range of the known change-point (Figure 1a). In general, accuracy improved as the sample
size increased. For every simulation scenario using the exponential distribution, the 95% confidence
interval for the mean estimate of τi included the known value.

Simulations for the Weibull distribution, however, revealed important differences in accuracy
between the two methods (see Figure 2). Although accuracy of the two methods was similar when
simulating one change-point, there were many cases where accuracy was very low, even with a sample
size of 500 (Figure 2a). In almost one quarter (4/18) of the simulation scenarios, the true value of τ
was not within the 95% confidence interval of the average estimate for either method. In three of

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 201

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●
●

0.00

0.25

0.50

0.75

1.00

Inv τ Mem τ

P
ro

po
rt

io
n 

w
ith

in
 ±

 5

Sample size ● ● ●50 100 500

(a) One change-point.
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(b) Two change-points.
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(c) Three change-points.
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(d) Four change-points.

Figure 1: Accuracy of change-point simulations for the exponential distribution. The y-axis represents
the proportion of change-point estimates (τ̂) within 10% of the known value. “Inv” refers to the inverse
hazard method and “Mem” refers to the memoryless method. This figure demonstrates that accuracy
is higher with a larger sample size and is similar for both simulation methods.

those scenarios, both simulation methods severely underestimated τ when the true value was 80.
When simulating two change-points (Figure 2b), accuracy of the first change-point was often much
lower when using the memoryless method, especially with a larger sample size. All except one of the
simulation scenarios where the known value of τ1 did not fall within the 95% confidence interval of
the average estimate for the memoryless method had a sample size of 500. Accuracy was lower for
all change-points in the three change-point simulations when using the memoryless method and the
discrepancies between the two methods were larger for larger sample sizes (Figure 2c). In almost half
of the simulation scenarios at least one value of τi was not within the 95% confidence interval of the
mean estimate for the memoryless method and all except one of those scenarios had a sample size
of 500. When simulating four change-points (Figure 2d), for most scenarios there was a large drop
in accuracy at the first and third change-point for the memoryless method compared to the inverse
hazard method. At the second and fourth change-points, however, there was a drop in accuracy for
sample sizes of 50 and 100 whereas most simulation scenarios with a sample size of 500 had similar
accuracy between the two methods. Every simulation scenario for four change-points with a sample
size of 500 using the memoryless method had at least one change-point where the 95% confidence
interval did not include the known value of τi. The known value of τ4 was, however, included in the
95% confidence interval for every scenario with a sample size of 500.

We suspected that the inaccurate estimates using the Weibull distribution were due to inaccuracies
in estimating the shape parameter γ, which is assumed constant across all time intervals. Indeed, γ
was often under-estimated as seen in Figure 3. Values of γ, however, were similar for both methods
except when there were three change-points (Figure 3c), in which case the estimates of γ using the
inverse hazard method were closer to the known value of two. We were unable to estimate γ for the
simulations using the memoryless method when there was a sample size of 50 (Figure 3d).
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(a) One change-point.
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(b) Two change-points.
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(c) Three change-points.
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(d) Four change-points.

Figure 2: Accuracy of change-point simulations for the Weibull distribution. The y-axis represents the
proportion of change-point estimates (τ̂) within 10% of the known value. “Inv” refers to the inverse
hazard method and “Mem” refers to the memoryless method. This figure demonstrates that accuracy
is generally higher with larger sample sizes and when using the inverse hazard method.

5 Summary

The R package cpsurvsim provides implementation of the standard method of simulating from a
distribution, using the inverse CDF, and a new method that exploits the memoryless property of
survival analysis. When simulating from the exponential distribution with multiple change-points,
these methods have comparable performance. Simulating multiple change-points from the Weibull
hazard, however, suggested that the inverse hazard method produces more accurate estimates of
the change-points τi. The accuracy of the exponential simulations suffered when the sample size
was less than 500 whereas in some cases, simulations of the Weibull distribution had worse accuracy
with a sample size of 500. In practice, change-point hazard models are often applied to data from
large longitudinal cohort studies where the sample size is very large (e.g., Goodman et al. (2011)
and Williams and Kim (2013)). These results suggest that larger sample sizes are preferred when
using an exponential model but to use caution even with a large sample when using the Weibull
model. We hope that having an R package for simulating data from multiple change-point hazard
distributions will aid in the development of extensions and alternatives to our research on tests for
multiple change-points (Hochheimer and Sabo, 2021).

The inspiration to develop the memoryless simulation method and test it came from observing
the shortcomings of the inverse hazard method in our research. The memoryless method performs
better in some simulation scenarios, which led us to implement both methods in this R package.
This simulation study, however, suggests that in the majority of cases the inverse hazard method
simulates values of τi more accurately. Our simulation study also highlighted accuracy issues with
both methods when simulating data from sample sizes of 50 or 100, which we suspect are due to
using a relatively small amount of data to estimate several model parameters. One should consider
exploring other methods to simulate a multiple change-point distribution with a small sample size.
The acceptance-rejection method, for example, may produce more accurate parameter estimates at
the cost of more computational time needed to reach the desired sample size, a cost that might be
worthwhile if the sample size is smaller to begin with (Rizzo, 2007). Alternatively, one might run a
simulation study to determine which of these two methods is best suited for their specific parameters.
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(a) One change-point.
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(b) Two change-points.

●
●

●
●

● ●
● ● ●

●
●

●

● ●
●● ●
●

● ●
●

● ●
●

1.5

2.0

50 100 500
Sample size

γ̂

Simulation method ● ●Inverse hazard Memoryless

(c) Three change-points.
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Figure 3: Estimated values of shape parameter γ for the Weibull distribution. Dots indicate the average
estimated value for each simulation scenario with the vertical lines representing the 95% CI. The solid
horizontal line represents the known value of γ. This plot demonstrates inaccurate estimates of γ for
both simulation methods except when there are three change-points, in which case the estimates are
more accurate using the inverse hazard method.

An important limitation of the exp_cdfsim and weib_cdfsim functions is that they only accom-
modate up to four change-points. While it’s possible to have more than this many change-points
in a dataset, it’s also important to make sure that there is a meaningful interpretation for multiple
change-points. Also, cpsurvsim only accommodates type I right censoring. For the Weibull distri-
bution, γ is assumed fixed for every interval between change-points. In our simulation study, we
only estimated an overall value of γ due to convergence issues when trying to estimate it within
each interval between change-points. In an effort to be concise, the accuracy of the scale parameters
θi are not discussed here, however, in some cases this parameter may be of more interest than the
change-point τ. Thus, we briefly discuss these results in the appendix. Future versions of cpsurvsim
could incorporate additional features such as accommodating informative censoring.
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1 Appendix: Analysis of scale parameters

While the change-points can be estimated without knowing the values of the scale parameters, the
reverse is not possible. Thus, we used the estimated values of the change-points in order to estimate
values of θi. As the number of change-points increased, so did the difficulty in estimating values of θi,
especially with a smaller sample size.

With a few exceptions, the estimates of θi for the exponential distribution were similar between
both methods (Figure 4). These exceptions were θ2 in the two change-point (Figure 4b) and three
change-point models (Figure 4c), where the memoryless method with a sample size of 100 had a
much larger proportion of bias. We were only able to estimate the shape parameters for the four
change-point model when the sample size was 500.
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(a) One change-point.
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(b) Two change-points.
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(c) Three change-points.
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(d) Four change-points.

Figure 4: Accuracy of scale parameter θ̂i for the exponential distribution. The y-axis represents the
average proportion of bias of θ̂i relative to the known value of θi. A proportion of bias of 2 represents
estimates with at least 200% bias. “Inv” refers to the inverse hazard method and “Mem” refers to the
memoryless method. This figure demonstrates that bias was generally similar between simulation
methods with a few exceptions where bias was larger using the memoryless method.

Estimates of θi for the one change-point Weibull model were similar across simulation methods
but bias was high even when the sample size was large (Figure 5a). Bias was generally smaller when
using the memoryless method to estimate θi in the two change-point Weibull model (Figure 5b). On
the other hand, bias was larger when using the memoryless method to estimate the shape parameter
for the three change-point Weibull model (Figure 5c). We were unable to estimate θ using the results
from the memoryless method for any of the four change-point simulations.
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(a) One change-point.
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(b) Two change-points.
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(c) Three change-points.

Figure 5: Accuracy of scale parameter θ̂i for the Weibull distribution. The y-axis represents the average
proportion of bias of θ̂i relative to the known value of θi. A proportion of bias of 2 represents estimates
with at least 200% bias. “Inv” refers to the inverse hazard method and “Mem” refers to the memoryless
method. This figure demonstrates similar bias between methods when there is one change-point,
smaller bias using the memoryless method when there are two change-points, and smaller bias using
the inverse hazard method when there are three change-points.
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starvars: An R Package for Analysing
Nonlinearities in Multivariate Time Series
by Andrea Bucci, Giulio Palomba and Eduardo Rossi

Abstract Although linear autoregressive models are useful to practitioners in different fields, often
a nonlinear specification would be more appropriate in time series analysis. In general, there are
many alternative approaches to nonlinearity modelling, one consists in assuming multiple regimes.
Among the possible specifications that account for regime changes in the multivariate framework,
smooth transition models are the most general, since they nest both linear and threshold autoregressive
models. This paper introduces the starvars package which estimates and predicts the Vector Logistic
Smooth Transition model in a very general setting which also includes predetermined variables. In
comparison to the existing R packages, starvars offers the estimation of the Vector Smooth Transition
model both by maximum likelihood and nonlinear least squares. The package allows also to test
for nonlinearity in a multivariate setting and detect the presence of common breaks. Furthermore,
the package computes multi-step-ahead forecasts. Finally, an illustration with financial time series is
provided to show its usage.

1 Introduction

Many economic and financial time series often behave differently during stress periods for the
economic activity. For example, during the subprime mortgage financial crisis, the relationship
between the financial sector and macroeconomic quantities changed justifying the use of a nonlinear
model. The same is also true in the analysis of monetary policy, where positive and negative monetary
policy shocks may have asymmetric effects, or in the investigation of the effectiveness of a fiscal policy,
where some fiscal policy measures may depend on the phase of the business cycle, see for example
Caggiano et al. (2015). When asymmetric effects are observed, the time series may follow different
regimes. In order to understand the dynamics of such processes, Quandt (1958, 1960) firstly proposed
a model where the coefficients of a linear model change in relation to the value of an observable
stochastic variable. Afterwards, these models have been extended to time series analysis. Tong (1978)
and Teräsvirta and Lim (1980) introduced the threshold autoregressive model, while Teräsvirta (1994)
imagined that the transition between regimes could be smooth, which leads to the smooth transition
autoregressive model (STAR) for univariate time series.

Since researchers are often interested in understanding the dynamics of time series in a multivari-
ate framework, regime-switching models have also been extended to include multiple dependent
variables. A vector nonlinear model was introduced by Tsay (1998), who defined a Threshold Vector
Autoregressive (TVAR) model with a single threshold variable controlling the switching mechanism in
each equation. The first vector model with a smooth transition was the smooth transition vector error-
correction model (STVECM) introduced by Rothman, van Dijk, and Franses (2001). In this model, the
same transition function controls the transition in each equation. Camacho (2004) proposed a bivariate
logistic smooth transition model with the possibility to include exogenous regressors and specify a
different transition variable for each equation. For a recent survey of vector TAR and STAR models,
see Hubrich and Teräsvirta (2013). More recently, Teräsvirta and Yang (2014a) presented a modelling
strategy for building a Vector Logistic Smooth Transition Regression (VLSTAR). This strategy includes
linearity and misspecification tests for the conditional mean, and testing the constancy of the error
covariance matrix.

This article summarizes the procedure proposed in Teräsvirta and Yang (2014a) and illustrates the
starvars package in R for estimating and testing of the VLSTAR model with a single transition variable.
Several packages for the estimation of the univariate logistic autoregressive model (LSTAR) are already
present in R. For example, Di Narzo, Aznarte, Stigler, and Tsung-wu (2020) in their tsDyn package
provide functions to estimate and forecast both the STAR and the LSTAR models. Unfortunately, the
tsDyn package, which focuses on nonlinear models in general, only allows for the estimation of a
multivariate Threshold Vector Autoregressive (TVAR) model and does not allow for the inclusion
of exogenous regressors. The RSTAR package, implemented by Balcilar (2016), estimates, forecasts,
and analyses the smooth transition autoregressive model in the univariate case. Another possible
way to model regime switches in a multivariate framework is through the MSBVAR by Brandt (2016),
capable of estimating a Markov-switching autoregressive model. Still, this package does not permit to
evaluate the relationship between the dependent variables and possible explanatory variables.

The here presented R package starvars (Bucci et al., 2022) is conceived for the nonlinear specifica-
tion with a VLSTAR model of the relationship of multivariate time series exhibiting smooth nonlinear
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relationships with both their lags and a set of explanatory variables. Even though this model has been
mainly applied in financial setups, it could be used in all fields in which the nature of the dynamics of
the dependent variables could be conceived somehow nonlinear and, specifically, following a logistic
smooth transition model. The functionalities of the starvars package include: (i) modelling strategy,
such as joint linearity testing of multivariate time series, or detecting the presence of co-breaks, (ii)
estimation and (iii) prediction of the VLSTAR model, (iv) construction of realized covariances from
high and low-frequency financial prices or returns. Two datasets (Realized and techprices) are
included in the R package starvars. The former entails monthly observations for realized co-volatilities
between the S&P 500, the Nikkei, the FTSE and the DAX indexes, the growth rate of the dividend yield
and the earning price ratio, and the first difference of the inflation rate in the U.S., United Kingdom,
Japan and Germany. The latter includes the data used in the example with the daily closing stock
prices of Google, Microsoft and Amazon.

The outline of the paper is as follows. The following sections review the specification of the
VLSTAR model, referring to Teräsvirta and Yang (2014a), and illustrate how to estimate and make
predictions through the starvars package. We then present an empirical application to stock price data,
while the last section concludes.

2 The Vector Logistic Smooth Transition Autoregressive Model

Assuming an n × 1 vector of dependent time series, yt, the multivariate smooth transition model
introduced by Teräsvirta and Yang (2014a) can be written as follows

yt = µ0 +
p

∑
j=1

Φ0,j yt−j + A0xt + Gt (st; γ, c)

µ1 +
p

∑
j=1

Φ1,j yt−j + A1xt

+ εt

= µ0 + Gt (st; γ, c) µ1 +
p

∑
j=1

[
Φ0,j + Gt (st; γ, c)Φ1,j

]
yt−j + [A0 + Gt (st; γ, c) A1] xt + εt, (1)

where µ0 and µ1 are the n× 1 vectors of intercepts, Φ0,j and Φ1,j are square n× n matrices of parameters
with lags j = 1, 2, . . . , p, A0 and A1 are n × k matrices of parameters, xt is the k × 1 vector of exogenous
variables and εt is the innovation. Gt (st; γ, c) is a n × n diagonal matrix of transition function at time
t, such that

Gt (st; γ, c) = diag {G1,t (s1,t; γ1, c1) , G2,t (s2,t; γ2, c2) , . . . , Gn,t (sn,t; γn, cn)} , (2)

where γi and ci are the scale and the threshold parameters for the i-th equation, for i = 1, . . . , n.

In the VLSTAR model, each element of Gt is specified as a logistic function

Gi,t
(
si,t; γi, ci

)
=
[
1 + exp

{
− γi

(
si,t − ci

) }]−1 . (3)

Let B =
[

G−1
t µ0 + µ1 G−1

t Φ0,1 + Φ1,1 G−1
t Φ0,2 + Φ1,2 . . . G−1

t Φ0,p + Φ1,p G−1
t A0 + A1

]′
, by

reformulating Equation (1) as in Teräsvirta and Yang (2014a) and extending for the presence of m
regimes, Equation (1) becomes

yt =

{
m

∑
r=1

Gr−1
t B′

r

}
zt + εt =

[
In G1

t . . . Gm−1
t

]


B1
B2
...

Bm

 zt + εt = G̃t B̃′ zt + εt, (4)

where G̃t is a matrix of dimension n×mn, zt =
[
1 y′t−1 y′t−2 . . . y′t−p x′t

]′
, B̃ is a (1 + k + pn)×

mn matrix and G0
t = In is an identity matrix indicating that no transitions are allowed before the

first change of regime. This equation defines the VLSTAR model with m regimes and p lags for the
dependent variables.

The logistic function in Equation (3) is accordingly modified as follows

Gr
i,t

(
sr

i,t; γr
i , cr

i

)
=
[
1 + exp

{
− γr

i (s
r
i,t − cr

i )
}]−1

, (5)

for i = 1, 2, . . . , n and r = 0, 1, . . . , m − 1.
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Joint linearity test

The VLSTAR specification procedure follows several steps. Firstly, the researcher should test whether
the relationship between yt and zt can be linear. This is crucial, since several nonlinear models, like
smooth transition and switching regression models, are not identified when the data-generating
process is linear. With multivariate dependent variables, linearity can be tested equation by equation,
using the Lagrange Multiplier (LM) test, as proposed by Luukkonen, Saikkonen, and Teräsvirta (1988),
Teräsvirta (1994) and Teräsvirta, Tjøstheim, and Granger (2010), or it may be tested simultaneously, as
introduced by Hubrich and Teräsvirta (2013) and Teräsvirta and Yang (2014b).

The LM type statistic can be computed, as further suggested by Teräsvirta and Yang (2014b), using
a multi-step procedure:

1. estimation of the linear model, i.e. the restricted VLSTAR with γ = 0;

2. save a collection of the residuals (ε̃t) from step 1 to create the residual matrix Ẽ of dimension
T × n;

3. computation of the residual sum of squares matrix, Q = Ẽ′ Ẽ;

4. regression of Ẽ on X and V =
(
v′1, . . . , v′T

)′, where vt =
(

z′tst, z′ts
2
t , . . . , z′ts

d
t

)
and sd

t is the d-th
order Taylor expansion of the logistic function (in our package d = 3, i.e. a third-order Taylor
expansion has been used);

5. creation of the residual matrix, Ξ̃, from step 4 and the residual sum of square matrix, Ξ̃′Ξ̃;

6. computation of the test statistic

LM = T
{

Q−1Q − Ξ̃′Ξ̃
}
= T

(
p − tr

{
Q−1Ξ̃′Ξ̃

})
∼ χ2

dn(np+1). (6)

where tr{·} is the trace of the matrix.

In the R package starvars, the joint linearity test can be performed by using the function VLSTARjoint,
which takes the following arguments.

• y: a data.frame or matrix containing the T observations for the n time series whose linearity
should be tested;

• exo: an optional argument containing a data.frame or matrix of k explanatory variables;

• st: a vector with the observations of the single transition variable (st), or a matrix with a set of
potential transition variables;

• st.choice: when the choice of the transition variable among a set of candidates should be based
on the linearity test, this argument should be set equal to TRUE. In such a case, the variable in
the matrix st which results in a higher LM statistics is the one chosen as the transition variable;

• alpha: a decimal value comprised between 0 and 1 (α ∈ [0, 1]) representing the confidence level,
set to 0.05 by default.

In this case, the residuals ε̃t used in step 2 of the above-mentioned procedure are obtained through
a VAR(p) estimation of the restricted model in step 1. This is done through the VAR function from R
package vars, with an automatically selected number of lags, p.

VLSTARjoint(y, exo, st, st.choice = FALSE, alpha = 0.05)

The function VLSTARjoint returns a list object with a class attribute "VLSTARjoint", for which print
method exists, with three elements: the value(s) of the Lagrange Multiplier value (LM), the p-value(s)
of the test and the critical value.

Furthermore, the specification of the VLSTAR model foresees the definition of the number of
regimes to be used in the model (see Appendix A for further details). The function multiCUMSUM allows
determining the number of common breaks and where they are located.

multiCUMSUM(data, conf.level = 0.95, max.breaks = 7)

The arguments necessary to detect the common breaks are: a matrix of T × n of time series, in the
argument data; the confidence level in conf.level, set by default at 0.95; the number of maximum
common breaks (between 1 and 7) to be identified, through max.breaks. The output is returned in a
list with a class attribute "multiCUMSUM", which can be passed through the print function. The first
element of the returned list object is a matrix with the test statistics ΛT and ΩT (see Equation (18) in
Appendix A for details). The list further reports the index of the common breaks detected and the
correspondent dates, as long as the critical values for both ΛT and ΩT .
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VLSTAR Estimation

As widely discussed in Teräsvirta and Yang (2014a), a VLSTAR model can be estimated through a
nonlinear Least Square (NLS) or a maximum likelihood (ML) model.

In both cases, the optimization algorithm may converge to some local minima, attributing to the
definition of valid starting values of the estimated parameters a special relevance. If there is no clear
indication of the initial values of γ and c, this can be done by implementing a grid search. Thus, a
discrete grid in the parameter space is created to obtain the estimates of B conditionally on each point
in the grid. The initial pairs of γ and c producing the smallest sum of squared residuals are chosen as
initial values. A pair of these parameters for each equation is selected unless common parameters are
assumed. Given their values, the model is linear in parameters.

The searching grid algorithm works as follows:

1. construction of the grid for γ and c, computing the vector of parameters for each point in the
grid;

2. estimation of B̃ in each equation through NLS and computation of the residual sum of squares,
Q;

3. find the pairs of γ and c providing the smallest Q which will be the starting γ0 and c0;
4. estimation of parameters, B̃, via NLS or ML;
5. estimation of γ and c for each equation given the parameters found in step 4;
6. repeat steps 4 and 5 until convergence.

The starvars package allows the user to implement a searching grid algorithm to obtain the initial
values of c and γ. Specifically, the practitioner may obtain initial values through the startingVLSTAR
function among a set of potential values. For example, by providing n.combi= 50, 50 values of γ and
c are combined in a grid of 2500 couples of values as in step 1 of the former procedure. The values of
the grid for γ range from 0 to 100, while the values of c range from minimum to maximum of each
dependent variable.

The startingVLSTAR function requires several arguments. A data.frame or a matrix of dimension
T × n containing the dependent variables of the model, representing y. An optional argument, exo,
contains possible explanatory variables and can be specified as a data.frame or a matrix with the
same length of y and k columns. The lag-order p should be specified as an integer. The number of
regimes in the model is set by the argument m, while the transition variable st of length T is specified
in the argument st. The number of cores used to make parallel computation is specified through the
ncores argument, while the argument singlecgamma works as follows:

• singlecgamma = TRUE: it is assumed a common pair of initial values for the entire model;
• singlecgamma = FALSE: a pair of c and γ is obtained for each of the equations.

startingVLSTAR(y, exo = NULL, p = 1,
m = 2, st = NULL, constant = TRUE,
n.combi = NULL, ncores = 2,
singlecgamma = FALSE)

VLSTAR Estimation via NLS

The NLS estimator is defined as the solution to the following optimisation problem

θ̂NLS = arg min
θ

T

∑
t=1

(
yt − G̃t B̃′zt

)′ (yt − G̃t B̃′zt
)

(7)

where θ is the set of parameters to be estimated.

In the aforementioned algorithm, the vectorization of the NLS estimates of B̃ for step 4, given the
values of γ and c, is equal to:

vec(B̃)NLS =

[
T−1

T

∑
t=1

(
G̃tG̃′

t
)
⊗
(
ztz′t

)]−1 [
T−1

T

∑
t=1

vec
(
zty′tG̃

′
t
)]

. (8)

The estimated errors covariance matrix is given by

Ω̂NLS = T−1Ê′ Ê, (9)

where Ê = (ε̂1, . . . , ε̂n)
′ is a T × n matrix, and ε̂t = yt − G̃t B̃′

NLSzt is a column vector of residuals. This
is used to obtain the first iterative ML estimation in the previous algorithm in step 4.
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VLSTAR Estimation via ML

To estimate a VLSTAR model via ML, it must be assumed that εt ∼ i.i.d.N(0, Ω). In this case, the
model can be represented by the following multivariate conditional density function

f (yt|IT ; θ) = (2π)−
n
2 |Ω|−

1
2 exp

{
−1

2
(
yt − G̃t B̃′ zt

)′ Ω−1 (yt − G̃t B̃′ zt
)}

, (10)

where It is the information set at time t which contains all the exogenous variables xt and all the lags
of yt.

In the first iteration of the algorithm presented in this section, Ω is estimated through Equation (9).
Consequently, the ML estimator of θ is obtained by solving the optimization problem

θ̂ML = arg max
θ

ℓ (yt|It; θ) . (11)

Estimation in the starvars package

In the starvars package, the estimation of a VLSTAR model is handled with the function VLSTAR.
By fitting such a model via this function, a list object with a class attribute "VLSTAR" is obtained.
This function requires the same arguments of the startingVLSTAR function, except for the number of
combinations. In addition, a list of data.frame or matrix containing starting values of c and γ, for
each of the m − 1 logistic functions as in Equation (5), must be passed through the argument starting.
The user can choose the method used to estimate the coefficients among the ‘ML’ and the ‘NLS’
through the specification of the argument method. The argument epsilon is used as a convergence
check while the argument ncores denotes the number of cores used in the parallel optimization of the
objective function.

VLSTAR(y, exo = NULL, p = 1, m = 2, st = NULL, constant = TRUE,
starting = NULL,
method = c('ML', 'NLS'),
n.iter = 500, singlecgamma = TRUE,
epsilon = 10^(-3), ncores = NULL)

The summary method applied to an object derived from the VLSTAR function returns the sample
size, along with the number of estimated parameters, the multivariate log-likelihood calculated as in
Equation (10), and the estimated coefficients. We also provide other generic methods, such as plot,
AIC, BIC and logLok. Similar to what is implemented in the R package vars, the plot function reports
for each equation in the VLSTAR model the observed values of each time series, the fitted values and
the residuals, as well as the autocorrelation and partial autocorrelation functions of the residuals. Since
the logistic function plays a crucial role in VLSTAR models, the plot function shows also the plot of
the logistic function for each dependent variable.

Forecasting a VLSTAR model

Time series prediction using nonlinear models has become widespread in the last few decades, even
if the debate on the usefulness of such forecasts is still open (see Diebold and Nason, 1990; Kock
and Teräsvirta, 2011). The forecasts of the nonlinear model, for more than one step ahead, can be
generalised via numerical techniques. Given a nonlinear model

yt = g (zt, θ) + εt, (12)

where θ is a vector of parameters to be estimated, zt is a combination of lagged values of yt and
exogenous variables xt, and εt is a white noise with zero mean and constant variance σ2, the forecast
of yt+h made at time t is equal to the conditional mean

ŷt+h|t = E {yt+h|It} = E {g(zt+h−1)|It} . (13)

where It is the information set at time t and εt is independent of It−1.

When h = 1, the forecast ŷt+1 = g(zt) is obtained from Equation (13); if h ≥ 2, the prediction can
only be calculated recursively using numerical techniques.

The nonlinearity in the VLSTAR model makes multi-period forecasting more complicated. In fact,
forecasting two steps ahead is not straightforward, since we have

yt+2|t = E (yt+2|It) = E
{[

g(zt+2; θ) + εt+2
]
|It
}

(14)
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and consequently

yt+2|t = E
{[

g(zt+2; θ) + εt+2
]
|It
}
=
∫ +∞

−∞
g(zt+2θ)dΦ(v)dv (15)

where Φ(v) is the cumulative distribution function for εt+1. It follows that to obtain the t + 2 forecast
of y numerical integration would be necessary, while multiple integrations would be required for
longer time horizons; see Lundbergh and Teräsvirta (2007).

The R package starvars can handle both one-step and multi-step-ahead forecasts of an object
with a class attribute "VLSTAR". One-step-ahead forecasts can be easily extended to the multivariate
framework by modifying Equation (4) as follows

yt+1 = G̃t+1 (st+1; γ̂, ĉ) ˆ̃B′zt+1

where ˆ̃B is the matrix of estimated parameters and zt+1 =
[
1, y′t, y′t−1, . . . , y′t−p+1, x′t+1

]′
, while G̃t+1

is calculated using estimated values of γ and c. Multi-step-ahead forecasts are slightly trickier to be
found and several alternatives can be used. As shown in Lundbergh and Teräsvirta (2007) for the
univariate case, multi-step-ahead forecasts can be obtained in three ways: naively, by Monte Carlo
simulation and by bootstrapping. The method predict in the starvars package allows the user to
choose between these methods through the argument method. When the naive method is chosen, the
yt+h forecasts are obtained as follows

yna
t+h = G̃t+h (st+h; γ̂, ĉ) ˆ̃B′zna

t+h

where zna
t+h =

[
1, y′t+h−1, . . . , y′t+h−p, x′t+h

]′
. If the transition variable is the lagged yt−s, with s < h,

the prediction of the i-th element of y is used as a new transition variable, otherwise the new value
of st should be passed through the argument st.new. The index i is specified by the argument
st.num, which denotes the column number of the dependent variable which should be used as a new
transition variable. From Hubrich and Teräsvirta (2013), Kock and Teräsvirta (2011) and Teräsvirta
et al. (2010), we know that these forecasts are biased. Thus, the practitioner may choose the Monte
Carlo method. In this case, εt+1 should be simulated using a properly defined error distribution. Let
B̂1 =

[
µ̂0, Φ̂0,1, . . . Φ̂0,p, Â0

]
and B̂2 =

[
µ̂1, Φ̂1,1, . . . , Φ̂1,p, Â1

]
, the multivariate version of the Monte

Carlo method for h steps ahead is given by

ymc
t+h = B̂′

1zt+h +
1
M

M

∑
m=1

G̃t+h (st+h; γ̂, ĉ) B̂′
2zmc

t+h

where zmc
t+h =

[
1,
(

yt+h−1 + εmc
t+h

)′
, . . . ,

(
yt+h−p + εmc

t+h−p+1

)′
, x′t+h

]′
, εmc

t+h is a vector of errors sam-

pled from a Multivariate Normal distribution with zero mean and covariance matrix Ω̂. In such a case,
the interval forecasts are directly determined from the forecast density. Finally, the bootstrap method
foresees that the multi-step-ahead forecasts are derived from

ybo
t+h = B̂′

1zt+h +
1
B

B

∑
b=1

G̃t+h (st+h; γ̂, ĉ) B̂′
2zbo

t+h

where zbo
t+h =

[
1,
(

yt+h−1 + εbo
t+h

)′
, . . . ,

(
yt+h−p + εbo

t+h−p+1

)′
, x′t+h

]′
, εbo

t+h is sampled from the T × n

matrix of residuals. As in the case of the Monte Carlo method, the interval forecasts are derived from
the forecast density.

predict(object, ..., n.ahead = 1, conf.lev = 0.95, st.new = NULL,
st.num = NULL, newdata = NULL,
method = c('naive', 'Monte Carlo', 'bootstrap'))

The predict method returns a list with a class attribute "vlstarpred" and two elements: a list denoted
with the name forecasts containing the predicted values and the interval forecasts for each of the
steps ahead, and the matrix with the values of y. The print method is applicable to objects of this
class and returns the forecasts with upper and lower interval forecasts. The plot method draws the
time series plots with the interval forecasts in the out-of-sample period.
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3 VLSTAR model compared to other linear and nonlinear models

The here applied VLSTAR model is one of the possible ways of modelling nonlinear relationships.
Alternatively, nonlinearity in a multivariate framework can be modelled through a Threshold Vector
Autoregression (TVAR) or Markov-switching Vector Autoregressive (MSVAR) model. The VLSTAR
and the TVAR models are both based on the assumption that the variable that defines the regime-
switching is observable, while the MSVAR is mainly based on the assumption that regime-switches
are defined by a latent Markov process. When the practitioner has enough information on the factors
that drive the dynamics of the dependent variables, using VLSTAR or TVAR models may reduce the
uncertainty related to the regimes and may produce more accurate predictions than an MSVAR model
(see Hubrich and Teräsvirta, 2013). In other words, the VLSTAR is a model with a continuum of states
where the change between a number of regimes is smooth, the TVAR is mostly conceived to analyse
the dynamics of variables that switch abruptly between the regimes. The VLSTAR model can be seen
as a general version of the TVAR that allows also for the regimes to change smoothly. Indeed, when
γ → ∞ for each regime, the VLSTAR model becomes a TVAR model with well-defined changes of
regimes. Conversely, when γ → 0, the model becomes a simple VAR model.

The starvars package further differs from the tsDyn and the MSBVAR by Brandt (2016) packages,
which permit the estimation of the TVAR and MSVAR models, since it allows the use of exogenous
variables in the estimation set. This is a useful tool since practitioners may control for potential
explanatory variables different from lags of the dependent variable to obtain parameter estimates and
dependent variables predictions.

4 Example

To illustrate how the R package starvars works in practical situations, we present an empirical
application with multivariate time series of stock prices. Starting from the prices of n = 3 stocks of the
tech companies, Amazon, Microsoft and Google, available in the dataset techprices, we model the
monthly realized covariances assuming that their dynamics can be captured by a flexible specification
like the VLSTAR model which nests the linear VAR. First, we construct the n(n + 1)/2 monthly series
of realized covariances and their Cholesky factors which are modelled through VLSTAR. This solves
the problem of obtaining positive semidefinite covariance matrices that can be used in finding optimal
portfolios. Second, from the estimated VLSTAR, we can compute the forecasts of the monthly realized
covariances, see Halbleib-Chiriac and Voev (2011); Bucci et al. (2019); Bucci (2020). In particular,
asset returns co-volatilities tend to be higher when bad news is available. From Figure 1, it is clearly
observable that co-volatilities explode during periods of market turmoil, like the subprime mortgage
crisis in 2007 or the spread of the COronaVIrus Disease 19 (COVID-19) at the beginning of 2020. This
explains why co-volatilities exhibit nonlinear behaviour.
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Figure 1: Plots of realized covariances of the stock returns. The panels report the realized variances
(one stock symbol, i.e. first, third and last panel) and covariances (two symbols, i.e. second, third and
fifth panel) between the considered stocks. ‘GOOG’ is the stock symbol of Google, ‘MSFT’ is the stock
symbol of Microsoft, and ‘AMZN’ is the stock symbol of Amazon. The time series show several peaks
during periods of financial market stress such as the sub-prime mortgage crisis and the COVID-19
pandemic in 2021, which may underline a nonlinear behaviour of co-volatilities.

The techprices dataset used in this example includes the closing prices from January 1st 2005 to
June 16th 2020, for a total of 3,890 observations per series. The dataset can be loaded in the workspace
using

> data("techprices", package = "starvars")

where techprices is a 3, 890 × 3 xts object containing the daily prices. As a first step, we calculate the
realized covariances of stock returns and their Cholesky factors. Since we have already daily prices,
we can only build monthly, quarterly, or yearly realized covariances. To keep the sample of realized
covariances quite large, we calculate monthly realized covariances and their Cholesky factors through
the code (further discussed in Appendix B):

> RCOV <- rcov(techprices, freq = "monthly", make.ret = TRUE, cholesky = TRUE)

from which we obtain a list of two elements in the object RCOV. We are just interested in the Cholesky
factors of the stock returns, thus we save the desired data.frame in the object techchol with a class
"xts".

> techchol <- RCOV$'Cholesky Factors'

which has dimension T × n(n + 1)/2, where T = 186 and n(n + 1)/2 = 6. Therefore, in our example
there are n(n + 1)/2 = 6 dependent variables.
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The modelling strategy of a VLSTAR model starts with a test for the time series nonlinearities. As
largely explained above, this can be done via the VLSTARjoint function. Since no information about
which variable should be used as a transition variable is available, we let the linearity test choose
among a set of potential variables which are equal to the first lag of the dependent variables. The LM
statistics and the related p-value for a given value of alpha (set equal to 0.05 by default) and for the
chosen transition variable can be obtained simply by running

> st <- lag(techchol,1)[-1]
> VLSTARjoint(techchol[-1,], st = st, st.choice = TRUE)

Joint linearity test (Third-order Taylor expansion)
Transition variable chosen: y5
LM = 158.7 ; p-value = 2.0595e-21
Critical value for alpha = 40.646

The linearity test indicates the presence of nonlinearity in the data, and that the rejection of the
null hypothesis is stronger when the lag of the fifth Cholesky factor, y5, is chosen as the transition
variable. At this point, the practitioner should assess the presence of common breaks among the time
series through the test presented in Appendix A. The test, for a maximum number of breaks equal to 3,
is computed as follows.

> multiCUMSUM(techchol[-1], max.breaks = 3)
============================================================
Break detection in the covariance structure:
Lambda Omega Break Date 1 Break Date 2 Break Date 3
Break 1 11.10 3.93 2009-04-03
Break 2 21.53 9.64 2009-04-03 2007-12-03
Break 3 12.09 6.03 2009-04-03 2007-12-03 2015-07-03
============================================================
Critical values are 2.69 for Lambda and 1.74 for Omega.
2 Break(s) identified with Lambda
2 Break(s) identified with Omega

This function returns significant test statistics for all the breaks for ΛT and ΩT , which both identify a
number of breaks equal to 2. To keep the model parsimonious, we decide to include a single break
and m = 2 regimes in our example.

Given that a nonlinear model would be necessary and that at least a single break is present in the
multivariate time series, a VLSTAR model can be estimated. Before estimating the parameters, we
implement the searching grid algorithm to find starting values of γ and c with 20 potential values
each (400 combinations). Specifying singlecgamma = FALSE we are supposing that each equation has
its own parameters. Once executed the code, a progress bar is shown to inform the user about the
completion of the searching grid algorithm.

> starting <- startingVLSTAR(techchol[-1,], p = 1, m = 2, st = st[,5],
+ n.combi = 20, singlecgamma = FALSE, ncores = 4)

We employ an NLS estimation, with the lag of the fifth Cholesky factor as st, a single lag p = 1,
two regimes m = 2, a number of maximum iterations equal to 30 and a number of cores for parallel
computation equal to 4, and we use the starting values found in the previous step of the procedure
saved in the starting object. Therefore, we show the code used to specify the VLSTAR model as well
as the summary output, and the graphic for the equation of the first Cholesky factor, y1.

> fit.VLSTAR <- VLSTAR(techchol[-1,], p = 1, m = 2, st = st[,5],
+ method = 'NLS', starting = starting, n.iter = 30, ncores = 4)
> summary(fit.VLSTAR)
> plot(fit.VLSTAR, names = "y1")
Model VLSTAR with 2 regimes
Full sample size: 184
Number of estimated parameters: 108 Multivariate log-likelihood: 2272.663
==================================================

Equation y1

Coefficients regime 1
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const y1 y2 y3 y4 y5 y6
8.108*** 0.038 0.135 0.123 0.142 -1.379*** 0.330

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
10.613*** 0.411*** -0.067 0.593*** -1.884*** 0.669** 1.762***

Gamma: 3.0809 c: 3.1603
AIC: 769.78 BIC: 814.79 LL: -370.89

Equation y2

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
0.511 -0.019 0.106 0.250** 0.126 -0.005 0.261

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
6.919*** 0.760*** -0.136 0.177* -0.644*** -1.688*** 0.613***

Gamma: 866.3921 c: 3.5162
AIC: 545.65 BIC: 590.66 LL: -258.83

Equation y3

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
1.015* -0.033 0.053 0.389*** 0.003 0.022 0.295

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
-3.503*** 1.419*** -0.123 0.218* -0.580*** -0.895*** -0.425*

Gamma: 110.8034 c: 3.595
AIC: 571.67 BIC: 616.67 LL: -271.83

Equation y4

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
4.270*** -0.034 -0.046 0.058 0.340** -1.114*** 0.096

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
11.561*** 0.127** 0.166. 0.287*** -0.939*** -0.497*** 1.117***

Gamma: 1.1841 c: 3.4705
AIC: 496.2 BIC: 541.21 LL: -234.1

Equation y5

Coefficients regime 1
const y1 y2 y3 y4 y5 y6
0.367 -0.009 0.061 0.096. -0.012 0.200** 0.158

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
7.756*** -0.695*** -0.337*** 0.290*** -0.418*** 0.639*** 1.269***

Gamma: 100 c: 4.1137
AIC: 351.31 BIC: 396.32 LL: -161.66

Equation y6
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Coefficients regime 1
const y1 y2 y3 y4 y5 y6
2.693*** -0.005 0.005 0.048 0.120. -0.234*** 0.171.

Coefficients regime 2
const y1 y2 y3 y4 y5 y6
3.648*** 0.383*** -0.138* 0.199*** -0.992*** 0.178** 0.909***

Gamma: 69.405 c: 3.5824
AIC: 324.3 BIC: 369.31 LL: -148.15
==================================================

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

After the execution of the code, a counter with the number of the iteration in the estimation
algorithm is shown until convergence or the maximum number of iterations is reached. Using a laptop
with an Intel® Core™i5-7200U 2.5GHz processor with 16 GB RAM, the searching grid algorithm takes
around 40 seconds to find optimal values of γ and c, while convergence is achieved after 7 iterations
taking around 500 seconds (with the package version 1.1.10). The estimation process could take from a
few minutes to several hours depending on the complexity of the model. The number of parameters
increases with the number of dependent variables, the number of exogenous variables, and the number
of regimes, therefore affecting the optimization problem and the convergence time. For example, the
estimation of the former example with m = 3 regimes takes about an hour and 30 minutes.

The results of the plot function on the Equation of y1 in the VLSTAR object are shown in Figure 2.
It may be noticed from the last panel of the Figure reporting the logistic function that the assumption
of a smoothing regime-switching is realistic.
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Figure 2: Plots of results from VLSTAR estimation for the Equation of y1. The first panel shows the
observed time series (in black) versus the fitted time series (in dashed blue). The second panel shows
the residuals and highlights the zero with a red horizontal line. The left side of the third panel reports
the autocorrelation function of the residuals, while the right side reports the partial autocorrelation
function of the residuals. The fourth panel is about the logistic function that regulates the regime
switches. The residual time series of y1 seems to show poor autocorrelation, while the regime switches
appear to be quite smooth.
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Time series models are usually implemented to make out-of-sample predictions. In our package,
this is possible through the predict method that, applied to objects of class "VLSTAR", returns an object
with a class "vlstarpred". When using the predict function, the argument method = 'bootstrap'
specifies that the aforementioned “bootstrap” method has been used to make predictions, while the
argument n.ahead = 2 denotes that two-step-ahead predictions are obtained. The outcome of the
plot method of the out-of-sample forecasts for the first Cholesky factor is exhibited in Figure 3. The
predictions of the Cholesky factors could be used to obtain a semidefinite positive predicted covariance
matrix by simply inverting the Cholesky decomposition.

> pred.bootstrap <- predict(fit.VLSTAR, n.ahead = 2, st.num = 5, method = 'bootstrap')
> pred.bootstrap
$y1

fcst lower 95% upper 95%
Step 1 8.370493 7.283483 9.457503
Step 2 20.916559 12.878648 28.649321

$y2
fcst lower 95% upper 95%

Step 1 3.131276 2.540087 3.722465
Step 2 6.188201 4.761677 7.948755

$y3
fcst lower 95% upper 95%

Step 1 3.508982 2.874487 4.143478
Step 2 6.631187 4.822495 9.018994

$y4
fcst lower 95% upper 95%

Step 1 5.188099 4.671238 5.70496
Step 2 12.483377 8.961486 15.73787

$y5
fcst lower 95% upper 95%

Step 1 1.794161 1.445520 2.142802
Step 2 3.293723 2.469695 4.301613

$y6
fcst lower 95% upper 95%

Step 1 3.381696 3.057729 3.705664
Step 2 7.258409 6.307594 8.322091

> plot(pred.bootstrap, type = 'single', names = 'y1')
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Figure 3: Out-of-sample predictions of time series y1. The plot shows the observed time series
in-sample (in dashed black), the two-step ahead out-of-sample predictions (in dashed blue), and
their 95% prediction interval (in dashed red). A vertical grey line denotes the end of the in-sample
observations. The predictions of time series y1 highlight that the prediction interval is extremely tight
and that predictions can be nonlinear.

5 Conclusion

This article introduces the R package starvars for modelling, estimating, and forecasting a Vector
Logistic Smooth Transition Autoregressive (VLSTAR) model. We present the model specification in
a general way and illustrate the package usage. In particular, we perform an empirical application
using financial data.

The package allows practitioners in many scientific areas to perform their applied research using
VLSTAR models in a user-friendly environment. The build-in framework permits to analyse non-
linearity of time series and make multi-step-ahead predictions via different methods. Further, the
practitioner may use the starvars package to obtain realized covariances at several frequencies and the
Cholesky decomposition of the related realized covariance matrices.

It should be reminded that the estimation of the parameters in a VLSTAR model strongly depends
on the initial values of the parameter of the logistic. We have observed that sometimes the algorithm
underlying the automatic grid search may lead to unrealistic estimates of the logistic parameters and,
consequently, to not consistent estimates of coefficients. Moreover, the computational time, when
using more than two regimes, might be compromised by a large number of coefficients and a possible
local minimum may be found by the maximization of the log-likelihood. Thus, the suggestion is to
use a limited number of regimes to keep the model as parsimonious as possible.

The code of the package starvars may be improved by using a different transition variable for each
equation or by allowing the estimates of a univariate model. However, in both cases, the estimation
would be reduced to a univariate model for each equation and there are already packages able to do
this.

6 Availability

The here presented package is written using S4 classes and provides methodology such as coef, plot,
AIC, BIC, logLik, summary and print to analyze the results. The R package starvars is available from
the Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/package=starvars
and on GitHub at https://github.com/andbucci/starvars.
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7 Appendix A: Testing for common breaks

If the linearity hypothesis is rejected, the researcher should determine the number of regimes of the
dependent variable. To this end, the procedure introduced by Bai and Perron (1998, 2003) may be
implemented. In presence of multivariate time series, it may happen that sudden shocks, such as
market crashes, financial crises, or interventions of policymakers, result in a structural break in the
mean of the observed time series (see Bai et al., 1998). At the same time, the interest of the researcher
may be directed to changes in the structure of the conditional correlations (see Barassi et al., 2020; Aue
et al., 2009). To detect the presence of structural breaks in the co-movements of the n time series, Aue,
Hörmann, Horváth, and Reimherr (2009) introduced a test on the structure of the covariances. Here,
we attempt to summarize the procedure1.

Let (yt : t ∈ Z) be a sequence of n time series, with E[yt] = µ and E[|yt|2] < ∞, where | · | denotes
the Euclidean norm in ℜn, then the null hypothesis in a test for structural breaks in the co-volatilities
process is given by

H0 : Cov(y1) = . . . = Cov(yT)

where T is the number of observations. This means that the covariances are constant over the observed
period. A common alternative hypothesis would be that there is at least one change in the covariance
structure which corresponds to the presence of at least one common break.

Provided that E[yt] = 0, the test statistic is based on the constancy of the expected values
E[vech(yty′t)] for t = 1, . . . , T under H0. As a consequence, from the estimates of E[vech(yty′t)] on j
observations (with j < T), a traditional cumulative sum (CUSUM) statistic can be constructed as

Sj =
1√
T

(
j

∑
t=1

vech[yty′t]−
j
T

T

∑
t=1

vech[yty′t]

)
, with j = 1, . . . , T. (16)

Let ỹt = yt − yT , where yT =
1
T

T

∑
t=1

yt, if the zero mean assumption does not hold, i.e. E[yt] ̸= 0, then

Sj can be replaced by

S̃j =
1√
T

(
j

∑
t=1

vech[ỹt ỹ′t]−
j
T

T

∑
t=1

vech[ỹt ỹ′t]

)
, with j = 1, . . . , T. (17)

Given the long-run covariance estimator Σ̂T , the test statistics are

ΛT = max
1≤j≤T

S′
jΣ̂

−1
T Sj and ΩT =

1
T

T

∑
j=1

S′
jΣ̂

−1
T Sj (18)

as well as

Λ̃T = max
1≤j≤T

S̃′
jΣ̂

−1
T S̃j and Ω̃T =

1
T

T

∑
j=1

S̃′
jΣ̂

−1
T S̃j.

For the critical values of these statistics, it should be referred to Aue, Hörmann, Horváth, and Reimherr
(2009).

Once the null hypothesis can be rejected, the researcher should find the location of both the
breakpoint and the breakpoint fraction θ whose estimation is given by

θ̂ =
1
T

arg max
1≤j≤T

S′
jΣ̂

−1
T Sj. (19)

This can be repeated for each partition of the entire sample to obtain the optimal number and location
of common breaks. On the basis of what is found with the test on common breaks, the number of
regimes of the VLSTAR model can be assessed and parameters estimation can be performed.

8 Appendix B: Realized covariances construction

Along with the specification of a VLSTAR model, the R package starvars allows the user to calculate a
non-parametric measure of volatility in the multivariate framework, such as the realized volatility (see
Andersen et al., 2001, 2003; Barndorff-Nielsen and Shephard, 2002, for the theoretical fundamentals).
Given a vector of stock returns, rτ sampled at a given frequency, τ, the realized covariance matrix,

1See the original paper by Aue, Hörmann, Horváth, and Reimherr (2009) for the technical details.
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RCt observed at a lower frequency t is simply given by

RCt =
Nt

∑
τ=1

rτr′τ (20)

where Nt is the number of observations in the t-th period and t = 1, . . . , T.

The function rcov in the package starvars returns the lower triangular of RCt starting both from
stock prices or returns, and to calculate it for different frequencies.

rcov(data, freq = c('daily', 'monthly', 'quarterly', 'yearly'),
make.ret = TRUE, cholesky = FALSE)

The function consists of several arguments. An object of class "xts" with the values of stock prices
or returns on which the realized covariances should be calculated. The frequency of t, which could
be daily, monthly, quarterly or yearly. The boolean argument make.ret denotes whether the data
passed as input in the argument data should be converted to returns, if TRUE the returns are calculated.
Finally, since a wide strand of the literature relies on the Cholesky factors of RCt to make inference or
predictions (see Becker, Clements, and O’Neill, 2010; Halbleib-Chiriac and Voev, 2011; Bucci, Palomba,
and Rossi, 2019; Bucci, 2020, for example), the function also allows the user to calculate the Cholesky
factors, Lt, such that

RCt = LtL′
t.

This can be done by setting the argument cholesky equal to TRUE. If make.ret is set equal to TRUE, the
output of the function rcov contains an element of class "xts" with the returns.

When cholesky = TRUE, the output of the rcov function is a list containing the T × n(n + 1)/2
xts object from the vectorization of the realized covariance matrices, given by vech(RCt), and the
T × n(n + 1)/2 of the vectorization of Lt, given by vech(Lt), otherwise it includes only the series of
realized covariances.
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fairmodels: a Flexible Tool for Bias
Detection, Visualization, and Mitigation in
Binary Classification Models
by Jakub Wiśniewski and Przemysław Biecek

Abstract Machine learning decision systems are becoming omnipresent in our lives. From dating apps
to rating loan seekers, algorithms affect both our well-being and future. Typically, however, these
systems are not infallible. Moreover, complex predictive models are eager to learn social biases present
in historical data that may increase discrimination. If we want to create models responsibly, we need
tools for in-depth validation of models also from potential discrimination. This article introduces an R
package fairmodels that helps to validate fairness and eliminate bias in binary classification models
quickly and flexibly. The fairmodels package offers a model-agnostic approach to bias detection,
visualization, and mitigation. The implemented functions and fairness metrics enable model fairness
validation from different perspectives. In addition, the package includes a series of methods for bias
mitigation that aim to diminish the discrimination in the model. The package is designed to examine a
single model and facilitate comparisons between multiple models.

1 Introduction

Responsible machine learning and, in particular, fairness is gaining attention within the machine
learning community. This is because predictive algorithms are becoming more and more decisive
and influential in our lives. This impact could be less or more significant in areas ranging from user
feeds on social platforms, displayed ads, and recommendations at an online store to loan decisions,
social scoring, and facial recognition systems used by police and authorities. Sometimes it leads
to automated systems that learn some undesired bias preserved in data for some historical reason.
Whether seeking a job (Lahoti et al., 2019) or having one’s data processed by court systems (Angwin
et al., 2016), sensitive attributes such as sex, race, religion, ethnicity, etc., might play a significant role
in the decision. Even if such variables are not directly included in the model, they are often captured
by proxy variables such as zip code (a proxy for the race and wealth), purchased products (a proxy
for gender and age), eye colour (a proxy for ethnicity). As one would expect, they can give an unfair
advantage to a privileged group. Discrimination takes the form of more favorable predictions or
higher accuracy for a privileged group. For example, some popular commercial gender classifiers were
found to perform the worst on darker females (Buolamwini and Gebru, 2018). From now on, such
unfair and harmful decisions towards people with specific sensitive attributes will be called biased.

The list of protected attributes may depend on the region and domain for which the model is
built. For example, the European Union law is summarized in the Handbook on European non-
discrimination law European Union Agency for Fundamental Rights and Council of Europe (2018),
which lists the following protected attributes that cannot be the basis for inferior treatment: sex, gender
identity, sexual orientation, disability, age, race, ethnicity, nationality or national origin, religion or
belief, social origin, birth, and property, language, political or other opinions. This list, though long,
does not include all potentially relevant items, e.g. in the USA, a protected attribute is also pregnancy,
the status of a war veteran, or genetic information.

