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Editorial
by Catherine Hurley

On behalf of the editorial board, I am pleased to present Volume 14 Issue 3 of the R Journal.

Our incoming editor-in-chief for 2023 Simon Urbanek has been successful in seeking funding
from the R Consortium. The project will provide a web-based front-end for managing the R
Journal submission and review process.

Behind the scenes, several people assist with the journal operations. Mitchell O’Hara-Wild
continues to work on infrastructure, and thanks to this work, producing a new issue is far
more straightforward. H. Sherry Zhang continues to develop the rjtools package under the
direction of Professor Dianne Cook. This package, recently available from CRAN assists in
producing RMarkdown articles in the R Journal format. In addition, articles in this issue
have been carefully copy edited by Hannah Comiskey.

In this issue

News from the CRAN and Bioconductor are included in this issue.

This issue features 18 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. The most common article
keywords in this issue are

Databases with R

Design and Analysis of Experiments (DoE)

Distributions

Econometrics

Functional Data Analysis

Machine Learning & Statistical Learning

Social Sciences

Spatial Analysis

Multivariate Statistics

Graphics and Visualisation
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Keyword Frequency

For the first time, we give times from submission to article acceptabce for an issue. Median
times are just under a year, which is consistent other issues over the last few years.
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Introducing fastpos: A Fast R
Implementation to Find the Critical Point
of Stability for a Correlation
by Johannes Titz

Abstract The R package fastpos provides a fast algorithm to estimate the required sample size for a
Pearson correlation to stabilize (Schönbrodt and Perugini 2013). The stability approach is an innovative
alternative to other means of sample size planning, such as power analysis. Although the approach
is young, it has already attracted much interest in the research community. Still, to date, there exists
no easy way to use the stability approach because there is no analytical solution and a simulation
approach is computationally expensive with a quadratic time complexity. The presented package
overcomes this limitation by speeding up the calculation of correlations and achieving linear time
complexity. For typical parameters, the theoretical speedup is around a factor of 250, which was
empirically confirmed in a comparison with the original implementation corEvol. This speedup
allows practitioners to use the stability approach to plan for sample size and theoreticians to further
explore the method.

1 Sample size planning with the stability approach

Sample size planning is one of the most crucial steps before conducting an empirical study. The
approach-avoidance conflict lies in the desire for reliable conclusions, but the unwillingness to spend
resources for large samples. To balance benefit and cost there exist three more or less established paths:
power analysis (e.g. Cohen 1988), accuracy in parameter estimation [AIPE; e.g. Maxwell, Kelley, and
Rausch (2008)] and interval based accuracy methods (Algina and Olejnik 2003). Recently, a fourth
way was introduced: stability (Schönbrodt and Perugini 2013). The general idea of this approach is to
determine the sample size at which a certain percentage of studies will fall into an priori specified
interval and stay in this interval if the sample size is increased further. For instance, if the population
correlation is 0.5, one can define the limits to be 0.4 and 0.6. Given these constraints, what sample size
is required to guarantee, with a certain probability (e.g. 90%), that the correlation coefficient will not
drop below 0.4 or rise above 0.6 if more participants are added. This sample size is also referred to as
the critical point of stability for the specific parameters. The stability approach is promising because it
(1) focuses on the effect size instead of significance and (2) is fairly intuitive. Indeed, the interest in
the method is growing, evident in more than 1500 citations of the original publication. But a proper
software package for the stability approach is still missing.

When the concept was introduced, the authors presented a collection of R scripts (corEvol, avail-
able at a github repository: https://github.com/nicebread/corEvol) to derive a sample size table
for certain parameters. This implementation is too slow to plan the sample size for an individual
study as it can take hours to get reliable results. In this article a faster implementation of the stability
approach is introduced available in the R package fastpos with the function find_critical_pos.

2 Model and implementations

The general model can be shortly described as follows: Define a population correlation ρ, the corridor
of stability with lower limit l and upper limit u and a confidence 1 − α. Now, pairs of values from a
bivariate normal distribution with correlation ρ are drawn. In a first step nmin pairs are drawn, to
which, repeatedly, one more pair is added so that the sample size n is sequentially increased by 1. For
every n the correlation rn is calculated. The point of stability npos can be described as:

npos = min {n ∈ N|l ≤ rm ≤ u, ∀m ≥ n} (1)

Meaning that the corridor of stability is not left again after the point of stability has been crossed
and that the corridor of stability was just entered at the point of stability. Note that npos is a random
variable that has to be evaluated with respect to the normal bivariate distribution. The critical point of
stability is the quantile 1 − α of the probability density function of npos. It is possible to calculate the
transition probabilities of entering, leaving or staying in the corridor of stability for two neighboring
sample sizes n and n + 1. But, so far, no analytical solution to calculate the critical point of stability
has been proposed.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fastpos
https://github.com/nicebread/corEvol
https://CRAN.R-project.org/package=fastpos


CONTRIBUTED RESEARCH ARTICLE 6

Instead, Schönbrodt and Perugini (2013) set up a Monte Carlo simulation to produce a sample
size table for some parameter combinations. In a simulation a maximum sample size nmax has to be
chosen. Then, for every n from nmin to nmax the correlation can be calculated. The point of stability for
one simulation study can again be described by the above condition. From many of such studies, the
critical point of stability can be estimated for the desired confidence.

In the original implementation, the correlations were calculated from scratch for each n, using
the function cor from stats. This is slow as several millions of correlations have to be calculated for
a reliable estimate. The correlations at n and n + 1 only differ by one pair of values, which can be
exploited for speed. Take the sum formula for the correlation coefficient at a specific sample size n:

rn =
n ∑n

i=1 xiyi − ∑n
i=1 xi ∑n

i=1 yi√
n ∑n

i=1 x2
i − (∑n

i=1 xi)
2
√

n ∑n
i=1 y2

i − (∑n
i=1 yi)

2
(2)

Several sums are calculated, each consisting of adding up n terms. In corEvol this is done for
every sample size from the minimum to the maximum one. Thus, the total number of added terms for
one sum is:

nmax

∑
n=nmin

n =
nmax

∑
n=1

n −
nmin−1

∑
n=1

n =
nmax (nmax + 1)

2
− (nmin − 1) (nmin − 1 + 1)

2
(3)

The variable nmin can be ignored as it is usually a small value and could even be set to 2. Fur-
thermore, the number of sums in the correlation formula will be the same for every algorithm and is
a constant. Dropping constant factors and lower order terms, the time complexity of the described
algorithm is O(n2

max).

In contrast, fastpos calculates the correlation for the maximum sample size first. This requires to
add nmax numbers for one sum. Then it subtracts one value from this sum to find the correlation for
the sample size nmax − 1, which happens repeatedly until the minimum sample size is reached (or the
corridor is left). In the worst case, the total number of terms for one sum amounts to:

nmax + nmax − nmin (4)

Again, dropping constant factors and lower order terms, the time complexity of this algorithm is
O(nmax). The ratio between the two approaches is:

nmax (nmax + 1)− (nmin − 1) nmin
4nmax − 2nmin

(5)

For the typically used nmax of 1,000 and nmin of 20, a speedup of about 250 can be expected. From
a theoretical perspective it is also interesting to study the stability approach with larger values of nmax,
for which the difference becomes even more pronounced.

The theoretical speedup is only an approximation for several reasons. First, one can stop the
algorithm when the corridor is left the first time, which is done in fastpos but not in corEvol. Second,
the main function of fastpos was written in C++ (via Rcpp, Eddelbuettel et al. 2022), which is much
faster than normal R. At the same time, the algorithms contain many more steps than just calculating
correlations. For instance, setting up the population with a specific ρ takes some time since it usually
consists of a million value pairs. The interface functions to setup the simulations also play a role,
especially when the algorithm itself is very fast. Thus, it is necessary to study the speed benefit
empirically. But before running a benchmark it will be useful to show (1) how to use fastpos in general
and (2) that it produces the same estimates as corEvol.

3 How to use fastpos

For a simple illustration, imagine you plan an empirical study and believe the population correlation
is 0.6. You would be happy to find a stable correlation between 0.5 and 0.7 with a probability of 80%.
What this means is that there is an 80% chance of finding a correlation between 0.5 and 0.7 and by
adding more participants this corridor is not left again. In fastpos you can run:

library(fastpos)
set.seed(20200219)
find_critical_pos(rho = 0.6, precision_absolute = 0.1, confidence_levels = .8,

sample_size_min = 20, sample_size_max = 1e3, n_studies = 1e4)

#> rho_pop pos.80% sample_size_min sample_size_max lower_limit upper_limit
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#> 1 0.6 104 20 1000 0.5 0.7
#> n_studies n_not_breached precision_absolute precision_relative
#> 1 10000 0 0.1 NA

This loads the package, sets a seed for reproducibility, and runs the simulation with default
parameters (except for the ones specifically set). A progress bar is displayed if run in interactive mode.
The result is a critical point of stability of 104.

The main function of the package find_critical_pos will usually suffice for most use cases. Its
parameters are documented in detail in the package. The population correlation (rho) and the number
of simulation studies (n_studies) is self-explanatory. The chosen precision (precision_absolute)
of 0.1 (i.e. the half-width) will result in the desired corridor between 0.5 and 0.7. There is also
a convenience argument to set the precision as a relative value, precision_relative, which will
override precision_absolute. For instance, precision_relative = 0.1 produces an interval of
ρ ± ρ · 0.1. Alternatively, one can also provide the lower and upper limit of the corridor directly via
lower_limit and upper_limit. This is especially useful if the corridor is not symmetric. Notable,
most parameters can also take vectors so it is possible to run multiple simulations for different rho
values (and corresponding other parameters) at once.

The parameter confidence_levels defines the quantile corresponding to the critical point of
stability. This parameter can be a single value or a vector, but is fixed for all rho values. If different
confidence levels are of interest, providing them as a vector saves a lot of resources because one
simulation can be used to calculate the critical points of stability for all confidence levels.

The parameters sample_size_min and sample_size_max set the minimum and maximum sample
size of one simulation study. As in corEvol they default to 20 and 1,000. This means a sample of 20
observation pairs is drawn from the population and step by step one more observation is added until
the sample size of 1,000 is reached.

The output summarizes the individually set (and default) parameters as well as the critical point of
stability of about 104. The value will change slightly from run to run because only 10,000 simulations
are done here. In practice one can make a quick estimate with the default parameters and then increase
the number of simulation studies for a more robust estimate. Under GNU/Linux one can also take
advantage of the multicore support (parameter n_cores). This functionality is currently implemented
via the pbmcapply package (Kuang, Kong, and Napolitano 2022), which is based on parallel.1

For another illustration let us reproduce Schönbrodt and Perugini (2013)’s oft-cited table of the
critical points of stability for an absolute precision of 0.1 (meaning that the corridor will be ρ ± .1). We
take advantage of the vectorized input option by providing several ρ values at once. Furthermore, we
increase the number of studies to 100,000 to get accurate estimates. To cache the simulation results we
use simpleCache (Nagraj and Sheffield 2021):

library(simpleCache)
setCacheDir("titz_cache")
simpleCache("sim2", {find_critical_pos(rho = seq(.1, .7, .1), n_studies = 1e5)})
sim2

#> rho_pop pos.80% pos.90% pos.95% sample_size_min sample_size_max lower_limit
#> 1 0.1 253 363 478 20 1000 0.0
#> 2 0.2 237 339 448 20 1000 0.1
#> 3 0.3 212 305 404 20 1000 0.2
#> 4 0.4 181 262 343 20 1000 0.3
#> 5 0.5 143 208 277 20 1000 0.4
#> 6 0.6 103 150 200 20 1000 0.5
#> 7 0.7 65 96 129 20 1000 0.6
#> upper_limit n_studies n_not_breached precision_absolute precision_relative
#> 1 0.2 1e+05 139 0.1 NA
#> 2 0.3 1e+05 102 0.1 NA
#> 3 0.4 1e+05 43 0.1 NA
#> 4 0.5 1e+05 15 0.1 NA
#> 5 0.6 1e+05 5 0.1 NA
#> 6 0.7 1e+05 0 0.1 NA
#> 7 0.8 1e+05 0 0.1 NA

The results are very close to the original publication (Schönbrodt and Perugini 2013). Note that a
warning is shown because in some simulations the point of stability was not found. This is not too

1The multicore support will not be demonstrated here because it is difficult to create reproducible examples
across different operating systems and number of cores.
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surprising as one can easily imagine an extreme outlier study that, for instance, starts at a negative
correlation with n = 20 and does not reach the specified corridor of stability at the maximum sample
size of n = 1, 000. There are different ways to handle these outliers, which will affect the estimate.

4 Handling outliers

When comparing the table from above with the one in Schönbrodt and Perugini (2013), one should
notice that fastpos usually produces larger estimates. To illustrate this more reliably we need to
increase the number of studies, so that random fluctuations are minimized. Here we will run 100
simulations with 1,000,000 studies each.2

simpleCache("sim3", {find_critical_pos(rho = rep(0.1, 100),
sample_size_max = 1e3, n_studies = 1e6)})

A good summary of the data is the mean and the standard error of the distribution. Before
calculating these statistics, we select only the points of stability from the result:

sim3 <- sim3[, c("pos.80%", "pos.90%", "pos.95%")]
colMeans(sim3)

#> pos.80% pos.90% pos.95%
#> 253.2020 363.2100 477.5905

round(apply(sim3, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.603 0.729 1.035

The average estimates are 253, 363 and 478 (with reasonably small standard errors), while in
Schönbrodt and Perugini (2013) they are 252, 362, 470 and in Schönbrodt and Perugini (2018) 252, 360
and 474. Note that in every case fastpos gives a slightly larger estimate, which is not just a random
fluctuation but related to the warning. In corEvol, if the corridor of stability is not reached, the
respective study is ignored when calculating the critical point of stability. This leads to a systematic
underestimation of the critical point of stability.

To illustrate this, we can use the lower level functions create_pop and simulate_pos to create a
distribution of points of stability. In the following, the first line creates a population with a specific
correlation and the second line produces several points of stability by drawing from this population.
In contrast to the main function of the package (find_critical_pos), the function simulate_pos does
not calculate quantiles, but only generates points of stability.

pop <- create_pop(rho = 0.1, size = 1e6)
simpleCache("sim4", {simulate_pos(x_pop = pop[, 1], y_pop = pop[, 2],

n_studies = 1e6, sample_size_min = 20,
sample_size_max = 1e3, replace = TRUE,
lower_limit = 0, upper_limit = 0.2,
progress = FALSE)})

There are two ways to calculate the quantiles of interest:

quantile(sim4, c(.8, .9, .95), na.rm = TRUE)

#> 80% 90% 95%
#> 252 361 473

sim4b <- ifelse(is.na(sim4), 1e3, sim4)
quantile(sim4b, c(.8, .9, .95))

#> 80% 90% 95%
#> 253 363 478

2It is worth noting that (with a single core) this simulation would take several weeks to complete with corEvol
but only takes about 66 minutes with fastpos.
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In the first calculation, the studies that did not reach the corridor of stability are ignored (like in
corEvol), while in the second calculation it is assumed that the point of stability was reached at the
maximum sample size. When repeating this simulation, the values will vary slightly but the second
method will never produce smaller estimates. That the second method is more accurate can be tested
by increasing the maximum sample size (to avoid studies that do not reach the corridor of stability).
Here, we will set the maximum sample size to 5,000:

simpleCache("sim5", {find_critical_pos(rho = rep(0.1, 100),
sample_size_max = 5e3,
n_studies = 1e6)})

sim5 <- sim5[, c("pos.80%", "pos.90%", "pos.95%")]
colMeans(sim5)

#> pos.80% pos.90% pos.95%
#> 253.3100 363.5100 478.4305

round(apply(sim5, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.631 0.870 1.266

If every study reaches the point of stability, the estimates are 253, 364 and 478. When the maximum
sample size is too small (as in the second to last simulation), fastpos is indeed closer to these estimates
than corEvol. While the difference to corEvol might seem practically negligible, corEvol’s estimates
are clearly biased. Furthermore, depending on the parameters, the problem can become more severe.
A very narrow corridor will lead to many studies not reaching the corridor, which corEvol will not
even notice. On the other hand, fastpos will throw a warning, which should be taken seriously.

But even fastpos might underestimate the critical point of stability if the maximum sample size is
too small: All estimates with a maximum sample size of 5,000 are slightly larger than the ones with a
maximum sample size of 1,000. With a larger maximum sample size, there are more opportunities to
leave the corridor again. At some point the probability of this event is very low because the corridor
limits are too far away, but the probability is not 0. Thus, increasing the maximum sample size even
further (here to 10,000) should lead to slightly larger estimates:

simpleCache("sim6", {find_critical_pos(rho = rep(0.1, 100),
sample_size_max = 1e4,
n_studies = 1e6)})

sim6 <- sim6[, c("pos.80%", "pos.90%", "pos.95%")]
colMeans(sim6)

#> pos.80% pos.90% pos.95%
#> 253.4000 363.7000 478.7005

round(apply(sim6, 2, sd), 3)

#> pos.80% pos.90% pos.95%
#> 0.667 0.937 1.234

Indeed, all estimates are slightly larger but after rounding to a whole number only for the con-
fidence of 95% the critical point of stability changes from 478 to 479. Furthermore, the randomness
of the simulations permits such fluctuations since the standard errors are about 1. But note that all
estimates increase when the maximum sample size changes from 1,000 to 5,000 and then to 10,000,
which is a clear hint for a bias. Nonetheless, it appears unlikely that the estimates would increase
much, when the maximum sample size grows further. The remaining problem is that the theoretical
idea of stability assumes an infinite maximum sample size or, at least, that the maximum sample size
is equal to the population size. It is therefore of some technical and practical interest to investigate
the relationship between the maximum sample size and the critical point of stability in a dedicated
simulation study with fastpos. Such a study would not be easy to approach with corEvol because
of the quadratic time complexity. In the next section the speed difference between both packages is
demonstrated empirically in a benchmark.
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5 Benchmark

corEvol was written as a script for a simulation study and cannot be simply called via a function in a
package. Thus, a helper function will be used that sources the script files. To make the benchmark
reproducible, the original repository corEvol was forked and a benchmark branch created. With
git and a shell installed, the following tries to update the repository in the corEvol folder. If this is
unsuccessful (the folder does not exist), the repository is cloned.

git -C corEvol pull || git clone --single-branch --branch benchmark \
https://github.com/johannes-titz/corEvol

Alternatively, you can download the required files from the supplementary material of this article.

For corEvol, two files are sourced for the benchmark. The first file generates the simulations and
the second calculates the critical point of stability. In corEvol a simulation run takes a lot of time and
thus it is not practical to run it too many times. But since the expected speed difference between both
implementations is substantial, this should not be a concern. Here, ten repetitions were done with
the microbenchmark (Mersmann 2021) package. The code was run on a Dell Server r6515 with an
AMD EPYC 7302P CPU. Only one core was used to not confound the result with the specific parallel
implementation.

library(microbenchmark)
corevol <- function() {
setwd("corEvol")
source("01-simdata.R")
source("02-analyse.R")
setwd("../")

}
fastpos <- function() {
find_critical_pos(rho = .1, sample_size_max = 1e3, n_studies = 1e4,

progress = FALSE)
}
simpleCache("bm", {microbenchmark(corevol = corevol(), fastpos = fastpos(),

times = 10, unit = "s")})
summary(bm)

#> expr min lq mean median uq max
#> 1 corevol 350.4551133 352.642384 355.7306834 355.221224 358.2854179 365.8751542
#> 2 fastpos 0.5692708 0.579922 0.6215005 0.596842 0.6066209 0.8496276
#> neval cld
#> 1 10 b
#> 2 10 a

For the chosen parameters, fastpos is about 572 times faster than corEvol, for which there are
two main reasons: (1) fastpos is built around a C++ function via Rcpp and (2) this function does not
calculate every calculation from scratch, but only calculates the difference between the correlation
at sample size n and n − 1 via the sum formula of the Pearson correlation (see Equation (2)). There
are some other factors that might play a role, but they cannot account for the large difference found.
For instance, setting up a population takes quite long in corEvol (about 17s), but compared to the 6
minutes required overall, this is only a small fraction. There are other parts of the corEvol code that
are fated to be slow, but again, a speedup by a factor of 572 cannot be achieved by improving these
parts. The presented benchmark is not comprehensive, but still demonstrates that fastpos can be used
with no significant waiting time for a typical scenario, while for corEvol this is not the case.

Another benchmark on a local i5-3320 2.6 GHz CPU from 2012 resulted in means of 1.5s for fastpos
and 603s for corEvol giving a speedup of around 400. Thus, even on older CPUs and single-cored
fastpos delivers almost instantly for default parameters.

6 Other effect sizes

The focus of fastpos is on the Pearson correlation as the effect size. In principle the stability approach
can be extended to all sorts of effect sizes or even other statistical parameters. Since the original
authors studied the Pearson correlation, it made sense to improve the algorithm for this specific use
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case. But mathematical shortcuts as in Equation (2) should also exist for other effect sizes and might
be implemented in the future.

A simple alternative for applying the method to other effect sizes is to convert these effects to the
Pearson correlation. Such conversions are very common in meta-analyses, where a consistent effect
size must be used across all studies to calculate a meaningful average effect. Standard approximate
conversion formulas can be found in text books on research methods (Borenstein et al. 2021; Sedlmeier
and Renkewitz 2018). Several packages in R also provide these conversions. For instance, effectsize
(Ben-Shachar, Lüdecke, and Makowski 2020) includes the functions d_to_r and r_to_d. d_to_r is
based on the approximation r = d

d2+4 , which should only be used for equal group sizes. As an
example, consider d = 0.5 between two equally sized groups and a corridor with limits of 0.4 and 0.6.

r <- effectsize::d_to_r(0.5)
lower_limit <- effectsize::d_to_r(0.4)
upper_limit <- effectsize::d_to_r(0.6)
simpleCache("sim7", {find_critical_pos(rho = r, sample_size_max = 11e3,

n_studies = 1e5,
lower_limit = lower_limit,
upper_limit = upper_limit)})

sim7

#> rho_pop pos.80% pos.90% pos.95% sample_size_min sample_size_max lower_limit
#> 1 0.2425356 1119 1606 2108 20 11000 0.1961161
#> upper_limit n_studies n_not_breached precision_absolute precision_relative
#> 1 0.2873479 1e+05 0 NA NA

The corresponding Pearson correlation for d = 0.5 ± 0.1 is about 0.24, with very narrow and
slightly asymmetric limits (0.20 to 0.29). The critical point of stability is 2108 for a confidence level of
95%.

7 Summary

In this article, fastpos, a package for estimating the critical point of stability was introduced. The
package is much faster than the original implementation and can be conveniently used for sample
size planning as well as Monte Carlo simulation studies. While the original implementation ignores
studies that do not reach the corridor of stability, fastpos takes them into account and gives a more
conservative and more accurate estimate (i.e. a larger critical point of stability). From a practitioner’s
perspective, this detail might be negligible for typical parameters and relatively wide corridors. But
from a statistical perspective, this detail is of relevance and further simulation studies are required to
better understand the stability approach in general. Finally, a comparison to other methods of sample
size planning would be of much interest and could influence how empirical scientists plan for sample
size in the future. fastpos can be a useful tool to achieve these goals.
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WLinfer: Statistical Inference for
Weighted Lindley Distribution
by Yu-Hyeong Jang, SungBum Kim, Hyun-Ju Jung, and Hyoung-Moon Kim

Abstract New distributions are still being suggested for better fitting of a distribution to data, as
it is one of the most fundamental problems in terms of the parametric approach. One of such is
weighted Lindley (WL) distribution (Ghitany et al., 2011). Even though WL distribution has become
increasingly popular as a possible alternative to traditional distributions such as gamma and log
normal distributions, fitting it to data has rarely been addressed in existing R packages. This is
the reason we present the WLinfer package that implements overall statistical inference for WL
distribution. In particular, WLinfer enables one to conduct the goodness of fit test, point estimation,
bias correction, interval estimation, and the likelihood ratio test simply with the ‘WL’ function which is
at the core of this package. To assist users who are unfamiliar with WL distribution, we present a brief
review followed by an illustrative example with R codes.

1 Introduction

Weighted Lindley (WL) distribution has recently received considerable attention since it provides
a more flexible fit to data from various fields than traditional widely-used distributions such as
exponential, log normal, and gamma distributions (Ghitany et al., 2011; Mazucheli et al., 2013). The
probability density function (pdf) of WL distribution is given by

f (x) =
λϕ+1

(λ + ϕ)Γ(ϕ)
xϕ−1(1 + x) exp(−λx), x > 0, λ > 0, ϕ > 0,

which can be interpreted as a mixture of two gamma distributions

f (x) =
λ

λ + ϕ
f1(x) +

ϕ

λ + ϕ
f2(x), x > 0, λ > 0, ϕ > 0,

where

fi(x) =
λϕ+i−1

Γ(ϕ + i − 1)
xϕ+i−2 exp(−λx), x > 0, λ > 0, ϕ > 0, i = 1, 2.

Due to its nature as a gamma mixture, however, statistical inference for WL distribution, such as pa-
rameter estimation, bias correction, interval estimation, and statistical test, is overall more cumbersome
and tedious than those of the aforementioned distributions.

Despite this difficulty, there is no existing R package that implements this comprehensive process
for WL distribution. To the best of our knowledge, mle.tools (Mazucheli et al., 2017) is the only R
package that enables one to obtain maximum likelihood (ML) estimates for WL distribution with
asymptotic variance and bias correction. However, they are just limited to ML estimates. An R package
fitdistrplus (Delignette-Muller and Dutang, 2015) which fits certain univariate distributions to data
sets is not applicable to WL distribution, while LindleyR package (Mazucheli et al., 2016) is exclusively
for the use of pdf, cumulative distribution function (cdf), quantile, and random number generation,
not statistical inference itself.

Based on this motivation, we present an R package WLinfer by providing various estimation
methods in addition to maximum likelihood estimator (MLE), such as method of moment estimator
(MME), modified method of moment estimator (MMEm), and closed form MLE-like estimator (MLEc).
For bias correction, WLinfer encompasses Firth’s method and the bootstrap method which were
not considered in mle.tools, as well as Cox and Snell’s method. Furthermore, WLinfer provides the
goodness of fit and likelihood ratio tests.

The remainder of this paper is organized as follows. First, we briefly review the theoretical
results for each inferential step ranging from the goodness of fit test to the likelihood ratio test, while
introducing relevant arguments of the ‘WL’ function. We then provide an example to illustrate the
whole output of ‘WL’ function and how to use ‘WL’ function which implements the whole statistical
inference at once. Finally, we conclude with summarizing remarks.

The WLinfer package is available from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=WLinfer. R code for the examples demonstrated herein has been
provided as supplementary material. The supplementary code has been tested with WLinfer version
1.0.0, and results presented herein have been produced with this version.
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2 Goodness of fit test

The first step in fitting a distribution to data is to check whether the data can be assumed as generated
from the distribution. For this purpose, many goodness of fit tests have been developed. Among them,
WLinfer includes three popular tests: the Kolmogorov-Smirnov test, the Anderson-Darling test, and
the Cramér-von Mises test. Uncertainty that could occur from using estimates instead of true values
are not considered here. The argument dist_test of ‘WL’ function is specified by one of either "ks",
"cvm", "ad", or "all". The default is dist_test="ks" while dist_test=all" returns the results of all
three tests.

3 Point estimation

WLinfer package considers four estimators: MLE, MLEc, MME and MMEm. To the best of our
knowledge, these are the only estimators of which asymptotic distribution has been analytically
proven. In this study, we only review the estimation formulas. Please refer to Kim and Jang (2020);
Ghitany et al. (2017); Mazucheli et al. (2013) for more specific theoretical results.

• MLE of WL distribution is obtained by

λ̂MLE =
−ϕ̂MLE(X − 1) +

√[
ϕ̂MLE(X − 1)

]2
+ 4ϕ̂MLE

(
ϕ̂MLE + 1

)
X

2X

where ϕ̂MLE is the solution of the nonlinear equation

ψ
(
ϕ̂MLE

)
+

1
λ̂MLE + ϕ̂MLE

− log
(

λ̂MLE

)
− 1

n

n

∑
i=1

log (xi) = 0,

with ψ(x) =
d log (Γ(x))

dx
.

• MLEc

λ̂MLEc =
d +

√
d2 + 4(1+a1)·a0(a0−1)

(∑ Xi/n)−a1

2(a1 + 1)
, ϕ̂MLEc = a1λ̂ − a0,

where d = a0 +
(1+a1)(1−a0)−1

∑ Xi/n−a1
, a1 =

n
∑
i

Xi log(Xi)

n
∑
i

log(Xi)
and a0 =

n
∑
i

Xi log(Xi)
1+Xi

+ n

n
∑
i

log(Xi)
.

• MME

λ̂MME =
− ϕ̂MME(X − 1) +

√[
ϕ̂MME(X − 1)

]2
+ 4Xϕ̂MME

(
ϕ̂MME + 1

)
2X

,

ϕ̂MME =
− g

(
X, S2)+√[g (X, S2

)]2
+ 16S2

[
S2 + (X + 1)2

]
X3

2S2
[
S2 + (X + 1)2

] ,

where g
(
X, S2) = S4 − X

(
X3

+ 2X2
+ X − 4S2

)
, S2 = 1

n ∑n
i=1
(
Xi − X

)2 .

• MMEm

λ̂MMEm =
X∗(1 − X∗)

X · X∗ − (1 − X∗)
,

ϕ̂MMEm =
(1 − X∗)2

X · X∗ − (1 − X∗)
, where X∗ =

1
1 + X

.

Each estimation method can be implemented by choosing ‘est_method’ of ‘WL’ function, among "MLE",
"MLEc", "MME", and "MMEm". The default refers to ‘est_method = "MLEc"’. If point estimation is solely
of interest, one can separately obtain point estimates with the following codes:

data(fail_fiber) # fail_fiber is included in WLinfer package.

MLEc_WL(fail_fiber) # Closed form MLE-like estimator
MME_WL(fail_fiber) # Method of moment estimator
MMEm_WL(fail_fiber) # Modified method of moment estimator
MLE_WL(fail_fiber,init =1) # Initial value for phi is required.
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We use fail_fiber data set (Bader and Priest, 1982) which is included in the WLinfer package. This
data set consists of 65 observations of the strength measurement of carbon fiber.

4 Bias correction

Unless sample size is sufficient for achieving consistency, bias correction is highly recommended since
all the aforementioned estimators are upwardly biased in the case of small samples (Kim and Jang,
2020; Mazucheli et al., 2013; Wang and Wang, 2017). To this end, the WLinfer package provides three
bias correction methods: Cox and Snell’s method (Cox and Snell, 1968; Cordeiro and Klein, 1994) for
MLE and MLEc, Firth’s method (Firth, 1993) for MLE, and the bootstrap method (Efron, 1979; Efron
and Tibshirani, 1986) for MLEc. After a series of tedious calculations, correction formulas are given as
follows:

• Cox and Snell’s method

θ̂CMLE = θ̂MLE −
(

δ(λ̂)
δ(ϕ̂)

)
,

θ̂CMLEc = θ̂MLEc −
(

δ(λ̂)
δ(ϕ̂)

)
,

where δ(λ̂) =
1
n
·

N1

∣∣
θ=θ̂MLEcs

D
∣∣

θ=θ̂MLEcs

and δ(ϕ̂) =
1
n
·

N2

∣∣
θ=θ̂MLEcs

D
∣∣

θ=θ̂MLEcs

with

D =

[(
ψ′(ϕ)− 1

(λ + ϕ)2

)(
ϕ + 1

λ2 − 1
(λ + ϕ)2

)
−
(

1
(λ + ϕ)2 +

1
λ

)2
]2

,

N1 =

(
1

(λ + ϕ)2 − ψ′(ϕ)

) [(
1

(λ + ϕ)2 − ψ′(ϕ)

)(
ϕ + 1

λ3 − 1
(λ + ϕ)3

)
+

(
1
λ
+

1
(λ + ϕ)2

)(
1

2λ2 +
1

(λ + ϕ)3

)]
+ 2

(
1
λ
+

1
(λ + ϕ)2

) [(
1

(λ + ϕ)2 − ψ′(ϕ)

)(
1

2λ2 +
1

(λ + ϕ)3

)
−
(

1
λ
+

1
(λ + ϕ)2

)
1

(λ + ϕ)3

]
+

(
1

(λ + ϕ)2 − ϕ + 1
λ2

) [(
ψ′(ϕ)− 1

(λ + ϕ)2

)
1

(λ + ϕ)3 +

(
1
λ
+

1
(λ + ϕ)2

)(
1

(λ + ϕ)3 +
ψ′′(ϕ)

2

)]
,

N2 =

(
1

(λ + ϕ)2 − ψ′(ϕ)

) [(
ϕ + 1

λ2 − 1
(λ + ϕ)2

)(
1

2λ2 +
1

(λ + ϕ)3

)
+

(
1
λ
+

1
(λ + ϕ)2

)(
1

(λ + ϕ)3 − ϕ + 1
λ3

)]
− 2

(
1
λ
+

1
(λ + ϕ)2

) [(
1
λ
+

1
(λ + ϕ)2

)(
1

2λ2 +
1

(λ + ϕ)3

)
+

(
ϕ + 1

λ2 − 1
(λ + ϕ)2

)
1

(λ + ϕ)3

]
+

(
ϕ + 1

λ2 − 1
(λ + ϕ)2

) [(
1

(λ + ϕ)2 − ϕ + 1
λ2

)(
1

(λ + ϕ)3 +
ψ′′(ϕ)

2

)
−
(

1
λ
+

1
(λ + ϕ)2

)
1

(λ + ϕ)3

]
.

• Firth’s method
The estimator corrected by Firth’s method is obtained by solving modified likelihood equations
given by (

∂l/∂λ
∂l/∂ϕ

)
− A vec

(
K−1

)
= 0,

where

A = n

[ ϕ+1
λ3 − 1

(λ+ϕ)3 − 1
2λ2 − 1

(λ+ϕ)3 − 1
2λ2 − 1

(λ+ϕ)3 − 1
(λ+ϕ)3

− 1
2λ2 − 1

(λ+ϕ)3 − 1
(λ+ϕ)3 − 1

(λ+ϕ)3 − 1
(λ+ϕ)3 − 1

2 ψ′′(ϕ)

]
,

K = n

[ ϕ+1
λ2 − 1

(λ+ϕ)2 − 1
λ − 1

(λ+ϕ)2

− 1
λ − 1

(λ+ϕ)2 − 1
(λ+ϕ)2 + ψ′(ϕ)

]
.

• Bootstrap method

θ̂BOOT = θ̂− B̂ias = 2θ̂− 1
B

B

∑
b

θ̂
∗b

,

where θ̂
∗b

s are bootstrap replications.

For bias correction, the ’bias_cor’ argument should be specified since the default is bias_cor=NULL.
Note, unlike Cox and Snell’s method that works with both MLE and MLEc, Firth’s method and the
bootstrap method are only applicable to MLE and MLEc, respectively. If other estimators are chosen
with these correction methods, a default setting would be automatically adopted. The number of
bootstrap iterations can be specified with boot_iter, while the default is 1000.

WL(fail_fiber, est_method = "MLE",bias_cor = "firth") # Firth's method
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WL(fail_fiber, est_method = "MLEc",bias_cor = "coxsnell") # Cox and Snell's method

WL(fail_fiber, est_method = "MLEc",bias_cor = "boots") # The bootstrap method

5 Interval estimation

Asymptotic confidence intervals

MLE, MLEc, MME, and MMEm for the parameters of WL distribution achieve consistency and asymp-
totic normality. Thus, if the sample size is large enough, confidence intervals can be straightforwardly
obtained with estimated asymptotic variances.

λ̂ ± zα/2 ·
σ̂1√

n
and ϕ̂ ± zα/2 ·

σ̂2√
n

One problem is that the lower bound of estimated intervals can be negative. A confidence interval
with negative lower bound may not be useful since the parameters for WL distribution must be
positive. Therefore, in case of negative lower bounds, confidence intervals for log(θ) are first obtained
by the delta method and then scaled back. That is,

λ̂ · exp

(
±zα/2 ·

σ̂1√
n · λ̂

)
and ϕ̂ · exp

(
±zα/2 ·

σ̂2√
n · ϕ̂

)
.

Bootstrap confidence intervals

When asymptotic distribution is not available or the sample size is insufficient, the bootstrap confidence
interval can be a good alternative. The basic bootstrap confidence interval is simply given by(

2λ̂ − λ̂∗
(1−α/2) , 2λ̂ − λ̂∗

(α/2)

)
and

(
2ϕ̂ − ϕ̂∗

(1−α/2) , 2ϕ̂ − ϕ̂∗
(α/2)

)
,

where θ̂∗(p) denotes (100 · p)% percentile of bootstrap realizations. Readers are referred to Chapter 5
of ? for more details. As in the asymptotic case, if the lower confidence limit is negative, confidence
interval for log(θ) is first computed and scaled back.

The default arguments of ‘WL’ function for interval estimation are CI_method="asymp", CI_scale="normal",
CI_side="two", and CI_alpha=0.05. If any bias correction method is used, CI_method="boot" is auto-
matically chosen. CI_scale="exp" is recommended in the case of a negative lower confidence limit
and one-sided intervals can be obtained by choosing CI_side="one".

WL(fail_fiber,est_method="MLEc")$CI_list #asymptotic CI for MLEc
WL(fail_fiber,est_method="MLE")$CI_list #asymptotic CI for MLE

# Bootstrap CI for MLEc corrected by Cox and Snell's method
WL(fail_fiber,est_method = "MLEc", bias_cor = "coxsnell")$CI_list

6 Likelihood ratio test (LRT)

Let X1, · · · , Xn be a random sample from f (x | θ), θ ∈ Θ, where θ = (λ, ϕ)t, Θ ⊂ R+ × R+ and
f (x | θ) is the pdf of WL distribution. To test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θc

0, we reject H0 if

2 log(Rn) = 2 log

(
supΘ ln(θ | x)
supΘ0

ln(θ | x)

)
> χ2

α(2), where ln(θ | x) = ∏
i

f (xi | θ).

The LRT is automatically implemented in the ‘WL’ function unless wilks_test="FALSE" is selected. The
significance level and types of null hypotheses are set by wilks_alpha and wilks_side. The default
setting is wilks_alpha=0.05 and wilks_side="two".

The LRT can be separately conducted with the wilks.test function apart from other inferences.
This function is especially useful when testing several possible values or regions. By specifying
arguments estimator and side, both simple and composite null hypotheses can be tested.

• H0: (λ, ϕ) = (λ0, ϕ0) vs H1: not H0.
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wilks.test(fail_fiber,estimator = MME_WL(fail_fiber),side = "two")

• H0: λ ≥ λ0 and ϕ ≥ ϕ0 vs H1: not H0.

wilks.test(fail_fiber,estimator=c(1,1),side="less")

7 Illustration - ‘WL’ function

In this section, we provide an example for illustrating how to conduct the aforementioned steps of
statistical inference from the beginning using the ‘WL’ function. The ‘WL’ function returns an S3 object
of class ‘WL’ which is assigned to fiber in this example. For this object of class ’WL’, summary and
plot functions are provided.

> data("fail_fiber")
> fiber = WL(fail_fiber,dist_test = "ks", est_method ="MLEc",

wilks_alpha=0.05, wilks_side="two")
> summary(fiber)

Data: fail_fiber

Data summary:
Mean: 2.244, Variance: 0.1728
Min 1st Qu Median 3rd Qu Max
1.339 1.931 2.272 2.558 3.174

Kolmogorov-Smirnov test for alpha=0.05
D = 0.0723, p-value: 0.8864
>> This data follows the weighted Lindley distribution with estimated parameters.

Estimation method (bias correction): MLEc(None)
lambda: 12.9318, phi: 28.3329

Variance of lambda & phi:
Var(lambda)= 5.1126, Var(phi)= 25.2938

Two-sided confidence interval for 95%
(Asymptotic method & Normal scaled )
CI for lambda: (8.5001, 17.3635)
CI for phi: (18.4757, 38.1902)

Two-sided Wilks' theorem test for estimated parameters
X = 0.0024, p-value: 0.9988
>>The null hypothesis cannot be rejected.

The simple descriptive statistic is provided by ‘summary(fiber)’, followed by the result of the goodness
of fit test. This data set can be assumed to originate from WL distribution since the null hypothesis
of the KS test is not rejected. We chose MLEc without bias correction since the sample size of 65 is
moderate, which allows us to use asymptotic variance to construct the confidence interval. Variance
of lambda & phi in the output means estimated asymptotic variances obtained by replacing (λ, ϕ)

with
(

λ̂, ϕ̂
)

in the variance formulas. Finally, the result of LRT with H0 : λ = λ̂MLEc and ϕ = ϕ̂MLEc

is given.

To obtain some helpful plots, we use plot function. Four plots are returned by plot(fiber) as
per Figure 1: the histogram with estimated density function, the boxplot for detecting outliers, QQ
plot, and contour plot with point estimates. The first three plots provide insight on how much WL
distribution is suitable for the given data, along with the goodness of fit tests. The last contour plot
provides the surface of log likelihood near point estimates. Note that the density function in the
histogram and the quantiles for the QQ plot are calculated based on estimated parameters.

8 Summary

We presented an R package WLinfer that implements a goodness of fit test, several types of point
estimation, bias correction, interval estimation, and the likelihood ratio test, and provide some useful
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Figure 1: Histogram with estimated density function, boxplot for detecting outliers, weighted Lindley
QQ plot, and contour plot of log-likelihood function with point estimates for a real data fail_fiber.

plots. We supply a set of simple codes and an illustrative example of how to apply this package in
practice. This package could practically assist practitioners, removing the need to make codes from
scratch.
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ICAOD: An R Package for Finding
Optimal designs for Nonlinear
Statistical Models by Imperialist
Competitive Algorithm
by Ehsan Masoudi, Heinz Holling, Weng Kee Wong and Seongho Kim

Abstract Optimal design ideas are increasingly used in different disciplines to rein in experimental
costs. Given a nonlinear statistical model and a design criterion, optimal designs determine the
number of experimental points to observe the responses, the design points and the number of
replications at each design point. Currently, there are very few free and effective computing tools
for finding different types of optimal designs for a general nonlinear model, especially when the
criterion is not differentiable. We introduce an R package ICAOD to find various types of optimal
designs and they include locally, minimax and Bayesian optimal designs for different nonlinear
statistical models. Our main computational tool is a novel metaheuristic algorithm called imperialist
competitive algorithm (ICA) and inspired by socio-political behavior of humans and colonialism. We
demonstrate its capability and effectiveness using several applications. The package also includes
several theory-based tools to assess optimality of a generated design when the criterion is a convex
function of the design.

1 Introduction

Optimal designs have been extensively applied in many research studies to reduce the cost of
experimentation. For instance, Holling and Schwabe (2013) provided examples in psychology and
Dette et al. (2010) gave examples in dose-response studies. Further applications of optimal designs
in engineering and epidemiology are described in Berger and Wong (2009), which also contains
applications of optimal design ideas in other disciplines. Given a statistical model and an optimality
criterion, optimal designs determine the optimal number of design points required, their locations
to observe the responses and the number of replications required at each location. The optimality
criterion should accurately reflect the objective of the study to the extent possible and is usually
formulated as a scalar function of the Fisher information matrix (FIM) that measures the worth of
the design (Lehmann and Casella, 1998). For example, if the objective of a study is to estimate
the model parameters as accurately as possible, D-optimality is often used. Such an optimal design
maximizes the determinant of the FIM and is called D-optimal. When errors are independent and
normally distributed, D-optimal designs minimize the volume of the confidence ellipsoid of the model
parameters by minimizing the generalized variance, i.e., the determinant of the variance-covariance
matrix (Abdelbasit and Plackett, 1983).

For nonlinear models, the FIM depends on the unknown model parameters to be estimated
and so the design criterion cannot be directly optimized. There are different approaches to deal
with this parameter dependency: a) locally optimal designs: These are found by replacing the
unknown parameters with some estimates obtained from a pilot or previous study (Chernoff, 1953).
Locally optimal designs usually become inefficient when the replaced estimates are far from their
true unknown values. b) minimax optimal designs: They minimize the maximum inefficiency over
a user-selected parameter space (Sitter, 1992). The optimal designs are conservative in that they
protect the experiment from the worst case scenario that may happen from a poor choice of parameter
values over a user-specified space of plausible values for the unknown parameters. Finding minimax
optimal designs is complicated because it involves solving multi-level nested optimization problems
and the objective function (minimax criterion) is not differentiable. c) Bayesian optimal designs:
These optimal designs are found by optimizing an optimality criterion averaged over a user-specified
(continuous) prior distribution for the unknown parameters (Chaloner and Larntz, 1989; Chaloner
and Verdinelli, 1995; Atkinson, 1996). Strictly speaking, the latter are not fully Bayesian because
they do not involve computing a posterior distribution. Instead, they borrow the concept of having
prior distributions to find robust designs for the frequentists (Graßhoff et al., 2012; Bürkner et al.,
2019). Accordingly, they are sometimes referred to as “pseudo” Bayesian designs (Firth and Hinde,
1997). In the optimal design literature, Bayesian optimal designs found under a discrete prior
distribution are usually referred to as robust or optimum-on-average designs (Fedorov and Hackl,
2012). For an overview of optimal designs for nonlinear models, see Fedorov and Leonov (2013).

There are several software packages to create and analyze design of experiment (DoE) for different
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purposes. For a review on statistical R packages in design of experiments, see https://cran.r-
project.org/web/views/ExperimentalDesign.html. Only a few of them are able to find different
types of optimal designs to deal with the parameter dependency for various nonlinear models. To the
best of our knowledge, none of the available software packages, commercial or otherwise, provides
an option to find minimax optimal designs for nonlinear models. For example, the R package LDOD
(Masoudi et al., 2013) finds locally D−optimal approximate designs for a large class of nonlinear
models and the acebayes R package (Overstall et al., 2017) determines a more general class of fully
Bayesian exact designs using the approximate coordinate exchange algorithm (Overstall and Woods,
2017). Likewise, the recently available VNM R package finds multiple-objective locally optimal
designs for a specific model, i.e., the four-parameter Hill model commonly used in dose-response
studies (Hyun et al., 2018). Among the commercial software, JMP® (SAS Institute Inc., 2016) can
also find Bayesian D−optimal exact designs for nonlinear models.

This paper introduces the R package ICAOD (Masoudi et al., 2020) for finding a variety of optimal
designs for nonlinear models using a novel metaheuristic algorithm called imperialist competitive
algorithm(ICA). This algorithm is inspired by socio-political behavior of humans (Atashpaz-Gargari
and Lucas, 2007; Hosseini and Al Khaled, 2014) and is modified by Masoudi et al. (2017) and
Masoudi et al. (2019) to find optimal designs for nonlinear models. We believe that this ICAOD
package is the first single self-contained statistical package that presents a framework to find locally,
minimax and Bayesian optimal designs for nonlinear models. Similar to many popular nature-
inspired metaheuristic algorithms, such as particle swarm optimization (PSO) algorithm (Kennedy
and Eberhart, 1995), ICA does not have a rigorous proof of convergence (Yang, 2011). When the
criterion is a convex function on the set of design measures, equivalence theorems are available and
the ICAOD package includes tools to confirm optimality of a design. More generally, the proximity
of any design to the optimum without knowing the latter can be evaluated in terms of an efficiency
lower bound. In particular, if this bound is unity, this confirms optimality of the design. This feature
is useful to recognize a case of pre-mature convergence in optimal design problems.

The next section reviews the statistical setup and theory for finding optimal designs for nonlinear
models. The fourth section describes the imperialist competitive algorithm (ICA) and the fifth
section provides implementation details for the ICAOD package. In the sixth section, we provide
two examples to show the functionality of the ICAOD package. The seventh section finds locally and
minimax D−optimal designs for a logistic model with application in educational testing and The
eighth section presents optimum-on-average and Bayesian D−optimal designs for a sigmoid Emax
model for dose-response studies. The ICAOD package was first written to find locally D−optimal
designs, but it now also finds user-defined optimal designs. The ninth section illustrates how to use
this feature to find c−optimal designs for a two-parameter logistic model in dose response studies.
The last section concludes with a summary.

2 Background and optimal designs

Let E(Y ) = f(x, θ) be the mean of the response Y at the values of the independent variables x
defined on a user-selected design space χ, and let f be a known function, apart from the model
parameters θ = (θ1, ..., θp)

T . Throughout we assume that there are resources to take N observations
for the study and given an optimality criterion, we want to find the best choices for the levels of
the independent variables to observe the outcome Y . There are two types of designs: exact and
approximate.An exact design ξN on χ is defined by a set of k distinct levels xi,

ξN =

{
x1 x2 ... xk

n1/N n2/N ... nk/N

}
, (1)

where xj ∈ χ, nj is the number of replications of xj in the observations sample and N =
∑k

j=1 nj .
Here, xj , j = 1..., k are referred to as support points or design points of ξN . Given N and a
specific design criterion, an optimal exact design finds the best value of k and the best values of
x1, . . . ,xk,n1, . . . ,nk. Such optimization problems are notoriously difficult and in practice, we find
optimal approximate designs instead. They are probability measure on χ are found independent of
the sample size N . An approximate design ξ with k support points has the form

ξ =

{
x1 x2 ... xk

w1 w2 ... wk

}
, (2)

where wj > 0 is the proportion of observations that is assigned to xj and
∑k

j=1 wj = 1. It is
implemented by first rounding each value of Nwi to the nearest integer Nw∗

i subject to Nw∗
1 + . . .+

Nw∗
k = N and taking Nwi∗ observations at xi, i = 1, . . . , k. Some optimal rounding procedures are
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available in Pukelsheim and Rieder (1992). When the design criterion is formulated as a convex
function of the FIM, there are algorithms for finding many types of optimal approximate designs
and theory to confirm optimality of an approximate design. When the design is not optimal, a
theory-based efficiency lower bound of the design is available to determine its proximity to the
optimum, without knowing the optimum. For these reasons, we focus on optimal approximate
designs found under a convex functional in the rest of the paper.

To find an approximate design that minimizes a convex design criterion ψ over the space of all
designs on χ. We have to determine the optimal number of support points, k, the optimal support
points x1, . . . , xk and their corresponding w1, . . . ,wk. For example, if estimating model parameters
is of interest, D−optimality, defined by the logarithm of the determinant of the inverse of the FIM, is
a convex functional over the space of all designs on χ (Fedorov and Leonov, 2013; Silvey, 1980) and
the design that minimuzes it is called D−optimal. In what follows, we focus on the D−optimality
criterion and briefly discuss other optimality criteria and optimal designs which can be studied
similarly.

Assuming all observation errors are independent and normally distributed with means 0 and a
constant variance (Y ), the FIM of a generic k-point approximate design ξ is given by

M(ξ, θ) =

k∑
i=1

wiI(xi, θ), (3)

where
I(xi, θ) =

1
(Yi)

∇f(xi, θ)∇f(xi, θ)T ,

and ∇f(xi, θ)T =
(

∂f (xi,θ)
∂θ1

, · · · , ∂f (xi,θ)
∂θp

)
. Here, ∂f (xi,θ)

∂θj
denotes the partial derivative of f with

respect to θj . The FIM is singular if k < p. To avoid singular designs, i.e., designs with singular
Fisher information matrices, we assume k ≥ p.