While there are historical and economic reasons for this to happen, such decisions are unacceptable
in society, where nobody should have an unfair advantage. The problem is not simple, especially
when the only criterion set for the system is performance. We observe a trade-off between accuracy
and fairness in some cases where lower discrimination leads to lower performance (Kamiran and
Calders, 2011). Sometimes labels, which are considered ground truth, might also be biased (Wick et al.,
2019), and when controlling for that bias, the performance and fairness might improve simultaneously.
However fairness is not a concept that a single number can summarize, so most of the time, when we
want to improve fairness from one perspective, it becomes worse in another (Barocas et al., 2019).

The bias in machine learning systems has potentially many different sources. Mehrabi et al. (2019)
categorized bias into its types like historical bias, where unfairness is already embedded into the data
reflecting the world, observer bias, sampling bias, ranking and social biases, and many more. That
shows how many dangers are potentially hidden in the data itself. Whether one would like to act on
it or not, it is essential to detect bias and make well-informed decisions whose consequences could
potentially harm many groups of people. Repercussions of such systems can be unpredictable. As
argued by Barocas et al. (2019), machine learning systems can even aggravate the disparities between
groups, which is called by the authors’ feedback loops. Sometimes the risk of potential harm resulting
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from the usage of such systems is high. This was noticed, for example, by the Council of Europe
that wrote the set of guidelines where it states that the usage of facial recognition for the sake of
determining a person’s sex, age, origin, or even emotions should be mostly prohibited (Council of
Europe, 2021).

Not every difference in treatment is discrimination. Cirillo et al. (2020) presents examples of desir-
able and undesirable biases based on the medical domain. For example, in the case of cardiovascular
diseases, documented medical knowledge indicates that different treatments are more effective for
different genders. So different treatment regimens according to medical knowledge are examples of
desirable bias. Later in this paper, we present tools to identify differences between groups defined by
some protected attribute but note that this does not automatically mean that there is discrimination.

We would also like to point out that focusing on the machine learning model may not be enough
in some cases, and sometimes the design of the data acquisition and/or annotation cause the model to
be biased (Barocas et al., 2019).

Related work

Assembling predictive models is getting easier nowadays. Packages like h2o (H2O.ai, 2017) provide
AutoML frameworks where non-experts can train quickly accurate models without deep domain
knowledge. Model validation should also be that simple. Yet this is not the case. There are still very
few tools to support the fairness diagnostics of the model.

Two main kinds of fairness are a concern to multiple stakeholders. These are group and individual
fairness. The first one concerns groups of people with the same protected attributes (gender, race, etc.).
It focuses on measuring if these groups are treated similarly by the model. The second one is focused
on the individual. It is most intuitively defined as treating similar individuals similarly (Dwork et al.,
2012). Both concepts are sometimes considered to conflict with each other, but they don’t need to be if
we factor in certain assumptions, such as whether the disparities are due to personal choices or unjust
structures (Binns, 2020).

Several frameworks have emerged for Python to verify various fairness criteria, the most popular
are aif360 (Bellamy et al., 2018), fairlearn (Bird et al., 2020), or aequitas (Saleiro et al., 2018). They have
various features for detecting, visualization, and mitigating bias in machine learning models.

For the R language, until recently, the only available tool was the fairness (Kozodoi and V. Varga,
2021) package which compares various fairness metrics for specified subgroups. The fairness package
is very helpful, but it lacks some features. For example, it does not allow comparing the machine
learning models and aggregating fairness metrics to facilitate the visualization. Still, most of all, it
does not give a quick verdict on whether a model is fair or not. Package fairadapt aims at removing
bias from machine learning models by implementing pre-processing procedure described in Plečko
and Meinshausen (2019). Our package tries to combine the detection and mitigation processes. It
encourages the user to experiment with the bias, try different mitigation methods and compare results.
The package fairmodels not only allows for that comparison between models and multiple exposed
groups of people, but it gives direct feedback if the model is fair or not (more on that in the next
section). Our package also equips the user with a so-called fairness_object, an object aggregating
possibly many models, information about data, and fairness metrics. fairness_object can later
be transformed into many other objects that can facilitate the visualization of metrics and models
from different perspectives. If a model does not meet fairness criteria, various pre-processing and
post-processing bias mitigation algorithms are implemented and ready to use. It aims to be a complete
tool for dealing with discriminatory models in a group fairness setting.

In particular, in the following sections, we show how to use this package to address four key
questions: How to measure bias? How to detect bias? How to visualize bias? and How to mitigate bias?

It is important to remember that fairness is not a binary concept that can be unambiguously
defined, and there is no silver bullet that will make any model fair. The presented tools allow for
fairness exploratory analysis, thanks to which we will be able to detect differences in the behavior of
the model for different protected groups. But such analysis will not guarantee that all possible fairness
problems have been detected. Also, fairness analysis is only one of a wide range of techniques for
Explanatory Model Analysis (Biecek and Burzykowski, 2021). Like other explanatory tools, it should
be used with caution and awareness.

2 Measuring and detecting bias

In model fairness analysis, a distinction is often made between group fairness and individual fairness
analysis. The former is defined by the equality of certain statistics determined on protected subgroups,
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Figure 1: Summary of possible model outcomes for subpopulation A = a. We assume that outcome
Y = 1 is favourable.

and we focus on this approach in this section. We write more about the latter later in this paper.

Fairness metrics

Machine learning models, just like human-based decisions, can be biased against observations related
to people with certain sensitive attributes, which are also called protected groups. This is because
they consist of subgroups - people who share the same sensitive attribute, like gender, race, or other
features.

To address this problem, we need first to introduce fairness criteria. Following Barocas et al. (2019),
we will present these criteria based on the following notation.

• Let A ∈ {a, b, ...} mean protected group and values A ̸= a denote membership to unprivileged
subgroups while A = a membership to privileged subgroup. To simplify the notation, we will
treat this as a binary variable (so A = b will denote membership to unprivileged subgroup), but
all results hold if A has a larger number of groups.

• Let Y ∈ {0, 1} be a binary label (binary target = binary classification) where 1 is preferred,
favorable outcome.

• Let R ∈ [0, 1] be a probabilistic response of the model, and Ŷ ∈ {0, 1} is the binarised model
response, so Ŷ = 1 when R ≥ 0.5, otherwise Ŷ = 0.

Figure 1 summarizes possible situations for the subgroup A = a. We can draw up the same table
for each of the subgroups.

According to Barocas et al. (2019) most discrimination criteria can be derived as tests that validate
the following probabilistic definitions:

• Independence, i.e. R ⊥ A,
• Separation, i.e. R ⊥ A | Y,
• Sufficiency, i.e. Y ⊥ A | R.

Those criteria and their relaxations might be expressed via different metrics based on a confusion
matrix for a certain subgroup. To check if those fairness criteria are addressed, we propose checking
five metrics among privileged group (a) and unprivileged group (b):

• Statistical parity: P(Ŷ = 1|A = a) = P(Ŷ = 1|A = b). Statistical parity (STP) ensures that
fractions of assigned positive labels are the same in subgroups. It is equivalent of Independence
(Dwork et al., 2012). In other words, the values in the last column of Figure 1 are the same for
each subgroup.

• Equal opportunity: P(Ŷ = 1|A = a, Y = 1) = P(Ŷ = 1|A = b, Y = 1). Checks if classifier
has equal True Positive Rate (TPR) for each subgroup. In other words, the column normalized
values in the second column of Figure 1 are the same for each subgroup. It is a relaxation of
Separation (Hardt et al., 2016).

• Predictive parity: P(Y = 1|A = a, Ŷ = 1) = P(Y = 1|A = b, Ŷ = 1). Measures if a model has
equal Positive Predictive Value (PPV) for each subgroup. In other words, the row normalized
values in the second row of Figure 1 are the same for each subgroup. It is relaxation of Sufficiency
(Chouldechova, 2016).

• Predictive equality: P(Ŷ = 1|A = a, Y = 0) = P(Ŷ = 1|A = b, Y = 0). Warrants that classifiers
have equal False Positive Rate (FPR) for each subgroup. In other words, the column normalized
values in the third column of Figure 1 are the same for each subgroup. It is relaxation of
Separation (Corbett-Davies et al., 2017).

• (Overall) Accuracy equality: P(Ŷ = Y|A = a) = P(Ŷ = Y|A = b). Makes sure that models
have the same Accuracy (ACC) for each subgroup. (Berk et al., 2017)
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The reader should note that if the classifier passes Equal opportunity and Predictive equality, it
also passes Equalized Odds (Hardt et al., 2016), which is equivalent to Separation criteria.

Let us illustrate the intuition behind Independence, Separation, and Sufficiency criteria using the
well-known example of the COMPAS model for estimating recidivism risk. Fulfilling the Independence
criterion means that the rate of sentenced prisoners should be equal in each subpopulation. It can be
said that such an approach is fair from society’s perspective.

Fulfilling the Separation criterion means that the fraction of innocents/guilty sentenced should be
equal in subgroups. Such an approach is fair from the prisoner’s perspective. The reasoning is the
following: “If I am innocent, I should have the same chance of acquittal regardless of sub-population”. This
was the expectation presented by the ProPublica Foundation in their study.

Meeting the Sufficiency criterion means that there should be an equal fraction of innocents among
the convicted, similarly, for the non-convicted. This approach is fair from the judge’s perspective.
The reasoning is the following: “If I convicted someone, he should have the same chance of being innocent
regardless of the sub-population”. This approach is presented by the company developing the COMPAS
model, Northpointe. Unfortunately, as we have already written, it is not possible to meet all these
criteria at the same time.

While defining the metrics above, we assumed only two subgroups. This was done to facilitate
notation, but there might be more unprivileged subgroups. A perfectly fair model would pass all
criteria for each subgroup (Barocas et al., 2019).

Not all fairness metrics are equally important in all cases. The metrics above aim to give a more
holistic view into the fairness of the machine learning model. Practitioners informed in the domain
may consider only those metrics that are relevant and beneficial from their point of view. For example,
in Kozodoi et al. (2021) in the fair credit scoring use case, the authors concluded that the separation is
the most suitable non-discrimination criteria. More general instructions can also be found in European
Union Agency for Fundamental Rights (2018), along with examples of protected attributes. Sometimes,
however, non-technical solutions to fairness problems might be beneficial. Note that group fairness
metrics will discover not all types of unfairness, and the end-user should decide whether a model is
acceptable in terms of bias or not.

However tempting it is to think that all the criteria described above can be met at the same time,
unfortunately, this is not possible. Barocas et al. (2019) shows that, apart from a few hypothetical
situations, no two of {Independence, Separation, Sufficiency} can be fulfilled simultaneously. So we are
left balancing between the degree of imbalance of the different criteria or deciding to control only one
criterion.

Acceptable amount of bias

It would be hard for any classifier to maintain the same relations between subgroups. That is why
some margins around the perfect agreement are needed. To address this issue, we accepted the
four-fifths rule (Code of Federal Regulations, 1978) as the benchmark for discrimination rate, which
states that “A selection rate for any race, sex, or ethnic group which is less than four-fifths ( 4

5 ) (or eighty
percent) of the rate for the group with the highest rate will generally be regarded by the Federal enforcement
agencies as evidence of adverse impact[. . . ].” The selection rate is originally represented by statistical
parity, but we adopted this rule to define acceptable rates between subgroups for all metrics. There
are a few caveats to the preceding citation concerning the size of the sample and the boundary itself.
Nevertheless, the four-fifths rule is an excellent guideline to adhere to. In the implementation, this
boundary is represented by ε, and it is adjustable by the user, but the default value will be 0.8. This
rule is often used, but users should check if the fairness criteria should be set differently in each case.

Let ε > 0 be the acceptable amount of a bias. In this article, we would say that the model is not
discriminatory for a particular metric if the ratio between every unprivileged b, c, ... and privileged
subgroup a is within (ε, 1

ε ). The common choice for the epsilon is 0.8, which corresponds to the four-
fifths rule. For example, for the metric Statistical Parity (STP), a model would be ε-non-discriminatory
for privileged subgroup a if it satisfies.

∀b∈A\{a} ε < STPratio =
STPb
STPa

<
1
ε

. (1)

Evaluating fairness

The main function in the fairmodels package is fairness_check. It returns fairness_object, which
can be visualized or processed by other functions. This will be further explained in the “Structure”
section. When calling fairness_check for the first time, the following three arguments are mandatory:
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• explainer - an object that combines model and data that gives a unified interface for predictions.
It is a wrapper over a model created with the DALEX (Biecek, 2018) package.

• protected - a factor, vector containing sensitive attributes (protected group). It does not need
to be binary. Instead, each level denotes a distinct subgroup. The most common examples are
gender, race, nationality, etc.

• privileged - a character/factor denoting a level in the protected vector which is suspected to
be the most privileged one.

Example

In the following example, we are using German Credit Data dataset (Dua and Graff, 2017). In the
dataset, there is information about people like age, sex, purpose, credit amount, etc. For each person,
there is a risk assessed with taking credit, either good or bad. Therefore, it will be a target variable. We
will train the model on the whole dataset and then measure fairness metrics to facilitate the notation
(as opposed to training and testing on different subsets, which is also possible and advisable).

First, we create a model. Let’s start with logistic regression.

library("fairmodels")
data("german")

lm_model <- glm(Risk~., data = german, family = binomial(link = "logit"))

library("fairmodels")
data("german")

lm_model <- glm(Risk~., data = german, family = binomial(link = "logit"))

Then, create a wrapper that unifies the model interface.

library("DALEX")

y_numeric <- as.numeric(german$Risk) -1
explainer_lm <- DALEX::explain(lm_model, data = german[,-1], y = y_numeric)

Now we are ready to calculate and plot the fairness checks. Resulting plot is presented in Figure 2.

fobject <- fairness_check(explainer_lm,
protected = german$Sex, privileged = "male",
verbose = FALSE)

plot(fobject)

For a quick assessment, if a model passes fairness criteria, the object created with fairness_check()
might be summarized with the print() function. Total loss is the sum of all fairness metrics. See
equation (3) for more details.

print(fobject, colorize = FALSE)

#>
#> Fairness check for models: lm
#>
#> lm passes 4/5 metrics
#> Total loss : 0.6153324

In this example, fairness criteria are satisfied in all but one metric. The logistic regression model
has a lower false-positive rate (FP/(FP+TN))) in the unprivileged group than in the privileged group.
It exceeds the acceptable limit set by ε. Thus it does not satisfy the Predictive Equality ratio criteria.

More detailed visualizations are available, like Metric scores plot. It might be helpful to understand
the intuition behind the Fairness check plot presented above. See an example in Figure 3. This plot
might be a good first point for understanding the Fairness check plot. In fact, checks can be directly
derived from the Metric scores plot. To do this, we need to divide the score denoted by the dot with the
score denoted by the vertical line. This way, we obtain a value indicated by the height of the barplot.
The orientation of the barplot depends on whether the value is bigger or lower than 1. Intuitively the
longer the horizontal line in the figure below (the one connecting the dot with the vertical line) is, the
longer the bar will be in Fairness check plot. If the scores of privileged and unprivileged subgroups are
the same, then the bar will start from 1 and point to 1, so it will have a height equal to 0.
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Statistical parity ratio   (TP + FP)/(TP + FP + TN + FN)

Predictive parity ratio     TP/(TP + FP)

Predictive equality ratio   FP/(FP + TN)

Equal opportunity ratio     TP/(TP + FN)

Accuracy equality ratio    (TP + TN)/(TP + FP + TN + FN)
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Figure 2: The Fairness Check plot summarises the ratio of fairness measures between unprivileged
and privileged subgroups. The light green areas correspond to values within (ε, 1

ε ) and signify an
acceptable difference in fairness metrics. They are bounded by red rectangles indicating values that
do not meet the 4/5 rule. Fairness metrics names are given along the formulas used to calculate
the score in some subgroups to facilitate interpretation. For example, the ratio here means that after
metric scores were calculated, the values for unprivileged groups (female) were divided by values
for the privileged subgroup (male). In this example, except for the predictive equality ratio, the other
measures are ε-non-discriminatory.
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Figure 3: The Metric Scores plot summarises raw fairness metrics scores for subgroups. The dots stand
for unprivileged subgroups (female) while vertical lines stans for the privileged subgroup (male).
The horizontal lines act as a visual aid for measuring the difference between the scores of the metrics
between the privileged and unprivileged subgroups.
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Figure 4: The Fairness Check plot for multiple models. It helps to compare models based on five
selected fairness measures.

plot(metric_scores(fobject))

It is rare that a model perfectly meets all the fairness criteria. Therefore, a handy feature is the
ability to compare several models on the same scale. We add two more explainers to the fairness
assessment in the example below. Now fairness_object (in code: fobject) wraps three models
together with different labels and cutoffs for subgroups. The fairness_object can be later used
as a basis for another fairness_object. In detail, while running fairness_check() for the first
time, explainer/explainers have to be provided along with three arguments described at the start of
this section. However, as shown below, when providing explainers with a fairness_object, those
arguments are not necessary as they are already a part of the previously created fairness_object.

First, let us create two more models based on the German Credit Data. The first will be a logistic
regression model that uses fewer columns and has access to the Sex feature. The second is random
forest from ranger (Wright and Ziegler, 2017). It will be trained on the whole dataset.

discriminative_lm_model <- glm(Risk~.,
data = german[c("Risk", "Sex","Age",

"Checking.account", "Credit.amount")],
family = binomial(link = "logit"))

library("ranger")
rf_model <- ranger::ranger(Risk ~.,

data = german, probability = TRUE,
max.depth = 4, seed = 123)

These models differ in the way how the predict function works. To unify operations on these
models, we need to create DALEX explainer objects. The label argument specifies how these models
are named on plots.

explainer_dlm <- DALEX::explain(discriminative_lm_model,
data = german[c("Sex", "Age", "Checking.account", "Credit.amount")],
y = y_numeric,
label = "discriminative_lm")

explainer_rf <- DALEX::explain(rf_model,
data = german[,-1], y = y_numeric)

Now we are ready to assess fairness. The resulting plot is presented in Figure 4.

fobject <- fairness_check(explainer_rf, explainer_dlm, fobject)
plot(fobject)

When plotted, new bars appear on the fairness check plot. Those are new metric scores for added
models. This information can be summarized in a numerical way with the print() function.
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print(fobject, colorize = FALSE)

#>
#> Fairness check for models: ranger, discriminative_lm, lm
#>
#> ranger passes 5/5 metrics
#> Total loss : 0.1699186
#>
#> discriminative_lm passes 3/5 metrics
#> Total loss : 0.7294678
#>
#> lm passes 4/5 metrics
#> Total loss : 0.6153324

3 Package architecture

The fairmodels package provides a unified interface for predictive models independently of their
internal structure. Using a model agnostic approach with DALEX explainers facilitates this process
(Biecek, 2018). There is a unified way for each explainer to check if explained model lives up to user
fairness standards. Checking fairness with fairmodels is straightforward and can be done with the
three-step pipeline.

classification model |> explain() |> fairness_check()

The output of such a pipeline is an object of class fairness_object, a unified structure to wrap
model explainer or multiple model explainers and other fairness_objects in a single container.
Aggregation of fairness measures is done based on groups defined by model labels. This is why
model explainers (even those wrapped by fairness_objects) must have different labels. Moreover,
some visualizations for model comparison assume that all models are created from the same data. Of
course, each model can use different variables or different feature transformations, but the order and
number of rows shall stay the same. To facilitate aggregation of models fairmodels allows creating
fairness_objects in other ways:

• explainers |> fairness_check() - possibly many explainers can be passed to fairness_check(),
• fairness_objects |> fairness_check() - explainers stored in fairness_objects passed to

fairness_check() will be aggregated into one fairness_object,
• explainer & fairness_objects |> fairness_check() - explainers passed directly and explain-

ers from fairness_objects will be aggregated into one fairness_object.

When using the last two pipelines, protected vectors and privileged parameters are assumed to be
the same, so passing them to fairness_check() is unnecessary.

To create a fairness_object, at least one explainer needs to be passed to fairness_check()
function, which returns the said object. fairness_object metrics for each subgroup are calculated
from the separate confusion matrices.

The fairness_object has numerous fields. Some of them are:

• parity_loss_metric_data - data.frame containing parity loss for each metric and classifier,
• groups_data - list of metric scores for each metric and model,
• group_confusion_matrices - list of values in confusion matrices for each model and metric,
• explainers - list of DALEX explainers. When explainers and/or fairness_object are added,

then explainers and/or explainers extracted from fairness_object are added to that list,
• label - character vector of labels for each explainer.
• ... - other fields.

The fairness_object methods are used to create numerous objects that help to visualize bias. In
the next sections, we list more detailed functions for deeper exploration of bias. Detailed relations
between objects created with fairmodels are depicted in Figure 5. The general overview of the
workflow is presented in Figure 6.

4 Visualizing bias

In fairmodels there are 12 metrics based on confusion matrices for each subgroup, see the following
table for the complete list. Some of them were already introduced before.
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Figure 5: Class diagram for objects created by functions from the fairmodels package. Each rectangle
corresponds to one class, the name of this class is in the header of the rectangle. Each of these classes
is a list containing a certain list of objects. The top slot lists the names and types of each object the list.
The bottom slot contains a list of functions that can be performed on objects of the specified class. If
two classes are connected by a line ending in a diamond it means that one class contains objects of the
other class. If two rectangles are connected by a dashed line, it means that on the basis of one object, an
object of another class can be produced. In this case, more detailed fairness statistics can be produced
from the central object of the fairness check class. See the full resolution at https://bit.ly/3HNbNvo

Figure 6: Flowchart for the fairness assessment with the fairmodels package. The arrows describe
typical sequences of actions when exploring the fairness of the models. For ease of use, the names of
the functions that can be used in a given step are indicated. Note that this procedure is intended to
look at the model from multiple perspectives in order to track down potential problems in the model.
Merely satisfying the fairness criteria does not automatically mean that the model is free of any errors
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Metric Formula Name Fairness criteria
TPR TP

TP+FN True positive rate Equal opportunity
(Hardt et al., 2016)

TNR TN
TN+FP True negative rate

PPV TP
TP+FP Positive predictive value Predictive parity

(Chouldechova, 2016)
NPV TN

TN+FN Negative predictive value
FNR FN

FN+TP False negative rate
FPR FP

FP+TN False positive rate Predictive equality
(Corbett-Davies et al., 2017)

FDR FP
FP+TP False discovery rate

FOR FN
FN+TN False omission rate

TS TP
TP+FN+FP Threat score

STP TP+FP
TP+FP+TN+FN Positive rate Statistical parity

(Dwork et al., 2012)
ACC TP+TN

TP+TN+FP+FN Accuracy Overall accuracy equality
(Berk et al., 2017)

F1 2·PPV∗TPR
PPV+TPR F1 score

Table 1: Fairness metrics implemented in the fairmodels package

Not all metrics are needed to determine if the discrimination exists, but they are helpful to acquire
a fuller picture. To facilitate the visualization over many subgroups, we introduce a function that
maps metric scores among subgroups to a single value. This function, which we call parity_loss, has
an attractive property. Due to the usage of the absolute value of the natural logarithm, it will return
the same value whether the ratio is inverted or not.

So, for example, when we would like to know the parity loss of Statistical Parity between unprivi-
leged (b) and privileged (a) subgroups, we mean value like this:

STPparity loss =
∣∣∣ ln

(STPb
STPa

)∣∣∣. (2)

This notation is very helpful because it allows to accumulate STPparity loss overall unprivileged
subgroups, so not only in the binary case.

STPparity loss = ∑
i∈{a,b,...}

∣∣∣ ln
( STPi

STPa

)∣∣∣. (3)

The parity_loss relates strictly to ratios. The classifier is more fair if parity_loss is low. This
property is helpful in visualizations.

There are several modifying functions that operate on fairness_object. Their usage will return
other objects. The relations between them is depicted on the class diagram (Figure 5). The objects
can then be plotted with a generic plot() function. Additionally, a special plotting function works
immediately on fairness_object, which is plot_density. The user can directly specify which metrics
shall be visible in the plot in some functions. The detailed technical introduction for all these functions
is presented in fairmodels manual.
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Plots visualizing different aspects of parity_loss can be created with one of the following
pipelines:

• fairness_object |> modifying_function(...) |> plot()
This pipe is preferred and allows setting parameters in both modifying functions and certain
plot functions, which is not the case with the next pipeline.

• fairness_object |> plot_fairmodels(type = modifying_function, ...)
Additional parameters are passed to the modifying functions and not to the plot function.

Using the pipelines, different plots can be obtained by superseding the modifying_function with
function names. Four examples of additional graphical functions available in the fairmodels can be
seen in Figure 7. This package implements a total of 8 different diagnostic plots, each describing a
different fairness perspective. To see different aspects of fairness and bias, the user can choose the
model with the smallest bias, find out the similarity between metrics and models, compare models in
both fairness and performance, and see how cutoff manipulation might change the parity_loss. Find
more information about each of them in the documentation.

fp1 <- plot(ceteris_paribus_cutoff(fobject, "male", cumulated=TRUE))
fp2 <- plot(fairness_heatmap(fobject))
fp3 <- plot(stack_metrics(fobject))
fp4 <- plot(plot_density(fobject))

library("patchwork")
fp1 + fp2 + fp3 + fp4 +
plot_layout(ncol = 2)

5 Bias mitigation

What can be done if the model does not meet the fairness criteria? Machine learning practitioners
might use other algorithms or variables to construct unbiased models, but this does not guarantee
passing the fairness_check(). An alternative is to use bias mitigation techniques that adjust the data
or model to meet fairness conditions. There are essentially three types of such methods. The first is
data pre-processing. There are many ways to “correct” the data when there are unwanted correlations
between variables or sample sizes among subgroups in data. The second one is in-processing, which
is, for example, optimizing classifiers not only to reduce classification error but also to minimize a
fairness metric. Last but not least is post-processing which modifies model output so that predictions
and miss-predictions among subgroups are more alike.

The fairmodels package offers five functions for bias mitigation, three for pre-processing, and
two for post-processing. Most of these approaches are also implemented in aif360 (Bellamy et al.,
2018). However, in fairmodels there are separate implementations of them in R. There are a lot of
useful mitigation techniques that are not in fairmodels like those in Hardt et al. (2016) and numerous
in-processing algorithms.

Data pre-processing

• Disparate impact remover
In fairmodels geometric repair, an algorithm originally introduced by Feldman et al. (2015),
works on ordinal, numeric features. Depending on the λ ∈ [0, 1] parameter, this method will
transform the distribution of a given feature. The idea is simple. Given feature distribution
in different subgroups, the algorithm finds optimal distribution (according to earth mover’s
distance) and transforms distribution for each subgroup to match the optimal one. For example,
if age is an important feature and its distribution is different in two subgroups, and we want
to change that, then the geometric repair will map each individual’s age to a new distribution
(different age). It will be preserving the order - the ranks (in our case, seniority) of observations
are preserved. Parameter λ is responsible for the repair degree, so for full repair, lambda should
be set to 1. The method does not focus on a particular metric but rather tries to level out them
by transforming potentially harmful feature distributions.

• Reweighting
Reweighting is a rather straightforward approach. This method was implemented according
to Kamiran and Calders (2011). It computes weights by dividing the theoretical probability of
assigning favorable labels for a subgroup by real (observed) probability (based on the data).
Theoretic probability for a subgroup is computed by multiplying the probability of assigning a
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Figure 7: Four examples of additional graphical functions are available in the fairmodels package that
facilitates model and bias exploration. The Ceteris Paribus Cuttoff plot helps select the cutoff values
for each model to maximize a particular measure of fairness. In this case, the suggested cutoff point
for both linear models is similar. However, the ranger model does not have calibrated probabilities
and thus requires a different cutoff. The Heatmap plot is very helpful when comparing large numbers
of models. It shows profiles of selected fairness measures for each of the models under consideration.
In this case, the fairness profiles for both linear models are similar. The Stacked Metric plot helps you
compare models by summing five different fairness measures. The different layers of this plot allow
you to compare individual measures, but if you don’t know which one to focus on, it is useful to look
at the sum of the measures. In this case, the ranger model has the highest fairness values. Finally,
the Density plot helps to compare the score distributions of the models between the advantaged and
disadvantaged groups. In this case, we find that for females the distributions of the scores are lower in
all models, with the largest difference for the lm model.
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favorable label (for all populations) by picking observation from a certain subgroup. It focuses
on mitigating statistical parity.

• Resampling
Resampling is based on weights calculated in reweighting. Each weight for a subgroup is
multiplied by the size of the subgroup. Then, whether the subgroup is deprived or not (if
weight is higher than one, the subgroup is considered deprived), observations are duplicated
from either one that were assigned a favorable label or not. There are two types of resampling-
uniform and preferential. The uniform is making algorithm pick or omit observations randomly
without considering its probabilistic score. Preferential uses another probabilistic classifier,
potentially different from the main model for final predictions. In Kamiran and Calders (2011) it
is called ranker - it predicts the probabilities for the observations to decide which observations
are close to the cutoff border (usually 0.5). Based on the probabilistic output of the ranker,
the observations are sorted, and the ones with the highest/lowest ranks are either left out
or duplicated depending on the case—more on that on Kamiran and Calders (2011). The
fairmodels implementation, instead of training the ranker as in the aforementioned paper, uses
a vector of previously calculated probabilities provided by the user. With this, it shifts the
decision and responsibility of choosing a ranker to the user. It focuses on mitigating statistical
parity.

Model post-processing

• Reject Option based Classification Pivot
The roc_pivot method is implemented based on Kamiran et al. (2012) in the fairmodels package.
Let θ ∈ (0, 1) be the value that determines the radius of the so-called critical region, which is
an area around the cutoff. The user specifies the θ, and it should describe how big the critical
region should be. For example if θ = 0.1 and cutoff is 0.6, then the critical region will be (0.5,
0.7). Let’s assume that we are predicting a favorable outcome. If the assigned probability of
observation is in the described region, then the probabilities are pivoting on the other side of
the cutoff with a certain assumption. If an observation in a critical region is considered to be the
privileged and it is on the right side of the cutoff, then its probabilities are pivoting from the
right side of the cutoff to the left. So if an observation is in the critical region and it is considered
unprivileged, then if it is on the left side of the cutoff, it will pivot to the right side. Pivoting
here means changing the side of the cutoff so that the distance from the cutoff stays unchanged.
It does not intend to mitigate a single metric but rather changes predictions in the critical region
(the region with low certainty). By pivoting the predictions, it might lower more metrics.

• Cutoff manipulation
The fairmodels package supports setting cutoff for each subgroup. Users may pick parity_loss
metrics of their choice and find the minimal parity_loss. It is part of ceteris_paribus_cutoff()
function. Based on picked metrics, the sum of parity loss is calculated for each cutoff of the
chosen subgroup. Then the minimal value is found—this way, optimal values might be found
for metrics of interest. The minimum is marked with a dashed vertical line (see Figure 7). This
approach however might be to some extent concerning. Some might argue that setting different
cutoffs for different subgroups is unfair and is punishing privileged subgroups for something
they have no control of. Especially in the individual fairness field, it would be concerning if
two similar people with different sensitive attributes would have two different thresholds and
potentially two different outcomes. This is a valid point, and this method should be used with
knowledge of all its drawbacks. The cutoff manipulation method targets metrics chosen by the
user.

All pre-processing methods can be used with two pipelines, whereas post-processing can be used
in one specific way.

• Pre-processing pipelines

– data/explainer |> method
Returns either weights, indexes, or changed data depending on the method used.

– data/explainer |> pre_process_data(data, protected, y, type = ...)
Always returns data.frame. In case of weights data has additional column called _weights_.

• Post-processing pipelines

– fairness_object |> ceteris_paribus_cutoff(subgroup, ...) |> print/plot
This is the pipeline for creating ceteris paribus cutoff print and plot.

– explainer |> roc_pivot(protected, privileged, ...)
The pipeline will return explainer with y_hat field changed.
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Statistical parity ratio   (TP + FP)/(TP + FP + TN + FN)

Predictive parity ratio     TP/(TP + FP)

Predictive equality ratio   FP/(FP + TN)

Equal opportunity ratio     TP/(TP + FN)

Accuracy equality ratio    (TP + TN)/(TP + FP + TN + FN)
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Figure 8: Graphical summary of a base model (blue bars) and model after applying two bias mitigation
techniques (red and green bars). By comparing adjacent rectangles one can read how the respective
technique affected the corresponding fairness measure

The user should be aware that debiasing one metric might enhance bias in another. It is a so-called
fairness-fairness trade-off. There is also a fairness-performance trade-off where debiasing one metric
leads to worse performance. Another thing to remember is, as found in Agrawal et al. (2020), metrics
might not generalize well to out-of-distribution examples, so it is advised also to check the fairness
metrics on a separate test set.

Example

Now we will show an example usage of one pre-processing and one post-processing method. As
before, the German Credit Data will be used along with the previously created lm_model. So firstly,
we create a new dataset using pre_process_data and then we use it to train the logistic regression
classifier.

resampled_german <- german |> pre_process_data(protected = german$Sex,
y_numeric, type = 'resample_uniform')

lm_model_resample <- glm(Risk~.,
data = resampled_german,
family = binomial(link = "logit"))

explainer_lm_resample <- DALEX::explain(lm_model_resample,
data = german[,-1], y = y_numeric, verbose = FALSE)

Then we make other explainers. We use previously created explainer_lm with the post-processing
function roc_pivot. We set parameter theta = 0.05 for a rather narrow area of a pivot.

new_explainer <- explainer_lm |> roc_pivot(protected = german$Sex,
privileged = "male", theta = 0.05)

In the end, we create fairness_object with explainers obtained with the code above and one
created in the first example to see the difference.

fobject <- fairness_check(explainer_lm_resample, new_explainer, explainer_lm,
protected = german$Sex, privileged = "male",
label = c("resample", "roc", "base"),
verbose = FALSE)

fobject |> plot()
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The result of the code above is presented in Figure 8. The mitigation methods successfully
eliminated bias in all of the metrics. Both models are better than the original base. This is not always
the case - sometimes, eliminating bias in one metric may increase bias in another metric. For example,
let’s consider a perfectly accurate model, but some subgroups receive few positive predictions (bias in
Statistical parity). In that case, mitigating the bias in Statistical parity would decrease the Accuracy
equality ratio.

6 Summary and future work

This paper showed that checking for bias in machine learning models can be done conveniently
and flexibly. The package fairmodels described above is a self-sufficient tool for bias detection,
visualization, and mitigation in classification machine learning models. We presented theory, package
architecture, suggested usage, and examples along with plots. Along the way, we introduced the core
concepts and assumptions that come along the bias detection and plot interpretation. The package is
still improved and enhanced, which can be seen by adding the announced regression module based
on Steinberg et al. (2020). We did not cover it in this article because it is still an experimental tool.
Another tool for in-processing classification closely related to fairmodels has also been added and can
be found on https://github.com/ModelOriented/FairPAN.

The source code of the package, vignettes, examples, and documentation can be found at https:
//modeloriented.github.io/fairmodels/. The stable version is available on CRAN. The code and
the development version can be found on GitHub https://github.com/ModelOriented/fairmodels.
This is also a place to report bugs or requests (through GitHub issues).

In the future, we plan to enhance the spectrum of bias visualization plots and introduce regression
and individual fairness methods. The potential way to explore would be an in-processing bias
mitigation - training models that minimize cost function and adhere to certain fairness criteria. This
field is heavily developed in Python and lacks appropriate attention in R.
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Palmer Archipelago Penguins Data in the
palmerpenguins R Package - An
Alternative to Anderson’s Irises
by Allison M. Horst, Alison Presmanes Hill, and Kristen B. Gorman

Abstract In 1935, Edgar Anderson collected size measurements for 150 flowers from three species of
Iris on the Gaspé Peninsula in Quebec, Canada. Since then, Anderson’s Iris observations have become
a classic dataset in statistics, machine learning, and data science teaching materials. It is included
in the base R datasets package as iris, making it easy for users to access without knowing much
about it. However, the lack of data documentation, presence of non-intuitive variables (e.g. “sepal
width”), and perfectly balanced groups with zero missing values make iris an inadequate and stale
dataset for teaching and learning modern data science skills. Users would benefit from working with
a more representative, real-world environmental dataset with a clear link to current scientific research.
Importantly, Anderson’s Iris data appeared in a 1936 publication by R. A. Fisher in the Annals of
Eugenics (which is often the first-listed citation for the dataset), inextricably linking iris to eugenics
research. Thus, a modern alternative to iris is needed. In this paper, we introduce the palmerpenguins
R package (Horst et al., 2020), which includes body size measurements collected from 2007 - 2009
for three species of Pygoscelis penguins that breed on islands throughout the Palmer Archipelago,
Antarctica. The penguins dataset in palmerpenguins provides an approachable, charismatic, and
near drop-in replacement for iris with topical relevance for polar climate change and environmental
impacts on marine predators. Since the release on CRAN in July 2020, the palmerpenguins package
has been downloaded over 462,000 times, highlighting the demand and widespread adoption of this
viable iris alternative. We directly compare the iris and penguins datasets for selected analyses
to demonstrate that R users, in particular teachers and learners currently using iris, can switch to
the Palmer Archipelago penguins for many use cases including data wrangling, visualization, linear
modeling, multivariate analysis (e.g., PCA), cluster analysis and classification (e.g., by k-means).

Introduction

In 1935, American botanist Edgar Anderson measured petal and sepal structural dimensions (length
and width) for 50 flowers from three Iris species: Iris setosa, Iris versicolor, and Iris virginica (Anderson,
1935). The manageable but non-trivial size (5 variables and 150 total observations) and characteristics
of Anderson’s Iris dataset, including linear relationships and multivariate normality, have made it
amenable for introducing a wide range of statistical methods including data wrangling, visualization,
linear modeling, multivariate analyses, and machine learning. The Iris dataset is built into a number
of software packages including the auto-installed datasets package in R (as iris, R Core Team, 2021),
Python’s scikit-learn machine learning library (Pedregosa et al., 2011), and the SAS Sashelp library
(SAS Institute, Cary NC), which has facilitated its widespread use. As a result, eighty-six years after the
data were initially published, the Iris dataset remains ubiquitous in statistics, computational methods,
software documentation, and data science courses and materials.

There are a number of reasons that modern data science practitioners and educators may want
to move on from iris. First, the dataset lacks metadata (Anderson, 1935), which does not reinforce
best practices and limits meaningful interpretation and discussion of research methods, analyses,
and outcomes. Of the five variables in iris, two (Sepal.Width and Sepal.Length) are not intuitive
for most non-botanists. Even with explanation, the difference between petal and sepal dimensions
is not obvious. Second, iris contains equal sample sizes for each of the three species (n = 50) with
no missing values, which is cleaner than most real-world data that learners are likely to encounter.
Third, the single factor (Species) in iris limits options for analyses. Finally, due to its publication
in the Annals of Eugenics by statistician R.A. Fisher (Fisher, 1936), iris is burdened by a history in
eugenics research, which we are committed to addressing through the development of new data
science education products as described below.

Given the growing need for fresh data science-ready datasets, we sought to identify an alternative
dataset that could be made easily accessible for a broad audience. After evaluating the positive and
negative features of iris in data science and statistics materials, we established the following criteria
for a suitable alternative:

• Available by appropriate license like a Creative Commons 0 license (CC0 “no rights reserved”)
• Feature intuitive subjects and variables that are interesting and understandable to learners

across disciplines
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• Complete metadata and documentation
• Manageable (but not trivial) in size
• Minimal data cleaning and pre-processing required for most analyses
• Real-world (not manufactured) modern data
• Provides similar opportunities for teaching and learning R, data science, and statistical skills
• Can easily replace iris for most use cases

Here, we describe an alternative to iris that largely satisfies these criteria: a refreshing, ap-
proachable, and charismatic dataset containing real-world body size measurements for three Pygoscelis
penguin species that breed throughout the Western Antarctic Peninsula region, made available through
the United States Long-Term Ecological Research (US LTER) Network. By comparing data structure,
size, and a range of analyses side-by-side for the two datasets, we demonstrate that the Palmer
Archipelago penguin data are an ideal substitute for iris for many use cases in statistics and data
science education.

Data source

Body size measurements (bill length and depth, flipper length - flippers are the modified “wings”
of penguins used for maneuvering in water, and body mass), clutch (i.e., egg laying) observations
(e.g., date of first egg laid, and clutch completion), and carbon (13C/12C, δ13C) and nitrogen (15N/14N,
δ15N) stable isotope values of red blood cells for adult male and female Adélie (P. adeliae), chinstrap (P.
antarcticus), and gentoo (P. papua) penguins on three islands (Biscoe, Dream, and Torgersen) within
the Palmer Archipelago were collected from 2007 - 2009 by Dr. Kristen Gorman in collaboration with
the Palmer Station LTER, part of the US LTER Network. For complete data collection methods and
published analyses, see Gorman et al. (2014). Throughout this paper, penguins species are referred to
as “Adélie”, “Chinstrap”, and “Gentoo”.

The data in the palmerpenguins R package are available for use by CC0 license (“No Rights
Reserved”) in accordance with the Palmer Station LTER Data Policy and the LTER Data Access Policy,
and were imported from the Environmental Data Initiative (EDI) Data Portal at the links below:

• Adélie penguin data (Palmer Station Antarctica LTER and Gorman, 2020a): KNB-LTER Data
Package 219.5

• Gentoo penguin data (Palmer Station Antarctica LTER and Gorman, 2020b): KNB-LTER Data
Package 220.5

• Chinstrap penguin data (Palmer Station Antarctica LTER and Gorman, 2020c): KNB-LTER Data
Package 221.6

The palmerpenguins R package

R users can install the palmerpenguins package from CRAN:

install.packages("palmerpenguins")

Information, examples, and links to community-contributed materials are available on the palmer-
penguins package website: allisonhorst.github.io/palmerpenguins/. See the Appendix for how
Python and Julia users can access the same data.

The palmerpenguins R package contains two data objects: penguins_raw and penguins. The
penguins_raw data consists of all raw data for 17 variables, recorded completely or in part for 344 indi-
vidual penguins, accessed directly from EDI (penguins_raw properties are summarized in Appendix
B). We generally recommend using the curated data in penguins, which is a subset of penguins_raw
retaining all 344 observations, minimally updated (Appendix A) and reduced to the following eight
variables:

• species: a factor denoting the penguin species (Adélie, Chinstrap, or Gentoo)
• island: a factor denoting the Palmer Archipelago island in Antarctica where each penguin was

observed (Biscoe Point, Dream Island, or Torgersen Island)
• bill_length_mm: a number denoting length of the dorsal ridge of a penguin bill (millimeters)
• bill_depth_mm: a number denoting the depth of a penguin bill (millimeters)
• flipper_length_mm: an integer denoting the length of a penguin flipper (millimeters)
• body_mass_g: an integer denoting the weight of a penguin’s body (grams)
• sex: a factor denoting the sex of a penguin sex (male, female) based on molecular data
• year: an integer denoting the year of study (2007, 2008, or 2009)
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Table 1: Overview comparison of penguins and iris dataset features and characteristics.

Feature iris penguins

Year(s) collected 1935 2007 - 2009
Dimensions (col x row) 5 x 150 8 x 344
Documentation minimal complete metadata
Variable classes double (4), factor (1) double (2), int (3), factor (3)
Missing values? no (n = 0; 0.0%) yes (n = 19; 0.7%)

Table 2: Grouped sample size for iris (by species; n = 150 total) and penguins (by species and sex; n =
344 total). Data in penguins can be further grouped by island and study year.

iris sample size (by species) penguins sample size (by species and sex)

Iris species Sample size Penguin species Female Male NA

setosa 50 Adélie 73 73 6
versicolor 50 Chinstrap 34 34 0
virginica 50 Gentoo 58 61 5

The same data exist as comma-separated value (CSV) files in the package (“penguins_raw.csv” and
“penguins.csv”), and can be read in using the built-in path_to_file() function in palmerpenguins.
For example,

library(palmerpenguins)
df <- read.csv(path_to_file("penguins.csv"))

will read in “penguins.csv” as if from an external file, thus automatically parsing species, island,
and sex variables as characters instead of factors. This option allows users opportunities to practice or
demonstrate reading in data from a CSV, then updating variable class (e.g., characters to factors).

Comparing iris and penguins

The penguins data in palmerpenguins is useful and approachable for data science and statistics
education, and is uniquely well-suited to replace the iris dataset. Comparisons presented are selected
examples for common iris uses, and are not exhaustive.

Data structure and sample size

Both iris and penguins are in tidy format (Wickham, 2014) with each column denoting a single
variable and each row containing measurements for a single iris flower or penguin, respectively. The
two datasets are comparable in size: dimensions (columns × rows) are 5 × 150 and 8 × 344 for iris
and penguins, respectively, and sample sizes within species are similar (Tables ?? & ??).

Notably, while sample sizes in iris across species are all the same, sample sizes in penguins differ
across the three species. The inclusion of three factor variables in penguins (species, island, and sex),
along with year, create additional opportunities for grouping, faceting, and analysis compared to the
single factor (Species) in iris.

Unlike iris, which contains only complete cases, the penguins dataset contains a small number of
missing values (nmissing = 19, out of 2,752 total values). Missing values and unequal sample sizes are
common in real-world data, and create added learning opportunity to the penguins dataset.

Continuous quantitative variables

Distributions, relationships between variables, and clustering can be visually explored between species
for the four structural size measurements in penguins (flipper length, body mass, bill length and depth;
Figure 1) and iris (sepal width and length, petal width and length; Figure 2).

Both penguins and iris offer numerous opportunities to explore linear relationships and correla-
tions, within and across species (Figures 1 & 2). A bivariate scatterplot made with the iris dataset
reveals a clear linear relationship between petal length and petal width. Using penguins (Figure 3), we
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Figure 1: Distributions and correlations for numeric variables in the penguins data (flipper length
(mm), body mass (g), bill length (mm) and bill depth (mm)) for the three observed species: Gentoo
(green, triangles); Chinstrap (blue, circles); and Adélie (orange, squares). Significance indicated for
bivariate correlations: *p < 0.05; **p < 0.01; ***p < 0.001.

Figure 2: Distributions and correlations for numeric variables in iris (petal length (cm), petal width
(cm), sepal length (cm) and sepal width (cm)) for the three included iris species: Iris setosa (light gray,
circles); Iris versicolor (dark gray, triangles); and Iris virginica (black, squares). Significance indicated for
bivariate correlations: *p < 0.05; **p < 0.01; ***p < 0.001.
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can create a uniquely similar scatterplot with flipper length and body mass. The overall trend across
all three species is approximately linear for both iris and penguins. Teachers may encourage students
to explore how simple linear regression results and predictions differ when the species variable is
omitted, compared to, for example, multiple linear regression with species included (Figure 3).

Figure 3: Representative linear relationships for (A): penguin flipper length (mm) and body mass (g)
for Adélie (orange circles), Chinstrap (blue triangles), and Gentoo (green squares) penguins; (B): iris
petal length (cm) and width (cm) for Iris setosa (light gray circles), Iris versicolor (dark gray triangles)
and Iris virginica (black squares). Within-species linear model is visualized for each penguin or iris
species.

Notably, distinctions between species are clearer for iris petals - particularly, the much smaller
petals for Iris setosa - compared to penguins, in which Adélie and Chinstrap penguins are largely
overlapping in body size (body mass and flipper length), and are both generally smaller than Gentoo
penguins.

Simpson’s Paradox is a data phenomenon in which a trend observed between variables is reversed
when data are pooled, omitting a meaningful variable. While often taught and discussed in statistics
courses, finding a real-world and approachable example of Simpson’s Paradox can be a challenge.
Here, we show one (of several possible - see Figure 1) Simpson’s Paradox example in penguins:
exploring bill dimensions with and without species included (Figure 4). When penguin species is
omitted (Figure 4A), bill length and depth appear negatively correlated overall. The trend is reversed
when species is included, revealing an obviously positive correlation between bill length and bill
depth within species (Figure 4B).

Principal component analysis

Principal component analysis (PCA) is a dimensional reduction method commonly used to explore
patterns in multivariate data. The iris dataset frequently appears in PCA tutorials due to multivariate
normality and clear interpretation of variable loadings and clustering.

A comparison of PCA with the four variables of structural size measurements in penguins and iris
(both normalized prior to PCA) reveals highly similar results (Figure 5). For both datasets, one species
is distinct (Gentoo penguins, and setosa irises) while the other two species (Chinstrap/Adélie and
versicolor/virginica) appear somewhat overlapping in the first two principal components (Figure 5 A,B).
Screeplots reveal that the variance explained by each principal component (PC) is very similar across
the two datasets, particularly for PC1 and PC2: for penguins, 88.15% of total variance is captured by
the first two PCs, compared to 95.81% for iris, with a similarly large percentage of variance captured
by PC1 and PC2 in each (Figure 5 C,D).
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Figure 4: Trends for penguin bill dimensions (bill length and bill depth, millimeters) if the species
variable is excluded (A) or included (B), illustrating Simpson’s Paradox. Note: linear regression for
bill dimensions without including species in (A) is ill-advised; the linear trendline is only included to
visualize trend reversal for Simpson’s Paradox when compared to (B).

Table 3: K-means cluster assignments by species based on penguin bill length (mm) and depth (mm),
and iris petal length (cm) and width (cm).

Penguins cluster assignments Iris cluster assignments

Cluster Adélie Chinstrap Gentoo Cluster setosa versicolor virginica

1 0 9 116 1 0 2 46
2 4 54 6 2 0 48 4
3 147 5 1 3 50 0 0

K-means clustering

Unsupervised clustering by k-means is a common and popular entryway to machine learning and
classification, and again, the iris dataset is frequently used in introductory examples. The penguins
data provides similar opportunities for introducing k-means clustering. For simplicity, we compare
k-means clustering using only two variables for each dataset: for iris, petal width and petal length,
and for penguins, bill length and bill depth. All variables are scaled prior to k-means. Three clusters
(k = 3) are specified for each, since there are three species of irises (Iris setosa, Iris versicolor, and Iris
virginica) and penguins (Adélie, Chinstrap and Gentoo).

K-means clustering with penguin bill dimensions and iris petal dimensions yields largely distinct
clusters, each dominated by one species (Figure 6). For iris petal dimensions, k-means yields a perfectly
separated cluster (Cluster 3) containing all 50 Iris setosa observations and zero misclassified Iris virginica
or Iris versicolor (Table 3). While clustering is not perfectly distinct for any penguin species, each species
is largely contained within a single cluster, with little overlap from the other two species. For example,
considering Adélie penguins (orange observations in Figure 6A): 147 (out of 151) Adélie penguins are
assigned to Cluster 3, zero are assigned to Cluster 1, and 4 are assigned to the Chinstrap-dominated
Cluster 2 (Table 3). Only 5 (of 68) Chinstrap penguins and 1 (of 123) Gentoo penguins are assigned to
the Adélie-dominated Cluster 3 (Table 3).
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Figure 5: Principal component analysis biplots and screeplots for structural size measurements in
penguins (A,C) and iris (B,D), revealing similarities in multivariate patterns, variable loadings, and
variance explained by each component. For penguins, variables are flipper length (mm), body mass
(g), bill length (mm) and bill depth (mm); groups are visualized by species (Adélie = orange circles,
Chinstrap = blue triangles, Gentoo = green squares). For iris, variables are petal length (cm), petal
width (cm), sepal length (cm) and sepal width (cm); groups are visualized by species (Iris setosa = light
gray circles, Iris versicolor = dark gray triangles, Iris virginica = black squares). Values above screeplot
columns (C,D) indicate percent of total variance explained by each of the four principal components.
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Figure 6: K-means clustering outcomes for penguin bill dimensions (A) and iris petal dimensions
(B). Numbers indicate the cluster to which an observation was assigned, revealing a high degree of
separation between species for both penguins and iris.

Conclusion

Here, we have shown that structural size measurements for Palmer Archipelago Pygoscelis penguins,
available as penguins in the palmerpenguins R package, offer a near drop-in replacement for iris in
a number of common use cases for data science and statistics education including exploratory data
visualization, linear correlation and regression, PCA, and clustering by k-means. In addition, teaching
and learning opportunities in penguins are increased due to a greater number of variables, missing
values, unequal sample sizes, and Simpson’s Paradox examples. Importantly, the penguins dataset
encompasses real-world information derived from several charismatic marine predator species with
regional breeding populations notably responding to environmental change occurring throughout
the Western Antarctic Peninsula region of the Southern Ocean (see Bestelmeyer et al. (2011), Gorman
et al. (2014), Gorman et al. (2017), Gorman et al. (2021)). Thus, the penguins dataset can facilitate
discussions more broadly on biodiversity responses to global change - a contemporary and critical
topic in ecology, evolution, and the environmental sciences.

Penguins data processing

Data in the penguins object have been minimally updated from penguins_raw as follows:

• All variable names are converted to lower snake case (e.g. from Flipper Length (mm) to
flipper_length_mm)

• Entries in species are truncated to only include the common name (e.g. “Gentoo”, instead of
“gentoo penguin (Pygoscelis papua)”)

• Recorded sex for penguin N36A1, originally recorded as “.”, is updated to NA
• culmen_length_mm and culmen_depth_mm variable names are updated to bill_length_mm and

bill_depth_mm, respectively
• Class for categorical variables (species, island, sex) is updated to factor
• Variable year was pulled from clutch observations

Summary of the penguins_raw dataset

Feature penguins_raw

Year(s) collected 2007 - 2009
Dimensions (col x row) 17 x 344
Documentation complete metadata
Variable classes character (9), Date (1), numeric (7)
Missing values? yes (n = 336; 5.7%)
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palmerpenguins for other programming languages

Python: Python users can load the palmerpenguins datasets into their Python environment using the
following code to install and access data in the palmerpenguins Python package:

pip install palmerpenguins
from palmerpenguins import load_penguins
penguins = load_penguins()

Julia: Julia users can access the penguins data in the PalmerPenguins.jl package. Example code to
import the penguins data through PalmerPenguins.jl (more information on PalmerPenguins.jl from
David Widmann can be found here):

julia> using PalmerPenguins
julia> table = PalmerPenguins.load()

TensorFlow: TensorFlow users can access the penguins data in TensorFlow Datasets. Information
and examples for penguins data in TensorFlow can be found here.
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Advancing Reproducible Research by
Publishing R Markdown Notebooks as
Interactive Sandboxes Using the learnr
Package
by Chak Hau Michael Tso, Michael Hollaway, Rebecca Killick, Peter Henrys, Don Monteith, John
Watkins, and Gordon Blair

Abstract Various R packages and best practices have played a pivotal role to promote the Findability,
Accessibility, Interoperability, and Reuse (FAIR) principles of open science. For example, (1) well-
documented R scripts and notebooks with rich narratives are deposited at a trusted data centre, (2)
R Markdown interactive notebooks can be run on-demand as a web service, and (3) R Shiny web
apps provide nice user interfaces to explore research outputs. However, notebooks require users
to go through the entire analysis, while Shiny apps do not expose the underlying code and require
extra work for UI design. We propose using the learnr package to expose certain code chunks in R
Markdown so that users can readily experiment with them in guided, editable, isolated, executable,
and resettable code sandboxes. Our approach does not replace the existing use of notebooks and Shiny
apps, but it adds another level of abstraction between them to promote reproducible science.

Introduction

There has been considerable recognition of the need to promote open and reproducible science in
the past decade. The FAIR principles (Wilkinson et al., 2016; Stall et al., 2019) (https://www.go-
fair.org/fair-principles/) of reproducible research are now known to most scientists. While
significant advances has been made through the adoption of various best practices and policies
(e.g. requirements from funders and publishers to archive data and source code, metadata standards),
there remains considerable barriers to further advance open science and meet reproducible science
needs. One of such issues the availability of various levels of abstraction of the same underlying
analysis and code base to collaborate and engage with different stakeholders of diverse needs (Blair
et al., 2019; Hollaway et al., 2020). For complex analysis or analysis that utilize a more advanced
computing environment, it is essential to provide the capability to allow users to interact with the
analysis at a higher level.

Existing approach to reproducible research focuses on either documenting an entire analysis or
allows user-friendly interaction. Within the R ecosystem, R scripts and notebooks allow researchers
to work together and to view the entire workflow, while R Shiny apps (Chang et al., 2019) allows
rapid showcase of methods and research outcomes to users with less experience. R Shiny has been
widely adopted to share research output and engage stakeholders since its conception in 2013. A
recent review (Kasprzak et al., 2021) shows that bioinformatics is the subject with the most Shiny apps
published in journals while earth and environmental science ranks second. Shiny apps are especially
helpful to create reproducible analysis (e.g. examples in Hollaway et al., 2020) and explore different
scenarios (e.g. Whateley et al., 2015; Mose et al., 2018). Finally, the interactivity of Shiny apps makes it
an excellent tool for teaching (e.g. Williams and Williams, 2017; Field, 2020). However, not all users fit
nicely into this dichotomy. Some users may only want to adopt a small fraction of an analysis for their
work, while others may simply want to modify a few parts of the analysis in order to test alternative
hypothesis. Current use of notebooks do not seem to support such diverse needs as notebook output
elements (e.g. figures and tables) are not easily reproducible. This issue essentially applies to all coding
languages.

One potential way to address the problem described above is to allow users to experiment with
the code in protected computing environment. This is not limited to creating instances for users
to re-run the entire code. Rather, this can also be done by exposing specific parts of a notebook
as editable and executable code boxes, as seen in many interactive tutorial web pages for various
coding languages. Recently, while discussing next steps for fostering reproducible research in artificial
intelligence, Carter et al. (2019) lists creating a protected computing environment (‘data enclave’ or
‘sandbox’) for reviewers to log in and explore as one of the solutions. In software engineering, a
sandbox is a testing environment that isolates untested code changes and outright experimentation
from the production environment or repository, in the context of software development including
Web development and revision control. Making a sandbox environment available for users to test
and explore various changes to the code that leads to research outputs is a great step to further open
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science. Current practice of open science largely requires users to assemble the notebooks, scripts
and data files provided in their own computing environment, which requires significant amount of
time and effort. A sandbox environment can greatly reduce such barriers and if such sandboxes are
available as a web service, users can explore and interact with the code that generates the research
outputs at the convenience of their own web browser on demand.

In this paper, we describe a rapid approach to create and publish ‘interactive sandboxes’ R Shiny
apps from R Markdown documents using the learnr package, with the aim to bridge the gap between
typical R Markdown notebook and typical Shiny apps in terms of levels of abstraction. While code and
markdown documents gives full details of the code, standard R Shiny apps has too much limitations
on users to interact with the code and users often cannot see the underlying code. Our approach
allows users to interact with selected parts of the code in an isolated manner, by specifying certain
code chunks in a R Markdown document as executable code boxes.

The learnr R package

learnr (Schloerke et al., 2020) is an R package developed by RStudio to rapidly create interactive tuto-
rials. It follows the general R Markdown (the file has .Rmd extensions, https://rmarkdown.rstudio.
com/index.html) architecture and essentially creates a pre-rendered Shiny document similar to the
way Shiny user interface (UI) components can be added to any R Markdown documents. Pre-rendered
Shiny documents (https://rmarkdown.rstudio.com/authoring_shiny_prerendered.HTML) is a key
enabling technology for the learnr package since it allows users to specify the execution context in each
code chunk of a R Markdown document that is used to render a R Shiny web app. Its use circumvents
the need of a full document render for each end user browser session so that this type of R Shiny apps
can load quickly. To create a learnr tutorial in RStudio after learnr is installed, the user chooses a
learnr R Markdown template from a list after clicking the “create new R Markdown document” button.
This template is not different from other .Rmd files, except it requires additional chunk arguments
to control the sandbox appearances. The two main features of the learnr package are the “exercise”
and “quiz” options. The former allows users to directly type in code, execute it, and see its results
to test their knowledge while the latter allows other question types such as multiple choice. Both of
these options include auto-graders, hints, and instructor feedback options. Additional overall options
include setting time limits and an option to forbid users to skip sections. Like any Shiny apps, learnr
apps can be easily embedded to other web pages, as seen in Higgins (2021).

Although the learnr package has existed for a few years now, it is relatively not well known
to scientists as a potential use of R Shiny Apps and it has mostly been used for simple tutorial
apps designed for R beginners. We propose a novel application of the learnr package to advance
reproducible research, which we outline in the next section.

Approach: Using learnr for reproducible research ‘sandboxes’

learnr allows users to create executable code boxes. Our approach is to publish R notebooks and
serve parts of the notebooks as interactive sandboxes to allow users to re-create certain elements of
a published notebook containing research outputs. We do not use the auto-graders or any quiz-like
functionality of learnr while keeping the sandboxes. Notebook authors can go through their notebook
and select the code chunks that they would allow users to experiment, while the others are rendered
as static code snippets.

Recognizing learnr documents are themselves R Shiny web apps, our approach essentially allows
the publication of notebooks in the form of web apps. However, unlike a typical R Shiny web app,
users do not need to prepare a separate UI (i.e. user interface) layout. Advanced users can modify the
site appearance by supplying custom design in .css files.

Here, we first show the skeleton of a R Markdown (.Rmd) file for a learnr document (Figure
1). Notice that it is very similar to a typical .Rmd file where there is a mixture of narratives written
in markdown and R code chunks, in addition to a YAML header. However, there are a couple of
important exceptions, namely the use of the “exercise” chunk option (i.e. editable and executable code
boxes) and different output type in the YAML header.

Next, we outline the steps an author needs to take to publish notebooks (i.e. R Markdown
documents) as interactive sandboxes:

1. All research output is included in the form of a well-documented R Markdown document.
2. Open a new learnr R Markdown template. Copy the content of the original notebook.
3. For the code chunks that you would like to become sandboxes, add exercise=TRUE. Make sure

it has a unique chunk name. It may look something like this:
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(a) A typical .Rmd file (b) A sandbox app .Rmd file