Clearly, the FIM (3) depends on the unknown parameters for nonlinear models. Different
approaches have been proposed to deal with this parameter dependency based on the type of
information available for the unknown parameters. For example, let θ0 be an initial guess for θ
available from a similar study. A locally D−optimal design ξ∗

loc minimizes

ψloc(ξ) = − log |M(ξ, θ0)|, (4)

where | · | denotes the determinant. In practice, it is more realistic to assume that the unknown
parameters belong to a user-specified parameter space Θ, which is comprised of all possible values
for θ. Given Θ, we can find minimax optimal designs that minimize the maximum inefficiency over
Θ and protect the experiment from the worst-case scenario over the parameter space. A minimax
D−optimal design ξ∗

min is obtained by minimizing

ψmin(ξ) = max
θ∈Θ

− log |M(ξ, θ)|, (5)

over the space of all designs on χ. The minimax problem (5) is a bi-level nested optimization problem
with inner and outer optimization problems. Given any arbitrary design, the inner optimization
problem is to maximize the D−criterion − log |M(ξ, θ)| over Θ to find the maximum inefficiency
and the outer optimization problem is to minimize the maximum of the inner problem over the
space of all designs on χ. Alternatively, when a prior distribution πΘ(θ) is available for the unknown
parameters on Θ, Bayesian optimal designs may also be found: a (pseudo) Bayesian D−optimal
design ξ∗

bayes minimizes

ψbayes(ξ) =

∫
θ∈Θ

− log |M(ξ, θ)|πΘ(θ)dθ. (6)

When πΘ(θ) is a discrete prior, the obtained designs are sometimes referred to as optimum-on-average
or robust designs.

One advantage of working with approximate designs is existence of an equivalence theorem,
which can be used to verify the optimality of a given design if the criterion is a convex function on
the set of design measures. Each convex optimality criterion gives rise to a different equivalence
theorem, but they generally have the same form. For example, a design ξ∗

loc is locally D−optimal if
and only if the following inequality holds for all x ∈ χ,

cloc(x, ξ∗
loc) = trM−1(ξ∗

loc, θ0)I(x, θ0) − p ≤ 0, (7)

with equality in (7) at all support points of ξ∗
loc. The left hand-side of inequality (7) is sometimes
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called sensitivity function. The equivalence theorem for Bayesian D−optimality criterion is very
similar (Kiefer and Wolfowitz, 1959; Chaloner and Larntz, 1989): a design ξ∗

bayes is a Bayesian
D−optimal design if and only if the following inequality holds for all x ∈ χ,

cbayes(x, ξ∗
bayes) =

∫
Θ

tr{M−1(ξ∗
bayes, θ)I(x, θ)}π(θ)dθ− p ≤ 0, (8)

with equality in (8) at all support points of ξ∗
bayes. However, the equivalence theorem for a minimax

type criterion takes on a more complicated form because (5) is not differentiable. The equivalence
theorem states that a design ξ∗

min is minimax D−optimal among all the designs on χ if and only if
there exists a probability measure µ∗ on

A(ξ∗
min) =

{
ν ∈ Θ | − log |M(ξ∗

min, ν)| = max
θ∈Θ

− log |M(ξ∗
min, θ)|

}
, (9)

such that the following inequality holds for all x ∈ χ,

cmin(x, ξ∗
min) =

∫
A(ξ∗

min
)

trM−1(ξ∗
min, ν)I(x, ν)µ∗d(ν) − p ≤ 0, (10)

with equality in (10) at all support points of ξ∗
min (Wong, 1992; Fedorov, 1980; King and Wong, 2000;

Berger et al., 2000). The set A(ξ∗
min) is sometimes called the answering set of ξ∗ and the measure

µ∗ is a sub-gradient of the non-differentiable criterion evaluated at M(ξ∗
min, ν). Understanding the

properties of the sub-gradients and how to find them efficiently for the minimax optimal design
problems present a key problem in solving this type of problems. In particular, there is no theoretical
rule on how to choose the number of points in A(ξ∗

min) as support for the measure µ∗ and they
would have to be found by trial-and-error. For more details, see Masoudi et al. (2017). When χ is
one or two dimensional, it is very common to plot the sensitivity function versus x ∈ χ and visually
inspect whether the graph meets the conditions in the equivalence theorem. If it does, the generated
design is optimal; otherwise it is not optimal.

We measure the efficiency of one design ξ1 relative to another design ξ2 using their criterion
values. For example, for D−optimality (4), we use

effloc =

(
|M(ξ1, θ)|
|M(ξ2, θ)|

)1/p

= exp
(
ψloc(ξ2) −ψloc(ξ1)

p

)
. (11)

The relative D−efficiency (11) may be interpreted in term of sample size; if its value is ρ, then ξ1
requires 1/ρ times as many observations to have the same D−efficiency as ξ2. This means that, when
ξ2 is an optimal design, about (1/ρ− 1)100% more number of observations are required for design
ξ1 to do as well as the optimal design. Similarly, we define Bayesian and minimax D−efficiencies by
replacing ψloc with ψmin and ψbayes, respectively. Standardly, (11) becomes the D−efficiency of
ξ1 when ξ2 is the D−optimal design.

When the design criterion is a convex functional, we can use the equivalence theorem to quantify
the proximity of a design ξ to the optimal design without knowing the latter by means of the
efficiency lower bound (ELB). For example, for D−optimality, we have

ELB =
p

p+ maxx∈χ c(x, ξ) , (12)

where c(x, ξ) is the sensitivity function associated with D−optimality. The value of the ratio in
(12) is between 0 and 1, and it is equal to 1 if and only if the design is optimal. The efficiency
bounds are not unique and can be varously derived using somewhat similar arguments, for example,
see Atwood (1969) and Pázman (1986).

3 Imperialist competitive algorithm for finding optimal designs

The imperialist competitive algorithm (ICA) is an evolutionary algorithm inspired from colonialism
and socio-political behavior of humans, where developed countries attempt to take over or colonize
less-developed countries to use their resources and extend their power (Atashpaz-Gargari and Lucas,
2007). Within the optimization framework, ICA has a population of solutions called countries. In
optimal design problems, each country is the location of the support points and the corresponding
weights of a design on the space of all possible designs. ICA divides the population of countries
into some sub-populations called empires. Each empire contains one imperialist and some colonies.
The imperialist is the most powerful country within the empire. Here, the power of a country is
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defined to be a function of its cost value, i.e., criterion value. This means that, in a minimization
problem, countries with smaller cost values are stronger. In ICA, there are two types of evolutionary
moves: a) evolution within each empire, and, b) evolution among the empires. In the earlier, the
colonies within each empire start to move or be absorbed toward their relevant imperialist country
in a process called assimilation (Lin et al., 2013). During this process, a colony may reach a better
position than its imperialist. In this case, the imperialist loses its rank and the colony becomes the
new imperialist. The assimilation improves searching around the better current solutions and so
enhances the exploitation of the algorithm.

The evolution among the empires is achieved by a process called imperialists competition. In
this process, the most powerful empires receive more chances to take possession of the colonies of
the weakest empires. The competition step in ICA improves the exploration of the algorithm in a
search for the global optimum. When an empire does not have any colony, it will be eliminated.
ICA continues until it satisfies the stopping rule conditions. For more details, see Atashpaz-Gargari
and Lucas (2007) and Hosseini and Al Khaled (2014).

To apply ICA for an optimal design problem, the user should first provide an initial guess about
the number of support point k(≥ p). In practice, the user can start by p and increment its value by
one until the equivalence theorem confirms the optimality of the current best design, which is the
country with the least cost value. In optimal design problems, the ELB defined by (12) can be used
to build a stopping rule condition for ICA. For example, the algorithm can be stopped when the
value of the ELB of the best current design is larger than, say, 0.95. Clearly, finding ELB in each
iteration increases the CPU time required by the algorithm as another optimization problem has to
be solved to find maximum of the sensitivity function over χ. This is especially true for minimax
and Bayesian type criteria, because the sensitivity function for the earlier involves solving a bi-level
nested optimization problem and the latter requires approximating integrals. Therefore, we prefer
to calculate the ELB periodically, say, after every 100 iterations, instead of every iteration to save
the CPU time.

4 Implementation of optimal design problems in ICAOD

Different functions are available to find optimal designs for nonlinear models in ICAOD: a) locally():
Finds locally optimal designs, b) minimax(): Finds minimax optimal designs , c) bayes(): Finds
Bayesian optimal designs and d) robust(): Finds optimum-on-average or robust designs. Throughout
this paper, we refer to them as “OD functions”. ICAOD uses the S3 object oriented system and
works with an object of class ‘minimax’. The class ‘minimax’ has its own plot, print and update
method. The plot method is used to plot the sensitivity function and also calculate the ELB for the
output design. The print method is to display the brief profile of ICA iterations and the summary
of identified optimal designs. The update method is for executing the algorithm for more number of
iterations. By default, OD functions are defined to determine D−optimal designs. In the section
‘User-Specified Optimality Criteria’, we demonstrate how to specify user-defined optimality
criteria. In what follows, the OD functions are explained in detail.

Locally optimal designs

The locally() function finds locally optimal designs and its main arguments are:

locally(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,
lx, ux, k, iter, ICA.control = list(), sens.control = list(),
crt_func = NULL, sens_func = NULL,
inipars)

The arguments in the first three lines of codes are common between the OD functions. Table 1
provides an overview of them. The arguments in the first line are required to construct the FIM
of the model; inipars is equivalent to θ0 in (4) and defines the vector of initial estimates for the
model parameters.

The ICAOD package includes a formula interface to specify the model of interest. For example,
assume the two-parameter logistic model defined by

f(x, θ) =
1

1 + exp(−b(x− a))
, (13)

where θ = (a, b) is the vector of model parameters and x is the model predictor. To de-
fine (13) in ICAOD, we can set formula = 1/(1 + exp(-b * (x-a))), predvars = "x", parvars
= c("a","b") and family = "binomial" (or family = binomial()). Alternatively, one may pass
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Argument Description
formula A formula that is the symbolic description of a nonlinear model.
predvars A vector of characters that denote the model predictors in formula.
parvars A vector of characters that denote the model parameters in formula.
family The distribution of the model response and the link function. It is the same as

the one in glm(). The default link function is gaussian().
fimfunc (optional) The Fisher information matrix (R function). Required if users wish

to pass the FIM directly. It takes a function with arguments x (a vector of
design points), w (a vector of associated weights) and param (a vector of model
parameters). Only one of the formula and fimfunc arguments must be given.

k The number of design points k.
lx A vector of the lower bounds for the model predictors (design space χ).
ux A vector of the upper bounds for the model predictors (design space χ).
x (optional) A vector of design points x. if given, only the optimal weights, w,

are sought after. Required when the design points are pre-specified.
ICA.control A list of ICA control parameters. By default, it will be created by

ICA.control().
iter The maximum number of iterations.
sens.control Control Parameters of the maximization algorithm, which finds the maximum of

the sensitivity function (7), (10) and (8) over the design space χ. The obtained
maximum is used to calculate the ELB of a design. By default, it will be created
by sens.control().

crt_func (optional) A user-specified criterion (R function).
sens_func (optional) A user-specified sensitivity function (R function).

Table 1: Overview of the most important common arguments of the OD functions.

the FIM of (13) as an R function via the argument fimfunc directly. In this option, the arguments
of the defined function must be a) x: is a vector of (x1, ..., xk) in (2), b) w: is a vector of (w1, ...,wk)
in (2), and c) param: is a vector of θ in (13). The output is the FIM of (13) evaluated at the given
x, w and param as a matrix.

The argument sens.control is a list of control parameters for nloptr() available in the nloptr
package (Johnson, 2014). This function is used here to solve maxx∈χ c(x, ξ) for computing the
ELB (12). When not given, it will be created automatically by the function sens.control. We
recommend not to change its default values as they have been successfully tested for a large number
of problems.

The crt_func and sens_func arguments are used to find a user-defined optimal designs, which
are described in the section ‘User-Specified Optimality Criteria’.

Minimax optimal designs

The minimax() function finds minimax optimal designs and its main arguments are:

minimax(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,
lx, ux, k, iter, ICA.control = list(), sens.control = list(),
crt_func = NULL, sens_func = NULL,
lp, up, n.grid = 0,
sens.minimax.control = list(), crt.minimax.control = list())

The first three lines of codes are similar to the ones in locally() and the rest of the arguments
are used to evaluate the minimax criterion (5) and its sensitivity function (10) at a given design.
Table 2 presents an overview of the arguments specifically available in minimax().

In ICAOD, the parameter space Θ are either continuous or discrete. Note that the lower bound
and upper bound of Θ are specified via the arguments lp and up, respectively. When Θ is continuous,
ICAOD uses nloptr() to solve the inner maximization problem in (5) over Θ at a given design. The
default optimization algorithm from nloptr() is the DIRECT-L algorithm, which is a deterministic
search algorithm based on the systematic division of the search domain into smaller and smaller
hyperrectangles (Gablonsky and Kelley, 2001). For our applications, the most influential tuning
parameter of nloptr() is the maximum number of function evaluations denoted by maxeval (its
default value is 1000) via the crt.minimax.control argument. The parameter space may also be
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Argument function Description
lp minimax() A vector of lower bounds for θ.
up A vector of upper bounds for θ.
n.grid (optional) When have a positive value, the pa-

rameters space Θ will be discretized, where the
number of grid points will be equal to n.grid^p
(defaults to 0).

crt.minimax.control A list of control parameters of the function
nloptr(), which is used to maximize the optimal-
ity criterion at a given design over Θ. By default,
it will be created by crt.minimax.control().

sens.minimax.control A list of control parameters to find the answering
set (9), which is required to obtain the sensitivity
function and calculate the ELB. By default, it
will be created by sens.minimax.control(). For
more details, see ?sens.minimax.control.

prior bayes() An object of class ‘cprior’ that contains the nec-
essary information about the prior distribution for
the unknown parameters θ. For popular prior dis-
tributions, it can be created via the uniform(),
normal(), skewnormal(), student() functions.
For more details, see ?bayes.

crt.bayes.control A list of control parameters to approximate the
integrals in (6), using either the hcubature()
function (an adaptive multidimensional integra-
tion method over hypercubes) or the Gaussian
quadrature formulas implemented by the mvQuad
package. By default, it will be created by
crt.bayes.control().

sens.bayes.control A list of control parameters required to approx-
imate the integrals in (8). It is very similar to
crt.bayes.control() and by default will be cre-
ated by crt.bayes.control().

prob robust() A vector of the probability measure associated
with each vector of initial estimates for the un-
known parameters θ.

parset A matrix where each of its row is a vector of the
initial estimates for θ.

Table 2: Overview of the arguments that are used to evaluate minimax, Bayesian and robust
(optimum-on-average) optimality criteria at a given design.

discretized. In this option, the total number of grid points is equal to n.grid^p. When specified,
ICA evaluates the criterion at these grid points to solve the maximization problem over Θ.

Bayesian optimal designs

The bayes() function finds Bayesian optimal designs and its main arguments are:

bayes(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,
lx, ux, k, iter, ICA.control = list(), sens.control = list(),
crt_func = NULL, sens_func = NULL,
prior, crt.bayes.control = list(), sens.bayes.control = list())

The first three lines of codes are similar to the ones in locally() and the rest of the arguments are
used to approximate the integrals in (6) and (8) at a given design. Table 2 presents an overview of
the arguments specifically available in bayes().

By default, ICAOD uses the hcubature() function from the cubature package (Johnson, 2013;
Narasimhan and Johnson, 2017) to approximate the integrals. Th function hcubature() includes
an adaptive multidimensional integration method over hypercubes known as hcubature algorithm
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(Berntsen et al., 1991; Genz and Malik, 1980). For our applications, the most important tuning
parameters of the hcubature algorithm are the maximum number of integrand evaluations maxEval
(its default value is 50000) and a user-specified tolerance tol (its default value is 1e-5). This
algorithm stops either when the integral error estimate is less than the integral estimate multiplied
by its value or when the it reaches the specified maximum number of function evaluations maxEval,
whichever happens earlier. When the prior distribution is less diffuse, it is sometimes more efficient
to reduce the value of maxEval to increase the speed of the hcubature algorithm. The control
parameters of the hcubature() function can be regulated via the argument crt.bayes.control.

Alternatively, ICAOD also offers the Gauss-Legendre and the Gauss-Hermite formulas to ap-
proximate the integrals. These methods are implemented in ICA using the mvQuad package
(Weiser, 2016) and can be requested via the argument crt.bayes.control. For more details, see
?mvQuad::createNIGrid().

Robust or optimum-on-average designs

The robust() function finds optimum-on-average or robust designs and its main arguments are:

robust(formula, predvars, parvars, family = gaussian(), fimfunc = NULL,
lx, ux, k, iter, ICA.control = list(), sens.control = list(),
crt_func = NULL, sens_func = NULL,
prob, parset)

The first three lines of codes are similar to the ones in locally() and the rest of the arguments are
used to evaluate the optimum-on-average criterion at a given design. Table 2 presents an overview
of the arguments specifically available in robust().

5 Examples

In this section, we provide two examples to show the functionality of the ICAOD package to determine
optimal designs. In the first example, we find locally and minimax D−optimal designs for a logistic
model with applications in educational testing. In the second example, we specify Bayesian and
robust optimal designs for the sigmoid Emax model with applications in dose-response studies.

Logistic model with a single predictor

The logistic model is very popular for modeling binary outcomes. For example, consider an
educational research that studies the effect of hours of practice on the mastery of a mathematical
task. Let Y be a binary response variable that takes the value 1 if a subject has mastered the task
and 0 otherwise. The logistic model is defined by

f(x, θ) = P (Y = 1) = exp(β0 + β1x)

1 + exp(β0 + β1x)
, (14)

where x is the hours of practice and θ = (β0,β1)
T . Assume that for each subject up to six hours

of practice are possible, i.e., x ∈ χ = [0, 6]. If the purpose of the study is to estimate the model
parameters accurately, an appropriate criterion is the D−optimality. The design questions here are
a) what is the best number of levels of x to apply in the study, b) what are these levels and c) how
many subjects should be assigned to each level? For example, a researcher may choose a uniform
design that includes an equal number of subjects who have practiced for 0, 1, 2, 3, 4, 5, 6 hours. We
denote this design by

ξuni =

{
0 1 2 3 4 5 6

1/7 1/7 1/7 1/7 1/7 1/7 1/7

}
. (15)

The FIM of model (14) depends on the unknown parameters through ∂f (x,θ)
∂βj

, j = 0, 1. Following
Berger and Wong (2005), let θ0 = (−4, 1.3333)T be the best initial guess for θ available from, say, a
similar study. In ICAOD, the locally D−optimal design is found by

R> library("ICAOD")
R> log1 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial", lx = 0, ux = 6, iter = 40, k = 2,
+ inipars = c(-4, 1.3333), ICA.control = list(rseed = 1))
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R> print(log1)
Finding locally optimal designs

Call:
~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x))

iter x1 x2 w1 w2 min_cost mean_cost
1 1 1.897630 4.289279 0.4480275 0.5519725 3.585707 3.629564
5 5 1.735791 4.135709 0.4818501 0.5181499 3.574277 3.608956
9 9 1.812077 4.132323 0.4965689 0.5034311 3.569134 3.569134
14 14 1.831070 4.143704 0.4982596 0.5017404 3.568777 3.568777
18 18 1.845842 4.158716 0.4996087 0.5003913 3.568684 3.568684
22 22 1.842875 4.159136 0.4999992 0.5000008 3.568680 3.568680
27 27 1.842477 4.157866 0.4999457 0.5000543 3.568679 3.568679
31 31 1.842450 4.157647 0.4999709 0.5000291 3.568679 3.568679
35 35 1.842456 4.157634 0.4999973 0.5000027 3.568679 3.568679
40 40 1.842479 4.157646 0.4999987 0.5000013 3.568679 3.568679

Optimal designs (k=2):
Points1 Points2

1.84248 4.15765
Weights1 Weights2
0.500 0.500

ICA iteration: 40
Criterion value: 3.568679
Total number of function evaluations: 1768
Total number of successful local search moves: 76
Total number of successful revolution moves: 48
Convergence: Maximum_Iteration
Total number of successful assimilation moves: 701
CPU time: 1.09 seconds!

Throughout this paper, the rseed argument is used to guarantee the reproducibility of the results.
The algorithm stopped at iteration number 40 because it reached the maximum number of iterations
(iter = 40). Here, the design provided by the output assigns equal weights to x1 = 1.84249 and
4.15765. This mean that, half of the subjects should be assigned to practice nearly less than 2 hours
and the other half should practice a little bit more than 4 hours. The D−criterion (4) evaluated
at this design is equal to 3.5686. Alternatively, the optimal design at the final iteration and the
detailed profiles of ICA optimization at each iteration can be obtained by

R> log1$design
iter x1 x2 w1 w2 min_cost mean_cost max_sens elb
1 40 1.842479 4.157646 0.4999987 0.5000013 3.568679 3.568679 NA NA
time_sec
1 NA
R> log1$out
iter x1 x2 w1 w2 min_cost mean_cost
1 1 1.897630 4.289279 0.4480275 0.5519725 3.585707 3.629564
2 2 1.894919 4.287451 0.4875810 0.5124190 3.575292 3.619014
3 3 1.895518 4.285989 0.4875810 0.5124190 3.575159 3.616086
4 4 1.735791 4.135761 0.4818501 0.5181499 3.574278 3.613881
5 5 1.735791 4.135709 0.4818501 0.5181499 3.574277 3.608956
...
36 36 1.842457 4.157634 0.4999973 0.5000027 3.568679 3.568679
37 37 1.842457 4.157634 0.4999973 0.5000027 3.568679 3.568679
38 38 1.842460 4.157632 0.4999980 0.5000020 3.568679 3.568679
39 39 1.842481 4.157638 0.5000023 0.4999977 3.568679 3.568679
40 40 1.842479 4.157646 0.4999987 0.5000013 3.568679 3.568679

The plot of the sensitivity function of the design provided by the output and the value of the ELB is
obtained by

R> plot(log1)
Maximum of the sensitivity function is 5.323248e-06
Efficiency lower bound (ELB) is 0.9999973
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Verification required 0.33 seconds!
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Figure 1: Plots of the sensitivity functions of the designs generated by the locally() function
for the logistic model over χ = [0, 6] when θ = θ0 = (−4, 1.3333)T . The left panel (a) verrfies the
global optimality of the obtained design and the right panel (b) does not verify the optimality of the
obtained design. The solid red dots are the values of the sensitivity function at the obtained design
points.

Figure 1 (a) displays the plot of the sensitivity function (7) of the design provided by the output
on the design space [0, 6]. Based on the equivalence theorem, this design is optimal because the
sensitivity function is equal or less than zero on [0, 6] and (roughly) equal to zero at 1.84249 and
4.15765 (see the red points). The value of the ELB is nearly 1, which also indicates the optimality
of this design.

It is interesting to assess the performance of the uniform design ξuni with respect to the locally
D−optimal design obtained above. Using (11), we can calculate the D−efficiency of ξuni relative to
the locally D−optimal design by

R> leff(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial", inipars = c(-4, 1.3333),
+ x1 = c(0:6), w1 = rep(1/7, 7),
+ x2 = log1$evol[[20]]$x, w2 = log1$evol[[20]]$w)
[1] 0.7778719

The value of the relative D−efficiency indicates that ξuni requires about 100(1/0.777 − 1) = 29%
more number of subjects to have the same D−efficiency as the D−optimal design when θ = θ0.
Therefore, having subjects to practice, say, less than 1 hours or more than 5 hours will not increase
the efficiency of the parameter estimates very much.

The value of the ELB may also be used to construct a stopping rule condition for ICA. This
feature is activated via the ICA.control argument in all OD functions similar to what follows.

R> log2 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial", lx = 0, ux = 6, iter = 40, k = 2,
+ inipars = c(-4, 1.3333),
+ ICA.control = list(rseed = 1,
+ checkfreq = 20,
+ stop_rule = "equivalence",
+ stoptol = .99))
R> print(log2)
Finding locally optimal designs

Call:
~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x))

iter x1 x2 w1 w2 min_cost mean_cost
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1 1 1.897630 4.289279 0.4480275 0.5519725 3.585707 3.629564
3 3 1.895518 4.285989 0.4875810 0.5124190 3.575159 3.616086
5 5 1.735791 4.135709 0.4818501 0.5181499 3.574277 3.608956
7 7 1.818028 4.160041 0.4797011 0.5202989 3.570617 3.570617
9 9 1.812077 4.132323 0.4965689 0.5034311 3.569134 3.569134
11 11 1.827779 4.137145 0.4958561 0.5041439 3.568919 3.568919
13 13 1.844558 4.142393 0.4961667 0.5038333 3.568856 3.568856
15 15 1.845992 4.165776 0.4984264 0.5015736 3.568713 3.568713
17 17 1.845348 4.155565 0.4996783 0.5003217 3.568688 3.568688
20 20 1.842781 4.159234 0.4999992 0.5000008 3.568680 3.568680

Optimal designs (k=2):
Points1 Points2

1.84278 4.15923
Weights1 Weights2
0.500 0.500

ICA iteration: 20
Criterion value: 3.56868
Total number of function evaluations: 918
Total number of successful local search moves: 46
Total number of successful revolution moves: 46
Convergence: equivalence
Total number of successful assimilation moves: 345
CPU time: 0.81 seconds!

Maximum of the sensitivity function is 3.483904e-06
Efficiency lower bound (ELB) is 0.9999983
Verification required 0.39 seconds!

R> log2$design
iter x1 x2 w1 w2 min_cost mean_cost max_sens
1 20 1.842781 4.159234 0.4999992 0.5000008 3.56868 3.56868 3.483904e-06
elb time_sec
1 0.9999983 0.39

We set stop_rule = "equivalence" to activate the stopping rule that is based on the equivalence
theorem. In this case, ICA starts to calculate the ELB for the best design every checkfreq = 20
iterations and it stops whenever the value of the ELB is larger than stoptol = 0.99. In this example,
ICA stopped at the first check run because the value of ELB is 0.999 (> stoptol). Note that we
requested to calculate the ELB after every 20 iterations, instead of every iteration, to prevent a
significant increase in the CPU time. This equivalence-based stopping rule is also available in other
OD functions. However, we note that optimality verification for Bayesian or minimax type criteria
is more complicated and may slow down the ICA.

ICAOD can also handle a situation where the design points are pre-specified, but their optimal
associated weights are of interest. For example, assume that the experimental resources only allow a
pre-specified hours of practice, say, x1 = 1, x2 = 2, x3 = 3 hours. In all OD functions, the design
points can be specified similarly via the argument x (a vector of design points):

R> log3 <- locally(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial", lx = 0, ux = 6, iter = 40,
+ x = c(1, 2, 3),
+ inipars = c(-4, 1.3333),
+ ICA.control = list(rseed = 1, checkfreq = Inf))

R> print(log3)
Finding locally optimal designs

Call:
~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x))

iter x1 x2 x3 w1 w2 w3 min_cost mean_cost
1 1 1 2 3 0.4528099 2.460808e-03 0.5447293 4.196368 4.205840
5 5 1 2 3 0.5106454 5.660663e-03 0.4836939 4.190011 4.190011
9 9 1 2 3 0.4993132 8.104013e-05 0.5006058 4.187368 4.187368
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14 14 1 2 3 0.4993694 9.602963e-06 0.5006210 4.187346 4.187346
18 18 1 2 3 0.4998314 4.227502e-06 0.5001644 4.187343 4.187343
22 22 1 2 3 0.4998286 1.079043e-07 0.5001713 4.187342 4.187342
27 27 1 2 3 0.4999951 1.656952e-08 0.5000049 4.187342 4.187342
31 31 1 2 3 0.4999982 4.628899e-10 0.5000018 4.187342 4.187342
35 35 1 2 3 0.4999994 5.689118e-11 0.5000006 4.187342 4.187342
40 40 1 2 3 0.5000001 2.449702e-12 0.4999999 4.187342 4.187342

Optimal designs (k=3):
Weights: 0.500 0.000 0.500

ICA iteration: 40
Criterion value: 4.187342
Total number of function evaluations: 1731
Total number of successful local search moves: 39
Total number of successful revolution moves: 30
Convergence: Maximum_Iteration
Total number of successful assimilation moves: 878
CPU time: 1.22 seconds!

Maximum of the sensitivity function is 2.558775
Efficiency lower bound (ELB) is 0.4387143
Verification required 0.35 seconds!

The results show that no weight should be assigned to the subjects with 2 hours of practice. This
means that, the responses from subjects with 2 hours of practice will not increase the efficiency of
estimation very much. Hence, this level may be eliminated to save more resources.

The value of the ELB and the plot of the sensitivity function in Figure 1 (b) clearly show that
the obtained design is not globally optimal. This comes as no surprise because the given design
points in x do not belong to the support of the optimal design when θ = θ0. Note that checkfreq
= Inf requests a plot method for the design provided by the output so that plot() is not required
anymore. For space consideration, we use this option in the rest of this paper.

Locally optimal designs usually lose their efficiency when the parameter estimates are far from
their true unknown values. Moreover, in practice, it is more realistic to assume that the parameters
belong to a parameter space, rather than fixing their values at some points. For example, let
θ = (β0,β1)

T belongs to Θ = [βL
0 ,βU

0 ] × [βL
1 ,βU

1 ], where βL
0 = −6, βU

0 = −2, βL
1 = .5 and βU

1 = 2.
As a conservative strategy, a minimax D−optimal design minimizes the maximum inefficiency over
Θ. To find the minimax D−optimal design for our design setting, we first set k = 2 to find the
minimax D−optimal design within the class of two-point designs:

R> log4 <- minimax(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial",
+ lx = 0, ux = 6, lp = c(-6, .5), up = c(-2, 2),
+ iter = 200, k = 2,
+ ICA.control = list(rseed = 1,
+ checkfreq = 50,
+ stop_rule = "equivalence",
+ stoptol = .99),
+ crt.minimax.control = list(optslist = list(maxeval = 200)))
R> print(log4)
Finding minimax optimal designs

Call:
~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x))

iter x1 x2 w1 w2 min_cost mean_cost
1 1 0.4446832 4.868664 0.4243584 0.5756416 7.853582 8.061686
23 23 0.7665387 4.895727 0.4965758 0.5034242 7.782827 7.782827
45 45 0.7639494 4.895787 0.4999084 0.5000916 7.782754 7.782754
67 67 0.7636147 4.895791 0.5000079 0.4999921 7.782754 7.782754
89 89 0.7636144 4.895791 0.5000079 0.4999921 7.782754 7.782754
111 111 0.7636144 4.895791 0.5000079 0.4999921 7.782754 7.782754
133 133 0.7635408 4.895792 0.4999934 0.5000066 7.782754 7.782754
155 155 0.7635408 4.895792 0.4999934 0.5000066 7.782754 7.782754
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Figure 2: Plots of the sensitivity functions of the two- and three-point designs generated by the
minimax() function for the logistic regression model over χ = [0, 6] when Θ = [−6, −2] × [0.5, 2].
The left panel (a) does not verifies the optimality of the obtained design and the right panel (b)
shows the nearly optimality of the three-point design. The solid red dots are the values of the
sensitivity function at the obtained design points.

177 177 0.7635408 4.895792 0.4999934 0.5000066 7.782754 7.782754
200 200 0.7635408 4.895792 0.4999934 0.5000066 7.782754 7.782754

Optimal designs (k=2):
Points1 Points2

0.76354 4.89579
Weights1 Weights2
0.500 0.500

ICA iteration: 200
Criterion value: 7.782754
Total number of function evaluations: 1710132
Total number of successful local search moves: 120
Total number of successful revolution moves: 60
Convergence: Maximum_Iteration
Total number of successful assimilation moves: 1007
Vector of maximum parameter values: -6 0.5
CPU time: 211.47 seconds!

Maximum of the sensitivity function is 21.9395
Efficiency lower bound (ELB) is 0.08354392
Verification required 0.72 seconds!

Adjust the control parameters in 'sens.minimax.control' ('n_seg')
or in 'sens.bayes.control' for higher speed.

To increase the CPU time, we reduced the value of maxeval from 1000 (default value) to 200.
Figure 2 (a) displays the sensitivity plot of the design by provided by the output and it does not
verify the optimality of the two-point design. Therefore, we increment the value of k by one and
re-execute the above code:

R> log5 <- minimax(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial",
+ lx = 0, ux = 6, lp = c(-6, .5), up = c(-2, 2),
+ iter = 500, k = 3,
+ ICA.control = list(rseed = 1,
+ checkfreq = 50,
+ stop_rule = "equivalence",
+ stoptol = .99),
+ crt.minimax.control = list(optslist = list(maxeval = 200)))
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R> print(log5)
Finding minimax optimal designs

Call:
~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x))

iter x1 x2 x3 w1 w2 w3 min_cost
1 1 1.0613974 2.577126 5.994463 0.1263308 0.5337391 0.3399301 6.862938
6 6 0.9212932 2.161076 5.999569 0.1092450 0.5392481 0.3515069 6.826309
11 11 0.9291691 2.163344 5.998872 0.1131382 0.4602769 0.4265849 6.760707
17 17 0.9358663 2.165053 5.998143 0.1131382 0.4602769 0.4265849 6.758872
22 22 1.0343686 2.163586 5.997440 0.1000379 0.4592324 0.4407297 6.749718
28 28 1.1201234 2.340084 5.995084 0.1526103 0.3628279 0.4845619 6.745782
33 33 1.0084352 2.232590 5.999449 0.1185027 0.3770129 0.5044843 6.738361
39 39 1.0003813 2.245542 5.999894 0.1094120 0.3941922 0.4963958 6.737553
44 44 1.0159978 2.225392 5.999982 0.1148592 0.3916467 0.4934942 6.737084
50 50 1.0269974 2.206648 5.999927 0.1135038 0.3915064 0.4949898 6.736338
mean_cost
1 7.553929
6 6.951918
11 6.805511
17 6.776728
22 6.757709
28 6.748353
33 6.743650
39 6.742541
44 6.738447
50 6.737655

Optimal designs (k=3):
Points1 Points2 Points3

1.02700 2.20665 5.99993
Weights1 Weights2 Weights3
0.114 0.392 0.495

ICA iteration: 50
Criterion value: 6.736338
Total number of function evaluations: 511836
Total number of successful local search moves: 309
Total number of successful revolution moves: 92
Convergence: equivalence
Total number of successful assimilation moves: 407
Vector of maximum parameter values: -6 0.5
CPU time: 71.04 seconds!

Maximum of the sensitivity function is 0.01269528
Efficiency lower bound (ELB) is 0.9936924
Verification required 2.16 seconds!

Adjust the control parameters in 'sens.minimax.control' ('n_seg')
or in 'sens.bayes.control' for higher speed.
R> log5$design
iter x1 x2 x3 w1 w2 w3 min_cost
1 50 1.026997 2.206648 5.999927 0.1135038 0.3915064 0.4949898 6.736338
mean_cost max_sens elb time_sec
1 6.737655 0.01269528 0.9936924 2.16

Figure 2 (b) displays the plot of the sensitivity function of the three-point generated design and
it indicates its nearly optimality. The optimal design suggests subjects with nearly 1, 2 and 6 hours
of practice, where roughly half of the subjects should be assigned to practice for 6 hours.

Similar to the locally D−optimal design, we can assess the minimax D−efficiency of ξuni with
respect to the minimax D−optimal design by

R> meff(formula = ~exp(b0 + b1 * x)/(1 + exp(b0 + b1 * x)),
+ predvars = "x", parvars = c("b0", "b1"),
+ family = "binomial",
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+ lp = c(-6, .5), up = c(-2, 2),
+ x1 = c(0:6), w1 = rep(1/7, 7),
+ x2 = log5$evol[[20]]$x, w2 = log5$evol[[20]]$w)
[1] 0.7459795

This value indicates that ξuni requires about 100(1/0.74089 − 1) = 35% more subjects to have the
same minimax D−efficiency as the minimax D−optimal design when Θ = [−6, −2] × [0.5, 2].

Sigmoid-Emax model

The sigmoid Emax model is commonly used in pharmacokinetics/pharamacodynamics to describe
the S-shape dose-response relationship (see, e.g., Macdougall, 2006; Thomas, 2006). This model is
defined by

E(Y ) = f(x, θ) = β1 + (β2 − β1)
xβ4

xβ4 + ββ4
3

, (16)

where x is the dose level (in mg), x ∈ χ = (0,x0], x0 is user-selected and θ = (β1,β2,β3,β4)
T ,

θ2 > β1, β3 > 0. All errors are assumed to be independent and normally distributed with mean zero
and constant variance. Here, β1 is the minimum mean response, β2 is the maximum mean response,
β3 is the ED50, i.e., the dose at which 50 percent of the maximum mean effect is achieved, and β4 is
the slope parameter.

In dose-response studies, optimal designs usually determine how many doses are required
to be tested, what are their levels, and how many subjects to allocate to each dose level. Let
χ = (0, 1000]mg. Similar to Dragalin et al. (2007) and Wang and Yang (2014), we are interested
in the efficient estimation of θ and the D−optimality is an appropriate design criterion for this
purpose.

It is straightforward to show that the FIM of the sigmoid Emax model depends on the unknown
parameters θ. This parameter dependency must be dealt with based on the type of information
available on θ. For example, using information from a pilot study, one may elicit a uniform
prior distribution for θ and search for Bayesian optimal designs. As an illustrative example, let
β1 ∼ U(4, 8), β2 ∼ U(11, 15), β3 ∼ U(100, 130) and β4 ∼ U(5, 9), and all the uniform prior
distributions be independent. For simplicity, we denote the independent uniform distributions for
βi, i = 1, 2, 3, 4 by πΘ, where Θ = [4, 8] × [11, 15] × [100, 130] × [5, 9] is the parameter space. This
prior can be defined in ICAOD by the uniform() function as follows.

R> prior1 <- uniform(lower = c(4, 11, 100, 5), upper = c(8, 15, 130, 9))

Here, the output is an object of class ‘cprior’, which can be passed to the argument prior of the
bayes() function.

To find the number of support points for the Bayesian D−optimal design, we repeated the same
incremental process for finding minimax optimal design. This process is excluded here due to space
consideration. The Bayesian D−optimal design has 5 points in its support, which are found by

R> sig1 <- bayes(formula = ~b1 + (b2-b1) * x^b4/(x^b4 + b3^b4),
+ predvars = "x",
+ parvars = c("b1", "b2", "b3", "b4"),
+ lx = .001, ux = 1000, k = 5, iter = 400, prior = prior1,
+ ICA.control = list(rseed = 1, checkfreq = Inf))
R> print(sig1)
Finding Bayesian optimal designs

Call:
~b1 + (b2 - b1) * x^b4/(x^b4 + b3^b4)

iter x1 x2 x3 x4 x5 w1 w2
1 1 18.0475346 96.25014 167.5667 179.3485 867.8058 0.2909521 0.1581145
45 45 17.4961312 89.11527 108.3659 137.0731 866.5956 0.2368958 0.1548766
89 89 0.4786294 95.25557 115.0471 138.2732 554.3556 0.2460043 0.2036432
134 134 1.0415205 94.75054 113.8961 138.3159 959.5441 0.2430275 0.1959315
178 178 0.7994201 94.64836 113.7667 138.3264 999.8505 0.2433772 0.1949845
222 222 1.8666601 94.60760 113.7090 138.3516 999.9069 0.2432310 0.1942385
267 267 0.5492615 94.60194 113.7011 138.3539 999.9987 0.2432085 0.1941306
311 311 0.4263460 94.60176 113.6966 138.3513 1000.0000 0.2432061 0.1941301
355 355 0.4164132 94.60189 113.6965 138.3510 1000.0000 0.2432041 0.1941322
400 400 0.1805450 94.60188 113.6964 138.3510 1000.0000 0.2432040 0.1941319
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w3 w4 w5 min_cost mean_cost
1 0.3418695 0.006883086 0.2021808 14.10396 15.82570
45 0.1428410 0.225597557 0.2397890 12.74113 12.74774
89 0.1043130 0.200569541 0.2454699 12.72302 12.72989
134 0.1140765 0.203490785 0.2434737 12.72086 12.72095
178 0.1150226 0.203128842 0.2434868 12.72082 12.72083
222 0.1158376 0.203138347 0.2435545 12.72082 12.72082
267 0.1159406 0.203152463 0.2435679 12.72082 12.72082
311 0.1159200 0.203173666 0.2435701 12.72082 12.72082
355 0.1159159 0.203177516 0.2435702 12.72082 12.72082
400 0.1159155 0.203178189 0.2435705 12.72082 12.72082

Optimal designs (k=5):
Points1 Points2 Points3 Points4 Points5

0.18055 94.60188 113.69639 138.35096 1000.00000
Weights1 Weights2 Weights3 Weights4 Weights5
0.243 0.194 0.116 0.203 0.244

ICA iteration: 400
Criterion value: 12.72082
Total number of function evaluations: 85150
Total number of successful local search moves: 2378
Total number of successful revolution moves: 81
Convergence: maxiter
Total number of successful assimilation moves: 1700
CPU time: 611.44 seconds!

Maximum of the sensitivity function is 9.439815e-07
Efficiency lower bound (ELB) is 0.9999998
Verification required 65.3 seconds!

Adjust the control parameters in 'sens.minimax.control' ('n_seg')
or in 'sens.bayes.control' for higher speed.
R> sig1$design
iter x1 x2 x3 x4 x5 w1 w2 w3
1 400 0.180545 94.60188 113.6964 138.351 1000 0.243204 0.1941319 0.1159155
w4 w5 min_cost mean_cost max_sens elb time_sec
1 0.2031782 0.2435705 12.72082 12.72082 9.439815e-07 0.9999998 65.3

Figure 3 (a) is generated from the output and presents the plot of the sensitivity function of
the five-point design and it verifies its optimality. In our example, the Bayesian D−optimal design
suggests five dose levels, with four of them located below 140mg and one located at the maximum.
Roughly 50% of the observations should be assigned to the lower and upper bound of the dose
interval. Note that the result can also be obtained in lesser CPU time if we adjust the control
parameters of the integral approximations via the argument crt.bayes.control.

Using a non-optimal design may be inefficient even when its design points are sampled uniformly
from the design space. As an illustrative example, assume a situation where a researcher decides to
work with an equally-weighted uniform design that has 11 points located on 0.001, 100, 200, 300, ...., 1000.
This design is not optimal when θ ∼ πΘ. The Bayesian D−efficiency of the uniform design with
respect to the obtained Bayesian D−optimal design is calculated by

R> beff(formula = ~b1 + (b2-b1) * x ^b4/(x^b4 + b3^b4),
+ predvars = "x",
+ parvars = c("b1", "b2", "b3", "b4"),
+ prior = prior1,
+ x1 = c(.001,seq(100, 1000, by = 100)),
+ w1 = rep(1/11, 11),
+ x2 = sig1$evol[[400]]$x, w2 = sig1$evol[[400]]$w)
[1] 0.3063289

The non-optimal design may seem reasonable, but its Bayesian D−efficiency value suggests
that, roughly 226% more observations are needed to maintain the D−efficiency for the non-optimal
design in comparison to the Bayesian D−optimal design when θ ∼ πΘ. The bayes() function is
very flexible and can incorporate different prior distributions.

ICAOD can also find robust or optimum-on-average designs when the prior distributions are
discrete. As an illustrative example, assume Θ0 = {θ01, θ02, θ03, θ04, θ05} be a set of five vectors
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of initial estimates for θ = (β1,β2,β3,β4), where θ01 = (4, 11, 100, 5), θ02 = (5, 12, 110, 6), θ03 =
(6, 13, 120, 7), θ04 = (8, 15, 130, 9) and θ05 = (12, 30, 160, 13). Let πΘ0 denotes a discrete uniform
prior distribution that assigns the same probability to each vector element of Θ0. The six-point
optimum-on-average design is given by

R> parset1 <- matrix(c(4, 11, 100, 5,
+ 5, 12, 110, 6,
+ 6, 13, 120, 7,
+ 8, 15, 130, 9,
+ 12, 30, 160, 13),
+ nrow = 5, byrow = TRUE)
R> sig2 <- robust(formula = ~b1 + (b2-b1) * x ^b4/(x^b4 + b3^b4),
+ predvars = "x",
+ parvars = c("b1", "b2", "b3", "b4"),
+ lx = .001, ux = 1000, k = 6, iter = 400,
+ parset = parset1,
+ prob = rep(1/5, 5),
+ ICA.control = list(rseed = 1, checkfreq = Inf))
R> print(sig2)
Finding robust or optimum-on-average optimal designs

Call:
~b1 + (b2 - b1) * x^b4/(x^b4 + b3^b4)

iter x1 x2 x3 x4 x5 x6 w1
1 1 52.47474098 86.13143 108.6089 176.5576 847.1196 865.1056 0.3356308
45 45 0.03699118 93.84970 115.0752 144.3279 172.2496 612.5133 0.1921861
89 89 0.26057011 86.13743 112.6560 143.7663 170.6661 899.7495 0.1938690
134 134 0.27440675 86.41506 112.7178 143.7321 170.5697 999.4115 0.1997277
178 178 0.42978429 86.41957 112.7179 143.7262 170.5713 999.5817 0.2001652
222 222 0.86217693 86.41953 112.7092 143.7262 170.5733 999.9999 0.2001538
267 267 0.78134061 86.42156 112.7098 143.7250 170.5722 1000.0000 0.2001708
311 311 0.28372653 86.42155 112.7098 143.7248 170.5723 1000.0000 0.2001738
355 355 0.08123600 86.42156 112.7099 143.7248 170.5723 1000.0000 0.2001734
400 400 0.04980091 86.42158 112.7099 143.7248 170.5723 1000.0000 0.2001734
w2 w3 w4 w5 w6 min_cost mean_cost
1 0.06870259 0.1056298 0.2022530 0.12858302 0.1592008 14.10402 16.35115
45 0.15186984 0.1444531 0.2155502 0.08196997 0.2139708 12.25422 12.31711
89 0.13222946 0.1570768 0.1882862 0.09776625 0.2307723 12.21447 12.28391
134 0.13190606 0.1549309 0.1855214 0.09816873 0.2297452 12.21398 12.28328
178 0.13154222 0.1547794 0.1858112 0.09840028 0.2293017 12.21398 12.28311
222 0.13149988 0.1548130 0.1857954 0.09845378 0.2292841 12.21398 12.28305
267 0.13150916 0.1547914 0.1857821 0.09847028 0.2292762 12.21398 12.27535
311 0.13150554 0.1547882 0.1857820 0.09847434 0.2292761 12.21398 12.26001
355 0.13150671 0.1547883 0.1857817 0.09847396 0.2292760 12.21398 12.21398
400 0.13150681 0.1547882 0.1857817 0.09847394 0.2292759 12.21398 12.21398

Optimal designs (k=6):
Points1 Points2 Points3 Points4 Points5 Points6

0.04980 86.42158 112.70988 143.72485 170.57227 1000.00000
Weights1 Weights2 Weights3 Weights4 Weights5 Weights6
0.200 0.132 0.155 0.186 0.098 0.229

ICA iteration: 400
Criterion value: 12.21398
Total number of function evaluations: 20070
Total number of successful local search moves: 3787
Total number of successful revolution moves: 88
Convergence: Maximum_Iteration
Total number of successful assimilation moves: 1895
CPU time: 29.56 seconds!

Maximum of the sensitivity function is 3.960066e-07
Efficiency lower bound (ELB) is 0.9999999
Verification required 2.27 seconds!
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R> sig2$design
iter x1 x2 x3 x4 x5 x6 w1 w2
1 400 0.04980091 86.42158 112.7099 143.7248 170.5723 1000 0.2001734 0.1315068
w3 w4 w5 w6 min_cost mean_cost max_sens
1 0.1547882 0.1857817 0.09847394 0.2292759 12.21398 12.21398 3.960066e-07
elb time_sec
1 0.9999999 2.27
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Figure 3: The plots of sensitivity functions of the generated designs for the sigmoid Emax model
over the design space [0.001, 1000]. The left panel (a) displays the plot of the sensitivity function of
the design generated by the function bayes() when θ ∼ πΘ. The right panel (b) displays the plot
of the sensitivity function of the design generated by the function robust() when θ ∼ πΘ0 . Both
(a) and (b) verify the optimality of the obtained design. The solid red dots are the values of the
sensitivity function at the obtained design points.

Figure 3 (b) displays the plot of the sensitivity function of the design provided by the output and
it verifies the optimality of the six-point design. Similar to the optimal design generated by bayes(),
the generated design here allocates most of its support points to the lower half of the dose interval.

6 User-specified optimality criteria

ICAOD can also find optimal designs with respect to user-specified optimality criteria. In this
section, as an illustrative example, we find c−optimal designs for the two-parameter logistic (2PL)
model with applications in dose-response studies. The 2PL model is commonly used in dose-response
studies to model the relationship between the dose level of a drug and the probability of a success,
e.g., the probability that patients are cured. This model is defined by

f(x, θ) = P (Y = 1) = 1
1 + exp(−b(x− a))

, (17)

where x is the dose level (predictor), θ = (a, b)T , b is the slope parameter and a is the dose level at
which the response probability is 0.5 (ED50). Throughout this paper, we denote the dose level at
which the response probability is equal to π by ED100π. For the 2PL model, it can be shown that
ED100π is equal to c(θ) = a+ γb−1, where γ = log[π/(1 − π)] (see, e.g., Zhu and Wong, 2001).

Sometimes the purpose of a study is to estimate a function of the unknown parameters, say,
ED100π, rather than estimating all the parameters simultaneously. For example, in heart defibrillator
design problems, estimating the ED95, or equivalently, estimating c(θ) = a+ log(0.95/(1 − 0.95))b−1

for the 2PL model is of interest (Clyde et al., 1995). In this case, a reasonable optimality criterion is
the one that minimizes the asymptotic variance of the maximum likelihood (ML) estimator of c(θ),
which is proportional to

ψc(ξ, θ) = ∇T c(θ)M−1(ξ, θ)∇c(θ), (18)
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where ∇c(θ) is the gradient of c(θ) and M−1(ξ, θ) is the inverse of the FIM (see, e.g., Silvey, 1980,
page 4). For the 2PL model, ∇c(θ) = (1, −γb−2)T . In the optimal design literature, ψc(ξ, θ) is
referred to as c−optimality criterion and a design that minimizes ψc(ξ, θ) is called c−optimal design.
An equivalence theorem is also available for c−optimality: a design ξ∗

c is c−optimal among all the
designs on χ if and only if the following inequality holds for all x ∈ χ,

cc(x, ξ∗
c ) = tr(B(θ)M−1(ξ, θ)M(ξx, θ)M−1(ξ, θ)) −ψc(ξ, θ) ≤ 0, (19)

with equality in (19) for all the support points of ξ∗
c (see, e.g., Chaloner and Larntz, 1989). Here,

B(θ) = ∇T c(θ)∇c(θ) and ξx denotes a degenerate design that puts all its mass on x.
Similar to the D−optimality criterion, c−optimality also depends on the unknown parameters

and different types of optimal designs may be found, depending on how to deal with the unknown
parameters. As benchmark examples, in this section, we find locally and Bayesian c−optimal designs
for estimating the ED95 for the 2PL model when χ = [−1, 1]. These examples are also available in
Chaloner and Larntz (1989). Finding a minimax c−optimal or a robust design is very similar and is
excluded due to space consideration.

To use ICAOD for finding c−optimal designs, the user should first define the c−optimality
criterion and its sensitivity function as two separate functions in the R environment. Later, these
functions will be passed to bayes(), minimax(), locally() and robust() via the crtfunc and
sensfunc arguments, respectively. For example, given the 2PL model with parameters parvars =
c("a","b"), the following lines of codes define (18) and (19) in the R environment to be used in
locally(), minimax() and robust().