Figure 1: A comparison of minimal examples of a typical .Rmd document and a .Rmd document for
an interactive sandbox app.

```{r fig2, warning=FALSE, exercise=TRUE, exercise.lines=30,fig.fullwidth=TRUE}

4. Before any interactive code chunks, call the first code chunk ‘setup’. This will pre-load every-
thing that will be used later.

5. Check whether you would like to link any of the interactive code snippets (by default each of
them are independent, and only depends on the output of the ‘setup’ chunk) You may want to
modify your code chunks accordingly.

6. Done! Knit the notebook to view outputs as an interactive web page. Publish it just like a Shiny
app.

The entire process took us a few hours of effort and can be incorporated to the proof-reading of
an R Markdown document. However, we note that as in any preparation of research output or web
development several iterations are often needed and the time required increases accordingly as the
complexity of the analysis increases.

In our implementation in DataLabs (https://datalab.datalabs.ceh.ac.uk/), the environment
and folder to create the research is made available to the Shiny app in a read-only fashion. Therefore,
the authors do not have to worry about versions of packages of data or a different software setup.
Using DataLabs straightforward visual tools to publish R Shiny apps, we can publish an R Markdown
notebook with interactive code snippets to reproduce certain parts of research readily in a few clicks.

Deployment

In general, learnr tutorial apps can be published the same way as R Shiny web apps in Shiny servers,
such as the ones provided by cloud service providers or https://shinyapps.io. The learnr package
vignettes provide additional help on deployment.

We also describe our deployment of these apps in DataLabs, a UK NERC virtual research environ-
ment that is being developed. DataLabs is a collaborative virtual research environment (Hollaway
et al., 2020) (https://datalab.datalabs.ceh.ac.uk/) for environmental scientist to work together
where data, software, and methods are all centrally located in projects. DataLabs provide a space
for scientists from different domains (data science, statisticians, environmental science and computer
science) to work together and draw on each other’s expertise. It includes an easy-to-use user interface
where users can publish R Shiny apps with a few clicks, and this applies to these notebooks with
interactive code chunks as well. Importantly, when provisioning a instance of R Shiny, this is deployed
in a Docker container with read-only access to the project data store being used for analysis. This
allows an unprecedented level of transparency as parts of the analysis are readily exposed for users to
experiment from the exact environments, datasets (can be large and includes many files), and versions
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of software that created the analysis. The use of Docker deployed onto a Kubernetes infrastructure al-
lows strict limits to be placed on what visitors can do through the use of resource constraints and tools
such as RAppArmor (Ooms, 2013). While access to project files is read-only, some author discretion is
still advised to ensure that visitors should not be able to view or list any private code or data. We also
note that future releases of learnr will contain external exercise evaluators, so that the code sandboxes
can be executed by an independent engine (such as Google Cloud) and give the benefit of not having
to rely on RAppArmor.

Example: GB rainfall paper

To demonstrate our concept, we have turned an R Markdown notebook for one of our recent papers
(Tso et al., 2022) into a learnr site (https://cptecn-sandboxdemo.datalabs.ceh.ac.uk/) using the
procedures described in the previous sections. The paper investigates the effect of weather and rainfall
types on rainfall chemistry in the UK. As can be seen in Figure 2, the code chunks to generate certain
parts of the paper is exposed. But unlike a static notebook site, the code chunk is not only available for
copy and paste but allows users to modify and run on-demand. This makes it very straightforward
for user to experiment with various changes of the original analysis, thereby promoting transparency
and trust.

Since learnr apps are R Markdown documents, Shiny UI elements can be easily added. We
repeat one of the examples by replacing the interactive code box by a simple selector, with minimal
modification of the code itself. This approach to publish Shiny apps requires significantly less work
than typical R Shiny web apps since no UI design is needed and researchers can rapidly turn an R
Markdown document to an R Shiny web app. For some cases, the use of certain datasets may require
a license, as in this example. A pop-up box is shown when the site is loaded and visitors are required
to check the boxes to acknowledge the use of the appropriate data licenses (an alternative is to require
users to register and load a token file) before they can proceed.

Evaluation

The main strength of our approach is that it fills nicely the gap of existing approaches in terms of levels
of abstraction. While code and markdown documents gives full details of the code, standard R Shiny
apps has too much limitations on users to interact with the code (Figure 3) and users often cannot see
the underlying code. Recently, it has become popular to publish ‘live’ Jupyter notebooks on Binder
and Google Colab. While this is a great contribution to open science, users are still required to run and
go through the entire notebook step-by-step and it can be easy to break it if users change something in
between. Our approach allows users to interact with portions of the code in a guided and isolated
manner, without the need to understand all the other parts of a notebook or the fear to break it (Table
1). We emphasize that R scripts/notebooks and R Shiny apps work well for their intended uses, but
our approach adds an additional level of accessibility to users.

The openness and ease-to-access our approach provides can benefit many different stakeholders
(Table 2). Researchers can more rapidly reproduce parts of the analysis of their choice without studying
the entire notebook or installing software or downloading all the data. They can quickly test alternative
hypothesis and stimulate scientific discussions. For funders, encouraging the use of this approach
means less time is needed for future projects to pick up results from previous work. And since this is
based on learnr which is originally designed as a tutorial tool, this approach will no doubt speed up
the process to train other users to use similar methods. Overall, it promotes open science and make a
better value of public funds.

An obvious limitation of our approach is that it does not work well for ideal conditions where other
R file formats are designed for. For instance, R scripts and R notebooks are much better suited for more
complex analysis for users to adopt to their own problems. Meanwhile, R Shiny web apps provides
a much richer user experience and is most suited when the exposed code is generally not useful to
stakeholders. Nevertheless, as discussed above, our approach is designed for users to reproduce
elements of an analysis. The user should evaluate these options carefully, paying special attention to
the needs of intended users.

Serving notebooks as a web service will inevitably face provenance issues. It is surely beneficial if
the author’s institution can host these interactive notebooks for a few years after its publication (and
that of its related publications). In the future, publishers and data centres may consider providing
services to provide longer term provenance of serving these interactive notebooks online. As for any
web apps, funding for the computation servers can be a potential issue. This work uses DataLabs
computation time which is part of the UK research funding that develops it. However, a more rigorous
funding model may be needed in the future to ensure provenance of these notebooks.
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Figure 2: A screenshot of the GB rainfall interactive notebook site. The main feature is the code box.
When the site loads, the code that generates published version of the figure is in the box and published
version of the figure is below it. Users can make edits and re-run the code in the code box and the
figure will update accordingly. Users can use the "Start Over" button to see the published version of
the code at any point without refreshing the entire site.
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Figure 3: The various levels of abstraction of various types of R documents. Our approach fills nicely
the gap between R Markdown or Jupyter notebooks and Shiny apps.

Our approach focuses on improving reproducibility by exposing parts of R script for users to run
them live on an R Shiny web app, leveraging the option to render R Markdown documents as R Shiny
web apps and the learnr package. It focuses on the R scripts and R Markdown documents. Users,
however, may want to improve reproducibility from the opposite direction, namely to allow outputs
from an R Shiny web app to be reproducible outside of the Shiny context. For such a requirement,
we recommend the use of the shinymeta (Cheng and Sievert, 2021) package, which allows users to
capture the underlying code of selected output elements and allows users to download it as well as the
underlying data to re-create the output in their own R instance. The shinymeta approach can be more
involved and requires more effort than learnr so we think it is more suitable for users that are focusing
their effort on the R Shiny app (particularly the UI). In summary, these two approaches complements
each other and we recommend users to consider them to improve reproducibility of their work.

Summary and outlook

We have proposed and demonstrated a rapid approach to publish R Markdown notebooks as interac-
tive sandboxes to allow users to experiment with changes with various elements of a research output.
It provides an additional level of abstraction for users to interact with research outputs and the codes
that generates down. Since it can be linked to the environment and data that generated the published
output and has independent document object identifiers (DOI), it is a suitable candidate to preserve
research workflow while exposing parts of it to allow rapid experimentation by users. Our work is
a demonstration on how we may publish a notebook from virtual research environments such as
DataLabs, with data, packages, and workflow pre-loaded in a coding environment, accompanied
by rich narratives. While this paper outlines the approach using R, the same approach can benefit
other coding languages such as Python. In fact, this can already be achieved as learnr can run Python
chunks (as well as other execution engines knitr supports such as SAS and mySQL) as long as the
users generate and host the document using R. This paper contributes to the vision towards publishing
interactive notebooks as standalone research outputs and the advancement of open science practices.

Data availability and acknowledgements

The GB rainfall example notebook is accessible via this URL (https://cptecn-sandboxdemo.datalabs.
ceh.ac.uk/) and the R Markdown file is deposited in the NERC Environmental Information Data
Centre (EIDC) (Tso, 2022). The DataLab code stack is available at https://github.com/NERC-CEH/
datalab. We thank the DataLabs developers team (especially Iain Walmsley, UKCEH) for the assistance
to deploy interactive R Markdown documents on DataLabs. This work is supported by NERC
Grant NE/T006102/1, Methodologically Enhanced Virtual Labs for Early Warning of Significant
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Table 1: Advantages of the proposed approach to various stakeholders

Advantages

Authors
• Very little extra work required in additional to writing R markdown document.
• No experience to generate web interfaces required.
• Much greater impact in research output.

Other researchers (those wanting to try or compare the method)
• A much more enriched experience to try methods and data and to test alternative
hypothesis and scenarios.
• No need to download data and scripts/notebooks and install packages to try a method.
• More efficient to learn the new method.

Other researchers (those curious about the results)
• Try running different scenarios quickly than the published ones without the hassle of full
knowledge of the code, downloading the code and data, and setting up the software
environment.
• Quickly reset to the published version of code snippet.
• No need to worry about breaking the code.

Data Centres
• A new avenue to demonstrate impact to funders if end users try methods or datasets
hosted by them in sandboxes.

Funders
• Better value of investment if even small parts of a research is readily reproducible.
• Time saving to fund related work that builds on research documented this way.

Wider research community and general public
• Promotes trust and confidence in research through transparency.

or Catastrophic Change in Ecosystems: Changepoints for a Changing Planet, funded under the
Constructing a Digital Environment Strategic Priority Fund. Additional support is provided by the
UK Status, Change and Projections of the Environment (UK-SCAPE) programme started in 2018 and is
funded by the Natural Environment Research Council (NERC) as National Capability (award number
NE/R016429/1). The initial development work of DataLabs was supported by a NERC Capital bid as
part of the Environmental Data Services (EDS).
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Power and Sample Size for Longitudinal
Models in R – The longpower Package and
Shiny App
by Samuel Iddi and Michael C. Donohue

Abstract Longitudinal studies are ubiquitous in medical and clinical research. Sample size compu-
tations are critical to ensure that these studies are sufficiently powered to provide reliable and valid
inferences. There are several methodologies for calculating sample sizes for longitudinal studies that
depend on many considerations including the study design features, outcome type and distribution,
and proposed analytical methods. We briefly review the literature and describe sample size formulas
for continuous longitudinal data. We then apply the methods using example studies comparing
treatment versus control groups in randomized trials assessing treatment effect on clinical outcomes.
We also introduce a Shiny app that we developed to assist researchers with obtaining required sample
sizes for longitudinal studies by allowing users to enter required pilot estimates. For Alzheimer’s
studies, the app can estimate required pilot parameters using data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Illustrative examples are used to demonstrate how the package and
app can be used to generate sample size and power curves. The package and app are designed to
help researchers easily assess the operating characteristics of study designs for Alzheimer’s clinical
trials and other research studies with longitudinal continuous outcomes. Data used in preparation of
this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu).

1 Introduction

Longitudinal designs are generally preferred over cross-sectional research designs as they provide
richer data and greater statistical power. As such, many biomedical and medical studies employ
longitudinal designs to study changes over time in outcomes at the individual, group, or population
level. Early in the design of a longitudinal experimental or natural history study, it is imperative to
ensure that the study is adequately powered for its aims. Inadequate sample sizes leads to invalid or
inconclusive inference and squandered resources (Lu et al., 2009; Yan and Su, 2006). On the other hand,
oversampling squanders resources and exposes participants to unnecessary risks associated with the
intervention (Lu et al., 2009). Thus, optimal sample size and power analysis have become important
prerequisites for any quantitative research design. Not only are these required during the design
phase of research, but it has also become mandatory for ethical, scientific, or economic justification in
submissions to institutional review boards and research funding agencies.

Determining the right sample size for a study is not a straightforward task. Despite the plethora
of sample size formulas for repeated measures (Overall and Doyle, 1994; Lui, 1992; Rochon, 1991;
Guo et al., 2013), cluster repeated measures (Liu et al., 2002), multivariate repeated measures (Vonesh
and Schork, 1986; Guo and Johnson, 1996), longitudinal research designs (Lefante, 1990), the tasks of
gathering pilot estimates of the necessary parameters and getting the right software to carry out the
computation can be challenging. Researchers commonly rely on formulas for very basic cross-sectional
studies and adjust for attrition and other longitudinal design effects. Although such approaches can
yield appropriate approximations, the ideal approach is to use a formula derived directly from the
longitudinal model that researchers plan to eventually use on the study data.

Guo et al. (2013) describe practical methods for the selection of appropriate sample size for
repeated measures addressing issues of missing data, and the inclusion of more than one covariate
to control for differences in response at baseline. Sample size formulas are refined depending on the
specific situation and design features. For example, Hedeker et al. (1999) considered a sample size
for longitudinal designs comparing two groups that accounted for participant attrition or drop-out.
Basagaña et al. (2011) derived sample size formulas for continuous longitudinal data with time-
varying exposure variables typical of observational studies. Ignoring time-varying exposure was
demonstrated to lead to substantial overestimation of the minimum required sample size which can be
economically disadvantageous. In non-traditional longitudinal designs such as designs for mediation
analysis of the longitudinal study, further refinements to sample size formulas are needed to ensure
that sufficient sample sizes are obtained (Pan et al., 2018). However, these formulas usually require
additional parameters such as exposure mean, variance, and intraclass correlations (Basagaña et al.,
2011), mediation effect, number of repeated measures (Pan et al., 2018), covariance structures (Rochon,
1991), non-linear trends (Yan and Su, 2006), missing, attrition or dropout rates (Roy et al., 2007; Lu
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et al., 2008), among others. Advanced sample size methods simultaneously handle several practical
issues associated with the research design and complications that may arise during data collection.
However, such methods are only available in commercial software (NCSS Statistical Software, 2021;
nQuery, 2021).

Several R packages can be found on CRAN to compute sample size based on mixed-effect models
and other specific designs depending on the area of applications. For example, Martin et al. (2011)
proposed a simulation-based power calculation and an R package pamm for random regression
models, a specific form of mixed-effect model that detects significant variation in individual or group
slopes. In their approach, a power analysis was performed to detect a specified level of individual and
environmental interactions within evolution and ecology applications. This is achieved by simulating
power to detect a given covariance structure. Other simulation-based packages for power analysis
are the SIMR by Green and MacLeod (2016) for linear and generalized linear mixed models and
clusterPower by Kleinman (2021) for cluster-randomized and cross-over designs. Schoenfeld (2019)
developed a power and sample size package called LPower (Diggle et al., 1994) to perform power
analysis for longitudinal design accounting for attrition and different random effect specification.
The approach requires the specification of a design matrix, and the variance-covariance matrix of
the repeated measures (Yi and Panzarella, 2002). In pharmacokinetic study designs, Kloprogge and
Tarning (2015) developed the PharmPow power calculation package for mixed study designs including
crossover and parallel designs. Quite recently, other R packages for performing power analysis exist
for different designs; for example the powerMediation (Qiu, 2021) for mediation effect, mean change
for longitudinal study with 2-time points, the slope for simple Poisson regression, etc.; powerEQTL
(Dong et al., 2021) for unbalanced one-way ANOVA in a Bulk Tissue and Single-Cell eQTL Analysis;
WebPower (Zhang et al., 2021) for basic and advanced power correlation, proportion, t-test, one-
way ANOVA, two-way ANOVA, linear regression, logistic regression, Poisson regression, mediation
analysis, longitudinal data analysis, structural equation modeling, and multilevel modeling; among
others. These packages were tailored towards very specific areas of application although the methods
can be adapted and utilized for other disciplines. In terms of software applications, attempts have
been made in recent times to implement power and sample size calculations in Shiny applications
to facilitate easy usage. For example, Hemming et al. (2020) developed an R Shiny app to conduct
power analysis for several cluster designs including parallel, cross-over, and stepped-wedge designs.
Schoemann et al. (2017) Shiny application conducts power analysis for mediation model, and Hu and
Qu (2021) performs sample size and power calculations for a random coefficient regression model
(RCRM) and a two-stage mixed-effects model.

As the analysis model and associated sample size formula become more sophisticated, estimating
the parameters required by the formula becomes more challenging. A major hurdle to overcome is
the availability of pilot data to inform these parameters. To assist Alzheimer’s researchers with this
challenge, we have developed a power and sample size Shiny app for Alzheimer’s clinical trials. The
app implements formulas for the linear mixed-effects model and mixed model for repeated measures
(MMRM; Lu et al., 2008) allowing the user to input their pilot estimates, or allow the app to generate
pilot estimates using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI; Weiner et al.,
2015).

2 Review of methods

Continuous outcomes in clinical trial data collected longitudinally over time are commonly analyzed
using linear mixed models (LMM; Laird and Ware, 1982) or MMRM (Mallinckrodt et al., 2001, 2003).
Before such trials, it is necessary to estimate the required sample size for a given treatment effect
with desired power and Type I error. Various sample size approaches for longitudinal data have been
proposed. We review a few of the most commonly used methods applied in Alzheimer’s disease trials
with continuous outcomes.

Sample size computation based on the linear mixed-effects model

Several sample size approaches have been developed by different authors. Diggle et al. (2002) proposed
sample size formulas for two approaches to continuous longitudinal outcomes, one that assumes a
constant mean over time and compares the average response over time between groups, and another
that assumes a linear change over time and compares the mean rate of change or slope difference
between groups. In either case, the null hypothesis is that there is no difference between groups.
Suppose that Yij is the response for participant i taken at time j. To compare the average response
between two groups (e.g. group A receiving active treatment and group B receiving control) across
time, consider the model

Yij = β0 + β1Ti + ϵij
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where Ti is the treatment indicator which is coded 1 for participants in group A and 0 for participants
in group B, and ϵij the error term for subject, i at time j, which is normally distributed with common
variance, σ2. The sample size required per group to detect an average response between the two
groups, δ, is given by

m =
2(Z1−α/2 + ZP)

2σ2(1 + (J − 1)ρ)
Jδ2

where α is the type I error rate, P is the level of power, and corr(Yij, Yik) = ρ for all j ̸= k.

To test difference in the slopes or average rate of change between the two groups, consider the
parameterization:

Yij = β0A + β1Atij + ϵij, i = 1, 2, . . . , m; j = 1, 2, . . . , J.

A similar parameterization can be specified for group B with parameters β0B, and β1B representing
the intercept and slope. The parameters β1A and β1B are the rate of change of the outcome for groups
A and B, respectively. Assume that var(ϵij) = σ2 and corr(Yij, Yik) = ρ for all j ̸= k. If the outcome of
each participant is measured at the same time, tj, then the sample size per group needed to detect a
difference in the rate of change for each group, ∆ = βA − βB, is given by

m =
2(Z1−α/2 + ZP)

2σ2(1 − ρ)

Js2
t ∆2

where α is the type I error rate, P is the power, and s2
t =

∑(tj−t̄)
J is the within-participant variance of tj.

Another sample size computation approach for correlated data is derived by Liu and Liang (1997)
to detect differences in the average response between two groups. This approach derived sample
size following the generalized estimating equation (Liang and Zeger, 1986) approach. Thus, different
outcomes types can be handled. A special case is for a continuous response measured repeatedly over
time and modeled using a linear model. Consider the model

Yij = β0 + β1Ti + ϵij, i = 1, 2, . . . , N, j = 1, 2, . . . , J

where Ti is the treatment indicator, ϵij is the error term assumed to follow a multivariate normal
distribution with a mean vector of zeros, 0, and covariance matrix, σ2R and R is a J × J working
correlation matrix. Different covariance structures such as independent, exchangeable, auto-regressive,
and unstructured can be assumed. To estimate the total sample size required, N for a given significance
level (α) and pre-specified nominal power, P, the following formula is used:

N =
(Z1−α/2 + ZP)

2 σ2

πAπB(β2
11R−11)

where πA and πB represent the proportion of observations in the control and treated groups, respec-
tively. By assuming an exchangeable working correlation matrix, this formula reduces to

N =
(Z1−α/2 + ZP)

2 σ2[1 + (J − 1)ρ]
πAπBβ2

1 J
.

It can be observed that for equal proportion of participants in each group i.e. πA = πB = 1
2 , the

formula for the sample size per group is equivalent to the sample size formula for difference in average
response between groups by Diggle et al. (2002) above. An appealing aspect of Liu and Liang (1997)
approach is that it can allow for unequal allocation to the two groups, and different outcome types are
considered.

Another approach is based on the LMM analysis (Fitzmaurice et al., 2004) comparing mean rate of
change between groups (Ard and Edland, 2011; Zhao and Edland, 2020). Consider the LMM

Yij = X′
ijβ + b0i + b1itij + ϵij

where Xij denotes a vector of indicator variables (treatment, time, and interaction terms), bi =

(b0i, b1i)
′ ∼ N

((
0
0

)
,

[
σ2

b0
σb0,b1

σb0,b1
σ2

b1

])
are random participant-specific effects, and ϵij ∼ N(0, σ2

e )

are the residual errors. The random terms, bi and ϵij are assumed to be independent of each other.
Following this model specification, Ard and Edland (2011) proposed a total sample size formula given
by

N =
4 (Z1−α/2 + ZP)

2

∆2

[
σ2

b1
+

σ2
e

∑(tj − t̄)2

]
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where tj indexes the times at which measures are made assuming all participants are observed at the
same time points, t̄ is the mean of the times, σ2

b1
is the variance of the participant-specific random

slope, and ∆ is the difference in mean rate of change in treatment versus control group to be detected.
For a random-intercept mixed-effect model, the total sample size formula reduces to

N =
4 (Z1−α/2 + ZP)

2

∆2

[
σ2

e

∑(tj − t̄)2

]
.

This sample size formula does not account for the correlation between the random intercept and slope,
a limitation that can be mitigated by a recent approach by Hu et al. (2021).

Sample size computation based on the mixed model for repeated measures (MMRM)

An alternative approach is to treat time as a categorical variable. This approach, common in trials of
treatments of Alzheimer’s and other therapeutic areas, is often referred to as the MMRM (Mallinckrodt
et al., 2001, 2003; Lane, 2008). The approach to fitting the MMRM is similar to that for other linear
mixed-effect models for longitudinal or repeated measures except the unstructured modelling of time
– treated as a categorical variable, and the specification of a within-participant correlation structure to
account for association among the repeated measurements. The MMRM provides an estimate of the
mean response for each time point category, for each group, and the resulting mean trajectory over
time is unconstrained. The primary test statistic is usually the estimated group difference at the final
time point. The null hypothesis is again that there is no difference between groups.

Suppose that Yij is the jth measurement taken of participant i; i = 1, 2, . . . , N at time, tij and Ti
represents treatment or group indicator. Assuming we have two groups, a;= (A, B), let naj be the
number of participants at time j = 1, 2, . . . , J for group a. Thus, at time point 1, the total number
of participants is nA1 + nB1. The response variable is assumed to follow a multivariate normal
distribution with mean, variance-covariance and correlation matrix given respectively as

E(Yij|Ti = a) = µaj

cov(Yij, Yik|Ti = a) = σajk = Σa

corr(Yij, Yik|Ti = a) =
σjk

σjσk
= R

where σj = σ
1
2
jj . It is common to assume that the variance-covariance matrix is the same for each group

in which case we can have ΣA = ΣB = Σ. Different correlation structures, R, can be assumed (eg.,
compound symmetry, autoregressive and unstructured). The sample size formula for MMRM (Lu
et al., 2008) can account for the attrition rate at each time point. Define the attrition rate ζaj = 1 − raj,
where raj =

naj
na1

is the retention rate at time point, j. The sample size for group A needed to achieve a
power, P, at a significance level, α is given by

nA1 = (ψA + λψB)(Z1−α/2 + ZP)
2 σ2

J

δJ

where λ = nA1
nB1

is called the allocation ratio, δJ is the effect size (difference in mean response between
the two groups) at the last time point, J, and ψa is the (J, J)th component of the variance inflation factor,
I∗−1
a defined with respect to an estimation of the µaj for treatment group, a. Specifically, ψa =

[
I∗−1
a
]

J J
where

I∗a =
J

∑
j=1

(ra,j − ra,j+1)

[
R−1

j 0j×(J−j)
0(J−j)×j 0(J−j)×(J−j)

]
The total sample size at the first time point is therefore given by

nA1 + nB1 = (1 + λ−1)(ψA + λψB)(Z1−α/2 + ZP)
2 σ2

J

δJ
.

The longpower package

The aforementioned sample size approaches have been implemented in an R package, longpower
(Donohue and Edland, 2020), that can be found on CRAN via the URL https://cran.r-project.
org/web/packages/longpower/index.html. The package also contains functions which translate pilot
mixed effect model parameters (e.g. random intercept and/or slope) into marginal model parameters
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so that the formulas of Diggle et al. (2002) or Liu and Liang (1997) or Lu et al. (2008) formula can be
applied to produce sample size calculations for two sample longitudinal designs assuming known
variance.

A web-based app

The interactive Shiny (Chang et al., 2021) application available from the URL https://atrihub.
shinyapps.io/power/ is an interface to the longpower package developed to easily generate sample
size and conduct power analysis for a longitudinal study design with two-group comparisons for
a continuous outcome. The app similarly implements the sample size formula of Liu and Liang
(1997) and Diggle et al. (1994, 2002) using functions in the longpower package. A novel feature of the
app is that it can generate required pilot estimates by sourcing data from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).

3 Illustrations

Illustration of the longpower package

ADNI is a population-based longitudinal cohort study that follows study participants to collect data on
their clinical, cognitive, imaging including MRI and PET images, genetic, and biochemical biomarkers.
The study was designed to discover, optimize, standardize, and validate clinical trial measures and
biomarkers that are used in AD clinical research. This multi-site longitudinal study runs at about
63 sites in the US and Canada and began in 2004. All the data generated from the ADNI study are
entered into a data repository hosted at the Laboratory of Neuroimaging (LONI) at the University of
Southern California, the LONI Image & Data Archive (IDA). The data can be freely accessed upon
request. Apart from the many uses of the data for advancing knowledge for AD trials (Weiner et al.,
2015), this big data resource can be used to improve study design. Specifically, in this paper, the data
is used to generate pilot estimates for the computation of sample size and power.

We consider an Alzheimer’s disease example using ADAS-Cog (Rosen et al., 1984) pilot estimates
from the ADNI database. Suppose that we want to compute the sample size required to detect an
effect of 1.5 at the 5% level of significance and 80% power. The LMM fit to ADNI data has an estimated
variance of random slope for group A (placebo or control group) of 74, and a residual variance of
10. Assuming study visits at (0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50) years, the sample size using the
‘edland’ approach can be obtained by using the edland.linear.power() functions in the longpower R
package as follows.

> t = seq(0,1.5,0.25)
> edland.linear.power(delta=1.5, t=t, sig2.s = 24, sig2.e = 10, sig.level=0.05,
power = 0.80)

Zhao and Edland, in process

N = 414.6202
n = 207.3101, 207.3101
delta = 1.5
t = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50
p = 0, 0, 0, 0, 0, 0, 1
p_2 = 0, 0, 0, 0, 0, 0, 1
sig2.int = 0
sig.b0b1 = 0
sig2.s = 24
sig2.e = 10
sig2.int_2 = 0
sig.b0b1_2 = 0
sig2.s_2 = 24
sig2.e_2 = 10
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: N is *total* sample size and n is sample size in *each* group
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An alternative approach is to use lmmpower() and specify the argument method="edland" in the
following way.

> lmmpower(delta=1.5, t=t, sig2.s = 24, sig2.e = 10, sig.level=0.05,
power = 0.80,method="edland")

Zhao and Edland, in process

N = 414.6202
n = 207.3101, 207.3101
delta = 1.5
t = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50
p = 0, 0, 0, 0, 0, 0, 1
p_2 = 0, 0, 0, 0, 0, 0, 1
sig2.int = 0
sig.b0b1 = 0
sig2.s = 24
sig2.e = 10
sig2.int_2 = 0
sig.b0b1_2 = 0
sig2.s_2 = 24
sig2.e_2 = 10
sig.level = 0.05
power = 0.8
alternative = two.sided

NOTE: N is *total* sample size and n is sample size in *each* group

The Diggle and Liu & Liang approaches can be applied with the diggle.linear.power() and
lui.liang.linear.power() functions, respectively. The lmmpower() functions can be used for either
approach with the appropriate specification of the `method' argument.

The second illustrative example is the hypothetical clinical trial discussed in Diggle et al. (2002).
Suppose that we are interested in testing the effect of a new treatment in reducing blood pressure
through a clinical trial. The investigator is interested in randomizing participants between a control
and active treatment group to have equal size. Three visits are envisaged with assessments planned at
years 0, 2, and 5. Thus, n = 3 and s2

x = 4.22. Assuming a type I error rate of 5%, power of 80% and
smallest meaningful difference of 0.5 mmHg/year, we want to determine the number of participants
needed for both treated and control groups for varying correlations (0.2, 0.5 and 0.8) and response
variance (100, 200, 300).

> n <- 3
> t <- c(0,2,5)
> rho <- c(0.2, 0.5, 0.8)
> sigma2 <- c(100, 200, 300)
> tab = outer(rho, sigma2,
+ Vectorize(function(rho, sigma2){
+ ceiling(diggle.linear.power(
+ delta=0.5,
+ t=t,
+ sigma2=sigma2,
+ R=rho,
+ alternative="one.sided",
+ power = 0.80)$n[1])}))
> colnames(tab) = paste("sigma2 =", sigma2)
> rownames(tab) = paste("rho =", rho)
> tab
sigma2 = 100 sigma2 = 200 sigma2 = 300
rho = 0.2 313 625 938
rho = 0.5 196 391 586
rho = 0.8 79 157 235

The above code reproduces the table on page 29 of Diggle et al. (2002). We also reproduce the table
on page 30 of Diggle et al. (2002) for detecting a difference in average response between two groups
through the method by Liu and Liang (1997) as follows:

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 270

> u = list(u1 = rep(1,n), u2 = rep(0,n)) #a list of covariate vectors or
matrices associated with the parameter of interest

> v = list(v1 = rep(1,n), v2 = rep(1,n)) #a respective list of covariate
vectors or matrices associated with the nuisance parameter
> rho = c(0.2, 0.5, 0.8) #correlations
> delta = c(20, 30, 40, 50)/100 #effect size
> tab = outer(rho, delta,Vectorize(function(rho, delta){
+ ceiling(liu.liang.linear.power(
+ delta=delta, u=u, v=v,
+ sigma2=1,
+ R=rho, alternative="one.sided",
+ power=0.80)$n[1])}))
> colnames(tab) = paste("delta =", delta)
> rownames(tab) = paste("rho =", rho)
> tab
delta = 0.2 delta = 0.3 delta = 0.4 delta = 0.5
rho = 0.2 145 65 37 24
rho = 0.5 207 92 52 33
rho = 0.8 268 120 67 43

The sample size formula for the MMRM approach is also implemented in the longpower package’s
power.mmrm() function. To illustrate how this approach is implemented, consider a hypothetical
example with a correlation matrix having 0.25 as off-diagonal entries (exchangeable), a retention vector
(1, 0.90,0.80,0.70) and standard deviation of 1, for group A. Assuming these values to be the same for
group B, then the sample size required to detect an effect size of 0.5 at 5% level of significance and 80%
power is computed as follows:

> Ra <- matrix(0.25, nrow = 4, ncol = 4)
> diag(Ra) <- 1 #exchangeable correlation matrix for group A
> ra <- c(1, 0.90, 0.80, 0.70)#retention in group A
> sigmaa <- 1 #standard deviation for group A
> power.mmrm(Ra = Ra, ra = ra, sigmaa = sigmaa, delta = 0.5, power = 0.80)

Power for Mixed Model of Repeated Measures (Lu, Luo, & Chen, 2008)

n1 = 86.99175
n2 = 86.99175
retention1 = 1.0, 0.9, 0.8, 0.7
retention2 = 1.0, 0.9, 0.8, 0.7
delta = 0.5
sig.level = 0.05
power = 0.8
alternative = two.sided

Suppose the allocation ratio is 2, then the function argument lambda=2 can be added.

Illustration of the Shiny app

We demonstrate how the app is used to perform power analysis by inputting user-specified values
and a specific sample size approach. We make use of the values shown in Table 1. For the MMRM
method, we specify the options assuming an exchangeable correlation structure.

For the ADNI-based pilot estimate generator, we select the full range of values for some selected
variables (See Figure 3).

App menus and contents

The app has three main menus on the sidebar. The first menu has two sub-menus which let the user
perform power and sample size calculations based on longitudinal designs when necessary pilot
estimates are known. The first submenu, the default, accepts user-specified inputs and generates a
graphical output and summary of the inputs. In the ‘input’ box, as shown in Figure 1a, users are aided
with the selection of their inputs through widgets such as select input, numerical input, slider input,
and radio button to facilitate the user selection. The select input for ‘Analysis Type’ allows the user
to select whether the user desires to determine power or sample size. Input parameters that are not
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Table 1: Parameter values considered in Shiny app demonstrations. Each row represents a different
parameter and the values considered for the linear mixed model (LMM, left column) and the mixed
model for repeated measures (MMRM, right column) demonstrations. The "-" indicates the parameter
is "not applicable" for the given model.

Parameter LMM MMRM
Start time 0 1
End time 1.5 4
Timestep 0.5 1
Type I error rate 0.05 0.05
Effect size 1.5 -
Estimate of variance of random intercept 55 -
Estimate of variance of random slope 22 -
Estimate of covariance of random intercept and slope 29 -
Estimate of the error variance 10 -
Standard deviation of observation in group A - 1
Standard deviation of observation in group B - 1
Exchangeable correlation - 0.25
Allocation ratio 1 2

applicable for a given selection or are not applicable for the selected sample size method are grayed
out to enhance the user experience. For example, the allocation ratio input widget is grayed out when
the ‘diggle’ and ‘liuliang’ procedures are selected. The ‘output’ box, shown in Figure 1b, displays
a graph of power versus sample size, a note on the method for the sample size computation, and a
summary of the selected inputs by the user. The second submenu enables the user to conduct power
analysis based on the MMRM methodology. Widgets such as select inputs, slider inputs, numerical
inputs, and radio buttons display the current values of the model parameter in the ‘input’ box (See
Figure 2a). As the MMRM requires the specification of an association structure and a vector of the
retention rates, the app display vectors, and matrix inputs widgets. The size of these widgets depends
on users’ choice of the number of time points for the study. However, these widgets are not reactive,
and therefore the user must use the “Update/Enter" action button when changes are made to the
number of time points to update the vector and matrix input widgets. The corresponding graphical
and summary outputs are reactively displayed within the ‘output’ box, immediately below the ‘input’
box (See Figure 2b).

The second menu item also has two sub-menus for the LMM and the MMRM methods, respectively.
In this menu, the app enables the user to generate pilot estimates from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data that is fed into the application to perform the power calculations.

In the box for ‘baseline selection’, the user can select variables that define their study population.
By default, all variables are selected, utilizing all the data in the ADNI. A variable can be deselected
from the left side of the box with a click. After the user selection of the variable, the user can submit by
clicking on the ‘submit selected criteria’ action button to activate the corresponding widgets in the next
box. The ‘Inclusion/exclusion criteria’ box is made of a slider and select input widgets which allow
the user to select a range of values for the selected population characteristics (See Figure 3). Baseline
summaries are produced by the app according to the selections of the user. Summaries by gender,
education, ethnicity, and race are provided for the selected population. For continuous variables, the
number of observations, number of missing observations, mean, median, lower and upper quantiles
are displayed, while for categorical variables, the total and level-specific number of observations, and
percentages are displayed. These bivariate summaries give the user a clear presentation of the data
per the selected inclusion and exclusion criteria.

Next, the user can choose a primary outcome from among some that are commonly used for
Alzheimer’s disease studies. Pilot estimates are obtained from fitting a LMM for the selected outcome
for the power analysis. The estimates of the model can be adjusted with some user-selected covariate
options. Data on the selected outcome from baseline to the selected number of years of the study
are presented by individual-level and smooth mean profile plots. The app allows the selection of
options for selecting the sample size method, type of test, type I error rate, percentage change, and
allocation ratio as inputs for the power analysis (see Figure 4). Finally, the graphical output for the
power analysis and summary of the inputs used are displayed in the ‘output’ box. The summary of
the LMM is also shown (see Figure 5).

The interface of the second sub-menu is very similar to the first except that the sample size
methodology is based on the MMRM. Additionally, the model fitting options include specifying an
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association structure, allocation ratio, and percentage retention for the two groups.

The final menu on the sidebar is the ‘About’ menu, which provides brief information of the dash-
board, data description, and acknowledgment of the ADNI resources, packages used for developing
the dashboard, and contact information of the developers of the dashboard.

4 Discussion

In this manuscript, we have presented the longpower R package, and a Shiny app dashboard that
facilitates sample size and power analysis for a longitudinal study design with two-group comparisons
of a continuous outcome. The app implements the sample size formulas of Liu and Liang (1997),
Diggle et al. (1994, 2002), Lu et al. (2008), and Ard and Edland (2011) using functions in the longpower
package. The package also handles models in which time is treated either as continuous (e.g. with
random intercepts and slopes) or categorical (MMRM).

The longpower package was created to allow R users easy access to sample size formulas for
longitudinal data that were already available in the literature. Many of the earlier papers on the
topic provided no software, and so considerable effort was required by each reader to program
implementations of the formulas. Collecting these formulas into an R package makes the methods
more accessible and easy to compare. The package includes unit tests to ensure the software can
adequately reproduce published results, and alternative approaches for the same study design are
validated against each other.

A novel feature of the app is the ability to source pilot data for Alzheimer’s disease trials to generate
required parameter estimates. We focus on Alzheimer’s data as our primary area of interest, but future
work could bring in data from other disease areas. Other future directions include accommodating
other outcome types, and keeping up with the evolving landscape of model parameterizations.
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Figure 1: Screenshot of Shiny app menu for linear mixed models (LMM) of rates of change. The red
box (top) denotes an area where user input of pilot estimates and study design features is required.
Output, including a power curve and a summary table of study design characteristics, is displayed in
the green box (bottom).
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Figure 2: Screenshot of Shiny app menu for mixed models for repeated measures (MMRM). The red
box (top) denotes an area where user input of pilot estimates and study design features is required.
Output, including a power curve and a summary table of study design characteristics, is displayed in
the green box (bottom).
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Figure 3: Screenshot of Shiny app menu for ADNI-based pilot estimate generator. The user can select
variables and associated ranges for desired inclusion/exclusion criteria. The app then filters the ADNI
data accordingly, summarizes the characteristics of the filtered data, fits a linear mixed model (LMM),
and extracts pilot estimates required for power calculations.
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Figure 4: Screenshot of Shiny app input and output for ADNI-based pilot estimate generator. Once the
user has selected variables and associated ranges for desired inclusion/exclusion criteria (Figure 3),
the app summarizes the characteristics of the filtered data, including these spaghetti and dots plots
(middle green box). The user must select the desired analysis model covariates and outcome (top red
boxes); and other analysis model and study design features (bottom red box).
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Figure 5: Screenshot of Shiny app output for ADNI-based pilot estimate generator. The bottom
box shows R output summarizing a linear mixed model fit to a subset of ADNI data with desired
inclusion/exclusion criteria applied. The top box shows study characteristics and a power curve
derived using parameters from the fitted model.
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PSweight: An R Package for Propensity
Score Weighting Analysis
by Tianhui Zhou, Guangyu Tong, Fan Li, Laine E. Thomas and Fan Li

Abstract Propensity score weighting is an important tool for comparative effectiveness research.
Besides the inverse probability of treatment weights (IPW), recent development has introduced a
general class of balancing weights, corresponding to alternative target populations and estimands.
In particular, the overlap weights (OW) lead to optimal covariate balance and estimation efficiency,
and a target population of scientific and policy interest. We develop the R package PSweight to
provide a comprehensive design and analysis platform for causal inference based on propensity score
weighting. PSweight supports (i) a variety of balancing weights, (ii) binary and multiple treatments,
(iii) simple and augmented weighting estimators, (iv) nuisance-adjusted sandwich variances, and
(v) ratio estimands. PSweight also provides diagnostic tables and graphs for covariate balance
assessment. We demonstrate the functionality of the package using a data example from the National
Child Development Survey (NCDS), where we evaluate the causal effect of educational attainment on
income.

1 Introduction

Propensity score is one of the most widely used causal inference methods for observational studies
(Rosenbaum and Rubin, 1983). Propensity score methods include weighting, matching, stratification,
regression, and mixed methods such as the augmented weighting estimators. The PSweight package
provides a design and analysis pipeline for causal inference with propensity score weighting (Robins
et al., 1994; Hirano et al., 2003; Lunceford and Davidian, 2004; Li et al., 2018). There are a number of
existing R packages on propensity score weighting (see Table 1). Comparing to those, PSweight offers
three major advantages: it incorporates (i) visualization and diagnostic tools of checking covariate
overlap and balance, (ii) a general class of balancing weights, including overlap weights and inverse
probability of treatment weights, and (iii) multiple treatments. More importantly, PSweight comprises
a wide range of functionalities, whereas each of the competing packages only supports a subset of these
functionalities. As such, PSweight is currently the most comprehensive platform for causal inference
with propensity score weighting, offering analysts a one-stop shop for the design and analysis. Table 1
summarizes the key functionalities of PSweight in comparison to related existing R packages. We
elaborate the main features of PSweight below.

PSweight facilitates better practices in the design stage of observational studies, an aspect that
has not been sufficiently emphasized in related packages. Specifically, we provide a design module
that facilitates visualizing overlap (also known as the positivity assumption) and evaluating covariate
balance without access to the final outcome (Austin and Stuart, 2015). When there is limited overlap,
PSweight allows for symmetric propensity score trimming (Crump et al., 2009; Yoshida et al., 2018) and
optimal trimming (Crump et al., 2009; Yang et al., 2016) to improve the internal validity. We extend the
class of balance metrics suggested in Austin and Stuart (2015) and Li et al. (2019) for binary treatments,
and those in McCaffrey et al. (2013) and Li and Li (2019) for multiple treatments. In addition, the
design module helps describe the weighted target population by providing the information required
in the standard “Table 1” of a clinical article.

In addition to the standard inverse probability of treatment weights (IPW), PSweight implements
the average treatment effect among the treated (Treated) weights, overlap weights (OW), matching
weights (MW) and entropy weights (EW) for both binary (Li and Greene, 2013; Mao et al., 2018; Li
et al., 2018; Zhou et al., 2020) and multiple treatments (Yoshida et al., 2017; Li and Li, 2019). All weights
are members of the family of balancing weights (Li et al., 2018); the last three types of weights target
at the subpopulation with improved overlap in the covariates between (or across) treatment groups,
similar to the target population in randomized controlled trials (Thomas et al., 2020a,b). Among them,
OW achieves optimal balance and estimation efficiency (Li et al., 2018, 2019). We also implement the
augmented weighting estimators corresponding to each of the above weighting schemes (Mao et al.,
2018). By default, PSweight employs parametric regression models to estimate propensity scores
and potential outcomes. Nonetheless, it also allows for propensity scores to be estimated by external
machine learning methods including generalized boosted regression models (McCaffrey et al., 2013)
and super learner (Van der Laan et al., 2007), or importing any other propensity or outcome model
estimates of interest.

To our knowledge, PSweight is the first R package to accommodate a variety of balancing weight-
ing schemes with multiple treatments. Existing R packages such as twang (Ridgeway et al., 2020),
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Table 1: Comparisons of existing R packages that implement propensity score weighting with discrete
treatments. Binary treatments and additive estimands are implemented in all packages, and therefore
those two columns are omitted.

Multiple Balance IPW/ATT OW/other Ratio Augmented Nuisance-adj Optimal
treatments diagnostics weights weights estimands weighting variance trimming

PSweight ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
twang ✓ ✓ ✓ × × × × ×
CBPS ✓ ✓ ✓ × × ✓ ✓ ×
PSW × ✓ ✓ ✓ ✓ ✓ ✓ ×
optweight ✓ × ✓ × × × × ×
ATE ✓ ✓ ✓ × × × ✓ ×
WeightIt ✓ × ✓ ✓ × × × ×
causalweight ✓ × ✓ × × ✓ × ×
sbw × ✓ ✓ × × × × ×

✓ indicates that the functionality is currently implemented in the package; × indicates otherwise.
References: twang (Version 1.6): Ridgeway et al. (2020); CBPS (Version 0.21): Fong et al. (2019); PSW (Version 1.1-3): Mao and Li
(2018); optweight (Version 0.2.5): Greifer (2019); ATE (Version 0.2.0): Haris and Chan (2015); WeightIt (Version 0.10.2): Greifer
(2020); causalweight (Version 0.2.1): Bodory and Huber (2020); sbw (Version 1.1.1): Zubizarreta and Li (2020).

CBPS (Fong et al., 2019), optweight (Greifer, 2019) have also implemented weighting-based estimation
with multiple treatments, but focus on IPW. The PSW R package (Mao and Li, 2018) implements both
OW and MW and allows for nuisance-adjusted variance estimation, but it is only for binary treat-
ments. To better assist applied researchers to perform propensity score weighting analysis, this article
provides a full introduction of the PSweight package. In what follows, we explain the methodological
foundation of PSweight and outline the main functions and their arguments. We further illustrate the
use of these functions with a data example that studies the causal effect of educational attainment on
income, and finally conclude with a short discussion.

2 Overview of propensity score weighting

Before diving into the implementation details of PSweight, we briefly introduce the basics of the
propensity score weighting framework.

Binary treatments

Assume we have an observational study with N units. Each unit i (i = 1, 2, . . . , N) has a binary
treatment indicator Zi (Zi = 0 for control and Zi = 1 for treated), a vector of p covariates Xi =
(X1i, · · · , Xpi). For each unit i, we assume a pair of potential outcomes {Yi(1), Yi(0)} mapped to
the treatment and control status, of which only the one corresponding to the observed treatment is
observed, denoted by Yi = ZiYi(1) + (1 − Zi)Yi(0); the other potential outcome is counterfactual.

Causal effects are contrasts of the potential outcomes of the same units in a target population, which
usually is the population of a scientific interest (Thomas et al., 2020b). PSweight incorporates a general
class of weighted average treatment effect (WATE) estimands. Specifically, assume the observed
sample is drawn from a probability density f (x), and let g(x) denote the covariate density of the target
population. The ratio h(x) ∝ g(x)/ f (x) is called the tilting function, which adjusts the distribution
of the observed sample to represent the target population. Denote the conditional expectation of
the potential outcome by mz(x) = E[Y(z)|X = x] for z = 0, 1. Then, we can represent the average
treatment effect over the target population by a WATE estimand:

τh = Eg[Y(1)− Y(0)] =
E{h(x)(m1(x)− m0(x))}

E{h(x)} . (2.2.1)

To estimate (2.2.1), PSweight maintains two standard assumptions: (1) unconfoundedness: {Y(1), Y(0)} ⊥
Z | X; (2) overlap: 0 < P(Z = 1|X) < 1. The propensity score is the probability of a unit being assigned
to the treatment group given the covariates (Rosenbaum and Rubin, 1983): e(x) = P(Z = 1|X = x).
While assumption (1) is generally untestable and critically depends on substantive knowledge, as-
sumption (2) can be checked visually from data by comparing the distribution of propensity scores
between treatment and control groups.

For a given tilting function h(x) (and correspondingly a WATE estimand τh), we can define
the balancing weights (w1, w0) for the treated and control units: w1(x) ∝ h(x)/e(x) and w0(x) ∝
h(x)/{1 − e(x)}. These weights balance the covariate distributions between the treated and control
groups towards the target population (Li et al., 2018). PSweight implements the following Hájek
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Table 2: Target populations, tilting functions, estimands and the corresponding balancing weights for
binary treatments in PSweight.

Target population Tilting function h(x) Estimand Balancing weights (w1, w0)

Combined 1 ATE
(

1
e(x) , 1

1−e(x)

)
Treated e(x) ATT

(
1, e(x)

1−e(x)

)
Overlap e(x)(1 − e(x)) ATO (1 − e(x), e(x))
Matching ξ1(x) ATM

(
ξ1(x)
e(x) , ξ1(x)

1−e(x)

)
Entropy ξ2(x) ATEN

(
ξ2(x)
e(x) , ξ2(x)

1−e(x)

)
Notes: ξ1(x) = min{e(x), 1 − e(x)} and ξ2(x) = −{e(x) log(e(x)) + (1 −
e(x)) log(1 − e(x))}.

estimator for WATE:

τ̂h = µ̂h
1 − µ̂h

0 =
∑N

i=1 w1(xi)ZiYi

∑N
i=1 w1(xi)Zi

− ∑N
i=1 w0(xi)(1 − Zi)Yi

∑N
i=1 w0(xi)(1 − Zi)

, (2.2.2)

where the weights are calculated based on the propensity scores estimated from the data. Clearly,
specification of h(x) defines the target population and estimands. PSweight primarily implements the
following three types of balancing weights (see Table 2 for a summary):

• Inverse probability of treatment weights (IPW), whose target population is the combined treatment
and control group represented by the observed sample, and the target estimand is the average
treatment effect among the combined population (ATE).

• Treated weights, whose target population is the treated group, and target estimand is the average
treatment effect for the treated population (ATT). Treated weights can be viewed as a special
case of IPW because it inversely weights the control group.

• Overlap weights (OW) (Li et al., 2018; Li and Li, 2019), whose target population is the subpopula-
tion with the most overlap in the observed covariates between treatment and control groups .
In medicine this is known as the population in clinical equipoise and is the population eligible
to be enrolled in randomized clinical trials. The target estimand of OW is the average treatment
effect for the overlap population (ATO).

IPW has been the dominant weighting method in the literature, but has a well-known shortcoming
of being sensitive to extreme propensity scores, which induces bias and large variance in estimating
treatment effects. OW addresses the conceptual and operational problems of IPW. Among all balancing
weights, OW leads to the smallest asymptotic (and often finite-sample) variance of the weighting
estimator (2.2.2). (Li et al., 2018, 2019). Recent simulations also show that OW provides more stable
causal estimates under limited overlap (Li et al., 2019; Mao et al., 2018; Yoshida et al., 2017, 2018), and
is more robust to misspecification of the propensity score model (Zhou et al., 2020).

PSweight implements two additional types of balancing weights: matching weights (MW) (Li
and Greene, 2013), and entropy weights (EW) (Zhou et al., 2020). Similar to OW, MW and EW focus
on target populations with substantial overlap between treatment groups. Though having similar
operating characteristics, MW and EW do not possess the same theoretical optimality as OW, and are
less used in practice. Therefore, we will not separately describe MW and EW hereafter.

In observational studies, propensity scores are generally unknown and need to be estimated.
Therefore, propensity score analysis usually involves two steps: (1) estimating the propensity scores,
and (2) estimating the causal effects based on the estimated propensity scores. In PSweight, the default
model for estimating propensity scores with binary treatments is a logistic regression model. Spline or
polynomial models can be easily incorporated by adding bs(), ns() or poly() terms into the model
formula. PSweight also allows for importing propensity scores estimated from external routines, such
as boosted models or super learner.

Goodness-of-fit of the propensity score model is usually assessed based on the resulting covariate
balance. In the context of propensity score weighting, this is measured based on either the absolute
standardized difference (ASD):

ASD =

∣∣∣∣∣∑N
i=1 w1(xi)ZiXpi

∑N
i=1 w1(xi)Zi

−
∑N

i=1 w0(xi)(1 − Zi)Xpi

∑N
i=1 w0(xi)(1 − Zi)

∣∣∣∣∣
/√

s2
1 + s2

0
2

, (2.2.3)
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or the target population standardized difference (PSD), max{PSD0, PSD1}, where

PSDz =

∣∣∣∣∣∑N
i=1 wz(xi)1{Zi = z}Xpi

∑N
i=1 wz(xi)1{Zi = z}

−
∑N

i=1 h(xi)Xpi

∑N
i=1 h(xi)

∣∣∣∣∣
/√

s2
1 + s2

0
2

. (2.2.4)

In (2.2.3) and (2.2.4), s2
z is the variance (either unweighted or weighted, depending on user specification)

of the pth covariate in group z, and (w0, w1) are the specified balancing weights. Setting w0 = w1 = 1
corresponds to the unweighted mean differences. ASD and PSD are often displayed as column in the
baseline characteristics table (known as the “Table 1”) and visualized via a Love plot (also known as
a forest plot) (Greifer, 2018). A rule of thumb for determining adequate balance is when ASD of all
covariates is controlled within 0.1 (Austin and Stuart, 2015).

Multiple treatments

Li and Li (2019) extend the framework of balancing weights to multiple treatments. Assume that we
have J (J ≥ 3) treatment groups, and let Zi stand for the treatment received by unit i, Zi ∈ {1, . . . , J}.
We further define Dij = 1{Zi = j} as a set of multinomial indicator, satisfying ∑J

i=1 Dij = 1 for all j.
Denote the potential outcome for unit i under treatment j as Yi(j), of which only the one corresponding
to the received treatment, Yi = Yi(Zi), is observed. The generalized propensity score is the probability
of receiving a potential treatment j given X (Imbens, 2000): ej(x) = P(Z = j|X = x), with the

constraint that ∑J
j=1 ej(x) = 1.

To define the target estimand, let mj(x) = E[Y(j)|X = x] be the conditional expectation of the
potential outcome in group j. For specified tilting function h(x) and target density g(x) ∝ f (x)h(x),
the jth average potential outcome among the target population is

µh
j = Eg[Y(j)] =

E{h(x)mj(x)}
E{h(x)} . (2.2.5)

Causal estimands can then be constructed in a general manner as contrasts based on µh
j . For example,

the most commonly seen estimands in multiple treatments are the pairwise average treatment effects
between groups j and j′: τh

j,j′ = µh
j − µh

j′ . This definition can be generalized to arbitrary linear contrasts.
Denote aaa = (ai, · · · , aJ) as a contrast vector of length J. A general class of additive estimands is

τh(aaa) =
J

∑
j=1

ajµ
h
j . (2.2.6)

Specific choices for a with nominal and ordinal treatments can be found in Li and Li (2019). Similar to
before, propensity score weighting analysis with multiple treatments rests on two assumptions: (1)
weak unconfoundedness: Y(j) ⊥ 1{Z = j}|X, for all j, and (2) Overlap: the generalized propensity score
is bounded away from 0 and 1: 0 < ej(x) < 1, for all j.

With multiple treatments, the tilting function h(x) specifies the target population, estimand, and
balancing weights. For a given h(x), the balancing weights for the jth treatment group wj(x) ∝
h(x)/ej(x). Then the Hájek estimator for µh

j is

µ̂h
j =

∑N
i=1 wj(xi)DijYi

∑N
i=1 wj(xi)Dij

. (2.2.7)

Contrasts based on µ̂h
j can be obtained for any a to estimate the additive causal estimand τh(a). Of note,

we only consider types of estimands that are transitive, and therefore the ATT estimands introduced
in Lechner (2001) is not implemented. In parallel to binary treatments PSweight implements five
types of balancing weights with multiple treatments: IPW, treated weights, OW, MW, and EW, and
the corresponding target estimand of each weighting scheme is its pairwise (between each pair of
treatments) counterpart in binary treatments.

Among all the weights, OW minimizes the total asymptotic variances of all pairwise comparisons,
and has been shown to have the best finite-sample efficiency in estimating pairwise WATEs (Li and Li,
2019). Table 3 summarizes the target population, tilting function and balancing weight for multiple
treatments that are available in PSweight.

To estimate the generalized propensity scores for multiple treatments, the default model in
PSweight is a multinomial logistic model. PSweight also allows for externally estimated gener-
alized propensity scores. Goodness-of-fit of the generalized propensity score model is assessed by
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Table 3: Target populations, tilting functions, and the corresponding balancing weights for multiple
treatments in PSweight.

Target population Tilting function h(x) Balancing weights
{

wj(x), j = 1, . . . , J
}

Combined 1
{

1/ej(x)
}

Treated (j′th group) ej′ (x)
{

ej′ (x)/ej(x)
}

Overlap {∑J
k=1 1/ek(x)}−1

{
{∑J

k=1 1/ek(x)}−1/ej(x)
}

Matching mink{ek(x)}
{

mink{ek(x)}/ej(x)
}

Entropy −∑J
k=1 ek(x) log{ek(x)}

{
−∑J

k=1 ek(x) log{ek(x)}/ej(x)
}

the resulting covariate balance, which is measured by the pairwise versions of the ASD and PSD. The
detailed formula of these metrics can be found in Li and Li (2019). A common threshold for balance is
that the maximum pairwise ASD or maximum PSD is below 0.1.

Propensity score trimming

Propensity score trimming excludes units with estimated (generalized) propensity scores close to zero
(or one). It is a popular approach to address the extreme weights problem of IPW. PSweight imple-
ments the symmetric trimming rules in Crump et al. (2009) and Yoshida et al. (2018). Operationally,
we allow users to specify a single cutoff δ on the estimated generalized propensity scores, and only
includes units for analysis if minj{ej(x)} ∈ [δ, 1]. With binary treatments, the symmetric trimming
rule reduces to e(x) ∈ [δ, 1 − δ]. The natural restriction δ < 1/J must be satisfied due to the constraint
∑J

j=1 ej(x) = 1. To avoid specifying an arbitrary trimming threshold δ, PSweight also implements
the optimal trimming rules of Crump et al. (2009) and Yang et al. (2016), which minimizes the (total)
asymptotic variance(s) for estimating the (pairwise) ATE among the class of all trimming rules. OW
can be viewed as a continuous version of trimming because it smoothly down-weigh the units with
propensity scores close to 0 or 1, and thus avoids specifying a threshold.

Augmented weighting estimators

PSweight also implements augmented weighting estimators, which augment a weighting estimator
by an outcome regression and improves the efficiency. With IPW, the augmented weighting estimator
is known as the doubly-robust estimator (Lunceford and Davidian, 2004; Bang and Robins, 2005;
Funk et al., 2011). With binary treatments, the augmented estimator with general balancing weights
are discussed Hirano et al. (2003) and Mao et al. (2018). Below, we briefly outline the form of this
estimator with multiple treatments. Recall the conditional mean of Yi(j) given Xi and treatment
Zi = j as mj(xi) = E[Yi(j)|Xi = xi] = E[Yi|Xi = xi, Zi = j]. This conditional mean can be estimated
by generalized linear models, kernel estimators, or machine learning models. PSweight by default
employs the generalized linear models, but also allows estimated values from other routines. When
mj(xi) is estimated by generalized linear models, PSweight currently accommodates three types of
outcomes: continuous, binary and count outcomes (with or without an offset), using the canoncal link
function.

With a pre-specified tilting function, the augmented weighting estimator for group j is

µ̂h,aug

j =
∑N

i=1 wj(xi)Dij{Yi − mj(xi)}
∑N

i=1 wj(xi)Dij
+

∑N
i=1 h(xi)mj(xi)

∑N
i=1 h(xi)

. (2.2.8)

The first term of (2.2.8) is the Hájek estimator of the regression residuals, and the second term is the
standardized average potential outcome (a g-formula estimator). With IPW, (2.2.8) is consistent to
E[Y(j)] when either the propensity score model or the outcome model is correctly specified, but not
necessarily both. For other balancing weights, (2.2.8) is consistent to the WATE when the propensity
model is correctly specified, regardless of outcome model specification. When both models are
correctly specified, (2.2.8) achieves the lower bound of the variance for regular and asymptotic linear
estimators (Robins et al., 1994; Hirano et al., 2003; Mao et al., 2018).

Ratio causal estimands

With binary and count outcomes, ratio causal estimands are often of interest. Using notation from the
multiple treatments as an example, once we use weighting to obtain estimates for the set of average

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 287

potential outcomes {µh
j , j = 1, . . . , J}, we can directly estimate the causal relative risk (RR) and causal

odds ratio (OR), defined as

τh,RR
j,j′ =

µh
j

µh
j′

, τh,OR
j,j′ =

µh
j /(1 − µh

j )

µh
j′/(1 − µh

j′ )
. (2.2.9)

Here the additive estimand τh,RD
j,j′ = µh

j − µh
j′ is the causal risk difference (RD). PSweight supports a

class of ratio estimands for any given contrasts a. Specifically, we define the log-RR type parameters
by

λh,RR(aaa) =
J

∑
j=1

aj log
(

µh
j

)
, (2.2.10)

and the log-OR type parameters by

λh,OR(aaa) =
J

∑
j=1

aj

{
log

(
µh

j

)
− log

(
1 − µh

j

)}
. (2.2.11)

With nominal treatments, the contrast vector a can be specified to encode pairwise comparisons in
the log scale (as in (2.2.10)) or in the log odds scale (as in (2.2.11)), in which case exp{λh,RR(aaa)} and
exp{λh,OR(aaa)} become the causal RR and causal OR in (2.2.9). User-specified contrasts a can provide a
variety of nonlinear estimands. For example, when J = 3, with a = (1,−2, 1)T one can use PSweight
to assess the equality of two consecutive causal RR: H0 : µh

3/µh
2 = µh

2/µh
1 .

Variance and interval estimation

PSweight by default implements the empirical sandwich variance for propensity score weighting
estimators (Lunceford and Davidian, 2004; Li et al., 2019; Mao et al., 2018) based on the M-estimation
theory (Stefanski and Boos, 2002). The variance adjusted for the uncertainty in estimating the
propensity score and outcome models, and are sometime referred to as the nuisance-adjusted sand-
wich variance. Below we illustrate the main steps with multiple treatments and general balancing
weights. Write θ =

(
ν1, . . . , νJ , η1, . . . , ηJ , βT , αT)T as the collection of parameters to be estimated.

Then
{

µ̂h,aug

j = ν̂j + η̂j : j = 1, . . . , J
}

jointly solve

N

∑
i=1

Ψi(θ) =
N

∑
i=1



w1(xi)Di1{Yi − m1(xi; α)− ν1}
...

wJ(xi)Di J{Yi − mJ(xi; α)− νJ}
h(xi){m1(xi; α)− η1}

...
h(xi){mJ(xi; α)− ηJ}

Sβ(Zi, xi; β)

Sα(Yi, Zi, xi; α)


= 0,

where Sβ(Zi, xi; β) and Sα(Yi, Zi, xi; α) are the score functions of the propensity score model and the
outcome model. The empirical sandwich variance estimator is

V̂(θ̂) =

{
N

∑
i=1

∂

∂θT Ψi(θ̂)

}−1 { N

∑
i=1

Ψi(θ̂)Ψ
T
i (θ̂)

}{
N

∑
i=1

∂

∂θ
ΨT

i (θ̂)

}−1

.

Because µ̂h,aug

j = ν̂j + η̂j, the variance of arbitrary linear contrasts based on the average potential

outcomes can be easily computed by applying the Delta method to the joint variance V̂(θ̂). For
the Hájek weighting estimators, variance is estimated by removing Sα(Yi, Zi, xi; α) as well as the
components involving mj(xi; α) in Ψi(θ). Finally, when propensity scores and potential outcomes are
not estimated through the generalized linear model or are supplied externally, or MW are used (since
the tilting function is not everywhere differentiable), PSweight ignores the uncertainty in estimating
β and α and removes Sβ(Zi, xi; β) and Sα(Yi, Zi, xi; α) in Ψi(θ) in the calculation of the empirical
sandwich variance. Based on the estimated variance, PSweight computes the associated symmetric
confidence intervals and p-values via the normal approximation.

For ratio causal estimands, PSweight applies the logarithm transformation to improve the accuracy
of the normal approximation (Agresti, 2003). For estimating the variance of causal RR, we first obtain

the joint variance of
(

log
(

µ̂h,aug

1

)
, . . . log

(
µ̂h,aug

J

))T
using the Delta method, and then estimate the
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variance of λh,RR(aaa). Once the symmetric confidence intervals are obtained for λh,RR(aaa) using the normal
approximation, we can exponentiate the upper and lower confidence limits to derive the asymmetric
confidence intervals for the causal RR. Confidence intervals for the causal OR are computed similarly.

PSweight also allows using bootstrap to estimate variances, which can be much more computa-
tionally intensive than the closed-form sandwich estimator but sometimes give better finite-sample
performance in small samples. By default, PSweight resamples R = 50 bootstrap replicates with
replacement. For each replicate, the weighting estimator (2.2.7) or the augmented weighting estimtor
(2.2.8) is implemented, providing R estimates of the J average potential outcomes (an R × J matrix).
Then for any contrast vector aaa = (a1, · · · , aJ)

T , PSweight obtains R bootstrap estimates:

T̂h(aaa)bootstrap =

τ̂h(aaa)1 =
J

∑
j=1

ajµ̂
h
j,1, . . . , τ̂h(aaa)R =

J

∑
j=1

ajµ̂
h
j,R

 .

The sample variance of T̂h(aaa)bootstrap is reported by PSweight as the bootstrap variance; the lower and
upper 2.5% quantiles of T̂h(aaa)bootstrap form the 95% bootstrap interval estimate

3 Overview of package

The PSweight package includes two modules tailored for design and analysis of observational studies.
The design module provides diagnostics to assess the adequacy of the propensity score model and the
weighted target population, prior to the use of outcome data. The analysis module provides functions
to estimate the causal estimands. We briefly describe the two modules below.

Design module

PSweight offers the SumStat() function to visualize the distribution of the estimated propensity scores,
to assess the balance of covariates under different weighting schemes, and to characterize the weighted
target population. It uses the following code snippet:

SumStat(ps.formula, ps.estimate = NULL, trtgrp = NULL, Z = NULL, covM = NULL,
zname = NULL, xname = NULL, data = NULL,weight = "overlap", delta = 0,
method = "glm", ps.control = list())

By default, the (generalized) propensity scores are estimated by the (multinomial) logistic regres-
sion, through the argument ps.formula. Alternatively, gbm() functions in the gbm package (Greenwell
et al., 2019) or the SuperLearner() function in the SuperLearner package (Polley et al., 2019) can
also be called by using method = "gbm" or method = "SuperLearner". Additional parameters of
those functions can be supplied through the ps.control argument. The argument ps.estimate sup-
ports estimated propensity scores from external routines. SumStat() produces a SumStat object, with
estimated propensity scores, unweighted and weighted covariate means for each treatment group,
balance diagnostics, and effective sample sizes (defined in (Li and Li, 2019)). We then provide a
summary.SumStat() function, which takes the SumStat object and summarizes weighted covariate
means by treatment groups and the between-group differences in either ASD or PSD. The default
options in weighted.var = TRUE and metric = "ASD" yield ASD based on weighted standard devi-
ations in Austin and Stuart (2015). The weighted covariate means can be used to build a baseline
characteristics “Table 1” to illustrate the target population where trimming or balancing weights are
applied.

summary(object, weighted.var = TRUE, metric = "ASD")

Diagnostics of propensity score models can be visualized with the plot.SumStat() function. It
takes the SumStat object and produces a balance plot (type = "balance") based on the ASD and
PSD. A vertical dashed line can be set by the threshold argument, with a default value equal to 0.1.
The plot.SumStat() function can also supply density plot (type = "density"), or histogram (type =
"hist") of the estimated propensity scores. The histogram, however, is only available for the binary
treatment case. The plot function is implemented as follows:

plot(x, type = "balance", weighted.var = TRUE, threshold = 0.1, metric = "ASD")

In the design stage, propensity score trimming can be carried out with the PStrim() function.
The trimming threshold delta is set to 0 by default. PStrim() also enables optimal trimming rules
(optimal = TRUE) that give the most statistically efficient (pairwise) subpopulation ATE, among all
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Table 4: Functions in the design module of PSweight.

Function Description

SumStat() Generate a SumStat object with information of propensity scores
and weighted covariate balance

summary.SumStat() Summarize the SumStat object and return weighted covariate
means by treatment groups and weighted or unweighted between-
group differences in ASD or PSD

plot.SumStat() Plot the distribution of propensity scores or weighted covariate
balance metrics from the SumStat object

PStrim() Trim the data set based on estimated propensity scores

possible trimming rules. A trimmed data set along with a summary of trimmed cases will be returned
by PStrim(). This function is given below:

PStrim(data, ps.formula = NULL, zname = NULL, ps.estimate = NULL, delta = 0,
optimal = FALSE, method = "glm", ps.control = list())

Alternatively, trimming is also anchored in the SumStat() function with the delta argument. All
functions in the design module are summarized in Table 4.

Analysis module

The analysis module of PSweight includes two functions: PSweight() and summary.PSweight(). The
PSweight() function estimates the average potential outcomes in the target population, {µh

j , j =

1, . . . , J}, and the associated variance-covariance matrix. By default, the empirical sandwich variance
is implemented, but bootstrap variance can be obtained with the argument bootstrap = TRUE). The
weight argument can take "IPW", "treated", "overlap", "matching" or "entropy", corresponding to
the weights introduced in Tables 2 and 3. More detailed descriptions of each input argument in the
PSweight() function can be found in Table 5. A typical PSweight() code snippet looks like

PSweight(ps.formula, ps.estimate, trtgrp, zname, yname, data, weight = "overlap",
delta = 0, augmentation = FALSE, bootstrap = FALSE, R = 50, out.formula = NULL,
out.estimate = NULL, family = "gaussian", ps.method = "glm", ps.control = list(),
out.method = "glm", out.control = list())

Similar to the design module, the summary.PSweight() function synthesizes information from the
PSweight object for statistical inference. A typical code snippet looks like

summary(object, contrast, type = "DIF", CI = TRUE)

In the summary.PSweight() function, the argument type corresponds to the three types estimands:
type = "DIF" is the default argument that specifies the additive causal contrasts; type = "RR"
specifies the contrast on the log scale as in equation (2.2.10); type = "OR" specifies the contrast on
the log odds scale as in equation (2.2.11). Confidence intervals and p-values are obtained using
normal approximation and reported by the summary.PSweight() function. The argument contrast
represents a contrast vector aaa or matrix with multiple contrast row vectors. If contrast is not specified,
summary.PSweight() provides all pairwise comparisons of the average potential outcomes. By default,
confidence interval is printed (CI = TRUE); alternatively, one can print the test statistics and p-values
by CI = FALSE.

4 Case study with the NCDS data

We demonstrate PSweight in a case study that estimates the causal effect of educational attainment on
hourly wage, based on the National Child Development Survey (NCDS) data. The National Child
Development Survey (NCDS) is a longitudinal study on children born in the United Kingdom (UK)
in 1958 1. NCDS collected information such as educational attainment, familial backgrounds, and
socioeconomic and health well being on 17, 415 individuals. We followed Battistin and Sianesi (2011)
to pre-process the data and obtain a subset of 3,642 males employed in 1991 with complete educational
attainment and wage information for analysis. For illustration, we use the Multiple Imputation by
Chained Equations in (Buuren and Groothuis-Oudshoorn, 2010) to impute missing covariates and

1https://cls.ucl.ac.uk/cls-studies/1958-national-child-development-study/
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Table 5: Arguments for function PSweight() in the analysis module of PSweight.

Argument Description Default

ps.formula A symbolic description of the propensity score model. –
ps.estimate An optional matrix or data frame with externally estimated (generalized)

propensity scores for each observation; can also be a vector with binary treat-
ments.

NULL

trtgrp An optional character defining the treated population for estimating (pairwise)
ATT. It can also be used to specify the treatment level when only a vector of
values are supplied for ps.estimate in the binary treatment setting.

Last value in al-
phabetic order

zname An optional character specifying the name of the treatment variable when
ps.formula is not provided.

NULL

yname A character specifying name of the outcome variable in data.
weight A character specifying the type of weights to be used. "overlap"

delta Trimming threshold for (generalized) propensity scores. 0
augmentation Logical value of whether augmented weighting estimators should be used. FALSE

bootstrap Logical value of whether bootstrap is used to estimate the standard error FALSE

R Number of bootstrap replicates if bootstrap = TRUE 50
out.formula A symbolic description of the outcome model to be estimated when

augmentation = TRUE

out.estimate An optional matrix or data frame containing externally estimated potential
outcomes for each observation under each treatment level.

NULL

family A description of the error distribution and canonical link function to be used
in the outcome model if out.formula is provided

"gaussian"

ps.method a character to specify the method for propensity model. "glm"

ps.control A list to specify additional options when method is set to "gbm" or
"SuperLearner".

list()

out.method A character to specify the method for outcome model. "glm"

out.control A list to specify additional options when methodout is set to "gbm" or
"SuperLearner".

list()

obtain a single imputed data set for all subsequent analysis.2 The outcome variable wage is log of
the gross hourly wage in Pound. The treatment variable is educational attainment. For the multiple
treatment case, To start with, we created Dmult as a treatment variable with three levels: ">=A/eq",
"O/eq" and "None", representing advanced qualification (1, 806 individuals), intermediate qualification
(941 individuals) and no qualification (895 individuals). We consider twelve pre-treatment covariates
or potential confounders. The variable white indicates whether an individual identified himself as
white race; scht indicates the school type they attended at age 16; qmab and qmab2 are math test scores
at age 7 and 11; qvab and qvab2 are two reading test scores at age 7 and 11; sib_u stands for the number
of siblings; agepa and agema are the ages of parents in year 1,974; in the same year, the employment
status of mother maemp was also collected; paed_u and maed_u are the years of education for parents.
For simplicity, we will focus on IPW and the three types of weights that improve covariate overlap:
OW, MW and EW.

Estimating generalized propensity scores and balance assessment

We use Dmult, the three-level variable, as the treatment of interest. About one half of the population
attained advanced academic qualification, there are approximately equal numbers of individuals with
intermediate academic qualification or no academic qualification. To illustrate the estimation and
inference for ratio estimands, we also introduce a binary outcome of wage, wagebin. The dichotomized
wage was obtained with the cutoff of the average hourly wage of actively employed British male
aged 30-39 in 19913. The averaged hourly wage is 8.23, and we take log(8.23) ≈ 2.10 as the cutoff.
Among the study participants, we observe 1610 and 2032 individuals above and below the average,
and we are interested in estimating the pairwise (weighted) average treatment effect of the academic
qualification for obtaining above-average hourly wage.

We specify a multinominal regression model, ps.mult, to estimate the generalized propensity
scores.

ps.mult <- Dmult ~ white + maemp + as.factor(scht) + as.factor(qmab)

2Ten out of twelve pre-treatment covariates we considered have missingness. The smallest missingness propor-
tion is 4.9% and the largest missingness proportion is 17.2%. We considered one imputed complete data set for
illustrative purposes, but note that a more rigorous analysis could proceed by combining analyses from multiple
imputed data sets via the Rubin’s rule.

3https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/
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as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u +
agepa + agema + sib_u + paed_u * agepa + maed_u * agema

Then we obtain the propensity score estimates and assess weighted covariate balance with the
SumStat() function.

bal.mult <- SumStat(ps.formula = ps.mult,
weight = c("IPW", "overlap", "matching", "entropy"), data = NCDS)

plot(bal.mult, type = "density")
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Figure 1: Density plots of estimated generalized propensity scores with respect to the three-level
treatment variable Dmult generated by plot.SumStat() function in the PSweight package.

The distributions of generalized propensity scores are given in Figure 1 (in alphabetic order of the
names of treatment groups). For the generalized propensity score to receive the advanced qualification
(">=A/eq") or no qualification ("None"), there is a mild lack of overlap due to separation of the group-
specific distribution. Since bal.mult includes four weighting schemes, we plot the maximum pairwise
ASD and assess the (weighted) covariate balance in a single Love plot.

plot(bal.mult, metric = "ASD")

The covariates are imbalanced across the three groups prior to any weighting. Although IPW
can generally improve covariate balance, the maximum pairwise ASD still ocassionally exceeds the
threshold 0.1 due to lack of overlap. In contrast, OW, MW and EW all emphasize the subpopulation
with improved overlap and provide better balance across all covariates.

Generalized propensity score trimming

The PSweight package can perform trimming based on (generalized) propensity scores. As IPW does
not adequately balance the covariates across the three groups in Figure 2, we explore trimming as
a way to improve balance for IPW. There are two types of trimming performed by the PSweight
package: (1) symmetric trimming that removes units with extreme (generalized propensity scores)
(Crump et al., 2009; Yoshida et al., 2018) and (2) optimal trimming that provides the most efficient
IPW estimator for estimating (pairwise) ATE (Crump et al., 2009; Yang et al., 2016). Specifically,
the symmetric trimming is supported by both the SumStat() and PSweight() functions through
the delta argument. Both functions refit the (generalized) propensity score model after trimming
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Figure 2: Love plot with the three-level treatment variable Dmult using the maximum pairwise ASD
metric, generated by plot.SumStat() function in the PSweight package.

following the recommendations in Li et al. (2019). We also provide a stand-alone PStrim function
that performs both symmetric trimming and optimal trimming. Following Yoshida et al. (2018), with
three treatment groups, we exclude all individuals with the estimated generalized propensity scores
less than δ = 0.067. This threshold removes a substantial amount of individuals in the advanced
qualification group (information can be pulled from the trim element in the SumStat object). As
discussed in Yoshida et al. (2018), propensity trimming could improve the estimation of ATE and ATT,
but barely have any effect for estimation of ATO and ATM. Evidently, Figure 3 indicates that IPW
controls all pairwise ASD within 10% in the trimmed sample. Trimming had nearly no effect on the
weighted balance for OW, MW and EW.

bal.mult.trim <- SumStat(ps.formula = ps.mult, weight = c("IPW", "overlap", "matching",
"entropy"), data = NCDS, delta = 0.067)

bal.mult.trim

1050 cases trimmed, 2592 cases remained

trimmed result by trt group:
>=A/eq None O/eq

trimmed 778 71 201
remained 1028 824 740

weights estimated for: IPW overlap matching entropy

plot(bal.mult.trim,metric = "ASD")

Alternatively, if one does not specify the trimming threshold, the PStrim function supports the
optimal trimming procedure that identifies the optimal threshold based on data. Example syntax is
given as follows. By pulling out the summary statistics for trimming, we can see that optimal trimming
excludes 27%, 9% and 2% of the individuals among those with advanced qualification, intermediate
qualification and no qualification, respectively. The exclusion is more conservative compared to
symmetric trimming with δ = 0.067. However, the resulting covariate balance after optimal trimming
is similar to Figure 3 and omitted.

PStrim(ps.formula = ps.mult, data = NCDS, optimal = TRUE)

>=A/eq None O/eq
trimmed 479 21 82
remained 1327 874 859
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Figure 3: Love plot with the three-level treatment variable Dmult using the maximum pairwise ASD
metric, after symmetric trimming with δ = 0.067. This plot is generated by plot.SumStat() function
in the PSweight package.

Estimation and inference of pairwise (weighted) average treatment effects

For illustration, we estimate the ratio estimands using the binary outcome wagebin. For illustration,
we will only estimate the causal effects based on the data without trimming, and the analysis with the
trimmed data follows the exact same steps. Based on the multinomial logistic propensity score model,
we obtain the pairwise causal RR among the combined population via IPW.

ate.mult <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,
weight = "IPW")}

contrasts.mult <- rbind(c(1,-1, 0), c(1, 0,-1), c(0, -1, 1))
sum.ate.mult.rr <- summary(ate.mult, type = "RR", contrast = contrasts.mult)
sum.ate.mult.rr

Closed-form inference:

Inference in log scale:
Original group value: >=A/eq, None, O/eq

Contrast:
>=A/eq None O/eq

Contrast 1 1 -1 0
Contrast 2 1 0 -1
Contrast 3 0 -1 1

Estimate Std.Error lwr upr Pr(>|z|)
Contrast 1 0.607027 0.115771 0.380120 0.83393 1.577e-07 ***
Contrast 2 0.459261 0.052294 0.356767 0.56176 < 2.2e-16 ***
Contrast 3 0.147766 0.121692 -0.090746 0.38628 0.2246
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

By providing the appropriate contrast matrix, we obtain all pairwise comparisons of the average
potential outcomes on the log scale with the summary.PSweight() function, and estimate λh,RR(aaa)
for contrast vector aaa. The p-values provides statistical evidence against the weak causal null H0 :
λh,RR(aaa) = 0. It is found that, among the combined population, the proportion that receives an
above-average hourly wage when everyone attains advanced qualification is exp(0.607) = 1.83
times that when everyone attains no academic qualification. Further, the proportion that receives an
above-average hourly wage when everyone attains advanced qualification is exp(0.459) = 1.58 times
that when everyone attains intermediate qualification. Both effects are significant at the 0.05 levels
and provides strong evidence against the corresponding causal null (p-value < 0.001). However, if
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everyone attains intermediate qualification, the proportion that receives an above-average hourly wage
is only slightly higher compared to without qualification, with a p-value exceeding 0.05. To directly
report the causal RR and its confidence intervals, we can simply exponentiate the point estimate and
confidence limits provided by the summary.PSweight() function.

exp(sum.ate.mult.rr$estimates[,c(1,4,5)])

Estimate lwr upr
Contrast 1 1.834968 1.4624601 2.302358
Contrast 2 1.582904 1.4287028 1.753749
Contrast 3 1.159241 0.9132496 1.471493

Focusing on the target population that has the most overlap in the observed covariates, we further
use the OW to estimate the pairwise causal RR. OW theoretically provides the best internal validity
for pairwise comparisons; Figure 3 also indicates that OW achieves better covariate balance among
the overlap population. Exponentiating the results provided by the summary.PSweight() function,
we observe each pairwise causal RR has a larger effect size among the overlap weighted population.
Interestingly, among the overlap population, the proportion that receives an above-average hourly
wage when everyone attains intermediate qualification becomes approximately 1.55 times that when
everyone attains no academic qualification, and the associated 95% CI excludes the null. Moreover, the
standard errors for the pairwise comparisons are smaller when using OW versus IPW, implying that
OW analysis generally corresponds to increased power by focusing on a population with equipoise.
We repeat the analysis using both MW and EW; the results are similar to OW for this analysis and
therefore omitted for brevity.

ato.mult <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,
weight = "overlap")

sum.ato.mult.rr <- summary(ato.mult, type = "RR", contrast = contrasts.mult)
exp(sum.ato.mult.rr$estimates[,c(1,4,5)])

Estimate lwr upr
Contrast 1 2.299609 1.947140 2.715882
Contrast 2 1.527931 1.363092 1.712705
Contrast 3 1.505048 1.257180 1.801785

The above output suggests that among the overlap population, the causal RR for comparing
advanced qualification to intermediate qualification is similar in magnitude to that for comparing
intermediate qualification to no qualification. We can formally test for the equality of two consecutive
causal RR based on the null hypothesis H0 : µh

3/µh
2 = µh

2/µh
1 . Operationally, we need to specify the

corresponding contrast vector contrast = c(1,1,-2). The p-value for testing this null is 0.91 (output
omitted for brevity), and suggests a lack of evidence against the equality of consecutive causal RR at
the 0.05 level.

summary(ato.mult, type = "RR", contrast = c(1, 1, -2), CI = FALSE)

With the binary outcome wagebin, we can also estimate the pairwise causal OR among a specific
target population. For example, using OW, the causal conclusions regarding the effectiveness due to
attaining academic qualification do not change, because all three 95% confidence intervals exclude
null. However, the pairwise causal OR appear larger than the pairwise causal RR. This is expected
because our outcome of interest is not uncommon (Nurminen, 1995). For rare outcomes, causal OR
approximates causal RR.

sum.ato.mult.or <- summary(ato.mult, type = "OR", contrast = contrasts.mult)
exp(sum.ato.mult.or$estimates[,c(1,4,5)])

Estimate lwr upr
Contrast 1 3.586050 2.841383 4.525879
Contrast 2 2.050513 1.696916 2.477791
Contrast 3 1.748855 1.375483 2.223578

As a final step, we illustrate how to combine OW with outcome regression and estimate the
pairwise causal RR among the overlap population. We use the same set of covariates in the binary
outcome regression model.

out.wagebin <- wagebin ~ white + maemp + as.factor(scht) + as.factor(qmab) +
as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u +
agepa + agema + sib_u + paed_u * agepa + maed_u * agema

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 295

Loading this outcome regression formula into the PSweight() function, and specifying family =
"binomial" to indicate the type of outcome, we obtain the augmented overlap weighting estimates on
the log RR scale. Exponentiating the point estimates and confidence limits, one reports the pairwise
causal RR. The pairwise causal RR reported by the augmented OW estimator is similar to that reported
by the simple OW estimator; further, the width of the confidence interval is also comparable before
and after outcome augmentation, and the causal conclusions based on pairwise RR remain the same.
The similarity between simple and augmented OW estimators implies that OW itself may already be
efficient.

ato.mult.aug <- PSweight(ps.formula = ps.mult, yname = "wagebin", data = NCDS,
augmentation = TRUE, out.formula = out.wagebin, family = "binomial")

sum.ato.mult.aug.rr <- summary(ato.mult.aug, type = "RR", contrast = contrasts.mult)
exp(sum.ato.mult.aug.rr$estimates[,c(1,4,5)])

Estimate lwr upr
Contrast 1 2.310628 1.957754 2.727105
Contrast 2 1.540176 1.375066 1.725111
Contrast 3 1.500237 1.253646 1.795331

Using machine learning to estimate propensity scores and potential outcomes

As an alternative to the default generalized linear models, we can use more advanced machine learning
models to estimate propensity scores and potential outcomes. Flexible propensity score and outcome
estimation has been demonstrated to reduce bias due to model misspecification, and potentially
improve covariate balance (Lee et al., 2010; Hill, 2011; McCaffrey et al., 2013). This can be achieved in
PSweight for both balance check and constructing weighted estimator by specifying the method as
the generalized boosted model (GBM) or the super learner methods. Additional model specifications
for these methods can be supplied through ps.control and out.control. Machine learning models
that are included in neither gbm nor SuperLearner could be estimated externally and then imported
through the ps.estimate and out.estimate arguments. These two arguments broaden the utility
of PSweight where any externally generated estimates of propensity scores and potential outcomes
models can be easily incorporated.

We now illustrate the use of GBM as an alternative of the default generalized linear models. For
simplicity, this illustration is based on binary education. Specifically, we created Dany to indicate
whether one had attained any academic qualification. There are 2,399 individuals that attained aca-
demic qualification, and 1,243 individuals without any. GBM is a family of non-parametric tree-based
regressions that allow for flexible non-linear relationships between predictors and outcomes (Fried-
man et al., 2000). The following propensity model formula is specified; the formula does not include
interactions terms because boosted regression is already capable of capturing non-linear effects and in-
teractions (McCaffrey et al., 2004). In this illustration, we use the AdaBoost (Freund and Schapire, 1997)
algorithm to fit the propensity model through the control setting, ps.control=list(distribution
= "adaboost"). We use the default values for other model parameters such as the number of trees
(n.trees = 100), interaction depth (interaction.depth = 1), the minimum number of observations
in the terminal nodes (n.minobsinnode = 1), shrinkage reduction (shrinkage = 0.1), and bagging
fraction (shrinkage = 0.5). Alternative values for these parameters could also be passed through
ps.control.

ps.any.gbm <- Dany ~ white + maemp + as.factor(scht) + as.factor(qmab) +
as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u + maed_u+
agepa + agema + sib_u

bal.any.gbm <-SumStat(ps.formula = ps.any.gbm, data= NCDS, weight = "overlap",
method = "gbm", ps.control = list(distribution = "adaboost"))

The balance check through plot.SumStat() suggests substantial improvement in covariate balance
with SMD of all covariates below 0.1 after weighting. After assessing balance and confirming the
adequacy of the propensity score model, we further fit the outcome model using GBM with the default
logistic regression and parameters. In the PSweight() function, we can specify both ps.method =
"gbm" and out.method = "gbm" and leave the out.control argument as default. The detailed code and
summary of the output is in below. Here we redefine the propensity score model without interaction
terms because GBM considers interactions between covariates by default. The results using GBM, in
this example, are very similar to those using generalized linear models (results omitted).

out.wage.gbm <- wage ~ white + maemp + as.factor(scht) + as.factor(qmab) +
as.factor(qmab2) + as.factor(qvab) + as.factor(qvab2) + paed_u +
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maed_u + agepa + agema + sib_u
ato.any.aug.gbm <- PSweight(ps.formula = ps.any.gbm, yname = "wagebin",

data = NCDS, augmentation = TRUE, out.formula = out.wage.gbm,
ps.method = "gbm", ps.control = list(distribution = "adaboost"),
out.method = "gbm")

summary(ato.any.aug.gbm, CI = FALSE)

Closed-form inference:

Original group value: 0, 1

Contrast:
0 1

Contrast 1 -1 1

Estimate Std.Error z value Pr(>|z|)
Contrast 1 0.186908 0.018609 10.044 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

5 Summary

Propensity score weighting is an important tool for causal inference and comparative effectiveness
research. This paper introduces the PSweight package and demonstrates its functionality with the
NCDS data example in the context of binary and multiple treatment groups. In addition to providing
easy-to-read balance statistics and plots to aid the design of observational studies, the PSweight
offers point and variance estimation with a variety of weighting schemes for the (weighted) average
treatment effects on both the additive and ratio scales. These weighting schemes include the optimal
overlap weights recently introduced in Li et al. (2018) and Li and Li (2019), and could help generate
valid causal comparative effectiveness evidence among the population at equipoise.

Although propensity score weighting has been largely developed in observational studies, it is also
an important tool for covariate adjustment in randomized controlled trials (RCTs). Williamson et al.
(2014) showed that IPW can reduce the variance of the unadjusted difference-in-means treatment effect
estimator in RCTs, and Shen et al. (2014) proved that the IPW estimator is semiparametric efficient
and asymptotically equivalent to the analysis of covariance (ANCOVA) estimator (Tsiatis et al., 2008).
Zeng et al. (2020) generalized these results of IPW to the family of balancing weights. Operationally,
there is no difference in implementing propensity score weighting between RCTs and observational
studies. Therefore, PSweight is directly applicable to perform covariate-adjusted analysis in RCTs.

The PSweight package is under continuing development to include other useful components for
propensity score weighting analysis. Specifically, future versions of PSweight will include components
to enable pre-specified subgroup analysis with balancing weights and flexible variable selection tools
(Yang et al., 2021). We are also studying overlap weighting estimators with time-to-event outcomes
and complex survey designs. Those new features are being actively developed concurrently with our
extensions to the methodology.
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RFpredInterval: An R Package for
Prediction Intervals with Random Forests
and Boosted Forests
by Cansu Alakuş, Denis Larocque and Aurélie Labbe

Abstract Like many predictive models, random forests provide point predictions for new observations.
Besides the point prediction, it is important to quantify the uncertainty in the prediction. Prediction
intervals provide information about the reliability of the point predictions. We have developed a
comprehensive R package, RFpredInterval, that integrates 16 methods to build prediction intervals
with random forests and boosted forests. The set of methods implemented in the package includes
a new method to build prediction intervals with boosted forests (PIBF) and 15 method variations
to produce prediction intervals with random forests, as proposed by Roy and Larocque (2020). We
perform an extensive simulation study and apply real data analyses to compare the performance of
the proposed method to ten existing methods for building prediction intervals with random forests.
The results show that the proposed method is very competitive and, globally, outperforms competing
methods.

1 Introduction

Predictive modelling is the general concept of building a model that describes how a group of
covariates can be used to predict a response variable. The objective is to predict the unknown
responses of observations given their covariates. For example, predictive models could be used to
predict the sale price of houses given house characteristics (De Cock, 2011). In its simplest form, a
predictive model aims to provide a point prediction for a new observation. However, a point prediction
does not contain information about its precision that can tell us how close to the true response we can
expect the prediction to be, which is often important in decision-making context. Hence, although
the point prediction is often the main goal of predictive analysis, assessing its reliability is equally
important, and this can be achieved with a prediction interval (PI). A PI contains a set of likely
values for the true response with an associated level of confidence, usually, 90% or 95%. Given that
shorter PIs are more informative, developing predictive models that can produce shorter PIs along
with the point predictions is crucial in assessing and quantifying the prediction error. In real-world
applications, knowing the prediction error alongside the point prediction increases the practical value
of the prediction.

Regression analysis is a form of predictive modelling technique that examines the relationship
between a response variable and a group of covariates. In this paper, we consider a general regression
model

Y = g (X) + ϵ (1)

where Y is a univariate continuous response variable, X is a p-dimensional vector of predictors, and ϵ
is an error term. We assume g (.) is an unknown smooth function ℜp → ℜ and E [Y|X = x] = g (X).
A confidence interval of the prediction is a range likely to contain the location of the response
variable’s true population mean. However, a prediction interval for a new observation is wider than
its corresponding confidence interval and provides a range likely to contain this new observation’s
response value.

In the past decade, random forests have increased in popularity and provide an efficient way
to generate point predictions for model (1). A random forest is an ensemble method composed of
many decision trees, which can be described with a simple algorithm (Breiman, 2001). For each tree
b = {1, ..., B}, a bootstrap sample of observations is drawn and a fully grown tree is built such that a
set of predictors is randomly selected at each node and the best split is selected among all possible
splits with those predictors only. The random forest prediction for a new observation is the average of
the B trees

ŷnew =
1
B

B

∑
b=1

ŷb
new

where ŷb
new is the tree prediction for the new observation in the bth tree, i.e. the average of observations

in the terminal node corresponding to the new observation. Besides this traditional description, the
modern view also considers random forests as data-driven weight generators (Hothorn et al., 2004;
Lin and Jeon, 2006; Moradian et al., 2017, 2019; Athey et al., 2019; Roy and Larocque, 2020; Tabib and
Larocque, 2020; Alakuş et al., 2021).
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Although random forests limit over-fitting by combining many trees, which reduces the variance
of the estimator, final predictions can be biased (Mentch and Hooker, 2016; Wager and Athey, 2018).
Since each tree is built under the same random process, all trees focus on the same part of the response
signal, usually the strongest. Therefore, some parts of the response signal may be left untargeted,
which could result in biased point predictions. Wager and Athey (2018) provide bounds for the extent
of the bias of random forests under some assumptions about the tree growing process. Following their
work, Ghosal and Hooker (2021) proposed a bias correction method in a regression framework called
one-step boosted forest, which is introduced in Breiman (2001) and Zhang and Lu (2012). The main idea
of the proposed method is to sum the predictions of two random forests, where the first is a regression
forest fitted on the target data set and the second is fitted on the out-of-bag residuals of the former.
Empirical studies show that this method provides a significant bias reduction when compared to a
simple random forest.

The current paper proposes an R package providing, among other features, an extension of the one-
step boosted forest method described above (Ghosal and Hooker, 2021). The literature on prediction
intervals for random forests consists mostly of recent studies. The first method is the Quantile
Regression Forests (QRF) method proposed by Meinshausen (2006). The aim of QRF is to estimate
conditional quantiles of the response variable, instead of conditional means, using an estimated
cumulative distribution function obtained with the nearest neighbour forest weights introduced by
Hothorn et al. (2004). Prediction intervals can be built directly from the estimated conditional quantiles.
The method is implemented in the CRAN package quantregForest (Meinshausen, 2017).

In a more recent study, Athey et al. (2019) proposed Generalized Random Forests (GRF), a very
general framework to estimate any quantity, such as conditional means, quantiles or average partial
effects, identified by local moment equations. Trees are grown with splitting rules designed to
maximize heterogeneity with respect to the quantity of interest. Quantile regression forest is one of the
applications of GRF. Similar to the QRF, the GRF method uses the neighbourhood information from
different trees to compute a weighted set of neighbours for each test point. Unlike QRF, which grows
trees with the least-squares criterion, GRF uses a splitting rule designed to capture heterogeneity in
conditional quantiles. An implementation of quantile regression forest with GRF is available in the
function quantile_forest of the CRAN package grf (Tibshirani et al., 2021).

Vovk et al. (2005, 2009) introduced a general distribution-free conformal prediction interval frame-
work. Any predictive model, including random forests, can be used within the proposed methodology.
The idea is to use an augmented data set that includes the new observation to be predicted to fit the
model, and apply a set of hypothesis tests to provide an error bound around the point prediction
for the new observation. Although this method does not require any distribution assumptions, it is
computationally intensive. Lei et al. (2018) proposed a variant of this method, called Split Conformal
(SC) prediction, which splits the data into two subsets, one to fit the model, and one to compute
the quantiles of the residual distribution. We note that, while the original full conformal prediction
interval framework produces shorter intervals, SC is computationally more efficient. The R package
conformalInference (Tibshirani, 2019), available on GitHub, implements this method.

Roy and Larocque (2020) proposed 20 distinct variations of methods to improve the performance
of prediction intervals with random forests. These approaches differ according to 1) the method used
to build the forest and 2) the method used to build the prediction interval. Four methods can be
used to build the forest: three from the classification and regression tree (CART) paradigm (Breiman
and Breiman, 1984) and the transformation forest method (TRF) proposed by Hothorn and Zeileis
(2021). Within the CART paradigm, in addition to the default least-squares (LS) splitting criterion,
two alternative splitting criteria, L1 and shortest prediction interval (SPI), are considered. Prediction
intervals are built using the Bag of Observations for Prediction (BOP), which is the set of nearest
neighbour observations previously used in Moradian et al. (2017, 2019). In addition to the type of
forest chosen, there are also five methods to build prediction intervals: the classical method (LM), the
quantile method (Quant), the shortest prediction interval (SPI), the highest density region (HDR), and
the contiguous HDR (CHDR). LM is computed based on an intercept-only linear model using the BOP
as the sample, and produces a symmetric PI around the point prediction. The quantile method, similar
to the QRF method, is based on the quantiles of the BOP. SPI corresponds to the shortest interval
among the intervals that contain at least (1 − α) 100% of the observations in the BOP. As an alternative
to SPI, HDR is the smallest region in the BOP, with the desired coverage (1 − α). Note that HDR
is not necessarily a single interval. If the distribution is multimodal, it can be formed by multiple
intervals. Finally, CHDR is a way to obtain a single prediction interval from HDR intervals by building
an interval with the minimum and maximum bounds of the HDR intervals.

Zhang et al. (2020) proposed a forest-based prediction interval method, called Out-of-Bag (OOB)
prediction intervals, to estimate prediction intervals using the empirical quantiles of the out-of-bag
prediction errors. The method assumes that OOB prediction errors are identically distributed and
that their distribution can be well approximated by the out-of-bag prediction errors obtained from all
training observations. The resulting prediction intervals have the same width for all test observations.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=quantregForest
https://CRAN.R-project.org/package=grf


CONTRIBUTED RESEARCH ARTICLE 302

The method is implemented in the CRAN package rfinterval (Zhang, 2019).

Lu and Hardin (2021) proposed a very interesting and useful method to estimate the conditional
prediction error distribution of a random forest. The main idea of the proposed method is to use a
random forest to compute the out-of-bag residuals for the training observations and to form a set of
out-of-bag neighbours for each test point. Then, the conditional prediction error distribution for each
test point is determined with the out-of-bag residuals in the neighbourhood. Estimating the prediction
error distribution enables the estimation of conditional quantiles, conditional biases and conditional
mean squared prediction errors. The prediction interval for a test point x, defined by P̂Iα (x), is formed
by adding the α/2 and 1 − α/2 quantiles of the conditional prediction error distribution to the random
forest point prediction. The estimators are implemented in the CRAN package forestError (Lu and
Hardin, 2020).

Note that the conformal inference, OOB approach of Zhang et al. (2020) and the P̂Iα (x) method
of Lu and Hardin (2021) all use the prediction errors to build the prediction intervals. Instead of
using the training responses directly to estimate quantiles, using prediction errors provides a better
predictive power. However, unlike conformal inference and the OOB approach, the P̂Iα (x) method
uses the nearest neighbour observations to estimate the prediction error distribution. This idea is very
similar to the BOP idea (Roy and Larocque, 2020), but instead of using in-bag observations, Lu and
Hardin (2021) use out-of-bag observations to form the neighbourhoods. This approach allows the
local information for the test observations to be extracted.

In this paper, we introduce the R package RFpredInterval (Alakus et al., 2022), which is the
novel implementation of 16 methods to build prediction intervals with random forests and boosted
forests. The set of methods implemented in the package includes a new method to build prediction
intervals with boosted forests and 15 method variations (three splitting rules with the CART paradigm
which are LS, L1 and SPI, and five methods to build prediction intervals which are LM, SPI, Quant,
HDR and CHDR) proposed by Roy and Larocque (2020). These 15 methods had been thoroughly
investigated before through simulation studies and with real data sets in Roy and Larocque (2020).
However, they are not easily available to use. One of the main contributions of our package is the
implementation of these competitive methods and the ability for users to compare various prediction
interval methods within the same package. The other main contribution of our paper is a new method
to build prediction intervals. Contrary to the 15 methods proposed by Roy and Larocque (2020),
the newly introduced method was not tested before. That is why in the paper we placed a greater
emphasis on investigating the new method through extensive simulation studies and with real data.
For performance comparison purposes, we compared the new method to 10 existing methods which
include:

• 5 of the 15 implemented method variations of Roy and Larocque (2020); see the Competing
methods subsection for details.

• 5 other competing methods from the literature: Quantile Regression Forests (QRF), Generalized
Random Forests (GRF), Split Conformal prediction method (SC), Out-of-Bag (OOB) prediction
intervals method and P̂Iα (x) method.

The new proposed method to build Prediction Intervals with Boosted Forests is called PIBF. This
approach integrates the idea of using the nearest neighbour out-of-bag observations to estimate the
conditional prediction error distribution presented in Lu and Hardin (2021) to the one-step boosted
forest proposed by Ghosal and Hooker (2021). We will show in this paper that PIBF significantly
improves the performance of prediction intervals with random forests when compared with 10 existing
methods using a variety of simulated and real benchmark data sets.

The rest of the paper is organized as follows. In the next section, we describe the algorithm imple-
mented in PIBF. We then present the details of the package and provide a practical and reproducible
example. We also perform a simulation study to compare the performance of our proposed method to
existing competing methods, and we investigate the performance of the proposed method with real
data sets. Lastly, we conclude with a discussion of the results.

2 Method and implementation

The proposed method is based on the one-step boosted forest method proposed by Ghosal and Hooker
(2021). It consists in fitting two regression random forests: the first is fitted to get point predictions
and out-of-bag (OOB) residuals using the given data set, whereas the second is fitted to predict those
residuals using the original covariates. As empirical studies demonstrate, the one-step boosted forest
provides point predictions with reduced bias compared to the simple random forest. Ghosal and
Hooker (2021) use subsampling for their theoretical investigations, even though random forests were
originally described with bootstrap samples and obtain notable performance improvements. They

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=rfinterval
https://CRAN.R-project.org/package=forestError


CONTRIBUTED RESEARCH ARTICLE 303

have also investigated the effect of using bootstrapping with the one-step boosted forest on the bias
estimations. From the results presented in their appendix, the use of bootstrapping yields the best
performance and reduces the bias the most in exchange for an increase in their proposed variance
estimator, which is defined under asymptotic normality. In this paper, we use bootstrapping for the
one-step boosted forest method following the better performance results on bias reduction. The final
prediction for a new observation, xnew, is the sum of the predictions from the two random forests

ŷ∗new = ŷnew + ϵ̂new (2)

where ŷnew is the point prediction obtained from the first random forest and ϵ̂new is the bias estimation
from the second forest.

Besides bias correction, we use the second random forest as a way to construct a prediction interval
by finding the nearest neighbour observations that are close to the one we want to predict. The idea of
finding the nearest neighbour observations, a concept very similar to the ’nearest neighbour forest
weights’ (Hothorn et al., 2004; Lin and Jeon, 2006), was introduced in Moradian et al. (2017) and later
used in Moradian et al. (2019), Roy and Larocque (2020), Tabib and Larocque (2020) and Alakuş et al.
(2021). For a new observation, the set of in-bag training observations that are in the same terminal
nodes as the new observation forms the set of nearest neighbour observations. Roy and Larocque
(2020) called this set of observations the Bag of Observations for Prediction (BOP). We can define the
BOP for a new observation xnew as

BOP (xnew) =
B⋃

b=1

Ib (xnew) (3)

where Ib (xnew) is the set of in-bag training observations, i.e., observations in the bootstrap sample that
are in the same terminal node as xnew in the bth tree. Ib (.) consists of the training observations that are
in the bootstrap sample of the bth tree.

Instead of forming the set of nearest neighbour observations with the in-bag training observations,
we can use the out-of-bag observations which are not in the bootstrap sample, as used in Lu and
Hardin (2021). We can define the out-of-bag equivalent of the BOP for a new observation xnew (3) as

BOP∗ (xnew) =
B⋃

b=1

Ob (xnew) (4)

where Ob (xnew) is the set of out-of-bag observations that are in the same terminal node as xnew in the
bth tree. Ob (.) consists of the training observations that are not in the bootstrap sample of the bth tree.

Out-of-bag observations are not used in the tree growing process. Thus, for the trees where the
training observations are out-of-bag, they are like the unobserved test observations for those trees.
The only difference is that, for a new observation, we use all the trees in the forest whereas for an
out-of-bag observation we have only a subset of the forest trees. By using the out-of-bag equivalent of
the BOP for a new observation, we can make use of the analogy between the out-of-bag observations
and test observations. The out-of-bag neighbours of a new observation represent the new observation
better than the in-bag neighbours.

Any desired measure can be obtained by using the constructed BOPs. In this paper, we use the
BOP idea to build a prediction interval for a test observation. For a new observation with covariates
xnew, we firstly form BOP∗ (xnew) (4) using the out-of-bag neighbours. Then, as proposed by Lu and
Hardin (2021), we estimate the conditional prediction error distribution, F̂ (xnew), but now with the
bias-corrected out-of-bag residuals of the observations in BOP∗ (xnew). Lastly, we build a prediction
interval for the new observation as

PI (xnew) =
[
ŷ∗new + SPIl

α

(
F̂ (xnew)

)
, ŷ∗new + SPIu

α

(
F̂ (xnew)

)]
(5)

where ŷ∗new is the bias-corrected prediction, SPIl
α

(
F̂ (xnew)

)
and SPIu

α

(
F̂ (xnew)

)
are the lower and

upper bounds of the SPIα
(

F̂ (xnew)
)
, which is the shortest interval formed by the observations in

BOP∗ (xnew) that contains at least (1 − α) 100% of the observations. By using the bias-corrected
residuals to form prediction error distribution and picking the shortest interval among the qualified
intervals, we can expect narrower prediction intervals.

We can summarize the steps of the proposed method as follows:

1. Train the first regression RF with covariates X to predict the response variable Y, and get the
OOB predictions Ŷoob

2. Compute the OOB residuals as ϵ̂oob = Y − Ŷoob

3. Train the second regression RF with covariates X to predict the OOB residuals ϵ̂oob, and get the
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OOB predictions for residuals ˆ̂ϵoob

4. Update the OOB predictions as Ŷ∗
oob = Ŷoob +

ˆ̂ϵoob

5. Compute the updated OOB residuals after bias-correction as ϵ̂∗oob = Y − Ŷ∗
oob

6. For a new observation xnew, get the point predictions ŷnew from the first RF, and get the predicted
residuals ϵ̂new from the second RF, then the final prediction for the new observation is

ŷ∗new = ŷnew + ϵ̂new

where ϵ̂new is the estimated bias.

7. Form a BOP for xnew with the OOB neighbours using the second RF, BOP∗ (xnew) (4) and
estimate the conditional prediction error distribution for xnew as,

F̂ (xnew) =
{

ϵ̂∗oob,i|i ∈ BOP∗ (xnew)
}

8. Build a PI for xnew as PI (xnew) =
[
ŷ∗new + SPIl

α

(
F̂ (xnew)

)
, ŷ∗new + SPIu

α

(
F̂ (xnew)

)]

Calibration

The principal goal of any prediction interval method is to ensure the desired coverage level. In order
to attain the desired coverage level (1 − α), we may need a calibration procedure. The goal of the
calibration is to find the value of αw, called the working level in Roy and Larocque (2020), such that
the coverage level of the PIs for the training observations is closest to the desired coverage level. Roy
and Larocque (2020) presented a calibration procedure that uses the BOPs that are built using only the
trees where the training observation xi is OOB. The idea is to find the value of αw using the OOB-BOPs.
In this paper, we call this procedure OOB calibration.

We also include a cross-validation-based calibration procedure with the proposed method to
acquire the desired (1 − α) coverage level. In this calibration, we apply k-fold cross-validation to form
prediction intervals for the training observations. In each fold, we split the original training data set
into training and testing sets. For the training set, we go through the steps 1-5 defined above. Then,
for each observation in the testing set, we apply steps 6-8 and build a PI. After completing CV, we
compute the coverage level with the constructed PIs and if the coverage is not within the acceptable
coverage range, then we apply a grid search to find the αw such that αw is the closest to the target α
among the set of αw’s. Once we find the αw, we use this level to build the PI for the new observations.

The RFpredInterval package

In our package, we implement 16 methods that apply random forest training. Ten of these methods
have specialized splitting rules in the random forest growing process. These methods are the ones
with L1 and shortest prediction interval (SPI) splitting rules proposed by Roy and Larocque (2020). To
implement these methods, we have utilised the custom split feature of the randomForestSRC package
(Ishwaran and Kogalur, 2021).

The randomForestSRC package allows users to define a custom splitting rule for the tree growing
process. The user needs to define the customized splitting rule in the splitCustom.c file with C-
programming. After modifying the splitCustom.c file, all C source code files in the package’s src
folder must be recompiled. Finally, the package must be re-installed for the custom split rule to become
available.

In our package development process, we froze the version of randomForestSRC to the latest one
available at the time, which is version 2.11.0, to apply specialized splitting rules. After defining the L1
and SPI splitting rules, all C files were re-compiled. Finally, all package files including our R files for
prediction interval methods were re-built to make the package ready for the user installation.

The RFpredInterval package has two main R functions as below:

• pibf(): Constructs prediction intervals with the proposed method, PIBF.

• rfpi(): Constructs prediction intervals with 15 distinct variations proposed by Roy and
Larocque (2020).

Table 1 presents the list of functions and methods implemented in RFpredInterval. For pibf(),
RFpredInterval uses the CRAN package ranger (Wright et al., 2020) to fit the random forests. For
rfpi(), RFpredInterval uses randomForestSRC package. For the least-squares splitting rule, both
randomForestSRC and ranger packages are applicable.
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Table 1: List of functions and methods with characteristics

Function Method Details

pibf() PIBF Builds prediction intervals with boosted forests. The ranger package is used to fit the random forests.
Calibration options are "cv" and "oob". Returns constructed PIs and bias-corrected point predictions for the
test data.

Split method PI method

LM
SPI
Quant
HDR

LS

CHDR

Splitting rule is the least-squares (LS) from the CART paradigm. "ls" is used for the "split_method"
argument. A vector of characters c("lm","spi","quant","hdr","chdr") is used for the "pi_method"
argument to apply all or a subset of the PI methods. ranger or randomForestSRC can be used to fit the
random forest. Returns a list of constructed PIs for the selected PI methods and point predictions for the test
data.

LM
SPI
Quant
HDR

L1

CHDR

Splitting rule is the L1 from the CART paradigm (Roy and Larocque, 2020). "l1" is used for the
"split_method" argument. A vector of characters c("lm","spi","quant","hdr","chdr") is used for the
"pi_method" argument to apply all or a subset of the PI methods. Only randomForestSRC can be used to fit
the random forest since the split rule is implemented with the custom split feature of that package. Returns
a list of constructed PIs for the selected PI methods and point predictions for the test data.

LM
SPI
Quant
HDR

rfpi()

SPI

CHDR

Splitting rule is the shortest PI (SPI) from the CART paradigm (Roy and Larocque, 2020). "spi" is used for
the "split_method" argument. A vector of characters c("lm","spi","quant","hdr","chdr") is used for
the "pi_method" argument to apply all or a subset of the PI methods. Only randomForestSRC can be used
to fit the random forest since the split rule is implemented with the custom split feature of that package.
Returns a list of constructed PIs for the selected PI methods and point predictions for the test data.

piall() All methods Builds prediction intervals with all of the implemented PI methods. The ranger package is used to fit the
random forests for the PIBF and methods with LS split rule. randomForestSRC package is used for the
methods with L1 and SPI split rules. Default values are assigned to the function arguments of pibf() and
rfpi(). Returns an object of class "piall" containing a list of constructed PIs with 16 methods, and point
predictions obtained with the PIBF method, LS, L1 and SPI split rules for the test data.

plot() Plots the 16 constructed PIs obtained with piall() function for a test observation.

print() Prints the summary output of pibf(), rfpi() and piall() functions.
LM: Classical method, SPI: Shortest PI, Quant: Quantiles, HDR: Highest density region, CHDR: Contiguous HDR

In this section, we illustrate the usage of the RFpredInterval package with the Ames Housing
data set (De Cock, 2011). The data set was introduced as a modern alternative to the well-known
Boston Housing data set. The data set contains many explanatory variables on the quality and quantity
of physical attributes of houses in Ames, IA sold from 2006 to 2010. Most of the variables give
information to a typical home buyer who would like to know about a house (e.g. number of bedrooms
and bathrooms, square footage, heating type, lot size, etc.).

The AmesHousing (Kuhn, 2020) package contains the raw data and processed versions of the
Ames Housing data set. The raw data contains 2930 observations and 82 variables, which include 23
nominal, 23 ordinal, 14 discrete, and 20 continuous variables, involved in assessing house values. The
processed version of the data set has 2330 observations and 81 variables, including the target variable
Sale_Price representing the value of houses in US dollars. The usual goal for this data set is to predict
the sale price of each house given covariates.

We load the processed version of the Ames Housing data set from the AmesHousing package and
prepare the data set that we will use for the analyses. The preprocessing steps are presented in the
Supplementary Material. This version of the data set contains 22 factors and 59 numeric variables,
including 1 response variable Sale_Price, for 2929 observations. We split the data set into training
and testing samples.

set.seed(3456)
n <- nrow(AmesHousing)
trainindex <- sample(1:n, size = round(0.7*n), replace = FALSE)
traindata <- AmesHousing[trainindex, ]
testdata <- AmesHousing[-trainindex, ]

We fit a random forest with 1000 trees using the training data and construct 95% prediction
intervals for the observations in the testing data with the proposed method. We apply 5-fold cross-
validation based calibration and set the acceptable coverage range to [.945, .955]. We can pass the list
of random forest parameters for ranger package.

out <- pibf(formula = Sale_Price ~ .,
traindata = traindata,
testdata = testdata,
alpha = 0.05,
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calibration = "cv",
numfolds = 5,
coverage_range = c(0.945, 0.955),
params_ranger = list(num.trees = 1000),
oob = TRUE)

We can then analyze the constructed PIs and bias-corrected random forest predictions for the
testing data, as shown below. The PI output is a list containing lower and upper bounds. For example,
we can print the point prediction and prediction interval for the tenth observation in the testing data.

out$pred_interval
out$test_pred
c(out$pred_interval$lower[10], out$test_pred[10], out$pred_interval$upper[10])
[1] 133.8629 160.2426 194.5804

We can also print the summary output. In the summary output, we can always see the mean PI
length over the test data set. If calibration is applied, we can see the working level of α. If the test data
set has true response information, as in our example, coverage and prediction errors for the test set are
also printed. Moreover, since we have entered oob = TRUE in the function arguments, in the summary
output we can see the mean PI length and coverage measures along with the prediction errors for the
training set. The prediction intervals are built with the out-of-bag (OOB) predictions and prediction
errors.

print(out)

> alpha_w: 0.050
> Mean PI length: 73.081
> Coverage: 96.8%
> MAE of test predictions: 12.773
> RMSE of test predictions: 19.545
>
> Mean PI length (OOB PIs): 74.823
> Coverage (OOB PIs): 94.7%
> MAE of OOB train predictions: 14.179
> RMSE of OOB train predictions: 23.875

Next, we construct 95% prediction intervals using the variations proposed by Roy and Larocque
(2020). In the following example, the splitting is rule is set to L1 and we want to apply LM, Quant and
SPI methods for building prediction intervals. We apply OOB calibration and set the acceptable cover-
age range to [.945, .955]. We can pass the the list of random forest parameters for randomForestSRC
package.

out2 <- rfpi(formula = Sale_Price ~ .,
traindata = traindata,
testdata = testdata,
alpha = 0.05,
calibration = TRUE,
split_rule = "l1",
pi_method = c("lm", "quant", "spi"),
params_rfsrc = list(ntree = 1000),
params_calib = list(range = c(0.945, 0.955)),
oob = FALSE)

We can analyze the constructed PIs for the testing data as below. Each PI output is a list containing
lower and upper bounds. For instance, we can print the point prediction and LM prediction interval
for the tenth observation in the testing data.

out2$lm_interval
out2$quant_interval
out2$spi_interval
c(out2$lm_interval$lower[10], out2$test_pred[10], out2$lm_interval$upper[10])
[1] 129.9474 154.2098 176.8429
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We print the summary output. In the summary output, we can see the splitting rule selected
in the first row. Since the test data set has true responses in our example, we can see the coverage
information for the selected PI methods besides the mean PI length and αw in the printed table. Below
the table, we have the mean prediction errors for the test set.