R> c_opt <-function(x, w, a, b, fimfunc){
+ gam <- log(.95/(1-.95))
+ M <- fimfunc(x = x, w = w, a = a, b = b)
+ c <- matrix(c(1, -gam * b^(-2)), nrow = 1)
+ B <- t(c) %*% c
+ sum(diag(B %*% solve(M)))
+ }

R> c_sens <- function(xi_x, x, w, a, b, fimfunc){
+ gam <- log(.95/(1-.95))
+ M <- fimfunc(x = x, w = w, a = a, b = b)
+ M_inv <- solve(M)
+ M_x <- fimfunc(x = xi_x, w = 1, a = a, b = b)
+ c <- matrix(c(1, -gam * b^(-2)), nrow = 1)
+ B <- t(c) %*% c
+ sum(diag(B %*% M_inv %*% M_x %*% M_inv)) - sum(diag(B %*% M_inv))
+ }

The arguments x, w are, respectively, the vector of design points and their associated weights defined
by (2). fimfunc() is a function with arguments x, w, a and b that returns the evaluated FIM as a
matrix and xi_x denotes a degenerate design, which has the same length as the number of model
predictors. The arguments a and b are model-specific and denote the parameters of the model
that is specified via parvars. A convenient feature of ICAOD is that there is no need to compute
the FIM of the model even for a user-specified optimality criterion and the user can apply the
internally-created FIM within the body of c_opt() and c_sens() using fimfunc(). Note that both
of the c_opt() and c_sens() functions are not vectorized with respect to a and b. This means that
fimfunc() returns only a matrix, and c_opt() and c_sens() return a value. This is a necessary
structure required by the locally(), minimax() and robust() functions. The following lines of
codes provide the locally c−optimal design for estimating the ED95 when θ = (0, 7).

R> twoPL1 <- locally(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
+ parvars = c("a", "b"), family = "binomial",
+ lx = -1, ux = 1, inipars = c(0, 7),
+ iter = 100, k = 2,
+ crtfunc = c_opt, sensfunc = c_sens,
+ ICA.control = list(rseed = 1, checkfreq = Inf))
R> print(twoPL1)
Finding locally optimal designs

Call:
~1/(1 + exp(-b * (x - a)))
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iter x1 x2 w1 w2 min_cost mean_cost
1 1 -0.5925888 0.3010654 0.18893987 0.8110601 0.4610712 0.5538651
12 12 -0.3542959 0.3287717 0.11649268 0.8835073 0.4038230 0.4152469
23 23 -0.3319221 0.3409457 0.09387297 0.9061270 0.4028975 0.4061873
34 34 -0.3427433 0.3430464 0.09225956 0.9077404 0.4028270 0.4030954
45 45 -0.3427747 0.3427851 0.09254018 0.9074598 0.4028266 0.4028356
56 56 -0.3427642 0.3427662 0.09255921 0.9074408 0.4028266 0.4028277
67 67 -0.3427648 0.3427655 0.09256089 0.9074391 0.4028266 0.4028271
78 78 -0.3427653 0.3427653 0.09256118 0.9074388 0.4028266 0.4028268
89 89 -0.3427653 0.3427653 0.09256120 0.9074388 0.4028266 0.4028267
100 100 -0.3427653 0.3427653 0.09256119 0.9074388 0.4028266 0.4028266

Optimal designs (k=2):
Points1 Points2

-0.34277 0.34277
Weights1 Weights2
0.093 0.907

ICA iteration: 100
Criterion value: 0.4028266
Total number of function evaluations: 4764
Total number of successful local search moves: 415
Total number of successful revolution moves: 65
Convergence: Maximum_Iteration
Total number of successful assimilation moves: 1157
CPU time: 4.09 seconds!

Maximum of the sensitivity function is 1.181344e-09
Efficiency lower bound (ELB) is 1
Verification required 0.69 seconds!

R> twoPL1$design
iter x1 x2 w1 w2 min_cost mean_cost
1 100 -0.3427653 0.3427653 0.09256119 0.9074388 0.4028266 0.4028266
max_sens elb time_sec
1 1.181344e-09 1 0.69

The obtained design suggests that nearly 90% of the observations should be assigned to 0.34277
and the rest should be allocated to −0.34277. Figure 4 (a) displays the plot of the sensitivity
function of the obtained design and it indicates its optimality. Using the given c_opt() and
c_sens() functions, we can similarly find minimax c−optimal or robust designs. For illustrating
example, see ?minimax and ?robust.

Finding Bayesian c−optimal design is very similar, except that each of (18) and (19) must be a
vectorized R function with respect to the model parameters a and b:

R> c_opt_vec <-function(x, w, a, b, fimfunc){
+ gam <- log(.95/(1-.95))
+ M <- fimfunc(x = x, w = w, a = a, b = b)
+ B <- sapply(1:length(M), FUN = function(i)
+ matrix(c(1, -gam * b[i]^(-2)), ncol= 1) %*%
+ matrix(c(1, -gam * b[i]^(-2)), nrow = 1), simplify = FALSE)
+ sapply(1:length(M), FUN = function(i)
+ sum(diag(B[[i]] %*% solve(M[[i]]))))
+ }
R> c_sens_vec <- function(xi_x, x, w, a, b, fimfunc){
+ gam <- log(.95/(1-.95)) # LD .95
+ M <- fimfunc(x = x, w = w, a = a, b = b)
+ M_inv <- lapply(M , FUN = function(FIM) solve(FIM))
+ M_x <- fimfunc(x = xi_x, w = 1, a = a, b = b)
+ B <- sapply(1:length(M), FUN = function(i)
+ matrix(c(1, -gam * b[i]^(-2)), ncol= 1) %*%
+ matrix(c(1, -gam * b[i]^(-2)), nrow = 1), simplify = FALSE)
+ sapply(1:length(M), FUN = function(i)
+ sum(diag(B[[i]] %*% M_inv[[i]] %*% M_x[[i]] %*% M_inv[[i]])) -
+ sum(diag(B[[i]] %*% M_inv[[i]])))
+ }
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Figure 4: Plots of the sensitivity functions of the generated c−optimal designs for estimating
the ED95 when x ∈ χ = [−1, 1]. The left panel (a) displays the sensitivity function of the locally
c−optimal design when θ = (0, 7). The right panel (b) displays the sensitivity function of the
Bayesian c−optimal design when a ∼ U(−0.3, 0.3) and b ∼ U(6, 8). Both (a) and (b) verify the
optimality of the obtained designs. The solid red dots are the values of the sensitivity function at
the obtained design points.

In the c_opt_vec and c_sens_vec functions, the arguments a and b are now vectors of the same
(dynamic) length, and fimfunc() now returns a list of matrices with length equal to length(a).
Let a ∼ U(−0.3, 0.3) and b ∼ U(6, 8). Given c_opt_vec and c_sens_vec, the Bayesian c−optimal
design for estimating the ED95 is obtained by

R> twoPL2 <- bayes(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
+ parvars = c("a", "b"), family = "binomial",
+ lx = -1, ux = 1,
+ prior = uniform(lower = c(-.3, 6), upper = c(.3, 8)),
+ iter = 100, k = 3,
+ crtfunc = c_opt_vec,
+ sensfunc = c_sens_vec,
+ ICA.control = list(rseed = 1, ncount = 60, checkfreq = Inf),
+ sens.bayes.control = list(cubature = list(maxEval = 100)))
R> print(twoPL2)
Finding Bayesian optimal designs

Call:
~1/(1 + exp(-b * (x - a)))

iter x1 x2 x3 w1 w2 w3
1 1 -0.004009039 0.29828119 0.4605856 0.19080601 0.3821834 0.4270106
12 12 0.004988270 0.40974945 0.4383355 0.20244712 0.2165999 0.5809529
23 23 -0.353135960 0.03376940 0.4250446 0.04238018 0.2424870 0.7151328
34 34 -0.351030679 0.03608485 0.4284948 0.04107568 0.2404412 0.7184831
45 45 -0.370795161 0.02795782 0.4282277 0.03956796 0.2269339 0.7334982
56 56 -0.326444221 0.02699155 0.4266908 0.02763386 0.2197316 0.7526345
67 67 -0.359979100 0.02467998 0.4271671 0.02883547 0.2165489 0.7546157
78 78 -0.374296800 0.02160651 0.4265674 0.02691817 0.2180796 0.7550023
89 89 -0.372327659 0.01982217 0.4257716 0.02629106 0.2186265 0.7550825
100 100 -0.372518847 0.02002258 0.4257626 0.02640997 0.2186892 0.7549009
min_cost mean_cost
1 0.6555717 0.7701302
12 0.6288037 0.6371994
23 0.6267816 0.6297125
34 0.6265897 0.6281724
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45 0.6258766 0.6279520
56 0.6254187 0.6278212
67 0.6253270 0.6277844
78 0.6252741 0.6277719
89 0.6252610 0.6277691
100 0.6252608 0.6277691

Optimal designs (k=3):
Points1 Points2 Points3

-0.37252 0.02002 0.42576
Weights1 Weights2 Weights3
0.026 0.219 0.755

ICA iteration: 100
Criterion value: 0.6252608
Total number of function evaluations: 38461
Total number of successful local search moves: 1087
Total number of successful revolution moves: 134
Convergence: maxiter
Total number of successful assimilation moves: 1115
CPU time: 203.82 seconds!

Maximum of the sensitivity function is 0.0003369562
Efficiency lower bound (ELB) is 0.9998316
Verification required 3.56 seconds!

Adjust the control parameters in 'sens.minimax.control' ('n_seg')
or in 'sens.bayes.control' for higher speed.
R> twoPL2$design
iter x1 x2 x3 w1 w2 w3 min_cost
1 100 -0.3725188 0.02002258 0.4257626 0.02640997 0.2186892 0.7549009 0.6252608
mean_cost max_sens elb time_sec
1 0.6277691 0.0003369562 0.9998316 3.56

Figure 4 (b) displays the plot of the sensitivity function of the design provided by the output
and it verifies its optimality. Similar to the locally c−optimal design, this design puts more than
97% of its weight on the positive support points.

7 Summary

ICAOD modifies a state-of-the-art metaheuristic algorithm called Imperialist Competitive Algorithm
to find different types of optimal designs for nonlinear models. We believe this package is more
self-contained and has more capability than the few available in the literature. In particular, ICAOD
offers different design approaches for handling the parameter dependency in the information matrix
when the model is nonlinear. A useful feature of the ICAOD package is that it can create the Fisher
information matrices for a very general class of nonlinear models automatically and also includes
useful theory-based tools to assess proximity of any design to the optimal design without knowing
the latter. Using ICAOD, it is also possible to find optimal designs for a user-specified optimality
criterion, including hard-to-find various types of minimax optimal designs for which the criterion is
not differentiable.

Due to space consideration, we presented only a few examples in this paper to show the
functionality of the package. The help-documentation manual for the package contains further
details and illustrations. We hope that the generality and simplicity of the ICAOD package will
encourage researchers from different disciplines to explore optimal design ideas in their work and
enable them to implement a more informed design to realize maximum statistical efficiency at
minimal cost.

Computational details

The results in this paper were obtained using R 4.0.2 with the ICAOD 1.0.1 package. R itself
and all packages used are available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/.
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Analysis of the Results of Metadynamics
Simulations by metadynminer and
metadynminer3d
by Dalibor Trapl and Vojtech Spiwok

Abstract Molecular simulations solve the equation of motion of molecular systems, making the 3D
shapes of molecules four-dimensional by adding the time coordinate. These methods have great
potential in drug discovery because they can realistically model the structures of protein molecules
targeted by drugs, as well as the process of binding of a potential drug to its molecular target.
However, routine application of biomolecular simulations is hampered by the very high computational
costs of this method. Several methods have been developed to address this problem. One of them,
metadynamics, disfavors states of the simulated system that have been already visited and thus forces
the system to explore new states. Here we present the package metadynminer and metadynminer3d
to analyze and visualize results from metadynamics, in particular those produced by a popular
metadynamics package Plumed.

1 Introduction

Molecular simulations and their pioneers Martin Karplus, Michael Levitt, and Arieh Warshel have
been awarded the Nobel Prize in 2013 (Karplus 2013). Their methods, in particular the method
of molecular dynamics simulation, computationally simulate the motions of atoms in a molecular
system. A simulation starts from a molecular system defined by positions (Cartesian coordinates) of
the individual atoms. The heart of the method is in a calculation of forces acting on individual atoms
and their numerical integration in the spirit of Newtonian dynamics, i.e., the conversion of a force
vector to an acceleration vector, then velocity vector and, finally, to a new position of an atom. By
repeating these steps, it is possible to reconstruct a record of atomic motions known as a trajectory.

Molecular simulations have great potential in drug discovery. A molecule of drug influences
(enhances or blocks) the function of some biomolecule in the patient’s body, typically a receptor,
enzyme or other protein. These molecules are called drug targets. The process of design for a new
drug can be significantly accelerated with knowledge of the 3D structure (Cartesian coordinates of
atoms) of the target. With such knowledge, it is possible to find a “druggable” cavity in the target and
a molecule that fits and favorably binds to this cavity to influence its function. Strong binding implies
that the drug influences the target even in low doses, hence does not cause side effects by interacting
with unwanted targets.

Experimental determination of the 3D structures of proteins and other biomolecules is a very
expensive and laborious process. Molecular simulations can, at least in principle, replace such
expensive and laborious experiments by computing. In principle, a molecular simulation starting
from virtually any 3D shape of a molecule would end up in energetically the most favorable shape.
This is analogous with water flowing from mountains to valleys and not in the opposite way.

Unfortunately, this approach is extremely computationally expensive. The integration step of a
simulation must be small enough to comprise the fastest motions in the molecular system. In practical
simulations, it is necessary to use femtosecond integration steps. This means that it is necessary to
carry out thousands of steps to simulate picoseconds, millions of steps to simulate nanoseconds, and
so forth. In each step, it is necessary to evaluate a substantial number of interactions between atoms.
As a result, it is possible to routinely simulate nano- to microseconds. Longer simulations require
special high-performance computing resources.

Protein folding, i.e., the transition from a quasi-random to the biologically relevant 3D structure,
takes place in microseconds for very small proteins and in much longer time scales for pharmaceutically
interesting proteins. For this reason, prediction of a 3D structure by molecular simulations is limited
to few small and fast folding proteins. For large proteins, it is currently impossible or at least far from
being routine.

Several methods have been developed to address this problem. Metadynamics (Laio and Parrinello
2002) uses artificial forces to force the system to explore states that have not been previously explored
in the simulation. At the beginning of the simulation, it is necessary to chose some parameters of the
system referred to as collective variables. For example, numerically expressed compactness of the
protein can be used as a collective variable to accelerate its folding from a noncompact to a compact 3D
structure. Metadynamics starts as a usual simulation. After a certain number of steps (typically 500),
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the values of the collective variables are calculated and from this moment this state becomes slightly
energetically disfavored due to the addition of an artificial bias potential in the shape of a Gaussian hill.
After another 500 steps, another hill is added to the bias potential and so forth. These Gaussian hills
accumulate until they “flood” some energy minimum and help the system to escape this minimum
and explore various other states (Figure 1). In the analogy of water floating from mountains to valleys,
metadynamics adds “sand” to fill valleys to make water flow from valleys back to mountains. This
makes the simulation significantly more efficient compared to a conventional simulation because the
“water” does not get stuck anywhere.

Using the application of metadynamics, it is possible to significantly accelerate the process of
folding. Hopefully, by the end of metadynamics we can see folded, unfolded, and many other states of
the protein. However, the interpretation of the trajectory is not straightforward. In standard molecular
dynamics simulation (without metadynamics), the state which is the most populated is the most
populated in reality. This is not true anymore with metadynamics.

Packages metadynminer and metadynminer3d use the results of metadynamics simulations
to calculate the free energy surface of the molecular system. The most favored states (states most
populated in reality) correspond to minima on the free energy surface. The state with the lowest free
energy is the most populated state in the reality, i.e., the folded 3D structure of the protein.

As an example to illustrate metadynamics and our package, we use an ultrasimple molecule of
“alanine dipeptide” (Figure 1). This molecule can be viewed as a “protein” with just one amino acid
residue (real proteins have hundreds or thousands of amino acid residues). As a collective variable
it is possible to use an angle ϕ defined by four atoms. Biasing of this collective variable accelerates
a slow rotation around the corresponding bond. Figure 1 shows the free energy surface of alanine
dipeptide as the black thick line. It is not known before the simulation. The simulation starts from the
state B. After 500 simulation steps, the hill is added (the hill is depicted as the red line, the flooding
potential (“sand”) at the top, the free energy surface with added flooding potential at the bottom). The
sum of 1, 10, 100, 200, 500, and 700 hills are depicted as red to blue lines.

At the end of simulation the free energy surface is relatively well flattened (blue line in Fig. 1
bottom). Therefore, the free energy surface can be estimated as a negative imprint of added “sand”:

G(s) = −kT log(P(s)) = −V(s) = ∑
i

wi exp(−(s − Si)
2/2σ2), (1)

where G, V, and P are free energy, metadynamics bias (flooding) potential, and probability,
respectively, of a state with a collective variable s, k is Boltzmann constant, T is temperature in Kelvins,
wi is height, Si is position and σi is width of each hill. The equation can be easily generalized for two
or more collective variables.

The original version of metadynamics was developed with constant heights of Gaussian hills.
Later, a so-called well-tempered metadynamics was developed (Barducci, Bussi, and Parrinello 2007),
which uses decreasing hill heights to improve the accuracy of the results. This requires modification of
the equation:

G(s) = −kT log(P(s)) = −T + ∆T
∆T

V(s) = −T + ∆T
∆T ∑

i
wi exp(−(s − Si)

2/2σ2), (2)

where ∆T an input parameter with the dimension of temperature (zero for unbiased simulation
and infinity for the original metadynamics with constant hill heights). Nowadays, the vast majority of
metadynamics applications use the well-tempered metadynamics algorithm for better convergence
towards an accurate free energy surface prediction.

There are numerous packages for molecular simulations such as Amber (Weiner and Kollman
1981), Gromacs (Abraham et al. 2015), Gromos (Christen et al. 2005), NAMD (Phillips et al. 2020),
CHARMM (Brooks et al. 2009), Acemd (Harvey, Giupponi, and Fabritiis 2009), and others. These
packages are primarily developed for basic unbiased simulations with no or very limited support of
metadynamics. Plumed software (Tribello et al. 2014) has been developed to introduce metadynamics
into various simulation programs. Since its introduction, Plumed articles have been cited in more
than thousand papers from drug design, molecular biology, material sciences, and other fields. The
R package metadynminer was developed for analysis and visualization of the results from Plumed.
With a simple file conversion script, it can be used also with other simulation programs that support
metadynamics.
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Figure 1: Metadynamics simulation of alanine dipeptide. Dihedral angle ϕ was used as the collective
variable. The top part shows molecular structures of three free energy minima (stable structures)
differing in the value of ϕ. According to metadynamics prediction, A is the global minimum (free
energy 0 kJ/mol) and B and C are local minima (1.5 and 6.3 kJ/mol, respectively). According to
Equation 1, this corresponds to probabilities 0.61, 0.34, and 0.05 for A, B, and C, respectively. The
middle part shows the bias potential (scaled by (T + ∆T)/∆T) after addition of 1, 10, 100, 200, 500, and
700 hills (colors from red to blue). The bottom part shows the accurate free energy surface calculated
by metadynamics with 30,000 hills (black) flooded by 1, 10, 100, 200, 500, and 700 hills (colors from
red to blue). The figure was generated by metadynminer except for molecular structures and final
assembly.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 49

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

phi

ps
i

Figure 2: Scatter plot of hills position. Each point in the plot represents a single hill in the space of
collective variable coordinates. This helps to assess which states of the system were sampled.

2 Example of usage

The package metadynminer will be presented on a bias potential from a 30 ns (30,000 hills) simulation
of alanine dipeptide (Figure 1). Two rotatable bonds of the molecule, referred to as ϕ and ψ, were
used as collective variables. This is basically an expansion of the free energy surface in Figure 1
to two dimensions. Hills from simulations with two collective variables (ϕ and ψ) and with one
collective variable (ϕ) are provided in metadynminer as acealanme and acealanme1d, respectively.
metadynminer3d was developed for analysis of metadynamics with three collective variables. It
contains a sample data acealanmed3, with collective variables ϕ, ψ and ω. We decided to distribute
metadynminer and metadynminer3d separately, because of the use of different visualization tools
and to keep the size of packages low. Metadynamics simulations with 1-3 collective variables comprise
almost all metadynamics applications nowadays (not considering special metadynamics variants).

Hills file generated by Plumed package (filename HILLS) can be loaded to R by the function
read.hills:

hillsfile <- read.hills("HILLS.txt", per=c(TRUE, TRUE))

The parameter per indicates periodicity of the collective variable (dihedral angles are periodic, i.e.,
+π ≃ −π). For the simulation described above, hillsfile is identical to acealanme already contained
in metadynminer as an example.

Typing the name hillsfile will return its dimensionality (the number of collective variables) and
the number of hills. A hills object can be plotted:

plot(hillsfile, xlab="phi", ylab="psi", pch=19, cex=0.5, col=gray(0, 0.1))

For metadynamics with one collective variable, it plots its evolution. For metadynamics with two
or three collective variables, it plots a scatter plot of collective variables number 1 vs. 2 or 1 vs. 2 vs. 3,
respectively (Figure 2).

In well-tempered metadynamics it may be interesting to see the evolution of hill heights (wi in
Equation (2)). This can be plotted (Figure 3) by typing:
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Figure 3: Evolution of heights of hills in metadynamics plotted by function plotheights. In well-
tempered metadynamics, heights of hills decrease with the progress of flooding of free energy minima.
The evolution of heights of hills may help to assess the completeness of flooding.

plotheights(hillsfile)

Addition operation is available for hillsfile object. For example, multiple hills files can be concate-
nated.

Next, the user can sum negative values of all hills to make the free energy surface estimate by
typing:

fesurface <- fes(hillsfile)

Hills files from well-tempered metadynamics are prescaled by (∆T + T)/∆T when printed by
Plumed, so no special action is required in metadynminer. The function fes uses the Bias Sum
algorithm (Hošek and Spiwok 2016). This function is fast because instead of evaluation of Gaussian
function for every hill, it uses a precomputed Gaussian hill that is relocated to hill centers. It is also fast
because it was implemented in C++ via Rcpp. Because of approximations used in the function fes, this
function should be used for visualization purposes. For detailed analysis of a free energy surface, we
advise to use a slow but accurate fes2 function. This function explicitly evaluates Gaussian function
for every hill. It can be also used for (rarely used) metadynamics with variable hill widths.

Typing the name of the variable with a free energy surface returns its dimensionality, number
of points, and free energy maximum and minimum. The same is returned by summary function. It
is possible to add and subtract two free energy surfaces with the same number of grid points. The
functions min and max can be used as well to calculate minimum or maximum. It is also possible to
multiply or divide the free energy surface by a constant (for example, to convert kJ to kcal and vice
versa). Free energy surface can be plotted (Figure 4) by typing:

plot(fesurface, xlab="phi", ylab="psi")

In metadynamics simulation, it is important to find free energy minima. The global minimum
refers to the most favored state of the system (i.e., the state with the highest probability). Other local
minima correspond to metastable states. The user can find free energy minima by typing:
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Figure 4: Free energy surface. Minima (blue colors) represent stable states with high abundance,
whereas regions with high free energy correspond to low abundance states.

minima <- fesminima(fesurface)

This function locates minima using a simple algorithm. The free energy surface is separated into
8, 8x8, or 8x8x8 bins (for 1D, 2D, or 3D surface, respectively). The minimum in each bin is located.
Next, the program tests whether the minimum is a local minimum of the whole free energy surface.
The number of grid points can be changed by ngrid parameter. Typing the name of the minima
variable will return the table of minima (denoted as A, B, C, . . . in the order of their free energies),
their collective variables, and free energy values.

In addition, the function summary provides populations of each minimum calculated as:

Pi,rel = exp(−Gi/kT), (3)

Pi = Pi,rel/ ∑(Pj,rel). (4)

#> letter CV1bin CV2bin CV1 CV2 free_energy relative_pop
#> 1 A 78 236 -1.2443171 2.6487938 -97.26095 8.614856e+16
#> 2 B 28 240 -2.4763142 2.7473536 -95.63038 4.480527e+16
#> 3 C 74 118 -1.3428769 -0.2587194 -94.73163 3.124915e+16
#> 4 D 166 151 0.9239978 0.5543987 -91.66626 9.143024e+15
#> 5 E 170 251 1.0225576 3.0183929 -84.37799 4.920882e+14
#> pop
#> 1 50.1335658
#> 2 26.0741201
#> 3 18.1852268
#> 4 5.3207200
#> 5 0.2863674

Using the plot function on a fesminima output provides the same plot as for fes output with
additional letters indicating minima (Figure 5).

It is essential to evaluate the accuracy of metadynamics and to decide when the simulation is
accurate enough so that it can be stopped. For this purpose, it is useful to look at the evolution of
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Figure 5: Free energy surface with indicated free energy minima A-E. The minimum A is the most
abundant state, minima B-E are metastable states.

relative free energies. The relative free energies (for example, the free energy difference of minima
A and C) evolve rapidly at the beginning of the simulation, and with the progress of the simulation,
their difference is converging towards the real free energy difference. Function feprof calculates the
evolution of free energy differences from the global minimum (global at the end of the simulation). It
can be used as:

prof <- feprof(minima)

Function summary provides minima and maxima of these free energy differences. The evolution
can be plotted (Figure 6) by typing:

plot(prof)

Beside minima, another important points on the free energy surface are transition states. Change
of the molecular structure from one minimum to another takes place via a path with the lowest energy
demand. The state with the highest energy along this path is called the transition state. Free energy
difference between the initial and transition state can be used to predict kinetics (rates) of the studied
molecular process. Furthermore, identification of transition states is important in drug design because
compounds designed to mimic the transition states of an enzymatic reaction are often potent enzymes
inhibitors and thus good drug candidates (Itzstein et al. 1993).

In metadynminer, such path can be identified by Nudged Elastic Band method (Henkelman and
Jónsson 2000). Briefly, this method plots a line between selected minima as an initial approximation
of the transition path. Next, this line is curved so that the corresponding physical process becomes
feasible. This function can be applied on, for example, minima A and D as:

nebAD <- neb(minima, min1="A", min2="D")

The result can be analyzed by summary (to provide kinetics of the A to D and D to A change
predicted by Eyring equation (Eyring 1935)), by plot (to plot the free energy profile of the molecular
process) and by pointsonfes or linesonfes (to plot the path on top of the free energy surface). The
last example can be invoked by:
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Figure 6: Evolution of free energy differences. The free energy differences of minima B-E (relative
to the global minimum A) converge to the exact free energy differences with the progress of the
simulation. This plot helps to assess the accuracy of the predicted free energy differences.
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Figure 7: Path of transition from A to D projected onto free energy surface. This represents the most
favorable path between these minima. It can be used to identify the transition state (the point with the
highest energy on the path) and the rate of the transition.

plot(minima, xlab="phi", ylab="psi")
linesonfes(nebAD, lwd=4)

The resulting plot is depicted in Figure 7.

Let us also briefly present metadynminer3d. This package uses packages rgl and misc3d to plot
the free energy surface as an interactive (mouse rotatable) isosurface in the space of three collective
variables (see Figure 8). metadynminer3d can produce interactive WebGL visualizations using
writeWebGL command from the rgl package.

metadynminer and metadynminer3d were developed to be highly flexible. This flexibility can
be demonstrated on two examples. First, it is useful to visualize the progress of metadynamics as a
video sequence showing the evolution of the free energy surface. The code to generate corresponding
images can be written in metadynminer as:

tfes <- fes(hillsfile, tmax=100)
png("snap%04d.png")
plot(tfes, zlim=c(-200,0))
for(i in 1:299) {
tfes <- tfes+fes(acealanme, imin=100*i+1, imax=100*(i+1))
plot(tfes, zlim=c(-200,0), xlab="phi", ylab="psi")

}
dev.off()

This generates a series of images that can be concatenated by external software to make a video
file.

The second example demonstrates a more complicated analysis of the results from metadynamics.
Functions fes and fes2 use equations (1) and (2) to predict the free energy surface. A limitation of
this approach is that the prediction of the free energy surface is based only on the positions of hills.
The evolution of collective variables between hills depositions is not used. As an alternative, it is
possible to use reweighting (Torrie and Valleau 1977),(Tiwary and Parrinello 2015). This approach
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Figure 8: 3D free energy surface depicted as isosurface at -30 kJ/mol. It is analogous to the 2D plot in
Figure 4, but with three collective variables.

calculates the free energy surface from hills positions as well as from evolution of collective variables.
Briefly, regions of the free energy surface that are sampled despite being disfavored by high flooding
potential have higher weights than those disfavored by low flooding potential. This approach, in
general, is more accurate. A file containing values of collective variables and the bias potential at
different snapshots of the simulation (default filename COLVAR) is required. Reweighting can be
done using the code:

bf <- 15
kT <- 8.314*300/1000
npoints <- 50
maxfes <- 75
outfes <- 0*fes(hillsfile, npoints=npoints)
step <- 1:50*length(hillsfile$time)/50
s1 <- sapply(step, FUN=function(x) {

sum(exp(-fes(hillsfile, imax=x)$fes/kT))
})
s2 <- sapply(step, FUN=function(x) {

sum(exp(-fes(hillsfile, imax=x)$fes/kT/bf))
})
ebetac <- s1/s2
cvs <- read.table("COLVAR.txt")
nsamples <- nrow(cvs)
xlim <- c(-pi,pi)
ylim <- c(-pi,pi)
step <- (1:nsamples-1)*50/nsamples+1
ix <- npoints*(cvs[,2]-xlim[1])/(xlim[2]-xlim[1])+1
iy <- npoints*(cvs[,3]-ylim[1])/(ylim[2]-ylim[1])+1
for(i in 1:nsamples) {
outfes$fes[ix[i],iy[i]] <- outfes$fes[ix[i],iy[i]] + exp(cvs[i,4]/kT)/

ebetac[step[i]]
}
outfes$fes <- -kT*log(outfes$fes)
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Figure 9: Free energy surface calculated by reweighting by Tiwary and Parrinello. This free energy
surface was calculated by combining the information on time spent in different regions of the free
energy surface and on the potential disfavoring these regions. This approach is in general more
accurate than the summation of hills used to generate Figures 4-8.

outfes <- outfes - min(outfes)
outfes$fes[outfes$fes>maxfes] <- maxfes
plot(outfes, xlab="phi", ylab="psi")

where bf is the bias factor ((T +∆T)/T in Equation (2)), kT is temperature in Kelvins multiplied by
Boltzmann constant, npoints is the granularity of the resulting free energy surface and maxfes is the
maximal possible free energy (to avoid problems with infinite free energy in unsampled regions). First,
outfes is introduced as a zero free energy surface. First, the correction ebetac for the evolution of
flooding potential developed by Tiwary and Parrinello (Tiwary and Parrinello 2015) is calculated. Next,
a file with the evolution of collective variables COLVAR (from the same simulation used to generate
acealanme dataset, available at https://www.metadynamics.cz/metadynminer/data/) is read. The
second loop evaluates the sampling weighted by the factor exp(V(s)/kT) divided by ebetac to correct
for the evolution of the bias potential (Tiwary and Parrinello 2015). Finally, probabilities are converted
to the free energy surface and plotted (Figure 9).

3 Simulation details

All simulations were done using Gromacs 2016.4 (Abraham et al. 2015) patched by Plumed 2.4b
(Tribello et al. 2014). Alanine dipeptide was modeled using Amber99SB-ILDN force field (Lindorff-
Larsen et al. 2010). The simulated system contained alanine dipeptide and 874 TIP3P (Jorgensen
et al. 1983) water molecules. The temperature was kept constant at 300 K using Bussi thermostat
(Bussi, Donadio, and Parrinello 2007). Metadynamics hills of height 1 kJ/mol (bias factor 10) and
widths 0.3 rad were added every 1 ps. Two simulations were done, one with one dihedral angle
ϕ (dataset acealanme1d), two dihedral angles ϕ and ψ (dataset acealanme), or with three angle ϕ,
ϕ and ω (dataset acealanme3d in metadynminer3d). Supporting material is available at https://
www.metadynamics.cz/metadynminer/data/ or in Plumed nest (PLUMED consortium 2019) at https:
//www.plumed-nest.org/eggs/20/023/.
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4 Summary

The package metadynminer and metadynminer3d provides fast algorithm Bias Sum (Hošek and
Spiwok 2016) for calculation of free energy surfaces from metadynamics. This algorithm is available
in our on-line tool MetadynView (http://metadyn.vscht.cz), but this tools is intended for routine
checking of the progress of metadynamics simulations rather than for in-depth analysis and visualiza-
tion. Besides this, users of metadynamics use built-in functions in Plumed or various in-lab scripts.
Such scripts do not provide appropriate flexibility in analysis and visualization.

The biggest advantage we see is in the fact that metadynminer can produce publication quality
figures via graphics output functions in R. As shown above, using a simple for loop it is possible
to plot individual snapshots and concatenate them outside R to make a movie. metadynminer3d
provides the possibility to produce interactive 3D web models by WebGL technology. We also tested
3D printing of a free energy surface that is very easy using metadynminer and rayshader. Various tips
and tricks can be found on the website of the project (https://www.metadynamics.cz/metadynminer/).

Another advantage we see is in the reporting of results. Reproducibility is a big issue in science,
including molecular simulations. Packages like knitr or rmarkdown ca be used to record all steps of
data analysis pipeline to compile a report for routine and reproducible use of metadynamics.
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casebase: An Alternative Framework for
Survival Analysis and Comparison of
Event Rates
by Sahir Rai Bhatnagar*, Maxime Turgeon*, Jesse Islam, James A. Hanley, and Olli Saarela

Abstract In clinical studies of time-to-event data, a quantity of interest to the clinician is their patient’s
risk of an event. However, methods relying on time matching or risk-set sampling (including Cox
regression) eliminate the baseline hazard from the estimating function. As a consequence, the focus has
been on reporting hazard ratios instead of survival or cumulative incidence curves. Indeed, reporting
patient risk or cumulative incidence requires a separate estimation of the baseline hazard. Using
case-base sampling, Hanley & Miettinen (2009) explained how parametric hazard functions can be
estimated in continuous-time using logistic regression. Their approach naturally leads to estimates
of the survival or risk function that are smooth-in-time. In this paper, we present the casebase R
package, a comprehensive and flexible toolkit for parametric survival analysis. We describe how
the case-base framework can also be used in more complex settings: non-linear functions of time
and non-proportional hazards, competing risks, and variable selection. Our package also includes
an extensive array of visualization tools to complement the analysis. We illustrate all these features
through three different case studies. * SRB and MT contributed equally to this work.

1 Introduction

The semiparametric Cox model has become the default approach to survival analysis even though Cox
himself later suggested he would prefer to model the hazard function directly. In a 1994 interview with
Professor Nancy Reid, Sir David Cox was asked how he would model a set of censored survival data,
to which he responded: “I think I would normally want to tackle problems parametrically . . . and if
you want to do things like predict the outcome for a particular patient, it’s much more convenient to
do that parametrically” (Reid 1994). Indeed, the most relevant quantity in a clinical setting is often the
5- or 10-year risk of experiencing a certain event given the patient’s particular profile. However, the
most reported metric from a Cox model is the (potentially time-dependent) hazard ratio (HR). The
covariate-conditional survival curve is arguably a more important summary measure to report than
the HR. While stepwise survival curves can be computed with the Cox model, they require a second
step to separately estimate the baseline hazard (Breslow 1972).

Several authors have since pursued fully parametric approaches that made the fitting of smooth
survival curves more transparent and intuitive through generalized linear models. The key feature
of these procedures is splitting the time axis into discrete intervals. Whitehead (1980) showed the
equivalence between a Cox model and a Poisson regression with a parameter for each event time;
Carstensen (2019) provides an exposition of this equivalence with a real data example and supporting
R code for computing standard errors. Arjas & Haara (1987) and Efron (1988) treated each patient-day
as a Bernoulli random variable with probability equal to the discrete hazard rate. A potential issue
with these approaches is that the number of time bins need to be chosen by the data analyst. On the
one hand, a fine grouping of times may result in few (or none) events per interval, which then leads to
instability in the Newton-Raphson procedure for estimation (Kalbfleisch and Prentice 2011, vol. 360,
sec. 4.8), and large long-format datasets. On the other hand, a coarse grouping could potentially mask
nonlinear trends in the hazard function.

Rather than discretizing time, Hanley & Miettinen (2009) selected a discrete set of person-time
coordinates (“person-moments”) in continuous time from all observed follow-up experience constitut-
ing the study base. By doing so, they obtained a likelihood expression for the hazard function that
is equivalent to that of logistic regression with an offset term. More specifically, all person-moments
when the event of interest occurred are selected as the case series, complemented by a randomly
sampled base series of person-moments serving as controls. This approach allows flexible modeling
of the hazard function by including functions of time as covariates (e.g. using splines or generalized
additive models). Furthermore, time-dependent covariates can be modeled through interactions with
time. In short, Hanley & Miettinen (2009) use the well-understood logistic regression for directly
modeling the hazard function, without requiring a discrete-time model.

In this article, we present the casebase R package (Bhatnagar et al. 2021) which implements
and extends the Hanley & Miettinen (2009) approach for fitting fully parametric hazard models and
covariate-conditional survival curves using the familiar interface of the glm function. Our imple-
mentation includes extensions to other models such as penalized regression for variable selection
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and competing risk analysis. In addition, we provide functions for exploratory data analysis and
visualizing the estimated quantities such as the hazard function, survival curve, and their standard
errors. The ultimate goal of our package is to make fitting flexible hazards accessible to end users who
favor reporting absolute risks and survival curves over hazard ratios.

In what follows, we first recap some theoretical details on case-base sampling and its use for
estimating parametric hazard functions. We then give a short review of existing R packages that
implement comparable features to casebase. Next, we provide some details about the implementation
of case-base sampling in our package, and we give a brief survey of its main functions. This is followed
by three case studies that illustrate the flexibility and capabilities of casebase. We show how the same
framework can be used for non-linear functions of time and non-proportional hazards, competing
risks, and variable selection via penalized regression. Finally, we end the article with a discussion of
the results and of future directions.

2 Theoretical details

As discussed in Hanley & Miettinen (2009), the key idea behind case-base sampling is to consider the
entire study base as an infinite collection of person-moments. These person-moments are indexed by
both an individual in the study and a time point, and therefore each person-moment has a covariate
profile and an outcome status (i.e. whether the event happened) attached to it. By estimating the
probability of an event occurring at a particular person-moment, we can extract information about
hazards and survival.

Therefore, we start by assembling all person-moments at which the event occurred; this collection
of person-moments is what Hanley & Miettinen call the case series. The incidence of the case series
is dictated by the hazard function of interest. Next, we sample a finite number of person-moments
(blinded to case moments); this second collection of person-moments is what Hanley & Miettinen
call the base series. The sampling mechanism for the base series is left at the discretion of the user, but
in practice we find that sampling uniformly from the study base provides both simplicity and good
performance. This is the default sampling mechanism in the package.

Likelihood and estimating function

To describe the theoretical foundations of case-base sampling, we use the framework of counting
processes. In what follows, we abuse notation slightly and omit any mention of σ-algebras. Instead,
following Aalen et al (2008), we use the placeholder “past” to denote the past history of the correspond-
ing process. The reader interested in more details can refer to Saarela & Arjas (2015) and Saarela (2016).
First, let Ni(t) ∈ {0, 1} be counting processes corresponding to the event of interest for individual
i = 1, . . . , n. For simplicity, we will consider Type I censoring due to the end of follow-up at time τ
(the general case of independent censoring is treated in Saarela (2016)). We are interested in modeling
the hazard functions λi(t) of the processes Ni(t), and which satisfy

λi(t)dt = E[dNi(t) | past].

The processes Ni(t) count the person-moments from the case series.

To complement the case series, we sample person-moments for the base series. To do so, we specify
the base series sampling mechanism as non-homogeneous Poisson processes Ri(t) ∈ {0, 1, 2, . . .};
the person-moments where dRi(t) = 1 constitute the base series. We note that the same individual
can contribute multiple person-moments to the base series. The process Qi(t) = Ri(t) + Ni(t) then
counts both the case and base series person-moments contributed by individual i. As mentioned
above, the processes Ri(t) are specified by the user via its intensity function ρi(t). The process Qi(t) is
characterized by E[dQi(t) | past] = λi(t)dt + ρi(t)dt.

If the hazard function λi(t; θ) is parametrized in terms of θ, we can define an estimator θ̂ by
maximization of the likelihood expression

L0(θ) =
n

∏
i=1

exp
{
−
∫ min(ti ,τ)

0
λi(t; θ)dt

} n

∏
i=1

∏
t∈[0,τ)

λi(t; θ)dNi(t),

where ∏t∈[0,u) represents a product integral from 0 to u, and where ti is the event time for individual i.
However, the integral over time makes the computation and maximization of L0(θ) challenging using
standard software.

Case-base sampling allows us to avoid this integral. By conditioning on a sampled person-moment,
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we get individual partial likelihood contributions of the form

P(dNi(t) | dQi(t) = 1, past)
θ
∝

λi(t; θ)dNi(t)

ρi(t) + λi(t; θ)
.

By using the symbol
θ
∝, we mean that both sides of the expression are equal up to multiplicative

factors that do not depend on θ. Therefore, an estimating function for θ can be composed of these
contributions as:

L(θ) =
n

∏
i=1

∏
t∈[0,τ)

(
λi(t; θ)dNi(t)

ρi(t) + λi(t; θ)

)dQi(t)

. (1)

When a logarithmic link function is used for modeling the hazard function, the above expression is of
a logistic regression form with an offset term log(1/ρi(t)). Note that the sampling units selected in
the case-base sampling mechanism are person-moments, rather than individuals, and the parameters
to be estimated are hazards or hazard ratios rather than odds or odds ratios. Generally, an individual
can contribute more than one person-moment, and thus the terms in the product integral are not
independent. Nonetheless, Saarela (2016) showed that the corresponding partial likelihood score
function has mean zero at the true value θ = θ0, and that the resulting estimator θ̂ is asymptotically
normally distributed.

In Hanley & Miettinen (2009), the authors suggest sampling the base series uniformly from the
study base. In terms of Poisson processes, their sampling strategy corresponds to a time-homogeneous
Poisson process with intensity equal to ρi(t) = b/B, where b is the number of sampled base series
person-moments, and B is the total population-time for the study base (e.g. the sum of all individual
follow-up times). More complex examples are also possible; see for example Saarela & Arjas (2015),
where the intensity functions for the sampling mechanism are proportional to the cardiovascular
disease event rate given by the Framingham score. Non-uniform sampling mechanisms can increase
the efficiency of the resulting maximum partial likelihood estimators.

Variance estimates

The asymptotic normality of θ̂ gives us an efficient way to estimate the variance of various estimators
derived from the hazard function. For example, to construct confidence bands around risk functions
and survival functions, we can use the following procedure:

1. Compute θ̂ and its variance-covariance matrix V(θ̂) which is obtained as part of the logistic
regression output.

2. Sample B times from a multivariate normal N
(

θ̂, V(θ̂)
)

.
3. For each sample, compute the survival function using Equation (6) below.
4. Use the pointwise quantiles of these survival function estimates to construct a pointwise

confidence band for the survival function of interest.

This procedure is similar to parametric bootstrap (Efron and Tibshirani 1994, sec. 6.5), but it can be
more accurately described as a form of approximate Bayesian computation. As such, the validity of
the confidence bands relies on the Bernstein-von Mises theorem (Van der Vaart 2000, vol. 3, chap. 10).

Common parametric models

Here we show that certain named distributions such as exponential, Weibull or Gompertz can be fit
using our framework, though we are not restricted to such models. Let g(t; X) be the linear predictor
such that log(λ(t; X)) = g(t; X). Different functions of t lead to different parametric hazard models.
The simplest of these models is the one-parameter exponential distribution which is obtained by
taking the hazard function to be constant over the range of t:

log(λ(t; X)) = β0 + β1X. (2)

In this model, the instantaneous failure rate is independent of t.1

The Gompertz hazard model is given by including a linear term for time:

log(λ(t; X)) = β0 + β1t + β2X. (3)

1The conditional chance of failure in a time interval of specified length is the same regardless of how long the
individual has been in the study. This is also known as the memoryless property (Kalbfleisch and Prentice 2011).
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Use of log(t) yields the Weibull hazard which allows for a power dependence of the hazard on
time (Kalbfleisch and Prentice 2011):

log(λ(t; X)) = β0 + β1 log(t) + β2X. (4)

Competing risk analysis

Case-base sampling can also be used in the context of competing risk analysis. Assuming there are
J competing events, we can show that each sampled person-moment’s contribution to the partial
likelihood is of the form

λj(t)dNj(t)

ρ(t) + ∑J
j=1 λj(t)

,

where Nj(t) is the counting process associated with the event of type j and λj(t) is the corresponding
cause-specific hazard function. As may be expected, this functional form is similar to the terms
appearing in the likelihood function for multinomial regression with an offset term.2

Variable selection

To perform variable selection on the regression parameters θ ∈ Rp of the hazard function, we can add
a penalty to the likelihood and optimise the following equation:

min
θ∈Rp

−ℓ (θ) +
p

∑
j=1

wj pλ,α(θj) (5)

where ℓ (θ) = log L(θ) is the log of the likelihood function given in (1), pλ,α(θj) is a penalty term
controlled by the non-negative regularization parameters λ and α, and wj is the penalty factor for the
jth covariate. These penalty factors serve as a way of allowing parameters to be penalized differently.
For example, we could set the penalty factor for time to be 0 to ensure it is always included in the
selected model.

3 Comparison with existing packages

Survival analysis is an important branch of applied statistics and epidemiology. Accordingly, there is
already a vast ecosystem of R packages implementing different methodologies. In this section, we
describe how the functionalities of casebase compare to these packages.

At the time of writing, a cursory examination of CRAN’s Survival Task View reveals that there
are over 250 packages related to survival analysis (Allignol and Latouche 2019). For the purposes
of this article, we restricted our review to packages that implement at least one of the following
features: parametric modeling, non-proportional hazard models, competing risk analysis, penalized
estimation, and Cumulative Incidence (CI) estimation. By searching for appropriate keywords in the
DESCRIPTION file of these packages, we found 60 relevant packages. These 60 packages were then
manually examined to determine which ones are comparable to casebase. In particular, we excluded
packages that were focused on a different set of problems, such as frailty and multistate models. The
remaining 14 packages appear in Table 1, along with some of the functionalities they offer.

Parametric survival models are implemented in several packages, each differing in the parametric
distributions available: CFC (2019), flexsurv (2016), SmoothHazard (2017), rstpm2 (2019), mets
(2014), and survival (2015). For example, SmoothHazard is limited to Weibull distributions (2017),
whereas both flexsurv and survival allow users to supply any distribution of their choice. flexsurv,
SmoothHazard, mets and rstpm2 can model the effect of time using splines, which allows flexible
modeling of the hazard function. As discussed above, casebase can model any parametric family
whose log-hazard can be expressed as a linear combination of covariates (including time). Therefore,
our package is more general in that it allows the user to model any linear or non-linear transformation
of time including splines and higher order polynomials. Also, by including interaction terms between

2Specifically, it corresponds to the following parametrization for a multinomial random variable Y:

log
(

P(Y = j | X)

P(Y = J | X)

)
= XT β j + log(1/ρ), j = 1, . . . , J − 1.
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Table 1: Comparison of various R packages for survival analysis. Competing Risks: whether an
implementation for competing risks is present. Allows Non PH: includes models for non-proportional
hazards. Penalized Regression: allows for a penalty term on the regression coefficients when es-
timating hazards (e.g. lasso or ridge). Splines: allows a flexible fit on time through the use of
splines. Parametric: implementation for parametric models. Semi-parametric: implementation for
semi-parametric models. Interval/left censoring: models for interval and left-censoring. If this is not
selected, the package only handles right-censoring. Risk estimates: estimation of survival curve and
cumulative incidence is available.

Package Competing Risks Allows Non PH Penalized Regression Splines Parametric Semi Parametric Interval/Left Censoring Risk Estimates

casebase X X X X X X
CFC X X X X
cmprsk X X X
crrp X X X
fastcox X X

flexrsurv X X X X
flexsurv X X X X X
glmnet X X X
glmpath X X
mets X X X X

penalized X X
riskRegression X X X X
rstpm2 X X X X X X
SmoothHazard X X X X
survival X X X X X X

covariates and time, it also allows users to fit (non-proportional) time-varying coefficient models.
However, unlike flexsurv, we do not explicitly model any shape parameter.

Several packages implement penalized estimation for the Cox model: glmnet (2011), glmpath
(2018), penalized (2010), riskRegression (2020). Moreover, some packages also include penalized
estimation in the context of Cox models with time-varying coefficients: elastic-net penalization with
rstpm2 (2019), while survival (2015) has an implementation of ridge-penalized estimation. On the
other hand, our package casebase provides penalized estimation of the hazard function. To our
knowledge, casebase and rstpm2 are the only packages to offer this functionality.

Next, several R packages implement methodologies for competing risk analysis; for a different
perspective on this topic, see Mahani & Sharabiani (2019). The package survival provides functionality
for competing risk analysis and multistate modelling. The package cmprsk provides methods for
cause-specific subdistribution hazards, such as in the Fine-Gray model (1999). On the other hand, the
package CFC estimates cause-specific CIs from unadjusted, non-parametric survival functions. Our
package casebase also provides functionalities for competing risk analysis by estimating parametrically
the cause-specific hazards. From these quantities, we can then estimate the cause-specific CIs.

Finally, several packages include functions to estimate the survival function and the CI. The corre-
sponding methods generally fall into two categories: transformation of the estimated hazard function,
and semi-parametric estimation of the baseline hazard. The first category broadly corresponds to
parametric survival models, where the full hazard is explicitly modeled. Using this estimate, the
survival function and the CI can be obtained using their functional relationships (see Equations (6)
and (7) below). Packages providing this functionality include CFC, flexsurv, mets, and survival. Our
package casebase also follows this approach for both single-event and competing risk analyses. The
second category outlined above broadly corresponds to semi-parametric models. These models do
not model the full hazard function, and therefore the baseline hazard needs to be estimated sepa-
rately in order to estimate the survival function. This is achieved using semi-parametric estimators
(e.g. Breslow’s estimator) or parametric estimators (e.g. spline functions). Packages that implement this
approach include riskRegression, rstpm2, survival, and glmnet. As mentioned in the introduction,
a key distinguishing factor between these two approaches is that the first category leads to smooth
estimates of the survival function, whereas the second category often produces estimates in the form
of stepwise functions.

4 Implementation details

The functions in the casebase package can be divided into two categories: 1) exploratory data analysis,
in the form of population-time plots; and 2) parametric modeling of the hazard function. We strove
for compatibility with both data.frames and data.tables; this can be seen in the coding choices we
made and the unit tests we wrote.
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Population-time plots

Population-time plots are a descriptive visualization of incidence density, where the population time
that constitutes the study base is represented by area, and events by points within the area. The
case-base sampling approach described above can be visualized in the form of a population time plot.
These plots are informative graphical displays of survival data and should be one of the first steps in
an exploratory data analysis. The popTime function and plot method facilitate this task:

1. The casebase::popTime function takes as input the original dataset along with the column
names corresponding to the timescale, the event status and an exposure group of interest (op-
tional). This will create an object of class popTime.

2. The corresponding plot method for the object created in Step 1 can be called to create the
population time plot with several options for customizing the aesthetics.

By splitting these tasks, we give flexibility to the user. While the method call in Step 2 allows
further customization by using the ggplot2 (Wickham 2016) family of functions, users may choose the
graphics system of their choice to create population-time plots from the object created in Step 1.

To illustrate these functions, we will use data from the European Randomized Study of Prostate
Cancer Screening (ERSPC) (Schröder et al. 2009) which was extracted using the approach described
in Liu et al. (2014). This dataset is available through the casebase package. It contains the recreated
individual observations for 159,893 men from seven European countries, who were between the ages
of 55 and 69 years when recruited for the trial.