print(out2)

> Split rule: L1
> ------------------------------------------------------------------------------------
> Mean PI length Coverage alpha_w
> Classical method (LM) 81.641 96.2% 0.140
> Shortest prediction interval (SPI) 81.953 96.1% 0.100
> Quantile method (Quant) 80.893 95.8% 0.120
> ------------------------------------------------------------------------------------
> MAE of test predictions: 14.605
> RMSE of test predictions: 22.603

Although, with the pibf() and rfpi() functions, we have more flexibility to set the arguments for
the methods, we can build prediction intervals with all 16 methods implemented in the package with
the piall() function. We will build 95% prediction intervals for the test set.

out3 <- piall(formula = Sale_Price ~ .,
traindata = traindata,
testdata = testdata,
alpha = 0.05,
num.trees = 1000)

The output is a list of constructed prediction intervals with 16 methods and point predictions
obtained with the PIBF method, LS, L1, and SPI split rules. Hence, the output includes 16 prediction
intervals and 4 point predictions which is a list of 20 items in total.

We print the summary output.

print(out3)

> ----------------------------------------
> Mean PI length Coverage
> PIBF 72.752 96.6%
> LS-LM 81.800 96.5%
> LS-SPI 82.662 95.4%
> LS-Quant 81.523 95.2%
> LS-HDR 81.733 96.0%
> LS-CHDR 83.025 96.1%
> L1-LM 81.649 96.1%
> L1-SPI 81.805 96.1%
> L1-Quant 80.836 95.3%
> L1-HDR 83.032 96.4%
> L1-CHDR 82.482 96.1%
> SPI-LM 81.578 96.0%
> SPI-SPI 81.960 96.2%
> SPI-Quant 81.036 95.4%
> SPI-HDR 84.404 96.6%
> SPI-CHDR 82.927 96.1%
> ----------------------------------------
> MAE RMSE
> PIBF 12.774 19.428
> LS split 14.412 22.413
> L1 split 14.596 22.569
> SPI split 14.558 22.600

Lastly, we plot the constructed prediction intervals with all 16 methods, for the 15th observation in
the test set.

plot(out3, test_id = 15)
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Figure 1 presents the prediction intervals and point predictions for the test observation. The
methods are ordered in the y-axis based on their resulting PI length. For each method, the red point
presents the point prediction and blue lines show the constructed prediction interval(s) for the test
observation. If the true response of the test observation is known, it is demonstrated with a dashed
vertical line. Note that we may have multiple prediction intervals with the HDR PI method. As we
can see from the figure, we may have four different point predictions for the same test observation.
The PIBF method and the three splitting rules LS, L1 and SPI can produce different point predictions.
But all PI method variations for the same splitting rule have the same point prediction.

250 300 350 400 450

Prediction intervals for test_id = 15

LS−CHDR

L1−CHDR

LS−HDR

LS−SPI

LS−Quant

LS−LM

SPI−HDR

SPI−LM

L1−HDR

L1−SPI

SPI−SPI

L1−LM

SPI−CHDR

L1−Quant

SPI−Quant

PIBF

Figure 1: Prediction intervals for the 15th test observation in the test data. The x-axis represents
the sale price of houses in thousands. For each method, red dots represent the point prediction and
blue lines show the prediction interval(s). The vertical dashed line shows the true response value
for the test observation. PIBF: Prediction intervals with boosted forests (the proposed method). The
notation for the other 15 methods is split rule-PI method. Splitting rules are LS: Least-squares, L1: L1,
SPI: Shortest PI split rule. PI methods are LM: Classical method, Quant: Quantiles, SPI: Shortest PI,
HDR: Highest density region, CHDR: Contiguous HDR.

3 Simulation study

In this section, we compare the predictive performance of the prediction intervals constructed with our
proposed method to the existing methods presented in the Introduction using a variety of simulated
and real benchmark data sets.

Simulation design

We apply a simulation study based on seven simulated data sets from the literature. The first three of
the data sets are Friedman’s benchmark regression problems described in Jerome H. Friedman (1991)
and Breiman (1996). We use the CRAN package mlbench (Leisch and Dimitriadou, 2021) to generate
these data sets.

In Friedman Problem 1, the inputs are 10 independent variables uniformly distributed on the
interval [0, 1]. The first five covariates are used to generate the response:

y = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 + ϵ

where ϵ is N
(
0, σ2) and the default standard deviation of ϵ is 1 which yields a signal-to-noise ratio

(SNR) (i.e., the ratio of the standard deviation of signal to the standard deviation of error) of 4.8:1.
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In Friedman Problem 2, the response is generated as

y =

(
x2

1 +

(
x2x3 −

1
x2x4

)2
)0.5

+ ϵ

where the inputs are four independent variables uniformly distributed over the ranges

0 ≤x1 ≤ 100

40π ≤x2 ≤ 560π

0 ≤x3 ≤ 1

1 ≤x4 ≤ 11

and ϵ is N
(
0, σ2). The default value of 125, which yields a SNR of 3:1, is used for the standard

deviation of ϵ.

In Friedman Problem 3, the inputs are four independent variables uniformly distributed over the
same ranges as Friedman Problem 2. The response is generated as

y = arctan

(
x2x3 − 1

x2x4

x1

)
+ ϵ

where ϵ is N
(
0, σ2) and the default value of 0.01 for the standard deviation of ϵ is used, which yields

a SNR of 3:1.

The fourth data set is the Peak Benchmark Problem which is also from the mlbench package. Let
r = 3u where u is uniform on [0, 1] and let x be uniformly distributed on the d-dimensional sphere of
radius r. The response is y = 25 exp

(
−0.5r2). The default value of d = 20 dimensions is used.

The fifth one is a modification of Friedman Problem 1, which was used in Hothorn and Zeileis
(2021) in their H2c setup. This data set was designed to have heteroscedasticity. The inputs are 10
independent variables uniformly distributed on the interval [0, 1]. The first five covariates are used in
the mean function and the unscaled mean function is defined as

µ = 10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5

Then, the scaled mean function on the interval [−1.5, 1.5] is

µS =
3 (µ − µmin)

µmax − µmin
− 1.5

where µmin and µmax are the minimum and maximum values of µ over the sample. The last five
covariates are used in the standard deviation function and the unscaled standard deviation function is

σ = 10 sin (πx6x7) + 20 (x8 − 0.5)2 + 10x9 + 5x10

The standard deviation is scaled as

σS = exp
(

3 (σ − σmin)

σmax − σmin
− 1.5

)
where σmin and σmax are the minimum and maximum values of σ over the sample. The response is
generated as a normal random variable with mean µS and standard deviation σS.

The last two data sets, which were used in Roy and Larocque (2020), have a tree-based response
variable. The inputs are seven independent variables generated from the standard normal distribution.
The response is generated with the seven covariates according to a tree model with a depth of three,
with eight terminal nodes:

y =u1 I (x1 < 0, x2 < 0, x4 < 0)

+ u2 I (x1 < 0, x2 < 0, x4 ≥ 0)

+ u3 I (x1 < 0, x2 ≥ 0, x5 < 0)

+ u4 I (x1 < 0, x2 ≥ 0, x5 ≥ 0)

+ u5 I (x1 ≥ 0, x3 < 0, x6 < 0)

+ u6 I (x1 ≥ 0, x3 < 0, x6 ≥ 0)

+ u7 I (x1 ≥ 0, x3 ≥ 0, x7 < 0)

+ u8 I (x1 ≥ 0, x3 ≥ 0, x7 ≥ 0) + ϵ
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where the terminal node means are u = (5, 10, 15, 20, 25, 30, 35, 40) and I is the indicator function. The
difference in the two data sets is the distribution of the error. In the first one, ϵ is generated from a
standard normal distribution and in the other it is from an exponential distribution with mean 1. The
signal-to-noise ratio is 11.5:1 for both data sets.

We use training sample sizes of ntrain = {200, 500, 1000, 5000}, resulting in 28 scenarios. Each
scenario is repeated 500 times. In each run, we generate an independent test set of new observations
with ntest = 1000.

Competing methods

We compare our proposed prediction interval estimator with 10 competing methods which were
presented in the Introduction. The first is the P̂Iα method. We fit the random forest with the ranger
package and use the forestError package to build PIs. The second is the OOB method. The rfinterval
package is used. The third is the split conformal method. The conformalInference package is used.
The fourth is the QRF method and the quantregForest package is used. The fifth is the GRF method.
The function quantile_forest in the grf package is used.

The last five are variations of Roy and Larocque (2020). To compare the performance of the method
variations, a comprehensive simulation study and real data analyses were performed in Roy and
Larocque (2020). One of the biggest conclusions from these comparison studies was that, among the
three alternative splitting criteria within the CART paradigm, the impact of the choice of the splitting
rule on the performance of the prediction intervals was moderate whereas the selection of the PI
method had a much greater impact on the performance. Hence, in this simulation study, we set up the
splitting rule to the least-squares (LS) and only compare the five PI methods: LM, Quant, SPI, HDR,
and CHDR. For those methods, the rfpi() function of the RFpredInterval package is used. We fit the
random forest with the ranger package.

Parameter settings

For the simulations, we use the following parameters. For all methods, we set the number of trees
to 2000. Letting p be the number of covariates, then the number of covariates to randomly split at
each node, mtry, is set to max {⌊p/3⌋, 1} (except for the GRF method). For the GRF method, following
Athey et al. (2019), mtry is set to min

{
⌈√p + 20⌉, p

}
. Also, we use the honest splitting regime with

the default fraction of 0.5 for the GRF method. The minimum node size parameter for all forests is
set to 5. The desired coverage is set to 95% for all methods. For the proposed method, we perform
the cross-validation-based calibration as the primary calibration procedure, but we also investigate
the OOB calibration. For the method variations in Roy and Larocque (2020), we perform the OOB
calibration procedure as they proposed. For both calibration procedures, the acceptable range of
coverage is set to [.945, .955]. Calibration is not performed for the competing methods since no option
for calibration is offered in their CRAN packages.

Performance with the simulated data sets

We can evaluate the performance of the competing methods with two measures: the mean coverage
and the mean prediction interval length. Table 2 presents the average coverage rate of each method on
the test set over 500 replications for a given simulated data set and sample size, with average mean
prediction interval lengths shown in parentheses. The principal goal of any prediction interval method
is to ensure the desired coverage level. In this simulation study, the desired coverage level is set to
95% for all methods. The left plot in Figure 2 shows the mean coverages over the 28 scenarios for all
methods. Overall, all of the methods, except the QRF and GRF methods which tend to be conservative,
provide a mean coverage close to the desired level. QRF and GRF methods have an average mean
coverage of 0.975 and 0.974 over all scenarios, respectively. Although the P̂Iα method has an average
of the mean coverages of 0.957, close to the desired level, its variability is large. Over 308 (11 methods
× 28 scenarios) average coverage values, there is only one case where the mean coverage is below 0.94.
It corresponds to the P̂Iα method in Friedman Problem 2 with ntrain = 5000.

Once the prediction intervals provide the desired coverage level, the next goal of any PI method is
to provide the shortest PI length. Prior to carrying out a detailed comparison of interval lengths, we
can globally compare the interval lengths over all scenarios with the percentage increase in mean PI
length of a method with respect to the best method for a given run. For a given run, define mli as the
mean PI length of method i and ml∗ as the shortest mean PI length over the 10 competing methods.
The percentage increase in PI length for method i is computed as 100 × (mli − ml∗) /ml∗. Smaller
values for this measure indicate better performances. The right plot in Figure 2 presents the relative
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lengths of the methods across 14,000 runs (28 scenarios × 500 replications). The prediction intervals
with the GRF method are the widest, followed by the QRF method. However, as we saw in the left
plot in Figure 2, GRF and QRF produce conservative prediction intervals, so their PI lengths cannot
be fairly compared to the other methods with a coverage closer to 0.95. Based on the global results,
the proposed method, PIBF, performs the best. Following PIBF, P̂Iα, OOB, LM, SPI, HDR and CHDR
perform similarly well, with P̂Iα being slightly better. Among the variations of Roy and Larocque
(2020), the PIs with quantiles produce longer prediction intervals than the other four variations.
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Figure 2: (Left) Boxplots for the mean coverage over all scenarios. All methods, except the QRF
and GRF methods, are able to provide a mean coverage close to the desired coverage level of 0.95.
Each white circle is the average of the mean coverages over 28 scenarios. (Right) Boxplots for the
percentage increase in mean PI length of each method compared to the shortest PI length for a given
run across 14,000 runs. The smallest is the percentage increase, the better is the method. Each white
circle is the average of the relative lengths over 14,000 runs. Since the outlier values are distorting the
scales, they are removed from the graph. PIBF: Prediction intervals with boosted forests (the proposed
method), P̂Iα: Conditional α-level prediction interval, OOB: Out-of-Bag approach, LM: Classical
method, Quant: Quantiles, SPI: Shortest PI, HDR: Highest density region, CHDR: Contiguous HDR,
SC: Split conformal, QRF: Quantile regression forest, GRF: Generalized random forest.

Now, we investigate the performance of the methods separately for each scenario. See figures S1
to S7 in the Supplementary Material for the mean PI length results of each method for each simulated
data set. Each figure has four facets corresponding to the four levels of the training sample size. For all
methods and data sets, the mean PI lengths and their variability decrease as the sample size increases
(except the GRF method for the tree-based data sets). We see that for Friedman Problem 1, from Figure
S1, for all sample sizes, PIBF consistently outperforms the 10 competing methods in terms of mean PI
length while ensuring the desired coverage level (see Table 2 for the mean coverage results). QRF and
GRF provide the widest prediction intervals for all sample sizes. However, as presented in Table 2,
these methods heavily over-cover and are therefore not comparable with the other methods. While
the P̂Iα method also slightly over-covers, it has shorter PIs than other methods.

For Friedman Problem 2 (see Figure S2 in the Supplementary Material), we see that the proposed
method has the shortest mean PI length for the smallest sample size, and as the sample size increases
P̂Iα provides shorter PIs. However, we should also take into account the mean coverages presented in
Table 2. The proposed method has smaller coverage levels for ntrain = 200 compared to P̂Iα, but as the
sample size increases the coverage levels decrease for the P̂Iα method (up to 0.937 for ntrain = 5000)
whereas PIBF keeps it around 0.945. For ntrain = 5000, the OOB method builds shorter PIs while
ensuring the desired coverage level. Again, QRF and GRF have the widest PIs for all sample sizes due
to their conservative PIs.

The performance of PIBF and P̂Iα is very similar for Friedman Problem 3 (see Figure S3 in the
Supplementary Material). Both methods provide the shortest PIs with similar coverage levels and
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Table 2: Results of the simulation study. Average coverage rates of each method in each simulation,
with average mean PI lengths shown in parentheses. The desired coverage level is 0.95. Shortest
average mean PI lengths are emphasized with bold text. PIBF: Prediction intervals with boosted forests
(the proposed method), P̂Iα: Conditional α-level prediction interval, OOB: Out-of-Bag approach, LM:
Classical method, Quant: Quantiles, SPI: Shortest PI, HDR: Highest density region, CHDR: Contiguous
HDR, SC: Split conformal, QRF: Quantile regression forest, GRF: Generalized random forest.

ntrain Data PIBF P̂Iα OOB LM Quant SPI HDR CHDR SC QRF GRF

Friedman 1 0.952 (7.69) 0.959 (9.7) 0.949 (10.3) 0.955 (11.2) 0.956 (12.5) 0.956 (12.1) 0.955 (12.2) 0.956 (11.5) 0.952 (12) 0.978 (15.3) 0.968 (17.7)
Friedman 2 0.942 (635) 0.951 (679) 0.947 (762) 0.956 (772) 0.955 (990) 0.956 (898) 0.955 (793) 0.954 (800) 0.951 (912) 0.969 (1103) 0.972 (1241)
Friedman 3 0.944 (0.57) 0.948 (0.62) 0.949 (0.75) 0.956 (0.69) 0.953 (0.83) 0.952 (0.74) 0.951 (0.88) 0.954 (0.76) 0.953 (0.93) 0.961 (0.89) 0.968 (0.88)
Peak 0.958 (9.06) 0.956 (12.4) 0.949 (13.3) 0.955 (12) 0.956 (17.9) 0.957 (10.5) 0.955 (15.4) 0.955 (11.1) 0.951 (15.5) 0.972 (20.6) 0.978 (20.2)
H2c 0.954 (6.5) 0.954 (6.3) 0.955 (6.26) 0.955 (5.86) 0.956 (6.42) 0.957 (6.47) 0.956 (6.61) 0.955 (6.45) 0.959 (6.68) 0.952 (6.09) 0.957 (6.35)
Tree-N 0.949 (9.12) 0.967 (12.3) 0.947 (14.2) 0.956 (11.9) 0.956 (22.3) 0.958 (15.4) 0.955 (9.08) 0.955 (11.9) 0.951 (18.9) 0.979 (29.6) 0.960 (36)

200

Tree-exp 0.949 (9.31) 0.967 (12.4) 0.947 (14.2) 0.955 (11.9) 0.956 (22.1) 0.959 (15.1) 0.956 (10.4) 0.956 (12.5) 0.950 (18.9) 0.979 (29.5) 0.960 (35.8)

Friedman 1 0.952 (6.32) 0.962 (8.25) 0.948 (8.81) 0.953 (9.37) 0.952 (10.1) 0.953 (9.87) 0.952 (9.81) 0.953 (9.47) 0.951 (10.1) 0.986 (14) 0.978 (16.9)
Friedman 2 0.945 (586) 0.946 (585) 0.948 (650) 0.952 (676) 0.952 (820) 0.952 (744) 0.951 (679) 0.951 (690) 0.952 (751) 0.975 (998) 0.979 (1120)
Friedman 3 0.943 (0.5) 0.946 (0.53) 0.948 (0.62) 0.952 (0.61) 0.951 (0.71) 0.951 (0.65) 0.951 (0.7) 0.951 (0.67) 0.952 (0.75) 0.965 (0.79) 0.970 (0.77)
Peak 0.957 (6.44) 0.967 (9.97) 0.951 (11) 0.953 (9.75) 0.954 (15) 0.954 (8.22) 0.956 (11.6) 0.953 (8.93) 0.952 (12.8) 0.980 (18.7) 0.984 (17.8)
H2c 0.953 (5.81) 0.956 (5.88) 0.951 (5.89) 0.952 (5.43) 0.953 (5.83) 0.953 (5.81) 0.954 (5.92) 0.952 (5.84) 0.955 (6.17) 0.954 (5.79) 0.959 (5.94)
Tree-N 0.948 (6.16) 0.969 (8.17) 0.949 (9.85) 0.952 (8.23) 0.953 (15.5) 0.953 (10) 0.954 (7.31) 0.952 (9.6) 0.952 (13.3) 0.984 (25.8) 0.969 (35.7)

500

Tree-exp 0.947 (6.31) 0.966 (8.3) 0.949 (9.93) 0.952 (8.19) 0.953 (15.4) 0.954 (9.67) 0.954 (7.93) 0.953 (9.96) 0.953 (13.4) 0.984 (25.8) 0.970 (35.5)

Friedman 1 0.953 (5.67) 0.964 (7.42) 0.949 (7.95) 0.954 (8.37) 0.954 (8.89) 0.954 (8.75) 0.954 (8.65) 0.953 (8.4) 0.950 (8.85) 0.990 (12.9) 0.985 (15.9)
Friedman 2 0.945 (565) 0.942 (546) 0.950 (594) 0.953 (635) 0.953 (735) 0.953 (682) 0.952 (637) 0.953 (645) 0.951 (658) 0.977 (910) 0.983 (1022)
Friedman 3 0.944 (0.47) 0.945 (0.48) 0.948 (0.55) 0.954 (0.58) 0.952 (0.65) 0.952 (0.61) 0.951 (0.63) 0.952 (0.63) 0.949 (0.63) 0.967 (0.73) 0.971 (0.72)
Peak 0.957 (5) 0.972 (8.44) 0.950 (9.54) 0.952 (8.51) 0.953 (13.2) 0.953 (7.21) 0.956 (9.35) 0.952 (7.82) 0.951 (11) 0.983 (17.5) 0.986 (16.7)
H2c 0.952 (5.48) 0.955 (5.64) 0.949 (5.69) 0.948 (5.17) 0.949 (5.49) 0.950 (5.51) 0.950 (5.49) 0.949 (5.49) 0.949 (5.78) 0.954 (5.61) 0.958 (5.71)
Tree-N 0.946 (5.11) 0.965 (6.2) 0.950 (7.52) 0.954 (6.67) 0.953 (12.1) 0.954 (7.91) 0.954 (6.21) 0.953 (8.33) 0.950 (9.94) 0.985 (21.6) 0.976 (35.1)

1000

Tree-exp 0.946 (5.16) 0.964 (6.39) 0.949 (7.64) 0.954 (6.62) 0.953 (11.9) 0.954 (7.45) 0.955 (6.5) 0.953 (8.45) 0.950 (10) 0.985 (21.6) 0.975 (34.9)

Friedman 1 0.950 (4.71) 0.967 (6.04) 0.950 (6.47) 0.953 (6.67) 0.953 (6.97) 0.953 (6.91) 0.954 (6.78) 0.953 (6.67) 0.950 (7.03) 0.995 (10.8) 0.992 (13.2)
Friedman 2 0.945 (543) 0.937 (507) 0.950 (529) 0.952 (574) 0.951 (610) 0.951 (592) 0.951 (570) 0.951 (573) 0.950 (549) 0.975 (717) 0.982 (781)
Friedman 3 0.945 (0.44) 0.941 (0.43) 0.950 (0.46) 0.953 (0.53) 0.952 (0.56) 0.952 (0.55) 0.951 (0.54) 0.952 (0.56) 0.950 (0.49) 0.966 (0.62) 0.971 (0.62)
Peak 0.955 (2.84) 0.978 (5.92) 0.952 (7.11) 0.952 (6.54) 0.954 (10.1) 0.952 (5.68) 0.957 (6.46) 0.951 (6.04) 0.950 (8) 0.988 (14.9) 0.990 (15.2)
H2c 0.949 (5) 0.953 (5.31) 0.943 (5.39) 0.941 (4.82) 0.943 (5.01) 0.944 (5.06) 0.944 (5.03) 0.942 (4.98) 0.942 (5.41) 0.953 (5.33) 0.958 (5.31)
Tree-N 0.945 (4.33) 0.949 (4.37) 0.951 (4.77) 0.957 (5.25) 0.951 (7.03) 0.950 (5.4) 0.953 (4.78) 0.951 (5.89) 0.950 (5.55) 0.979 (10.5) 0.986 (32.1)

5000

Tree-exp 0.945 (4.08) 0.959 (4.39) 0.950 (4.91) 0.955 (5.12) 0.951 (6.87) 0.952 (4.78) 0.954 (4.36) 0.949 (5.49) 0.950 (5.73) 0.978 (10.5) 0.986 (31.8)

mean PI lengths. Results for the Peak Benchmark Problem presented in Figure S4 are very similar to
those of Friedman Problem 1. For all sample sizes, PIBF consistently outperforms the 10 competing
methods in terms of mean PI length. But this time, SPI method with LS splitting rule comes in second
place.

For the H2c setup (see Figure S5 in the Supplementary Material), which is the modification of
Friedman Problem 1, we can see that all methods are comparable since QRF and GRF do not over-
cover. In this setting, all methods also perform fairly well with respect to PI length. Overall, the LM
prediction interval method with the LS splitting rule provides slightly shorter PIs.

For the tree-based data sets (see figures S6 and S7 in the Supplementary Material), overall, it seems
that the distribution of the error does not have a significant effect on the results. Again, QRF and GRF
have conservative PIs. Unlike the other data sets, we see here that the mean PI lengths of the GRF
method decrease very slowly as the sample size increases. For ntrain = 5000, all methods (except QRF
and GRF) perform similarly. For the smallest sample size, HDR PI building methods and the proposed
method perform slightly better than other methods. As the sample size increases, PIBF produces the
shortest prediction intervals.

Effect of calibration on the performance of prediction intervals

In this section, we investigate the effect of the proposed calibration on performance of the prediction
intervals. We apply the same simulation study using the seven simulated data sets. We compare
the results of the proposed method without calibration, with OOB calibration and calibration with
cross-validation. The desired coverage level is set to 95%. In Figure 3, the left plot presents the mean
coverages over 28 scenarios for the three variations, and the right plot shows the percentage increase
in mean PI length of each of the three calibration variants across 14,000 runs (28 scenarios × 500
replications). Although we obtain the shortest prediction intervals without calibration, the variability
of the mean coverage level is larger and sometimes the coverage falls below 0.94. Looking at the
left plot, we can say that the variability of the mean coverage level decreases with both calibration
procedures. However, applying OOB calibration provides conservative PIs. The median of the mean
coverage level is more than 0.96 and the PIs with the OOB calibration are the widest. Applying
calibration with CV produces slightly longer PIs than those with no calibration, but these PIs have
coverage levels closer to the desired level.
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In the package, both calibration procedures are implemented for the PIBF method. Simulation
study results show that, compared to the OOB calibration, calibration with CV produces shorter PIs
while maintaining the desired coverage level. Therefore, the default calibration procedure is set to CV
in the pibf() function. In terms of computational time (see tables 4 and 5), calibration with k-fold CV
is slower than OOB calibration since it needs to fit two additional random forests for each fold.
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Figure 3: Global performance results of the proposed method for the simulated data sets with
different calibration procedures. NC: No calibration, OOB: OOB calibration, CV: Calibration with
cross-validation. (Left) Boxplots for the mean coverage over 500 replications across all scenarios. (Right)
Boxplots for the percentage increase in mean PI length of each calibration procedure compared to the
shortest PI length for a given run across 14,000 runs. Smaller values are better. Since outlier values are
distorting the scales, they are removed.

Performance with real data sets

To further explore the performance of the prediction intervals built with the proposed method, we
use 11 real data sets. Since two of the data sets have two response variables, we consider that we
are analyzing 13 real data sets. Boston housing and Ames housing data sets are from the R packages
mlbench and AmesHousing, respectively. The other data sets are obtained through the UCI Machine
Learning Repository (Dua and Graff, 2017).

For each data set, we apply 100 times 10-fold cross-validation for each method. Hence, for each
fold, the training and testing sets correspond to 90% and 10% of the whole data set, respectively. The
desired coverage level is set to 95% for all methods. Table 3 presents the results of the real data analyses
(n is the number of observations and p is the number of predictors) with the average coverage rate of
each method over 100 repetitions, and mean prediction interval lengths averaged over 100 repetitions
shown in parentheses. Figure 4 illustrates the global results of the analyses across datasets. The left
plot in Figure 4 shows the mean coverages over the 13 real data sets for all methods. Similar to what
we have seen with the simulated data sets, the QRF and GRF methods produce conservative prediction
intervals, whereas the other methods provide a mean coverage close to the desired level. Again, the
P̂Iα method maintains the target level on average with 0.959, but its variability is the highest among
all methods. Across all data sets, there are three cases where the mean coverage is below 0.94: the
proposed method for Concrete slump, and the P̂Iα method for Auto MPG and Computer hardware.

The right plot in Figure 4 presents the relative lengths of methods across 13 real data sets. For
each method, there are 13 points in the boxplot, and each point corresponds to the percentage increase
in mean PI length compared to the best method for a single real data set. Again, the prediction
intervals with GRF and QRF are the widest among eleven methods. Among the other nine methods,
the proposed method performs the best, followed by P̂Iα.

For each real data set, we analyze the performance of each method through the mean PI lengths
presented in figures S8 to S10 in the Supplementary Material. For the Abalone data set, the HDR
method produces the shortest prediction intervals, followed by the SPI and Quant methods. While the
QRF method over-covers, its PIs are no wider than those of most of the other methods. The proposed
method, PIBF, is distinctly the best prediction interval method yielding the shortest PI lengths for the
Air quality data set with absolute and relative humidity response variables, Airfoil selfnoise, Ames
housing, Boston housing, Concrete compression, Energy efficiency data set with cooling and heating
load response variables, and Servo data sets. In the Auto MPG data set, P̂Iα has the shortest mean
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PI length but with a mean coverage of 0.929. Among the other methods, PIBF, OOB, LM, Quant and
SPI methods show similarly good performances while maintaining the desired coverage level. For
the Computer hardware data set, PIBF, P̂Iα, and SPI methods perform better than the other methods.
They have similar mean PI lengths. For the Concrete slump data set, the proposed method has the
shortest mean PI length, but with a slightly smaller coverage of 0.939. This data set is the only one of
the simulated and real data sets where the proposed method has a mean coverage below 0.94. After
PIBF, P̂Iα and LM show a good performance with a mean coverage close to the target level. Overall,
we can conclude that the proposed method shows better performance than the 10 competing methods
for almost all of the real data sets.
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Figure 4: (Left) Boxplots for the mean coverage over all real data sets. All methods except the QRF
and GRF methods are able to provide a mean coverage close to the desired coverage level of 0.95.
Each white circle is the average of the mean coverages over 13 real data sets. (Right) Boxplots for the
percentage increase in mean PI length of each method compared to the shortest PI length for a given
real data set across 13 data sets. The smallest the percentage increase, the better the method. Each white
circle is the average of the relative lengths over 13 real data sets. One of the outlier values for GRF
with the percentage increase of 1244% is removed from the graph since it is distorting the scales. PIBF:
Prediction intervals with boosted forests (the proposed method), P̂Iα: Conditional α-level prediction
interval, OOB: Out-of-Bag approach, LM: Classical method, Quant: Quantiles, SPI: Shortest PI, HDR:
Highest density region, CHDR: Contiguous HDR, SC: Split conformal, QRF: Quantile regression forest,
GRF: Generalized random forest.

Comparison of the computational times

All simulations and real data analyses were conducted in R version 3.6.0 on a Linux machine with
Intel(R) Xeon(R) E5-2667 v3 @ 3.20GHz with 396 GB of memory. The average computational time of
each method for the simulated and real data sets are presented in tables 4 and 5. For the proposed
method (PIBF), the computational times for both calibration methods, cross-validation and OOB, are
presented in the tables. We can see from the tables that, for most of the data sets, calibration with
cross-validation has longer running times than OOB calibration, which is expected since with the
k-fold cross-validation, we fit 2k more random forests than applying OOB calibration.

For the variations of Roy and Larocque (2020), since we can build prediction intervals with the
five PI methods by only fitting a single random forest with a selected splitting rule, we present the
total computational time for building the five variations under RFPI. To be clear, for a given splitting
rule, the rfpi() function fits a random forest and then the set of PI methods requested by the user
are applied to the output of the random forest. In our simulations, we choose to return all five PI
methods for the selected splitting rule, i.e. when we measure the running time of the rfpi() function,
we get the total running time of building five prediction intervals. Therefore, we should interpret the
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Table 3: Results of the real data analysis. Average coverage rates of each method for each real
data set, with average mean PI lengths shown in parentheses. The desired coverage level is 0.95.
Shortest average mean PI lengths are shown in bold. PIBF: Prediction intervals with boosted forests
(the proposed method), P̂Iα: Conditional α-level prediction interval, OOB: Out-of-Bag approach, LM:
Classical method, Quant: Quantiles, SPI: Shortest PI, HDR: Highest density region, CHDR: Contiguous
HDR, SC: Split conformal, QRF: Quantile regression forest, GRF: Generalized random forest.

Data n p PIBF P̂Iα OOB LM Quant SPI HDR CHDR SC QRF GRF

Abalone 4177 8 0.947 (8.18) 0.946 (8.05) 0.950 (8.9) 0.949 (8.09) 0.953 (6.81) 0.951 (6.73) 0.946 (5.58) 0.951 (8.12) 0.950 (9.04) 0.971 (8.03) 0.978 (8.82)
Air quality (AH) 0.948 (0.22) 0.966 (0.29) 0.950 (0.34) 0.954 (0.29) 0.954 (0.33) 0.954 (0.31) 0.954 (0.34) 0.954 (0.29) 0.950 (0.4) 0.992 (0.55) 0.994 (0.78)
Air quality (RH) 6941 13 0.949 (12.9) 0.971 (18.7) 0.950 (21.6) 0.953 (19.6) 0.953 (22.5) 0.954 (20.6) 0.954 (21.1) 0.953 (19.3) 0.950 (25.5) 0.989 (35) 0.989 (44.3)
Airfoil selfnoise 1503 5 0.946 (8.47) 0.972 (12.9) 0.950 (13.3) 0.952 (18.3) 0.952 (19.8) 0.953 (18.9) 0.952 (19.5) 0.953 (17.9) 0.951 (14.7) 0.987 (20.4) 0.988 (18.1)
Ames housing 2929 80 0.955 (69.3) 0.961 (81.6) 0.950 (90.3) 0.954 (79.3) 0.953 (80.5) 0.953 (80.5) 0.952 (80.3) 0.952 (80.4) 0.951 (96.4) 0.987 (118) 0.993 (172)
Auto MPG 392 7 0.945 (10) 0.929 (9.76) 0.947 (11.1) 0.953 (10.5) 0.953 (10.9) 0.953 (10.5) 0.954 (13.2) 0.952 (11.5) 0.955 (13.1) 0.967 (12) 0.977 (16.1)
Boston housing 506 13 0.942 (10.5) 0.948 (11.2) 0.949 (12.3) 0.954 (11.7) 0.953 (11.8) 0.953 (11.4) 0.952 (12.2) 0.952 (12) 0.951 (15) 0.982 (15.7) 0.990 (25.9)
Computer hardware 209 6 0.942 (139) 0.939 (140) 0.946 (171) 0.952 (163) 0.951 (163) 0.950 (144) 0.951 (157) 0.950 (156) 0.957 (248) 0.965 (182) 0.985 (365)
Concrete compression 1030 8 0.948 (14.8) 0.957 (18) 0.950 (19.6) 0.954 (20.2) 0.953 (27.2) 0.954 (22.8) 0.953 (27.7) 0.953 (21.5) 0.950 (26) 0.982 (34.5) 0.989 (46.6)
Concrete slump 103 7 0.939 (12.2) 0.947 (14.2) 0.948 (15.3) 0.949 (14.9) 0.949 (20.6) 0.944 (19.4) 0.945 (16.3) 0.951 (15.4) 0.958 (22.1) 0.956 (22.3) 0.970 (28.3)
Energy efficiency (CL) 0.953 (3.71) 0.977 (5) 0.950 (8.01) 0.952 (7.37) 0.952 (7.9) 0.952 (7.04) 0.951 (8.03) 0.953 (6.46) 0.951 (8.54) 0.985 (8.18) 0.986 (20.4)
Energy efficiency (HL) 768 8 0.951 (1.48) 0.987 (3.43) 0.950 (4.16) 0.953 (6.99) 0.952 (7.17) 0.954 (6.35) 0.951 (5.52) 0.952 (4.98) 0.952 (4.84) 0.988 (7.79) 0.989 (19.9)
Servo 167 4 0.957 (18.4) 0.966 (24.2) 0.948 (25.5) 0.953 (26.6) 0.957 (32.9) 0.955 (27.2) 0.954 (28.2) 0.955 (26.8) 0.959 (30.4) 0.983 (37.9) 0.977 (42.9)

values for RFPI with care while comparing the computational times of the methods. Although not
all PI methods have similar computational complexities, we can say that even the average time of
building prediction intervals with one of these variations, assuming they have similar running times,
is reasonable. Since, for the HDR-based PI methods, an optimal bandwidth has to be chosen, which
is a time-consuming process, among the five PI methods, the slowest ones are the HDR and CHDR.
From the remaining variations, the classical method, LM, is the fastest, followed by the Quant and SPI
methods.

For both the simulations and real data analyses, the OOB and GRF methods have the smallest
running times. For most of the methods, the increase in the sample size has a mild effect on the ratio
of increase in running times. However, for the split conformal method with the simulated data sets,
running times increase more than the proportional increase in sample sizes. Similarly, we can see that
the QRF method is also affected from the training sample size as it rises to 5000.

4 Concluding remarks

In this paper, we have introduced an R package named RFpredInterval. This package implements 16
methods to build prediction intervals with random forests: a new method to build Prediction Intervals
with Boosted Forests (PIBF) and 15 different variations to produce prediction intervals with random
forests proposed by Roy and Larocque (2020). PIBF provides bias-corrected point predictions obtained
with the one-step boosted forest and prediction intervals by using the nearest neighbour out-of-bag
observations to estimate the conditional prediction error distribution.

We performed an extensive simulation study with a variety of simulated data sets and applied real
data analyses to investigate the performance of the proposed method. The performance was evaluated
based on the coverage level and length of the prediction intervals. We compared the performance of
the proposed method to 10 existing methods for building prediction intervals with random forests.
The proposed method was able to maintain the desired coverage level with both the simulated and real
data sets. In terms of the PI lengths, globally, the proposed method provided the shortest prediction
intervals among all methods. The conclusions drawn from the analysis of real data sets were very
similar to those with the simulated data sets. This provides evidence for the reliability of the proposed
method. All results obtained indicate that the proposed method can be used with confidence for a
variety of regression problems.

Note that the coverage rate of prediction intervals for new observations can have several inter-
pretations. An interesting discussion about this issue is given in Mayr et al. (2012). In that paper, the
authors presented two interpretation of coverage: sample coverage and conditional coverage. Sample
coverage means that if we draw a new sample from the same population as the training sample and
build PIs with a desired coverage level of (1 − α), then the global coverage rate over this sample
will be (1 − α). The conditional coverage means that if we sample many new observations always
having the same set of covariates and build PIs for them with a desired coverage level of (1 − α), then
about (1 − α) 100% of these prediction intervals will contain the true value of the response. To hold a
desired level of conditional coverage, the predictive method needs to provide the desired coverage
level over the entire covariate space. On the other hand, sample coverage needs only maintain the
desired coverage level over the new sample, on average. Therefore, if the conditional coverage holds,
then the sample coverage also holds. In practice, predictive models are mostly evaluated with their
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Table 4: Average computational time (in seconds) of each method over 500 replications for each
simulated data set. The values represent the average time to build prediction intervals for a test
set with 1000 observations. PIBF-CV: The proposed method with the cross-validation calibration,
PIBF-OOB: The proposed method with the OOB calibration, RFPI: The average total running time of
the five PI methods, i.e. LM + Quant + SPI + HDR + CHDR.

ntrain Data PIBF-CV PIBF-OOB P̂Iα OOB RFPI SC QRF GRF

Friedman 1 21.36 13.44 9.62 0.25 87.79 0.61 3.05 0.27
Friedman 2 21.83 13.96 9.62 0.23 59.50 0.44 2.61 0.26
Friedman 3 28.84 16.03 11.46 0.20 75.47 0.41 2.50 0.22
Peak 18.76 10.95 11.91 0.28 73.15 0.89 4.05 0.43
H2c 12.92 9.83 7.99 0.27 36.94 0.79 4.05 0.30
Tree-N 22.75 21.17 12.21 0.23 100.02 0.50 2.81 0.26

200

Tree-exp 16.28 15.62 15.65 0.23 87.49 0.53 2.85 0.25

Friedman 1 38.37 14.63 8.50 0.44 96.18 2.45 9.29 0.66
Friedman 2 27.07 13.64 7.64 0.43 84.19 1.80 6.79 0.47
Friedman 3 18.85 17.49 7.98 0.47 70.78 1.86 4.96 0.45
Peak 29.16 18.14 9.72 0.70 212.23 2.29 7.49 1.26
H2c 14.84 11.29 11.20 0.44 58.60 1.74 4.95 0.78
Tree-N 17.80 20.31 7.70 0.51 183.92 2.21 4.28 0.51

500

Tree-exp 18.05 19.05 7.74 0.51 170.24 1.72 4.45 0.49

Friedman 1 32.92 18.07 12.11 0.64 181.30 3.35 9.54 1.50
Friedman 2 23.07 15.94 10.25 0.45 135.64 2.14 6.26 0.90
Friedman 3 23.24 16.07 7.37 0.44 96.76 2.27 6.40 0.69
Peak 51.93 33.12 7.95 0.83 374.89 5.35 19.71 1.65
H2c 26.81 12.56 8.07 0.59 80.38 3.68 13.11 0.87
Tree-N 22.84 16.70 7.11 0.47 288.35 2.72 9.53 0.78

1000

Tree-exp 21.06 17.26 7.03 0.48 272.52 2.62 10.38 0.69

Friedman 1 155.81 139.88 28.70 3.72 928.84 40.79 134.97 4.84
Friedman 2 155.62 101.58 35.25 2.30 430.80 33.43 60.99 2.65
Friedman 3 106.70 91.72 34.41 2.36 330.81 28.47 73.18 2.72
Peak 287.67 245.17 22.76 6.84 1914.56 57.96 123.19 11.80
H2c 283.53 107.57 24.12 4.31 271.18 42.69 79.19 5.01
Tree-N 106.17 71.78 22.97 3.19 753.32 26.88 74.81 3.86

5000

Tree-exp 95.85 68.90 21.76 3.32 779.42 26.09 64.02 3.85

Table 5: Average computational time (in seconds) of each method over 100 times 10-fold cross-
validation for each real data set. PIBF-CV: The proposed method with the cross-validation calibration,
PIBF-OOB: The proposed method with the OOB calibration, RFPI: The average total running time of
the five PI methods, i.e. LM + Quant + SPI + HDR + CHDR.

Data n p PIBF-CV PIBF-OOB P̂Iα OOB RFPI SC QRF GRF

Abalone 4177 8 102.37 64.39 17.65 5.20 422.10 20.42 45.39 6.32
Air quality (AH) 383.60 126.95 26.63 11.55 1256.56 45.45 126.36 16.07
Air quality (RH) 6941 13 383.53 124.71 26.60 11.55 1111.16 46.13 127.02 15.95
Airfoil selfnoise 1503 5 256.92 16.61 3.57 0.31 271.35 1.80 3.65 0.65
Ames housing 2929 80 195.07 28.56 15.64 8.73 333.28 42.95 226.49 11.34
Auto MPG 392 7 11.02 7.08 1.82 0.35 47.84 0.58 1.73 0.40
Boston housing 506 13 14.77 8.89 2.32 0.49 63.20 1.31 3.63 0.70
Computer hardware 209 6 6.53 3.80 0.93 0.22 26.49 0.28 0.98 0.24
Concrete compression 1030 8 28.28 17.80 3.38 0.38 257.19 2.03 5.86 0.66
Concrete slump 103 7 9.52 2.10 0.65 0.14 26.60 0.13 0.62 0.11
Energy efficiency (CL) 85.97 15.93 2.51 0.34 341.73 0.94 2.39 0.52
Energy efficiency (HL) 768 8 99.95 20.31 2.47 0.34 380.97 0.92 2.42 0.42
Servo 167 4 12.05 3.99 0.72 0.15 53.14 0.12 0.65 0.15

global predictive performance. Hence, ensuring that the sample coverage level is achieved should be
sufficient for most applications. The proposed calibration method with cross-validation is designed to
ensure the sample coverage property. From the simulation study and real data analyses, we can see
that the sample coverage is attained with the proposed calibration method.

5 Availability

The package is available from CRAN at https://cran.r-project.org/package=RFpredInterval. The
development version is available at https://github.com/calakus/RFpredInterval.
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etrm: Energy Trading and Risk
Management in R
by Anders D. Sleire

Abstract This paper introduces etrm, an R package with tools for trading and financial risk man-
agement in energy markets. Contracts for electric power and natural gas differ from most other
commodities due to the fact that physical delivery takes place over a time interval, and not at a specific
point in time. There is typically strong seasonality, limited storage and transmission capacity and
strong correlation between price and required volume. Such characteristics need to be taken into
account when pricing contracts and managing financial risk related to energy procurement. Tools for
these task are usually bundled into proprietary Energy Trading Risk Management (ETRM) systems
delivered by specialized IT vendors. The etrm package offers a transparent solution for building a
forward price curve for energy commodities which is consistent with methods widely used in the
industry. The user’s fundamental market view may be combined with contract price quotes to form
a forward curve that replicate current market prices, as described in Ollmar (2003) and Benth et al.
(2007b). etrm also provides implementations of five portfolio insurance trading strategies for energy
price risk management. The forward market curve and the energy price hedging strategies are core
elements in an ETRM system, which to the best of the author’s knowledge has not been previously
available in the R ecosystem.

1 Introduction

The purpose of this paper is to introduce the R package etrm and its tools for energy trading and
financial risk management. Substantial fluctuations in energy prices represent a significant risk for
market players, in particular for large consumers, producers and utility companies, see Benini et al.
(2002). The price dynamics is complex due to strong weather dependency and physical constraints
related to storage, distribution, and the introduction of new technology. See for example Nicolosi
(2010) for an analysis of renewable energy production and the negative prices following extreme events
in the German power market. Derivatives securities, such as futures contracts, are often used to hedge
against the commodity price risk. Specialized Energy Trading and Risk Management (ETRM) systems
provide the necessary tools to handle key activities such as position management, valuation and risk
reporting. Several proprietary alternatives exist. The annual Energy Risk’s Software Survey in Farrington
(2020) gives an overview of major providers along with rankings based on industry polls. There,
ETRM systems are divided into the operational categories derivatives software, physical trading and
operations software and front- and middle-office functionality. Historically, many system providers within
this domain have bundled modules into large monolithic architectures serving a variety of purposes,
including accounting and regulatory reporting. During the last decade, a general trend within system
development has moved towards splitting software into smaller stand-alone components. The etrm
package solely focus on financial trading, and may be viewed as a module for front- and middle-office
functionality for energy derivatives. The package currently offers transparent tools for two main
ETRM activities 1) construction of forward market curves and 2) implementation of trading strategies
for price risk management.

After the liberalization of electricity and gas markets started in the 1990s, a rich research literature
emerged. Topics studied include pricing and hedging in the forward market and modelling of spot
price processes, see for example Bessembinder and Lemmon (2002), Janczura et al. (2013) and Benth
et al. (2007a). Alternative methods for pricing options in power markets can be found in Burger
et al. (2004) and Benth and Schmeck (2014). Textbooks such as Eydeland and Wolyniec (2002), Benth
et al. (2008) and Kirschen and Strbac (2018) may be used to gain a more detailed overview of market
structure, available instruments, methods for risk management and the related markets for fuel, freight
and weather products. In this paper, we will cover some of the theory regarding forward curve
modelling from Ollmar (2003) and Benth et al. (2007b). The theoretical framework for price risk
management is gathered from the portfolio insurance literature, see Leland (1980), Perold and Sharpe
(1988), Leland and Rubinstein (1976). This will be presented in further detail below.

We would like to note that there are some tools available outside the domain of proprietary ETRM
software providers. Two examples are the MathWorks case studies Sundar (2021) and Deoras (2021),
focusing on risk assessment for gas-fired power plants and electricity load and price forecasting
using MATLAB. These topics are however somewhat ad-hoc, and the supplied code cannot be easily
incorporated into a generic ETRM system for general use. Similarly within the R ecosystem, there
are related tools in the Rmetrics suite of packages, such as fOptions and fPortfolio, but they are not
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directly applicable. Due to the unique properties of energy markets, standard methods for generating
forward curves in interest rate markets cannot be used either. To fill this gap and provide practitioners
and researchers with tools dedicated to energy price risk management, we have created etrm. The
package is available on CRAN, and may be installed and loaded into the R environment by running
the following commands:

if(!require(etrm)==TRUE) {install.packages("etrm")}
library(etrm)

The rest of the article is organized as follows. First, we give a brief introduction to energy
market forward curves and the maximum smoothness forward curve (MSFC) model. We describe
the etrm implementation and provide examples of use. Second, a short treatment of energy price risk
management with futures contracts is provided, followed by a presentation of five portfolio insurance
models. The etrm implementation is described and illustrated with practical examples for energy
portfolios with both short and long market exposure. The third part provide an overview of the etrm
package structure, available functions and included data sets. Finally, the last section summarizes the
paper and provide some suggestions for future work.

2 Energy market forward price curves

The standardised forwards for electricity and gas are contracts for flow delivery. The underlying
commodity is not received at a fixed point in time, but over a time interval. In mature markets,
participants can trade a variety of products, both over-the-counter (OTC) and on exchanges such
as Nasdaq Commodities, European Energy Exchange and the Intercontinental Exchange. Liquidity
is often best in the so called front-products, and there is normally higher activity in contracts for
next week, month, quarter and year compared to similar products further ahead in time. Shorter
period contracts may not even be available on a longer horizon, and seasonal price variation is thus
not directly observable in prices far ahead in time. Transacted volume and prices also inhibit quite
pronounced seasonality, during the year, week and within a specific day. For this reason, forward
contracts are divided into categories based on a load pattern. In the base load contracts, volume is
delivered at a constant rate during the contract period, while peak load products are linked to high
volume hours, such as Monday to Friday from 8 am to 8 pm. Other, more exotic load patterns exist,
but they are less common. Further details can be found in Eydeland and Wolyniec (2002) and Kirschen
and Strbac (2018).

The aim of the energy market forward price curve calculation is to create a compact representation
of the forward market, at a given point in time. The curve must be able to price the quoted instruments
correctly, while accounting for typical energy market characteristics such as seasonality and (possibly
overlapping) contracts for flow delivery. The curve is an essential decision making tool with many
uses, such as pricing non-standard supply agreements, investment decisions and risk management.

The topic of forward curve fitting has been studied for decades in interest rate markets, see for
example McCulloch (1971) and Anderson et al. (1996). These techniques cannot be applied directly
to commodities with flow delivery and strong seasonality in prices. There are several alternative
approaches to calculating a forward price curve for energy commodities. In Fleten and Lemming
(2003), market data is combined with forecasts generated by a bottom-up model constrained by
the bid/ask spread in order to meet the no-arbitrage condition. Borak and Weron (2008) propose a
semiparametric factor model for the forward curve dynamics in electricity markets, while Hildmann
et al. (2012) develop a calculation method by combining parametric estimation and prediction of
futures prices under constraints.

In etrm, we have opted for a method that combines a seasonal function with the maximum
smoothness-approach from interest rate markets, see Adams and Van Deventer (1994). Hence, we
follow the approach in Ollmar (2003) and Benth et al. (2007b). Base load contracts are used to calculate
a curve with daily granularity. This method has several benefits. It produces a continuous curve
which has a closed form solution, it is fast to calculate, flexible and used by many practitioners in the
industry. The next section provide a brief overview of the method, followed by a description of the
etrm implementation with examples.

Maximum smoothness forward curve model

Consider a market at time t with m forward contracts available for trading. Let the list

St = {(τs
1 , τe

1), (τ
s
2 , τe

2), ..., (τs
m, τe

m)}
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contain the start and end dates for each of these contracts. The time distance between τs
i and τe

i
for a contract i in 1, .., m cover standardized periods such as week, month, quarter and year. Some of
these settlement intervals might overlap, and in order to handle this we create a new list of dates
{t0, t1, ..., tn} to identify each separate sub period, see Figure 1. The new list is made by sorting all
dates in St in ascending order and removing duplicates.

Timeτs1

t1

τs2

t2

τe1

t3

τe2

t4

first contract period

second contract period

Figure 1: Illustration of two overlapping contracts with start (τs) and end (τe) dates. Due to the
overlap, the total delivery period is split into sub intervals identified with {t1, t2, t3, t4}.

The forward price at time t for one unit of energy delivered at a constant rate (τe − τs)−1 over
the time interval (τs, τe) is denoted by F(t, τs, τe), where t ≤ τs < τe. A forward contract for a flow
delivery may be thought of as the average of hypothetical single-delivery contracts. At time t, each
of these would have a unique price f (t, u) for the delivery at u with an infinitesimal delivery period.
This leads to F(t, τs, τe) being the weighted average

F(t, τs, τe) =

τe∫
τs

w(u, τs, τe) f (t, u)du (1)

where w(u, τs, τe) =
ŵ(u)∫ τe

τs
ŵ(v)dv

is a weight function accounting for the rate of interest r and the time

value of money. If the contract in question is settled at the end of the delivery period (forward contract),
the weight function is given by w(u, τs, τe) = 1/(τe − τs). If the contract is settled continuously over
the delivery period (futures contract), w(u, τs, τe) =

re−ru

e−rτs−e−rτe . In the following we construct a forward
market price curve for the entire horizon using a simplified notation f (u) for the function describing
the forward curve at time t. In order to model the strong seasonality in energy markets, the forward
curve function is decomposed into two elements:

f (u) = Λ(u) + ϵ(u) u ∈ [t0, tn] (2)

Following Ollmar (2003) we calculate f (u) by combining a prior function Λ(u) which contain
our subjective views on the future prices with an adjustment function ϵ(u) to ensure match with the
observed closing prices for the m contracts. The prior could be generated with a simple sinusoidal
function or from a fundamental model more capable of describing the seasonality and calendar effects
observed in energy markets. Should the prior be excluded, the seasonal price patterns will not be
visible in the far end of the curve, where only yearly or seasonal contracts are available. Smoothing is
calculated on the adjustment function, we aim to minimize the total curvature of Λ(u) while preserving
the information from the prior. Smoothness is defined as the integral of the second-order derivative of
the function, and the smoothest possible curve over [t0, tn] is achieved by minimising

tn∫
t0

[ϵ′′(u)]2 du

under five constraints presented below. Lim and Xiao (2002) show the smoothest possible curve is
found when the n sub periods are modelled by fourth-degree polynomials. We write ϵ(u) as a spline

ϵ(u) =



a1u4 + b1u3 + c1u2 + d1u + e1, u ∈ [t0, t1],
a2u4 + b2u3 + c2u2 + d2u + e2, u ∈ [t1, t2],

.

.
anu4 + bnu3 + cnu2 + dnu + en, u ∈ [tn−1, tn].
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In order to construct the forward curve function we need to identify the parameters of ϵ(u)

x⊺ = [a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 . . . an bn cn dn en]

by solving the quadratic optimisation problem

min
x

τe∫
τs

[ϵ′′(u; x)]2 du (3)

subject to

(aj+1 − aj)u4
j + (bj+1 − bj)u3

j + (cj+1 − cj)u2
j + (dj+1 − dj)uj + ej+1 − ej = 0 (a)

4(aj+1 − aj)u3
j + 3(bj+1 − bj)u2

j + 2(cj+1 − cj)uj + (dj+1 − dj) = 0 (b)

12(aj+1 − aj)u2
j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0 (c)

ϵ′(un; x) = 0 (d)

1
τe

i − τs
i

τe
i∫

τs
i

(Λ(u) + ϵ(u))du = Fc
i (e)

for spline knot j = 1, ..., n − 1 and contract i = 1, ..., m. The constraint in (a) ensures the adjustment
function is continuous in the knots, while (b) and (c) imposes this restriction also for the first and
second order differentials. The (d) constraint require the adjustment function to be horizontal at
time T, and finally (e) also require the average value of the forward price function f (u) over the
delivery period for contract i to match the quoted closing price Fc

i . Here, we could take the interest
rate effect from r into account and set the present value of the average of the forward price function
equal to present value of the forward contract. Instead of doing that, we will follow Benth et al.
(2008) and Ollmar (2003) and assume r = 0 such that the weight function in 1 is approximated with
w(u, τs, τe) ≈ 1

τe−τs . Like Benth et al. (2008) we will argue that both the prior and the smoothing will
outweigh a marginal interest rate effect. This minimisation problem can be expressed as

min
x

x⊺Hx,

where x is a (5n × 1) vector and

H =

h1 0
. . .

0 hn

 , hj =


144
5 ∆5

j 18∆4
j 8∆3

j 0 0
18∆4

j 12∆3
j 6∆2

j 0 0
8∆3

j 6∆2
j 4∆j 0 0

0 0 0 0 0
0 0 0 0 0


The block diagonal matrix H has dimensions (5n × 5n) and ∆j = tl

j+1 − tl
j. As the constraints in (3)

are all linear in x and may be expressed on the form Ax = B, the problem may be rephrased as an
unconstrained minimisation problem via the Lagrange multiplier method:

min
x,λ

x⊺Hx + λ⊺(Ax − B)

where A is a (3n + m − 2 × 5n) matrix and B is a (3n + m − 2 × 1) vector. The spline parameter vector
and Lagrange multipliers are identified by solving[

2H A⊺

A 0

] [
x
λ

]
=

[
0
B

]
(4)

where the left matrix has dimension of (8n + m − 2)× (8n + m − 2) and both vectors are of dimension
(8n + m − 2).
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The "MSFC" class with examples

The forward curve calculation in etrm is implemented in the S4 "MSFC" class. By supplying all
required arguments to the constructor function msfc(), the user may create an object that contains the
calculation results, input arguments and further calculation details. In addition to the arguments from
the list of contracts, the user may also provide a prior to the calculation. By default the prior is set to
zero, but the user can input any vector expressing a belief regarding the market to be combined with
the observed prices. An overview of the msfc() arguments can be found in Table 1.

Argument Description Default value

tdate Trading date none
include Logical vector for contract selection none
contract Character vector with contract names none
sdate Date vector with contract start dates none
edate Date vector with contract end dates none
f Numeric vector with contract prices none
prior Numeric prior curve vector 0

Table 1: Arguments for the msfc() constructor function for forward curve calculation.

The "MSFC" class properties and available methods are summarised in Figure 2, and a brief
description is provided in the following. The "Name" slot describe the type of forward curve model
used by storing the character value "MSFC", while "TradeDate" keeps the trade date used in the
calculation. A data frame containing details for selected contracts along with the calculated forward
price based on the curve can be found in "BenchSheet". A count of the (n − 1) number of polynomials
used in the spline is available as a scalar value in "Polynomials", and the prior curve vector in
"PriorFunc". The main calculation result is stored in a data frame which contains daily values for all
selected contracts along with the calculated forward curve. The data frame span the date range from
"TradeDate" to the end date of the contract furthest ahead in time, and can be found in "Results".
The interested user may also extract additional information regarding the spline itself. Coefficients
for all polynomials can be found in the "SplineCoef" list and the knotpoints separating them in the
numeric vector "KnotPoints". Further details regarding the calculation of the daily forward curve
values are available in the "CalcDat" data frame. This table is essentially an extended version of
"Results", where numeric time vectors and the spline coefficients have been added.

MSFC

Name : "character"
TradeDate : "date"
BenchSheet : "data.frame"
Polynomials : "numeric"
PriorFunc : "numeric"
Results : "data.frame"
SplineCoef : "list"
KnotPoints : "numeric"
CalcDat : "data.frame"

plot()
summary()
show()

1
Figure 2: Attributes and methods of the "MSFC" class.

The "MSFC" class has the generic methods plot(), summary() and show(). The plot() method may
be used to create a chart of the calculated curve and underlying contracts from the "Results" data
frame. All plot methods in etrm are based on ggplot2, see Wickham (2011a). The summary() method
returns a list with three elements; a description string, a sample of the prior vector, and the bench
sheet. Finally, the show() method returns the "Results" data frame.

We proceed with a practical example using two of the embedded etrm data sets to represent
information available to a European power market participant. All market-related inputs to the msfc()
constructor (trade date and contract properties) are required arguments. These are collected from a
synthetic data set for the trading date 2013-05-13, and can be found in "powfutures130513" presented
in Table 2. Contracts covering long time spans are excluded with include = FALSE if futures of shorter
duration are available for the same time interval in order to preserve the seasonality available in
market prices. We use a seasonal prior with high energy prices during the winter season, followed by
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a drop toward the lower summer levels. It also take into account some well known calendar effects,
such as weekends. The prior is simple, and merely used for illustrative purposes. It can be found
in the data set "powpriors130513" included in the package. A calculation excluding the prior is also
added for comparison.

Include Contract Start End Closing

TRUE W21-13 2013-05-20 2013-05-26 33.65
TRUE W22-13 2013-05-27 2013-06-02 35.77
TRUE W23-13 2013-06-03 2013-06-09 36.58
TRUE W24-13 2013-06-10 2013-06-16 35.93
TRUE W25-13 2013-06-17 2013-06-23 33.14
TRUE W26-13 2013-06-24 2013-06-30 34.16
FALSE MJUN-13 2013-06-01 2013-06-30 35.35
TRUE MJUL-13 2013-07-01 2013-07-31 33.14
TRUE MAUG-13 2013-08-01 2013-08-31 35.72
TRUE MSEP-13 2013-09-01 2013-09-30 38.41
TRUE MOCT-13 2013-10-01 2013-10-31 38.81
TRUE MNOV-13 2013-11-01 2013-11-30 40.94
FALSE Q3-13 2013-07-01 2013-09-30 35.72
TRUE Q4-13 2013-10-01 2013-12-31 40.53
TRUE Q1-14 2014-01-01 2014-03-31 42.40
TRUE Q2-14 2014-04-01 2014-06-30 33.39
TRUE Q3-14 2014-07-01 2014-09-30 31.78
TRUE Q4-14 2014-10-01 2014-12-31 38.25
TRUE Q1-15 2015-01-01 2015-03-31 40.73
TRUE Q2-15 2015-04-01 2015-06-30 32.64
TRUE Q3-15 2015-07-01 2015-09-30 30.87
TRUE Q4-15 2015-10-01 2015-12-31 37.22
FALSE CAL-14 2014-01-01 2014-12-31 36.43
FALSE CAL-15 2015-01-01 2015-12-31 35.12
TRUE CAL-16 2016-01-01 2016-12-31 34.10
FALSE CAL-17 2017-01-01 2017-12-31 35.22
FALSE CAL-18 2018-01-01 2018-12-31 36.36

Table 2: Closing prices for futures contracts used in the forward curve calculation for 2013-05-13.
Contracts are selected for the calculations with the include vector. Prices for these contracts can be
found as horizontal lines in Figure 3

As shown in Figure 3, the shorter contracts close in time to the trading date clearly reflect a seasonal
pattern. This is typical in power markets, where weather and calendar effects have strong influence
on transacted volume and price formation. On a longer horizon however, this information is not
observable in market prices, as the quoted contracts cover longer time spans. This is where price
data may be supplemented with prior knowledge in order to create a representation of the market
consistent with both the underlying fundamentals and the listed contracts. The following code will
create the "MSFC" objects and plot calculation results:

library(etrm)
library(gridExtra)
data(powfutures130513)
data(powpriors130513)

# instance of MSFC class with prior
fwd.fut.wpri <- msfc(tdate = as.Date("2013-05-13"),

include = powfutures130513$Include,
contract = powfutures130513$Contract,
sdate = powfutures130513$Start,
edate = powfutures130513$End,
f = powfutures130513$Closing,
prior = powpriors130513$mod.prior)

# instance of MSFC class without prior
fwd.fut.npri <- msfc(tdate = as.Date("2013-05-13"),

include = powfutures130513$Include,
contract = powfutures130513$Contract,
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sdate = powfutures130513$Start,
edate = powfutures130513$End,
f = powfutures130513$Closing,
prior = 0)

# the generic plot() method
pw <- plot(fwd.fut.wpri, ylab = "EUR/MWh", legend = "")
pn <- plot(fwd.fut.npri, ylab = "EUR/MWh", legend = "")

# combine plots
gridExtra::grid.arrange(pw, pn)
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Figure 3: Two alternative forward curve calculations based on the same contract selection. In the top
panel, a prior function is included in the calculation. This curve shows price variation on the weekly
level, with lower prices during weekends. The prior also ensures that yearly seasonality is visible
in the far end of the curve. The bottom plot is based solely on market prices, which does not reflect
seasonality on such long horizon.

The computed prices may be verified via the summary() method, which also return a sample of the
prior and information regarding the spline calculation:
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> summary(fwd.fut.wpri)
$Description
[1] "MSFC of length 1329 built with 41 polynomials at trade date 2013-05-13"

$PriorFunc
[1] 30.10842 30.16396 30.19572 30.16144 29.06268 28.93272

$BenchSheet
Include Contract From To Price Comp

1 TRUE W21-13 2013-05-20 2013-05-26 33.65 33.65
2 TRUE W22-13 2013-05-27 2013-06-02 35.77 35.77
3 TRUE W23-13 2013-06-03 2013-06-09 36.58 36.58
4 TRUE W24-13 2013-06-10 2013-06-16 35.93 35.93
5 TRUE W25-13 2013-06-17 2013-06-23 33.14 33.14
6 TRUE W26-13 2013-06-24 2013-06-30 34.16 34.16
8 TRUE MJUL-13 2013-07-01 2013-07-31 33.14 33.14
9 TRUE MAUG-13 2013-08-01 2013-08-31 35.72 35.72
10 TRUE MSEP-13 2013-09-01 2013-09-30 38.41 38.41
11 TRUE MOCT-13 2013-10-01 2013-10-31 38.81 38.81
12 TRUE MNOV-13 2013-11-01 2013-11-30 40.94 40.94
14 TRUE Q4-13 2013-10-01 2013-12-31 40.53 40.53
15 TRUE Q1-14 2014-01-01 2014-03-31 42.40 42.40
16 TRUE Q2-14 2014-04-01 2014-06-30 33.39 33.39
17 TRUE Q3-14 2014-07-01 2014-09-30 31.78 31.78
18 TRUE Q4-14 2014-10-01 2014-12-31 38.25 38.25
19 TRUE Q1-15 2015-01-01 2015-03-31 40.73 40.73
20 TRUE Q2-15 2015-04-01 2015-06-30 32.64 32.64
21 TRUE Q3-15 2015-07-01 2015-09-30 30.87 30.87
22 TRUE Q4-15 2015-10-01 2015-12-31 37.22 37.22
25 TRUE CAL-16 2016-01-01 2016-12-31 34.10 34.10

The forward curve values can be extracted along with daily prices for the contracts used in the calcula-
tion with the show() method:

> head(show(fwd.fut.wpri), 20)[1:5]
Date MSFC W21-13 W22-13 W23-13

1 2013-05-13 29.89373 NA NA NA
2 2013-05-14 30.40235 NA NA NA
3 2013-05-15 30.88704 NA NA NA
4 2013-05-16 31.30634 NA NA NA
5 2013-05-17 30.66200 NA NA NA
6 2013-05-18 30.98687 NA NA NA
7 2013-05-19 32.33591 NA NA NA
8 2013-05-20 32.74655 33.65 NA NA
9 2013-05-21 33.19772 33.65 NA NA
10 2013-05-22 33.63844 33.65 NA NA
11 2013-05-23 34.02161 33.65 NA NA
12 2013-05-24 33.34168 33.65 NA NA
13 2013-05-25 33.62327 33.65 NA NA
14 2013-05-26 34.91272 33.65 NA NA
15 2013-05-27 35.24208 NA 35.77 NA
16 2013-05-28 35.59669 NA 35.77 NA
17 2013-05-29 35.92499 NA 35.77 NA
18 2013-05-30 36.17633 NA 35.77 NA
19 2013-05-31 35.34194 NA 35.77 NA
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20 2013-06-01 35.44437 NA 35.77 NA

We have excluded columns from the data frame for the sake of presentation. Further details regarding
the calculation such as spline coefficients and knot points can be found in the slots:

> slotNames(fwd.fut.wpri)
[1] "Name" "TradeDate" "BenchSheet"
[4] "Polynomials" "PriorFunc" "Results"
[7] "SplineCoef" "KnotPoints" "CalcDat"
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See for example the numeric vector with knot points, measured in years from the trading date:

> fwd.fut.npri@KnotPoints
[1] 0.00000000 0.01917808 0.03561644 0.03835616 0.05479452 0.05753425 0.07397260
[8] 0.07671233 0.09315068 0.09589041 0.11232877 0.11506849 0.13150685 0.13424658
[15] 0.21643836 0.21917808 0.30136986 0.30410959 0.38356164 0.38630137 0.46849315
[22] 0.47123288 0.55068493 0.63561644 0.63835616 0.88219178 0.88493151 1.13150685
[29] 1.13424658 1.38356164 1.38630137 1.63561644 1.63835616 1.88219178 1.88493151
[36] 2.13150685 2.13424658 2.38356164 2.38630137 2.63561644 2.63835616 3.63835616

The coefficients for the first polynomial in the adjustment function spline can be found with

> fwd.fut.npri@SplineCoef[[1]]
[1] -355585.14451 10911.10580 -78.47028 151.90713 29.54903

The most elaborate presentation of the curve calculation is available in fwd.fut.npri@CalcDat. This
slot contains a data frame with all calculation details for each of the daily values returned by msfc().
It is not included here due to space requirements.

3 Energy price risk management

Energy market participants may be exposed to number of risk factors such as volume, profile and basis
risk, counter party defaults, foreign exchange and market liquidity, to name a few. See for example
Eydeland and Wolyniec (2002) and Kirschen and Strbac (2018) for a comprehensive treatment of the
topic. The main focus in etrm is on the market price risk of the energy commodity. Consider the price
risk associated with the constant base load volume q to be delivered over a future time interval (τs, τe).
The risk can be mitigated by taking positions in the futures market during a trading period (t0, T),
which ends before the actual delivery of the energy takes place at T < τs.

Timet0 T τs τe

trading period

contract period

Figure 4: Trading and settlement periods for energy forward contract.

The price risk may be reduced by constructing a portfolio, consisting of the physical energy market
exposure and derivatives contracts. The portfolio price per energy unit pt is calculated as the weighted
average of the value of the transacted volumes and the open volume evaluated mark-to-market

pt =
1
q

(
f0h0q +

t

∑
i=1

fi(hi − hi−1)q + ft(1 − ht)q
)
= f0h0 +

t

∑
i=1

fi(hi − hi−1) + ft(1 − ht) (5)

where ht ∈ (0, 1) is the hedge rate and ft the futures price at time t. In the simplest possible scenario,
the risk can be managed by locking the entire volume in the forward market. This removes the price
risk and the portfolio owner knows up front what to pay or receive when delivery of the energy takes
place. On the downside, one might regret locking if the market develops in a favourable way.

Portfolio insurance strategies

In the portfolio insurance approach, dynamic hedging strategies that allow buying and selling the
hedging instrument are used to protect the portfolio, while seeking to benefit from advantageous
market developments. Historically, the theory of portfolio insurance has focused on protection against
downside risk in financial investment portfolios, see Leland and Rubinstein (1976) , Perold and Sharpe
(1988) and Leland (1980). Here, we apply the same principles to manage commodity price risk in
the forward market. A consumer following a dynamic hedging program may control price risk by
locking a share of future volume in the futures market, and increase (decrease) the share if the price
increase (falls). A seller can implement similar strategies to maximise value of the energy portfolio.
The size of the initial hedged share and how it is adjusted affects both the protective properties of the
hedging scheme as well as its ability to exploit opportunities in the market. Trading activity needs
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to be carefully managed and harmonized with overall objectives and risk preferences. A variety of
portfolio insurance strategies offer different approaches to this task. The allocation strategies presented
below all aim to control pt and prevent breach of a pre-specified cap (or floor) price, p∗, under the
hedge rate restriction ht ∈ (0, 1).

The Constant proportion portfolio insurance (CPPI) strategy was introduced by Perold (1986)
and Black and Jones (1987) for management of investment portfolios with capital guarantees. When
applied to an energy portfolio, it aims to insure the portfolio by protecting a target price, a cap (floor)
value for the portfolio price. Prior to start of hedging, p∗ is set equal to the highest (lowest) acceptable
portfolio price. This target price must be set higher than the first day’s market price f0 to implement
cap protection, or lower for a floor protection model. The difference between the target price and the
current portfolio price is termed the cushion. The key idea of CPPI is that the proportion of the volume
exposed to the market should be calculated as a constant multiple m of the cushion. The multiple is
given by m = µ−1, where µ > 0 is a risk factor set to handle the maximum daily price change to be
handled by the hedging model, which again affects strategy gearing. The unexposed proportion, the
hedge rate, is

ht =


0 if ct > µ

1 − mct if µ ≥ ct ≥ 0
1 if ct < 0

(6)

where ct = p∗ − pt−1 for a short hedger, and ct = pt−1 − p∗ for the long hedger.

In the Dynamic proportion portfolio insurance (DPPI) strategy, a decision rule similar to CPPI is
applied, but the multiple mt is allowed to vary. Changing market conditions may require re-evaluation
of the risk factor in the multiple. Methods such as Value-at-Risk or Expexted Shortfall, or even simple
heuristics can be used for this purpose. For a further treatment of DPPI type strategies, the reader is
referred to Lee et al. (2008) and Chen et al. (2008). In etrm we also allow adjustments in the target price
p∗t , to catch opportunities to lower the capped value, or to increase the floor value. The hedge rate is
determined similarly to CPPI, with

p∗t =


min(λpt−1, p∗t−1) short hedger

max(λpt−1, p∗t−1) long hedger
(7)

where λ =
p∗o
po

for a short hedger, and λ =
po
p∗o

for the long hedger.

Option based portfolio insurance (OBPI) was first introduced in Leland and Rubinstein (1976) as
a means of providing insurance for investment portfolios. By combining an investment in a risky asset
with a put option on the asset, the portfolio value is prevented from falling below the option strike
price, K. A similar approach can be taken for the energy portfolio. As we are using futures contracts to
manage the energy price risk, the Black-76 formula introduced in Black (1976) is used to approximate
the contingent claim premium. The price at time t of the European call and put options with exercise
date T and strike price K, on a futures contract with delivery start τs ≥ T is given by

C( ft, t, K, σ, r) = e−r(T−t)[ ft N(d1)− KN(d2)] (8)

P( ft, t, K, σ, r) = e−r(T−t)[KN(−d2)− ft N(−d1)] (9)

where ft is the futures price and N is the cumulative distribution function of N(0, 1), where

d1 =
ln( ft/K) + (σ2/2)(T − t)

σ
√
(T − t)

(10)

d2 = d1 − σ
√
(T − t) (11)

and r is the risk free rate of interest, σ the volatility of the underlying futures price and (T − t) is the
time to exercise date. The sensitivity in the option premiums with respect to changes in the underlying
futures price is given by the call and put option deltas:

∂C
∂ f

= e−r(T−t)N(d1) (12)

∂P
∂ f

= e−r(T−t)N(−d1) (13)

These are used to synthesise the option, by setting portfolio hedge rate ht ∈ (0, 1) with the call (buyer)
and put (seller) option deltas. By implementing this delta hedging scheme, a cap (floor) for the portfolio
price is set at the option strike price K, adjusted for the option premium/ replication costs. For a more
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detailed presentation of the underlying theory, the reader is referred to Bjork (2009).

Step hedge portfolio insurance (SHPI) is a simple and mechanical benchmark strategy that builds
hedging positions gradually by transacting identical volumes each day through the trading period
(t0, T), reaching a full hedge prior to the start of the settlement period. The hedge rate for a buyer at
time t is given by

ht =

{
t

T−t0+1 if pt < p∗

1 if pt ≥ p∗
(14)

The hedges for a seller is entered mechanically in a similar manner as long as pt > p∗. In the event
pt ≤ p∗ a full hedge ht = 1 is implemented. By distributing the transacted volumes evenly across the
trading period while monitoring the target, the strategy portfolio price will either be locked in at the
target price, or end up equal to the average forward market price over (t0, T).

Finally, the Stop loss portfolio insurance (SLPI) is another simple benchmark, where no hedge
positions are entered unless the target level is reached. For a buyer, this may be expressed as

ht =

{
0 if pt < p∗

1 if pt ≥ p∗
(15)

For a seller, the logic is reversed with ht = 0 for pt > p∗ and ht = 1 for pt ≤ p∗. In the event that the
target level is reached, the portfolio is kept fully hedged until start of settlement. If this does not occur,
the portfolio follows the forward market, leaving an option to lock in the price at contract expiration.

The strategies presented above all have strengths and weaknesses. CPPI, SHPI and SLPI are simple
and intuitive, but can be vulnerable to so-called lock in, the inability to improve portfolio price once the
target level has been reached. This is also the case for DPPI. The OBPI does not suffer from this trait,
but it relies on more assumptions regarding model parameters. In some scenarios, it will also generate
more trading activity (costs), for example if the market fluctuate around the option strike price, K.
Finally, as the strategies must be implemented in discrete time, they will all be exposed to gap risk.

The strategy classes with examples

The portfolio insurance strategies in etrm are implemented as S4 classes. Since they share many
characteristics, they inherit most of their properties from a parent class, "GenericStrat". In fact, the
implementation of the simple benchmark strategies SLPI and SHPI do not require any additional
properties to be added to the parent. The remaining strategy classes have some additional model
specific features, in accordance with the descriptions in previous section. This modular design offers
flexibility, and new strategies for price risk management can easily be added to the package.

GenericStrat

Name : "character"
Volume : "numeric"
TargetPrice : "numeric"
TransCost : "numeric"
TradeisInt : "logical"
Results : "data.frame"

plot()
summary()
show()

CPPI

RiskFactor : "numeric"

DPPI

TargetPercent : "numeric"
RiskFactor : "numeric"

OBPI

StrikePrice : "numeric"
AnnVol : "numeric"
InterestRate : "numeric"
TradingDays : "numeric"

SHPI SLPI

1

Figure 5: Attributes and methods for portfolio insurance strategy classes in the etrm package.

Figure 5 provide an overview of the class hierarchy, and a brief description is given in the following.
In "GenericStrat", the "Name" property is used to store a strategy identifier. Allowed character values
are "CPPI", "DPPI", "OBPI", "SHPI" and "SLPI". The volume to be managed and the corresponding
price cap (floor) can be found in "Volume" and "TargetPrice", respectively. If a transaction cost has
been included in the calculation of the portfolio price, this is to be found in "TransCost". One may
also set a restriction on transactions by requiring that the smallest volume available for trading is
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equal to 1 unit. This lot size limitation is stored as TRUE/FALSE in "TradeisInt". The main output
from a strategy calculation can be found in "Results". This data frame keeps daily values for market
prices, transactions, exposed volume, open volume, hedge rate, target price and portfolio price.

The generic methods plot(), summary() and show() are implemented in "GenericStrat" and
inherited by the strategy classes. The plot() method returns a chart based on "Results", with daily
values for portfolio, market and target prices and portfolio hedge rate. The summary() method returns
a list with five elements; a description string, portfolio volume, target price, calculated churn rate and
a data frame with summary statistics for the trading period. Finally, the show() method returns the
"Results" data frame.

Argument Description Default value

q Numeric volume none
tdate Date vector with trading days none
f Numeric price vector none
tcost Numeric transaction cost 0
int Logical lot size integer restriction TRUE

Table 3: Arguments shared by the portfolio insurance strategy functions.

The strategy constructor functions cppi(), dppi(), obpi(), shpi() and slpi() share five of the
arguments, see Table 3. Each strategy require some additional arguments to implement the models
presented in previous section. All of these inputs are of "numeric" data type. They are summarised in
Table 4.

Function Argument Description Default value

cppi()
tper Target price factor none
rper Risk factor percentage none

dppi()
tper Target price factor none
rper Risk factor percentage none

obpi()

k Option strike price k = f0
vol Annualized volatility none
r Interest rate 0
tdays Trading days per year 250
daysleft Days left to expiry none

shpi()
tper Target price factor none
daysleft Days left to expiry none

slpi() tper Target price factor none

Table 4: Model specific arguments for the portfolio insurance strategy functions.

To illustrate further, we proceed with an example. Consider a European consumer of electricity
procuring 30 MW to be delivered in 2006. The CAL-06 baseload power future from the synthetic etrm
"powcal" data set is used as hedging instrument. Trading is started 500 days prior to the contract
expiry, approximately a horizon of 2 years. For the "OBPI" strategy presented below, the target price is
calculated as an expected price cap given by the option premium-adjusted strike price selected for
the delta hedging scheme within a standard Black-76 option pricing framework. The default obpi()
strike price is set at-the-money, in this case at 26.82 EUR/MWh. The expected target price illustrated
with the horizontal dotted line in Figure 6 is calculated to be 29.84 EUR/MWh. The "OBPI" delta
hedging scheme dictate an initial hedge rate of 57 percent, and the consumer enters a 17 MW position
in CAL-06 on the first day of trading.

As time progresses and the market price changes, the obpi() function adjust the required hedge
rate in order to replicate the call option on the CAL-06 contract. Hedge rate is gradually built up as the
market increase from the second quarter of 2004, followed by a reduction after the sharp price drop
starting late in the same year. Eventually, the volume is fully hedged due to the strong upwards price
trend in 2005. The CAL-06 contract closes at 37.81 EUR/MWh on the expiry date, while the consumer
has a hedge of 30 MW and a portfolio price of 29.29 EUR/MWh. The calculated price of the option to
be synthesized (and the delta hedges) will depend on the Black-76 model parameters. In this example
the risk free rate of interest is set to r = 0 and annualized volatility σ is assumed to be 20 percent. The
following code will implement the strategy and create the plot in Figure 6:
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# data frame with final 500 trading days for CAL-06 contract
dat06 <- tail(na.omit(powcal[, c(1,2)]), 500)

# instance of the OBPI class
cal06_obpi_b <- obpi(q = 30,

tdate = dat06$Date,
f = dat06$`CAL-06`,
k = dat06$`CAL-06`[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = 500,
tcost = 0,
int = TRUE)

# the generic plot() method
plot(cal06_obpi_b, title = "", legend = "right", ylab.1 = "EUR/MWh")

Figure 6: Option based portfolio insurance (OBPI) strategy for buyer CAL-06. Daily observations for
prices (top panel) and hedge rate (bottom panel). As the market price continue to rise, the hedge rate
is increased and the portfolio price is locked below the target price level.

An aggregated view of the trading activity over the 2 year period and final results can be retrieved
by running the summary() method on the object created above:

> summary(cal06_obpi_b)
$Description
[1] "Hedging strategy of type OBPI and length 500"

$Volume
[1] 30

$Target
[1] 29.83626

$ChurnRate
[1] 4.333333
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$Stats
Market Trade Exposed Position Hedge Target Portfolio

First 26.82 17 13 17 0.5666667 29.83626 26.82000
Max 39.01 17 17 30 1.0000000 29.83626 29.29433
Min 25.60 -3 0 13 0.4333333 29.83626 26.46833
Last 37.81 0 0 30 1.0000000 29.83626 29.29433

We note from the "ChurnRate" that the underlying 30 MW volume had to be traded 4.33 times in order
to synthesize the call option and achieve the results summarised in "Stats". By also considering the
trading costs in the calculations, the user can get valuable inputs when considering alternatives, such
as simply buying the option in the market. However, such contract may not always be available.

Finally, the show() method provide details regarding daily values for market price, transactions,
exposed volume, futures contract position, hedge rate, the target price and the calculated portfolio
price:

> head(show(cal06_obpi_b))
Date Market Trade Exposed Position Hedge Target Portfolio

1 2004-01-02 26.82 17 13 17 0.5666667 29.83626 26.82000
2 2004-01-05 26.63 -1 14 16 0.5333333 29.83626 26.73767
3 2004-01-07 26.31 0 14 16 0.5333333 29.83626 26.58833
4 2004-01-08 26.31 0 14 16 0.5333333 29.83626 26.58833
5 2004-01-09 26.54 0 14 16 0.5333333 29.83626 26.69567
6 2004-01-12 26.32 0 14 16 0.5333333 29.83626 26.59300

For the sake of comparison, the OBPI strategy for CAL-06 from a sellers point of view can be
implemented with similar assumptions by setting the volume to q = −30. Using the default at-the-
money strike price, the seller calculates an expected target floor to protect at 23.80 EUR/MWh and an
initial hedge rate of 43 percent. As the market starts to rise, the hedge is reduced. The seller increases
the hedge in late 2004 to dampen the effect from the market drop, and finally exits the forward market
positions as the price increases during 2005. The portfolio price follows the market upwards with a
premium for the put option replication, as expected for an insurance scheme. The CAL-06 contract
closes at 37.81 EUR/MWh, and the seller has a portfolio price of 35.34 EUR/MWh, which may be
locked in on the final trading day.

Figure 7: Option based portfolio insurance (OBPI) strategy for seller CAL-06. Daily observations for
prices (top panel) and hedge rate (bottom panel). The hedge rate is lowered in the upwards trending
market, and the portfolio price continue to increase.
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# instance of the OBPI class
cal06_obpi_s <- obpi(q = - 30,

tdate = dat06$Date,
f = dat06$`CAL-06`,
k = dat06$`CAL-06`[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = 500,
tcost = 0,
int = TRUE)

# the generic plot() method
plot(cal06_obpi_s, title = "", legend = "right", ylab.1 = "EUR/MWh")

> summary(cal06_obpi_s)
$Description
[1] "Hedging strategy of type OBPI and length 500"

$Volume
[1] -30

$Target
[1] 23.80374

$ChurnRate
[1] 4.2

$Stats
Market Trade Exposed Position Hedge Target Portfolio

First 26.82 -13 -17 -13 0.4333333 23.80374 26.82000
Max 39.01 2 -13 0 0.5666667 23.80374 36.64867
Min 25.60 -13 -30 -17 0.0000000 23.80374 25.95167
Last 37.81 0 -30 0 0.0000000 23.80374 35.33567

In the examples above, we have implicitly assumed that both the consumer and the seller have
a flat volume corresponding to 30 MW over the entire year which can be covered by a base load
contract such as the CAL-06. In practice, this is typically not the case. Industrial energy consumers
will have consumption profiles determined by the activity level in their production facilities, and
often face seasonal shifts due to variation in demand, or holidays. Weather also play a large role, both
for consumers and producers such as hydroelectric plants. In order to hedge the predicted volume
more precisely, some of the other contract types presented in Table 2 will need to be included in the
portfolio. Market players will "roll forward" and start trading contracts covering shorter periods
such as quarters, months and weeks, as they become available. The mandate for the energy portfolio
will typically be broken down into smaller time intervals with expected volume and required hedge
levels. All strategies presented here may be used to make decisions for several years and their sub
periods, and the market value of a specific volume prognosis and corresponding futures positions can
be evaluated using the forward curve discussed in previous sections.

In order to maintain focus on the strategies themselves, we continue with the baseload example
with 30 MW. In Figure 8 we plot results for the remaining four strategies for the consumer hedging
with CAL-06. The benchmark strategies "SHPI", and "SLPI" follow simple, mechanical patterns. The
"SHPI" builds a full hedge gradually over the trading period, ending at either the average forward
market price for the period, or the target price. This approach will always ensure a full hedge at expiry,
without intervention. The "SLPI" does not take any positions unless the target is reached, ending
either at the target level, or leaving an option to close at the contract expiry price. As the CAL-06
increase significantly during 2005, both end up at the target level.

The "CPPI", and "DPPI" strategies are more dynamic and adjust hedge rate according to market
developments and the model parameters. As the "DPPI" implements a dynamic risk factor, µt, the
strategies are geared differently. In this example, the "DPPI" successfully adjusts the target price
downward on one of the first trading days, and achieves a lower portfolio price on last trading day.

A similar overview from a seller’s perspective is provided in Figure 9. As the market trends
upwards during the hedging period, none of the strategies end up at the initial target price. The
"SHPI" builds the hedge positions in a step-wise manner, ending up with a portfolio price equal to
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Figure 8: Achieved results for the strategies CPPI, DPPI, SHPI and SLPI for buyer CAL-06. Daily
observations for prices (top panels) and hedge rate (bottom panels).

the average futures market price for the period. The "SLPI" does not enter any positions, leaving
an option to lock in market price at expiry. Finally, we can also here see some differences between
"CPPI", and "DPPI". This is due to the dissimilar gearing of the portfolios, but also because of the
rather frequent adjustments of the target price by "DPPI". In order to protect the higher targets, hedge
rate must be increased and "DPPI" falls behind "CPPI" and ends up at a lower portfolio price for the
seller.

Figure 9: Achieved results for the strategies CPPI, DPPI, SHPI and SLPI for seller CAL-06. Daily
observations for prices (top panels) and hedge rate (bottom panels).
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etrm can also be used in conjunction with other R packages to evaluate risks related to energy
procurement. Metrics such as Value-at-Risk and Expected Shortfall can for example be calculated using
the PerformanceAnalytics package. We will proceed with a simple, illustrative example. Consider
the OBPI portfolios "cal06_obpi_b" and "cal06_obpi_s" in the code example above. If we need to
calculate risk measures at a specific point in time, say at day 350 in the trading period, we can execute
the following code:

library(PerformanceAnalytics)

# CAL-06 returns prior to t=350
ret_06 <- head(diff(log(show(cal06_obpi_b)$Market)), 349)

# portfolio status at t=350
pdat <- rbind(
Buyer =show(cal06_obpi_b)[350,],
Seller =show(cal06_obpi_s)[350,]

)

# add risk measures to pdat
pdat <-cbind(pdat,

VaR = abs(rep(VaR(ret_06, p=.95, method="historical"), 2)*pdat$Market*pdat$Exposed*8760),
ES = abs(rep(ES(ret_06, p=.95, method="historical"), 2)*pdat$Market*pdat$Exposed*8760))

The calculation above evaluate market risk related to the unhedged volume (exposed MW ×8760
hours in the year 2006) at current market prices under the (simplistic) assumption of symmetry in the
returns distribution. The portfolio status, including risk metrics is

> pdat[c(-1, -3)]
Market Exposed Position Hedge Target Portfolio VaR ES

Buyer 32.54 3 27 0.9 29.84 28.98 10671.55 18237.06
Seller 32.54 -27 -3 0.1 23.81 30.38 96043.94 164133.52

4 Overview of the etrm package

Package etrm offers an open source implementation of core functionalities of an ETRM system:

• Construction of forward curves

• Strategies for price risk management

Functions included in the package are listed in Table 5.

Function Description

msfc() Maximum Smoothness Forward Curve
cppi() Constant Proportion Portfolio Insurance
dppi() Dynamic Proportion Portfolio Insurance
obpi() Option Based Portfolio Insurance
shpi() Step Hedge Portfolio Insurance
slpi() Stop Loss Portfolio Insurance

Table 5: Overview of etrm package functions

All functions act as constructors for their corresponding S4 classes, as described in further detail
in previous sections. The classes all have generic methods plot(), summary() and show(). Unit tests
covering all functions in etrm have been implemented using the testthat framework introduced in
Wickham (2011b).

Three synthetic data sets are included in the package, see Table 6. The "powfutures130513" and
"powpriors130513" data may be used to create forward curves with the msfc() function for the trading
date 2013-05-13. The portfolio insurance strategies may be tested on the "powcal" data set, which
contains historical prices for 11 base load power futures.
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Data set Description

powfutures130513 Synthetic data for a set of electricity base load futures
quoted at 2013-05-13. Closing prices for contracts with
weekly, monthly, quarterly and yearly settlement periods

powpriors130513 Two simple priors for forward market price curve
Daily values for calculation to be used with powfutures130513

powcal Synthetic data set with daily closing prices for 11 electricity
base load futures with yearly settlement periods for 2006-2016

Table 6: Overview of etrm package data sets

5 Summary and suggestions for future work

This paper introduces etrm, an R package for energy market risk management. The package contains
tools previously not available in the R ecosystem, such as the msfc() function for building a forward
curve for energy commodities with flow delivery contracts and strong seasonality. The forward
curve is a key decision making tool with many uses, such as pricing non-standard supply agreements,
investment decisions and risk management. etrm also provides implementations of portfolio insurance
strategies for handling price risk, suitable for both long and short hedgers. The functions can be
used for back testing strategies on historical futures price data, risk and strategy evaluations, and as
decision support tools for trade execution.

The etrm package may be developed further by incorporating new elements. First, the forward
curve calculation may be done on an hourly level. The bid-ask spread can be used as price constraint for
the optimization, as an extension of the current solution based on closing prices. Competing forward
curve calculation methods can also be added to the package, and new asset allocation strategies for
price risk management could be included.

A further extension of etrm functionality can be to implement a "PORTFOLIO" class, consisting
of a daily volume prognosis covering the full management horizon, supplemented with authorized
volumes per (sub)period and hedging strategy objects implemented in accordance with these autho-
rizations. The portfolio object could contain multiple strategy objects for contracts such as "year",
"quarter", "month" and "week", depending on the shape of the volume prognosis. This construction
can be priced using the forward curve, and portfolio wide risk measures could be calculated via Monte
Carlo simulations on the curve.
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fcaR, Formal Concept Analysis with R
by Pablo Cordero, Manuel Enciso, Domingo López-Rodríguez, and Ángel Mora

Abstract Formal concept analysis (FCA) is a solid mathematical framework to manage information
based on logic and lattice theory. It defines two explicit representations of the knowledge present in a
dataset as concepts and implications. This paper describes an R package called fcaR that implements
FCA’s core notions and techniques. Additionally, it implements the extension of FCA to fuzzy datasets
and a simplification logic to develop automated reasoning tools. This package is the first to implement
FCA techniques in R. Therefore, emphasis has been put on defining classes and methods that could be
reusable and extensible by the community. Furthermore, the package incorporates an interface with
the arules package, probably the most used package regarding association rules, closely related to
FCA. Finally, we show an application of the use of the package to design a recommender system based
on logic for diagnosis in neurological pathologies.

1 Introduction

The main goal of knowledge retrieval and knowledge discovery systems is to extract hidden patterns,
trends, behaviours, or rules to solve large-impact real-world problems. Usually, these problems present
heterogeneous data sources and are at the core of more general decision processes.

A fundamental principle is that the extracted knowledge should provide some understanding of
the analyzed data. As computational systems get in critical and sensitive areas such as medicine, the
justice system or financial markets, the knowledge becomes much more relevant to make predictions
or recommendations or to detect common interest groups or leaders. However, in many cases, the
inability of humans to understand the extracted patterns seems problematic.

To represent and retrieve knowledge from datasets, it has become more important to use formal
methods based on logic tools. The formal representation of knowledge and the use of logic tools
are more suitable for providing understandable answers. Therefore, it can help avoid the lack of
interpretability and explainability of the results.

In particular, formal concept analysis (FCA) (Wille, 1982; Ganter and Wille, 1999) is a well-founded
mathematical tool, based on lattice theory and logic, which can retrieve and store the knowledge in the
form of concepts (analogous to closed itemsets in transactional databases) and implications (association
rules with confidence 1). From this perspective, FCA constitutes a framework that complements and
extends the study of exact and approximate association rules.

The origins of FCA were devoted to the study of binary datasets (formal contexts) where variables
are called attributes. A relevant extension of FCA uses fuzzy sets (Belohlávek and Vychodil, 2016, 2017)
to model real-world problems since datasets may contain imprecise, graded or vague information that
is not adequately represented as binary values. The fuzzy extension can also model problems with
numerical and categorical attributes since these can be scaled to a truth value describing the degree of
fulfilment of the attribute.

Some authors have considered the use of FCA in machine learning. Kuznetsov (2004) relates
FCA to some mathematical models of machine learning. Ignatov (2017) summarizes the main topics
in machine learning and data mining where FCA has been applied: frequent itemset mining and
association rules to make classification and clustering. A closer approach appears in Trabelsi et al.
(2017), where a method for supervised classification based on FCA is used. The authors extract rules
based on concepts generated previously from data. These rules are used to compute the closure of a
set of attributes to obtain a classification rule.

From a dataset, FCA can establish maximal clusters, named concepts, between objects and at-
tributes. Each cluster consists of objects having common properties (attributes), which are only fulfilled
for these objects. The hierarchy between the concepts and relationships between the attributes (rules
or implications) are computed with the same computational cost in FCA.

Among all the techniques used in other areas to extract knowledge, we emphasize using rules
for its theoretical and practical interest. The notion of if-then rules, with different names, appears in
several areas (databases, machine learning, data mining, formal concept analysis) as a relationship
between attributes, called items, properties or atomic symbols regarding the domain. Nowadays, the
number of rules extracted even from medium-sized datasets is enormous in all these areas. Therefore,
the intelligent manipulation of these rules to reason with them is a hot topic to be explored.

In this direction, Cordero et al. (2002) introduced a logic, named simplification logic for functional
dependencies (SLFD), firmly based on a simplification rule, which allows us to narrow the functional
dependency set by removing redundant attributes. Although the semantic of implications or if-then
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P1 P2 P3 P4

O1 0 1⁄2 1⁄2 1⁄2
O2 1⁄2 1 0 1
O3 1⁄2 1 0 1
O4 0 1⁄2 1 1⁄2

Table 1: A sample formal context. The attributes are P1 to P4 and the objects are named O1 to O4.

rules in other areas are different, the logic can be used too.

Using directly SLFD, some automated deduction methods directly based on this inference system
have been developed for classical systems and fuzzy systems (Mora et al., 2003; Cordero et al., 2012;
Mora et al., 2012; Rodríguez Lorenzo et al., 2014, 2015).

In the fuzzy framework, several approaches to the definition of fuzzy implications (functional
dependencies, rules) are proposed in the literature, see Jezková et al. (2017) for a survey. Our work
considers that the definition of graded implication proposed by Belohlávek and Vychodil (2016, 2017)
generalizes all the previous definitions. Furthermore, for this general definition of graded implications,
an axiomatic system named FASL (fuzzy attribute simplification logic) was developed by Belohlávek
et al. (2016), becoming a helpful reasoning tool. Note that FASL is a generalization of SLFD to the
fuzzy framework.

The core of our proposal is to provide a user-friendly computational interface to the principal
operators and methods of fuzzy FCA, including the mentioned logic tools. This interface is easy
to extend to new functionalities and incorporate new methods, such as minimal generators or the
computation of different implication bases quickly. The operators and methods implemented are
designed to work in the general fuzzy setting, but they are also applicable in the classical binary case.

Thus, the focus of our proposal, the fcaR package, is to provide easy access to formal methods
to extract all the implicit knowledge in a dataset in the form of concepts and implications, working
natively with fuzzy sets and fuzzy implications. Our goal is to provide a unified computational
framework for the theoretically-oriented FCA users to develop, test, and compare new methods and
knowledge extraction strategies.

Other objectives of this work include presenting an FCA-based tool for knowledge discovery
accessible to other scientific communities, allowing for the development of new packages in other
fields using FCA techniques, especially in the construction of recommendation systems.

The work is organized as follows: Section Background on FCA begins with a brief look of FCA
and Simplification Logic. Section Related works presents other software libraries that implement FCA
or related paradigms’ core notions. In Section Package design, an explanation of the data structures,
classes and constructor methods is covered. Section Formal concept analysis with fcaR shows how to
use the package, describing the implemented FCA methods and the use of the simplification logic.
In Section Usage example. Fuzzy diagnostic system, a real application of the package in developing
a recommender system is illustrated. Finally, some conclusions and future works are presented in
Section Conclusions and future work.

2 Background on FCA

In this section, we present the basic notions in the FCA framework using a running example (see
Table 1). Note that the package incorporates the main methods in FCA that appear in this summary.
Since the formal study of FCA is not the main scope of this work, we recommend the reference (Ganter
and Obiedkov, 2016) for further details of this framework.

A formal context is a triple (G, M, I), where G is a set of objects, M is a set of attributes and I is a
fuzzy relation between objects and attributes, where I(x, y) ∈ [0, 1] means the truth value to which
object x possesses attribute y, indicating I(x, y) = 0 the absence of attribute or property y in object x.

The meaning of each entry in the table is the extent to which an object possesses the attribute in
the corresponding column. In the example shown in Table 1, the object named O4 fully possesses
attribute P3 and possesses P2 and P4 only to degree 50%.

In the remaining of this paper, we will use the notation d/a to indicate the presence of attribute a
with degree d.
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( {O1, O2, O3, O4} ,
{
0.5/P2, 0.5/P4

} )

( {O1, O4} ,
{
0.5/P2, 0.5/P3, 0.5/P4

} )

( {
0.5/O1, O4

}
,
{
0.5/P2, P3, 0.5/P4

} )

( {
0.5/O1, O2, O3, 0.5/O4

}
, {P2, P4} )

( {
0.5/O1, 0.5/O4

}
, {P2, P3, P4} )

( {O2, O3} ,
{
0.5/P1, P2, P4

} )

( {
0.5/O2, 0.5/O3

}
, {P1, P2, P4} )

(∅, {P1, P2, P3, P4} )

Figure 1: Concept lattice for the context in Table 1. Arrows indicate the direction of the order
relationship between concepts.

Derivation operators

Given a fuzzy set of objects S , we can compute its intent as the set of attributes that are shared by all
objects in S . Analogously, we define the extent of a set T of attributes as the set of objects which have
all the attributes in T .

In the above example, for S ={O1, O2}, we have intent(S) =
{0.5/P2, 0.5/P4

}
because I(O1, P2) =

0.5, I(O1, P4) = 0.5, I(O2, P2) = 1 and I(O2, P4) = 1.

The operator ϕ defined by ϕ(T) = intent(extent(T)) is a closure operator and a set of attributes
T is called closed if T = ϕ(T ). In our example, ϕ(

{0.5/P1
}
) =

{0.5/P1, P2, P4
}

, meaning that every
object that has P1 with degree at least 0.5, also has all the attributes {P2, P4}. When T is closed, the
pair (extent(T ), T ) is called a concept .

In general, a concept (A, B), where A is a set of objects, and B is a set of attributes, means that
the only attributes shared by all objects in A are those in B, and the only objects having all attributes
in B are those in A. This property makes (A, B) a maximal rectangular cluster in the dataset, with a
strong dependence between the objects in A and the attributes in B. In the formal context represented
in Table 1, the pair

(
{O2, O3} ,

{0.5/P1, P2, P4
})

is a concept, because extent(
{0.5/P1, P2, P4

}
) =

{O2, O3} and intent({O2, O3}) =
{0.5/P1, P2, P4

}
, i.e. a fixpoint is achieved.

In FCA, using these derivation operators, two operations can be used to reduce a formal context:

• Clarification , which is the removal of duplicated rows (objects) and columns (attributes) of the
formal context since duplicates do not contribute knowledge to the context.

• Reduction , which removes attributes that can be expressed as the closure of other attributes.

These two operations remove redundancies in the formal context without affecting the knowledge
contained in it. Many of the subsequent operations in FCA have high computational complexity, and
clarifying and reducing a formal context may reduce the computational time of posterior operations.

The concept lattice

The concept lattice of a formal context is the set of all concepts, with the partial order ≤ defined as
follows: for two concepts (A1, B1) and (A2, B2), we say that (A1, B1) ≤ (A2, B2) if and only if A1 ⊆
A2 ⇐⇒ B2 ⊆ B1. For instance,

({0.5/O2, 0.5/O3
}

, {P1, P2, P4}
)
≤

(
{O2, O3} ,

{0.5/P1, P2, P4
})

,
since their intents verify

{0.5/P1, P2, P4
}
⊆ {P1, P2, P4}.

This order (or precedence) relationship induces a hierarchy of concepts, which can be graphically
represented in the Hasse diagram (Birkhoff, 1940) of the partially ordered set of concepts. In Figure 1,
we find the Hasse diagram corresponding to our running example.

From the concept lattice and the order relationship, we can define notions as subconcept , super-
concept , infimum and supremum of a set of concepts.

Notably, there are the irreducible elements , for the infimum (meet) or the supremum (join) oper-
ators, which, in the lattice, are shown as those elements with only one arrow departing or arriving
at them, respectively. These elements are essential since one can reconstruct the whole lattice by
operating with these elements.

The standard context for a given formal context K is another formal context (J ,M,≤), where J
and M are the sets of join- and meet-irreducible elements of K and ≤ is the partial order defined in
the concept lattice. This standard context has a concept lattice isomorphic to that of K.

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 344

Implications and logic

The knowledge stored in a formal context can also be represented as a set of implications, which are
expressions of the form A ⇒ B where A and B are sets of attributes or items, indicating that, for every
object in which the set of attributes A is present, also B is present. This interpretation is similar to the
one defined in data mining/machine learning over the so-named association rules. The confidence (a
well-known estimator of the rules’ quality) has value 1 in all the implications.

For instance
{0.5/P1

}
⇒ {P4} is a valid implication in the previous example, having the following

interpretation: when the attribute P1 has degree at least 0.5 then we have P4 with degree 1.

The Duquenne-Guigues basis of implications (Guigues and Duquenne, 1986) is a set of valid
implications from which all other valid implications can be deduced. The Duquenne-Guigues basis in
our example is given by:

1: ∅ ⇒
{0.5/P2, 0.5/P4

}

2:
{0.5/P2, P4

}
⇒ {P2}

3:
{

P2, 0.5/P4
}

⇒ {P4}
4:

{
P2, 0.5/P3, P4

}
⇒ {P3}

5:
{0.5/P1, 0.5/P2, 0.5/P4

}
⇒ {P2, P4}

6:
{0.5/P1, P2, P3, P4

}
⇒ {P1}

In Cordero et al. (2002), the simplification logic, denoted as SLFD, was introduced as a method
to manipulate implications (functional dependencies or if-then rules), removing redundancies or
computing closures of attributes. This logic is equivalent to Armstrong’s Axioms (Armstrong, 1974),
which are well known from the 80s in databases, artificial intelligence, formal concept analysis, and
others. The axiomatic system of this logic considers reflexivity as the axiom scheme

[Ref]
A ⊇ B
A ⇒ B

together with the following inference rules called fragmentation, composition and simplification,
respectively, which are equivalent to the classical Armstrong’s axioms of augmentation and, more
importantly, transitivity.

[Frag]
A ⇒ B ∪ C

A ⇒ B
[Comp]

A ⇒ B, C ⇒ D
A ∪ C ⇒ B ∪ D

[Simp]
A ⇒ B, C ⇒ D

A ∪ (C ∖ B) ⇒ (D ∖ B)

The main advantage of SLFD with respect to Armstrong’s Axioms is that the inference rules may be
considered as equivalence rules, (see the work by Mora et al. (2012) for further details and proofs), that
is, given a set of implications Σ, the application of the equivalences transforms it into an equivalent
set. In the package presented in this paper, we develop the following equivalences:

1. Fragmentation Equivalency [FrEq]: {A ⇒ B} ≡ {A ⇒ B ∖ A}.

2. Composition Equivalency [CoEq]: {A ⇒ B, A ⇒ C} ≡ {A ⇒ B∪C}.

3. Simplification Equivalency [SiEq]: If A ⊆ C, then

{A ⇒ B, C ⇒ D} ≡ {A ⇒ B, A ∪ (C ∖ B) ⇒ D ∖ B}
4. Right-Simplification Equivalency [rSiEq]: If A ⊆ D, then

{A ⇒ B, C ⇒ B ∪ D} ≡ {A ⇒ B, C ⇒ D}

Usually, many areas, the implications have always atomic attributes on the right-hand side. We
emphasize that this logic can manage aggregated implications, i.e. the implications’ consequents do not
have to be singletons. This represents an increase of the logic efficiency.

This logic removes attribute redundancies in some of the implications in the Duquenne-Guigues
basis presented before. Particularly, the implications with numbers 2, 3, 4, 5 and 6 are simplified to:

2: {P4} ⇒ {P2}
3: {P2} ⇒ {P4}
4:

{0.5/P3, P4
}

⇒ {P3}
5:

{0.5/P1
}

⇒ {P4}
6:

{0.5/P1, P3
}

⇒ {P1}

One of the primary uses of a set of implications is computing the closure of a set of attributes, the
maximal fuzzy set that we can arrive at from these attributes using the given implications.
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The importance of computing the closure from implications is because implications can be managed
using logic tools. They formally describe the knowledge existing in the dataset; thus, the user can
forget about the original dataset. In this sense, it is similar to supervised Machine Learning techniques.

The algorithm to compute the closure (Mora et al., 2012) is based on the classical CLOSURE
algorithm (Maier, 1983; Ganter and Obiedkov, 2016). After each pass over the set of implications,
instead of simply removing the implications used in the step, the simplification rule substitutes the
implications by others equivalent but simpler, with fewer attributes. In the binary case, the reduced
set of implications does not reference any attribute in the computed closure. A detailed description of
the procedure is presented in Algorithm 1.

Algorithm 1: SLFD closure
Input : X: attribute set; Γ: set of implications
Output : X+: the closure of X with respect to Γ; Γ′: the simplified set of implications

Γ′ := Γ ∪ {∅ ⇒ X}
Xnew := X
Xold := X
repeat

Replace {∅ ⇒ Xold} with {∅ ⇒ Xnew} in Γ′

Xold = Xnew
for each A ⇒ B ∈ Γ′ \ {∅ ⇒ Xnew} do

if A ⊆ Xnew then
Replace {∅ ⇒ Xnew} with {∅ ⇒ Xnew ∪ B}
Xnew := Xnew ∪ B

end
if B ⊆ Xnew then

Remove A ⇒ B from Γ′

end
if A ∩ Xnew ̸= ∅ or B ∩ Xnew ̸= ∅ then

Replace A ⇒ B with A \ Xnew ⇒ B \ Xnew
end

end
until Xold = Xnew
return X+ and Γ′

For instance, the closure of S =
{0.5/P2

}
with this algorithm is S+ =

{0.5/P2, 0.5/P4
}

(this means
that all objects that have all the attributes in S, also have those in S+). The simplification logic leads us
to a reduced set of implications Γ′:

1: {P4} ⇒ {P2}
2: {P2} ⇒ {P4}
3:

{
P2, 0.5/P3, P4

}
⇒ {P3}

4:
{0.5/P1

}
⇒ {P2, P4}

5:
{0.5/P1, P2, P3, P4

}
⇒ {P1}

One can interpret these implications as the knowledge in the original implications if the attributes
in S are not considered (formally, this is equivalent to suppose that ∅ ⇒ S is true). In the example, if,
in addition to having

{0.5/P2
}

, we have {P1} with degree 0.5, we can infer that {P2} and {P4} are
fully present, by implication number 4.

3 Related works

The package presented in this paper has been developed in the R language. In recent years, R has
lived a remarkable revolution caused in part by an increasing user community from many different
scientific fields. This has led to the development of reproducible research tools, e.g., rmarkdown (Xie
et al., 2018), and tools to connect and interact with other programming languages, with packages like
Rcpp (Eddelbuettel and François, 2011) or reticulate (Ushey et al., 2020). Besides, the development of
a game-changer programming paradigm with tidy principles has provided a significant impact on R’s
usability, see the tidyverse of Wickham et al. (2019).

These facts have transformed R from a purely statistical language into one of the most popular
languages in data science, machine learning, data mining or visualization. In R, there are multiple
packages to perform data mining and machine learning tasks. However, only a few of them are
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ToscanaJ ConExp conexp-clj Galicia GALACTIC arules RKEEL frbs fcaR
Programming language Java Java Clojure Java Python R R R R
Context operations × × × × ×
Context visualization × × × × ×
Lattice computation × × × × ×
Lattice operations × × × × × ×
Lattice visualization × × × × × ×
Implication basis computation × × × ×
Association rules computation × × × × × × (1) (2)
Closure operators × × ×
Use of logic tools ×
Native fuzzy sets (3) (3) ×

Table 2: Functionality comparison among different software libraries for FCA. (1) The rules can be
used only for classification or regression; (2) fcaR is integrated with arules to import and export exact
association rules; (3) some packages do not use natively fuzzy sets as representation, but use scaled or
discretized contexts.

focused on formal methods that can model and extract knowledge in the form of implications and
rules on fuzzy sets and operate on them using logic tools.

The arules package by Hahsler et al. (2005) provides the infrastructure for representing, manipu-
lating and analyzing transaction data and patterns (frequent itemsets and association rules) in binary
settings. The frbs package (Riza et al., 2015) presents an implementation of various learning algorithms
based on fuzzy rule-based systems (FRBSs) for dealing with classification and regression tasks. The
RKEEL package (Moyano and Sanchez Ramos, 2016) is an R interface to KEEL, a popular Java software
for a large number of different knowledge data discovery tasks. It can extract association rules from
numerical datasets, but variables are discretized or categorized first.

It must be noted that none of the previous approaches uses logic tools to infer knowledge from
the extracted rules and implications. Also, the support for fuzzy sets is minimal, and none of them
implements the core notions of FCA.

Since the arules package has become a de facto standard, one of the critical points in our proposal’s
design has been to get fcaR easily integrated with arules.

In other programming languages, several libraries are implementing FCA methods. Some of the
most used libraries are focused on computing the concept lattice and provide a graphical interface
to operate with the formal context and the concept lattice: ToscanaJ (Becker and Correia, 2005) and
Galicia (Valtchev et al., 2003). Other tools, such as Concept Explorer (ConExp) (Yevtushenko, 2000),
with its new versions ConExp NG and ConExp FX, besides their graphical capabilities, implement
the core FCA algorithms and operations: context editing, building concept lattices, finding bases of
implications and association rules, for instance.

The two most recent and fully-featured libraries are conexp-clj (Hanika and Hirth, 2019) and
GALACTIC (Demko and Bertet, 2020), focusing on their extensibility and addition of multiple new
algorithms, including the implementation of closure operators and methods based on implications.

In Table 2, we present a comparison of the main features present in each of these libraries.

In conclusion, fcaR can be considered among the general-purpose FCA tools with a more compre-
hensive feature list, integrating the core notions of FCA and logic tools.

4 Package design

In this section, we present the design principles and implementation information about the fcaR
package: the use of object-oriented programming, the need to be integrated with the arules package,
and its use in reproducible research.

Package availability

This package is available in CRAN and can be installed using install.packages('fcaR'). Also, the
development version with new features and bugfixes can be installed from GitHub using
remotes::install_github('Malaga-FCA-group/fcaR').

All the documentation in the form of a pkgdown site can be found in https://malaga-fca-
group.github.io/fcaR/.
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Class name Use

"Set" A basic class to store a fuzzy set using sparse matrices
"Concept" A pair of sets (extent, intent) forming a concept for a given formal context
"ConceptLattice" A set of concepts with their hierarchical relationship. It provides methods to compute

notable elements, sublattices and plot the lattice graph
"ImplicationSet" A set of implications, with functions to apply logic and compute closure of attribute

sets
"FormalContext" It stores a formal context, given by a table, and provides functions to use derivation

operators, simplify the context, compute the concept lattice and the Duquenne-Guigues
basis of implications

Table 3: Main classes found in fcaR.

Data structures

Now, we present an overview of the data structures implemented in fcaR and the design principles
on which the development of the package has been based. The main points are the R6 (Chang, 2020)
object-oriented programming (OOP) paradigm and the extensive use of sparse matrices for internal
storage of objects.

The R6 OOP paradigm is being increasingly used in the R ecosystem since its ability to encapsulate
data structures and methods related to each class in a single and straightforward interface exposed to
the user. This reason and its extensibility have made it the choice to implement the data structures in
this package.

The core of the fcaR package provides data structures that allow the user to work seamlessly with
formal contexts and sets of concepts and implications. The main classes are presented in Table 3. Let
us briefly describe the internal representation of the main object classes.

Formal contexts

A formal context (G, M, I) can be represented by a two-way table I indicating the relationship between
objects and attributes. This table is expressed in matrix form in R, with rows corresponding to objects
and columns corresponding to attributes.

In the classical setting, as occurred in the arules package, a formal context may represent a
collection of itemsets which conform to a transactions database. In such a setting, the matrix is binary,
and each of its entries represents the presence (1) or absence (0) of an item in a particular itemset. A
value of 1 in the matrix is interpreted as the object fully possessing the associated attribute.

In this package, one of the main features is dealing with fuzzy or graded attributes. Therefore I is
not a binary matrix anymore, but a numerical matrix with entries in the interval [0, 1]. We emphasize
that our package can deal with binary datasets as a particular case of the fuzzy case. Most of the
methods implemented work for binary and fuzzy Formal Concept Analysis.

The R6 class "FormalContext" stores the relationship matrix (or incidence matrix, if binary) I in
a compressed sparse format, given by class "dgCMatrix" from package Matrix (Bates and Maechler,
2021). The reason to store I as a sparse matrix is that, in practice, most situations will occur with
many objects, and only a few attributes present for each object. This allows for greater computational
efficiency.

The main methods applicable to an object of the "FormalContext" class are presented in Table 4.

The features of the R6 paradigm allow us to build another critical aspect of a "FormalContext": it
stores both the associated "ConceptLattice" and the Duquenne-Guigues basis as an "ImplicationSet",
which can be accessed using fc$concepts and fc$implications, respectively. Initially, these instances
are empty (no concepts nor implications are included), and they are filled with the corresponding data
as needed.

Concept lattices

A "ConceptLattice" object is usually built from a "FormalContext" or by using some specific methods
on an existing "ConceptLattice". Thus, although it has a constructor method, the user will not likely
use it to create an instance of this class.

Internally, the "ConceptLattice" class stores three sparse matrices: two for the extents and intents
in matrix form (rows are objects/attributes and columns represent concepts) and a sparse matrix
indicating the order relationship between concepts. The element (i, j) of this matrix is 1 if and only if
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Method name Purpose

new(I) Constructor for the "FormalContext" class. I can be a "matrix", a "data.frame"
or a filename from where to import the context

intent(S) Computes the intent of a set S of objects
extent(S) Computes the extent of a set S of attributes
closure(S) Computes the closure of a set S of attributes
clarify() Performs clarification of a "FormalContext"
reduce() Performs reduction of a "FormalContext"
standardize() Builds the standard context (J ,M,≤) for the given "FormalContext"
find_concepts() Builds the concept lattice following the NextClosure algorithm for fuzzy formal

contexts
find_implications() Uses the modified NextClosure for fuzzy formal contexts to compute the concept

lattice and the Duquenne-Guigues basis of implications
to_transactions() Converts the formal context to an object of class "transactions" from the arules

package

Table 4: Main methods of the "FormalContext" class.

the i-th concept is a subconcept of the j-th concept, otherwise it is 0.

The main methods of objects of the "ConceptLattice" class are summarized in Table 5.

Method name Purpose

new(A,B) Constructor for the "ConceptLattice" class. A and B are the extents and intents
of the concepts

intents() Retrieves the intents of all the concepts
extents() Retrieves the extents of all the concepts
sublattice(C) Computes the smallest sublattice that includes all concepts in the concept set C
meet_irreducibles(),
join_irreducibles()

Compute the meet-irreducible and join-irreducible elements of the lattice

decompose(C) Decomposes the concept C as the supremum of meet-irreducible concepts
supremum(C), infimum(C) Compute the supremum or infimum of a set C of concepts
subconcepts(C),
superconcepts(C)

Compute the subconcepts and superconcepts of a concept C

lower_neighbours(C),
upper_neighbours(C)

For a given concept C, compute its lower and upper neighbours in the lattice

Table 5: Main methods of the "ConceptLattice" class.

Implication sets

There are two ways in which an "ImplicationSet" can be created: by finding the implications of a
given "FormalContext" or by importing a "rules" object from the arules package.

In both cases, internally, an "ImplicationSet" object is composed of two sparse matrices, lhs_matrix
and rhs_matrix, representing the left-hand and right-hand sides (LHS and RHS, respectively) of the
computed implications. As it is the default in Matrix, these matrices are stored column-wise, such that
column j represents the j-th implication in the set, and row i stands for the i-th attribute.

The main methods applicable to an object of class "ImplicationSet" are described in Table 6.

Method name Purpose

new(A,B) Constructor of the "ImplicationSet" class. A and B represent the left-hand
and right-hand sides of the implications

add(P) Concatenates the implications in the current set with those in P
closure(S) Computes the closure of the attribute set S with respect to the current implica-

tion set, applying the SLFD logic
recommend(S,attr) Computes the closure of S and filters it to show only the attributes in attr
apply_rules(rules) Transforms the "ImplicationSet" into another using equivalence rules
to_basis() Transforms the "ImplicationSet" to an equivalent basis of implications
filter(lhs,rhs) Filters the "ImplicationSet" to retrieve only implications with specific at-

tributes in the left-hand or in the right-hand sides
to_arules() Converts a binary "ImplicationSet" to the "rules" class of arules

Table 6: Main methods of the "ImplicationSet" class.
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Interfacing with arules

One of the main design objectives in this package is interoperability with the arules package since it
can be considered a standard in the field.

The constructor methods for the "FormalContext" and "ImplicationSet" classes allow as inputs
objects of types "transactions and "rules", respectively, from the arules package.

A "transactions" object in arules can be represented by a binary formal context. Each transaction
can be translated into one object as defined in FCA. In contrast, different transaction items are mapped
to binary variables according to whether the item is present or not in the transaction. Any object of
type "transactions" can be used to initialize a "FormalContext", assigning the labels of the items
present in the transaction database to the attributes’ names in the context, and using the "itemMatrix" as
the internal representation of the binary incidence matrix. Also, fcaR can export the "FormalContext"
to the "transactions" format, by using the to_transactions() method of a binary "FormalContext".

Analogously, a "rules" object can be used to create a "ImplicationSet". The LHS and RHS of the
"rules" object are mapped to the lhs_matrix and rhs_matrix of the "ImplicationSet". In addition,
the method to_arules() can be used to convert any binary "ImplicationSet" to the "rules" format.

These interfaces allow the users who usually work in other areas with arules to use FCA methods
and algorithms for transactions databases, as an extension of what can do in arules, and then, if
necessary, to convert back to the arules format.

Use for reproducible research

Another of the design goals of the fcaR package is that it could be used in research and used in publica-
tions. All the implemented classes in fcaR provide a to_latex() function so that concepts, implications
and the table of the formal context can be easily exported to LATEX. Also, the "FormalContext" and
"ConceptLattice" classes have a plot() method that allows to graphically represent that object types.
This plot() function allows to export the graphs in LATEX format to be included directly in PDF reports
with publication quality (see the Figures in this work).

All this document has been written using the Rmarkdown format using these functions to generate
the tables and listings of concepts and implications. The only required LATEX packages are amssymb (for
some mathematical symbols), longtable and caption (for the listings of concepts and implications)
and tikz (for plotting formal contexts and concept lattices).

5 Formal concept analysis with fcaR

In this Section, we will show how to perform the basic operations mentioned in Section Background
on FCA. We will use the same formal context shown in Table 1.

Let us suppose that the variable ‘I’ stores the matrix corresponding to that formal context. To
create a new "FormalContext" with that matrix, the command is fc <- FormalContext$new(I). Now,
the object fc stores the formal context and enables us to perform the corresponding operations on it.

For example, we can access the attribute and object names with fc$attributes and fc$objects,
respectively. We can even plot a heatmap (see Fig. 2) to show the sparsity of the context, very useful
for large contexts.

Derivation operators

The methods that implement the derivation operators are named after them: intent(), extent()
and closure(). They can be applied on objects of type "Set", representing fuzzy sets of objects or
attributes:

> S <- Set$new(fc$objects, O1 = 1, O2 = 1)
> S
{O1, O2}
> fc$intent(S)
{P2 [0.5], P4 [0.5]}
> T <- Set$new(fc$attributes, P1 = 1, P3 = 1)
> T
{P1, P3}
> fc$extent(T)
{}
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Figure 2: The heatmap representing the formal context shown in Table 1, obtained by doing fc$plot().
A grey scale is used, where white indicates the value 0 for an object-attribute pair, while black indicates
the value 1, with the greys representing the intermediate values. This type of graph aids visual
inspection of the context, being able to check its sparsity, density or possible patterns.

> fc$closure(T)
{P1, P2, P3, P4}

In addition, we can perform clarification on the formal context, by using fc$clarify(), giving:

FormalContext with 3 objects and 3 attributes.
P1 P3 [P2, P4]

O1 0 0.5 0.5
O4 0 1 0.5

[O2, O3] 0.5 0 1

The duplicated rows and columns in the formal context have been collapsed, and the corresponding
attributes and objects’ names are grouped together between brackets, e.g., [P2, P4].

Concept lattice

The command to compute the concept lattice for a "FormalContext" fc is fc$find_concepts(). The
lattice is stored in fc$concepts, which is of the "ConceptLattice" class.

> fc$concepts
A set of 8 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
5: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
6: ({O2, O3}, {P1 [0.5], P2, P4})
7: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
8: ({}, {P1, P2, P3, P4})

In order to know the cardinality of the set of concepts (that is, the number of concepts), we can
use fc$concepts$size(), which gives 8 in this case. The complete list of concepts can be printed
with fc$concepts$print(), or simply fc$concepts. Also, they can be translated to LATEX using the
to_latex() method, as mentioned before.

The typical subsetting operation in R with brackets is implemented to select specific concepts from
the lattice, giving their indexes or a boolean vector indicating which concepts to keep. The same rules
for subsetting as in R base apply:

> fc$concepts[c(1:3, 5, 8)]
A set of 5 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
3: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
4: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
5: ({}, {P1, P2, P3, P4})

In addition, the user can compute concepts’ support (the proportion of objects whose set of
attributes contains the intent of a given concept) by means of fc$concepts$support().
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> fc$concepts$support()
[1] 1.00 0.50 0.25 0.50 0.00 0.50 0.00 0.00

Sublattices

When the concept lattice is too large, it can be useful to work with a sublattice of the complete lattice
on certain occasions. To this end, we use the sublattice() function.

For instance, to build the sublattice generated by the concepts
({0.5/O1, 0.5/O4

}
, {P2, P3, P4}

)

and
(
{O2, O3} ,

{0.5/P1, P2, P4
})

, which had indexes 5 and 6 in the list of concepts, we can do:

> fc$concepts$sublattice(5:6)
A set of 4 concepts:
1: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
2: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
3: ({O2, O3}, {P1 [0.5], P2, P4})
4: ({}, {P1, P2, P3, P4})

Some interesting sublattices appear when we consider only concepts fulfilling a given condition
(e.g., a minimum support), using a command such as fc$concepts$sublattice(fc$concepts$support()
> 0.5).

Subconcepts, superconcepts, infimum and supremum

For a given concept (A, B), we can find all its subconcepts ((Ci, Di) such that (Ci, Di) ≤ (A, B))
by using the subconcepts() functions. Analogously, the superconcepts() function can be used to
compute the set of (Ci, Di) such that (A, B) ≤ (Ci, Di).

For instance, if we take a sample concept L =
({0.5/O1, O2, O3, 0.5/O4

}
, {P2, P4}

)
, we can

compute its subconcepts and superconcepts using:

> fc$concepts$subconcepts(L)
A set of 5 concepts:
1: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
2: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
3: ({O2, O3}, {P1 [0.5], P2, P4})
4: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
5: ({}, {P1, P2, P3, P4})
> fc$concepts$superconcepts(L)
A set of 2 concepts:
1: ({O1, O2, O3, O4}, {P2 [0.5], P4 [0.5]})
2: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})

Also, we can define the infimum and the supremum of a set of concepts as the greatest common
subconcept and the lowest common superconcept of all the given concepts, respectively. For a list of
concepts, we can compute its infimum and supremum using the supremum() and infimum() methods
of the "ConceptLattice" object. Additionally, irreducible elements in the lattice, with respect to join
(supremum) and meet (infimum), can be computed for a given concept lattice with the methods
join_irreducibles() and meet_irreducibles().

> fc$concepts$meet_irreducibles()
A set of 5 concepts:
1: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
2: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
3: ({O1 [0.5], O2, O3, O4 [0.5]}, {P2, P4})
4: ({O2, O3}, {P1 [0.5], P2, P4})
5: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})
> fc$concepts$join_irreducibles()
A set of 5 concepts:
1: ({O1, O4}, {P2 [0.5], P3 [0.5], P4 [0.5]})
2: ({O1 [0.5], O4}, {P2 [0.5], P3, P4 [0.5]})
3: ({O1 [0.5], O4 [0.5]}, {P2, P3, P4})
4: ({O2, O3}, {P1 [0.5], P2, P4})
5: ({O2 [0.5], O3 [0.5]}, {P1, P2, P4})

These irreducible elements are essential since they constitute the basic elements with which the
entire concept lattice can be reconstructed.
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M1 M2 M3 M4 M5

J1 ×
J2 × ×
J3 × × ×
J4 × ×
J5 × × ×

( {J1, J2, J3, J4, J5} , ∅ )

( {J3, J4, J5} , {M3} )

( {J4, J5} , {M3, M4} )

( {J5} , {M3, M4, M5} )

( {J1, J2, J3} , {M1} )

( {J2, J3} , {M1, M2} )

( {J3} , {M1, M2, M3} )

(∅, {M1, M2, M3, M4, M5} )

Table 7: Left: Standard context associated to the context in Table 1; M1 to M5 refer to the meet-
irreducible elements of the formal context, and J1 to J5, to the join-irreducible ones. Right: concept
lattice of the standard context, isomorphic to the one in Figure 1.

The standard context

The standard context has a concept lattice that is isomorphic to the one of the original context, so it
encapsulates the same knowledge. With fcaR one can directly compute the standard context by using
the standardize() function, for example, using fc_std <- fc$standardize() to save the new context
to another variable.

This is a method that applies to a "FormalContext" object, but is closely related to its associated
"ConceptLattice", since the objects and attributes of the newly created standard context are the meet-
and join- irreducible elements of the concept lattice.

The standard context for the example in Table 1 and its corresponding lattice are shown in Table 7.

Implications and logic