We first create the necessary dataset for producing the population time plot using the popTime
function. In this example, we stratify the plot by treatment group. The resulting object inherits from
class popTime and stores the exposure variable as an attribute:

pt_object <- casebase::popTime(ERSPC, time = "Follow.Up.Time",
event = "DeadOfPrCa", exposure = "ScrArm")

inherits(pt_object, "popTime")
#> [1] TRUE
attr(pt_object, "exposure")
#> [1] "ScrArm"

We then pass this object to the corresponding plot method:

plot(pt_object, add.base.series = TRUE)

Figure 1 depicts the process of creating a population-time plot. It is built sequentially by first
adding a layer for the area representing the population time in gray (Figure 1A), with subjects having
the least amount of observation time plotted at the top of the y-axis. We immediately notice a
distinctive stepwise shape in the population time area. This is due to the randomization of the Finnish
cohorts which were carried out on January 1 of each of year from 1996 to 1999. Coupled with the
uniform December 31 2006 censoring date, this led to large numbers of men with exactly 11, 10, 9
or 8 years of follow-up. Tracked backwards in time (i.e. from right to left), the population-time plot
shows the recruitment pattern from its beginning in 1991, and the January 1 entries in successive years.
Tracked forwards in time (i.e. from left to right), the plot for the first three years shows attrition due
entirely to death (mainly from other causes). Since the Swedish and Belgian centres were the last to
complete recruitment in December 2003, the minimum potential follow-up is three years. Tracked
further forwards in time (i.e. after year 3) the attrition is a combination of deaths and staggered entries.
As we can see, population-time plots summarise a wealth of information about the study into a simple
graph.

Next, layers for the case series and base series are added. The y-axis location of each case moment
is sampled at random vertically on the plot to avoid having all points along the upper edge of the gray
area (Figure 1B). By randomly distributing the cases, we can get a sense of the incidence density. In
Figure 1C, we see that more events are observed at later follow-up times. Therefore, a constant hazard
model would not be appropriate in this instance as it would overestimate the incidence earlier on
in time, and underestimate it later on. Finally, the base series is sampled uniformly from the study
base (Figure 1D). The reader should refer to the package vignettes for more examples and a detailed
description of how to modify the aesthetics of a population-time plot.

Parametric modeling

The parametric modeling step was separated into three parts:
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Figure 1: Population time plot for the ERSPC dataset. A: The gray area can be thought of as N=159,893
infinitely thin horizontal rectangles ordered by length of follow-up. B: The red points correspond to
when death has occurred for any one of those infinitely thin rectangles. C: To improve visibility, these
red points are randomly redistributed along their respective x-coordinates, providing a visualization
of incidence density. More events are observed at later follow-up times, motivating the use of
non-constant hazard models. D: The base series, a representative sample of the entire grey area, is
represented by the green points.

1. case-base sampling;
2. estimation of the smooth hazard function;
3. estimation of the survival function.

By separating the sampling and estimation functions, we allow the possibility of users implement-
ing more complex sampling scheme (as described in Saarela (2016)), or more complex study designs
(e.g. time-varying exposure).

The sampling scheme selected for sampleCaseBase was described in Hanley & Miettinen (2009):
we first sample along the “person” axis, proportional to each individual’s total follow-up time, and
then we sample a moment uniformly over their follow-up time. This sampling scheme is equivalent to
the following picture: imagine representing the total follow-up time of all individuals in the study
along a single dimension, where the follow-up time of the next individual would start exactly when
the follow-up time of the previous individual ends. Then the base series could be sampled uniformly
from this one-dimensional representation of the overall follow-up time. In any case, the output is a
dataset of the same class as the input, where each row corresponds to a person-moment. The covariate
profile for each such person-moment is retained, and an offset term is added to the dataset. This
output could then be used to fit a smooth hazard function, or for visualization of the base series.

Next, the fitting function fitSmoothHazard starts by looking at the class of the dataset: if it
was generated from sampleCaseBase, it automatically inherited the class cbData. If the dataset sup-
plied to fitSmoothHazard does not inherit from cbData, then the fitting function starts by calling
sampleCaseBase to generate the base series. In other words, users can bypass sampleCaseBase alto-
gether and only worry about the fitting function fitSmoothHazard.

The fitting function retains the familiar formula interface of glm. The left-hand side of the formula
should be the name of the column corresponding to the event type. The right-hand side can be any
combination of the covariates, along with an explicit functional form for the time variable. Note
that non-proportional hazard models can be achieved at this stage by adding an interaction term
involving time (cf. Case Study 1 below). The offset term does not need to be specified by the user, as it
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is automatically added to the formula before calling glm.

To fit the hazard function, we provide several approaches that are available via the family param-
eter. These approaches are:

• glm: This is the familiar logistic regression.
• glmnet: This option allows for variable selection using the elastic-net (Zou and Hastie 2005)

penalty (cf. Case Study 3). This functionality is provided through the glmnet package (Friedman,
Hastie, and Tibshirani 2010).

• gam: This option provides support for Generalized Additive Models via the mgcv package (Hastie
and Tibshirani 1987).

In the case of multiple competing events, the hazard is fitted via multinomial regression as
performed by the VGAM package. We selected this package for its ability to fit multinomial regression
models with an offset.

Once a model-fit object has been returned by fitSmoothHazard, all the familiar summary and
diagnostic functions are available: print, summary, predict, plot, etc. Our package provides one more
functionality: it computes risk functions from the model fit. For the case of a single event, it uses the
familiar identity

S(t) = exp
(
−
∫ t

0
λ(u; X)du

)
. (6)

The integral is computed using either the numerical or Monte-Carlo integration. The risk function (or
cumulative distribution function) is then defined as

F(t) = 1 − S(t). (7)

For the case of a competing-event analysis, the event-specific risk is computed using the following
procedure: first, we compute the overall survival function (i.e. for all event types):

S(t) = exp
(
−
∫ t

0
λ(u; X)du

)
, λ(t; X) =

J

∑
j=1

λj(t; X).

From this, we can derive the cause-specific subdensities:

f j(t) = λj(t)S(t).

By integrating these subdensities, we obtain the cause-specific CI functions:

CIj(t) =
∫ t

0
f j(u)du.

Again, the integrals are computed using either numerical integration (via the trapezoidal rule) or
Monte Carlo integration. This option is controlled by the argument method of the absoluteRisk
function.

Finally, the output from absoluteRisk can be passed to a method confint to compute confidence
bands around the survival function, as described in the Theoretical Details section. These bands are
only valid when family = "glm" as it relies on the asymptotic normality of the estimator. Currently,
this is only available for the single-event setting.

5 Illustration of package

In this section, we illustrate the main functions of the casebase package through three case studies.
Each one showcases a different type of analysis. First, we show how to model non-constant and
non-proportional hazards through a flexible specification of time. Then we perform a competing risk
analysis and compare our results with the Cox model and the Fine-Gray model. The third case study
illustrates how to perform variable selection in high-dimensional datasets.

Case study 1—flexible modeling of the hazard function

For our first case study, we return to the ERSPC study and investigate the differences in risk between
the control and screening arms. Previous re-analyses of these data suggest that the 20% reduction in
prostate cancer death due to screening was an underestimate (Hanley 2010). The estimated 20% (from
a proportional hazards model) did not account for the delay between screening and the time the effect
is expected to be observed. As a result, the null effects in years 1–7 masked the substantial reductions
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that began to appear from year 8 onward. This motivates the use of a time-dependent hazard ratio
which can easily be fit with the casebase package by including an interaction term with time in the
model. We fit a flexible hazard by using a smooth function of time modeled with a penalized cubic
spline basis with 2 degrees of freedom (implemented in the survival::pspline function). The model
is fit using fitSmoothHazard with the familiar formula interface:

fit <- fitSmoothHazard(DeadOfPrCa ~ pspline(Follow.Up.Time, df = 2) * ScrArm,
data = ERSPC, ratio = 10)

The output object from fitSmoothHazard inherits from the singleEventCB and glm classes. For
this reason, we can leverage the summary method for glm objects to output a familiar summary of the
results:

summary(fit)
#> Fitting smooth hazards with case-base sampling
#>
#> Sample size: 159893
#> Number of events: 540
#> Number of base moments: 5400
#> ----
#>
#> Call:
#> fitSmoothHazard(formula = DeadOfPrCa ~ pspline(Follow.Up.Time,
#> df = 2) * ScrArm, data = ERSPC, ratio = 10)
#>
#> Deviance Residuals:
#> Min 1Q Median 3Q Max
#> -1.168 -0.486 -0.414 -0.215 3.262
#>
#> Coefficients:
#> Estimate Std. Error
#> (Intercept) -13.81 9.98
#> pspline(Follow.Up.Time, df = 2)1 2.66 10.96
#> pspline(Follow.Up.Time, df = 2)2 6.43 9.73
#> pspline(Follow.Up.Time, df = 2)3 5.57 10.10
#> pspline(Follow.Up.Time, df = 2)4 7.27 9.90
#> pspline(Follow.Up.Time, df = 2)5 6.54 10.10
#> pspline(Follow.Up.Time, df = 2)6 10.82 10.03
#> pspline(Follow.Up.Time, df = 2)7 -11.74 30.13
#> ScrArmScreening group 9.22 13.35
#> pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -9.25 14.85
#> pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -9.80 12.97
#> pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -9.04 13.54
#> pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -9.39 13.23
#> pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -10.65 13.55
#> pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -8.86 13.46
#> pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -11.58 36.92
#> z value Pr(>|z|)
#> (Intercept) -1.38 0.17
#> pspline(Follow.Up.Time, df = 2)1 0.24 0.81
#> pspline(Follow.Up.Time, df = 2)2 0.66 0.51
#> pspline(Follow.Up.Time, df = 2)3 0.55 0.58
#> pspline(Follow.Up.Time, df = 2)4 0.73 0.46
#> pspline(Follow.Up.Time, df = 2)5 0.65 0.52
#> pspline(Follow.Up.Time, df = 2)6 1.08 0.28
#> pspline(Follow.Up.Time, df = 2)7 -0.39 0.70
#> ScrArmScreening group 0.69 0.49
#> pspline(Follow.Up.Time, df = 2)1:ScrArmScreening group -0.62 0.53
#> pspline(Follow.Up.Time, df = 2)2:ScrArmScreening group -0.76 0.45
#> pspline(Follow.Up.Time, df = 2)3:ScrArmScreening group -0.67 0.50
#> pspline(Follow.Up.Time, df = 2)4:ScrArmScreening group -0.71 0.48
#> pspline(Follow.Up.Time, df = 2)5:ScrArmScreening group -0.79 0.43
#> pspline(Follow.Up.Time, df = 2)6:ScrArmScreening group -0.66 0.51
#> pspline(Follow.Up.Time, df = 2)7:ScrArmScreening group -0.31 0.75
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#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 3619.1 on 5939 degrees of freedom
#> Residual deviance: 3359.1 on 5924 degrees of freedom
#> AIC: 3391
#>
#> Number of Fisher Scoring iterations: 7

As noted in the Theoretical Details section, the usual asymptotic results hold for likelihood ratio
tests built using case-base sampling models. Therefore, we can easily test the significance of the spline
term and its interaction with time:

anova(fit, test = "LRT")
#> Analysis of Deviance Table
#>
#> Model: binomial, link: logit
#>
#> Response: DeadOfPrCa
#>
#> Terms added sequentially (first to last)
#>
#>
#> Df Deviance Resid. Df Resid. Dev
#> NULL 5939 3619
#> pspline(Follow.Up.Time, df = 2) 7 246.6 5932 3373
#> ScrArm 1 5.6 5931 3367
#> pspline(Follow.Up.Time, df = 2):ScrArm 7 7.9 5924 3359
#> Pr(>Chi)
#> NULL
#> pspline(Follow.Up.Time, df = 2) <2e-16 ***
#> ScrArm 0.018 *
#> pspline(Follow.Up.Time, df = 2):ScrArm 0.343
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Similarly, to compare different models (e.g. time modeled linearly), we could compute Akaike’s
Information Criterion (AIC) for each model.

Time-dependent hazard ratios

In what follows, the hazard ratio for a variable X is defined as

λ
(

t|X = x1, Z = z; β̂
)

λ(t|X = x0, Z = z; β̂)

where λ(t|·; β̂) is the hazard rate as a function of the variable t (which is usually time, but can be any
other continuous variable), x1 is the value of X for the exposed group, x0 is the value of X for the
unexposed group, Z are other covariates in the model which are equal to z in both the exposed and
unexposed group, and β̂ are the estimated regression coefficients. As indicated by the formula above,
it is most instructive to plot the hazard ratio as a function of a variable t only if there is an interaction
between t and X. Otherwise, the resulting plot will simply be a horizontal line across time.

The plot method with type="hr" for objects of class singleEventCB can be used to compute
time-dependent hazard ratios and confidence intervals. In Figure 2, we show the estimated hazard
ratio and 95% confidence interval for screening vs. control group as a function of time. Note that we
must specify the covariate profile for the reference group and times for the predicted hazards.

new_time <- seq(1, 12, by = 0.1)
new_data <- data.frame(ScrArm = factor("Control group",

levels = c("Control group","Screening group")),
Follow.Up.Time = new_time)

plot(fit, type = "hr", newdata = new_data,
var = "ScrArm", xvar = "Follow.Up.Time", ci = TRUE)
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Figure 2: Estimated hazard ratio and 95% confidence interval for screening vs. control group as a
function of time in the ERSPC dataset. Hazard ratios are estimated from fitting a parametric hazard
model as a function of the interaction between a cubic pspline basis (df=2) of follow-up time and
treatment arm. 95% confidence intervals are calculated using the delta method. The plot shows that
the effect of screening only begins to become statistically apparent by year 7. The 25-60% reductions
seen in years 8-12 of the study suggests a much higher reduction in prostate cancer due to screening
than the single overall 20% reported in the original article.

The plot shows that the effect of screening only becomes statistically apparent by year 7 and later.
The 25-60% reductions seen in years 8-12 of the study suggests a much higher reduction in prostate
cancer due to screening than the single overall 20% reported in the original article.

A more parsimonious model based on these results could be constructed as follows:

log λ (t | Z) =

{
α, t < t0

α + βZ(t − t0), t ≥ t0
,

where t0 ≈ 7 years. This model corresponds to a hazard ratio that is constant and equal to 1 until
t = t0, after which it decreases exponentially. If we fix the value t0, we can easily implement this
model using our package; for example:

fitSmoothHazard(DeadOfPrCa ~ as.integer(Follow.Up.Time >= t0) :
ScrArm : I(Follow.Up.Time - t0),

data = ERSPC)

Here, we use the binary variable as.integer(Follow.Up.Time >= t0) in order to write the two
cases of our formula above in a more compact way. We also use the function I(), which allows us
to specify new variables within the formula using normal R code. This is required, as otherwise the
symbol - would be interpreted as a formula operator. Finally, the term ScrArm : I(Follow.Up.Time -
t0) represents the product Z(t − t0) in the equation above. We use the operator : instead of * in order
to only include the interaction term, not the main effects.

Alternatively, the breakpoint t0 could also be estimated by combining case-base sampling with
segmented regression. However, this extension is beyond the current scope of casebase.
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Hazard functions

Modeling the hazard function directly allows us to easily visualize it with the plot method and
type="hazard" for objects of class singleEventCB. We plot the hazard functions for both treatment
arms in Figure 3. The pattern we see is consistent with the population-time plot shown in Figure 1C,
where more events are observed at later follow-up times. The drop at the end can be explained by the
fact that very few observations were followed for the entire 15 year period.

plot(fit, type = "hazard",
hazard.params = list(xvar = "Follow.Up.Time",

by = "ScrArm"))
#> Conditions used in construction of plot
#> ScrArm: Control group / Screening group
#> offset: 0
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Figure 3: Estimated hazard functions for control and screening groups in the ERSPC dataset. Hazards
are estimated from fitting a parametric model with casebase sampling as a function of the interaction
between a cubic pspline basis (df=2) of follow-up time and treatment arm. The package vignettes
provide a detailed description of how to plot hazard functions for any combination of covariates along
with confidence bands.

Absolute risk

Next, the absoluteRisk function takes as input the singleEventCB object and returns a matrix where
each column corresponds to the covariate profiles specified in the newdata argument, and each row
corresponds to time points specified by the time argument:

new_data <- data.frame(ScrArm = c("Control group", "Screening group"))
new_time <- seq(0,14,0.1)
risk <- absoluteRisk(fit, time = new_time, newdata = new_data)

We can subsequently compute confidence intervals for the risk function using the method
confint.absRiskCB:

conf_ints <- confint(risk, fit)
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head(conf_ints)
#> time estimate conf.low conf.high cov_prof
#> 1 0.0 0.0e+00 0.0e+00 0.0e+00 Control group
#> 2 0.1 1.8e-06 1.9e-07 1.2e-05 Control group
#> 3 0.2 3.9e-06 4.8e-07 2.2e-05 Control group
#> 4 0.3 6.1e-06 9.0e-07 3.2e-05 Control group
#> 5 0.4 8.7e-06 1.5e-06 4.1e-05 Control group
#> 6 0.5 1.2e-05 2.3e-06 5.0e-05 Control group

In Figure 4, we see the 95% confidence bands around the estimates. We also overlay the Kaplan-
Meier curves as a reference.
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Figure 4: Risk function estimates for control and screening groups in the ERSPC data using case-base
sampling and Kaplan-Meier, along with 95% confidence bands. The smooth curve (case-base sampling)
vs. step function (Cox model) highlight one of the main differences between the two approaches. The
larger confidence bands in the later years is due to the relatively few number of individuals who were
followed for more than 12 years.

Case study 2—competing risk analysis

In this case study, we show how case-base sampling can be used in the context of a competing risk
analysis. For illustrative purposes, we use the same data that was used in Scrucca et al (2010). The
data was downloaded from the first author’s website, and it is now available as part of the casebase
package.

The data contains information on 177 patients who received a stem-cell transplant for acute
leukemia. The event of interest is relapse, but other competing causes (e.g. death, progression, graft
failure, graft-versus-host disease) were also recorded. Several covariates were captured at baseline:
sex, disease type (acute lymphoblastic or myeloblastic leukemia, abbreviated as ALL and AML,
respectively), disease phase at transplant (Relapse, CR1, CR2, CR3), source of stem cells (bone marrow
and peripheral blood, coded as BM+PB, or only peripheral blood, coded as PB), and age.

First, we look at a population-time plot to visualize the incidence density of both relapse and the
competing events. In Figure 5, failure times are highlighted on the plot using red dots for the event of
interest and blue dots for competing events. In this plot, we see evidence of a non-constant hazard
function: the density of points is larger at the beginning of follow-up than at the end.
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Figure 5: Population-time plot for the stem-cell transplant study with both relapse and competing
events. The area representing the population time is shown in gray, with subjects having the least
amount of observation time plotted at the top of the y-axis. The y-axis location of each case series and
competing event moment is sampled at random vertically on the plot to avoid having all points along
the upper edge of the gray area. The density of points at the beginning of follow-up relative to the end
indicates a non-constant hazard function.

Our main objective is to compute the cumulative incidence of relapse for a given set of covariates.
We start by fitting a smooth hazard to the data using a linear term for time:

model_cb <- fitSmoothHazard(
Status ~ ftime + Sex + D + Phase + Source + Age,
data = bmtcrr,
ratio = 100,
time = "ftime"

)

We want to compare our hazard ratio estimates to that obtained from a Cox regression (using the
survival package version 3.2-13).

library(survival)
# Prepare data for coxph
bmtcrr_cox <- transform(bmtcrr,

id = seq_len(nrow(bmtcrr)),
Status = factor(Status))

model_cox <- coxph(Surv(ftime, Status) ~ Sex + D + Phase + Source + Age,
data = bmtcrr_cox, id = id)

From the fit object, we can extract both the hazard ratios and their corresponding confidence
intervals. These quantities appear in Table 2. As we can see, the type of disease corresponds to a
significant hazard ratio: the hazard for AML is about half that for ALL. Moreover, being in relapse at
transplant is associated with a hazard ratio of 4.22 when compared to CR1.

Given the estimate of the hazard functions obtained using case-base sampling, we can compute
the cumulative incidence curve for a fixed covariate profile. We perform this computation for a 35
year old woman who received a stem-cell transplant from peripheral blood at relapse. We compare
the absolute risk curve for such a woman with ALL with that for a similar woman with AML.
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Table 2: Estimates and confidence intervals for the hazard ratios for each coefficient. Both estimates
from case-base sampling and Cox regression are presented.

Case-Base Cox

Covariates HR 95% Conf. HR 95% Conf.

Sex 0.73 (0.42, 1.27) 0.68 (0.39, 1.21)
Disease 0.54 (0.3, 0.98) 0.52 (0.28, 0.94)
Phase (CR2 vs. CR1) 1.19 (0.48, 2.97) 1.21 (0.47, 3.09)
Phase (CR3 vs. CR1) 1.44 (0.37, 5.64) 1.67 (0.46, 6.08)
Phase (Relapse vs. CR1) 4.22 (1.95, 9.12) 4.55 (1.98, 10.46)

Source 1.46 (0.48, 4.46) 1.46 (0.47, 4.53)
Age 0.99 (0.97, 1.02) 0.99 (0.97, 1.02)

Next, we compare our estimates to that obtained from a corresponding Fine-Gray model (1999).
The Fine-Gray model is a semiparametric model for the cause-specific subdistribution hazard, i.e. the
function dj(t) such that

CIj(t) = 1 − exp
(
−
∫ t

0
dj(u)du

)
,

where CIj(t) is the cause-specific CI. The Fine-Gray model allows to directly assess the effect of a
covariate on the subdistribution hazard, as opposed to the cause-specific hazard. For the computation,
we use the timereg package (Thomas H. Scheike and Zhang 2011):

library(timereg)
model_fg <- comp.risk(Event(ftime, Status) ~ const(Sex) + const(D) +

const(Phase) + const(Source) + const(Age),
data = bmtcrr, cause = 1, model = "fg")

# Estimate CI curve
risk_fg <- predict(model_fg, newdata, times = time_points)

We can also estimate the CI for relapse using the Cox model and the Aalen-Johansen estimator:

# Estimate absolute risk curve
risk_cox <- survfit(model_cox, newdata = newdata)

Figure 6 shows the CI curves for all three models. As we can see, all three approaches agree quite
well for AML; however, for ALL, there seems to be a difference of about 5% between the Fine-Gray
curve and the curves estimated using case-base sampling and Cox regression. This difference does
not appear to be significant: the curve from case-base sampling is contained within a 95% confidence
band around the Fine-Gray absolute risk curve (figure not shown).

Case study 3—variable selection

For the third case study, we show how casebase can also be used for variable selection through
regularized estimation of the hazard function as given by Equation (5). We note that this is different
than the semiparametric model Coxnet, which regularizes the Cox partial likelihood. To illustrate
this functionality, we use the dataset from the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) (Knaus et al. 1995).3 The SUPPORT dataset tracks death in five
American hospitals within individuals who are considered seriously ill. The cleaned and imputed data
consists of 9104 observations and 30 variables, and it is available as part of the casebase package. In
the comparisons below, all covariates except sps and aps were used. These two variables correspond
to scores for predicting the outcome that were developed as part of the original study. For more
information about this dataset, the reader is encouraged to look at the documentation in our package.

For our penalized case-base model, we opt for the natural log of time which corresponds to
a Weibull distribution. For fitting the penalized hazard, we use fitSmoothHazard.fit, which is a
matrix interface to the fitSmoothHazard function. The fitSmoothHazard and fitSmoothHazard.fit

3The original data is available online from the Department of Biostatistics at Vanderbilt University: https:
//biostat.app.vumc.org/wiki/Main/SupportDesc
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Figure 6: Cumulative Incidence curve for a fixed covariate profile and the two disease groups. The
estimate obtained from case-base sampling is compared to the Fine-Gray and Aalen-Johansen estimates.
In general, the three approaches agree quite well for AML, while there seems to be a difference of
about 5% between the Fine-Gray curve and the curves estimated using case-base sampling and Cox
regression for ALL. However, this difference does not appear to be significant as the curve from
case-base sampling is contained within a 95% confidence band around the Fine-Gray absolute risk
curve (figure not shown).

functions sample the case and base series, calculate the required offset, and transform the data to
match the expected input of the glmnet package. The penalized logistic regression is then fit for
multiple values of the tuning parameter using the function glmnet::cv.glmnet and the binomial
family. To fitSmoothHazard.fit, we supply both a matrix y containing the time and event variables,
and a matrix x containing all other covariates. We apply the lasso penalty by setting alpha = 1 and
assign a penalty.factor (wj; cf. Equation (5)) of 0 to the time variable to ensure it is in the selected
model. We compare our approach to both Cox regression, and lasso penalized Cox regression (fitted
via the glmnet package and using the Cox family).

To compare the performance of our models, we split the data into 95% training and 5% test sets. To
assess both discrimination and calibration, we use a time-dependent version of the classical Brier score
that is adjusted for censoring (Graf et al. 1999). The Brier score can be used with both parametric and
semi-parametric models. We use the riskRegression package to compute these scores for all models.

# Create matrices for inputs
x <- model.matrix(death ~ . - d.time - aps - sps,

data = train)[, -c(1)] # Remove intercept
y <- data.matrix(subset(train, select = c(d.time, death)))

# Regularized logistic regression to estimate hazard
pen_cb <- casebase::fitSmoothHazard.fit(x, y,
family = "glmnet",
time = "d.time", event = "death",
formula_time = ~ log(d.time), alpha = 1,
ratio = 10, standardize = TRUE,
penalty.factor = c(0, rep(1, ncol(x)))

)

In Figure 7, we show the coefficient estimates for covariates that we selected by both penalized
Cox and penalized case-base. We note that both penalized approaches produce similar results. We can
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also clearly see the shrinkage effect owing to the ℓ1 penalty.
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Figure 7: Coefficient estimates from the Cox model (Cox), penalized Cox model using the glmnet
package (Pen. Cox), and our approach using penalized case-base sampling (Pen. CB). Only the
covariates that were selected by both penalized approaches are shown. The shrinkage of the coefficient
estimates for Pen. Cox and Pen. CB occurs due to the ℓ1 penalty.

We then compare the risk estimation over the test set. The predicted probabilities for each test set
observation are averaged, resulting in the absolute risk curves shown in Figure 8A. The Kaplan-Meier
curve is calculated on the test set only. We see minimal differences between the four approaches across
follow-up-time. Note that the apparent smoothness of the Cox and penalized Cox curves is due to
the large number of observations in the training set, which is used to derive the Breslow estimate
of the baseline hazard. As described above, we compare the performance between the models by
computing the Brier scores over time. In Figure 8B, we see that the adjusted models all perform
similarly, outperforming the Kaplan-Meier estimate.

6 Discussion

In this article, we presented the R package casebase, which provides functions for fitting smooth
parametric hazards and estimating risk functions using case-base sampling. Our package also provides
several functions to produce graphical summaries of the data and the results. We outlined the
theoretical underpinnings of the approach, we provided details about our implementation, and we
illustrated the merits of the case-base framework and the package through three case studies.

As a methodological framework, case-base sampling is very flexible. Some of this flexibility has
been explored before in the literature: for example, Saarela and Hanley (2015) used case-base sampling
to model a time-dependent exposure variable in a vaccine safety study. As another example, Saarela
and Arjas (2015) combined case-base sampling and a Bayesian non-parametric framework to compute
individualized risk assessments for chronic diseases. In the case studies above, we further explored
this flexibility along two fronts. On the one hand, we showed how splines could be used as part
of the linear predictor to model the effect of time on the hazard. This strategy yielded estimates of
the survival function that were qualitatively similar to semiparametric estimates derived from Cox
regression; however, case-base sampling led to estimates of the survival function that vary smoothly in
time and are thus easier to interpret. On the other hand, we also displayed the flexibility of case-base
sampling by showing how it could be combined with penalized logistic regression to perform variable
selection. Furthermore, the second case study showed how case-base sampling can be applied to
competing risks settings. It should be noted that the three case studies presented above only considered
covariates that were fixed at baseline. In one of the package vignettes, we use the Stanford Heart
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Figure 8: Comparison of Cox regression (Cox), penalized Cox regression (Pen. Cox), penalized case-
base sampling estimation (Pen. CB), and Kaplan-Meier (K-M). (A) Probability of death as a function of
follow-up time which is the average of the predicted probabilities for each test set observation. The
Kaplan-Meier curve is calculated on the test set only. We see minimal differences between the four
approaches across follow-up-time for the absolute risk curves. Note that the apparent smoothness of
the Cox and penalized Cox curves is due to the large number of observations in the training set, which
is used to derive the Breslow estimate of the baseline hazard. (B) Brier score as a function of follow-up
time, where a lower score corresponds to better performance. We see that the adjusted models all
perform similarly, outperforming the Kaplan-Meier estimate.

Transplant data Crowley and Hu (1977) to show how case-base sampling can also be used in the
context of time-dependent exposure. In this study, the exposure period was defined as the week
following vaccination. Hence, the main covariate of interest, i.e. exposure to the vaccine, was changing
over time. In this context, case-base sampling offers an efficient alternative to nested case-control
designs or self-matching.

Even though we did not illustrate it in this article, case-base sampling can also be combined with
the framework of generalized additive models. This functionality has already been implemented in
the package. Similarly, case-base sampling can be combined with quasi-likelihood estimation to fit
survival models that can account for the presence of over-dispersion. All of these examples illustrate
how the case-base sampling framework in general, and the package casebase in particular, allows the
user to fit a broad and flexible family of survival functions.

Poisson regression can also be used to estimate the full hazard by discretizing time. However, this
method requires user input on the number of intervals, or equivalently, on the cut points. This choice
made by the user can have a significant impact on the model. Small intervals may result in many
empty, non-informative bins. This may cause convergence issues for the Newton-Raphson procedure
(Kalbfleisch and Prentice 2011). If the intervals are too wide, the nonlinear trends that are present
in the hazard may be masked. Rather than discretizing time like in Poisson regression, case-base
sampling provides a continuous-time approach to using GLMs for estimating hazard functions.

As presented in Hanley & Miettinen (2009), case-base sampling is comprised of three steps: 1)
sampling a case series and a base series from the study; 2) fit the log-hazard as a linear function of
predictors (including time); and 3) use the fitted hazard to estimate the risk function. Accordingly,
our package provides functions for each step. Moreover, the simple interface of the fitSmoothHazard
function resembles the glm interface. This interface should look familiar to new users. Our modular
approach also provides a convenient way to extend our package for new sampling or fitting strategies.

In the case studies above, we compared the performance of case-base sampling with that of Cox
regression and Fine-Gray models. In terms of function interface, casebase uses a formula interface that

The R Journal Vol. 14/3, September 2020 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 77

is closer to that of glm, in that the event variable is the only variable appearing on the left-hand side
of the formula. By contrast, both survival::coxph and timereg::comp.risk use arrays that capture
both the event type and time. Both approaches to modeling yield user-friendly code. However, in
terms of output, both approaches differ significantly. Case-base sampling produces smooth hazards
and smooth survival curves, whereas Cox regression and Fine-Gray models produce stepwise CIs
and never explicitly model the hazard function. Qualitatively, we showed that by using splines in the
linear predictor, all three models yielded similar curves.

Our choice of modeling the log-hazard as a linear function of covariates allows us to develop a
simple computational scheme for estimation. However, as a downside, it does not allow us to model
location and scale parameters separately like the package flexsurv. For example, if we look at the
Weibull distribution as parametrised in stats::pweibull, the log-hazard function is given by

log λ(t; α, β) = [log(α/β)− (α − 1) log(β)] + (α − 1) log t,

where α, β are shape and scale parameters, respectively. Unlike casebase, the approach taken by
flexsurv also allows the user to model the scale parameter as a function of covariates. Of course,
this added flexibility comes at the cost of interpretability: by modeling the log-hazard directly, the
parameter estimates from casebase can be interpreted as estimates of log-hazard ratios. To improve
the flexibility of casebase at capturing the scale of a parametric family, we could replace the logistic
regression with its quasi-likelihood counterpart and therefore model over- and under-dispersion with
respect to the logistic likelihood. We defer the study of the properties and performance of such a
model to a future article.

Future work will look at some of the methodological extensions of case-base sampling. First, to
assess the quality of the model fit, we would like to study the properties of the residuals (e.g. Cox-
Snell, martingale). More work needs to be done to understand these residuals in the context of
the partial likelihood underlying case-base sampling. The resulting diagnostic tools could then be
integrated in this package. Also, we are interested in extending case-base sampling to account for
interval censoring. This type of censoring is very common in longitudinal studies, and many packages
(e.g. SmoothHazard, survival and rstpm2) provide functions to account for it. Again, we hope to
include any resulting methodology as part of this package.

In future versions of the package, we also want to increase the complement of diagnostic and
inferential tools that are currently available. For example, we would like to include more functions to
compute calibration and discrimination statistics (e.g. AUC) for our models. Saarela and Arjas (2015)
also describe how to obtain a posterior distribution for the AUC from their model. Their approach
could potentially be included in casebase. Finally, we want to provide more flexibility in how the
case-base sampling is performed. This could be achieved by adding a hazard argument to the function
sampleCaseBase. In this way, users could specify their own sampling mechanism. For example, they
could provide a hazard that gives sampling probabilities that are proportional to the cardiovascular
disease event rate given by the Framingham score (Saarela and Arjas 2015).

In conclusion, we presented the R package casebase which implements case-base sampling for
fitting parametric survival models and for estimating smooth survival functions using the frame-
work of generalized linear models. We strongly believe that its flexibility and its foundation on the
familiar logistic regression model will make it appealing to new and established practitioners. The
casebase package is freely available from the Comprehensive R Archive Network at https://cran.r-
project.org/package=casebase. Interested users can visit http://sahirbhatnagar.com/casebase/
for detailed package documentation and vignettes.
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dbcsp: User-friendly R package for
Distance-Based Common Spatial Patterns
by Itsaso Rodríguez, Itziar Irigoien, Basilio Sierra, and Concepción Arenas

Abstract Common Spatial Patterns (CSP) is a widely used method to analyse electroencephalography
(EEG) data, concerning the supervised classification of the activity of brain. More generally, it can
be useful to distinguish between multivariate signals recorded during a time span for two different
classes. CSP is based on the simultaneous diagonalization of the average covariance matrices of signals
from both classes and it allows the data to be projected into a low-dimensional subspace. Once the
data are represented in a low-dimensional subspace, a classification step must be carried out. The
original CSP method is based on the Euclidean distance between signals, and here we extend it so that
it can be applied on any appropriate distance for data at hand. Both the classical CSP and the new
Distance-Based CSP (DB-CSP) are implemented in an R package, called dbcsp.

1 Background

Eigenvalue and generalized eigenvalue problems are very relevant techniques in data analysis. The
well-known Principal Component Analysis with the eigenvalue problem in its roots was already
established by the late seventies (Mardia et al., 1979). In mathematical terms, Common Spatial Patterns
(CSP) is based on the generalized eigenvalue decomposition or the simultaneous diagonalization of
two matrices to find projections in a low dimensional space. Although in algebraic terms PCA and
CSP share several similarities, their main aims are different: PCA follows a non-supervised approach
but CSP is a two-class supervised technique. Besides, PCA is suitable for standard quantitative data
arranged in ‘individuals × variables’ tables, while CSP is designed to handle multivariate signals
time series. That means that, while for PCA each individual or unit is represented by a classical
numerical vector, for CSP each individual is represented by several signals recorded during a time
span, i.e., by a ‘number of signals × time span’ matrix. CSP allows the individuals to be represented
in a dimension reduced space, a crucial step given the high dimensional nature of the original data.
CSP computes the average covariance matrices of signals from the two classes to yield features whose
variances are optimal to discriminate the classes of measurements. Once data is projected into a low
dimensional space, a classification step is carried out. The CSP technique was first proposed under
the name Fukunaga-Koontz Transform in Fukunaga and Koontz (1970) as an extension of PCA, and
Müller-Gerking et al. (1999) used it to discriminate electroencephalography data (EEG) in a movement
task. Since then, it has been a widely used technique to analyze EEG data and develop Brain Computer
Interfaces (BCI), with different variations and extensions (Blankertz et al., 2007a,b; Grosse-Wentrup
and Buss, 2008; Lotte and Guan, 2011; Wang et al., 2012; Astigarraga et al., 2016; Darvish Ghanbar et al.,
2021). In Wu et al. (2013), subject specific best time window and number of CSP features are fitted
through a two-level cross validation scheme within the Linear Discriminant classifier. Samek et al.
(2014) offer a divergence-based framework including several extensions of CSP. As a general term, CSP
filter maximizes the variance of the filtered or projected EEG signals of one class of movements while
minimizing it for the signals of the other class. Similarly, it can be used to detect epileptic activities
Khalid et al. (2016) or other brain activities. BCI systems can also be of great help to people who suffer
from some disorders of cerebral palsy, or who suffer from other diseases or disabilities that prevent
the normal use of their motor skills. These systems can considerably improve the quality of life of
these people, for which small advances and changes imply big improvements. BCI systems can also
contribute to human vigilance detection, connected with occupations involving sustained attention
tasks. Among others, CSP and variations of it have been applied to the vigilance estimation task (Yu
et al., 2019).

The original CSP method is based on the Euclidean distance between signals. However, as far
as we know, a generalization allowing the use of any appropriate distance was not introduced. The
aim of the present work is to introduce a novel Distance-Based generalization of it (DB-CSP). This
generalization is of great interest, since these techniques can also offer good solutions in other fields
where multivariate time series data arise beyond pure electroencephalography data (Poppe, 2010;
Rodríguez-Moreno et al., 2020).

Although CSP in its classical version is a very well-known technique in the field of BCI, it is not
implemented in R. In addition, as DB-CSP is a new extension of it, it is worth building an R package
that includes both CSP and DB-CSP techniques. The package offers functions in a user-friendly way for
the less familiar users of R but it also offers complete information about its objects so that reproducible
analysis can be carried out and more advanced and customised analysis can be performed taking
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Figure 1: Flow-chart showing the steps to classify a new data. First, the filtering is done along with
the feature extraction. This is the core of the procedure (CSP or DB-CSP). Then, a classifier is built to
make the decision giving the classification of the new data.

advantage of already well-known packages of R.

The paper is organized as follows. First, we review the mathematical formulation of the Common
Spatial Patterns method. Next, we present the core of our contribution describing both the novel
CSP’ extension based on distances and the dbcsp package. Then, the main functions in dbcsp are
introduced along with reproducible examples of their use. Finally, some conclusions are drawn.

2 CSP and DB-CSP

Let us consider that we have n statistical individuals or units classified in two classes C1 and C2, with
#C1 = n1 and #C2 = n2. For each unit i in class Ck, data from c sources or signals are collected during
T time units and therefore unit i is represented in matrix the Xik (i = 1, . . . , nk ; k = 1, 2). For instance,
for electroencephalograms, data are recorded by a c-sensor cap each t time units (t = 1, . . . , T). As
usual, we consider that each Xik is already scaled or with the appropriate pre-processing in the context
of application; for instance, if working with EGG data, each signal should be band-pass filtered before
its use.

The goal is to classify a new unit X in C1 or C2. To this end, first a projection into a low-dimensional
subspace is carried out. Then, as a standard approach the Linear Discriminant classifier (LDA) is
applied taking as input data for the classifier the log-variance of the projections obtained in the first
step. It is obvious that the importance of the technique lies mainly in the first step, and once it is done,
LDA or any other classifiers could be applied. Based on that, we focus on how this projection into
a low-dimensional space is done, from the classical CSP point of view as well as its novel extension
DB-CSP (see Figure 1).

Classical CSP

The main idea is to use a linear transform to project or filter data into low-dimensional subspace with
a projection matrix, in such a way that each row consists of weights for signals. This transformation
maximizes the variance of two-class signal matrices. The method performs a simultaneous diagonal-
ization of the covariance matrices of both classes. Given data X11, . . . , Xn11 (matrices c × T) from class
C1 and X12, . . . , Xn22 (also matrices c × T) from class C2, the following steps are needed:

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 82

• All matrices are standardized so that traces of XikX′
ik are the same.

• Compute average covariance matrices:

Bk =
1
nk

nk

∑
i=1

XikX′
ik , k = 1, 2

• Look for directions W = (w1, . . . , wc) ∈ Rc×c according to the criterion:

Maximize tr(W ′B1W)

subject to W ′(B1 + B2)W = I

The solution is given by the generalized spectral decomposition B1w = λB2w choosing the first
and the last q eigenvectors: WCSP = (w1, . . . , wq, wc−q+1, . . . , wc).

Vectors wj offer weights so that new signals X′
i1wj and X′

i2wj have big and low variability for the
first q vectors (j = 1, . . . , q) respectively, and vice-versa for the last q vectors (j = c − q + 1, . . . , c). To
clarify the notation and interpretation, let us denote aj = wj the first q vectors and bj = wc+1−j the
last q. That way, and broadly speaking, variability of elements in C1 is big when projecting on vectors
aj and low on vectors bj, and vice-versa, for elements in class C2.

Finally, the log-variability of these new and few 2q signals are considered as input for the classifi-
cation, which classically is the Linear Discriminant Analysis (LDA). Obviously, any other classification
technique can be used, as it is illustrated in the subsection Extending the example.

Distance-based CSP

Following the commented ideas, the Distance-Based CSP (DB-CSP) is an extension of the classical CSP
method. In the same way as the classical CSP, DB-CSP gives some weights to the original sources or
signals and obtains new and few 2q signals which are useful for the discrimination between the two
classes. Nevertheless, the considered distance between the signals can be any other than the Euclidean.
The steps are the following:

• Compute an appropriate distance measure between sources and the double-centered inner
product:

Xik → Dik → Pik = −1/2HD(2)
ik H , i = 1, . . . , nk; k = 1, 2

where H stands for the centering matrix and the superindex in brackets (2) for squared elements
in the matrix. Again, all matrices are standardized so that all traces of XikX′

ik are the same.

• Compute average distance-based covariance matrices:

B∗
k =

1
nk

nk

∑
i=1

(
PikP′

ik + Xikxik1′ + 1x′i,kX′
ik − x′ikxik11′

)
where xik = 1

c 1′Xik, and k = 1, 2.

Once we have the covariance matrices related to the chosen distance matrix, the directions are
found as in classical CSP and new signals X′

ikaj, X′
ikbj are built (j = 1, . . . , q). Again, for individuals in

class C1 the projections on vectors a and b are big and low respectively; for individuals in class C2 it is
the other way round.

It is important to note that if the chosen distance does not produce a positive definite covariance
matrix, it must be replaced by a similar one that is positive definite.

When the selected distance is the Euclidean, then, DB-CSP reduces to classical CSP.

Once the q directions aj and bj are calculated, new 2q signals are built. Many interesting charac-
teristics of the new signals could be extracted, although the most important in the procedure is the
variance. Those characteristics of the new signals are the input data for the classification step.
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3 Implementation

In this section, the structure of the package and the functions implemented are explained. The
dbcsp package was developed for the free statistical R environment and it is available from the
Comprehensive R Archive Network (CRAN) at https://cran.r-project.org/web/packages/dbcsp/
index.html.

Input

The input data are the corresponding n1 and n2 matrices Xik of the n units classified in classes C1
and C2, respectively (i = 1, . . . , nk ; k = 1, 2). Let x1 and x2 be two lists of length n1 and n2,
respectively, with Xik matrices (c × T) as elements of the lists. NA values are allowed. They are imputed
by interpolating with the surrounding values via the na.approx function in package zoo. To ensure
the user is aware of the missing values and their imputation, a warning is printed. We also consider
that new items to be classified are in list xt. The aforementioned first step of the method is carried out
by building the object called "dbcsp".

dbcsp object

The dbcsp object is an S4 class created to compute the projection vectors W. The object has the follow-
ing slots:

• Slots
X1 = "list", X2 = "list", the lists X1 and X2 (lengths n1 and n2) containing the matrices Xik
for the two classes C1 and C2, respectively (i = 1, . . . , nk ; k = 1, 2).

q = "integer", to determine the number of pairs of eigenvectors aj and bj that are kept. By
default q=15.

labels = "character", vector of two strings indicating labels names, by default names of
elements in X1 and X2.

type = "character", to set the type of distance to be considered, by default type='EUCL'. The
supported distances are these ones:

– Included in TSdist: infnorm,ccor,sts,...

– Included in parallelDist: bhattacharyya,bray,...

– Custom distances: it is also possible to use a user-defined distance function, a function
dcustom which returns a scalar providing the distance value (d(xik, xjk)) between signals
xik and xjk (i, j = 1, . . . , nk , k = 1, 2). The name of the custom distance function is passed
as character to the type parameter (type="dcustom"). The parallelDist package also allows
the use of custom distances, but the distance function has to be defined using the cppXPtr
function of the RcppXPtrUtils package, as is explained in the User-defined distance functions
section of the parallelDist package documentation.

mixture = "logical", logical value indicating whether to use mixture of distances or not (EUCL
+ other), by default mixture=FALSE.

w = "numeric", weight for the mixture of distances Dmixture = wDeuclidea + (1 − w)Dtype,
by default w=0.5.

training = "logical", logical value indicating whether or not to perform the classification,
by default classification=FALSE. If classification=TRUE, LDA discrimination based on the
log-variances of the projected sources is considered, following the classical approach in CSP.

fold = "integer", integer value, by default fold=10. It controls the number of partitions for
the k-fold validation procedure, if the classification is done.

seed = "numeric", numeric value, by default seed=NULL. Set a seed in case you want to be able
to replicate the results.
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eig.tol = "numeric", numeric value, by default eig.tol=1e-06. If the minimum eigenvalue is
below this tolerance, average covariance matrices are replaced by the most similar matrix that is
positive definite. It is done via function nearPD in Matrix and a warning message is printed to
make the user aware of it.

out = "list", list containing elements of the output. Mainly, matrix W with vectors aj and bj
in element vectors, log-variances of filtered signals in proy and partitions considered in the
k-fold approach with reproducibility purposes.

• Usage
Following the standard procedure in R, an instance of a class dbcsp is created via the new()
constructor function:

new("dbcsp",X1 = x1,X1 = x2)

Slots X1 and X2 are compulsory since they contain the original data. When a slot is not specified,
the default value is considered. First, the S4 object of class dbcsp must be created. By default, the
Euclidean distance is used, nevertheless it can be changed. For instance, "Dynamic Transform
Distance" (Giorgino et al., 2009) can be set:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, type='dtw')

or a mixture between this distance and the Euclidean can be indicated by:

mydbcsp.mix <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"),
mixture=TRUE, w=0.4,type="dtw")

Besides, a custom distance function can be defined and used when creating the object:

fn <- function(x, y) mean(1 - cos(x - y))
mydbcsp <- new("dbcsp", X1 = x, X2 = y, type="fn")

It is worth mentioning that it is possible to reduce the computational time through parallelDist
custom distance option, where the function is defined using C++ and by creating an external
pointer to the function by means of the cppXPtr function:

customEucli <- RcppXPtrUtils::cppXPtr(
"double customDist(const arma::mat &A, const arma::mat &B) {

return sqrt(arma::accu(arma::square(A - B)));
}",
depends = c("RcppArmadillo")

)
mydbcsp <- new('dbcsp',x1,x2,type="customEucli")

The object contains all the information to carry out the classification task in a lower dimension
space.

Functions plot and boxplot

For exploratory and descriptive purposes, the original signals Xik and the projected ones can be plotted
for the selected individual i in class k, and the selected pair of dimensions aj and bj (i = 1, . . . , nk,
k = 1, 2).

• Usage
plot(mydbcsp)

• Arguments
x, an object of class dbcsp

class, integer to indicate which of both classes to access (1 or 2), by default class=1.

index, integer to indicate which instance of the class to plot, by default index=1.
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vectors, integer to indicate which j projected signals are to be plotted. By default all the vectors
used in the projection are plotted.

pairs logical, if TRUE the pairs aj and bj of the indicated indices are also shown, by default
pairs=TRUE.

before logical, if TRUE the original signals are plotted, by default before=TRUE.

after logical, if TRUE the signals after projection are plotted, by default after=TRUE.

legend logical, if TRUE, a legend for filtered signals is shown, by default legend=FALSE.

getsignals logical, if TRUE, the projected signals are returned.

Besides, the log-variances of the projected signals of both classes can be shown in boxplots. This
graphic can help to understand the discriminative power that is in the low-dimension space.

• Usage
boxplot(mydbcsp)

• Arguments
x, an object of class dbcsp

vectors, integer or vector of integers, indicating the index of the projected vectors to plot, by
default index=1.

pairs logical, if TRUE the pairs aj and bj of the indicated indices are also shown, by default
pairs=TRUE.

show_log logical, if TRUE the logarithms of the variances are displayed, otherwise the variances,
by default show_log=TRUE.

It is worth taking into account that in the aforementioned functions, values in argument vectors
must lie between 1 and 2q, being q the number of dimensions used to perform the DB-CSP algo-
rithm when creating the dbcsp object. Therefore, values 1 to q correspond to vectors a1 to aq and
values q + 1 to 2q correspond to vectors b1 to bq. Then, if pairs=TRUE, it is recommended that
values in argument vectors are in {1, . . . , q}, since their pairs are plotted as well. When values
are above q, it should be noted that they correspond to vectors b1 to bq. For instance, if q=15 and
boxplot(object,vectors=16,pairs=FALSE), vector b1 (16 − q = 1) is shown.

Function selectQ, Function train and Function predict

The functions in this section help the classification step in the procedure. Function selectQ helps to
find an appropriate dimension needed for the classification. Given different values of dimensions,
the accuracy related to each dimension is calculated so that the user can assess which dimension
of the reduced space can be sufficient. A k-fold cross-validation approach or a holdout approach
can be followed. Function train performs the Linear Discriminant classification based on the log-
variances of the dimensions built in the dbcsp object. Since LDA has a geometric interpretation that
makes the classifier sensible for more general situations Duda et al. (2001), not the normality nor the
homoscedasticity of data are checked. The accuracy of the classifier is computed based on the k-fold
validation procedure. Finally, function predict performs the classification of new individuals.

• Usage of selectQ
selectQ(mydbcsp)

• Arguments
object, an object of class dbcsp
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Q, vector of integers which represents the dimensions to use, by default Q=c(1,2,3,5,10,15).

train_size, float between 0.0 and 1.0 representing the proportion of the data set to include in
the train split, by default train_size=0.75.

CV, logical indicating whether a k-fold cross validation must be performed or a hold-out ap-
proach (if TRUE, train_size is not used), by default CV=FALSE.

folds integer, number of folds to use if CV is performed.

seed numeric value, by default seed=NULL. Set a seed in case you want to be able to replicate the
results.

This function returns the accuracy values related to each dimension set in Q. If CV=TRUE, the mean
accuracy as well as the standard deviation among folds is also returned.

• Usage of train
train(mydbcsp) or embedded as a parameter in:
new('dbcsp',X1=x1,X2=x2,training=TRUE,type="dtw")

• Arguments
x, an object of class dbcsp

selected_q, integer value indicating the number of vectors to use when training the model. By
default all dimensions considered when creating the object dbcsp.

Besides, arguments seed and fold are available.

It is important to note that in this way a classical analysis can be carried out, in the sense of:

• LDA is applied based on the log-variances of the dimensions indicated by the user in select_q;

• percentage of correct classification is obtained via k-fold cross validation.

However, it is evident that it may be of interest to use other classifiers or other characteristics in
addition to or different from log-variances. This more advanced procedure is explained below. See
the basic analysis of the User guide with a real example section in order to visualize and follow the
process of a first basic/classic analysis.

• Usage of predict
predict(mydbcsp,X_test=xt)

• Arguments
object, an object of class dbcsp

X_test, list of matrices to be classified.

true_targets, optional, if available, vector of true labels of the instances. Note that they must
match the name of the labels used when training the model.

4 User guide with a real example

To show an example beyond pure electroencephalography data, Action Recognition data is considered.
Besides having a reproducible example to show the use of the implemented functions and the results
they offer, this Action Recognition data set is included in the package. The data set contains the
skeleton data extracted from videos of people performing six different actions, recorded by a semi-
humanoid robot. It consists of a total of 272 videos with 6 action categories. There are around 45
clips in each category, performed by 46 different people. Each instance is composed of 50 signals (xy
coordinates for 25 body key points extracted using OpenPose (Cao et al., 2019)), where each signal has
92 values, one per frame. These are the six categories included in the data set:
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1. Come: gesture for telling the robot to come to you. There are 46 instances for this class.

2. Five: gesture of ‘high five’. There are 45 instances for this class.

3. Handshake: gesture of handshaking with the robot. There are 45 instances for this class.

4. Hello: gesture for saying hello to the robot. There are 44 instances for this class.

5. Ignore: ignore the robot, pass by. There are 46 instances for this class.

6. Look at: stare at the robot in front of it. There are 46 instances for this class.

The data set is accessible via AR.data and more specific information can be found in (Rodríguez-
Moreno et al., 2020). Each class is a list of matrices of [K × num_ f rames] dimensions, where K = 50
signals and num_ f rames = 92 values. As mentioned before, the 50 signals represent the xy coordinates
of 25 body key points extracted by OpenPose.

For example, two different classes can be accessed this way:

x1 <- AR.data$come
x2 <- AR.data$five

where, x1 is a list of 46 instances of [50x92] matrices of come class and x2 is a list of 45 instances of
[50x92] matrices of five class. An example of skeleton sequences for both classes is shown in Figure 2
(left, for class come and right, for class five).

Figure 2: Sequences of the skeleton extracted from the videos. Left: sequence for action ‘come’. Right:
sequence for action ‘(high) five’. For each frame, x and y coordinates of the 25 body key points of the
skeleton are extracted by OpenPose.

Next, the use of functions in dbcsp is shown based on this data set. First a basic/classic analysis is
performed.

Basic/classic analysis

Let us consider an analysis using 15-dimensional projections and the Euclidean distance. At a first
step the user can obtain vectors W by:

x1 <- AR.data$come
x2 <- AR.data$five
mydbcsp <- new('dbcsp', X1=x1, X2=x2, q=15, labels=c("C1", "C2"))
summary(mydbcsp)

Creating the object mydbcsp, the vectors W are calculated. As indicated in parameter q=15, the first
and last 15 eigenvectors are retained. With summary, the obtained output is:

There are 46 instances of class C1 with [50x92] dimension.
There are 45 instances of class C2 with [50x92] dimension.
The DB-CSP method has used 15 vectors for the projection.
EUCL distance has been used.
Training has not been performed yet.

Now, if the user knows from the beginning that 3 is an appropriate dimension, the classification
step could be done while creating the object. Using classical analysis, with for instance 10-fold, LDA
as classifier and log-variances as characteristics, the corresponding input and summary output are:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, q=3, labels=c("C1", "C2"), training=TRUE, fold = 10, seed = 19)
summary(mydbcsp)
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There are 46 instances of class C1 with [50x92] dimension.
There are 45 instances of class C2 with [50x92] dimension.
The DB-CSP method has used 3 vectors for the projection.
EUCL distance has been used.
An accuracy of 0.9130556 has been obtained with 10 fold cross validation and using 3 vectors when training.

If a closer view of the accuracies among the folds is needed, the user can obtain them from the out
slot of the object:

# Accuracy in each fold
mydbcsp@out$folds_acc

# Intances belonging to each fold
mydbcsp@out$used_folds

Basic/classic analysis selecting the value of q

Furthermore, it is clear that the optimal value of q should be chosen based on the percentages of correct
classification. It is worth mentioning that the LDA is applied on the 2q projections, as set in the object
building step. It is interesting to measure how many dimensions would be enough using selectQ
function:

mydbcsp <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"))
selectDim <- selectQ(mydbcsp, seed=30, CV=TRUE, fold = 10)

selectDim
Q acc sd

1 1 0.7663889 0.12607868
2 2 0.9033333 0.09428818
3 3 0.8686111 0.11314534
4 5 0.8750000 0.13289537
5 10 0.8797222 0.09513230
6 15 0.8250000 0.05257433

Since the 10-fold cross-validation approach is chosen, the mean accuracies as well as the correspond-
ing standard deviations are returned. Thus, with Linear Discriminant Analysis (LDA), log-variances as
characteristics, it seems that dimensions related to first and last q = 2 eigenvectors (2 × 2 dimensions
in total) are enough to obtain a good classification, with an accuracy of 90%. Nevertheless, it can also
be observed that variation among folds can be relevant.

To visualize what is the representation in the reduced dimension space function plot can be used.
For instance, to visualize the first unit of the first class, based on projections along the 2 first and last
vectors (a1, a2 and b1, b2):

plot(mydbcsp, index=1, class=1, vectors=1:2)

In the top graphic of Figure 3, the representation of the first video of class C1 given by non standardized
matrix X11 can be seen, where the horizontal axis represents the frames of the video and the lines are
the positions of the body key points (50 lines). In the bottom graphic, the same video is represented in
a reduced space where the video is represented by the new signals (only 4 lines).

To have a better insight of the discriminating power of the new signals in the reduced dimension
space, we can plot the corresponding log-variances of the new signals. Parameter vectors in function
boxplot sets which are the eigenvectors considered to plot.

boxplot(mydbcsp, vectors=1:2)

In Figure 4 it can be seen that variability of projections on the first eigenvector direction (log(VAR(X′
ika1)))

are big for elements in x1, but small for elements in x2. Analogously, projecting on the last dimension
(log(VAR(X′

ikb1))), low variability is held in x1 and big variability in x2. The same pattern holds
when projecting on vectors a2 and b2.
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Figure 3: Representation of the first video of class C1. Top: original version where each line corresponds
to the signal of a body key point. Bottom: the projections on vectors a1 and a2 (continuous lines) and
b1 and b2 (dotted lines). Being a video of class C1, variabilities of the projections on vectors a1 and a2
are big whereas on vectors b1 and b2 are small, as expected.
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Figure 4: Log-variabilities of the projected signals on vectors a1 and a2 and b1 and b2, separated by
classes C1 and C2. By construction, variabilities of the projections on vectors a1 and a2 are big for units
in class C1 and small for units C2; opposite pattern can be seen for projections on vectors b1 and b2.
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Basic/classic analysis new unit classification

Once the value of q has been decided and the accuracy of the classification is known, the classifier
should be built (through train()) so that the user can proceed to predict the class a new action held in
a video belongs to, using the function predict. For instance, with only illustrative purpose, we can
classify the first 5 videos which are stored in x1.

mydbcsp <- train(mydbcsp, selected_q=2, verbose=FALSE)
xtest <- x1[1:5]
outpred <- predict(mydbcsp, X_test=xtest)

If the labels of the testing items are known, the latter function returns the accuracy.

outpred <- predict(mydbcsp, X_test=xtest, true_targets= rep("C1", 5))

Finally, notice that the user could use any other distance instead of the Euclidean between the
signals to compute the important directions aj and bj. For instance, in this case it could be appropriate
to use the Dynamic Time Warping distance, setting so in the argument type="dtw":

# Distance DTW
mydbcsp.dtw <- new('dbcsp', X1=x1, X2=x2, labels=c("C1", "C2"), type="dtw")

5 Extending the example

In the previous section a basic workflow to use functions implemented in dbcsp is presented. Nev-
ertheless, it is straightforward to extend the procedure. Once the interesting directions in W are
calculated through dbcsp, other summarizing characteristics beyond the variance could be extracted
from the projected signals, as well as other classifiers which could be used in the classification step. For
those purposes, dbcsp is used to compute the directions in W that will be the base to calculate other
features as well as the input features for other classifiers. Here it is shown how, once the eigenvectors
are extracted from an object dbcsp, several characteristics could be extracted from the signals and
a new data.frame can be built so that any other classification technique could be applied. In this
example we worked with caret package to apply different classifiers. It is important to pay attention to
which the train and test sets are, so that the vectors are computed based only on training set instances.

# Establish training and test data
n1 <- length(x1)
trainind1 <- rep(TRUE, n1)
n2 <- length(x2)
trainind2 <- rep(TRUE, n2)
set.seed(19)
trainind1[sample(1:n1, 10, replace=FALSE)] <- FALSE
trainind2[sample(1:n2, 10, replace=FALSE)] <- FALSE
x1train <- x1[trainind1]
x2train <- x2[trainind2]

# Extract the interesting directions
vectors <- new('dbcsp', X1=x1train, X2=x2train, q=5, labels=c("C1", "C2"))@out$vectors

# Function to calculate the desired characteristics from signals
calc_info <- function(proj_X, type){
values <- switch(type,

'var' = values <- plyr::laply(proj_X, function(x){apply(x,1,var)}),
'max' = values <- plyr::laply(proj_X, function(x){apply(x,1,max)}),
'min' = values <- plyr::laply(proj_X, function(x){apply(x,1,min)}),
'iqr' = values <- plyr::laply(proj_X, function(x){
apply(x,1,function(y){
q <- quantile(y, probs = c(0.25, 0.75))
q[2] -q[1]

})
})

)
return(values)

}
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By means of this latter function, besides the variance of the new signals, the maximum, the minimum,
and the interquartile range can be extracted.

Next, imagine we want to perform our classification step with the interquartile range information
along with the log-variance.

# Project units of class C1 and
projected_x1 <- plyr::llply(x1, function(x,W) t(W)%*%x, W=vectors)

# Extract the characteristics
logvar_x1 <- log(calc_info(projected_x1,'var'))
iqr_x1 <- calc_info(projected_x1,'iqr')
new_x1 <- data.frame(logvar=logvar_x1, iqr=iqr_x1)

# Similarly for units of class C2
projected_x2 <- plyr::llply(x2, function(x,W) t(W)%*%x, W=vectors)
logvar_x2 <- log(calc_info(projected_x2,'var'))
iqr_x2 <- calc_info(projected_x2,'iqr')
new_x2 <- data.frame(logvar=logvar_x2, iqr=iqr_x2)

# Create dataset for classification
labels <- rep(c('C1','C2'), times=c(n1,n2))
new_data <- rbind(new_x1,new_x2)
new_data$label <- factor(labels)
new_data_train <- new_data[c(trainind1, trainind2), ]
new_data_test <- new_data[!c(trainind1, trainind2), ]

# Random forest
trControl <- caret::trainControl(method = "none")
rf_default <- caret::train(label~.,

data = new_data_train,
method = "rf",
metric = "Accuracy",
trControl = trControl)

rf_default

# K-NN
knn_default <- caret::train(label~.,

data = new_data_train,
method = "knn",
metric = "Accuracy",
trControl = trControl)

knn_default

# Predictions and accuracies on test data
# Based on random forest classifier
pred_labels <- predict(rf_default, new_data_test)
predictions_rf <- caret::confusionMatrix(table(pred_labels,new_data_test$label))
predictions_rf

# Based on knn classifier
pred_labels <- predict(knn_default, new_data_test)
predictions_knn <- caret::confusionMatrix(table(pred_labels,new_data_test$label))
predictions_knn

Thus, it is easy to integrate results and objects that dbcsp builds so that they can be integrated
with other R packages and functions. This is interesting for more advanced users to perform their own
customized analysis.

6 Conclusions

In this work a new Distance-Based Common Spatial Pattern is introduced. It allows to perform the
classical Common Spatial Pattern when the Euclidean distance between signals is considered, but
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it can be extended to the use of any other appropriate distance between signals as well. All of it is
included in package the dbcsp. The package is easy to use for non-specialised users but, for the sake
of flexibility, more advanced analysis can be carried out combining the created object and obtained
results with already well-known R packages, such as caret, for instance.
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The R Package HDSpatialScan for the
Detection of Clusters of Multivariate and
Functional Data using Spatial Scan
Statistics
by Camille Frévent, Mohamed-Salem Ahmed, Julien Soula, Zaineb Smida, Lionel Cucala, Sophie
Dabo-Niang and Michaël Genin

Abstract This paper introduces the R package HDSpatialScan. This package allows users to easily
apply spatial scan statistics to real-valued multivariate data or both univariate and multivariate
functional data. It also permits plotting the detected clusters and to summarize them. In this article the
methods are presented and the use of the package is illustrated through examples on environmental
data provided in the package.

1 Introduction

Spatial cluster detection methods are useful tools for objective detection and localization of statistically
significant aggregation of events indexed in space. Examples of the applications of these methods are
numerous: in the field of epidemiology, these methods allow epidemiologists to detect spatial clusters
of disease cases and to formulate etiological hypotheses; in the environmental sciences, researchers
can be led to search for particularly polluted geographical areas, either by one pollutant in particular
or by several pollutants simultaneously. In astronomy, researchers may want to identify star clusters
from telescope image data.

Several cluster detection methods have been proposed in the literature. In particular, spatial scan
statistics (originally proposed by Kulldorff and Nagarwalla (1995) and Kulldorff (1997) for Bernoulli
and Poisson models) are powerful methods for detecting statistically significant spatial clusters, which
can be defined by an aggregation of sites presenting an abnormal concentration (mean, etc) of an
observed variable, with a variable scanning window and in the absence of pre-selection bias (objective
detection of the cluster). Following on from Kulldorff’s initial work, several researchers have adapted
spatial scan statistics to other spatial data distributions: exponential (Huang et al., 2007), ordinal
(Jung et al., 2007), normal (Kulldorff et al., 2009), Weibull (Bhatt and Tiwari, 2014), etc. Others use
nonparametric approaches such as Jung and Cho (2015) and Cucala (2016) who respectively extend
the Wilcoxon-Mann-Whitney test for spatial scan statistics and for temporal or spatial scan statistics.
Note that in the case of spatial data the two approaches are equivalent by generalizing the method of
Jung and Cho (2015) to detect either high or low clusters.

The applications of scan statistics are numerous. In the field of epidemiology, Khan et al. (2021)
detected significant clusters of diabetes incidence in Florida between 2007 and 2010, which will help
guide local health policies. Marciano et al. (2018) sought to detect spatial clusters of leprosy incidence
in a hyperendemic Brazilian municipality between 2000 and 2005 and 2006 and 2010. The study
showed a high percentage of contact between people which facilitates the transmission of the disease.
Genin et al. (2020) detected high-risk clusters of Crohn’s disease in France over the period 2007-2014.
As the causes of this disease are still poorly understood, the detection of spatial clusters of Crohn’s dis-
ease allows the researchers to make hypotheses on possible risk factors, such as high-social deprivation
or high urbanization. In the context of environmental science, the detection of clusters of symptomatic
exposure to pesticides in rural areas (Sudakin et al., 2002) would allow the monitoring and prevention
of pesticide-related diseases. Gao et al. (2014) focused on the presence of iodine in drinking water
in Shandong Province, China. The detection of spatial clusters of iodine presence in drinking water
allows an improvement of the monitoring of drinking water quality in these geographical areas. Finally
in the context of pollution data, Wan et al. (2020) and Shi et al. (2021) respectively detected clusters
of high concentrations of PM2.5 in America and China. Such results may allow local authorities to
specifically monitor these areas and make decisions to reduce pollution.

When multiple variables are observed simultaneously at each spatial location, researchers may be
interested in detecting spatial clusters with anomalous values of all measured variables. In this context,
Kulldorff et al. (2007) proposed a multivariate spatial scan statistic using a combination of independent
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univariate scan statistics. However it fails to take into account the potential correlations between the
variables. A first spatial scan statistic for multivariate data taking into account the correlations was
proposed by Cucala et al. (2017). Their method is based on a multivariate normal probability model
and a likelihood ratio. Later, Cucala et al. (2019) proposed a nonparametric spatial scan statistic for
multivariate data based on a multivariate Wilcoxon-Mann-Whitney test.

Technological developments in measurement tools and data storage capacity have yielded to the
increasing use of sensors, cell phones and more generally connected devices that collect data continu-
ously or almost continuously over time. This has led to the introduction of new analysis methods for
functional data (Ramsay and Silverman, 2005), as well as the adaptation of classical statistical methods
such as principal component analysis (Boente and Fraiman, 2000; Berrendero et al., 2011) or regression
(Cuevas et al., 2002; Ferraty and Vieu, 2002; Chiou and Müller, 2007).
In the field of spatial scan statistics, Frévent et al. (2021a) and Smida et al. (2022) proposed new
methods for univariate processes. However for example, in environmental surveillance, numerous
variables are simultaneously measured, making a multivariate functional approach necessary to detect
environmental black-spots. These can be defined as geographical areas characterized by elevated
concentrations of multiple pollutants. Although Smida et al. (2022) only studied their approach in
the univariate functional framework, they suggest that it could also be adapted for multivariate
processes. Frévent et al. (2021b) studied this adaptation and also developed new efficient methods for
multivariate functional spatial scan statistics.

In R several packages provide spatial scan statistics implementations. The best known is certainly the
rsatscan (Kleinman, 2015) package which provides functions to interface R and the SaTScan software
(Kulldorff, 2021), allowing the latter to be launched from R. It implements lots of univariate methods
(ordinal, Bernoulli, Poisson, . . . ) but also the space-time spatial scan statistic (Kulldorff et al., 1998) and
the multivariate extensions proposed by Kulldorff et al. (2007). The function kulldorff implemented
in the R package SpatialEpi (Chen et al., 2018) also performs the spatial scan statistics based on the
Poisson and the Bernoulli models. Other softwares were created to detect clusters such as ClusterSeer
(Greiling et al., 2012; Durbeck et al., 2012) which performs spatial, temporal and space-time clustering,
and TreeScan (Kulldorff, 2018) which implements the tree-based scan statistic (Kulldorff et al., 2003).
We should also mention the R package DCluster (Gómez-Rubio et al., 2015) which implements the
spatial scan statistics for Poisson or Bernoulli models. The R package DClusterm (Gómez-Rubio et al.,
2019; Gomez-Rubio et al., 2020) also implements a cluster detection method. Briefly, it consists in
considering a large number of generalized linear models by including potential cluster indicators one
by one, and then to use a model selection procedure. The Shiny application SpatialEpiApp (Moraga,
2017b) and the R package SpatialEpiApp (Moraga, 2017a) allow the detection and visualization of
clusters by using the scan statistics implemented in SaTScan. Finally the software FlexScan (Takahashi
et al., 2010) and the R package rflexscan (Otani and Takahashi, 2021) implement the spatial scan
statistic using a scan window with a non pre-defined shape, defined by Takahashi and Tango (2005).
Other R packages also allow clusters detection such as graphscan (Loche et al., 2016) (the cluster
function), SPATCLUS (Dematteï et al., 2006) or scanstatistics (Allévius, 2018b,a) for spatial or space-
time data. It should be noted that these last two packages are no longer available on the CRAN
(The Comprehensive R Archive Network) repository. Although existing packages implement a large
number of statistical spatial scan models, none of them propose multivariate scan models taking into
account the potential correlations between variables or scan models for functional data. Thus, we
have developed the R package HDSpatialScan for high-dimensional spatial scan statistics. The latter
allows on the one hand the detection of spatial clusters in multivariate or functional data, and on the
other hand, their display on a map and the description of their characteristics.

This paper is organized as follows: The following section presents the different models implemented
in the R package HDSpatialScan. Then, the implementation of the methods is described and examples
of use of the package are given. The last section concludes the paper.

2 Models

Let s1, . . . , sn be n different locations of an observation domain S ⊂ R2 and X1, . . . , Xn be the ob-
servations of a variable X in s1, . . . , sn. Hereafter all observations are considered to be independent,
which is a classical assumption in scan statistics. Three types of spatial data can be considered: either
lattice data (the data are aggregated at the spatial level, e.g.: county), geostatistical data (the variable
is defined on a continuous area and each individual measure corresponds to a unique fixed spatial
location, e.g.: pollutant concentration measured by sensors over a region), or marked point data (each
individual measure corresponds to a unique random spatial location, e.g.: height of the trees in a
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forest, the location of the trees is random).

Spatial scan statistics aim at detecting spatial clusters and testing their statistical significance. Hence,
one tests a null hypothesis H0 (the absence of a cluster) against a composite alternative hypothesis
H1 (the presence of at least one cluster w ⊂ S presenting abnormal values of X). For this purpose, a
spatial scan statistic consists of two steps. The first one is a detection phase using a scanning window
of variable size and shape. We will focus here on the approach of Kulldorff and Nagarwalla (1995)
which use a circular scanning window of variable center and radius, however it should be noted that
other shapes can be considered (Kulldorff et al., 2006; Cucala et al., 2013). An approach often advised
is to limit the maximum size to half of the studied region since otherwise it would be like detecting a
“negative cluster” in the areas outside the clusters covering almost all the studied region (Kulldorff
and Nagarwalla, 1995). Then the scanning window allows to define a set of potential clusters W by

W = {wi,j / 1 ≤ |wi,j| ≤
n
2

, 1 ≤ i, j ≤ n}, (1)

where wi,j is the disc centered on si that passes through sj and |wi,j| corresponds to the number of sites
in wi,j. Figure 1 illustrates the set of potential clusters defined with a circular scanning window with
Equation 1 on a set of eight administrative areas in France.

Figure 1: Set of potential clusters defined with a circular scanning window of variable center and
radius with Equation 1 on a set of eight administrative areas in France. Each potential cluster is
represented with a red circle.

Then the spatial scan statistic can be defined as the maximum of a concentration index over the set of
potential clusters W . The second step is the determination of the statistical significance of the spatial
scan statistic. For this, since the distribution of the scan statistic is intractable under H0 due to the
overlapping nature of W , a common approach, which will be considered here, is to use a Monte-Carlo
method (see Section Computing the statistical significance of the MLC for more details).

Spatial scan statistics for multivariate data

Here we consider the case where several continuous variables are simultaneously observed in each
spatial location: X = (X(1), . . . , X(p))⊤ is a p-dimensional variable (p ≥ 2). In this context the objective
is to identify multivariate spatial clusters that are aggregations of sites in which X takes higher or
lower values (in terms of mean, median, etc.) than elsewhere. For example one could observe the
average concentrations of several pollutants over a day: a vector can be associated with each site, each
element of which corresponds to the average concentration of one pollutant. In this context a spatial
cluster corresponds to a set of sites under or overexposed to multiple pollutants. Different approaches
will be presented: a parametric method based on a Gaussian model and a nonparametric one.
Figure 2 summarizes the different types of multivariate data with examples, and provides guidelines
on the spatial scan statistics methods to be used for these data (and the argument to use in the scan
function of the package). More precisely, we distinguish three types of spatial data: lattice data
which are aggregated data for example at the scale of the regions of a country, geostatistical data
which are defined on a continuous space (typically temperature, sunshine, or atmospheric pressure)
although they are observed only at discrete sites, and marked point data for which the location is
random (for example the distribution of trees in a forest) and we observe at each location the circum-
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ference and height of the tree for example. To detect spatial clusters, in the case of Gaussian data we
will prefer the Gaussian approach (MG) and otherwise we will use the nonparametric approach (MNP).

Data

Application

Lattice data:

� Unemployment rate and
fraction of the popula-
tion that has not gradu-
ated from high school

Xi

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Geostatistical data:

� Temperature and air
pressure

Point pattern:

� Circumference and
height of trees

Question

Methods

Interpretation

Is there a statistically sig-
nificant cluster of high un-
employment rates and high
fraction of the population
with a low level of educa-
tion?

Is there a statistically signif-
icant cluster of high temper-
atures and low air pressure?

Is there a statistically sig-
nificant cluster of trees with
larger circumferences and
heights?

Gaussian data:

� Multivariate Gaussian spatial scan statistic

� “MG” argument in the scan function of the package

Non-Gaussian data:

� Multivariate Nonparametric spatial scan statistic

� “MNP” argument in the scan function of the package

There is a statistically significant cluster and by describing the mean or median of each
variable, we can get an indication of which variables are dominant in the cluster, and which
variables are higher or lower in that cluster.

example

Figure 2: Summary of spatial scan statistics for multivariate data. The table indicates the question that
can be asked for the detection of clusters. It then indicates the methods to be used according to the
distribution of the data as well as the ways to interpret the detected clusters. Spatial scan statistics for
multivariate data can be used to detect spatial clusters on any type of spatial data (lattice, geostatistical,
point data) modeled by vectors. The detected clusters can be characterized by computing the mean or
median of each variable inside and outside each cluster.

Cucala et al. (2017) proposed a parametric spatial scan statistic for multivariate data based on a
multivariate normal model taking into account the correlations between the variables.
The null hypothesis H0, corresponding to the absence of any cluster in the data, is the following:

∀i ∈ J1; nK, Xi ∼ Np(µ, Σ) and the alternative hypothesis H(w)
1 associated with a potential cluster w

can be defined as: ∀i ∈ J1; nK, Xi ∼
{

Np(µw, Σw,wc ) if si ∈ w
Np(µwc , Σw,wc ) otherwise .

Then we can compute the MLE estimates of µ, µw, µwc , Σ and Σw,wc : µ̂, µ̂w, µ̂wc , Σ̂ and Σ̂w,wc , and we
can show that the log-likelihood ratio between these two hypotheses is

L̂LRw =− n
2

ln
[

det
(

∑
i

si∈w

(Xi − µ̂w) (Xi − µ̂w)
⊤ + ∑

i
si∈wc

(Xi − µ̂wc ) (Xi − µ̂wc )⊤
)]

+
n
2

ln
[

det
( n

∑
i=1

(Xi − µ̂) (Xi − µ̂)⊤
)]

,

where µ̂g =
1
|g| ∑

i,si∈g
Xi for g ∈ {w, wc} and µ̂ =

1
n

n

∑
i=1

Xi.

Finally the log-likelihood ratio is used as a concentration index and maximised over the set of potential
clusters W .
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Thus we can show that the multivariate Gaussian (MG) scan statistic is

λMG = min
w∈W

det
(

∑
i

si∈w

(Xi − µ̂w) (Xi − µ̂w)
⊤ + ∑

i
si∈wc

(Xi − µ̂wc ) (Xi − µ̂wc )⊤
)

.

This test performs very well against Gaussian alternatives but faces problems when the data is not
normal, which is often the case when dealing with environmental data exhibiting extreme values. For
that reason Cucala et al. (2019) developed a nonparametric spatial scan statistic for multivariate data
based on a multivariate extension of the Wilcoxon-Mann-Whitney test for multivariate data (Oja and
Randles, 2004).
In this context the null hypothesis H0 can be rewritten as H0 : X1, . . . , Xn are identically distributed,
whatever the associated location.
Let

sgn : Rp → Rp

x 7→
{

||x||−1
2 x if x ̸= 0

0 otherwise
,

then the multivariate ranks Ri are defined by Ri =
1
n

n

∑
j=1

sgn(AX(Xi − Xj)) where the matrix AX

makes the ranks such that
p
n

n

∑
i=1

RiR⊤
i =

1
n

n

∑
i=1

R⊤
i Ri Ip. Note that this matrix can be easily computed

using an iterative procedure. Then the multivariate extension of the Wilcoxon-Mann-Whitney statistic
proposed by Oja and Randles (2004) is

U2(w) =
p

c2
X

[
|w| ||R̄w||22 + |wc| ||R̄wc ||22

]
, where c2

X =
1
n

n

∑
i=1

R⊤
i Ri.

Cucala et al. (2019) used U2(w) as a concentration index to build the spatial scan statistic: the
multivariate nonparametric (MNP) scan statistic is λMNP = max

w∈W
U2(w).

It should be noted that in the case p = 1, these statistics are respectively equivalent to the ones
introduced by Kulldorff et al. (2009) (which is equivalent to the scan statistic developed by Cucala
(2014), UG), and Jung and Cho (2015) (UNP).

Spatial scan statistics for univariate functional data

Here we consider the case where a continuous variable is observed in each spatial location over
time: {X(t), t ∈ T } is a real-valued stochastic process where T is an interval of R. In this con-
text the objective is to identify functional spatial clusters that are aggregations of sites in which the
curves are higher or lower than elsewhere. For example, one can observe the concentration of an
air pollutant over time in different geographical areas. Then a cluster corresponds to an aggregation
of sites in which the concentration of the air pollutant is higher or lower over the time than in the
other spatial units. Several methods will be considered: a parametric method based on a functional
ANOVA, a nonparametric approach using a Wilcoxon-Mann-Whitney test for high-dimensional data,
a distribution-free approach based on a pointwise Student’s t-test and finally a pointwise rank-based
method. On Gaussian data, for non localized clusters in time all approaches show high power and
high true positive rates. However the performances of the ANOVA-based method strongly decrease
on non-normal data. For localized clusters in time (that are aggregations of sites that take higher or
lower values for X only in a small interval of time (an interval of five days over a study period of one
month for example)) the pointwise approaches should be favored.
Figure 3 summarizes the different types of univariate functional data with examples, and provides
recommendations on the spatial scan statistics methods to be used for these data (and the argument
to use in the scan function of the package). More precisely, we distinguish lattice functional data
which are aggregated functional data for example at the scale of the administrative areas of a country
(unemployment rate, percentage of the population over 65, etc), geostatistical functional data which
are defined on a continuous space (typically temperature, sunshine, or atmospheric pressure over
time) although they are observed only at discrete sites, and marked point data for which the location
is random (for example the distribution of trees in a forest) and we observe at each location the
circumference of the tree over time for example. To detect spatial clusters, as mentioned before, in the
case of Gaussian data we will prefer the pointwise distribution-free functional approach (DFFSS) and
otherwise we will use the pointwise rank-based approach (URBFSS).
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Data

Application
Lattice data:

� Unemployment rate over time

Xi

Xi

Geostatistical data:

� Temperature over time

Point pattern:

� Circumference of trees
over time

Question

Methods

Interpretation

Is there a statistically significant cluster
of high or low unemployment rate curves?

Is there a statistically signif-
icant cluster of high or low
temperature curves?

Is there a statistically sig-
nificant cluster of trees with
high or low circumference
curves?

Gaussian data:

� Distribution-free functional spatial scan statistic

� “DFFSS” argument

Non-Gaussian data:

� Univariate rank-based functional spatial scan statistic

� “URBFSS” argument

There is a statistically significant cluster and by describing the mean or median curve of the variable,
we can get an indication of the characteristics of the cluster.

example

Figure 3: Summary of spatial scan statistics for univariate functional data. The table indicates the
question that can be asked for the detection of clusters on a set of curves. It then indicates the methods
to be used according to the distribution of the data as well as the ways to interpret the detected clusters.
Spatial scan statistics for univariate functional data can be used to detect spatial clusters on any type
of spatial data (lattice, geostatistical, point data) observed over a period of time. The detected clusters
can be characterized by computing the mean or median curve inside and outside each cluster.

The parametric spatial scan statistic for univariate functional data

Frévent et al. (2021a) supposed that the process X takes values in a semi-metric space, in particular in
L2(T , R) and proposed a parametric spatial scan statistic for functional data, based on a functional
ANOVA. Here the null hypothesis H0 can be rewritten: H0 : ∀w ∈ W , µw = µwc = µS, and

the alternative hypothesis H(w)
1 associated with a potential cluster w can be defined as follows:

H(w)
1 : µw ̸= µwc , where µw, µwc and µS stand for the mean functions in w, outside w and over S,

respectively. Cuevas et al. (2004) and Górecki and Smaga (2015) proposed the following ANOVA test
statistic:

F(w)
n =

|w| ||X̄w − X̄||22 + |wc| ||X̄wc − X̄||22
1

n − 2

[
∑j,sj∈w ||Xj − X̄w||22 + ∑j,sj∈wc ||Xj − X̄wc ||22

] ,

where X̄g(t) =
1
|g| ∑

i,si∈g
Xi(t) are empirical estimators of µg (g ∈ {w, wc}), X̄(t) =

1
n

n

∑
i=1

Xi(t) is the

empirical estimator of µS and ||x||22 =
∫
T

x2(t) dt.

Thus, Frévent et al. (2021a) proposed to use F(w)
n as a concentration index and the proposed parametric

functional spatial scan statistic (PFSS) is ΛPFSS = max
w∈W

F(w)
n .

This method gives high powers and F-measures on normal data but as in the multivariate framework
the parametric method faces problems when the data is not normal. Smida et al. (2022) proposed a
nonparametric spatial scan statistic for functional data based on a functional Wilcoxon-Mann-Whitney
test (Chakraborty and Chaudhuri, 2014).
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A nonparametric spatial scan statistic for functional data

Here X is a process of a smooth Banach space χ, with a Gâteaux differentiable norm ||.||χ. Let
denote Pw and Pwc the probability measures of X in w and in wc respectively, then H0 corresponds to:
H0 : ∀w ∈ W , Pw = Pwc and the alternative hypothesis associated with a potential cluster w can be

rewritten as H(w)
1 : Pw(X) = Pwc (X − ∆), ∆ ∈ χ\{0}.

Chakraborty and Chaudhuri (2014) defined the sign function in the functional framework as

∀h ∈ χ, SgnX(h) =

 lim
v→0+

||X + vh||χ − ||X||χ
v

if X ̸= 0

0 if X = 0
.

Then they proposed the following test statistic:

TWMW(w) =
1

|w||wc| ∑
i,si∈w

∑
j,sj∈wc

SgnXj−Xi
.

Under H0, if
|w|
n

→ γ ∈ [0; 1] as |w|, |wc| → ∞,

√
|w||wc|

n
TWMW(w) converges weakly to a distribu-

tion that does not depend on |w|. Thus Smida et al. (2022) proposed to use U(w) =

∣∣∣∣∣∣∣∣
√

|w||wc|
n

TWMW(w)

∣∣∣∣∣∣∣∣
as a concentration index: the nonparametric functional scan statistic (NPFSS) is ΛNPFSS = max

w∈W
U(w).

It should be noticed that although Smida et al. (2022) only studied the performances of the NPFSS in
the univariate functional framework, their method is also applicable on multivariate functional data
as shown by Frévent et al. (2021b).

A distribution-free spatial scan statistic for univariate functional data

Frévent et al. (2021a) also proposed to combine the distribution-free spatial scan statistic for univariate
data proposed by Cucala (2014) and the max statistic of Lin et al. (2021). They supposed that for each
time t, V[Xi(t)] = σ2(t) for all i ∈ J1; nK. Then for each t, the concentration index proposed by Cucala
(2014) to test H0 : ∀w ∈ W , µw(t) = µwc (t) = µS(t) was

I(w)(t) =
|X̄w(t)− X̄wc (t)|√
V̂[X̄w(t)− X̄wc (t)]

,

where V̂[X̄w(t)− X̄wc (t)] = σ̂2(t)
[

1
|w| +

1
|wc|

]
,

σ̂2(t) =
1

n − 2

[
∑

i,si∈w
(Xi(t)− X̄w(t))2 + ∑

i,si∈wc

(Xi(t)− X̄wc (t))2

]
.

Then the idea is to globalize the information by maximizing the previous quantity over the time for
each potential cluster w, as suggested by Lin et al. (2021):

I(w) = sup
t∈T

I(w)(t).

For cluster detection, as for the PFSS, the null hypothesis H0 (the absence of cluster) is defined as

follows: H0 : ∀w ∈ W , µw = µwc = µS. And the alternative hypothesis H(w)
1 associated with a

potential cluster w can be defined as follows: H(w)
1 : µw ̸= µwc .

Frévent et al. (2021a) considered I(w) as a concentration index and maximized it over the set of
potential clusters W yielding to the following distribution-free functional spatial scan statistic (DFFSS):
ΛDFFSS = max

w∈W
I(w).

A new rank-based spatial scan statistic for univariate functional data

A pointwise approach based on ranks and on the nonparametric scan statistic for univariate data (Jung
and Cho, 2015) can be proposed in the univariate functional framework by adapting the approach of
Frévent et al. (2021b).
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For a time t, Jung and Cho (2015) proposed to test H0 : ∀w ∈ W , Fw,t = Fwc,t where Fw,t and Fwc,t
are the cumulative distribution functions of X(t) in w and outside w, by using the Wilcoxon rank-
sum test statistic. For a time t and a potential cluster w, the Wilcoxon rank-sum test statistic is
W(t)(w) = ∑

i,si∈w
Ri(t) where Ri(t) is the rank of Xi(t) in {X1(t), . . . , Xn(t)}, using the average rank in

the case of tied observations.
Then the standardized version of this statistic is

T(t)(w) =
W(t)(w) − E[W(t)(w)]√

V[W(t)(w)]

where E[W(t)(w)] =
|w|(n + 1)

2
and V[W(t)(w)] =

|w||wc|(n + 1)
12

are the expected value and the

variance of W(t)(w) under H0.
Jung and Cho (2015) proposed to minimize the p-value associated with T(t)(w) on the set of potential
clusters W . We propose to adapt their approach by simply using |T(t)(w)| as a pointwise statistic.

In the context of cluster detection, the null hypothesis is defined as H0: ∀w ∈ W , ∀t ∈ T , Fw,t = Fwc,t.

The alternative hypothesis H(w)
1 associated with a potential cluster w is H(w)

1 : ∃t ∈ T , Fw,t(x) =
Fwc,t(x − ∆t), ∆t ̸= 0.

As before, we propose to globalize the information over the time with T(w) = sup
t∈T

|T(t)(w)| and to

use this quantity as a concentration index, yielding to the following univariate rank-based functional
spatial scan statistic (URBFSS): ΛURBFSS = max

w∈W
T(w).

Spatial scan statistics for multivariate functional data

Here we consider the case where several continuous variables are observed simultaneously in each
spatial unit over time: {X(t), t ∈ T } is a p-dimensional vector-valued stochastic process (p ≥ 2)
where T is an interval of R. The objective is to detect multivariate functional spatial clusters that are
aggregations of sites in which the curves are higher or lower than elsewhere. For example we can
observe the concentration of several pollutants over time in different locations. Thus at each location
we observe several processes (air pollutant concentrations) and these processes can be correlated. In
this context a cluster is an aggregation of sites overexposed or underexposed to multiple pollutants
over time. Several methods will be presented: a parametric method based on a functional MANOVA,
a distribution-free approach based on a pointwise Hotelling T2-test and finally a pointwise rank-based
method. On normal data, all approaches show high power and high true positive rates for non
localized clusters in time. However the performances of the methods based on the MANOVA and the
Hotelling T2-test decrease on non-normal data. For localized clusters in time the pointwise approaches
should be favored, especially the pointwise rank-based method on non-Gaussian data. By localized
clusters in time we mean aggregations of sites that take higher or lower values for X only in a small
interval of time (an interval of five days over a study period of one month for example).
Figure 4 summarizes the different types of multivariate functional data with examples, and provides
guidelines on the spatial scan statistics methods to be used for these data (and the argument to use
in the scan function of the package). To be more precise, we can distinguish lattice functional data
which are aggregated data for example at the scale of the regions of a country (unemployment rate
and fraction of the population that has not graduated from high school, over time, for example),
geostatistical functional data which are defined on a continuous space (temperature, sunshine, and
atmospheric pressure over time) although they are observed only at discrete sites, and marked point
data for which the location is random (for example the distribution of trees in a forest) and we ob-
serve at each location the circumference and height of the tree over time for example. As previously
mentioned, to detect spatial clusters, in the case of Gaussian data we will prefer the multivariate
distribution-free functional spatial scan statistic (MDFFSS) and for non-Gaussian data we will use the
pointwise rank-based approach (MRBFSS).

A parametric spatial scan statistic for multivariate functional data

Here, the process X is supposed to take values in a semi-metric space, in particular the Hilbert space
L2(T , Rp) of p-dimensional vector-valued square-integrable functions on T , equipped with the inner
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Data

Application
Lattice data:

� Unemployment rate and fraction of
the population that has not gradu-
ated from high school over time

Xi Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

Geostatistical data:

� Temperature and air
pressure over time

Point pattern:

� Circumference and
height of trees over time

Question

Methods

Interpretation

Is there a statistically significant cluster
of high unemployment rate curves and
high fraction of the population with a low
level of education over time?

Is there a statistically signif-
icant cluster of high temper-
ature and low air pressure
curves?

Is there a statistically sig-
nificant cluster of trees with
high circumference and
height curves?

Gaussian data:

� Multivariate distribution-free functional spatial scan statistic

� “MDFFSS” argument in the scan function of the package

Non-Gaussian data:

� Multivariate rank-based functional spatial scan statistic

� “MRBFSS” argument in the scan function of the package

There is a statistically significant cluster and by describing the mean or median curve of each variable,
we can get an indication of which variables are dominant in the cluster, and which variables present
higher or lower curves in that cluster.

Xi = (X
(1)
i , X

(2)
i , . . . , X

(p)
i )>

example

(p=2)

(p=2)

Figure 4: Summary of spatial scan statistics for multivariate functional data. The table indicates
the question that can be asked for the detection of clusters of multivariate curves. It then indicates
the methods to be used according to the distribution of the data as well as the ways to interpret the
detected clusters. Spatial scan statistics for multivariate functional data can be used to detect spatial
clusters on any type of spatial data (lattice, geostatistical, point data) composed of multivariate curves

Xi (in the table example, Xi = (X(1)
i , X(2)

i )⊤ is composed of two curves). Then, the detected clusters
can be characterized by computing the mean or median curve of each variable inside and outside each
cluster.

product ⟨X, Y⟩ =
∫
T

X(t)⊤Y(t) dt.

Frévent et al. (2021b) proposed a parametric scan statistic for multivariate functional data based on a
functional MANOVA Lawley–Hotelling trace test (Górecki and Smaga, 2017).

In this context, the null hypothesis H0 is H0 : ∀w ∈ W , µw = µwc = µS, where µw, µwc and µS stand

for the mean functions in w, outside w and over S, respectively. And the alternative hypothesis H(w)
1

associated with a potential cluster w is H(w)
1 : µw ̸= µwc . Górecki and Smaga (2017) presented the

following adaptation of the Lawley-Hotelling trace test statistic:

LH(w) = Trace(HwE−1
w )

where Hw = |w|
∫
T
[X̄w(t)− X̄(t)] [X̄w(t)− X̄(t)]⊤ dt + |wc|

∫
T
[X̄wc (t)− X̄(t)] [X̄wc (t)− X̄(t)]⊤ dt

and Ew = ∑
j,sj∈w

∫
T

[
Xj(t)− X̄w(t)

] [
Xj(t)− X̄w(t)

]⊤
dt + ∑

j,sj∈wc

∫
T

[
Xj(t)− X̄wc (t)

] [
Xj(t)− X̄wc (t)

]⊤
dt

with X̄g(t) =
1
|g| ∑

i,si∈g
Xi(t) the empirical estimators of µg(t) for g ∈ {w, wc} and X̄(t) =

1
n

n

∑
i=1

Xi(t)

the empirical estimator of µS(t).

Then Frévent et al. (2021b) considered LH(w) as a concentration index and proposed the parametric
multivariate functional spatial scan statistic (MPFSS): ΛMPFSS = max

w∈W
LH(w).

In fact Górecki and Smaga (2017) proposed four test statistics using the matrices Hw and Ew to compare
the mean functions in w and wc: (1) the Lawley–Hotelling trace test statistic LH(w) = Trace(HwE−1

w ),
(2) the Pillai trace test statistic P(w) = Trace(Hw(Hw + Ew)−1), (3) the Roy’s largest root test statistic
R(w) = λmax(HwE−1

w ) where λmax(HwE−1
w ) is the maximum eigenvalue of HwE−1

w and (4) the Wilks
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lambda test statistic W(w) =
det(Ew)

det(Hw + Ew)
.

Thus each of these quantities (or the opposite for the Wilks lambda test statistic) can be considered as
a concentration index and maximized over W which results in the following parametric multivariate
functional spatial scan statistics:

ΛLH = max
w∈W

LH(w), ΛP = max
w∈W

P(w), ΛR = max
w∈W

R(w), ΛW = min
w∈W

W(w).

These four approaches are implemented in the package HDSpatialScan.

A distribution-free spatial scan statistic for multivariate functional data

Frévent et al. (2021b) proposed a distribution-free spatial scan statistic for multivariate functional data
which is the counterpart of the distribution-free spatial scan statistic for univariate functional data
developed by Frévent et al. (2021a). They supposed that for each time t, V[Xi(t)] = Σ(t, t) for all
i ∈ J1; nK, where Σ is a p × p covariance matrix function.

Thus, as previously, in the context of cluster detection, the null hypothesis H0 can be defined as
follows: H0 : ∀w ∈ W , µw = µwc = µS, where µw, µwc and µS stand for the mean functions in w,

outside w and over S, respectively. And the alternative hypothesis H(w)
1 associated with a potential

cluster w can be defined as follows: H(w)
1 : µw ̸= µwc . Next, Qiu et al. (2021) proposed to compare the

mean function µw in w with the mean function µwc in wc by using the following statistic:

T(w)
n,max = sup

t∈T
Tn(t)(w)

where Tn(t) is a pointwise statistic defined by the Hotelling T2-test statistic

Tn(t)(w) =
|w||wc|

n
(X̄w(t)− X̄wc (t))⊤ Σ̂(t, t)−1 (X̄w(t)− X̄wc (t)) .

X̄w(t) and X̄wc (t) are the empirical estimators of the mean functions defined previously, and

Σ̂(s, t) =
1

n − 2

[
∑

i,si∈w
(Xi(s)− X̄w(s)) (Xi(t)− X̄w(t))

⊤ + ∑
i,si∈wc

(Xi(s)− X̄wc (s)) (Xi(t)− X̄wc (t))⊤
]

is the pooled sample covariance matrix function.

Then Frévent et al. (2021b) proposed to use T(w)
n,max as a concentration index and to maximize it over the

set of potential clusters W : the multivariate distribution-free functional spatial scan statistic (MDFFSS)

is ΛMDFFSS = max
w∈W

T(w)
n,max.

A rank-based spatial scan statistic for multivariate functional data

Finally Frévent et al. (2021b) also proposed to consider as a pointwise test statistic the multivariate
extension of the Wilcoxon rank-sum test statistic developed by Oja and Randles (2004) and detailed in
Section Spatial scan statistics for multivariate data. They defined the pointwise multivariate ranks as

Ri(t) =
1
n

n

∑
j=1

sgn(AX(t)(Xi(t)− Xj(t))) where the pointwise transformation matrix AX(t) is so that

p
n

n

∑
i=1

Ri(t)Ri(t)⊤ =
1
n

n

∑
i=1

Ri(t)⊤Ri(t)Ip, and the sgn function is the same as in Section Spatial scan

statistics for multivariate data.

Then for each time t, the pointwise multivariate extension of the Wilcoxon rank-sum test statistic is

defined as W(t)(w) =
pn

∑n
i=1 Ri(t)⊤Ri(t)

[
|w| ||R̄w(t)||22 + |wc| ||R̄wc (t)||22

]
where

R̄g(t) =
1
|g| ∑

i,si∈g
Ri(t) (g ∈ {w, wc}) .

In the context of cluster detection, the null hypothesis is defined as H0: ∀w ∈ W , ∀t ∈ T , Fw,t = Fwc,t
where Fw,t and Fwc,t correspond respectively to the cumulative distribution functions of X(t) in

w and outside w. The alternative hypothesis H(w)
1 associated with a potential cluster w is H(w)

1 :
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∃t ∈ T , Fw,t(x) = Fwc,t(x − ∆t), ∆t ̸= 0.

Finally Frévent et al. (2021b) proposed to globalize the information over the time with the quantity
W(w) = sup

t∈T
W(t)(w) and to use it as a concentration index to be maximized over the set of potential

clusters W . The multivariate rank-based functional spatial scan statistic (MRBFSS) is then ΛMRBFSS =

max
w∈W

W(w).

Computing the statistical significance of the MLC

Once the most likely cluster (MLC) is detected, its statistical significance must be evaluated. The
distribution of the scan statistic S (S = λMG, λMNP, ΛPFSS, ΛNPFSS, ΛDFFSS, ΛURBFSS, ΛMPFSS, ΛMDFFSS
or ΛMRBFSS) is intractable under H0 due to the overlapping nature of W . Then we choose to obtain a
large set of simulated datasets by randomly permuting the observations Xi in the spatial locations.
This technique was already used in spatial scan statistics (Kulldorff et al., 2009; Cucala et al., 2017).

Let M denote the number of random permutations of the original dataset and S (1), . . . ,S (M) be the
observed scan statistics on the simulated datasets. According to Dwass (1957) the p-value for S
observed in the real data is estimated by

p̂ =
1 + ∑M

m=1 1S (m)≥S
M + 1

. (2)

Finally, the MLC is considered to be statistically significant if the associated p̂ is less than the type I
error.

How to choose the method to apply to the data?

According to Cucala et al. (2019) the MNP method tends to present a better power and higher true
positive rates for non-Gaussian data than the MG one. Although the false positive rates are often
higher for this approach than the MG one, it remains moderate. The same conclusions are true for the
UG (Kulldorff et al., 2009) and the UNP (Jung and Cho, 2015) which are their particular counterparts
in the case of a single variable. In the functional framework, the approaches that present the best
results are the DFFSS and the URBFSS in the univariate context and the MDFFSS and the MRBFSS
in the multivariate one (Frévent et al., 2021a,b). The URBFSS and the MRBFSS tend to show higher
powers and higher true positive rates although they detect more false positives than the DFFSS and
the MDFFSS respectively. Table 1 summarizes the methods and their performances. The symbols ✓
and X indicate respectively a high and a low performance on the criterion. If there is no symbol it
means that for this criterion the approach offers medium performances. The terminology “localized
clusters in time” in the functional cases refers to aggregations of sites that take higher or lower values
for the process only in a small interval of time (an interval of five days over a study period of one
month for example). Table 2 gives an idea of the computation time of the different scanning methods
proposed by the package. It should be noted that the computation time of the different spatial scan
statistics methods is dependent on the size of the datasets, and in particular a function of the number
of sites, the number of observation times and the number of variables considered.

3 Software

Computing the spatial scan statistic

The package HDSpatialScan provides a function SpatialScan to compute all the spatial scan statistics.
The user chooses the method to apply by specifying the method argument: "MG" and "MNP" apply
respectively the parametric and nonparametric spatial scan statistics approaches on multivariate
data. Their univariate counterparts (when p = 1) can be computed with "UG" and "UNP" respectively.
Then "PFSS", "DFFSS" and "URBFSS" apply the parametric, the distribution-free and the new rank-
based functional approaches on univariate functional data, and "MPFSS", "MDFFSS", and "MRBFSS" are
their multivariate counterparts. Finally "NPFSS" applies the nonparametric spatial scan statistic for
functional data developed by Smida et al. (2022) on both univariate and multivariate functional data.
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Table 1: Performance in terms of power, true positive rate and false positive rate of spatial scan
statistics for multivariate data (MG and MNP), univariate functional data (PFSS, DFFSS, NPFSS and
URBFSS) and multivariate functional data (MPFSS, MDFFSS, NPFSS and MRBFSS)

Gaussian distribution Non-Gaussian distribution
Method Power True positive rate False positive rate Power True positive rate False positive rate

Univariate data Univariate data

UGa ✓ ✓ ✓ X X ✓
UNPa ✓ ✓ ✓ ✓

Multivariate data Multivariate data

MGb ✓ ✓ ✓ X X ✓
MNPb ✓ ✓ ✓ ✓

Functional univariate data Functional univariate data

Non localized clusters in time Non localized clusters in time
PFSSc ✓ X ✓

DFFSSd ✓ ✓ ✓ ✓ ✓ ✓
NPFSSe ✓ ✓

URBFSS f ✓ ✓ ✓ ✓

Localized clusters in time Localized clusters in time
PFSSc X X X X

DFFSSd ✓ ✓ ✓ ✓ ✓ ✓
NPFSSe X X

URBFSS f ✓ ✓ ✓ ✓ ✓ ✓

Functional multivariate data Functional multivariate data

Non localized clusters in time Non localized clusters in time
MPFSSc ✓ X X ✓

MDFFSSd ✓ ✓ ✓ ✓
NPFSSe ✓ ✓ ✓

MRBFSS f ✓ ✓ ✓ ✓

Localized clusters in time Localized clusters in time
MPFSSc X X X X ✓

MDFFSSd ✓ ✓ ✓ ✓
NPFSSe X X

MRBFSS f ✓ ✓ ✓ ✓ ✓ ✓
a The Univariate Gaussian (UG) and the Univariate Nonparametric (UNP) spatial scan statistics

b The Multivariate Gaussian (MG) and the Multivariate Nonparametric (MNP) spatial scan statistics
c The Parametric Functional (PFSS) and the Multivariate Parametric Functional (MPFSS) spatial scan statistics

d The Distribution-free Functional (DFFSS) and the Multivariate Distribution-free Functional (MDFFSS) spatial Scan Statistics
e The Nonparametric Functional (NPFSS) spatial Scan Statistic

f The Univariate Rank-based Functional (URBFSS) and the Multivariate Rank-based Functional (MRBFSS) spatial Scan Statistics
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Table 2: Estimation of the computation time (over 100 repetitions) for the different scan statistics
methods among 169 sites with a priori clusters comprising between 1 and 50% of the sites (default
parameters) and 99 permutations for the estimation of the associated p-values (the default parameter
of 999 permutations multiplies the computation time by about 10). Parallelization by running seven
tasks in parallel was used (except for UG and UNP since these two methods are optimized to have
a very low computation time without using CPUs) on two hexacores of type Intel(R) Xeon(R) CPU
E5-2620 v2. For multivariate data (functional or not) 4 variables are considered and for functional data
(univariate or multivariate) 56 observation times are considered.