As mentioned earlier, a core problem in FCA is the computation of implications that hold in a formal
context. The iterative fuzzy version of NEXTCLOSURE has been implemented in C and made accessible
from fcaR thanks to an interface using Rcpp. As we have said, our package can manage classical
implications from binary datasets. In order to build the Duquenne-Guigues basis of implications,
by using the NEXTCLOSURE algorithm, the command fc$find_implications() is executed, and the
result is stored in fc$implications.

The set of implications is stored as an object of class "ImplicationSet", which can be inspected
with the print() method or simply with fc$implications. In order to get a subset of the implications
by providing its indexes, the standard R subsetting with ‘[’ will create another "ImplicationSet"
with exactly the rules required. For instance, fc$implications[1:3] gives:

Implication set with 3 implications.
Rule 1: {} -> {P2 [0.5], P4 [0.5]}
Rule 2: {P2 [0.5], P4} -> {P2}
Rule 3: {P2, P4 [0.5]} -> {P4}

These implications can be converted to LATEX using the to_latex() method, giving:

1: ∅ ⇒
{0.5/P2, 0.5/P4

}

2:
{0.5/P2, P4

}
⇒ {P2}

3:
{

P2, 0.5/P4
}

⇒ {P4}

On the other hand, one can filter() the implications to retrieve just those with specific attributes
in the LHS and RHS. As before, the method returns a new "ImplicationSet" object. For example, to
get the implications with attributes P1 and P2 in the LHS and attribute P4 in the RHS, the user can
execute fc$implications$filter(lhs = c('P1', 'P2'), rhs = 'P4').

Some quantities can be computed from a set of implications:

• Cardinality , that is, the number of implications, with fc$implications$cardinality().
• Size , which is the cardinality of the LHS and RHS of each implication, interpreted as fuzzy sets

(thus non-integer sizes can appear): fc$implications$size().
• Support , the proportion of objects in the formal context whose set of attributes is a superset of

the LHS of each implication: fc$implications$support().
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Application of the simplification logic

In fcaR, the simplification logic has been implemented and made accessible from an "ImplicationSet"
object through method apply_rules.

The list of equivalence rules applicable to an "ImplicationSet" is stored in a registry object from
the registry package by Meyer (2019).

This registry is called equivalencesRegistry, and one can inspect its contents by using:

> equivalencesRegistry$get_entry_names()
[1] "Composition" "Generalization" "Reduction"
[4] "Simplification" "Right Simplification" "Reorder"

These names correspond to the methods added to the registry by default and are used to index
those methods. Every method is accompanied by a description, so that we can see its definition:

> equivalencesRegistry$get_entry('Composition')
method Composition

fun <<function>>
description A -> B and A -> C equivalent to A -> BC

We can even use abbreviated names to refer to the method. For instance, we can use ‘comp’ instead
of ‘Composition’ in the above command to obtain the information about the composition rule.

The registry’s use enables the user to extend the functionality provided by the fcaR package.
One can define and implement new equivalences rules and add them to the registry, and make them
available to the apply_rules() method.

In order to add a new equivalence rule, we use the following:

> equivalencesRegistry$set_entry(method = 'Method name',
+ fun = method_function,
+ description = 'Method description')

where method_function() is the R function that computes the equivalences, and has the signature
function(LHS,RHS,attributes), where LHS and RHS are the sparse matrices defining the left-hand and
right-hand sides of the implications, attributes is the character vector of attribute names, and returns
the modified LHS and RHS. This mechanism has been used in the package to implement additional
equivalence rules.

The user can decide which rules to remove redundancies will be applied and in which order:

> fc$implications$apply_rules(rules = c('reduction',
+ 'comp',
+ 'gener',
+ 'simpl'))

These methods can be applied to binary and fuzzy implications.

Computation of closure and recommendations

One of the primary uses of a set of implications extracted from a formal context is computing the
closure of a set of attributes, that is, the fuzzy set obtained by applying the given implications on the
set of attributes.

The closure() method returns both the closure and the reduced "ImplicationSet" if reduce =
TRUE and only the closure if reduce = FALSE (default). For instance, we can create a fuzzy set where
the attribute P2 is present with:

> A <- Set$new(attributes = fc$attributes, P2 = 1)

Then, we can compute its closure and the reduced set of implications doing:

> fc$implications$closure(A, reduce = TRUE)
$closure
{P2, P4}

$implications
Implication set with 2 implications.
Rule 1: {P3 [0.5]} -> {P3}
Rule 2: {P1 [0.5], P3} -> {P1}
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6 Usage example. Fuzzy diagnostic system

In this section, a complete example of the use of fcaR on real-world problems is presented: Designing
a diagnostic system from a formal context with (fuzzy) medical data.

The dataset for this section is provided and documented in the package.

In this example, the aim is to build an automated system using the fcaR package to perform
medical diagnosis. We have focused on neurological pathologies since, in recent years, an increasing
number of initiatives have appeared to share, curate, and study specific, prevalent brain pathologies.
Among these pathologies, schizophrenia is of the highest interest, and public, curated repositories
have been released.

The data source is SchizConnect (Wang et al., 2016), an online data repository integrating and
mediating data from other schizophrenia-related databases, such as COBRE (Aine et al., 2017), which
collect neuroimaging, psychological, neurological and clinical information. SchizConnect allows
retrieving data about the patients that fulfil some conditions introduced as a query to the database.
A subset of the COBRE dataset has been retrieved by querying SchizConnect for 105 patients with
neurological and clinical symptoms. We also collected their corresponding diagnosis.

Among the clinical attributes in the dataset, one can find:

• Calgary Depression Scale for Schizophrenia (Addington et al., 1990), nine items (attributes) assessing
the level of depression in schizophrenia, differentiating between positive and negative aspects
of the disease.

• The Simpson-Angus Scale (Simpson and Angus, 1970), six items to evaluate Parkinsonism-like
alterations related to schizophrenia in an individual.

• The Structured Clinical Interview for DSM-III-R Personality Disorders (First et al., 1997), with nine
variables related to the presence of signs affecting personality.

• The diagnosis for each individual: it can be schizophrenia strict (abbreviated ‘dx_ss’) or other
diagnosis (abbreviated ‘dx_other’, which includes schizoaffective and bipolar disorders). These
diagnoses are mutually exclusive; thus, only one of them is assigned to each patient.

In summary, the dataset consists of the previous 30 attributes related to signs or symptoms and two
attributes related to diagnosis. So the dataset has 105 objects (patients), and 32 attributes to explore.
The symptom attributes are multi-valued.

For a given attribute (symptom), the available grades are absent, minimal, mild, moderate, moderate
severe, severe and extreme. Thus, taking into account these scale levels, the attributes are coded as
fuzzy and graded attributes with values 0, 1/6, 1/3, 1/2, 2/3, 5/6 and 1, respectively. Since the symptom
attributes are ordinal, for the sake of simplicity, they have been encoded as grades in the interval [0, 1],
just by mapping the lowest (absent) value to 0 and the greatest (extreme) to 1 and placing the remaining
values equidistantly in the interval. In Ganter and Obiedkov (2016), other strategies of scaling for
ordinal, nominal, or interval attributes are presented.

In fcaR, this dataset is exposed to the user with the name cobre32, and we can use it to create a
fuzzy formal context (see Figure 3):

> fc <- FormalContext$new(cobre32)

Now, let us build a diagnosis system that employs the tacit knowledge present in the formal
context. The objective is to define a function that takes a "Set" as input (with the clinical attributes of
an individual) and returns the degree of the diagnosis attributes using the implications extracted from
the formal context as an inference engine.

Next, we use the NEXTCLOSURE algorithm to extract implications and compute the set of concepts,
using fc$find_implications().

The concept lattice is quite big (14706 concepts); therefore, it cannot be plotted here for space and
readability reasons. For this reason, we only plot a sublattice of small size in Figure 4.

There is an aggregate of 985 implications extracted. Let us compute the average cardinality of the
LHS and the RHS of the extracted rules:

> colMeans(fc$implications$size())
LHS RHS

2.417597 1.954146

Note that our paradigm can deal with non-unit implications, that is, where there is more than
one attribute in the RHS of the implication. This feature is an extension of what is usual in other
paradigms, for example, in transactional databases.

We can use the simplification logic to remove redundancies and reduce the LHS and RHS size of the
implications. The reason to do this is to decrease the computational cost of computing closures:
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Figure 3: Formal context of the cobre32 dataset. The default plot type allows us to identify patterns
occurring in the attributes, such as the sparsity of the SCIDII variables. Additionally, we can see
that the variables indicating diagnosis, dx_ss and dx_other in the last two columns, are binary and
mutually exclusive.

> fc$implications$apply_rules(rules = c('simplification', 'rsimplification'))
> colMeans(fc$implications$size())

LHS RHS
1.998308 1.557191

We can see that the average cardinality of the LHS has been reduced from 2.418 to 1.998 and that
the one of the RHS, from 1.954 to 1.557.

With the simplified implication set, we can build a recommender system by simply wrapping the
recommend() method inside a function:

> diagnose <- function(S) {
+
+ fc$implications$recommend(S = S,
+ attribute_filter =
+ c('dx_ss', 'dx_other'))
+
+ }

This function can be applied to "Set"s that have the same attributes as those of the formal context.
The attribute_filter argument specifies which attributes are of interest, in our case, the diagnosis
attributes.

Let us generate some sets of attributes and get the recommendation (diagnosis) for each one:

> S1 <- Set$new(attributes = fc$attributes,
+ COSAS_1 = 1/2, COSAS_2 = 1, COSAS_3 = 1/2,
+ COSAS_4 = 1/6, COSAS_5 = 1/2, COSAS_6 = 1)
> diagnose(S1)

dx_ss dx_other
1 0

> S2 <- Set$new(attributes = fc$attributes,
+ COSAS_2 = 1, COSAS_6 = 1, FICAL_1 = 1/3, FICAL_3 = 1/3)
> diagnose(S2)

dx_ss dx_other
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∅

{dx ss}
{
0.33/FICAL 1

}

{
0.33/FICAL 1, dx ss

}

{
0.5/COSAS 2

}

{
0.5/COSAS 2, dx ss

} {
0.5/COSAS 2, 0.33/FICAL 1

}

{
0.5/COSAS 2, 0.33/FICAL 1, dx ss

}

Figure 4: Hasse diagram for a sublattice of the cobre32 formal context. Since the complete concept
lattice is huge, with the Hasse diagram of a sublattice we can understand the relationship in a subset
of the attributes. In this case, we can see how variables COSAS_2 and FICAL_1 are related to the variable
dx_ss which indicates the schizophrenia diagnosis.

0 0
> S3 <- Set$new(attributes = fc$attributes,
+ COSAS_4 = 2/3, FICAL_3 = 1/2, FICAL_5 = 1/2, FICAL_8 = 1/2)
> diagnose(S3)

dx_ss dx_other
0 1

These results mean that, for S1, the recommended diagnosis is schizophrenia strict, for S2 there is
not enough information, and the recommended diagnosis for S3 is other, different from schizophrenia
strict. For S2, maybe adding more attributes to it can help in obtaining a diagnosis.

One can inspect the reduced set of implications obtained after computing the closure for S2,
simplify them and filter them to get the implications that can be applied if more attribute values are
known for S2:

> cl <- fc$implications$closure(S2, reduce = TRUE)
> cl$implications$apply_rules(c('simp', 'rsimp', 'reorder'))
> cl$implications$filter(rhs = c('dx_ss', 'dx_other'),
+ not_lhs = c('dx_ss', 'dx_other'), drop = TRUE)
Implication set with 12 implications.
Rule 1: {FICAL_5 [0.33]} -> {dx_other}
Rule 2: {FICAL_6 [0.33], FICAL_8 [0.33]} -> {dx_ss}
Rule 3: {SCIDII_18 [0.33]} -> {dx_ss}
Rule 4: {COSAS_1 [0.5], FICAL_8 [0.33]} -> {dx_ss}
Rule 5: {SCIDII_20 [0.33]} -> {dx_ss}
Rule 6: {SCIDII_16 [0.33]} -> {dx_ss}
Rule 7: {SCIDII_12 [0.33]} -> {dx_ss}
Rule 8: {FICAL_7 [0.33]} -> {dx_ss}
Rule 9: {FICAL_6 [0.33], SCIDII_10 [0.5]} -> {dx_ss}
Rule 10: {COSAS_3 [0.5]} -> {dx_ss}
Rule 11: {COSAS_1 [0.5]} -> {dx_ss}
Rule 12: {SCIDII_10 [0.5]} -> {dx_ss}

We can check that, for S2, if the presence of any symptom (of the LHS of the implications) is
verified, then the implications above could directly tell us the diagnosis.

An extended version of the diagnosis system in this example has been presented in Cordero et al.
(2020), where the fcaR package has been used to build a conversational recommender system based
on fuzzy rules. In that work, the recommender system designed with the help of fcaR has obtained
better results than those of the classical methods used in the area of recommendations.
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7 Conclusions and future work

This work aims to present the first R package implementing the core methods in Formal Concept
Analysis. This development aims to provide a helpful tool for the FCA community and other fields
where knowledge discovery and retrieval play an essential role. Notably, the hybridization of FCA
with other Machine Learning techniques and its application to data mining processes is well-known,
making FCA an appealing tool for knowledge discovery.

This package provides R6 classes and methods to manage datasets presented as formal contexts,
use the derivation operators, work with the concepts (closed itemsets) or find and manage the basis
of implications. Additionally, the fcaR package implements a logic to infer knowledge from sets
of implications, allowing to compute closures and therefore, it can be used as the engine to build
recommender systems and automated reasoning tools.

Another feature included in the package is providing graphical visualisations of the concept lattice
that condenses the extracted knowledge.

The tool has been developed from two principles: integration with other packages and extensibility.
First, the arules package is a de facto standard when working with transactional databases, closed
itemsets and association rules in R. Since FCA’s perspective can be seen as complementary to this,
fcaR is able to import and export both the datasets and the implications from/to the analogous classes
defined in arules. This way, the user of arules can benefit from the FCA tools in fcaR, including the
simplification logic.

The extensibility of the fcaR is guaranteed by its design philosophy. First, the object-oriented
programming paradigm allows extending the classes and methods to other datatypes, other kinds
of formal contexts, or, for example, association rules. Second, using a registry for equivalence rules
makes it easy to include new logic tools in the package’s architecture without affecting existing code.
Thus, users can extend the package’s functionality by incorporating their methods and then testing
and comparing them in a single framework.

Thus, fcaR implements a wide range of features. With the help of the included documentation and
the comprehensive vignettes, any user can start analysing datasets with FCA tools quickly.

Regarding the low-level implementation, we have used sparse matrices as the primary internal
data structure of the package since they represent a space- and cost-efficient storage. Also, when
needed, the fcaR uses parallel computing and C routines to increase efficiency and tackle algorithmic
bottlenecks.

As an example of use, we have used the implications extracted from a dataset to develop a
recommender system to help diagnose schizoaffective disorders quickly.

The package is currently in stable development status. However, we devise future extensions in
terms of new or improved algorithms or as new applications arise (in areas such as recommender
systems, unsupervised learning or text mining).

We emphasize that fcaR is having a great acceptance. At the time of writing, it has now reached
more than 20,000 downloads from CRAN.
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FMM: An R Package for Modeling
Rhythmic Patterns in Oscillatory Systems
by Itziar Fernández, Alejandro Rodríguez-Collado, Yolanda Larriba, Adrián Lamela, Christian
Canedo and Cristina Rueda

Abstract This paper is dedicated to the R package FMM which implements a novel approach to
describe rhythmic patterns in oscillatory signals. The frequency modulated Möbius (FMM) model is
defined as a parametric signal plus a Gaussian noise, where the signal can be described as a single or a
sum of waves. The FMM approach is flexible enough to describe a great variety of rhythmic patterns.
The FMM package includes all required functions to fit and explore single and multi-wave FMM
models, as well as a restricted version that allows equality constraints between parameters representing
a priori knowledge about the shape to be included. Moreover, the FMM package can generate synthetic
data and visualize the results of the fitting process. The potential of this methodology is illustrated
with examples of such biological oscillations as the circadian rhythm in gene expression, the electrical
activity of the heartbeat and the neuronal activity.

1 Introduction

Oscillations naturally occur in a multitude of physical, chemical, biological, and even economic and
social processes. Periodic signals appear, for example, during the cell-cycle, in biological time-keeping
processes, in human heartbeats, in neuronal signals, in light emissions from certain types of stars, or
in business cycles in economics, among many others. Three features typically describe the periodic
nature of the oscillatory motion: period, amplitude and phase. The period is the time required for
one complete oscillation. Within a period, a sum of monocomponent models, characterized by the
phase and amplitude parameters, can be used to describe the rhythmic pattern of a signal (Boashash,
2016). By varying the number of monocomponents and considering phase and amplitude parameters
as fixed or variable, a large number of rhythmic signal representations can be found.

One of the most popular representations of oscillating signals is the Fourier decomposition (FD): a
multicomponent representation with a fixed amplitude parameter. Its monocomponent version, the
cosinor model (COS) (Cornelissen, 2014), is widely used, in particular in chronobiology, with acceptable
results when a sinusoidal shape response within a period is expected. Due to its widespread use, many
software utilities are available. Particularly in R, the estimation of a COS model can be performed
using cosinor (Sachs, 2014) and cosinor2 packages (Mutak, 2018). In addition, other packages from
widely differing areas of knowledge have specific functions for fitting COS models. Such is the case of,
for example, the function CATCosinor in the CATkit package (Gierke et al., 2018), which implements
tools for periodicity analysis; the function cosinor in the psych package (Revelle, 2021), dedicated to
personality and psychological research; or the function cosinor contained in a recent package, card
(Shah, 2020), which is dedicated to the assessment of the regulation of cardiovascular physiology.
Recently, it has also been implemented in other languages such as CosinorPy, a cosinor python package
(Moskon, 2020). The COS model is easy to use and interpret with symmetrical patterns. However,
asymmetric shapes are not captured properly by COS. When the waveform is nonsinusoidal, the use
of multiple components analysis to fit a model consisting of a sum of several periodical functions is
recommended. However, the multicomponent FD models, developed to provide flexibility from COS,
often require the use of a large number of components resulting in serious overfitting issues.

In recent years, alternative methods, mostly nonparametric statistical methods, have been devel-
oped and used for analyzing rhythmicity, especially in biological data sets. Some very popular ones,
such as the JTK_CYCLE (Hughes et al., 2010), wrongly assume that any underlying rhythms have
symmetric waveforms. Others, such as RAIN (Thaben and Westermark, 2014), designed to detect more
diverse wave shapes including asymmetric patterns, are not focused on modeling but on detecting
rhythmic behavior in sets of data. Thus, they are not useful to describe the underlying oscillatory
phenomena. The proliferation of methodology in this field has been accompanied by software devel-
opments. This is the case, for example, of the DiscoRhythm R package (Carlucci et al., 2020), very
recently available on Bioconductor with a web interface based on the R Shiny platform (Chang et al.,
2021). This tool allows four popular approaches to be used, including the COS model and JTK_CYCLE,
to discover biological rhythmicity. Another recent example is the circacompare (Parsons et al., 2020),
an R package implemented for modeling cosinusoidal curves by nonlinear regression. Hosted on
GitHub, we can also find the LimoRhyde R package (https://github.com/hugheylab/limorhyde) for
the differential analysis of rhythmic transcriptome data, based on fitting linear models (Singer and
Hughey, 2019).
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Motivated by the need for a flexible, interpretable and parametric methodology to fit rhythmic
patterns, our research group recently proposed the frequency modulated Möbius (FMM) model (Rueda
et al., 2019). The FMM is an additive nonlinear parametric regression model capable of adapting to
nonsinusoidal shapes and whose parameters are easily interpretable. The single component model has
been shown to successfully fit data as diverse as circadian clock signals, hormonal levels data or light
data from distant stars. In addition, for more complex oscillatory signals, a multicomponent model
of order m, denoted as FMMm, which includes m single FMM components, can be used. This is, for
example, the case for describing electrocardiography (ECG) signals. The FMMecg signal, presented in
Rueda et al. (2021b), is defined as the combination of five single FMM components. Another interesting
area where the FMM approach has already shown its usefulness is in electrophysiological neuroscience.
Specifically, we have proposed FMM methodology for modeling neuronal action potential (AP) curves,
oscillating signals that measure the difference between the electrical potential inside and outside the
cell (see Rueda et al., 2021c; Rodríguez-Collado and Rueda, 2021a). An FMM2 model provides an
accurate fitting for a single AP curve; whereas series of AP curves with similar repetitive spikes can be
efficiently fitted by the FMMST model, a restricted version of the multicomponent FMM model.

In this work we introduce the FMM package (Fernández et al., 2021), programmed in R and avail-
able from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
FMM. The package implements all required functions to fit and explore single and multicomponent
FMM models, as well as a restricted multicomponent version. In addition, the FMM package provides
functions to generate synthetic data and visualize the results of the fitted model. Furthermore, its use
is illustrated in the aforementioned applications. The remainder of this paper is organized as follows:
the next section provides a brief overview of both mono and multicomponent FMM models, as well as
the FMMm model with equality constraints. The section follows is dedicated to the implementation
details of the FMM package. After that, through a simulated example, the basic usage of the package
is introduced, including the data generation and the fitting, as well as the visualization of the results.
Then, the FMM package performance is shown through three application areas governed by oscillatory
systems: chronobiology, ECG and neuroscience. Finally, a summary is provided.

2 Frequency modulated Möbius (FMM) model

FMM is a new approach to describe a great variety of rhythmic patterns in oscillatory signals as the
composition of several additive components. In this section an overview of the FMM approach is
provided. All the methodological details that justify the mathematical formulation of the FMM models
are given in Rueda et al. (2019).

At the time point t, a single FMM wave is defined as W (t; υ) = A cos (ϕ (t; α, β, ω)) where
υ = (A, α, β, ω)′, A ∈ ℜ+ represents the wave amplitude and,

ϕ (t; α, β, ω) = β + 2 arctan
(

ω tan
(

t − α

2

))
(1)

the wave phase. The phase angle ϕ of an FMM wave is defined using the Möbius link (see Downs and
Mardia, 2002; Kato et al., 2008) rather than the linear link function as in the COS model. The Möbius
link provides much more flexibility to describe nonsinusoidal patterns. Without loss of generality,
we assume that the time point t ∈ [0, 2π]. Otherwise it can be transformed into t′ ∈ [t0, T + t0] by
t = (t′−t0)2π

T .

Each of the four parameters of an FMM wave characterizes some aspect of a rhythmic pattern.
A describes the amplitude of the signal, while α, β and ω describe the wave phase. α ∈ [0, 2π] is
a translation parameter and a wave location parameter in the real space, whereas β ∈ [0, 2π] and
ω ∈ [0, 1] describe the wave shape. To be precise, assuming α = 0, the unimodal symmetric waves are
characterized by values of β close to 0, π or 2π. When β = π

2 or β = 3π
2 , extreme asymmetric patterns

are described. Moreover, a value of ω close to zero describes an extreme spiked wave and, as ω value
increases, the pattern is increasingly smoother. When ω = 1, a sinusoidal wave is described and the
FMM model matches the COS model where φ = β − α is the acrophase parameter.

Two important features of a wave are the peak and trough, defined as the highest and lowest points
above and below the rest position, respectively. In many applications, the peak and trough times could
be very useful tools to extract practical information of a wave, since they capture important aspects of
the dynamics. These two interesting parameters can be directly derived from the main parameters of
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an FMM wave as,

tU = α + 2 arctan
(

1
ω

tan
(
− β

2

))
(2)

tL = α + 2 arctan
(

1
ω

tan
(

π − β

2

))
where tU and tL denote the peak and trough times, respectively.

Monocomponent FMM model

Let X (ti), t1 < t2 < · · · < tn be the vector of observations. The monocomponent FMM model is
defined as follows:

X (ti) = M + W (ti; υ) + e (ti) , i = 1, . . . , n (3)

where M ∈ ℜ is an intercept parameter describing the baseline level of the signal, W (ti; υ) is an FMM
wave, and it is assumed that the errors e (ti) are independent and normally distributed with zero mean
and a common variance σ2.

Estimation algorithm

A two-step algorithm to estimate monocomponent FMM model parameters is proposed. We now
describe the substantial details of each stage of the algorithm.

Step 1: Initial parameter estimation. A two-way grid search over the choice of (α, ω) parameters
is performed. For each pair of (α, ω) fixed values, the estimates for M, A and β are obtained by solving
a least square problem as detailed below.

The model for a single FMM component can be written as:

X (ti) = M + A cos (t∗i + φ) + e (ti) (4)

where t∗i = α + 2 arctan
(

ω tan
(

ti−α
2

))
, φ = β − α, and e (ti) ∼ N

(
0, σ2) for i = 1, . . . , n.

Using trigonometric angle sum identity, the model can be rewritten as:

X (ti) = M + δzi + γwi + e (ti) (5)

where δ = A cos (φ), γ = −A sin (φ), zi = cos
(
t∗i
)

and wi = sin
(
t∗i
)
.

Since α and ω are fixed, the estimates for M, δ and γ are obtained by minimizing the residual sum
of the squares (RSS),

RSS =
n

∑
i=1

(
X (ti)−

(
M̂ + δ̂zi + γ̂wi

))2 (6)

And the estimates for M, A and β are straightforward to derive as follows,

M̂ = X̄ − δ̂
n

∑
i=1

zi − γ̂
n

∑
i=1

wi (7)

Â =
√

δ̂2 + γ̂2 (8)

β̂ = α + φ (9)

The best combination of (α, ω) values, with the lowest RSS, is retained and the corresponding
estimates are the initial parameter estimation values.

Step 2: Optimization. In the second step, the Nelder-Mead optimization method (Nelder and
Mead, 1965) is used to obtain the final FMM parameter estimates that minimize the RSS.

Multicomponent FMM model

A multicomponent FMM model of order m, denoted by FMMm, is defined as

X (ti) = M +
m

∑
J=1

W
(
ti; υJ

)
+ e (ti) (10)

t1 < t2 < · · · < tn; i = 1, . . . , n
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where W
(
ti; υJ

)
, hereinafter denoted by WJ (ti), is the Jth FMM wave and,

• M ∈ ℜ
• υJ =

(
AJ , αJ , β J , ωJ

)′ ∈ ℜ+ × [0, 2π]× [0, 2π]× [0, 1]; J = 1, . . . , m

• α1 ≤ α2 ≤ · · · ≤ αm ≤ α1

• (e (t1) , . . . , e (tn))
′ ∼ Nn

(
0, σ2 In

)
Model adequacy

The goodness of fit of an FMM model is measured with the R2 statistic that represents the proportion
of the variance explained by the model out of the total variance, that is:

R2 = 1 − ∑n
i=1
(
X (ti)− X̂ (ti)

)2

∑n
i=1 (X (ti)− X̄)

2 (11)

where X̂ (ti) represents the fitted value at ti, i = 1, . . . , n.

Estimation algorithm

An iterative backfitting algorithm is proposed to derive estimates for the FMM parameters. Let

Ŵ(k)
J (ti) denote the fitted values from the Jth FMM wave at ti, i = 1, ..., n in the kth iteration. The

algorithm is structured as follows:

1. Initialize. Set Ŵ(0)
1 (ti) = · · · = Ŵ(0)

m (ti) = 0.

2. Backfitting step. For J = 1, . . . , m, calculate

r(k)J (ti) = X (ti)− ∑
I<J

Ŵ(k)
I (ti)− ∑

I>J
Ŵ(k−1)

I (ti) ; I = 1, . . . , m (12)

and fit a monocomponent FMM model to r(k)J (ti) obtaining α̂
(k)
J , β̂

(k)
J , ω̂

(k)
J and Ŵ(k)

J (ti).

3. Repeat the backfitting step until the stopping criterion is reached. The stopping criterion
is defined as the difference between the explained variability in two consecutive iterations:
R2

k − R2
k−1 ≤ C, where R2

k (defined in Equation 11) is the proportion of variance explained by
the model in the kth iteration and C a constant.

4. M̂ and ÂJ are derived by solving

min
M∈ℜ;AJ∈ℜ+

n

∑
i=1

(
X (ti)− M −

m

∑
J=1

AJ cos
(
ϕ̂J (ti)

))2

(13)

where ϕ̂J (ti) = ϕ
(
ti; α̂J , β̂ J , ω̂J

)
defined in Equation 1.

Restricted multicomponent FMM model

Modeling signals with repetitive shape-similar waves can be very useful in some applications (see
Rodríguez-Collado and Rueda, 2021a). In order to obtain more efficient estimators, equality constraints
are imposed on the β and ω parameters of an FMMm model. In particular, we add d blocks of
restrictions:

β1 = · · · = βm1 ω1 = · · · = ωm1 (14)

βm1+1 = · · · = βm2 ωm1+1 = · · · = ωm2

. . .

βmd−1+1 = · · · = βmd ωmd−1+1 = · · · = ωmd

The parameter estimation problem is solved by an adaptation of the standard procedure.

FMMm estimation algorithm with restrictions on the β parameters

Given the unrestricted estimates obtained in step 3, the estimates for β1, βm1+1, . . . , βmd−1+1 under
equality restrictions (Equation 14) are computed as follows:
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β̂∗J = angularMean
(

β̂1, . . . , β̂m1

)
J = 1, . . . , m1

β̂∗J = angularMean
(

β̂m1+1, . . . , β̂m2

)
J = m1 + 1, . . . , m2

. . .

β̂∗J = angularMean
(

β̂md−1+1, . . . , β̂md

)
J = md−1 + 1, . . . , md

Then, the algorithm continues to the next step.

FMMm estimation algorithm with restrictions on the ω parameters

When constraints for the ω parameters are incorporated, the grid search for the different ω values
is outside the backfitting loops. When the number of blocks is large, the estimation procedure can
be computationally unaffordable. In order to reduce the execution time, a two-nested backfitting
algorithm is proposed. In the outer backfitting loop, a block is fitted. In the inner loop, the FMM
waves belonging to the same block are estimated. This procedure generates a close to optimal solution
and is a less computationally expensive alternative.

3 FMM package: Implementation details

The FMM code makes use of the doParallel package (Corporation and Weston, 2020) to embed paral-
lelization for the fitting process. Several utilities from the ggplot2 (Wickham, 2016) and RColorBrewer
(Neuwirth, 2014) packages are occasionally necessary for the visualization of the fitted models.

The implementation of FMM is divided into four main functionalities described in the next four
sections: the fitting of the FMM models, the new S4 object of class "FMM", the graphical visualization of
the fittings and the simulation of synthetic data.

Some general details about the functions contained in the FMM package are shown in Table 1.

Function Description

Fitting function
fitFMM(vData,timePoints,nback,...) Estimates an FMMnback model to vData ob-

served at timePoints.

Utility functions
plotFMM(objFMM,...) Graphically displays an object of class

"FMM".
generateFMM(M,A,alpha,beta,omega,...) Simulates values from an FMM model with

parameters (M = M, A = A, α = alpha, β =
beta, ω = omega).

getFMMPeaks(objFMM,...) Estimates peak and trough times, together
with signal values at those times, for each
FMM wave.

extractWaves(objFMM) Extracts individual contribution to the fit-
ted values of each FMM wave.

Standard methods for objects of class "FMM"
summary(), show(), coef(), fitted()

Table 1: Summary of the fitting, utility functions and standard methods implemented in FMM
package.

Fitting an FMM model

An FMM model can be fitted using the main function fitFMM(). The description and default values of
its inputs arguments are shown in Table 2.

The fitting function fitFMM() requires the vData input argument, which contains the data to be
fitted. Two other arguments can be used to control a basic fitting: timePoints, which contains the

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=RColorBrewer


CONTRIBUTED RESEARCH ARTICLE 366

specific time points of the single period; and nback, with the number of FMM components to be fitted.
For some applications, such as the study of circadian rhythms, data are collected over multiple periods.
This information is received by the fitFMM() function through the input argument nPeriods. When
nPeriods>1, the FMM fitting is carried out by averaging the data collected at each time point across all
considered periods.

Argument Default value Description

vData no default value A "numeric" vector containing the data to
be fitted by an FMM model.

nPeriods 1 A "numeric" value specifying the number
of periods at which vData is observed.

timePoints NULL A "numeric" vector containing the time
points per period at which data is observed.
When timePoints = NULL an equally spaced
sequence from 0 to 2π will be assigned.

nback 1 A "numeric" value specifying the number
of FMM components to be fitted.

betaOmegaRestrictions 1 : nback An "integer" vector of length nback indi-
cating which FMM waves are constrained
to have equal β and ω parameters.

maxiter nback A "numeric" value specifying the maximum
number of iterations for the backfitting algo-
rithm.

stopFunction alwaysFalse Function to check the stopping criterion for
the backfitting algorithm.

lengthAlphaGrid 48 A "numeric" value specifying the grid reso-
lution of the parameter α.

lengthOmegaGrid 24 A "numeric" value specifying the grid reso-
lution of the parameter ω.

numReps 3 A "numeric" value specifying the number
of times (α, ω) parameters are refined.

showProgress TRUE TRUE to display a progress indicator on the
console.

showTime FALSE TRUE to display execution time on the con-
sole.

parallelize FALSE TRUE to use parallelized procedure to fit a
FMM model.

restrExactSolution FALSE TRUE to obtain the optimal solution for the
restricted fitting.

Table 2: Description of the input arguments of the fitFMM() function and their default values.

There are three key issues in the fitting process: the grid search of the pair (α, ω) to solve the
estimation problem of a single FMM wave, the backfitting algorithm used for the estimation of the
multicomponent models, and the incorporation of restrictions on β and ω parameters. Each of these
issues is controlled by several arguments described below.

• Grid search of the pair (α, ω). The lengthAlphaGrid and lengthOmegaGrid arguments are used
to set the grid resolution by specifying the number of equally spaced α and ω values. Thus, the
objective function will be evaluated a total number of (lengthAlphaGrid)×(lengthOmegaGrid)
times, so when both arguments are large, the computational demand can be high. By reducing
the size of the sequences of the α and ω parameters, the algorithm will be computationally more
efficient. However, it may fail to obtain an accurate estimation if the grid resolution is too sparse.
An implemented option to fine-tune the estimation of the parameters is to repeat the fitting
process a numReps of times, in such a way that, at each repetition, a new two-dimensional grid of
(α, ω) points is created around the previous estimates. In addition, the parallelize argument
specifies whether a parallel processing implementation is used.

• Backfitting algorithm. The argument maxiter sets the maximum number of backfitting itera-
tions. Through the argument stopFunction, it is possible to set a stopping criterion. Two criteria
have been implemented as stop functions in this package. When stopFunction = alwaysFalse,
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maxiter iterations will be forced. If stopFunction = R2(), the algorithm will be stopped when
the difference between the explained variability in two consecutive iterations is less than a value
pre-specified in the difMax argument of R2() function.

• Restrictions. The argument betaOmegaRestrictions sets the equality constraints for the β and
ω parameters. For the unrestricted case, betaOmegaRestrictions = 1:nback. To add restrictions,
"integer" vectors of length m can be passed to this argument, so that positions with the same
numeric value correspond to FMM waves whose parameters, β and ω, are forced to be equal.
Since restricted fitting can be computationally intensive, a two-nested backfitting algorithm can
be used for the estimation of ω parameters when the argument restrExactSolution = FALSE.

Object of class "FMM"

The fitFMM() function outputs an S4 object of class "FMM" which contains the slots presented in Table 3.

Slot Description

timePoints A "numeric" vector containing the time points for each data point if
one single period is observed.

data A "numeric" vector containing the data to be fitted to an FMM model.
Data could be collected over multiple periods.

summarizedData A "numeric" vector containing the summarized data at each time
point across all considered periods.

nPeriods A "numeric" value containing the number of periods in data.
fittedValues A "numeric" vector of the fitted values by the FMM model.
M A "numeric" value of the estimated intercept parameter M.
A An m-element "numeric" vector of the estimated FMM wave ampli-

tude parameter(s) A.
alpha An m-element "numeric" vector of the estimated FMM wave phase

translation parameter(s) α.
beta An m-element "numeric" vector of the estimated FMM wave skew-

ness parameter(s) β.
omega An m-element "numeric" vector of the estimated FMM wave kurtosis

parameter(s) ω.
SSE A "numeric" value of the residual sum of squares values.
R2 An m-element "numeric" vector specifying the explained variance

by each of the fitted FMM components.
nIter A "numeric" value containing the number of iterations of the backfit-

ting algorithm.

Table 3: Summary of the slots of the S4 object of class "FMM" resulting from fitting an FMM model
with m components.

The standard methods implemented for the class "FMM" include the functions summary(), show(),
coef() and fitted(). These methods display relevant information of the FMM fitting, and provide
the estimated parameters and fitted values. In addition, two more specific functions have been
implemented. Through the extractWaves() function, the individual contribution of each FMM wave
to the fitted values can be extracted. Finally, the location of the peak and trough of each FMM wave, as
well as the value of the signal at these time points, can be estimated using the getFMMPeaks() function.
The required argument of all these methods and functions is an object of the class "FMM". Particularly,
getFMMPeaks() has an optional argument: timePointsIn2pi, that forces the peak and trough locations
to be returned into the interval from 0 to 2π when it is TRUE.

Plotting FMM models

The FMM package includes the function plotFMM() to visualize the results of an FMM fit. The
arguments of this function are summarized in Table 4.

An object of class "FMM" can be plotted in two ways (see Figure 1). The default graphical repre-
sentation will be a plot on which original data (as points) and the fitted signal (as a line) are plotted
together (left panel in Figure 1). The other possible representation is a component plot for displaying
each centered FMM wave separately (right panel in Figure 1). Set the boolean argument components
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Argument Default value Description

objFMM no default value The object of class "FMM" to be plotted.
components FALSE TRUE to display a plot of components.
plotAlongPeriods FALSE TRUE to plot more than 1 period.
use_ggplot2 FALSE TRUE to plot with ggplot2 package.
legendInComponentsPlot TRUE TRUE to indicate if a legend should be plotted

in the component plot.
textExtra empty string Extra text to be added to the title of the plot.

Table 4: Description of the input arguments of the plotFMM() function and their default values.

= TRUE to show a component plot. When legendInComponentsPlot = TRUE, a legend appears at the
bottom of the component plot to indicate the represented waves. The argument textExtra allows an
extra text to be added to the title of both graphical representations.

As mentioned above, in some cases, data are collected from different periods. All periods can be
displayed simultaneously on the default plot using plotAlongPeriods = TRUE. For the component
plot, this argument is ignored.

The argument use_ggplot2 provides a choice between building the plot using base R graphics
or ggplot2 packages. By default, the graphics package is used. When use_ggplot2 = TRUE, a more
aesthetic and customizable plot is created using the ggplot2 package.

Simulating data from an FMM model

Data from an FMM model can be easily simulated using the function generateFMM() of the package
FMM. All input arguments of this function are shown in Table 5, along with a short description and
their default values.

Argument Default value Description

M no default value Value of the intercept parameter M.
A no default value Vector of the FMM wave amplitude pa-

rameter A.
alpha no default value Vector of the FMM wave phase transla-

tion parameter α.
beta no default value Vector of the FMM wave skewness pa-

rameter β.
omega no default value Vector of the FMM wave kurtosis pa-

rameter ω.
from 0 Initial time point of the simulated data.
to 2π Final time point of the simulated data.
length.out 100 Desired length of the simulation.
timePoints seq(from,to,length = length.out) Time points at which the data will be

simulated.
plot TRUE TRUE when the simulated data should

be drawn on a plot.
outvalues TRUE TRUE when the numerical simulation

should be returned.
sigmaNoise 0 Standard deviation of the Gaussian

noise to be added.

Table 5: Description of the input arguments of the generateFMM() function and their default values.

The main arguments of this function are M, A, alpha, beta and omega, whereby the values of the
FMM model parameters are passed to the function. All these arguments are "numeric" vectors of
length m, except M, which has length 1. Longer and smaller vectors will be truncated or replicated as
appropriate.

By default, the data will be simulated at a sequence of 100 equally spaced time points from 0 to 2π.
The arguments from, to and length.out control such sequences. The sequence can also be manually
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set using the argument timePoints, in which case from, to and length.out will be ignored.

The user can add a Gaussian noise by argument sigmaNoise. A positive "numeric" value sets
the corresponding standard deviation of the Gaussian noise to be added. To create the normally
distributed noise, the rnorm() function is used.

The arguments plot and outvalues, both boolean values, determine the output of the generateFMM()
function. When outvalues = TRUE, a "list" with input parameters, time points and simulated data
is returned. These elements are named input, t and y, respectively. In addition, a scatter plot of y
against t can be drawn by setting plot = TRUE.

4 Basic usage of the FMM package

The example below, based on FMM synthetic data, illustrates the basic uses and capabilities of the
functions implemented in the FMM package. A set of 100 observations is simulated from an FMM4
model with intercept parameter M = 3, amplitude parameters: A1 = 4, A2 = 3, A3 = 1.5 and A4 = 1,
and phase translation parameters: α1 = 3.8, α2 = 1.2, α3 = 4.5 and α4 = 2. With regard to the shape
parameters, pairs of waves are equal. Specifically, the shape parameters satisfy:

β1 = β2 = 3 ω1 = ω2 = 0.1

β3 = β4 = 1 ω3 = ω4 = 0.05

The standard deviation of the error term is set at σ = 0.3. We use the function generateFMM() to
simulate this data set. A set.seed() statement is used to guarantee the reproducibility of the results.

> library("FMM")
> set.seed(1115)
> rfmm.data <-generateFMM(M = 3, A = c(4,3,1.5,1), alpha = c(3.8,1.2,4.5,2),
+ beta = c(rep(3,2),rep(1,2)),
+ omega = c(rep(0.1,2),rep(0.05,2)),
+ plot = FALSE, outvalues = TRUE,
+ sigmaNoise = 0.3)

The estimation of an FMM4 can be performed by setting nback = 4 in the fitting function fitFMM().
The betaOmegaRestrictions parameter allows a wide variety of shape restrictions to be incorporated
into the fitting procedure. In this example, to impose the shape restrictiction on the fitting process, we
use betaOmegaRestrictions = c(1,1,2,2).

> fit.rfmm <- fitFMM(vData = rfmm.data$y, timePoints = rfmm.data$t, nback = 4,
+ betaOmegaRestrictions = c(1, 1, 2, 2))
|--------------------------------------------------|
|==================================================|
Stopped by reaching maximum iterations (4 iteration(s))

The results are displayed by the function summary():

> summary(fit.rfmm)

Title:
FMM model with 4 components

Coefficients:
M (Intercept): 3.1661

A alpha beta omega
FMM wave 1: 4.0447 3.8048 3.0238 0.0930
FMM wave 2: 3.1006 1.1956 3.0238 0.0930
FMM wave 3: 1.6069 4.5228 1.0145 0.0427
FMM wave 4: 1.1194 1.9788 1.0145 0.0427

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 0.6741 5.3198 4.9354 -2.7565
FMM wave 2: 4.3482 3.4702 2.3263 -2.1742
FMM wave 3: 1.5345 -1.2330 1.3338 -4.1527
FMM wave 4: 5.2737 -1.7005 5.0730 -3.7565
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Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.719769 -0.162649 0.007025 0.000000 0.160127 0.904218

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Total
0.5049 0.3906 0.0531 0.0276 0.9761

The FMM wave parameter estimates, as well as the peak and trough times, together with the signal
values at those times, are presented in tabular form, where each row corresponds to a component
and each column to an FMM wave parameter. As part of the summary, a brief description of the
residuals, the proportion of variance explained by each FMM component and by the global model are
also shown. The summary() output can be assigned to an object to get a "list" of all the displayed
results.

Other options to return the results are the functions coef(), getFMMPeaks() and resid(). The first
two return a "list" similar to those obtained with summary(). The resid() method can be used to
obtain the complete residuals vector. In addition, the fitted values can be extracted by the function
fitted(), which returns a "data.frame" with two columns: time points and fitted values.

The FMM plots can be generated in the R graphics or ggplot2 packages. In the code example given
below, we use use_ggplot2 = TRUE to build Figure 1 based on ggplot2. The use of ggplot2 makes
it easier to customize our plots and modify features, such as scales, margins, axes, etc. In Figure 1,
the two possible FMM plots are arranged via the grid.arrange() function of the gridExtra package
(Auguie, 2017).

> library("RColorBrewer")
> library("ggplot2")
> library("gridExtra")
> # Plot the fitted FMM model
> titleText <- "Simulation of four restricted FMM waves"
> defaultrFMM2 <- plotFMM(fit.rfmm, use_ggplot2 = TRUE, textExtra = titleText) +
+ theme(plot.margin=unit(c(1,0.25,1.3,1), "cm")) +
+ ylim(-5, 6)
> comprFMM2 <- plotFMM(fit.rfmm, components=TRUE, use_ggplot2 = TRUE,
+ textExtra = titleText) +
+ theme(plot.margin=unit(c(1,0.25,0,1), "cm")) +
+ ylim(-5, 6) +
+ scale_color_manual(values = brewer.pal("Set1",n = 8)[3:6])
> grid.arrange(defaultrFMM2, comprFMM2, nrow = 1)
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Figure 1: Graphical representation of the estimated restricted FMM4 signal with β1 = β2, ω1 = ω2
and β3 = β4, ω3 = ω4 constraints. A scatter plot of the simulated data along with the fitted signal is
displayed on the left (default plot). The component plot is shown on the right.

5 Real data analysis using the FMM package

This section illustrates the use of the FMM package on the analysis of real signals from chronobiology,
electrocardiography and neuroscience. To do this, the package includes four real-world data sets in
RData format which are described in the following sections.
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Example 1: Chronobiology

Chronobiology studies ubiquitous daily variations found in nature and in many aspects of the phys-
iology of human beings, such as blood pressure or hormone levels (Mermet et al., 2017). These
phenomena commonly display signals with oscillatory patterns that repeat every 24 hours, usually
known as circadian rhythms. In particular, circadian gene expression data have been deeply analyzed
in the literature as they regulate the vast majority of molecular rhythms involved in diverse biochemi-
cal and cellular functions, see among others Zhang et al. (2014), Cornelissen (2014) and Larriba et al.
(2020).

The FMM package includes a data set called mouseGeneExp that contains expression data of the
Iqgap2 gene from mouse liver. The liver circadian database is widely extended in chronobiology since
the liver is a highly rhythmic organ with moderate levels of noise (Anafi et al., 2017; Larriba et al., 2018,
2020). The complete database is freely available at NCBI GEO (http://www.ncbi.nlm.nih.gov/geo/),
with GEO accession number GSE11923. Gene expression values are given along 48 hours with a
sampling frequency of 1 hour/2 days. Hence, data are collected along two periods, and an FMM1
model is fitted to the Iqgap2 average expressed values as follows:

> data("mouseGeneExp", package = "FMM")
> fitGene <- fitFMM(vData = mouseGeneExp, nPeriods = 2, nback = 1, showProgress = FALSE)
> summary(fitGene)

Title:
FMM model with 1 components

Coefficients:
M (Intercept): 10.1508

A alpha beta omega
FMM wave 1: 0.4683 3.0839 1.5329 0.0816

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 0.1115 10.6191 6.0686 9.6825

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.751e-02 -3.490e-02 2.269e-03 -1.530e-06 2.670e-02 1.890e-01

R-squared:
[1] 0.8752

The behavior of the FMM versus COS model to describe this asymmetric pattern has been com-
pared in terms of R2. The FMM model clearly outperforms the COS one with an R2 of 0.8752 and
0.2835, respectively. In addition, a difference of 4.73 hours in peak time estimation between both
models is observed, the FMM peak estimate being much more reliable, as is shown in Figure 2.

Example 2: Electrocardiography

ECG records the periodic electrical activity of the heart. This activity represents the contraction and
relaxation of the atria and ventricle, processes related to the crests and troughs of the ECG waveform.
Heartbeats are decomposed into five fundamental waves, labelled as P, Q, R, S and T, corresponding
to the different phases of the heart’s electric activity. The main features used in medical practice for
cardiovascular pathology diagnosis are related to the location and amplitudes of these waves, and,
of them, those labeled as P, R and T are of particular interest (Bayes de Luna, 2007). Standard ECG
signals are registered using twelve leads, calculated from different electrode locations. Lead II is the
reference signal, as it usually provides a good view of the main ECG waves (Meek and Morris, 2002).

The FMM package includes the analysis of a typical ECG heartbeat from the QT database (Laguna
et al., 1997). This recording, from the subject sel100, belongs to the Normal category, regarding
Physionet’s pathology classification (Goldberger et al., 2000). The data illustrate the voltage of the
heart’s electric activity, measured in mV, along the heartbeat with a sampling frequency of 250Hz.
Specifically, the ECG signal from lead II in the fifth of the thirty annotated heartbeats is analysed.
Recordings are publicly available on (http://www.physionet.org). Data are saved as ecgData in the
package. For an ECG heartbeat, an FMMecg, a fifth order multicomponent FMM model can be fitted
with the instruction:
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Figure 2: Iqgap2 gene expression data along two periods (grey dots); FMM (red line) and COS (blue
line) fitted signals.

> data("ecgData", package = "FMM")
> fitEcg <- fitFMM(ecgData, nback = 5, showProgress = FALSE)
> summary(fitEcg)

Title:
FMM model with 5 components

Coefficients:
M (Intercept): 5.2717

A alpha beta omega
FMM wave 1: 0.6454 5.5151 3.2926 0.0325
FMM wave 2: 0.0994 4.4203 3.7702 0.1356
FMM wave 3: 0.2443 5.3511 0.6636 0.0323
FMM wave 4: 0.3157 5.5919 4.8651 0.0126
FMM wave 5: 0.0666 1.7988 2.1277 0.1632

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 2.3686 6.2370 3.1841 4.7241
FMM wave 2: 1.1905 4.9487 2.0693 4.6897
FMM wave 3: 2.3965 6.0828 2.1872 4.5551
FMM wave 4: 2.4210 5.7933 2.4719 4.7175
FMM wave 5: 5.1212 4.8646 4.3689 4.7228

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.0690885 -0.0095597 -0.0001127 0.0000000 0.0098533 0.0623569

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Total
0.7645 0.0920 0.0581 0.0493 0.0278 0.9918

It is worth noting that the FMM package not only provides ECG signal-fitting (the left hand panel
in Figure 3), but it also does wave decomposition and fiducial mark annotations on the desired waves
(the right hand panel in Figure 3). It is clearly visible how the specific shapes of the five main waves
contribute to drawing and explaining the lead II ECG waveform from the Normal morphology. See
Rueda et al. (2021b) for a complete review of FMMecg.
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Figure 3: FMMecg performance on a single beat from patient sel100 from the QT database. Left: Data
(grey dots) and FMM fitting (red line). Black dots locate the P, R and T fiducial marks. Right: ECG
decomposition on P(orange), Q (purple), R (green), S (yellow) and T (blue) waves. Dash lines indicate
P, R and T peak times.

Example 3: Neuroscience

Single AP curve

The study of the electrophysiological activity of neurons is one of the main research branches in
neuroscience. The AP curves are oscillatory signals that serve as basic information units between
neurons. They measure the electrical potential difference between inside and outside the cell due
to an external stimulus. Gerstner et al. (2014) can serve as a basic reference for electrophysiological
neuroscience. Recently, the shape and other features of the AP have been used in problems such
as spike sorting (Rácz et al., 2020; Souza et al., 2019; Caro-Martín et al., 2018) or neuronal cell type
classification (Teeter et al., 2018; Gouwens et al., 2019; Mosher et al., 2020; Rodríguez-Collado and
Rueda, 2021b).

The package includes an example of a neuronal AP. The data were simulated with the renowned
Hodgkin-Huxley model, first presented in Hodgkin and Huxley (1952), which is defined as a system
of ordinary differential equations and has been used in a wide array of applications, as it successfully
describes the neuronal activity in various organisms. The simulation has been done using a modified
version of the python package NeuroDynex available at Gerstner et al. (2014). More concretely, a short
square stimulus of 12µA has been applied to the neuron. The data can be accurately fitted by an FMM2
model as follows:

> data("neuronalSpike", package = "FMM")
> fitSingleAP <- fitFMM(neuronalSpike, nback = 2, showProgress = FALSE)
> summary(fitSingleAP)

Title:
FMM model with 2 components

Coefficients:
M (Intercept): 44.9474

A alpha beta omega
FMM wave 1: 52.9014 4.4160 3.0606 0.0413
FMM wave 2: 18.5046 4.6564 4.9621 0.0322

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 1.2777 110.8361 5.9669 -2.5002
FMM wave 2: 1.4319 36.9084 1.5649 -16.2572

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
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-14.3012 -1.0038 0.7472 0.0000 1.3230 24.8618

R-squared:
Wave 1 Wave 2 Total
0.9064 0.0604 0.9669
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Figure 4: Neuronal AP simulated with the Hodgkin-Huxley model (parameters: C = 1, gNa =

260, gK = 30, gL = 0.31, VK = −12, VNa = 115, VL = 10.6, ãn = 1.15, b̃n = 0.85, ãm = 0.9, b̃m =

1.3, ãh = 1, b̃h = 1 and applying a current of 12µA for 1 millisecond) and the estimated FMM2 signal
in red. An FD model of the same number of degree of freedom has been fitted and plotted in blue.

The goodness of fit of the FMM2 model can be ascertained in Figure 4. For comparison purposes,
an FD model has been fitted with the same number of degrees of freedom. While the FD attains an
R2 = 0.3926, the FMM model achieves a better fit with R2 = 0.9669.

AP train

Multiple AP curves, denominated spike or AP train, are usually observed as the response to a stimulus.
Various models, such as the widely used leaky-and-fire models (Lynch and Houghton, 2015), cut the
signal into segments, each one containing an AP curve. Some authors suggest cutting the signal into
even segments (Gerstner et al., 2014). However, the length of the segments turns out to be significantly
different between different types of neurons, as explained in Teeter et al. (2018), and unequal data
segments can lessen the utility of some approaches. An important aspect to take into account is that
the shape of the APs in the spike train is considered to be similar and, consequently, a restricted FMM
model can accurately fit the entire signal.

The FMM package includes the data of a spike train composed of three AP curves. The proposed
model for use with these data is an FMMST model, as defined in Rodríguez-Collado and Rueda (2021a).
Each AP is modeled by two components. The β and ω parameters are constrained between AP curves.
The code below fits the model.

> data("neuronalAPTrain", package = "FMM")
> nAPs <- 3; restriction <- c(rep(1,nAPs),rep(2,nAPs))
> fitAPTrain<-fitFMM(neuronalAPTrain, nback = nAPs*2,

betaRestrictions = restriction,
omegaRestrictions = restriction,
showProgress = FALSE, parallelize=TRUE)

> summary(fitAPTrain)

Title:
FMM model with 6 components

Coefficients:
M (Intercept): 135.4137
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A alpha beta omega
FMM wave 1: 51.7069 6.1358 2.8172 0.0384
FMM wave 2: 52.0915 1.7541 2.8172 0.0384
FMM wave 3: 51.1140 4.2319 2.8172 0.0384
FMM wave 4: 20.3725 4.4778 4.8637 0.0552
FMM wave 5: 19.2429 1.9981 4.8637 0.0552
FMM wave 6: 19.6748 0.0973 4.8637 0.0552

Peak and trough times and signals:
t.Upper Z.Upper t.Lower Z.Lower

FMM wave 1: 3.0067 111.4319 2.5332 -1.2051
FMM wave 2: 4.9082 111.7323 4.4347 -1.4607
FMM wave 3: 1.1028 111.2700 0.6293 -0.1561
FMM wave 4: 1.2077 58.5986 1.4310 -14.2508
FMM wave 5: 5.0113 58.5537 5.2345 -13.3010
FMM wave 6: 3.1104 58.4889 3.3337 -13.7041

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-14.8618 -1.4929 0.5029 0.0000 1.6021 19.1978

R-squared:
Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Total
0.2524 0.2881 0.3501 0.0244 0.0276 0.0413 0.9839

In Figure 5, the fit of the FMMST model can be visualized. The goodness of fit of the model is
excellent, achieving an R2 = 0.9839.
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Figure 5: Neuronal APs simulated with the Hodgkin-Huxley model (parameters: C = 1, gNa =

232, gK = 45, gL = 0.215, VK = −12, VNa = 115, VL = 10.6, ãn = 0.95, b̃n = 1.3, ãm = 1, b̃m =

1.15, ãh = 1, b̃h = 1 and applying a short square current of 4.5 µA for 1 millisecond) and the estimated
FMMST signal in red. The components plot of the model can be seen on the right hand side of the
figure.

6 Summary

A general overview on the R package FMM, which implements the estimation of FMM models, is
provided in this paper. The flexibility offered by these models to fit oscillatory signals of many different
shapes makes them a very useful tool to model complex rhythmic patterns. The FMM methodology
and its application to very diverse biological data has been described in previous papers (Rueda et al.,
2019, 2021b,c) and recently revised in Rueda et al. (2021a).
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The package allows both single and multicomponent FMM models to be estimated. In order to
provide greater flexibility, equality constraints for shape parameters have also been implemented. In
addition, graphical representations of the fitted models and the possibility of generating synthetic
data are available. The functionality of the package has been illustrated by simulated data and also by
real examples from different areas of application related to present-day biological problems. The latest
release of the FMM package is publicly available on CRAN (http://CRAN.R-project.org/package=
FMM). A development version is also provided via GitHub at https://github.com/alexARC26/FMM
where code contributions and bugs can be reported.

Possible future extensions of the FMM package include the implementation of additional restric-
tions to suit the model to other real signals; the possibility to include weights that determine how much
each observation influences the parameter estimates; and the choice of an optimization technique,
other than the Neldel-Mead method, in the estimation algorithm.
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Changes on CRAN
2022-01-01 to 2022-03-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 3 months, 617 new packages were added to the CRAN package repository. 86
packages were unarchived and 307 were archived. The following shows the growth of the
number of active packages in the CRAN package repository:
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On 2022-03-31, the number of active packages was around 18924.

Changes in the CRAN Repository Policy

The Policy now says the following:

• (Using external C/C++/Fortran libraries.) Where a package wishes to make use of a
library not written solely for the package, the package installation should first look to
see if it is already installed and if so is of a suitable version. In case not, it is desirable
to include the library sources in the package and compile them as part of package
installation. If the sources are too large, it is acceptable to download them as part of
installation, but do ensure that the download is of a fixed version rather than the latest.
Only as a last resort and with the agreement of the CRAN team should a package
download pre-compiled software.

On Windows and macOS static libraries must be used. A separate document, External
Libraries for CRAN packages, covers what external libraries are or could be made
available.

CRAN package submissions

During the first 4 months of 2022 (January 2022 to April 2022), CRAN received 9601 package
submissions. For these, 17170 actions took place of which 11232 (65%) were auto processed
actions and 5938 (35%) manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:
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archive inspect newbies pending pretest publish recheck waiting
auto 2391 2716 1392 0 0 3018 1017 698
manual 1893 93 487 323 106 2232 637 167

These include the final decisions for the submissions which were

action archive publish
auto 2232 (23.9%) 2479 (26.5%)
manual 1870 (20.0%) 2758 (29.5%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

A new team member, Viktoria Wimmer, joined the CRAN submission team. Welcome,
Viktoria. Unfortunately, Julia Haider left the CRAN submission team after processing 3517
incoming submissions. Thanks a lot!

CRAN mirror security

Currently, there are 102 official CRAN mirrors, 81 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

The transition of the established task views to the new workflow on GitHub (https:
//github.com/cran-task-views/ctv/) that was announced in the previous volume of
the journal has been completed (see also https://twitter.com/AchimZeileis/status/
1510945091980038145).

Each task view now links to a GitHub repository where it is possible to post issues and
make pull requests for proposing improvements – in addition to sending e-mails to the
maintainer address which is still possible, of course. Moreover, the task view web pages
contain further improvements like a citation, installation notes, and a streamlined overview
of core and regular (and currently archived) packages in the task view.

Proposals of new task views are now also possible on GitHub. In fact, a few have already
been made for the topics causal inference, genetics and genomics (as a follow-up to the
orphaned and archived Genetics and Phylogenetics views), and sports analytics.

We look forward to further user contributions to the initiative!
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2021-12-22 and 2022-03-30.

Donations

RV Detailing Pros of San Diego (United States) Shalese Fitzgerald (United States) Ken Ikeda
(Japan) Rees Morrison (United States) Rav Vaid (United States) Clay Valarezo (United States)
Kai Wu (China)

Supporting benefactors

Università degli Studi di Padova, Padova (Italy)

Supporting institutions

Institute of Botany of the Czech Academy of Sciences, Pruhonice (Czechia) oikostat GmbH,
Ettiswil (Switzerland)

Supporting members

Constantin Ahlmann-Eltze (Germany) Vedo Alagic (Austria) Takaharu Araki (Japan) Fred-
eric Bertrand (France) Michael Blanks (United States) Cédric Chambru (Switzerland) John
Chandler (United States) Michael Chirico (United States) Gerard Conaghan (United King-
dom) Brandon Dahl (United States) Michael Dorman (Israel) Fraser Edwards (United King-
dom) Johan Eklund (Sweden) S Ellison (United Kingdom) Dane Evans (United States) Isaac
Florence (United Kingdom) Neil Frazer (United States) Bernd Fröhlich (Germany) Jan Mar-
vin Garbuszus (Germany) Gabriel Gersztein (Brazil) Brian Gramberg (Netherlands) Spencer
Graves (United States) Hlynur Hallgrímsson (Iceland) Philippe Heymans Smith (Costa Rica)
Alexander Huelle (Germany) Heidi Imker (United States) Gavin Kirby (United Kingdom)
Ziyad Knio (United States) Gen Kobayashi (Japan) Adrien Le Guillou (France) Yuewei
Liu (China) Myriam Maumy (France) Daniel McNichol (United States) Bogdan-Alexandru
Micu (Luxembourg) Ernst Molitor (Germany) David Monterde (Spain) Stefan Moog (Ger-
many) Steffen Moritz (Germany) Antonio Paez (Canada) Fergus Reig Gracia (Spain) Stefano
Rezzonico (Canada) Ingo Ruczinski (United States) Choonghyun Ryu (Korea, Republic of)
Dejan Schuster (Germany) John Smith (United States) Harald Sterly (Germany) Kai Streicher
(Switzerland) Robert van den Berg (Austria) Dr. Alfred Wagner (Germany) Petr Waldauf
(Czechia) Fredrik Wartenberg (Sweden) 广宇曾(China)

Torsten Hothorn
Universität Zürich, Switzerland Torsten.Hothorn@R-project.org
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