Method Computation time (in s)
Mean Standard deviation Minimum Maximum

Univariate data

UGa 4.31 0.18 4.01 4.77
UNPa 3.07 0.12 2.77 3.5

Multivariate data

MGb 253.04 32.93 231.34 310.91
MNPb 14.6 1.44 13.48 17.77

Functional univariate data

PFSSc 113.51 8.08 109.47 132.58
DFFSSd 55.99 4.93 52.52 66.76
NPFSSe 12.91 1.23 11.74 15.6

URBFSS f 17.93 1.37 16.93 22.53

Functional multivariate data

MPFSSc 72.52 9.21 65.23 100.17
MDFFSSd 182.95 21.54 166.27 227.84
NPFSSe 22.95 1.7 21.77 28

MRBFSS f 244.04 21.83 234.05 305.56
a The Univariate Gaussian (UG) and the Univariate Nonparametric (UNP) spatial scan statistics

b The Multivariate Gaussian (MG) and the Multivariate Nonparametric (MNP) spatial scan statistics
c The Parametric Functional (PFSS) and the Multivariate Parametric Functional (MPFSS) spatial scan statistics

d The Distribution-free Functional (DFFSS) and the Multivariate Distribution-free Functional (MDFFSS) spatial Scan Statistics
e The Nonparametric Functional (NPFSS) spatial Scan Statistic

f The Univariate Rank-based Functional (URBFSS) and the Multivariate Rank-based Functional (MRBFSS) spatial Scan Statistics
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Type of the data

Depending on the type of approach (univariate, multivariate, functional univariate or functional
multivariate), the data must be formatted in a specific way. For univariate approaches, the data must
be a vector in which each element corresponds to a site. If the data is individual and many individuals
share the same site, the data can remain in an individual format with one element of the vector per
individual. Then for real-valued multivariate methods or functional univariate methods, the data must
be a matrix in which each row corresponds to a site (or an individual) and each column corresponds
to a variable or an observation time in the functional framework. For multivariate functional methods
the data must be a list in which each element is a matrix corresponding to a site (or an individual). In
the matrices, the rows correspond to the variables and the columns to the observation times. Note that
the observation times must be the same for each site or individual and they must be equally spaced
for the methods "NPFSS", "PFSS" and "MPFSS". However if it is not the case of the raw data, they can
be easily transformed by smoothing the data (Ramsay and Silverman, 2005), by using for example the
R package fda (Ramsay et al., 2020).

Parameters of the scan function

The most important parameter is the method argument which has already been presented previously
and allows to choose the spatial scan statistics to be applied. Note that you can choose one or more
methods. Supplying "MPFSS" automatically computes the four strategies for the multivariate para-
metric functional spatial scan statistic (the Lawley-Hotelling trace (LH), the Roy’s largest root (R), the
Pillai’s trace (P) and the Wilks’ lambda (W)). If you only want the Lawley-Hotelling trace for example,
you can simply supply "MPFSS-LH". Although the Lawley-Hotelling trace test is the most used statistic
(Oja and Randles, 2004), it should be noted that all these methods usually provide very similar results.
The other arguments are data, sites_coord, system, mini, maxi, type_minimaxi, mini_post, maxi_post,
type_minimaxi_post, sites_areas, MC, typeI, nbCPU, variable_names and times. Note that nbCPU will
be ignored for the methods "UG" and "UNP", variable_names is ignored for the univariate and univari-
ate functional scan statistics and times is ignored for non-functional scan statistics.

The argument data, is the data vector, matrix or list on which the approaches must be applied. MC
and typeI correspond respectively to the number of permutations of the data while computing the
statistical significance of the clusters and the type I error i.e. a cluster is declared significant if its
estimated p-value is below this threshold.
The arguments sites_coord and system are respectively a matrix of two columns corresponding to
the coordinates of each site or individual, and to the system of coordinates (“Euclidean” or “WGS84”).
The sites_areas argument is optional and corresponds to the areas of the sites (or the site of each
individual if the data is individual).
The argument nbCPU permits to do parallelization and the arguments mini, maxi, type_minimaxi,
mini_post, maxi_post, type_minimaxi_post are described further below.
variable_names is simply the names of the variables (in the same order as in the data) for multivariate
or multivariate functional scan statistics and times corresponds to the times of observation, they must
be numeric.

A priori filtering The clusters are computed automatically as circular clusters, so we need to define
a minimum and a maximum size for these clusters. That is what we call “a priori filtering” and
this allows to control the computation time. Three types of a priori filtering are possible through the
argument type_minimaxi: "sites/indiv" (the filtering is applied on the number of sites or individuals
in the potential clusters, it is the default value), "area" (it is applied on the area of the clusters and is
available only if sites_areas is provided), or "radius" (the radius of the clusters).
The arguments mini and maxi are then respectively the minimum number of sites/individuals, or the
minimal area or radius and the maximum number of sites/individuals, or the maximal area or radius.
For the radius it is specified in km if system is "WGS84" or in the user units if system is "Euclidean".
It should be noted that this filtering can bias the p-values obtained for the clusters. In order to perform
a correct statistical inference, Kulldorff and Nagarwalla (1995) recommended to consider a maximum
size of half the study region. Thus the default setting is to consider potential clusters comprising at
least one site and at most 50% of the sites (Equation 1). If you want to select clusters according to
size (number of sites or individuals), area or radius, it is better to select them a posteriori among the
detected clusters and if you really want to decrease the computation time we recommend to increase
the number of CPU (with the argument nb_CPU). Changing the default settings can allow the user to
investigate whether there appear to be clusters in a relatively quick first step, although the inference is
biased, before applying the scan procedure with the default settings for the a priori filtering (50% of
the studied region).
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A posteriori filtering Sometimes after that the p-value of each potential cluster has been computing,
the user may want to retrieve only the significant clusters that satisfy a certain size, area, or radius crite-
ria. That is what we call a posteriori filtering. The corresponding arguments are mini_post, maxi_post
and type_minimaxi_post and their definitions are the same as mini, maxi and type_minimaxi. If the
user only wants to obtain clusters meeting size criteria, this a posteriori approach must be prioritized
over the a priori approach which gives biased results and must therefore be used with great care.

Output of the scan function

The function SpatialScan returns a list of object of class "ResScanOutput" which is composed of many
elements. The element sites_clusters is a list in which each element corresponds to a significant
cluster and contains the index of the sites (or the individuals) included in this cluster. The clusters
are listed in their order of detection. The secondary clusters are defined according to Kulldorff (1997):
they correspond to potential clusters that also present large values for the concentration index. Their
p-values are calculated as if they were the most likely cluster themselves which is a bit conservative
since the secondary clusters are compared with the most likely cluster of the permutations (Kulldorff,
1997). Finally, only clusters that are significant at the typeI threshold and that do not overlap with
a more likely cluster are returned, and pval_clusters corresponds to the associated p-values. The
element centres_clusters corresponds to the coordinates of the centres of each detected cluster and
radius_clusters is the radius of the clusters in km if system is “WGS84” or in the user units otherwise.
areas_clusters corresponds to the areas of the clusters (in the same units as sites_areas). Finally
the system of coordinates, the coordinates of the sites, the data and the name of the scan procedure are
recalled respectively in the elements system, sites_coord, data and method.

Depending on the type of the method (univariate, multivariate, univariate functional or multivariate
functional) the objects of class "ResScanOutput" are also of class "ResScanOutputUni", "ResScanOutputMulti",
"ResScanOutputUniFunct" or "ResScanOutputMultiFunct". The objects of class "ResScanOutputMulti"
and "ResScanOutputMultiFunct" also include the element variable_names, and the objects of class
"ResScanOutputUniFunct" and "ResScanOutputMultiFunct" include the element time.

Plot or summarize the results

It is possible to plot the detected clusters by using the classical plot function. Depending on the type
parameter, the package HDSpatialScan provides three different types of plot.

The first one, "map", allows the user to plot a map of the sites and draws the circles corresponding to
the circular clusters. The second one, "map2", plots the clusters in colors. For these two types of plot
the argument spobject which is the spatial object corresponding to the sites, must be provided. If you
do not have this object you can use the third type "schema" which simply draws a schema of the sites
and the clusters, with the argument system_conv which allows to correctly project the coordinates. It
must be entered as in the PROJ documentation (PROJ contributors, 2021).

One may also want to get some features of one’s clusters.
The function summary allows to get a summary of the clusters, either the mean and the standard devia-
tion of each of the variables (if many) if the argument type_summ is "param", or the 25th percentiles, the
medians and the 75th percentiles if the argument type_summ is "nparam". This function also provides
the p-values, the radius and the area if available (only if sites_areas is provided) for each cluster
detected.
Other interesting functions are plotCurves that allows to display cluster curves (only in the functional
case), and plotSummary which displays the average (if type = "mean") or the median (if type =
"median") curves in the clusters, outside and the global mean or median curves in the functional case.
For the multivariate non-functional framework it displays a spider chart of means or medians for each
variable inside the cluster, outside, or in all the area. Note that all these functions take an argument
only.MLC which allows to only plot or summarize the most likely cluster (by setting only.MLC = TRUE).
Finally the print function shows the scan procedure used as well as the number of clusters detected
and their p-value.

4 Illustrations

To show the simplicity of use of the package, we will apply the different approaches on the envi-
ronmental data provided in the package. It should be noted that the codes presented in this section
represent a total computation time of about one hour on a regular laptop, using 7 cores.
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Air pollution in northern France

We considered data provided by the French national air quality forecasting platform PREV’AIR which
is available in the package HDSpatialScan. This lattice data consists in the daily concentrations (from
May 1, 2020 to June 25, 2020) in µg.m−3 of four pollutants for each of the 169 cantons (administrative
subdivisions of France) of the Nord-Pas-de-Calais (a region in northern France) characterized by spatial
polygons and located by their center of gravity s1, . . . , s169: nitrogen dioxide (NO2), ozone (O3) and
fine particles PM10 and PM2.5 corresponding respectively to particles whose diameter is less than 10µm
and 2.5µm. The package HDSpatialScan provides the full data: fmulti_data but also some reduced
data for the univariate functional case which consists in considering only the NO2 concentrations
(funi_data), and for the multivariate non-functional framework (multi_data) which corresponds to
the temporal mean concentrations of the four pollutants over the study period.

The first step is to load the data:

library(HDSpatialScan)
data("map_sites")
data("multi_data")
data("funi_data")
data("fmulti_data")

The second step is to visualize the pollutants daily concentration curves in each canton and the spatial
distributions of the temporal mean concentrations for each pollutant over the studied time period
(Figures 5 and 6). This step allows us to see if sites seem to aggregate and therefore if launching a
cluster detection is relevant, and if a temporal variation of the concentrations is visible, in which case a
functional method will be more relevant than a multivariate approach summarizing each curve by its
mean.
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Figure 5: Daily concentration curves of NO2, O3, PM10 and PM2.5 (from May 1, 2020 to June 25, 2020)
in each of the 169 cantons of Nord-Pas-de-Calais (a region in northern France). A marked temporal
variability in the concentrations of the four pollutants is observed over the study period.

The maps in Figure 6 show a spatial heterogeneity of the average concentration for each pollutant. Thus
spatial scan statistics seem to be suitable to highlight the presence of cantons-level spatial clusters of
pollutants concentrations. Moreover since the curves in Figure 5 show a marked temporal variability
during the period from May 1, 2020 to June 25, 2020 a functional approach is more appropriate.
However for sake of completeness we will also perform a multivariate spatial scan statistic approach
anyway. Since small clusters of pollution are more relevant for interpretation because the sources of
the pollutants are very localized, we will consider an a posteriori filtering of maximum radius equal to
10 km.

A multivariate spatial scan statistic

First we will investigate a multivariate spatial scan statistic. In this example the temporal component
of the multivariate functional data was suppressed by averaging the components over the time and
we looked for spatial clusters of the combination of the different air pollutants. This will pick up areas

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 111

Average PM10 concentration in µg/m3

[14.3,16.1]
(16.1,16.8]
(16.8,17.1]
(17.1,17.5]
(17.5,19.8]

Average NO2 concentration in µg/m3

[7.26,8.54]
(8.54,8.89]
(8.89,9.5]
(9.5,10.1]
(10.1,14.3]

Average O3 concentration in µg/m3

[63.7,66.5]
(66.5,67.5]
(67.5,68.2]
(68.2,68.8]
(68.8,70.2]

Average PM2.5 concentration in µg/m3

[7.11,9.04]
(9.04,9.66]
(9.66,9.93]
(9.93,10.3]
(10.3,11.1]

Average NO2 concentration in μg/m3

Average PM10 concentration in μg/m3

Average O3 concentration in μg/m3

Average PM2.5 concentration in μg/m3

[7.26,8.54]
]8.54,8.89]
]8.89,9.5]
]9.5,10.1]
]10.1,14.3]

[63.7,66.5]
]66.5,67.5]
]67.5,68.2]
]68.2,68.8]
]68.8,70.2]

[14.3,16.1]
]16.1,16.8]
]16.8,17.1]
]17.1,17.5]
]17.5,19.8]

[7.11,9.04]
]9.04,9.66]
]9.66,9.93]
]9.93,10.3]
]10.3,11.1]

Figure 6: Spatial distributions of the average concentrations of NO2, O3, PM10 and PM2.5 over the
period from May 1, 2020 to June 25, 2020. A spatial heterogeneity of the average concentration
(over the study period) is observed for the four pollutants. The spatial distributions of the average
concentrations of PM10 and PM2.5 are also observed to be similar.

of multiple exposure to pollutants or, on the contrary, areas with little pollution. We first checked
the normality of each variable, which has been done by using a histogram and a qqplot. Since the
distribution of the pollutants temporal mean concentrations is non-normal we decide to apply the
MNP scan procedure. Here the system of coordinates is “WGS84”, it must be filled with the argument
system. As explained in Section Computing the spatial scan statistic, Kulldorff and Nagarwalla
(1995) recommended to consider a maximum size of half the study region for the potential clusters
so we use this a priori filtering with the parameters mini, maxi and type_minimaxi: the potential
clusters are circular and they contain between 1 and 50% of the sites. Then as noticed in Section Air
pollution in northern France, we will apply an a posteriori filtering of maximum radius equal to 10
km (arguments mini_post, maxi_post and type_minimaxi_post). Here we only want to consider the
significant clusters at the 5% threshold. Thus we leave the typeI parameter at its default value (0.05).
However it should be noted that it is possible to obtain all the clusters (the MLC and the secondary
clusters (Kulldorff, 1997)) by setting the typeI value at 1.

library(sp)
coords <- coordinates(map_sites)
res_mnp <- SpatialScan(method = "MNP", data = multi_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99, variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MNP

Once the scan procedure is completed, the plot function can be used. For brevity, we only focus on the
MLC and for the sake of completeness we will show the use of the three possible visualizations of the
clusters. Since we have a spatial object map_sites we can use the types "map" and "map2". However for
sake of completeness we also show the use of "schema" which allows to display the clusters otherwise
(Figure 7). For the latter, since the system of the coordinates is “WGS84”, the plot function requires to
complete the parameter system_conv which allows to correctly project the points. Here we choose the
EPSG code 2154 corresponding to the Lambert 93 projection since the data is located in metropolitan
France.

plot(x = res_mnp, type = "map", spobject = map_sites, only.MLC = TRUE)
plot(x = res_mnp, type = "map2", spobject = map_sites, only.MLC = TRUE)
plot(x = res_mnp, type = "schema", system_conv = "+init=epsg:2154", only.MLC = TRUE)

Finally users may want to get some summarized characteristics, such as the quantiles of the variables.
This can be achieved by using the function summary with the argument type_summ equal to "nparam"
(for the quantiles):

summary(res_mnp, type_summ = "nparam", only.MLC = TRUE)

## $basic_summary
## Cluster 1
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Figure 7: Visualization of the most likely cluster with the function plot with the types "map" (panel
a), "map2" (panel b) and "schema" (panel c) for the MNP scan procedure computed with the function
SpatialScan on the average concentrations of NO2, O3, PM10 and PM2.5. The first two types of
visualization require a spatial object corresponding to the spatial units (here the 169 cantons of the Nord-
Pas-de-Calais region of northern France). The visualization option "schema" allows in the other case to
draw a schema of the spatial units and the detected clusters. Here we focus the cluster visualization
on the most likely cluster which is located in the urban area of Lille.

## p-value 0.001
## Radius 9.999
##
## $complete_summary
## Overall Inside cluster 1 Outside cluster 1
## Number of sites 169.000 12.000 157.000
## Q25 NO2 8.673 11.327 8.635
## Median NO2 9.183 11.721 9.075
## Q75 NO2 9.848 12.382 9.692
## Q25 O3 66.778 67.527 66.721
## Median O3 67.895 67.609 67.961
## Q75 O3 68.564 67.922 68.658
## Q25 PM10 16.397 17.483 16.205
## Median PM10 16.970 17.877 16.933
## Q75 PM10 17.372 17.962 17.266
## Q25 PM2.5 9.132 10.584 9.113
## Median PM2.5 9.833 10.678 9.790
## Q75 PM2.5 10.213 10.919 10.107

The user can also use the function plotSummary to display the spider chart corresponding to the
detected cluster (Figure 8).

plotSummary(res_mnp, type = "median", only.MLC = TRUE)

The MLC is located in the area of Lille. The summary and Figure 8 show that it is a cluster of overpol-
lution (except for the pollutant O3). This cluster is especially characterized by high concentrations of
NO2 and PM2.5 which indicates pollution from road traffic and from the residential sector (auxiliary
heating in particular). As the adverse health effects of air pollution (and their potential synergistic ef-
fect) are well established, such a result could inform local stakeholders about immediate interventions
around the area of Lille to reduce the air pollution levels.

We have obtained some first results however the curves on Figure 5 present a marked temporal
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Figure 8: Spider chart obtained with the function plotSummary for the most likely cluster detected
on the average concentrations of NO2, O3, PM10 and PM2.5 by the MNP scan procedure in northern
France. The most likely cluster is characterized by larger median concentrations of NO2, PM10 and
PM2.5 than outside the cluster.

variability during the study period. Thus it could be interesting to apply functional spatial scan
statistics.

A univariate functional spatial scan statistic

Here we only consider the pollutant NO2. Applying a spatial scan statistic for univariate functional
data will thus allow to highlight areas where the NO2 concentration curves are abnormally high or,
on the contrary abnormally low. We choose to use the URBFSS scan procedure since it often presents
higher powers and true positive rates than the other univariate functional methods as its multivariate
counterpart MRBFSS (Frévent et al., 2021b). As mentioned in Section A multivariate spatial scan
statistic we decide to use the set of potential clusters a priori in the Equation 1 which corresponds
to the recommended approach of Kulldorff and Nagarwalla (1995), and to the default values of the
parameters mini, maxi and type_minimaxi in the scan functions. We also set a maximum radius equal
to 10 km a posteriori.

res_urbfss <- SpatialScan(method = "URBFSS", data = funi_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99)$URBFSS
plot(res_urbfss, type = "map2", spobject = map_sites, only.MLC = TRUE)

11111111111111111111111111111111111111111111111111111111111111111

Figure 9: Visualization of the detected clusters with the function plot with type = "map2" for the
URBFSS scan procedure computed using the concentrations of NO2 in the 169 cantons of the Nord-Pas-
de-Calais region of northern France over the period from May 1, 2020 to June 25, 2020. Here we focus
the cluster visualization on the most likely cluster which is located in the urban area of Lille.

Again the MLC is located in the area of Lille (Figure 9).

For functional data another function is provided to give some characteristics of the clusters: we
can visualize the curves in the cluster by adding the curve of the global median with the function
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plotCurves. The function plotSummary allows to visualize the median curves inside and outside the
cluster (Figure 10): this is a cluster of overexposure to NO2, which indicates traffic-related air pollution.
Since exposure to pollution impacts health negatively, these results can be used to intervene to reduce
air pollution.

plotCurves(res_urbfss, add_median = TRUE, only.MLC = TRUE)
plotSummary(res_urbfss, type = "median", only.MLC = TRUE)
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Figure 10: Characterization of the most likely cluster detected by the URBFSS scan approach in the
context of univariate functional data consisting of the NO2 concentrations in northern France over the
period from May 1, 2020 to June 25, 2020 with the functions plotCurves (left panel) and plotSummary
(right panel). The most likely cluster is characterized by high concentration curves with a median
concentration curve higher than outside the cluster.

A functional multivariate spatial scan statistic

Now we consider the four pollutants together. To detect spatial clusters of the combination of the
four pollutants considering all available information on the time period, we apply a spatial scan
statistic for multivariate functional data. It will identify geographical areas in which one or more of
the pollutant concentration curves are abnormally high or abnormally low. For the same reason that
we have previously chosen to apply the URBFSS scan procedure, we use the MRBFSS in this context,
with the same restrictions a priori and a posteriori as for the MNP and the URBFSS scan approaches.

res_mrbfss <- SpatialScan(method = "MRBFSS", data = fmulti_data, sites_coord = coords,
+ system = "WGS84", mini = 1, maxi = nrow(coords)/2, type_minimaxi = "sites/indiv",
+ mini_post = 0, maxi_post = 10, type_minimaxi_post = "radius",
+ nbCPU = 7, MC = 99, variable_names = c("NO2", "O3", "PM10", "PM2.5"))$MRBFSS
plot(res_mrbfss, type = "map2", spobject = map_sites, only.MLC = TRUE)

11111111111111111111111111111111111111111111111111111111111111111

Figure 11: Visualization of the most likely cluster with the function plot with type = "map2" for the
MRBFSS scan procedure computed using the concentrations of NO2, O3, PM10 and PM2.5 in the 169
cantons of the Nord-Pas-de-Calais region of northern France over the period from May 1, 2020 to June
25, 2020. The most likely cluster is located in the urban area of Lille.

The detected cluster is exactly the same as before and is therefore located in the urban area of Lille
(Figure 11).
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Again we will display the curves in the cluster by adding the curve of the global median (Figure 12),
as well as the median curves inside and outside the cluster which show that this is a cluster of high
concentrations of NO2, PM10 and PM2.5 (Figure 13). As mentioned in Section A multivariate spatial
scan statistic, in environmental science it is well-known that NO2 and PM2.5 are more frequent in
urban areas due to road traffic and population density so this is consistent with the cluster observed
here. As the adverse health effects of air pollution and the combined effects of air pollutants are well
established, this result could enable interventions by local authorities around the Lille area to reduce
air pollution.

plotCurves(res_mrbfss, add_median = TRUE, only.MLC = TRUE)
plotSummary(res_mrbfss, type = "median", only.MLC = TRUE)
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Figure 12: Characterization of the most likely cluster detected by the MRBFSS scan approach in the
context of multivariate functional data consisting of the NO2, O3, PM10 and PM2.5 concentrations in
northern France over the period from May 1, 2020 to June 25, 2020 with the function plotCurves. The
most likely cluster is characterized by high concentration curves of NO2, PM10 and PM2.5.

5 Summary

In this article we presented the HDSpatialScan package. It makes it very easy to apply the existing
scan statistics developed for multivariate data or functional data (univariate or multivariate), and
the new rank-based scan statistic for univariate functional data presented in the Section Models.
The potential clusters considered are of variable size and circular. In further updates of the package
HDSpatialScan other shapes of scanning window such as elliptical or rectangular shapes will be
implemented. Our package also allows to easily plot and summarize the detected clusters. Then
examples of applications of the functions of the package have been shown. HDSpatialScan presents
the advantage that all the scan procedures are applied using the same function SpatialScan and it
uses the classical R functions plot, print and summary which makes it very quick to get started.
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Figure 13: Characterization of the most likely cluster detected by the MRBFSS scan approach in the
context of multivariate functional data consisting of the NO2, O3, PM10 and PM2.5 concentrations in
northern France over the period from May 1, 2020 to June 25, 2020 with the function plotSummary. The
most likely cluster is characterized by median concentration curves of NO2, PM10 and PM2.5 higher
than outside the cluster.
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HDiR: An R Package for Computation and
Nonparametric Plug-in Estimation of
Directional Highest Density Regions and
General Level Sets
by Paula Saavedra-Nieves, Rosa M. Crujeiras

Abstract A deeper understanding of a distribution support, being able to determine regions of a certain
(possibly high) probability content is an important task in several research fields. Package HDiR for
R is designed for exact computation of directional (circular and spherical) highest density regions
and density level sets when the density is fully known. Otherwise, HDiR implements nonparametric
plug-in methods based on different kernel density estimates for reconstructing this kind of sets.
Additionally, it also allows the computation and plug-in estimation of level sets for general functions
(not necessarily a density). Some exploratory tools, such as suitably adapted distances and scatterplots,
are also implemented. Two original datasets and spherical density models are used for illustrating
HDiR functionalities.

1 An overview on directional general level sets and highest density re-
gions

When analyzing a data distribution, it is often the case that for a deeper understanding of the modelling
problem, it is interesting to determine regions on the density support exceeding a certain threshold
on the density function values. These regions are known as density level sets and, if the density is
unknown, such a task can be accomplished from a set estimation perspective. Set estimation deals with
the problem of reconstructing a set (or estimating any of its features such as its boundary or its volume)
from a random sample of points intimately related to it. Since Hartigan (1975) establishes the notion
of clusters as connected components of a density level set, the reconstruction of this particular type
of sets has been widely considered in the literature (mainly for densities supported on an Euclidean
space). There are only very few contributions where density level set theory has been extended to more
general domains such as the unit sphere or manifolds. Cuevas et al. (2006) consider the estimation of
level sets for general functions (not necessarily a density) such as regression curves, providing some
consistency theoretical results and showing a density level set on the sphere for illustration. More
recently, the reconstruction of density level sets on manifolds is studied in Cholaquidis et al. (2022),
who also presents some simulations illustrating the performance of their approach on the torus and on
the sphere.

Let X be a random vector taking values on a d−dimensional unit sphere Sd−1 with density f and
t > 0, the goal of (directional) density level set estimation is to reconstruct the set

G f (t) = {x ∈ Sd−1 : f (x) ≥ t}. (1)

from a random sample of points Xn = {X1, · · · , Xn} of X when f is unknown. As an illustration, some
(theoretical) level sets are shown in Figure 1 by representing G f (t) for a circular (left) and a spherical
density (right) when three different values of the level t are chosen. The threshold t is represented
through a dotted line for the circular case. Note that, if large values of t are considered, G f (t) coincides
with the greatest modes of the circular/spherical distribution. However, for small values of t, the
level set G f (t) is practically equal to the support of the distribution. Therefore, cluster definition via
connected components in Hartigan (1975) is clearly related to the notion of mode. Note also that the
computation of the number of modes considering the values of a density over a certain range of values
for the level t, would enable the construction of a directional cluster tree. Azzalini and Torelli (2007)
already present this statistical tool for Euclidean data. Moreover, the association between clusters and
modes is the basis of modal clustering methodology (see Menardi, 2016 for a review on this topic).
Most modal clustering algorithms are based on the application of a mode-seeking numerical method
to the sample points and assigning the same cluster to those data that are iteratively shifted to the
same limit value. Examples of such procedures include the mean shift algorithm that has been already
studied in Sd−1 (see, for instance, Chang-Chien et al., 2010 and Yang et al., 2014).

Despite a practitioner may be interested in determining this type of regions, the value of the
level t could be (in principle) unknown in real situations. In practice, it is quite common to assume
that the set in (1) must satisfy a probability content previously established. Following Box and Tiao
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Figure 1: For a circular density (left) and a spherical density (right), level set G f (t) for t = t1, t = t2
and t = t3 verifying 0 < t1 < t2 < t3. Equivalently, HDR L( fτ) for τ = τ1 = 0.2, τ = τ2 = 0.5 and
τ = τ3 = 0.8.

(1973), Hyndman (1996) and, more recently, Azzalini and Torelli (2007), Saavedra-Nieves and Crujeiras
(2021b) generalize the definition of HDRs from the Euclidean to the directional setting, providing a
plug-in estimation method. Specifically, HDRs are a kind of density level sets where the set probability
content is fixed instead of the level t. The estimation of HDRs involves further complexities given
that the threshold must be computed from the previously fixed probability content. Formally, given
τ ∈ (0, 1), the 100(1 − τ)% HDR is the subset

L( fτ) = {x ∈ Sd−1 : f (x) ≥ fτ}, (2)

where fτ can be seen as the largest constant such that

P(X ∈ L( fτ)) ≥ 1 − τ,

with respect to the distribution induced by f . Figure 1 also shows the HDR L( fτ) for a circular and a
spherical densities with three different values of τ. Note that, if large values of τ are considered, L( fτ)
is equal to the greatest modes and the most distinct clusters can be easily identified. However, for
small values of τ, L( fτ) is almost equal to the support of the distribution.

To sum up, given a value of t, the computation of the level set established in (1) (and of its
connected components) is a quite simple mathematical task when f is known. Under this assumption
and taking a fixed τ ∈ (0, 1), determining the HDR introduced in (2) presents a similar complexity
but, in this case, it is additionally necessary to determine the threshold fτ . In particular, numerical
integration methods can be applied to solve that problem. However, when the density f is assumed
to be unknown and a random sample Xn ∈ Sd−1 generated from f is the only available information
to reconstruct the set, nonparametric set estimation techniques such as plug-in methods must be
considered in order to reconstruct the connected components of the set. Perhaps due to its practical
importance, Euclidean HDRs plug-in algorithms based on kernel smoothing have been widely studied
even solving the problem of selecting an appropriate smoothing parameter specifically devised for the
HDR reconstruction (see Baíllo and Cuevas, 2006, Samworth and Wand, 2010 or Casa et al., 2020). In
the directional setting, given that a proper definition of the HDR L( fτ) was not available, no work on
this area had been carried out until the recent contribution by Saavedra-Nieves and Crujeiras (2021b).

The contents of this paper, describing the contributions in HDiR, mainly focus on computation
and plug-in estimation of highest density regions (HDRs) and density level sets in the circle and the
sphere. Although general level sets can be also analysed using HDiR, we will not formally detail
aspects on their computation and on their plug-in reconstruction given that they can be seen as a
direct generalisation of those introduced for density level sets by replacing the density by the general
function under study. Therefore, with the objective of showing the capabilities of the HDiR package
for exact computation of directional HDRs and density level sets when f is known and for plug-in
estimation otherwise, this paper is organized as follows. First, a basic overview on nonparametric
plug-in estimation methods is given. Initially, the classical directional kernel density estimator is
briefly introduced, as it is the key tool for plug-in reconstruction and exploratory methods. Then,
the problems of threshold estimation (with known and unknown density) and specific bandwidth
selection for HDRs are considered. Circular confidence regions for HDRs are also established. Next,
the reader will find a guided tour across HDiR package, illustrating its use with simulated examples
first and with two real data examples later. Following the perspective in Cuevas et al. (2006), HDiR
also allows the computation and plug-in estimation of general level sets. A reconstruction example of
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a (circular) regression level set is detailed. Moreover, distances between sets and circular/spherical
scatterplots are also described as exploratory tools. Finally, some discussion is provided, considering
on the possible extensions of the package.

2 Plug-in estimation methods

This section provides a brief background on the design of plug-in tools included in HDiR for directional
(circular and spherical) HDR and density level set estimation. Following Cuevas et al. (2006), if a
nonparametric estimator is available for a general function, this methodology may be directly extended
for reconstructing the corresponding level sets.

Plug-in estimation methods for HDRs and level sets

Although there are other nonparametric alternative routes for level set estimation, the plug-in approach
has received considerable attention in the Euclidean literature (see Tsybakov, 1997, Baíllo, 2003, Mason
and Polonik, 2009, Rigollet et al., 2009, Mammen and Polonik, 2013 or Chen et al., 2017). This is with no
doubt a natural methodology, which can be generalized to the directional setting as in Saavedra-Nieves
and Crujeiras (2021b). Given that level set estimation is a simpler problem than HDR reconstruction,
we will restrict to this last setting in what follows. Given a random sample Xn ∈ Sd−1 of the unknown
directional density f , plug-in methods reconstruct the 100(1 − τ)% HDR namely L( fτ) in (2) as

L̂( f̂τ) = {x ∈ Sd−1 : fn(x) ≥ f̂τ}, (3)

where f̂τ is an estimator of the threshold fτ and fn denotes a nonparametric directional density
estimator. Package HDiR implements the kernel density estimator provided in Bai et al. (1989) (d > 2).
From Xn, it is defined at a point x ∈ Sd−1 as

fn(x) =
1
n

n

∑
i=1

KvM(x; Xi; 1/h2), (4)

where KvM denotes the von Mises-Fisher kernel density and 1/h2 > 0 is the concentration parameter.

Following Bai et al. (1989), package HDiR also enables to use any kernel function (not necessarily
the von Mises-Fisher density implemented by default). An example where an uniform kernel is
considered will be presented later. Even more generally, HDiR would allow the user to define different
density estimators that the one introduced in (4). See, for instance, Pelletier (2005).

As for the concentration parameter 1/h2, it plays an analogous role to the bandwidth in the
Euclidean case. For small values of 1/h2, the density estimator is oversmoothed. The opposite effect is
obtained as 1/h2 increases. Hence, the choice of h is a crucial issue. For simplicity, in what follows, we
refer to h as bandwidth parameter. Many approaches for selecting h in practice, in circular and even
directional settings, have been proposed in the literature (see Taylor, 2008, Oliveira et al., 2012, Hall
et al., 1987, Di Marzio et al., 2011 or García-Portugués, 2013). All these existing proposals designed for
density estimation are implemented in the package NPCirc and their aim is to minimize some error
criterion on the target density. However, such a bandwidth selector may not be adequate for HDRs or
level set estimation. As far as we know, such a tool was not available in the directional setting until
the selector by Saavedra-Nieves and Crujeiras (2021b). It is also available in package HDiR. Different
plug-in estimators for HDRs emerge from the consideration of all these bandwith selectors.

For the circular and the spherical densities shown in Figure 1, now Figure 2 contains the HDR
plug-in estimators (bluish colours) for τ = 0.5 computed using cross-validation bandwidths and
samples of sizes n = 100 and n = 500, respectively. Although the theoretical circular HDR is composed
by three connected components (see Figure 1), the plug-in estimator is able to detect only the two
biggest clusters when n = 100. In order to assess the agreement of a given estimate with the theoretical
target, distances between sets are the usual tools to measure the discrepancies between the theoretical
sets and the corresponding empirical reconstructions. One of the most common distances in the
Euclidean setting is the Hausdorff distance between the boundaries of both sets.

If the target is the reconstruction of a HDR or a density level set, the Hausdorff metric is a suitable
error criterion in the directional setting (see Cuevas et al., 2006 and Cholaquidis et al., 2022). If A and
B are non-empty compact sets in the d−dimensional Euclidean space, the Hausdorff distance between
A and B is defined as follows

dH(A, B) = max

{
sup
x∈A

dE ({x}, B) , sup
y∈B

dE ({y}, A)

}
,
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Figure 2: For the circular density shown in Figure 1 (first row), L̂( f̂τ) (bluish colour) for τ = τ2 = 0.5
computed from X100 (first column) and X500 (second column). Additionally, confidence regions are
represented (dark red colour) for the second estimation. For the spherical density shown in Figure
1 (second row), L̂( f̂τ) (bluish colour) for τ = τ2 = 0.5 computed from X100 (first column) and X500
(second column).

where dE({x}, B) = infy∈B{dE(x, y)} being dE(x, y) the Euclidean distance between two points.
However, this metric dH is not completely successful in detecting shape-related differences. For
instance, two sets can be very close in Hausdorff distance and still show quite different shapes. This
typically happens where the boundaries ∂A and ∂B are far apart, no matter the proximity of A and B.
So, a natural way to reinforce the notion of visual proximity between two sets provided by Hausdorff
distance is to account also for the proximity of their respective boundaries. In particular, Hausdorff
distance between the boundaries of the theoretical HDR and its plug-in reconstruction is a measure
of the estimation error. HDiR allows to compute Euclidean and Hausdorff distances between the
frontiers of two arbitrary sets on the circle and on the sphere.

Threshold estimation and confidence regions for HDRs

For a given τ ∈ (0, 1), determining the set L( fτ) in (2) and its plug-in estimator L̂( f̂τ) in (3) involve
the exact computation and the estimation of the threshold fτ , respectively. As in the Euclidean
setting, both tasks require the use of numerical integration methods. Specifically, HDiR uses the
classical trapezoidal rule in the circular setting. However, for the spherical case, the computational cost
becomes a major issue due to the complexity of the numerical integration algorithms considered on
high dimensional spaces. It should be noted that package SphericalCubature includes some functions
for solving numerical integration over spheres. However, it does not provide sufficiently accurate
solutions for our problem.

An alternative approach is implemented in the internal function sphere.integration of HDiR.
Specifically, the proposed numerical integration procedure on the sphere requires the definition of a
triangular mesh, such as the ones depicted in Figure 3, obtained from the projection over the sphere
of triangular meshes on an embedded icosaedrum. This type of mesh guarantees that there is not a
prevailing direction. For computing the corresponding spherical integral, the Cartesian coordinates of
the mesh vertices are transformed into spherical coordinates and standard quadrature formulae are
applied in each triangle over the plane formed by the azimuthal and polar angles (see Strang and Fix,
1973).

Package HDiR additionally includes a computationally feasible approach for estimating fτ in the
circular and spherical context. As before, let X be a random vector with directional density f and
let Y = f (X) be the random vector obtained by transforming X by its own density function. Since
P( f (X) ≥ fτ) = 1 − τ, fτ is exactly the τ− quantile of Y. Saavedra-Nieves and Crujeiras (2021b)
establish that fτ can be estimated as a sample quantile from a set of independent and identically
distributed random vectors with the same distribution as Y. In particular, if Xn = {X1, · · · , Xn}
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Figure 3: 3D Cartesian meshes for numerical integration on the unit sphere S2 composed by a total of
2000 (left), 8000 (center) and 32000 (right) triangular cells.

denotes a set of independent observations in Sd−1 from a density f , { f (X1), · · · , f (Xn)} is a set of
independent observations from the distribution of Y. Let f(j) be the j−th largest value of { f (Xi)}n

i=1 so
that f(j) is the (j/n) sample quantile of Y. We shall use f(j) as an estimate of fτ . Specifically, we choose
f̂τ = f(j) where j = ⌊τn⌋. Threshold values in Figure 2 were estimated following this approach.

This estimation method presents a lower computational complexity than numerical integration
algorithms. Furthermore, it involves a statistical approximation. Therefore, it is possible to establish
confidence intervals in order to quantify uncertainty in estimates of fτ and, as direct consequence, to
establish confidence regions for HDR’s. Following Hyndman (1996), the simplest case where X is a
circular random variable is considered by Saavedra-Nieves and Crujeiras (2021b). Standard asymptotic
results for a sample in Cox and Hinkley (1979) ensure that f̂τ is asymptotically normally distributed
with mean fτ and variance τ(1 − τ)/(n[g( fτ)]2) where

g(y) = y
n(y)

∑
i=1

| f
′
(zi)|−1,

and {zi} denote those points in the sample space of X such that f (zi) = y, i = 1, 2, · · · , n(y). Figure 2
(first row, right) depicts the confidence regions obtained with package HDiR (in dark red colour) for
the circular model presented in Figure 1.

Suitable bandwidth selection for HDRs estimation

The plug-in reconstruction of the directional HDRs in (3) also involves the calculation of the kernel
density estimator in (4) that is known to be heavily dependent on the selection of h. Package HDiR
implements the proposal in Saavedra-Nieves and Crujeiras (2021b) where the first selector of h
specifically designed for HDRs reconstruction is presented. The idea is to use an error criterion
that quantifies the differences between the theoretical region and its plug-in reconstruction. In the
real-valued setting, Samworth and Wand (2010) use a similar idea in order to propose one of the first
bandwidth selectors for HDRs estimation.

The closed expression of the Hausdorff distance between the boundaries of the HDR and its plug-in
reconstruction, dH(∂L( fτ), ∂L̂( f̂τ)), is not known in the directional case. However, such a distance
could be approximated through a bootstrap procedure. With this view in mind, Saavedra-Nieves and
Crujeiras (2021b) consider a new bandwidth selector as follows:

h∗ = arg min
h>0

EB

[
dH(∂L∗( f̂ ∗τ ), ∂L̂( f̂τ))

]
, (5)

where EB denotes the bootstrap expectation with respect to random samples of points Xn = {X∗
1 , · · · , X∗

n}
generated from the directional kernel fn that, of course, requires a pilot bandwidth chosen for comput-
ing L̂( f̂τ).

3 Using HDiR

This section presents an overview of the structure of the package. HDiR (Saavedra-Nieves and
Crujeiras, 2021a) is an easy-to-use toolbox that R practitioners can use for computation or plug-in
estimation of directional highest density regions and general level sets defined on the circle and sphere.
The methods included in the package facilitate both data exploration and nonparametric estimation of
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the target regions. Functions in this library automatize the required operations for the computation of
this kind of sets. First, we will describe the real data sets included in the package. Then, the functions
available in HDiR are detailed. Of course, there exist several libraries in the CRAN repository of R
dealing with plug-in estimation of Euclidean level sets and HDRs. In particular, the library pdfCluster
(Azzalini et al., 2014) provides a routine to estimate the probability density function by kernel methods
from a set of linear data with arbitrary dimension. The main focus is on cluster analysis via kernel
density estimation according to the approach by Hartigan (1975). For modal clustering, package
LPCM (Einbeck and Evers, 2019) implements the mean-shift algorithm and Modalclust (Cheng and
Ray, 2014) performs the method for mode seeking introduced in Li et al. (2007). There are also other
packages that do not solve the task of estimate HDRs directly, but they usually allow to compute the
linear kernel density estimator and, therefore, address HDRs graphical representation (not necessarily
with an appropriate estimate). A brief summary of the capabilities of these libraries are provided
below.

• denpro (Klemelä, 2005, Klemelä, 2006, Klemelä, 2008, Klemelä, 2009, Holmström et al., 2017
and Klemelä, 2015): This library allows to visualize multivariate densities and density estimates
with level set trees and also to represent level sets with shape trees in moderate dimensional
cases. Furthermore, the kernel estimator implemented by default could be replaced by other
density estimates.

• hdrcde (Hyndman et al., 2018): This package computes Euclidean HDRs in one and two dimen-
sions. The specific HDR bandwidth selector proposed in Samworth and Wand (2010) is also
implemented. Confidence regions for one-dimensional HDRs and bivariate HDRs scatterplots
(colouring sample points according to the region in which they fall) are also available.

• lsbs (Doss and Weng, 2018): This package implements the bandwidth selector for two-dimensional
Euclidean level sets and HDRs proposed in Doss and Weng (2018). A plug-in strategy to estimate
the asymptotic risk function and minimize to get the optimal bandwidth matrix is applied.

Other packages such as sm (Bowman and Azzalini, 2018) and ks (Duong, 2007) also include tools
for kernel density estimation allowing for graphical displays of density contours in the two- and
three-dimensional Euclidean spaces. Moreover, there are many libraries in the CRAN repository for
directional data analysis but, as far as we know, none of them solves the problem of level set or HDR
reconstruction. In this section, we would like to highlight those packages including tools for kernel
density estimation, both for circular and directional data:

• circular (Agostinelli and Lund, 2013): It is an extension of the CircStats package. It provides
functions for the statistical analysis (descriptive statistics, circular models, hypothesis tests),
graphical representation and some classical circular datasets.

• Directional (Tsagris et al., 2017): A collection of functions for directional data analysis are
implemented in this library. Apart from hypothesis testing, discriminant and regression analysis,
it allows to compute the kernel density estimation for hyper-spherical data using a von Mises-
Fisher kernel.

• DirStats (García-Portugués, 2021): This library also allows to compute a kernel density estimator
and, additionally, it implements the cross-validation and plug-in bandwidth selectors in Hall
et al. (1987) and García-Portugués (2013), respectively.

• NPCirc (Oliveira et al., 2014): Nonparametric density and regression estimation methods for
circular data are included in this package. Specifically, a circular kernel density estimation
procedure is provided, jointly with different alternatives for choosing the smoothing parameter.
Based on the kernel density estimator, a SiZer technique (CircSiZer) is developed for circular
data. The package also includes functions for nonparametric circular regression.

Note also that there are other packages including tools for circular/directional data analysis. For
instance, CircStats (Lund and Agostinelli, 2012) is a companion to Jammalamadaka and Sengupta
(2001), although functions implemented in this package are also available in circular. CircNNTSR
(Fernández-Durán and Gregorio-Domínguez, 2013) provides an alternative estimation method for
circular distributions based on nonnegative trigonometric sums. isocir (Barragán et al., 2013) im-
plements some routines for analyzing angular data subjected to order constraints on a unit circle.
Finally, movMF (Hornik and Grün, 2014) is focused on mixtures of von Mises distributions, allowing
to draw random samples from these models and to proceed with parameter estimation, by using an
expectation-maximization algorithm.

Specifically, the goal of HDiR package is to provide tools for directional (circular and spherical)
general level sets and HDRs exact computation also including their plug-in estimation. This library
implements the first specific bandwidth selector devised for directional HDRs proposed in Saavedra-
Nieves and Crujeiras (2021b), but it also allows directly user-defined bandwidth selection and to use the
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Dataset Description
earthquakes Geographical coordinates (latitude and longitude) of earthquakes

of magnitude greater than or equal to 2.5 degrees between Octo-
ber 2004 and April 2020

sandhoppers Orientation of two sandhoppers species, Talitrus saltator and Ta-
lorchestia brito under different natural conditions

Function Description
circ.boot.bw Circular bootstrap bandwidth for HDRs estimation
circ.distances Euclidean and Hausdorff distances between two sets of points on

the unit circle
circ.hdr Computation of HDRs and general level sets for a given circular

real-valued function
circ.plugin.hdr Circular plug-in estimation of HDRs and level sets and confiden-

ce regions
circ.scatterplot Circular scatterplot for plug-in HDRs
dspheremix Density functions for mixtures of spherical von Mises-Fisher
rspheremix Random generation functions for mixtures of spherical von Mises-

Fisher
sphere.boot.bw Spherical bootstrap bandwidth for HDRs estimation
sphere.distances Euclidean and Hausdorff distances between two sets of points on

the unit sphere
sphere.hdr Computation of HDRs and general level sets for a given spherical

real-valued density
sphere.plugin.hdr Spherical plug-in estimation of HDRs and level sets
sphere.scatterplot Spherical scatterplot for plug-in HDRs

Table 1: Summary of HDiR package contents.

existing directional bandwidth selection methods devised for kernel density estimation. Additionally,
two alternative methods for estimating the threshold fτ (based on the proposal in Hyndman, 1996
and numerical integration methods, respectively) are developed. Moreover, confidence regions for
circular HDR are also available and can be depicted for illustration. Two exploratory tools are also
implemented. The first one is a scatterplot computed from HDRs plug-in reconstructions. Sample
points are coloured according to the directional HDRs in which they fall. Finally, Euclidean and
Hausdorff distances between sets can be also computed. Their roles are crucial to measure the
distances between directional clusters or, for instance, to quantify the estimation error between the
theoretical HDRs and the corresponding plug-in estimators.

A complete description of the HDiR package capabilities is provided in this section. The complete
list of functions, illustrative density models (density functions and random sample generation) and
the two novel datasets available in HDiR, with a brief description, can be seen in Table 1.

Data description

The package HDiR includes a circular and a spherical datasets, used for the illustration of the different
functions. The first dataset, sandhoppers, contains the orientation angles (in radians between 0 and
2π) of two species of sandhoppers, Talitrus saltator and Talorchestia brito. Orientation was measured
under natural conditions on the exposed nontidal sand of Zouara beach located in the Tunisian
northwestern coast. Additionally, other variables of interest for analyzing the behavioral plasticity
of both species were also registered. For instance, information on the month, the time of the day, the
temperature, the air relative humidity or the sex of each animal is also available. This dataset was
already analyzed in Scapini et al. (2002) and Marchetti and Scapini (2003). Specifically, the behavior of
these two species is compared through regresion procedures. Scapini et al. (2002) conclude that Talitrus
saltator showed more differentiated orientations, depending on the time of day, period of the year and
sex, with respect to Talorchestia brito. As an illustration, Saavedra-Nieves and Crujeiras (2021b) also
study the behavior of these two species of sandhoppers under the HDR estimation approach.

The second dataset, earthquakes, contains the geographical coordinates (latitude and longitude)
of earthquakes of magnitude greater than or equal to 2.5 degrees on the Richter scale registered on
Earth between 1st October 2004 and 9th April 2020. It can be downloaded from the website of the
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European-Mediterranean Seismological Centre (EMSC)1. The planar points included in the dataset
correspond to spherical coordinates on Earth. Due to the important damages that earthquakes of a
certain intensity may cause, cluster detection of HDRs could be also useful to identify, from a real
dataset, where earthquakes are specially likely. This information is crucial for decision-making, for
example, to update construction codes guaranteeing a better building seismic-resistance. Saavedra-
Nieves and Crujeiras (2021b) also analyze the recent world earthquakes distribution through HDRs
estimation from this dataset. Results shows that the greatest mode of sample distribution is identified
in the Southeast of Europe. Countries such as Italy, Greece or Turkey (located within this cluster) are,
as expected, the most affected areas in the analyzed period. The second dataset, earthquakes, contains
the geographical coordinates (latitude and longitude) of earthquakes of magnitude greater than or
equal to 2.5 degrees on the Richter scale registered on Earth between 1st October 2004 and 9th April
2020. It can be downloaded from the website of the European-Mediterranean Seismological Centre
(EMSC)2. The planar points included in the dataset correspond to spherical coordinates on Earth.
Due to the important damages that earthquakes of a certain intensity may cause, cluster detection of
HDRs could be also useful to identify, from a real dataset, where earthquakes are specially likely. This
information is crucial for decision-making, for example, to update construction codes guaranteeing
a better building seismic-resistance. Saavedra-Nieves and Crujeiras (2021b) also analyze the recent
world earthquakes distribution through HDRs estimation from this dataset. Results shows that the
greatest mode of sample distribution is identified in the Southeast of Europe. Countries such as Italy,
Greece or Turkey (located within this cluster) are, as expected, the most affected areas in the analyzed
period.

Spherical density models

Functions dspheremix and rspheremix allow to compute density functions and to generate data from
the spherical distributions introduced in Saavedra-Nieves and Crujeiras (2021b). These densities
represent a variety of complex structures showing multimodality and/or asymetry. Any user of
package HDiR could use them for simulations or even for illustration purposes.

Function dspheremix computes the density function of 9 different spherical distributions that
can be written as finite mixtures of spherical von Mises-Fisher. Function rspheremix is designed
for random data generation from these 9 spherical models. Both functions have an argument called
model which allows to specify a model (a number between 1 and 9) among the ones considered in
Saavedra-Nieves and Crujeiras (2021b). The other inputs of dspheremix and rspheremix are x and
n, respectively. x represents a matrix whose rows collect to points on the unit sphere (in Cartesian
coordinates) and n denotes the number of observations to be randomly generated.

Specifically, model number 9 corresponds to the spherical density shown in Figure 1. For instance,
the evaluation of this density on the north pole (0, 0, 1) and the south pole (0, 0,−1) can be easily
obtained by:

> data <- rbind(c(1, 0, 0), c(0, 0, 1))
> dspheremix(x = data, model = 9)
[1] 0.0009079986 7.0233299246

Output of this example with dspheremix is a numeric vector containing the density values on both
poles. Additionally, 100 random deviates from the same model can be obtained, fixing set.seed(1) as
in the rest of examples throughout this work, by:

> rspheremix(n = 100, model = 9)
[,1] [,2] [,3]

[1,] 0.254793394 -0.186993591 0.948743233
[2,] 0.227755936 0.896600223 0.379783194
[3,] -0.227024808 0.516581111 0.825592934
[4,] 0.125075316 0.960536966 -0.248444967

Output of function rspheremix is a matrix of dimension n × 3 where each row corresponds to the
Cartesian coordinates of a point generated on the unit sphere. For this example, the output is partially
shown (only four of one hundred sample points are printed).

Computation of HDRs and general level sets with HDiR

Functions circ.hdr and sphere.hdr must be considered when the objective is to compute theoretical
density level sets or HDRs from a fully known circular and spherical density f , respectively. However,

1European-Mediterranean Seismological Centre: www.emsc-csem.org.
2European-Mediterranean Seismological Centre: www.emsc-csem.org.
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they could be also used for exact computation or plug-in estimation of general level sets when f is any
(circular or spherical) real-valued function. In particular, level sets of a theoretical regression curve
could be determined.

The basic arguments of function circ.hdr that the user must provide are the circular (not neces-
sarily a density) function f and, depending on the set to be computed (a level set or a HDR), level or
tau must be indicated. It is worth to mention that level represents the value of t in (1) and 1-tau, the
probability coverage required for HDR computation in (2). Note that tau must be specified only when
f is a density. Otherwise, fixing the probability content of the level set makes no sense. Additionally, a
graphical display is generated with different plot arguments (col, lty, shrink, · · · ). If no graphical
representation is required, it is enough to consider plot.hdr=FALSE (by default plot.hdr=TRUE).

If level is specified, the output is a list with two components: levelset, a matrix where each row
contains the boundaries (in radians) of each connected component of the level set and level, the input
level or a character indicating if the level set is equal to the empty set or the support distribution.
If tau is provided, the output is also a list with the next components: hdr, a matrix where each
row contains the boundaries (in radians) of each connected component of the HDR; prob.content,
probability coverage 1-tau and level, threshold of the HDR computed by numerical integration
methods.

An example with the code lines in order to computing a level set (second code line) and a HDR
(third code line) for the circular density represented in Figure 1 is given below. This circular density
is the model 13 implemented in the package NPCirc. Therefore, it is necessary to install this library
before executing the following code.

> f <- function(x){return(dcircmix(x, 13))}
> circ.hdr(f, level = 0.35)
$levelset

[,1] [,2]
[1,] 0.3301974 0.6698291
[2,] 2.8271189 3.1730400
[3,] 4.9089351 5.0913298
$level
[1] 0.35
> circ.hdr(f, tau = 0.5)
$hdr

[,1] [,2]
[1,] 0.2232764 0.7767501
[2,] 2.7201978 3.2799611
[3,] 4.8523298 5.1479351
$prob.content
[1] 0.5
$level
[1] 0.3024789

From the outputs obtained, some conclusions on the number of connected components can be extracted.
HDR computed when τ = 0.5 has exactly three connected components with boundaries fully detailed
in the element hdr of the obtained list. Density level set with threshold 0.35 is slightly different but the
information in levelset also shows the existence of three connected components.

As for function sphere.hdr, argument f is now a spherical real-valued function. Again, f may not
be a density. The other basic arguments level, tau and plot.hdr coincide with the usage description
for function circ.hdr. Additionally, the user can specify two parameters related to the estimated
boundary or to the numerical integration possibilities on the unit sphere to calculate the HDRs
threshold. In particular, nborder indicates the maximum number of boundary points to be represented
and tol, the tolerance parameter used to determinate the boundary. Two extra parameters control the
numerical integration procedure, when required. Argument mesh indicates the number of vertices on
each edge of the embedded icosaedrum (reproducing the meshes in Figure 3). Possible values of this
argument are 10, 20 and 40, corresponding with 2000, 8000 and 32000 triangular cells on the sphere,
respectively. Quadrature formulae on the triangles are possible with different degrees, controlled by
deg, with values ranging from 0 up to 6.

An example with the code lines in order to compute a level set (second line) and a HDR (third line)
for the spherical density represented in Figure 1 is presented in what follows:

> f <- function(x){return(dspheremix(x, model = 9))}
> sphere.hdr(f, level = 0.1, mesh = 10, deg = 3)
> sphere.hdr(f, tau = 0.5, mesh = 10, deg = 3)

Outputs are similar to those presented for function circ.hdr. Again, levelset and hdr are matrices of
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rows of points (in Cartesian coordinates) on the level set and HDR boundaries, respectively. Moreover,
it is worth to mention that execution time of sphere.hdr is considerably higher when tau is set instead
level because, in this case, threshold estimation via numerical integration methods is required.

Plug-in estimation of HDRs and general level sets with HDiR

The HDiR package contains the implementation of density plug-in methods in order to estimate
HDRs. Furthermore, it also enables plug-in estimation of general level sets.

Basic plug-in estimation of HDRs and density level sets

Function circ.plugin.hdr allows to reconstruct density level sets or HDRs from the kernel estimator
described in (4). The arguments tau, level and plot.hdr have basically the same description for func-
tion circ.hdr. The argument sample denotes a numeric vector of angles (in radians) corresponding to
the sample of points Xn. The smoothing parameter to be used for kernel density estimation is denoted
through bw. Its value could be directly established by the user. Following Oliveira et al. (2014), it
could be also chosen by using the classical functions bw.rt, bw.CV, bw.pi or bw.boot in NPCirc (by
default bw=bw.CV(circular(sample)) providing a cross-validation bandwidth). The previous options
are designed for density estimation. An appropriate bandwidth for HDR estimation can be obtained
using circ.boot.bw. The argument tau.method is a character value selecting the rule to estimate the
HDRs threshold. This must be one of "quantile" or "trapezoidal". The default option estimates
the threshold using the quantile method proposed in Hyndman (1996); the second one, using the
trapezoidal rule for numerical integration. The confidence for limits on HDR are established from
conf that is a numeric probability that takes the value conf=0.95 by default. Finally, plot.hdrconf is
a logical string. If plot.hdr=TRUE and plot.hdrconf=TRUE (default options), the confidence region for
the estimated HDR is added to the estimation graphical representation. The argument boot is a logical
string. If TRUE, confidence regions are not computed. Its name is due to this option is only used by
function circ.boot.bw for reducing the execution time. Default boot=FALSE.

If level is specified, the output is a list with four components: levelset, a matrix where each row
contains the boundary (in radians) of a connected component of the level set or a character indicating if
the HDR is equal to the empty set or the support distribution; prob.content, the empirical probability
coverage of the set; level indicates the level of the level set and bw, the value of the smoothing
parameter. If tau is provided, the output is a list with the next components: hdr, a matrix where each
row contains the boundary (in radians) of a connected component of the level set; prob.content, the
probability coverage 1-tau; level, the estimated threshold; bw, the numeric value of the smoothing
parameter used; hdr.lo and hdr.hi, HDRs corresponding to lower and upper confidence limits,
respectively; threshold.lo and threshold.hi the corresponding thresholds.

For example, the circular confidence regions in Figure 2 can be obtained from the next code lines:

> sample <- rcircmix(500, 13)
> circ.plugin.hdr(sample, tau = 0.5, plot.hdrconf = TRUE, k = 2, col = "blue")
$hdr

[,1] [,2]
[1,] 0.1478027 0.6761185
[2,] 2.6761715 3.2736716
[3,] 4.9403824 5.1542246
$prob.content
[1] 0.5
$level

50%
0.2952482
$bw
[1] 64.62809
$hdr.lo

[,1] [,2]
[1,] 0.1226448 0.7327238
[2,] 2.6447241 3.3114085
[3,] 4.9089351 5.1793825
$level.lo

50%
0.2762859
$hdr.hi

[,1] [,2]
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[1,] 0.179250 0.6320922
[2,] 2.713908 3.2422243
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Figure 4: Theoretical (dark red colour) and estimated HDRs (left, bluish colours) from a random
sample of size 500 when τ = 0.8 using a cross-validation bandwidth and the specific bandwidth for
spherical HDR reconstruction (left). Estimated HDRs from a random sample of size 500 using the
specific bandwidth for spherical HDR reconstruction (center) and a cross-validation bandwidth (right)
when τ = 0.8.

[3,] 4.984409 5.1164877
$level.hi

50%
0.3142105

Specifically, hdr.lo and hdr.hi in the output list contain the matrices whose rows correspond to
the boundaries (in radians) of the connected components of lower and upper confidence regions,
respectively. For this example, both regions have three connected components. Additionally, level.lo
and level.hi contain the thresholds of both confidence sets.

The specific bandwidth for circular HDRs estimation described in Saavedra-Nieves and Crujeiras
(2021b) can be computed from function circ.boot.bw. As in the previous circular functions described,
the argument sample is a numeric vector of angles (in radians) representing Xn and tau corresponds
to the probability coverage 1-tau of the HDR to be reconstructed. The pilot smoothing parameter
used is bw. Default bw=bw.CV(circular(sample),upper = 100). As before, its value could be chosen
by using the classical functions bw.rt, bw.CV, bw.pi or bw.boot in NPCirc. The number of bootstrap
resamples is denoted by B (by default B=50) and upper is the numerical upper value for bounding
the optimization procedure (by default 1.5bw). The output of this function is a single numeric value
corresponding to the selected smoothing parameter.

The following code lines show how to determine both bandwidths for the circular sample previ-
ously generated. Output shows that cross-validation selector takes a larger value than the proposal in
Saavedra-Nieves and Crujeiras (2021b).

> bw.CV(sample, upper = 100); circ.boot.bw(sample, tau = 0.8, B = 2)
[1] 64.62809
[1] 37.06194

Function sphere.plugin.hdr is designed to estimate spherical HDRs or density level sets from
the kernel estimator described in (4). The arguments tau, level, plot.hdr, nborder, tol, mesh and
deg have the same description as for function sphere.hdr. The pilot smoothing parameter used is
bw that, by default, is bw="none" selecting a cross-validation bandwidth. Although other options are
possible. For instance, bw can be a numeric value o also bw="rot" allows to consider the rule of thumb
suggested by García-Portugués (2013). The value of bw could be also selected directly by the user. The
argument ngrid sets the resolution of the density calculation (by default ngrid=500).

If level is provided, the output is also a list with four components: levelset, a matrix of rows
of points ( on the HDR boundary; prob.content, the empirical probability coverage of the set 1-tau;
level, the level of the HDR and bw, the value of the smoothing parameter. If tau is an input, the output
of sphere.plugin.hdr is a list with the following components: hdr, a matrix of rows of points on the
HDR boundary; prob.content, probability coverage 1-tau and level, threshold or level associated
to the probability content 1-tau. The threshold fτ is computed through the algorithm proposed in
Hyndman (1996). Numerical integration is not considered here in order to reduce the computation
time.

The spherical HDRs estimators in Figure 2 can be reproduced through the next code lines:

> sample <- rspheremix(500, model = 9)
> sphere.plugin.hdr(sample, tau = 0.5, nborder = 2000)

The first specific bandwidth for spherical HDRs estimation described in Saavedra-Nieves and
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Crujeiras (2021b) can be computed from function sphere.boot.bw. As in the previous spherical
functions described, the argument sample is a matrix whose rows represent points on the unit sphere
(in Cartesian coordinates) and tau corresponds to the probability coverage 1-tau of the HDR to be
reconstructed. The pilot smoothing parameter bw (default bw="none") is chosen using cross-validation,
although it may be set to a numeric value or bw="rot", allowing to select the rule of thumb suggested
by García-Portugués (2013). The argument B denotes again the number of bootstrap resamples that
(default B=50) and upper is the numerical upper value for bounding the optimization procedure
(default 1.5bw). The output of this function is a single numeric value corresponding to the selected
smoothing parameter.

The following code lines contain a simulated example where the cross-validation bandwidth and
the proposal in Saavedra-Nieves and Crujeiras (2021b) provide HDR estimations which look quite
different for the spherical model 8 in HDiR. Figure 4 shows the graphical representations of the
theoretical HDR to be estimated when τ = 0.8 (dark red colour) and the corresponding reconstructions
(bluish colours) obtained from a random sample of size 500. In this case, the specific bandwidth for
spherical HDRs reconstruction takes the value 0.28 while the cross-validation bandwidth is equal to
0.20.

> sample <- rspheremix(500, model = 8)
> bw.boot <- sphere.boot.bw(sample, bw = "rot", tau = 0.8, B = 2)
> sphere.plugin.hdr(sample, bw = bw.boot, tau = 0.8)
> sphere.plugin.hdr(sample, bw = "none", tau = 0.8)

Finally, it is important to note that function sphere.plugin.hdr for reconstructing spherical HDR’s
calls vmf.kerncontour in package Directional to compute the density on a grid on the sphere. Most of
the computational work in this function is in estimating the density using vmf.kerncontour. Hence,
the speed of this function depends largely on the speed of vmf.kerncontour. A similar situation
occurs for function sphere.boot.bw where function sphere.plugin.hdr is called (B + 1) times where
B indicates the number of bootstrap resamples.

Plug-in estimation of HDRs and density level sets from an arbitrary density estimator

Density estimators different from the one introduced in (4) could be naturally considered for plug-in
estimation of HDRs or level sets. Functions circ.hdr and sphere.hdr in package HDiR allow to
consider this option in the circular and spherical settings, respectively.

Next, an example with the code lines in order to determine a spherical HDR plug-in reconstruction
(sixth line) from the kernel density estimator in Bai et al. (1989) with uniform kernel is shown.

> f <- function(x){
sample <- rspheremix(500, model = 3)
return(kde_dir(x, data = sample, h = 0.4,
L = function(x) dunif(x)))

}
> sphere.hdr(f, level = 0.3)
$levelset

[,1] [,2] [,3]
[1,] 0.3587511132 -0.159961736 0.9196249
[2,] -0.4523490796 0.077542650 0.8884635
[3,] -0.4588831000 0.060463844 0.8864369
[4,] 0.2455354599 -0.291602658 0.9244892

$level
[1] 0.3

An spherical density estimator with uniform kernel is available in package DirStats. Before level set
plug-in estimation, it is necessary to install this library in order to define the kernel estimator, in this
example, from a sample of size 500 of model 3 in HDiR (lines from 1 to 5). The output contains a
matrix of points on the boundary of the plug-in estimator in levelset. Note that only the first four
points are printed in the example. The value of the threshold 0.3 considered for reconstruction is also
shown in level.

Furthermore, if the considered density estimator for plug-in estimation is also a density function,
argument tau in circ.hdr and sphere.hdr could be used.
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Figure 5: In the first column, the black dotted line represents the Hausdorff distance between ∂L( fτ)
(blue colour) and ∂L̂( f̂τ) (red colour) for the circular density shown in Figure 1 when τ = 0.5. In
the second and third columns, scatterplots showing L̂( f̂τi ) (i = 1, 2, 3) for the circular and spherical
densities contained in Figure 1 when τ1 = 0.2, τ2 = 0.5 and τ3 = 0.8. The circular scatterplot was
computed from X100 and the spherical scatterplot from X1000.

Plug-in estimation of general level sets

A generalisation of the approach in Cuevas et al. (2006), for general level sets, to the directional setting
can be performed in practice with HDiR. Again, functions circ.hdr and sphere.hdr address this
problem for circular and sperical data, respectively.

Next, an example with the code lines in order to obtain the plug-in estimator of a regression
curve (eighth line) with circular explanatory (x) variable and linear response (y). In this case, the
regression curve is estimated through the Nadaraya-Watson estimator implemented in NPCirc. Here,
it is computed from a sample of size 100 of variables x and y (lines from 1 to 7).

> f <- function(t){
n <- 100
x <- runif(n, 0, 2*pi)
y <- sin(x)+0.5*rnorm(n)
return(kern.reg.circ.lin(circular(x), y, t, bw = 10, method = "NW")$y)
}

> circ.hdr(f, level = 0.5, plot.hdr = FALSE)
$levelset

[,1] [,2]
[1,] 0.4748553 2.757935
$level
[1] 0.5

Output in levelset contains the boundary (in radians) of the only connected component for the
reconstructed regression level set.

Exploring data with HDiR

This section introduces a brief background on the design of two exploratory tools included in HDiR:
distances between sets and circular/spherical scatterplots.

Distances between sets are a useful tool when the target is the reconstruction of a set. In particular,
the Hausdorff distance can be seen as a suitable error criterion also in the directional setting. Addi-
tionally, it could be also used for measuring the distances between modes or clusters of two different
populations. Figure 5 (first column) represents, through a black dashed line, the Hausdorff distance
between ∂L( fτ) (blue colour) and ∂L̂( f̂τ) (red colour) for the circular density shown in Figure 1 when
τ = 0.5. Note that the maximum value of this error criterion is 2, the diameter of the unit circle. In this
example, the Hausdorff estimation error that is equal to 1.38 is remarkably high.

Function circ.distances computes the Euclidean and Hausdorff distances between two sets of
points in S1. Its inputs are x and y, two numeric vectors of angles (in radians) determining both sets of
points. The output is a list with two components: dE, a numeric value corresponding to the Euclidean
distance, and dH, another numeric value corresponding to the Hausdorff distance.
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Specifically, if x and y correspond to two HDRs boundaries, this function returns the distances
between the circular HDRs frontiers. In particular, for the example in Figure 5 (left), the distances
between ∂L(τ) and ∂L̂( f̂τ) can be computed from the next code lines:

> sample <- rcircmix(100, 13)
> f <- function(x){return(dcircmix(x, 13))}
> circ.distances(as.numeric(circ.hdr(f, tau = 0.5)$hdr),

+ as.numeric(circ.plugin.hdr(sample, tau = 0.5)$hdr))
$dE
[1] 0.04402277
$dH
[1] 1.37933

The results obtained show that the Euclidean distance is considerably smaller than the Hausdorff
distance that, as we mention before, takes the value 1.38.

Function sphere.distances also determines the Euclidean and Hausdorff distances but, in this
case, between two sets of points on S2. Now, the inputs x and y are two matrices whose rows
represent points on the unit sphere (in Cartesian coordinates). The output of this function has the
same organization as the output of circ.distances and it also allows to compute distances between
spherical HDRs frontiers.

Distances between ∂L̂( f̂τ2 ) and ∂L̂( f̂τ3 ) represented in Figure 5 (right) can be computed from the
next code lines:

> sample = rspheremix(1000, model = 9)
> x <- sphere.plugin.hdr(sample, tau = 0.8, plot.hdr = FALSE)$hdr
> y <- sphere.plugin.hdr(sample, tau = 0.5, plot.hdr = FALSE)$hdr
> sphere.distances(x, y)
$dE
[1] 0.08600028
$dH
[1] 0.258705

The performance of the specific bandwidth for HDR estimation introduced in Saavedra-Nieves
and Crujeiras (2021b) can be also illustrated through the consideration of the Hausdorff distance
in the example shown in Figure 4. Specifically, the value of the Hausdorff distance between the
theoretical HDR and the reconstruction computed from the bandwidth proposed in Saavedra-Nieves
and Crujeiras (2021b) is 0.20. However, the Hausdorff distance increases considerably, taking the
value 0.36, when it measures the discrepancies between the theoretical HDR and the corresponding
estimator obtained from a cross-validation approach.

Additionally, scatterplots are useful to identify the estimated directional HDRs in which sample
points fall. This graphical tool is computed as follows. Given several values τ1, · · · , τk ∈ (0, 1) (k ≥ 1)
and a random sample of points Xn, the estimated HDRs L̂( f̂τ1 ), · · · , L̂( f̂τk ) are represented using
different colours jointly with the subset of sample points belonging to each of them. Figure 5 (second
and third columns) displays the scatterplots for τ1 = 0.2, τ2 = 0.5 and τ3 = 0.8 for the circular and the
spherical densities shown in Figure 1. They were calculated from random samples of sizes n = 100
and n = 1000, respectively.

Function circ.scatterplot produces a circular scatterplot with points coloured according to the
HDRs in which they fall. Apart from the argument tau that represents a numeric vector of probabilities
and plot.density that is a logical string indicating if the kernel density estimator is added to the
scatterplot (default plot.density=TRUE), the other inputs (sample, bw and tau.method) have the same
description for circular functions. The output is a scatterplot and also a list where the number of
components is equal to the number of estimated HDR or, equivalently, to the length of tau vector.
Each component contains the sample points in each HDR from the smallest value of tau to the largest
one.

Next code lines allow to obtain a circular scatterplot computed from a circular sample of size 100
as the shown in Figure 5 (second column).

> sample<- rcircmix(100, model = 13)
> circ.scatterplot(sample, tau = c(0.2, 0.5, 0.8))

Spherical scatterplots can be represented from function sphere.scatterplot. Again, apart from
tau that is a vector of probabilities, the description of the remaining parameters coincides with the
rest of spherical functions. The output provides a scatterplot and, as in the circular case, a list where
the number of components is equal to the number of estimated HDR containing the corresponding
sample points from the smallest value of tau to the biggest one.
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Figure 6: Plug-in estimations of HDRs (gray colour) with cross-validation bandwidth, when τ = 0.8,
for females (left) and males (center) of the species Talorchestia Brito when the orientation is registered
in morning during October. Plug-in estimation of HDR (gray colour) with specific bandwidth h∗,
when τ = 0.8, for males (right) of the species Talorchestia Brito when the orientation is registered in
morning during October.

As an illustration, the spherical scatterplot shown in Figure 5 (third column) could be computed
from the next code lines:

> sample <- rspheremix(1000, model = 9)
> sphere.scatterplot(sample, tau = c(0.2, 0.5, 0.8))

Real data analysis with HDiR

Datasets sandhoppers and earthquakes included in HDiR are used next to illustrate briefly the usage
of the set of functions previously described in the circular and spherical settings, respectively.

Figure 6 shows the estimated HDRs established in (3), when τ = 0.8, for female (left) and male
sandhoppers (right) of the species Talorchestia Brito when the orientation is registered in the morning
during October. The largest modes of both distributions are located in completely different directions,
indicating that variable sex is a factor with influence on the sandhoppers behavior. The code lines
used are presented:

> data(sandhoppers)
> attach(sandhoppers)
> britoF <- angle[(species == "brito")&(time == "morning")&(sex == "F")

+ &(month == "October")]
> circ.plugin.hdr(sample = britoF, tau = 0.8, plot.hdrconf = FALSE)
> britoM <- angle[(species == "brito")&(time == "morning")&(sex == "M")

+ &(month == "October")]
> circ.plugin.hdr(sample = britoM, tau = 0.8, plot.hdrconf = FALSE)

According to Figure 6, no remarkable differences exist between the HDRs reconstructions for males
using a cross-validation bandwidth (center) and the proposal h∗ in Saavedra-Nieves and Crujeiras
(2021b) (right). However, these smoothing parameters are quite different, taking values 33.86 and
19.47, respectively. For the subset of females, differences between smoothing parameters are smaller
(5.78 and 3.39, respectively). Next, code lines show how to determine both bandwidths for the group
of males (fist line) and females (second line).

> bw.CV(britoM); circ.boot.bw(britoM, tau = 0.8)
> bw.CV(britoF); circ.boot.bw(britoF, tau = 0.8)

As an example with the dataset earthquakes in Figure 7, we show the estimated HDR defined
in (3) for τ = 0.8. The largest mode of the earthquakes distribution is located in Southeast Europe.
Note that it is necessary to install the packages Directional, ggplot2, maps and mapproj previously to
obtain this figure.

> data(earthquakes)
> hdr <- as.data.frame(euclid.inv(sphere.plugin.hdr(euclid(earthquakes), tau = 0.8,

+ plot.hdr = FALSE)$hdr))
> world <- map_data("world")
> g.earthquakes <- ggplot()+
> geom_map(data = world, map = world, mapping = aes(map_id = region),

+ color = "grey90", fill = "grey80")+
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Figure 7: Contours of plug-in HDRs for τ = 0.8 obtained from the sample of world earthquakes
registered between October 2004 and April 2020 with cross-validation bandwidth (left) and with the
specific bandwidth for spherical HDRs reconstruction (right).

> geom_point(data = earthquakes, mapping = aes(x = Longitude,
+ y = Latitude), color = "red", alpha = 0.2, size = 0.75, stroke = 0)+

> geom_point(data = hdr, mapping = aes(x = Long, y = Lat),
+ color = "darkblue", size = 1)+

> scale_y_continuous(breaks = NULL, limits = c(-90, 90))+
> scale_x_continuous(breaks = NULL, limits = c(-180, 180))+
> coord_map("mercator")
> g.earthquakes

The value of the bandwidth proposed in Saavedra-Nieves and Crujeiras (2021b) for earthquakes
dataset with tau=0.8 and B=5 bootstrap resamples is 0.09 and it can be obtained from the next
code line. In this particular case, Figure 7 shows that there is not a large differences between the
HDRs reconstructed from cross-validation bandwidth (left) and the proposal in Saavedra-Nieves and
Crujeiras (2021b) (right).

> sphere.boot.bw(euclid(earthquakes), tau = 0.8, B = 5)

Once the HDRs estimation has been performed for different values of τ, Euclidean and Hausdorff
distances between the blue and red contours in Figure 7 are useful to analyse differences between
them. For the previous example, distances can be computed from the following code lines. Note that
the value of the bandwidth in Saavedra-Nieves and Crujeiras (2021b) has been directly inserted as an
argument in the fourth line. Values obtained for Euclidean and Hausdorff distances are 0 and 0.02,
respectively.

> hdr1 <- sphere.plugin.hdr(euclid(earthquakes), tau = 0.8, plot.hdr = FALSE)$hdr
> hdr2 <- sphere.plugin.hdr(euclid(earthquakes), bw = 0.09, tau = 0.8,

+ plot.hdr = FALSE)$hdr
> sphere.distances(hdr1, hdr2)

Apart from distances between HDRs, scatterplots are another powerful exploratory tool imple-
mented in HDiR. For the sandhoppers dataset, Figure 8 shows the circular scatterplots for τ = 0.2, 0.5
and 0.8 for females (left) and males (center) of the species Talorchestia Brito when the orientation is
registered in the morning during October when τ = 0.2, 0.5 and 0.8. They can be obtained from the
following code:

> circ.scatterplot(britoF, tau = c(0.2, 0.5, 0.8))
> circ.scatterplot(britoM, tau = c(0.2, 0.5, 0.8))

Spherical scatterplots for earthquakes dataset when τ = 0.2, τ = 0.5 and τ = 0.8 can be computed
from the following code line. The function euclid allows to transforms the data to geographical
coordinates (longitude and latitude) on Cartesian coordinates. Remark that the smoothing parameter
is selected by using the rule of thumb proposed in García-Portugués (2013).

> sphere.scatterplot(euclid(earthquakes), tau = c(0.2, 0.5, 0.8), bw = "rot",
+ nborder = 1500)

4 Discussion

HDiR has been mainly developed for facilitating the reconstruction of directional (circular and
spherical) HDRs and density level sets, following a nonparametric plug-in approach. However, it
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Figure 8: Circular scatterplots computed for τ = 0.2, 0.5 and 0.8 from samples of females (left) and
males (center) of the species Talorchestia Brito when the orientation is registered in morning during
October.

also allows to solve the computation and the plug-in estimation of level sets for general real-valued
functions, such as a regression curve. As consequence, plug-in reconstruction of HDRs could be
performed by considering a different density estimator than the one implemented by default in HDiR.

The implemented tools are accessible for the scientific community, enabling their usage in practical
problems such as the exploration of modes or the approximation of the distribution effective support.
As previously noted, level set computation is also useful for determining distribution clusters, a task
that can be accomplished by the identification of the connected components from a plug-in level set
estimator.

Up to the authors’ knowledge, HDiR is the only statistical package that allows to estimate (circular
and spherical) HDRs and general level sets. For HDRs reconstruction, HDiR also implements the
first specific selector for HDRs estimation in this context, proposed in Saavedra-Nieves and Crujeiras
(2021b). Additionally, it offers graphical exploratory tools such as HDRs scatterplots that allow to
visualize HDRs of a distribution taking into account different probability contents. Similarities or
discrepancies between them could be measured through the Hausdorff distance also implemented in
HDiR.

Future extensions of the HDiR package could include the estimation of level sets and HDRs in other
supports, involving a circular or a spherical component, such as the torus or the cylinder. In addition,
new specific bandwidths for HDR estimation could be implemented. A variety of bandwidths selectors
emerge from the consideration of different distances in (5). Finally, cluster definition in Hartigan
(1975) deserves to be exploited in the directional setting, for instance, by implementing cluster trees
for hyperspherical data.
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metapack: An R Package for Bayesian
Meta-Analysis and Network
Meta-Analysis with a Unified Formula
Interface
by Daeyoung Lim, Ming-Hui Chen, Joseph G. Ibrahim, Sungduk Kim, Arvind K. Shah and Jianxin
Lin

Abstract Meta-analysis, a statistical procedure that compares, combines, and synthesizes research
findings from multiple studies in a principled manner, has become popular in a variety of fields.
Meta-analyses using study-level (or equivalently aggregate) data are of particular interest due to data
availability and modeling flexibility. In this paper, we describe an R package metapack that introduces
a unified formula interface for both meta-analysis and network meta-analysis. The user interface—and
therefore the package—allows flexible variance-covariance modeling for multivariate meta-analysis
models and univariate network meta-analysis models. Complicated computing for these models has
prevented their widespread adoption. The package also provides functions to generate relevant plots
and perform statistical inferences like model assessments. Use cases are demonstrated using two real
data sets contained in metapack.

1 Introduction

The U.S. Food and Drug Administration provides a clear definition of meta-analysis as “the combining
of evidence from relevant studies using appropriate statistical methods to allow inference(s) to be made to
the population of interest” (U.S. Food and Drug Administration et al., 2018). In fields like medicine,
pharmacology, and epidemiology, meta-analysis has become popular for reconciling conflicting results
or corroborating consistent ones in multiple studies (Chalmers et al., 2002; Borenstein et al., 2011;
Hartung et al., 2011; Balduzzi et al., 2019). Findings produced from meta-analyses are often placed at
the apex of the evidence hierarchy (U.S. Food and Drug Administration et al., 2018).

R already has a large supply of meta-analysis packages. meta (Schwarzer, 2007) and rmeta (Lumley,
2018) use the method of moments introduced in DerSimonian and Laird (1986). metafor (Viechtbauer,
2010) further contains moderator analyses and fits meta-regression (Berkey et al., 1995) through
weighted least squares. On the other hand, metaLik (Guolo, 2012) takes a likelihood approach based
on the second-order approximation of the modified likelihood ratio test statistic (Skovgaard et al., 1996).
metatest (Huizenga et al., 2011) further includes hypothesis testing capabilities through the likelihood
ratio test with Barlett correction, and mvmeta (Gasparrini et al., 2012) fits multivariate meta-analysis
and meta-regression models via the method of maximum likelihood. There are packages for Bayesian
meta-analytic inference as well. bayesmeta (Röver, 2020) assumes the normal-normal hierarchical
random-effect model and allows the user to choose prior distributions with a great deal of flexibility,
both informative and noninformative. nmaINLA (Guenhan et al., 2018) provides functionalities for
network meta-analysis and meta-regression with integrated nested Laplace approximations (INLA) as
an alternative to the Markov chain Monte Carlo (MCMC) algorithm. On the other hand, bmeta (Ding
and Baio, 2016) delivers flexible meta-analytic modeling by interfacing with JAGS (Plummer, 2003).
MetaStan (Guenhan, 2020) provides binomial-normal hierarchical models with weakly informative
priors, building upon the probabilistic language Stan (Stan Development Team, 2020).

Despite its importance and the wide array of R packages available, meta-analysis is still regarded
as a niche field that interests a narrow group of researchers and remains relatively low impact. We
partially attribute this phenomenon to the fact that the R community has yet to come up with a user
interface that unifies the theoretical distinctions between univariate and multivariate models, and
between meta-analysis and network meta-analysis although the models have grown more complicated
in the intervening years. Furthermore, a large class of simple Bayesian meta-analytic models is
handled by probabilistic programming languages like Stan (Stan Development Team, 2020) or BUGS
(Sturtz et al., 2005). Meanwhile, many complex models are not easily programmable in probabilistic
languages, and are not readily available in R. Especially, in the context of variance-covariance matrix
modeling in (network) meta-analysis, metapack is the first attempt in the R cosmos, to the best of our
knowledge, to provide easy access to regression-modeling of the variances (of the treatment effects) as
well as a wide array of options for modeling the response covariance matrices when the aggregate
responses are multivariate with only a partially observed within-study sample covariance matrix.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=meta
https://CRAN.R-project.org/package=rmeta
https://CRAN.R-project.org/package=metafor
https://CRAN.R-project.org/package=metaLik
https://CRAN.R-project.org/package=metatest
https://CRAN.R-project.org/package=mvmeta
https://CRAN.R-project.org/package=bayesmeta
https://CRAN.R-project.org/package=nmaINLA
https://CRAN.R-project.org/package=bmeta
https://CRAN.R-project.org/package=MetaStan
https://CRAN.R-project.org/package=metapack


CONTRIBUTED RESEARCH ARTICLE 143

metapack presented in this paper proposes a formula structure that flexibly represents the types
of responses (univariate and multivariate) and the number of treatments (meta-analysis and net-
work meta-analysis). The package also provides functions to assess model fits such as the deviance
information criterion (DIC) and the logarithm of the pseudo-marginal likelihood (LPML), and to
generate diagnostic plots. Some potential complications, theoretical and computational, in these model
selection criteria may break the algorithm or erode the statistical inference when unaddressed (see Sec-
tion Model comparison), which metapack takes care of by default—an advantage over model-agnostic
programming languages.

The rest of this paper is organized as follows. Section Considered models briefly reviews the
(network) meta-analysis model. Section Meta-analytic data for metapack describes the general form
of a meta-analysis data set to establish a generic data structure for meta-analysis and network meta-
analysis. Section Basic implementation of metapack explains how the data structure can be represented
using R’s extended formula and how metapack’s main function parses it, and lays down the vari-
ous modeling options for meta-analysis and network meta-analysis. Section Performing inference
further introduces the S3 methods available for performing statistical inferences and comparing
models. Some computational considerations to accelerate the computation are detailed as well. Sec-
tion Demonstration with real data provides demonstrations using the cholesterol data and TNM data
included in metapack. Finally, Section Discussion concludes the paper by offering a cautionary remark
for multivariate meta-analysis models regarding the number of observations required to perform
valid inferences on the correlation matrix, and discussing future research and package development
directions.

2 Considered models

In this section, we briefly review the models considered in metapack. There are largely two umbrella
models: univariate or multivariate meta-analysis based on Yao et al. (2015), and univariate network
meta-analysis based on Li et al. (2021). The various modeling options for each model introduced in
this section encompass the ones in Yao et al. (2015) and Li et al. (2021). In what follows, the model
description will deal with a general multivariate model including both meta-analysis and network
meta-analysis, which is valid even when univariate response is assumed, i.e. J = 1. Occasionally, the
univariate model description will be provided side by side to avoid confusion.

Assume K randomized controlled trials (RCTs) where the k-th trial includes Tk treatment arms.
Meta-analysis refers to a special case where Tk = 2 for all k = 1, . . . , K. We adopt the notational
abuse of omitting the trial indicator in the treatment’s subscript. For instance, for the sample size of
the t-th treatment arm of the k-th trial, we write nkt, not ntkk. Furthermore, for readability, note that
boldface lowercase Latin letters are vectors, while uppercase Latin letters are matrices. Boldface Greek
letters can either be vectors or matrices and will be defined contextually. Let ykt be a J-dimensional
aggregate response vector for the t-th treatment of the k-th trial. Similarly, let xktj ∈ Rpj be the
treatment-within-trial level covariate corresponding to the j-th response, reflecting the fixed effects
of the t-th treatment arm, and let wktj ∈ Rqj be the vector of covariates for the random effects. The
model ykt = Xktβ + Wktγk + ϵkt describes the aggregate data model, where ϵkt = (ϵkt1, . . . , ϵktJ)

⊤,

Xkt = ⊕J
j=1x⊤ktj for which ⊕ indicates direct sum, β = (β⊤

1 , . . . , β⊤
J )

⊤, Wkt = ⊕J
j=1w⊤

ktj, and γk =

(γ⊤
k1, γ⊤

k2, . . . , γ⊤
kJ)

⊤. The aggregate (network) meta-analysis model becomes{
ykt = Xktβ + Wktγk + ϵkt and (nkt − 1)Skt ∼ Wnkt−1(Σkt), if J ≥ 2 (multivariate)

ykt = x⊤ktβ + w⊤
ktγk + ϵkt and (nkt − 1)s2

kt/σ2 ∼ χ2
nkt−1, if J = 1 (univariate)

, (1)

where ϵkt ∼ N (0, Σkt/nkt) or ϵkt ∼ N (0, σ2
kt/nkt), Skt is the sample covariance matrix, s2

kt is the sample
variance, and Σkt ∈ S J

++ for which S J
++ is the space of J × J symmetric positive-definite matrices. In

Equation (1), Wν(Σ) is the Wishart distribution with ν degrees of freedom and a J × J scale matrix Σ
with density

p(X | ν, Σ) =
1

2Jν|Σ|ν/2ΓJ(ν/2)
|X|(ν−J−1)/2 exp

(
−1

2
tr(Σ−1X)

)
I(X ∈ S J

++),

where ΓJ is the multivariate gamma function defined by ΓJ(z) = π J(J−1)/4 ∏J
j=1 Γ[z + (1 − j)/2]. χ2

ν

indicates the chi-squared distribution with ν degrees of freedom.

Stacking the random effects for all response endpoints, γk = (γ⊤
k1, . . . , γ⊤

kJ)
⊤. Since the random

effects are assumed to follow a distribution in the location-scale family (either a multivariate t-
distribution or a multivariate normal distribution), i.e. γk ∼ LS(γ, Ω), the fixed-effect coefficient
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vector β absorbs the random effects’ location parameter γ, forming θ = (β⊤, γ⊤)⊤. The corresponding
design matrix Xkt is also expanded to include the random-effect design matrix Wkt, written as X∗

kt =
[Xkt, Wkt]. With γk,o = γk − γ, the model now becomes

ykt = X∗
ktθ+ Wktγk,o + ϵkt, if J ≥ 2 (multivariate)

ykt = x∗kt
⊤θ+ w⊤

ktγk,o + ϵkt

⇒ yk = X∗
k θ+ Wkγk,o + ϵk

, if J = 1 (univariate)
, (2)

where yk = (yk,tk1
, . . . , yk,tkTk

)⊤, X∗
k = ((x∗k,tk1

)⊤, . . . , (x∗k,tkTk
)⊤)⊤, Wk = (w⊤

k,tk1
, . . . , w⊤

k,tkTk
)⊤, and ϵk =

(ϵk,tk1
, . . . , ϵk,tkTk

)⊤. We briefly restore the correct subscripts (i.e. tkl for l = 1, . . . , Tk) to demonstrate
that yk, X∗

k , and Wk may be different lengths and dimensions for different k’s. Here, {tk1, . . . , tkTk
}

denotes the set of treatments compared in the k-th trial. The random effects are modeled differently
in meta-analysis than in network meta-analysis. A major reason for this divergence is that the
variables explaining the treatment effects are not easily found in the presence of varying numbers of
treatments in different trials. The differences are further detailed in Section Meta-analysis models and
Section Network meta-analysis models.

3 Meta-analytic data for metapack

To streamline configuring models in R formula, it is important to understand the data structure for
metapack. Table An example of arm-level meta-analytic data. Trial is equivalent to Study ID. A
meta-analysis has two treatments in each trial for all trials, whereas a network meta-analysis can
have trials with different numbers of treatments across trials. This distinction determines the number
of rows for each trial (i.e. strictly two rows per trial in meta-analyses and a differing number of
rows per trial for network meta-analyses). Outcome, SD, DeisngM1, and DesignM2 can each be a vector,
in which case the row vector representation indicates distributing across columns. For example, if
Outcome consists of two endpoints, (Y1, Y2), then each y⊤

kt should enter a row as two columns, y1 and
y2. represents a typical arm-level data set for (network) meta-analysis, where each row represents a
trial arm.

Outcome (ykt) SD (skt) DesignM1 (xkt) DesignM2 (wkt) Trial (k) Treat (t) n

y⊤
14 s14 x⊤14 w⊤

14 1 4 1000
y⊤

11 s11 x⊤11 w⊤
11 1 1 545

y⊤
21 s21 x⊤21 w⊤

21 2 1 1200
...

...
...

...
...

...
...

Table 1: An example of arm-level meta-analytic data. Trial is equivalent to Study ID. A meta-analysis
has two treatments in each trial for all trials, whereas a network meta-analysis can have trials with
different numbers of treatments across trials. This distinction determines the number of rows for
each trial (i.e. strictly two rows per trial in meta-analyses and a differing number of rows per trial for
network meta-analyses). Outcome, SD, DeisngM1, and DesignM2 can each be a vector, in which case the
row vector representation indicates distributing across columns. For example, if Outcome consists of
two endpoints, (Y1, Y2), then each y⊤

kt should enter a row as two columns, y1 and y2.

Outcome is the response (or responses for multivariate cases), SD is the standard deviation(s) of the
response(s), DesignM1 and DesignM2 are design matrices, and n is the arm sample size. The pair of trial
and treatment indicators is unique to a row. The first design matrix, DesignM1, contains the covariates
for fixed effects and will be written as X henceforth. The second design matrix, DesignM2 or W ,
represents different things depending on the model, which will be explained in Section Meta-analysis
models and Section Network meta-analysis models. It should be noted that there can always be two
design matrices, whose configuration will be illustrated in Section Basic implementation of metapack.

A meta-analytic data set is characterized as folows: (1) univariate or multivariate and (2) meta-
analysis or network meta-analysis. Here, meta-analysis refers to when trials have specifically two
treatments (i.e. t = 1, 2 for all k) and all treatments are compared head to head. On the other hand,
network meta-analysis includes more than two total treatments, where each trial can have a different
set of treatments, allowing indirect comparison between treatments that are not compared head to
head. The data structure is unchanged for network meta-analysis except that Treat can have more
than two unique values. The first category (univariate vs. multivariate) is determined by the number
of response endpoints, and the second category (meta- vs. network meta-analysis) by the number of
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treatments. All other modeling choices fall into prior specification.

4 Basic implementation of metapack

bmeta_analyze is the main function in metapack, whose first argument is an R formula. bmeta_analyze
internally parses a formula to identify a model and ultimately calls a worker function. An extension
of R’s formula class, Formula (Zeileis and Croissant, 2010), accommodates multiple responses and
parts, lending itself well into meta-analysis modeling. Once a model is fully identified, the MCMC
algorithm is executed in C++, thanks to Rcpp (Eddelbuettel and Balamuta, 2017) and RcppArmadillo
(Eddelbuettel and Sanderson, 2014).

Name Functionality Description

bmeta_analyze Estimation Fits (network) meta-analysis models
hpd Inference Computes highest posterior density (HPD) intervals of model parameters
model_comp Inference Computes model comparison measures (DIC or LPML)
print Displays a summary of the output
summary Displays a summary of the output
plot Plots trace plots, density plots, or surface-under-the-cumulative-ranking-curve (SUCRA) plots
fitted Computes posterior means, standard deviations, and HPD intervals
coef Computes posterior means of fixed-effect coefficients
cholesterol Data set Cholesterol data for multivariate meta-analysis
TNM Data set Triglyceride data for network meta-analysis

Table 2: A list of available functions and data sets in metapack.

Using Formula

The three characterizations of a meta-analytic data set must be encoded in the formula. Requiring
the formula to have two left-hand sides (LHS) and two or three right-hand sides (RHS)1 is enough
to communicate the characterizations for a wide class of meta-analysis models. We invite other R
package developers to adopt the following representation for meta-analytic models, the general form
of which is given by

y1 + y2 | sd1 + sd2 ~ x1 + x2 + x3 + ns(n) | w1 + w2 + w3 | treat + trial (+ groups)

Each part in LHS or RHS is an R expression where variables (or functions of variables) are chained with
a plus sign (+)—e.g. x1 + x2. The tilde (~) separates all LHSs from all RHSs, each further separated
into parts by vertical bars (|). The meaning of each part is syntactically determined by its location
within the formula, like an English sentence. Therefore, every part must come in the exact order as
prescribed for bmeta_analyze to correctly identify the model.

• The first LHS (‘y1 + y2’), the responses, is required of all models. Depending on the number of
variables given in the first LHS, bmeta_analyze will determine whether the model is multivariate
or univariate. For example, a first LHS with only y would flag the model as univariate.

• The second LHS (‘sd1 + sd2’) supplies the standard deviations of the endpoints required of an
aggregate-data meta-analysis. The function call will break if this part is missing.

• The first RHS (‘x1 + x2 + x3 + ns(n)’) defines the fixed-effect covariates. For aggregate-data
models, the arm sample sizes must be passed as an argument to ns(). In the example code, n is
the variable containing the arm sample sizes.

• The second RHS (‘w1 + w2 + w3’) defines either the random-effect covariates (w⊤
ktγ) or the

variance-related covariates (log τkt = w⊤
ktϕ)—see Sections Meta-analysis models or Network

meta-analysis models for details. This part is optional. If omitted, bmeta_analyze will assume
wkt = 1 where 1 is a vector of ones.

• The third RHS (‘treat + trial’ or ‘treat + trial + groups’) corresponds to the treatment
and trial indicators, and optionally the grouping variable if it exists. Variables here must be
provided in the exact order shown in the example.

The dimension of the response(s) is explicit in the formula, which determines the first charac-
terization. The treatments are coerced to a factor—if not already one—whose number of levels is
extracted (i.e. ‘nlevels(treat)’) to resolve the second characterization, meta-analysis versus network
meta-analysis.

1Semantically, the LHS should refer to the entire left of tilde—same for RHS—but in R idioms, when a side is
counted or pluralized (e.g. LHSs, RHSs, or sides), it refers to a part or parts in the corresponding side.
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Function arguments

Aside from the first two arguments, formula and data, there are four other optional arguments that
must be provided as R’s list class: prior, mcmc, control, and init. All hyperparameters for the prior
distributions should be included in prior—see Section Considered models for hyperparameters. mcmc
only regards the numbers of MCMC iterations: ndiscard for the number of burn-in iterations, nskip
for thinning, and nkeep for the posterior sample size. control configures the Metropolis-Hastings
algorithm. *_stepsize with the asterisk replaced with one of the parameter names indicates the step
size for determining the sample evaluation points in the localized Metropolis algorithm. Lastly, initial
values for the parameters can be provided in init in case a user has a priori known high-quality
starting points.

Meta-analysis models

For meta-analysis models, metapack acknowledges the possible existence of the first-line and second-
line treatments trials. More generally, the trials may be grouped by a factor believed to generate
disparate random effects. Although an arbitrary number of groups can exist in theory, we restrict our
attention to two groups. Denoting the binary group indicators by ukt ∈ {0, 1} yields

yktj = x⊤ktjβ + (1 − ukt)w
⊤
ktjγ

0
kj + uktw

⊤
ktjγ

1
kj + ϵktj. (3)

The random effects are modeled as γl
kj

ind∼ N (γl
j
∗
, Ωl

j) and (Ωl
j)
−1 ∼ Wd0j

(Ω0j). Stacking the vectors,

γl
k = ((γl

k1)
⊤, . . . , (γl

kJ)
⊤)⊤ ∼ N (γl∗, Ωl), where γl∗ = ((γl

1
∗
)⊤, . . . , (γl

J
∗
)⊤)⊤, Ωj = Ω0

j ⊕ Ω1
j , and

Ω = ⊕J
j=1Ωj for l ∈ {0, 1}. Adopting the noncentered parameterization (Bernardo et al., 2003), define

γl
k,o = γl

k − γl∗. Denoting W∗
kt = [(1− ukt)Wkt, uktWkt], X∗

kt = [Xkt, W∗
kt], θ = (β⊤, γ0∗⊤, γ1∗⊤)⊤, and

γk,o = ((γ0
k,o)

⊤, (γ1
k,o)

⊤)⊤, the model is written as follows:

ykt = X∗
ktθ+ W∗

ktγk,o + ϵkt. (4)

If there is no distinction between the first-line and second-line therapies, then setting ukt = 0 for all
(k, t) reduces the model back to Equation (1). Finally, we assume θ ∼ N (0, c0 I) where I is an identity
matrix.

A (boilerplate) template for this class of models is as follows:

f <- "y1 + y2 | sd1 + sd2 ~ x1 + x2 | w1 + w2 | treat + trial + groups"
fit <- bmeta_analyze(formula(f), data = df,

prior = list(c0 = [real], dj0 = [real], Omega0 = [matrix],
a0 = [real], b0 = [real],
d0 = [real], nu0 = [real], Sigma0 = [matrix]),

control = list(sample_Rho = [logical], Rho_stepsize = [real],
R_stepsize = [real], delta_stepsize = [real], model = [string]))

We use ‘real’ and ‘string’ as aliases for ‘double’ and ‘character’ in R. Every bracketed expression
should be replaced with an instance of the enclosed class. The hyperparameters in ‘prior’ and step
sizes in ‘control’ will be clarified in the following modeling options. Note that all parameters with a
step size are sampled through the Metropolis-Hastings algorithm.

Modeling options for Σkt The covariance matrix between the response endpoints (Σkt) can be
modeled depending on (1) the amount of data available; and (2) what assumptions the practitioner
is willing to make. The diagonal elements of Σkt are always identifiable whereas the off-diagonal
elements require additional modeling assumptions. metapack presently offers five options, specifiable
through model in the control argument. For M2–M5, the unobserved sample correlation matrices
are sampled from their conditional distributions (Rkt | Vkt, Σkt) given by

p(Rkt | Vkt, Σkt) ∝ |Rkt|(nkt−J−2)/2 exp
{
− (nkt − 1)

2
tr
(

V
1
2

kt Σ−1
kt V

1
2

kt Rkt

)}
. (5)

• (M1: model="NoRecovery") The simplest and easiest way to model the covariance matrices is
to relinquish correlation recovery, in which case Equation (5) is ignored. We assume Σkt =
diag(σ2

kt,11, . . . , σ2
kt,J J) with σ2

kt,jj ∼ IG(a0, b0) for a0, b0 > 0, where IG(a, b) denotes the inverse-

gamma distribution whose density function is proportional to x−(a+1) exp(−b/x) for x > 0.
For univariate meta-analyses, this is the only valid option since there are no off-diagonal entries.
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• (M2: model="EquiCovariance") We can assume the covariance matrix is for all pairs of treat-
ments and trials. That is, Σkt = Σ for every combination of (k, t) for t = 1, . . . , T and k = 1, . . . , K.
A Wishart prior distribution is assumed for Σ−1, i.e. Σ−1 ∼ Ws0 (Σ0) for s0 > J − 1 and
Σ0 ∈ S J

++.

• (M3: model="EquiWithinTreat") If the equal covariance is too strong an assumption, we can
allow the covariance matrices to be equivalent within a treatment. That is, Σkt = Σt for
t = 1, . . . , T. Similar to M2, a Wishart prior distribution is assumed for Σ−1

t , i.e. Σ−1
t ∼ Ws0 (Σ0).

• (M4: model="EquiCorrelation") To achieve the best of both worlds—variances and correlations—
we can let the variances enjoy maximum freedom but attempt to recover the correlations by
restricting them to be identical across treatments and trials for identifiability. Performing the
decomposition,

Σkt = δktρδkt,

where δkt = diag(Σ1/2
kt,11, . . . , Σ1/2

kt,J J), and ρ is the correlation matrix, the elements in δkt and ρ are
sampled through the Metropolis-Hastings algorithm.

• (M5: model="Hierarchical") The hierarchical prior for Σkt is given by (Σ−1
kt | Σ) ∼ Wν0 ((ν0 −

J − 1)−1Σ−1) and Σ ∼ Wd0 (Σ0). By allowing the Σkt’s to differ but having them share informa-
tion across treatments and trials via Σ, this assumption aims to control the between-treatment
and between-trial variations simultaneously. Since the amount of information shared between
treatments and trials is controlled by ν0 (> J − 1), it is advised to try multiple values for ν0 and
perform a model assessment through the deviance information criterion (DIC) or the logarithm
of the pseudo-marginal likelihood (LPML). Σ is further decomposed for Metropolis-Hastings
algorithm as Σ = ∆ρ∆ where ∆ = diag(δ1, . . . , δJ) is the diagonal matrix of standard deviations,
and ρ is a correlation matrix with unit diagonal elements.

Network meta-analysis models

For univariate network meta-analysis, the design matrix for random effects is restricted to be the
selection matrix E⊤

k = (etk1 , etk2 , . . . , etkTk
)⊤, where etkl = (0, . . . , 1, . . . , 0)⊤, l = 1, . . . , Tk, with the

tklth element set to 1 and 0 otherwise, and Tk is the number of treatments included in the k-th trial.
Furthermore, we redefine γk,o to be γk,o := E⊤

k γk, a vector of Tk-dimensional scaled random effects.
The random effects γk ∼ tT(γ, ρ, ν), where tT(µ, Σ, ν) denotes a multivariate t-distribution with ν
degrees of freedom, a location parameter vector µ, and a scale matrix Σ. T indicates the number of
distinct treatments in all trials. The random effects γk are scaled since ρ is a correlation matrix with
unit diagonal entries, and the variance components can be modeled as a multiplicative term. That is,
with Wk(ϕ) = diag(exp(w⊤

ktk1
ϕ), . . . , exp(w⊤

ktkTk
ϕ)), the model is recast as

yk = X∗
k θ+ Wk(ϕ)γk,o + ϵk,

where X∗
k = (Xk, E⊤

k ), θ = (β⊤, γ⊤)⊤, ϵk ∼ NTk (0, Σk), and Σk = diag

(
σ2

ktk1
nktk1

, . . . ,
σ2

ktkTk
nktkTk

)
. This

allows exp(w⊤
ktϕ) to be the standard deviation of γkt. Since the multivariate t-random effects are not

analytically marginalizable, we represent it as a scale mixture of normals as

(γk,o | λk)
ind∼ NTk

(
0, λ−1

k (E⊤
k ρEk)

)
, λk

iid∼ Ga
( ν

2
,

ν

2

)
, (6)

where Ga(a, b) indicates the gamma distribution with mean a/b. Finally, θ ∼ N (0, c01 I) and ϕ ∼
N (0, c02 I).

A (boilerplate) template for this class of models is as follows:

f <- "y | sd ~ x1 + x2 | w1 + w2 | treat + trial"
fit <- bmeta_analyze(formula(f), data = df,

prior = list(c01 = [real], c02 = [real], df = [real],
a4 = [real], b4 = [real], a5 = [real], b5 = [real]),

control = list(sample_df = [logical], sample_Rho = [logical],
Rho_stepsize = [real], phi_stepsize = [real], lambda_stepsize = [real]))

Every bracketed expression should be replaced with an instance of the enclosed class. The hyper-
parameters in ‘prior’ and step sizes in ‘control’ will be clarified in the following modeling options.
Note that all parameters with a step size are sampled through the Metropolis-Hastings algorithm.
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Modeling options The appeal of considering heavy-tailed random effects and modeling the variance
to be a deterministic linear function of a covariate is that both extend but still cover the common cases
(normal random effects and no variance modeling) as either the limiting or a special case. Unlike
meta-analysis, there is no single argument (‘model’) determining the modeling option. A model is
rather specified by a combination of arguments.

• (M1 - No variance modeling) Sometimes, no covariate information is available for modeling
the variances, where wktkt

reduces to one—Wk(ϕ) = diag(eϕ, . . . , eϕ). The marginal variance of
ykt becomes Var(ykt) = σ2

kt/nkt + e2ϕ. This can be achieved by simply omitting the second RHS,
thereby making the trial and treatment configuration the second RHS. For example, ‘y | sd
~x1 + x2 | treat + trial’.

• (M2 - Normal random effects) In the limiting case where ν → ∞, γk,o ∼ NTk (0, E⊤
k ρEk).

bmeta_analyze treats ν (‘df’) as part of the prior specification. Thus, ‘df=Inf’ in the ‘prior’
argument corresponds to opting for normal random effects.

• (M3 - Random degrees of freedom) The degrees of freedom of the multivariate t-distribution for
the random effects are treated as unknown. In this case, a hierarchical prior is considered for the
degrees of freedom. That is, (ν | νa, νb) ∼ Ga(νa, νa/νb), νa ∼ Ga(a4, b4), and νb ∼ IG(a5, b5).
Since sampling ν regards the MCMC algorithm, a logical variable ‘sample_df’ is placed in the
‘control’ argument. If ‘sample_df=TRUE’, the value for ‘df’ in ‘prior’ will be used as the initial
value, and the related hyperparameters (‘a4’, ‘b4’, ‘a5’, and ‘b5’) can be set in ‘prior’. For
obvious reasons, ‘df’ cannot be assigned ‘Inf’ if ‘sample_df=TRUE’.

5 Performing inference

The object (fit) returned from bmeta_analyze remembers the function arguments, encapsulates the
model specification, and contains the posterior sample from the MCMC algorithm. Therefore, this
object alone can be passed to other methods to perform subsequent inferences. These methods include
fitted, hpd, coef, model_comp, and sucra.

The posterior means, standard deviations, and the HPD intervals are computed via the fitted()
function. The fitted() function has two optional arguments: ‘level’ and ‘HPD’. ‘level’ determines
the credibility level of the interval estimation. ‘HPD’, a logical parameter, decides whether a highest
posterior density or equal-tailed credible interval will be produced. It is also possible to obtain the
posterior interval estimates only using hpd().

R> est <- fitted(fit, level=0.99, HPD = TRUE)
R> hpd <- hpd(fit, level = 0.95, HPD = TRUE)

‘coef(fit)’ allows users to extract the posterior mean of the fixed-effect coefficients.

Model comparison It is crucial to determine a suitable model to base the statistical inference on.
Section Meta-analysis models introduces five models for Σkt, and Section Network meta-analysis
models contains infinitely many models since the degrees of freedom ν for the random effects can
assume any number on the positive real line including infinity. Such a circumstance calls for a
principled way of comparing models as well as evaluating goodness of fit.

The deviance information criterion (Spiegelhalter et al., 2002), or DIC, is defined as follows:

DIC = Dev(η̄) + 2pD,

where η indicates all model parameters for which η̄ = E[η | Dobs]. Dev(η) is the deviance function
given by Dev(η) = −2 log Loy(η | Dobs), for which Loy is the observed-data likelihood associated with
y, and pD is defined as pD = Dev(η)− Dev(η̄) where Dev(η) = E[Dev(η) | Dobs].

R> dic <- model_comp(fit, type = "dic", verbose = TRUE, ncores = 3)

Another Bayesian model selection criterion is the logarithm of the pseudo-marginal likelihood
(LPML), defined as the summed logarithm of the conditional predictive ordinates (CPO). The CPO has
a “leave-one-out” predictive interpretation, which in meta-analyses is often overlooked—a significant
oversight that will undermine model comparison. The aggregate nature of meta-analysis data calls for
a redefinition of what is “left out” and what should be the base unit for prediction. With trials as the
base unit, the CPO for the k-th trial is

CPOk =
∫

L(η | Doy)p(η | D−k
oy , Dos)dη,
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where D−k
oy is Doy with the k-th trial removed, and p(η | D−k

oy , Dos) is the posterior distribution based
on the data without the k-th trial. Then, LPML = 1

K ∑K
k=1 log(CPOk).

R> lpml <- model_comp(fit, type = "lpml", verbose = TRUE, ncores = 3)

Treatments included in only one trial violate the predictive interpretation of the CPO. The correspond-
ing trials thus should be removed from LPML calculation. model_comp returns the logarithm of the
CPO of every trial but corrects the LPML should such treatments exist. For those occasions, a naive
sum of the logarithm of the CPOk’s will not equal the corrected LPML in the returned object.

The DIC and LPML for the meta-analysis models are relatively straightforward since the observed-
data likelihood is a multivariate normal density. However, network meta-analysis models require
some technical considerations in evaluating the following observed-data likelihood that involves
an analytically intractable integral when t-random effects are used: slow computation speed and
numerical overflow. Observe the following observed likelihood function for the network meta-analysis
model:

Loy(η | Dobs) =
K

∏
k=1

∫ ∞

0
(2π)−

Tk
2 g(λk)

∣∣∣λ−1
k (Wk(ϕ)E⊤

k ρEkWk(ϕ)) + Σk

∣∣∣− 1
2

× exp

−
(yk − X∗

k θ)⊤
[
λ−1

k Wk(ϕ)E⊤
k ρEkWk(ϕ) + Σk

]−1
(yk − X∗

k θ)

2

 dλk,

where g(λk) is the gamma density with shape and rate parameters ν/2. The integral is evaluated
via double exponential (DE) quadrature, or equivalently tanh-sinh quadrature (Takahasi and Mori,
1974; Bailey et al., 2005), available in the math header of the BH package (Eddelbuettel et al., 2019).
DE quadrature is robust to singularities, terminates fast, and provides high precision (Bailey et al.,
2005). We address the slow speed through “shared memory multiprocessing programming” via OpenMP
(OpenMP Architecture Review Board, 2018). OpenMP is a widely used application programming
interface (API) for portable and scalable parallel processing in C, C++, and Fortran across many
operating systems. As long as R is configured for OpenMP, metapack will deploy parallelism. Unless
the argument ncores is specified otherwise, model_comp will use two CPU cores for parallel computing
by default.

To prevent overflow, we take the following steps:

• Let h(λk) denote the integrand. Then, compute λ̂k = arg maxλk
log h(λk).

• Redefine the integral as

exp
{

log h(λ̂k) + log
∫ ∞

0
exp

[
log h(λk)− log h(λ̂k)

]
dλk

}
.

Although the exponential shifting scheme does not warrant preventing every occurrence of numerical
overflow, we have observed stable evaluations of the integral for over several thousand batches of
simulations.

Model diagnostics and visualization

It is important to diagnose whether the results are consistent with the assumptions and visualize the
findings. metapack provides methods for these: plot and sucra. The plot method is available for both
meta-analysis and network meta-analysis whereas sucra is exclusively for network meta-analysis.

The plot method will take the fit object and generate the density plots and trace plots of θ. To
see the plots for other parameters, run the following commands using coda (Plummer et al., 2006):

R> library("coda")
R> posterior <- as.mcmc(data.frame(gammaR = fit$mcmc.draws$gamR,
+ sig2 = fit$mcmc.draws$sig2))
R> plot(posterior)

Similarly, boa (Smith, 2007) can be used for output analysis. The posterior sample of ρ comes in
three-dimensional arrays, which requires suitable indexing to generate trace plots for the off-diagonal
lower-triangular elements. To generate such trace plots, run the following command:

R> idx <- lower.tri(fit$mcmc.draws$Rho[,,1])
R> n_idx <- ncol(idx) * (ncol(idx) - 1) / 2
R> posterior <- as.mcmc(data.frame(
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+ rho = t(vapply(1:fit$mcmc$nkeep, function(ikeep) {
+ rho_i <- fit$mcmc.draws$Rho[,,ikeep]
+ rho_i[idx]
+ }, FUN.VALUE=numeric(n_idx)))))
R> plot(posterior)

Treatment comparisons The surface under the cumulative ranking (SUCRA) curve is useful when the
ranking of the treatments in a network meta-analysis is of interest. Based on the posterior sample,
P(t, r) denotes the probability that the treatment t is ranked 1 ≤ r ≤ T for t = 1, . . . , T. Let P be the
T×T discrete rank (row-stochastic) probability matrix whose (t, r)th element is P(t, r). The cumulative
probability is then computed through F(t, x) = ∑x

r=1 P(t, r), where F(t, x) is the probability that the
t-th treatment is ranked x or better. Since F(t, T) = 1 for every t, the surface under the cumulative
ranking distribution for the t-th distribution is given by

SUCRA(t) =
1

T − 1

T−1

∑
x=1

F(t, x).

sucra will take the fit object and return the SUCRA and the discrete rank probability matrix P.

R> s <- sucra(fit)
R> s$SUCRA
R> s$rankprob

If only plotting is needed, the storage of the sucra object can be bypassed via running plot(sucra(fit)).
Note that SUCRA s has a bijection with the mean rank r of a treatment, r = 1 + (1 − s)(T − 1), where
T is the number of treatments.

6 Demonstration with real data

Meta-analysis

metapack includes a data set, cholesterol, which consists of 26 double-blind, randomized, active,
or placebo-controlled clinical trials on patients with primary hypercholesterolemia sponsored by
Merck & Co., Inc., Kenilworth, NJ, USA (Yao et al., 2015). The data set can be loaded by running
data("cholesterol"). The cholesterol data set has three endpoints: low density lipoprotein choles-
terol (pldlc), high density lipoprotein cholesterol (phdlc), and triglycerides (ptg). The percent change
from the baseline in the endpoints, variables prefixed by p-, are the aggregate responses, followed by
the corresponding standard deviations prefixed by sd-. Variable documentation is also available in
help("cholesterol").

R> set.seed(2797542)
R> f_1 <- 'pldlc + phdlc + ptg | sdldl + sdhdl + sdtg ~
+ 0 + bldlc + bhdlc + btg + age + durat + white + male + dm + ns(n) | treat |
+ treat + trial + onstat'
R> fit_ma <- bmeta_analyze(formula(f_1), data = cholesterol,
+ prior = list(model="NoRecovery"),
+ mcmc = list(ndiscard = 1000, nkeep = 1000),
+ control=list(scale_x = TRUE, verbose=TRUE))
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Variable Description

study study identifier
trial trial identifier
treat treatment indicator for Statin or Statin+Ezetimibe
n the number of participants in the study arms
pldlc aggregate percentage change in LDL-C
phdlc aggregate percentage change from baseline in HDL-C
ptg aggregate percentage change from baseline in triglycerides (TG)
sdldl sample standard deviation of percentage change in LDL-C
sdhdl sample standard deviation of percentage change in HDL-C
sdtg sample standard deviation of percentage change in triglycerides (TG)
onstat whether the participants were on Statin prior to the trial
bldlc baseline LDL-C
bhdlc baseline HDL-C
btg baseline triglycerides (TG)
age age in years
white the proportion of white participants
male the proportion of male participants
dm the proportion of participants with diabetes mellitus
durat duration in weeks

Table 3: Variables included in the cholesterol data set.
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Figure 1: The trace plots (three top panels) and density plots (three bottom panels) of the treatment ef-
fects from the meta-analysis model generated from plot(fit_ma)—plots have been omitted for brevity.
The trace plots show good mixing and convergence of MCMC chains and the density plots indicate
that the marginal posterior distribution for each treatment effect is roughly symmetric. The MCMC
samples of the regression coefficients will be automatically assigned row names according to the
formula provided by the user. ‘treat*(1-2nd)_3’ indicates the treatment effect within the first-line pa-
tients (i.e. ‘onstat=0’) with respect to the third response variable, ‘ptg’. Likewise, ‘(Intercept)*2nd_3’
is the baseline effect within the second-line patients (i.e. ‘onstat=1’) with respect to ‘ptg’.
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summary can be used to summarize the posterior sample from the ‘fit’ object. summary will name
the variables accordingly in the output, suffixed by the index j in the corresonding outcome variable
yktj. For example, ‘bldlc_1’ in the output below corresponds to the base LDL-C’s coefficient associated
with the first endpoint (‘pldlc’). The summary table consists of the posterior mean, posterior standard
deviation, the HPD lower bound, and the HPD upper bound. Users may choose to compute the
equal-tailed credible intervals (CI) instead of the HPD intervals by setting ‘HPD=FALSE’.

R> summary(fit_ma, HPD = TRUE, level = 0.95)
Call:
bmeta_analyze(formula = formula(f_1), data = cholesterol,
prior = list(model = "NoRecovery"),
mcmc = list(ndiscard = 1000, nkeep = 1000), control = list(scale_x = TRUE,

verbose = TRUE))
Fixed-effects:

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc_1 0.1394 0.0938 -0.0532 0.3051
bhdlc_1 -0.5146 0.6329 -1.7641 0.7243
btg_1 0.0018 0.0818 -0.1693 0.1607
age_1 0.3785 0.4389 -0.5308 1.1648
durat_1 0.9699 0.5234 -0.1658 1.9979
white_1 -5.2449 7.4048 -19.7345 8.9764
male_1 -1.2652 12.3948 -25.6807 23.0538
dm_1 0.3987 5.3392 -10.4995 9.4673
bldlc_2 -0.0128 0.0137 -0.0393 0.0134
bhdlc_2 -0.0294 0.1280 -0.2887 0.2149
btg_2 0.0228 0.0212 -0.0203 0.0619
age_2 -0.0963 0.0735 -0.2422 0.0460
durat_2 -0.0007 0.0712 -0.1320 0.1382
white_2 5.5822 1.3044 3.0802 8.1901
male_2 -2.1449 2.6956 -7.5975 2.6164
dm_2 -1.0457 1.0923 -3.1816 1.0341
bldlc_3 0.0141 0.0406 -0.0719 0.0853
bhdlc_3 0.0082 0.2637 -0.5278 0.4872
btg_3 -0.0734 0.0467 -0.1598 0.0154
age_3 -0.1385 0.2043 -0.5077 0.2591
durat_3 0.0996 0.2546 -0.3718 0.6080
white_3 -0.7053 5.2345 -11.0570 8.9591
male_3 14.5482 7.1735 0.0642 28.2959
dm_3 5.0535 2.9542 -1.4157 10.5545
(Intercept)*(1-2nd)_1 -42.8675 3.2934 -48.8356 -35.8794
treat*(1-2nd)_1 -12.1435 1.1211 -14.4040 -10.0135
(Intercept)*2nd_1 -3.2219 3.0426 -9.3109 2.7419
treat*2nd_1 -20.0843 1.5235 -23.3169 -17.2637
(Intercept)*(1-2nd)_2 5.1425 0.5840 3.8240 6.1036
treat*(1-2nd)_2 2.0787 0.4718 1.0663 3.0222
(Intercept)*2nd_2 0.7346 0.5814 -0.3377 1.8738
treat*2nd_2 1.3482 0.3116 0.7579 1.9880
(Intercept)*(1-2nd)_3 -18.5035 2.1543 -22.3232 -13.7985
treat*(1-2nd)_3 -4.7726 0.9952 -6.7784 -2.9511
(Intercept)*2nd_3 -4.1805 1.2910 -6.7672 -1.7005
treat*2nd_3 -8.8579 0.9443 -10.6208 -7.0530
---------------------------------------------------
*HPD level: 0.95

The suffixed ‘_j’ where j can be 1, 2, or 3 corresponds to the response endpoint. Since scale_x = TRUE
is equivalent to scale(<var>,center=TRUE,scale=TRUE), the covariates have been centered, which af-
fects the interpretation of the intercepts. This allows us to interpret (Intercept*(1-2nd)_1)=-42.8675
as the statin effect in the first-line studies, where 2nd represents the indicator variable for second-line
studies evaluating to one if second-line and zero otherwise. On the other hand, the coefficient estimate
-12.1435 for treat*(1-2nd)_1 is the Statin+Ezetimibe effect, compared to administering statin alone.
For the second-line studies where patients had already been on statin, (Intercept)*2nd_1=-3.2219
came out insignificant, according to the 95% HPD interval, as anticipated because the treatment for this
group was merely a continuation of taking statin. The coefficient estimate -20.0843 for treat*2nd_1
shows that ezetimibe on top of statin has a greater cholesterol-lowering effect than statin alone.

print is similar to summary but additionally prints the model specification. The output from
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‘print(fit_ma)’ is given as follows.

R> print(fit_ma, HPD = TRUE, level = 0.95)
Call:
bmeta_analyze(formula = formula(f_1),

data = cholesterol, prior = list(model = "NoRecovery"),
mcmc = list(ndiscard = 1000, nkeep = 1000),
control = list(scale_x = TRUE, verbose = TRUE))

Model:
(Aggregate mean)
y_kt = X_kt * theta + W_kt * gamma_k + N(0, Sigma_kt / n_kt)

(Sample Variance)
(n_kt - 1) S_kt ~ Wishart(n_kt - 1, Sigma_kt)

(Random effects)
[gamma_k | Omega] ~ N(0, Omega)

Priors:
theta ~ MVN(0, 1e+05 * I_p)
Omega_j^{-1} ~ Wishart( 2.1 , Omega0)
Sigma_kt = diag(sig_{tk,11}^2, ..., sig_{tk,JJ}^2)
where sig_{tk,jj}^2 ~ IG( 0.1 , 3.1 )

---------------------------------------------------
Number of trials: 26
Number of arms: 52
Number of treatments: 2

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc_1 0.1394 0.0938 -0.0532 0.3051
bhdlc_1 -0.5146 0.6329 -1.7641 0.7243
btg_1 0.0018 0.0818 -0.1693 0.1607
age_1 0.3785 0.4389 -0.5308 1.1648
durat_1 0.9699 0.5234 -0.1658 1.9979
white_1 -5.2449 7.4048 -19.7345 8.9764
male_1 -1.2652 12.3948 -25.6807 23.0538
dm_1 0.3987 5.3392 -10.4995 9.4673
bldlc_2 -0.0128 0.0137 -0.0393 0.0134
bhdlc_2 -0.0294 0.1280 -0.2887 0.2149
btg_2 0.0228 0.0212 -0.0203 0.0619
age_2 -0.0963 0.0735 -0.2422 0.0460
durat_2 -0.0007 0.0712 -0.1320 0.1382
white_2 5.5822 1.3044 3.0802 8.1901
male_2 -2.1449 2.6956 -7.5975 2.6164
dm_2 -1.0457 1.0923 -3.1816 1.0341
bldlc_3 0.0141 0.0406 -0.0719 0.0853
bhdlc_3 0.0082 0.2637 -0.5278 0.4872
btg_3 -0.0734 0.0467 -0.1598 0.0154
age_3 -0.1385 0.2043 -0.5077 0.2591
durat_3 0.0996 0.2546 -0.3718 0.6080
white_3 -0.7053 5.2345 -11.0570 8.9591
male_3 14.5482 7.1735 0.0642 28.2959
dm_3 5.0535 2.9542 -1.4157 10.5545
(Intercept)*(1-2nd)_1 -42.8675 3.2934 -48.8356 -35.8794
treat*(1-2nd)_1 -12.1435 1.1211 -14.4040 -10.0135
(Intercept)*2nd_1 -3.2219 3.0426 -9.3109 2.7419
treat*2nd_1 -20.0843 1.5235 -23.3169 -17.2637
(Intercept)*(1-2nd)_2 5.1425 0.5840 3.8240 6.1036
treat*(1-2nd)_2 2.0787 0.4718 1.0663 3.0222
(Intercept)*2nd_2 0.7346 0.5814 -0.3377 1.8738
treat*2nd_2 1.3482 0.3116 0.7579 1.9880
(Intercept)*(1-2nd)_3 -18.5035 2.1543 -22.3232 -13.7985
treat*(1-2nd)_3 -4.7726 0.9952 -6.7784 -2.9511
(Intercept)*2nd_3 -4.1805 1.2910 -6.7672 -1.7005
treat*2nd_3 -8.8579 0.9443 -10.6208 -7.0530
---------------------------------------------------
*HPD level: 0.95

For model comparison, the deviance information criterion (DIC) and the logarithm of the pseudo
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marginal likelihood (LPML) can be computed using the model_comp method. The DIC will also contain
Dev(η̄) and pD. Similarly, the LPML will contain the logarithm of the CPOs, which is omitted.

R> dic <- model_comp(fit_ma, "dic")
R> lpml <- model_comp(fit_ma, "lpml")
R> c(dic$dic, dic$Dev, dic$pD)
[1] 827.80726 734.50691 46.65018

R> lpml$lpml
[1] -428.1813

Network meta-analysis

metapack includes another data set, ‘TNM’, which consists of 29 studies, dubbed the Triglycerides
Network Meta (TNM) data (Li et al., 2019). The data set has 73 observations and 15 variables, which
can be loaded via ‘data("TNM")’. The aggregate response variable is the mean percentage difference
in triglycerides (‘ptg’), paired with its corresponding standard deviation (‘sdtg’). Similarly to

Variable Description

trial trial identifier

treat

treatment indicator for placebo (PBO), simvastatin (S), atorvastatin (A),
lovastatin (L), rosuvastatin (R), pravastatin (P), ezetimibe (E),
simvastatin+ezetimibe (SE), atorvastatin+ezetimibe (AE),
lovastatin+ezetimibe (LE), or pravastatin+ezetimibe (PE)

n the number of participants in the study arms
ptg percentage change from baseline in triglycerides (TG)
sdtg sample standard deviation of percentage change in triglycerides (TG)
bldlc baseline LDL-C
bhdlc baseline HDL-C
btg baseline triglycerides (TG)
age age in years
white the proportion of white participants
male the proportion of male participants
bmi body fat index
potencymed the proportion of medium statin potency
potencyhigh the proportion of high statin potency
durat duration in weeks

Table 4: Variables included in the TNM data set.

‘cholesterol’, variable descriptions are also available through help("TNM").

LPML in Section Model comparison is not the only quantity affected by the treatments only
included in a single trial. The variances of the corresponding treatment effects are nonestimable. Li
et al. (2019) proposes to group those treatments and allow the treatments in a group to share the same
variance. This grouping scheme can be easily achieved using match in R:

R> TNM$group <- factor(match(TNM$treat, c("PBO", "R"), nomatch = 0))

In the following demonstration, we consider the following model:

R> f_2 <- 'ptg | sdtg ~
+ 0 + bldlc + bhdlc + btg + age + white + male + bmi +
+ potencymed + potencyhigh + durat + ns(n) |
+ scale(bldlc) + scale(btg) + group | treat + trial'

The model can be fit by running

R> set.seed(2797542)
R> fit_nma <- bmeta_analyze(formula(f_2), data = TNM,
+ mcmc = list(ndiscard = 1000, nskip = 1, nkeep = 1000),
+ control=list(scale_x = TRUE, verbose=TRUE))
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Again, the model summary can be obtained using either summary or print with minor differences.

R> summary(fit_nma)
Call:
bmeta_analyze(formula = formula(f_2), data = TNM, mcmc = list(ndiscard = 1000,

nskip = 1, nkeep = 1000), control = list(scale_x = TRUE,
verbose = TRUE))

Posterior inference in network meta-regression models
Fixed-effects:

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc -0.0071 0.0171 -0.0409 0.0230
bhdlc 0.2332 0.2490 -0.2802 0.7027
btg 0.0846 0.0366 0.0006 0.1460
age -0.0068 0.1028 -0.2003 0.2020
white -7.2148 1.9867 -10.7112 -3.0757
male 1.2323 7.3305 -12.5660 15.6644
bmi -0.4505 0.3534 -1.1544 0.2184
potencymed 6.8278 7.9203 -8.5359 22.4551
potencyhigh -0.6474 7.9330 -16.9216 14.4191
durat 0.1880 0.1879 -0.1638 0.5652
A -24.3175 1.7820 -27.9255 -20.9635
AE -30.3604 2.9591 -35.7474 -24.2297
E -5.2737 6.1207 -17.4431 6.4066
L -11.6521 4.3747 -20.1106 -2.7431
LE -26.9507 3.4730 -33.3236 -19.9223
P -8.3357 4.5065 -16.9311 0.7870
PBO 1.6170 6.0629 -9.9366 13.6298
PE -22.7722 3.6333 -29.6129 -15.7540
R -17.7669 2.0010 -21.3989 -13.3839
S -19.1616 1.2175 -21.7647 -16.9279
SE -21.8271 2.0509 -25.8031 -17.6347
---------------------------------------------------
*HPD level: 0.95

We observe that with covariate adjustment, all active treatments (A, AE, E, L, LE, P, PE, R, S, SE) reduce
triglyceride (TG) more effectively than the placebo (PBO), although E and P have 95% HPD intervals
including zero.

The output from ‘print(fit_nma)’ further includes the model specification, and summary statistics
for ϕ.

R> print(fit_nma)
Call:
bmeta_analyze(formula = formula(f_2), data = TNM, mcmc = list(ndiscard = 1000,

nskip = 1, nkeep = 1000), control = list(scale_x = TRUE,
verbose = TRUE))

Model:
(Aggregate mean)
y_kt = x_kt'theta + tau_kt * gamma_kt + N(0, sigma_kt^2 / n_kt)

(Sample Variance)
(n_kt - 1) S^2 / sigma_kt^2 ~ chi^2(n_kt - 1)

(Random effects)
[gam | Rho,nu] ~ MVT(0, E_k' Rho E_k, nu)

Priors:
theta ~ MVN(0, c01 * I_p), c01= 1e+05
phi ~ MVN(0, c02 * I_q), c02= 4
p(sigma^2) ~ 1/sigma^2 * I(sigma^2 > 0)
p(Rho) ~ 1

---------------------------------------------------
Number of studies: 29
Number of arms: 73
Number of treatments: 11

Post.Mean Std.Dev HPD(Lower) HPD(Upper)
bldlc -0.0071 0.0171 -0.0409 0.0230
bhdlc 0.2332 0.2490 -0.2802 0.7027
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btg 0.0846 0.0366 0.0006 0.1460
age -0.0068 0.1028 -0.2003 0.2020
white -7.2148 1.9867 -10.7112 -3.0757
male 1.2323 7.3305 -12.5660 15.6644
bmi -0.4505 0.3534 -1.1544 0.2184
potencymed 6.8278 7.9203 -8.5359 22.4551
potencyhigh -0.6474 7.9330 -16.9216 14.4191
durat 0.1880 0.1879 -0.1638 0.5652
A -24.3175 1.7820 -27.9255 -20.9635
AE -30.3604 2.9591 -35.7474 -24.2297
E -5.2737 6.1207 -17.4431 6.4066
L -11.6521 4.3747 -20.1106 -2.7431
LE -26.9507 3.4730 -33.3236 -19.9223
P -8.3357 4.5065 -16.9311 0.7870
PBO 1.6170 6.0629 -9.9366 13.6298
PE -22.7722 3.6333 -29.6129 -15.7540
R -17.7669 2.0010 -21.3989 -13.3839
S -19.1616 1.2175 -21.7647 -16.9279
SE -21.8271 2.0509 -25.8031 -17.6347
phi1 0.4088 0.2716 -0.1610 0.8882
phi2 -0.3248 0.3869 -1.1721 0.2902
phi3 0.2692 0.2239 -0.1859 0.6835
phi4 -1.0862 1.2024 -3.2686 0.9419
phi5 0.5973 0.3407 -0.0341 1.2829
---------------------------------------------------
*HPD level: 0.95

The model comparison measures are computed using model_comp. For example,

R> dic <- model_comp(fit_nma, "dic")
R> c(dic$dic, dic$Dev, dic$pD)
[1] 386.41450 334.72118 25.84666

R> lpml <- model_comp(fit_nma, "lpml")
R> lpml$lpml
[1] -161.518

The plot method will generate trace plots and density plots of the fixed-effect coefficients. Figure 2
shows the trace plots and density plots of treatments R, S, and SE from the network meta-analysis
model, generated by ‘plot(fit_nma)’.
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Figure 2: The trace plots and density plots of treatments R, S, and SE from the network meta-analysis
model generate from ‘plot(fit_nma)’. The trace plots show good mixing and convergence of MCMC
chains and the density plots indicate that the marginal posterior distribution for each treatment effect
is roughly symmetric. The treatment labels come from the ‘group’. If ‘group’ is a factor, its levels will
be used. Otherwise, treatment labels will be numbered.

In addition to the MCMC diagnostics, network meta models can be visualized using SUCRA plots,
i.e. ‘plot(sucra(fit_nma))’. Figure 3 shows the SUCRA plot from the ‘fit_nma’ object. The plot
function for SUCRA uses ggplot2 (Wickham, 2016) and gridExtra (Auguie, 2017) to generate and
combine plots.

7 Discussion

This paper introduces metapack for (network) meta-analysis, and illustrates the usage of the main
function, bmeta_analyze. We further demonstrate how to analyze data using the cholesterol and TNM
data sets included in metapack. The package relies on Rcpp, RcppArmadillo, and OpenMP to boost
computation speed. Furthermore, we propose a unified formula structure to represent meta-analytic
data using Formula, which we hope to see gain currency in the community.

There is a cautionary remark worth mentioning about the ratio between the correlation information
in the data and the number of correlation-related parameters. The number of endpoints and the number
of arms in the multivariate meta-analysis models are critical in determining whether the missing
correlations (Rkt, ρ) are identifiable. If there are too many endpoints, there must be enough data points.
Otherwise, the prior distribution for ρ cannot be noninformative. From our experience, using only
one of the two therapies in cholesterol results in nonidentifiable correlations since each off-diagonal
entry of ρ will have four observations on average. This can render the MCMC algorithm unstable,
covering the whole (−1, 1). This could potentially break the MCMC chain if any of the elements gets
too close to either 1 or -1, violating positive definiteness.

The efficient estimation of the correlation matrix is an important future research direction for which
the package will serve as a valuable repository of resources. The first few future implementations will
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Figure 3: The SUCRA plot for all treatment arms generated by plot(sucra(fit_nma)). The green
dashed line represents the discrete probability mass and the orange solid line represents the cumulative
probability. The SUCRA values are displayed on top of each subplot. For optimal visualization, we
recommend the labels be three characters or fewer. AE is ranked highest according to SUCRA, followed
by LE.
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focus on the regression modeling of the correlations to address the cases where either the data are too
small to estimate the correlations or the number of treatments is too large. Models accommodating
various circumstances regarding the sample variances are under active development. For example,
researchers might want to suppress the sampling of the variance-covariance matrix as a whole for
various reasons. Researchers might also have partially observed sample variances, not covariances,
depending on the study included in the systematic review. metapack in the coming releases will
provide these options. Therefore, metapack has great potential for further development.
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did2s: Two-Stage
Difference-in-Differences
by Kyle Butts and John Gardner

Abstract Recent work has highlighted the difficulties of estimating difference-in-differences models
when the treatment is adopted at different times for different units. This article introduces the R
package did2s which implements the estimator introduced in Gardner (2022). The article provides an
approachable review of the underlying econometric theory and introduces the syntax for the function
did2s. Further, the package introduces functions, event_study and plot_event_study, which uses a
common syntax to implement all of the modern event-study estimators.

Introduction

A rapidly growing econometric literature has identified difficulties in traditional difference-in-differences
estimation when treatment turns on at different times for different groups and when the effects of
treatment vary across groups and over time (Callaway and Sant’Anna 2020; Sun and Abraham 2020;
Goodman-Bacon 2018; Borusyak, Jaravel, and Spiess 2021; Chaisemartin and D’Haultfoeuille 2019).
Gardner (2022) proposes an estimator of the two-way fixed-effects model that is quick and intuitive.
The estimator relies on the standard two-way fixed-effect model (see the following section) and forms
an intuitive estimate: the average difference in outcomes between treated and untreated units after
removing fixed unit- and time-invariant shocks.

This article first discusses the modern difference-in-differences theory in an approachable way and
second discusses the software package, did2s, which implements the two-stage estimation approach
proposed by Gardner (2022) to estimate robustly the two-way fixed-effects (TWFE) model. There are
two notable technical features of this package. First, did2s utilizes the incredibly fast package, fixest
(Bergé 2018), which can estimate regressions with a high number of fixed-effects very quickly. Second,
since there are a few alternative TWFE event-study estimators implemented in R, each with their own
syntax and data formatting requirements, the package also has a set of functions that allow quick
estimation and plotting of every alternative event study estimator using a standardized syntax. This
allows for easy comparison between the results of different methods.

Difference-in-differences theory

Researchers commonly use the difference-in-differences (DiD) methodology to estimate the effects
of treatment in the case where treatment is non-randomly assigned. Instead of random assignment
giving rise to identification, the DiD method relies on the so-called “parallel trends” assumption,
which asserts that outcomes would evolve in parallel between the treated and untreated groups in a
world where the treated were untreated. This is formalized with the two-way fixed-effects (TWFE) model. In
a static setting where treatment effects are constant across treatment groups and over time, researchers
estimate the static TWFE model:

yigt = µg + ηt + τDgt + εigt, (1)

where yigt is the outcome variable of interest, i denotes the individual, t denotes time, and g denotes
group membership where a “group” is defined as all units that start treatment at time g.1 µg is a vector
of time-invariant group fixed-effects, ηt is a vector of shocks in a given time period that is experienced
by all individuals equally, and Dgt is an indicator for whether initial-treatment group g is receiving
treatment in period t, i.e. Dgt ≡ 1(g ≤ t). The coefficient of interest is τ, which is the (constant)
average effect of the treatment on the treated (ATT). If it is indeed true that the treatment effect is
constant across groups and over time, then the estimate formed by estimating the static TWFE model
will be consistent for τ under a parallel trends assumption on the error term.

However, treatment effects are not constant in most settings. The magnitude of a unit’s treatment
effect can differ based on group status g (e.g. if groups that benefit more from a policy implement it
earlier) and treatment duration (e.g. if treatment effects grow as the policy has been in place for longer
periods). Therefore to enrich our model, we allow heterogeneity in treatment effects across g and t
by introducing the group-time average treatment effect, τgt. Correspondingly, we modify the TWFE
model as follows:

yigt = µg + ηt + τgtDgt + εigt.

1In the literature, never treated units often are given a value of g = ∞.
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The key difference is that treatment effects are allowed to differ based on group status g and time
period t. Estimating any individual τgt may not be desirable since there would be too few observations.
Instead, researchers aggregate group-time average treatment effects into the overall average treatment
effect, τ, which averages across τgt:

τ ≡ ∑
g,t

Ngt

Npost
τgt,

where Ngt denotes the number of observations in (g, t) and Npost is the number of post-treatment
observations (t ≥ g). The natural question is, “does the static TWFE model, (1), produce a consistent
estimate for the overall average treatment effect?” Except for a few specific scenarios, the answer is no
(Sun and Abraham 2020; Goodman-Bacon 2018; Borusyak, Jaravel, and Spiess 2021; Chaisemartin and
D’Haultfoeuille 2019).

One way of thinking about this disappointing result is through the Frisch–Waugh–Lovell (FWL)
theorem (Frisch and Waugh 1933). This theorem says that estimating the Static TWFE model is
equivalent to estimating

yigt − µ̂g − η̂t = τD̃gt + ε̃gt,

where D̃gt denotes the residuals from regressing Dgt on µg and ηt; µ̂g and η̂t are estimates for the
group and time fixed-effects, respectively. The left-hand side of this equation, under a parallel trends
restriction on the error term εit, is our estimate for τgt. Therefore, the FWL theorem tells us estimating
the static TWFE model is equivalent to estimating2

τ̂gt = τD̃gt + ε̃gt

The resulting estimate for τ can be written as:

τ̂ ≡ ∑
g,t

wgtτ̂gt,

where wgt is the weight put on the corresponding τ̂gt. Results of Gardner (2022), Borusyak, Jaravel,
and Spiess (2021), and Chaisemartin and D’Haultfoeuille (2019) all characterize the weights wgt
from this regression. There are only two cases where the τ̂ is a consistent estimate for the overall
average treatment effect. First, when treatment occurs at the same time for all treated units, then wgt
is equal to Ngt/Npost for all {g, t} and therefore τ̂ is a consistent estimate for the overall average
treatment effect. The other scenario where τ̂ estimates the overall average treatment effect is when τgt
is constant across group and time, i.e. τgt = τ. Since the weights, wgt, always sum to one, we have
that τ̂ = ∑ wgtτ̂gt → ∑ wgtτ = τ.

The above cases are not the norm in research. If there is heterogeneity in group-time treatment
effects and units get treated at different times, then τ̂ is not a consistent estimate for the average
treatment effect τ. Instead, τ̂ will be a weighted average of group-time treatment effects with some
weights, wgt, being potentially negative. This yields a treatment effect estimate that does not provide a
good summary of the “average” treatment effect. It is even possible for the sign of τ̂ to differ from that
of the overall average treatment effect. This would occur, for example, if negative weights are placed
primarily on the largest (in magnitude) group-time treatment effects.

To summarize the modern literature, the fundamental problem faced in estimating the TWFE
model is the potential negative weighting. The proposed methodology in Gardner (2022) is based on
the fact that if τ̂gt is regressed on Dgt, instead of D̃gt, the resulting weights would be exactly equal to
Ngt/Npost and the coefficient of Dgt would estimate the overall average treatment effect.

Event-study estimates

Researchers have attempted to model treatment effect heterogeneity by allowing treatment effects to
change over time. To do this, they introduce a (dynamic) event-study TWFE model:

yigt = µg + ηt +
−2

∑
k=−L

τkDk
gt +

K

∑
k=0

τkDk
gt + εigt, (2)

where Dk
gt are lags/leads of treatment (k periods from initial treatment date). The coefficients of

interests are the τk, which represent the average effect of being treated for k periods. For negative
values of k, τk are known as “pre-trends,” and represent the average deviation in outcomes for treated
units k periods away from treatment, relative to their value in the reference period. These pre-trend

2This is a minor abuse of notation since yigt − µ̂g − η̂t is an estimate for τigt which can be different from τgt if
there is within group-time heterogeneity.
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estimates are commonly used as a test of the parallel counterfactual trends assumption.

Our goal is to estimate the average treatment effect of being exposed for k periods, an average of
τgt for only the set of {g, t} where k periods have elapsed since g, i.e. t − g = k:

τk = ∑
g,t : t−g=k

Nk
gt

Nk τgt,

where the sum is over {g, t} with t − g = k, Nk
gt is the number of observations in group g and Nk is

the total number of observations with t − g = k. The results of Sun and Abraham (2020) show that
even though we allow for our average treatment effects to vary over time τk, the negative weighting
problems would arise if units are treated at different times and there is group-heterogeneity in treatment
effects. Similar to the static TWFE model, the estimates of τk from running the event-study model
form non-intuitively weighted averages of τgt with wk

gt ̸= Nk
gt/Nk. Even worse, the group-time

treatment effects for t − g ̸= k will be included in the estimate of τ̂k. Hence, the need for a robust
difference-in-differences estimator remains even in the event-study model.

Two-stage difference-in-differences estimator

Gardner (2022) proposes an estimator to resolve the problem with the two-way fixed-effects approaches.
Rather than attempting to estimate the group and time effects simultaneously with the ATT (causing
Dit to be residualized), Gardner’s approach proceeds from the observation that, under parallel trends,
the group and time effects are identified from the subsample of untreated/not-yet-treated observations
(Dgt = 0). This suggests a simple two-stage difference-in-differences estimator:

1. Estimate the model
yigt = µg + ηt + εigt,

using the subsample of untreated/not-yet-treated observations (i.e., all observations for which
Dgt = 0), retaining the estimated group and time effects to form the adjusted outcomes ỹigt ≡
yigt − µ̂g − η̂t.

2. Regress adjusted outcomes ỹigt on treatment status Dgt or Dk
gt in the full sample to estimate

treatment effects τ or τk.

To see why this procedure works, note that parallel trends implies that outcomes can be expressed
as

yigt = µg + ηt + τgtDgt + εigt

= µg + ηt + τ̄Dgt + (τgt − τ̄)Dgt + εigt,

where τgt = E(Y1
igt − Y0

igt | g, t) is the average treatment effect for group g in period t3 and τ̄ =

E(τgt|Dgt = 1) is the overall average treatment effect4. Note from parallel trends, E(εigt|Dgt, g, t) = 0.
Rearranging, this gives

yigt − µg − ηt = τ̄Dgt + (τgt − τ̄)Dgt + εigt.

Suppose you knew the time and group fixed-effects and were able to directly observe the left-hand
side (later we will estimate the left-hand side). Regressing the adjusted y variable, on Dgt will produce
a consistent estimator for τ̄. To see this, note that E[(τgt − τ̄)Dgt | Dgt] = 0. Hence, the treatment
dummy is uncorrelated with the omitted variable and the average treatment effect is identified in
the second-stage. Since we are not able to directly observe µg and ηt, we estimate them using the
untreated/not-yet-treated observations in the first-stage. However, standard errors need adjustment
to account for the added uncertainty from the first-stage estimation.

This approach can be extended to dynamic models by replacing the second stage of the procedure
with a regression of residualized outcomes onto the leads and lags of treatment status, Dk

gt, k ∈
{−L, . . . , K}. Under parallel trends, the second-stage coefficients on the lags identify the overall
average effect of being treated for k periods (where the average is taken over all units treated for at
least that many periods). The second-stage coefficients on the leads identify the average deviation
from predicted counterfactual trends among units that are k periods away from treatment, which
under parallel trends should be zero for any pre-treatment value of k. Hence, the coefficients on the
leads represent a test of the validity of the parallel trends assumption.

3i.e., the average difference between treated and untreated potential outcomes y1
igt and y0

igt, conditional on the
observed treatment-adoption times.

4i.e., the population-weighted average of the group-time specific ATTs, τgt.
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Inference

The standard variance-covariance matrix from the second-stage regression will be incorrect since it
fails to account for the fact that the dependent variable is generated from the first-stage regression.
However, this estimator takes the form of a joint generalized method of moments (GMM) estimator
whose asymptotic variance is well understood (Newey and McFadden 1986).

Specifically, the estimator takes the form of a two-stage GMM estimator with the following two
moment conditions:

m(θ) = (Y − X′
10γ)X10, (3)

g(γ, θ) = (Y − X′
1γ − X′

2θ)X2, (4)

where X1 is the matrix of group and time fixed-effects, X10 corresponds to the matrix X1, but with
rows corresponding to observations for which Dgt = 1 replaced with zeros (as only observations with
Dgt = 0 are used in the first stage) and X2 is the matrix of treatment variable(s). The first equation
corresponds with the first stage and the second equation corresponds with the second stage. From
Theorem 6.1 of Newey and McFadden (1986), the asymptotic variance of the two-stage estimator is

V = G−1
θ E

[
(g + Gγψ)(g + Gγψ)′

]
G−1′

θ , (5)

where from our moment conditions, we have:

Gθ = −E
(
X2X′

2
)

,

Gγ = −E
(
X2X′

1
)

,

ψ = E(X10X′
10)

−1ε10X10.

This can be estimated using

(
X′

2X2
)−1

(
G

∑
g=1

W ′
gWg

) (
X′

2X2
)−1 , (6)

where
Wg = X′

2g ε̂2g − ε̂′10gX1g

(
X′

1gX1g

)−1 (
X′

1gX2g

)
,

and matrices indexed by g correspond to the gth cluster.

The did2s package

The did2s package introduces two sets of functions. The first is the did2s command which implements
the two-stage difference-in-differences estimator as described above. The second is the event_study
and plot_event_study commands that allow individuals to implement alternative ‘robust’ estimators
using a singular common syntax.

The did2s command

The command did2s implements the two-stage difference-in-differences estimator following Gardner
(2022). The general syntax is

did2s(data, yname, first_stage, second_stage,
treatment, cluster_var, weights = NULL,
bootstrap = FALSE, n_bootstraps = 250,
verbose = TRUE)

and full details on the arguments is available in the help page, available by running ?did2s. There
are a few arguments that are worth discussing in more detail.

The first_stage and second_stage arguments require formula arguments. These formulas are
passed to the fixest::feols function from fixest and can therefore utilize two non-standard formula
options that are worth mentioning (Bergé 2018). First, fixed-effects can be inserted after the covariates,
e.g. ~ x1 | fe_1 + fe_2, which will make estimation much faster than using factor(fe_1). Second,
the function fixest::i can be used for treatment indicators instead of factor. The advantage of this
is that you can easily specify the reference values, e.g. for event-study indicators where researchers
typically want to drop time t = −1, ~ i(rel_year, ref = c(-1)) would be the correct second-stage
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Figure 1: This figure plots simulated data with two treated groups and a never-treated group. Each
line represents the average outcome (y-value) in a given year (x-value) for each of the three groups. In
the absence of treatment, all three groups would exhibit parallel trends (staying around a value of 4
in each period). Each of the treated groups are experience different treatment effect magnitudes that
grow over time. This treatment effect heterogeneity creates problems for the classical two-way fixed
effect OLS estimator.

formula. Additionally, fixest has a number of post-estimation exporting commands to make tables
with fixest::etable and event-study plots with fixest::iplot/fixest::coefplot. The fixest::i
function is better integrated with these functions as we will see below.

The option treatment is the variable name of a 0/1 variable that denotes when treatment is active
for a given unit, Dgt in the above notation. Observations with Dgt = 0 will be used to estimate the
first stage, which removes the problem of treatment effects contaminating estimation of the unit and
time fixed-effects. However, as an important note, if you suspect anticipation effects before treatment
begins, the treatment variable should be shifted forward by x periods for observations to prevent the
aforementioned contamination. For example, if you suspect that units could experience treatment
effects 1 period ahead of treatment (a so-called anticipatory effect), then the treatment should begin
one period ahead. These anticipation effects can be estimated, after adjusting the treatment variable,
by using a reference year of say, t = −2 and looking at the estimate for relative year −1.

Example usage of did2s For basic usage, I will use the simulated dataset, df_het, that comes with
the did2s package with the command

data(df_het, package = "did2s")

The data-generating process is displayed in Figure 1. The lines represent the mean outcome
for each treatment group and the never-treated group. In the absence of treatment, each group is
simulated to be on parallel trends. There is heterogeneity in treatment effects both within a treatment
group over time and across treatment groups.

First, we will calculate a static difference-in-differences estimate using the did2s function.

static = did2s(
data = df_het,
yname = "dep_var",
treatment = "treat",
first_stage = ~ 0 | unit + year,
second_stage = ~ i(treat, ref = FALSE),
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cluster_var = "unit",
verbose = FALSE

)

summary(static)

#> OLS estimation, Dep. Var.: dep_var
#> Observations: 46,500
#> Standard-errors: Custom
#> Estimate Std. Error t value Pr(>|t|)
#> treat::TRUE 2.23048 0.021408 104.19 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> RMSE: 1.0357 Adj. R2: 0.505683

Since the returning object is a fixest object, all the accompanying output commands from fixest
are available to use. For example, we can create regression tables:

fixest::etable(static, fitstat = c("n"), tex = TRUE,
title = "Estimate of Static TWFE Model",
notes = "This table presents the estimated overall treatment effect. The effect is estimated using Two-Stage Difference-in-Differences proposed by Gardner (2021). The estimated effect is close to the true value.")

Table 1: Estimate of Static TWFE Model

Dependent Variable: dep_var
Model: (1)

Variables
treat = TRUE 2.230∗∗∗

(0.0214)

Fit statistics
Observations 46,500

Custom standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

This table presents the estimated overall treatment effect. The effect is estimated using
Two-Stage Difference-in-Differences proposed by Gardner (2021). The estimated effect is
close to the true value.

However, since there are dynamic treatment effects in this example, it is much better to estimate
the dynamic effects themselves using an event-study specification. We will then plot the results using
fixest::iplot, which plots coefficients corresponding to an i() variable. Note that rel_year is coded
as Inf for never-treated units, so this has to be noted in the reference part of the formula.

es = did2s(
data = df_het,
yname = "dep_var",
treatment = "treat",
first_stage = ~ 0 | unit + year,
second_stage = ~ i(rel_year, ref = c(-1, Inf)),
cluster_var = "unit",
verbose = FALSE

)

fixest::iplot(
es,
main = "Event study: Staggered treatment",
xlab = "Relative time to treatment",
col = "steelblue", ref.line = -0.5

)
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Event study: Staggered treatment
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Figure 2: This figure plots the true treatment effect and estimates using the Two-Stage Difference-in-
Differences proposed by Gardner (2021). The x-axis of this figure is the relative time to treatment, i.e.
how many years pre-/post- treatment that period is. The y-axis is estimated treatment effects. There
are two sets of points. The first is for the true effect which is equal to 0 in all pre-periods and in the
post-period starts at 1.5 and linearly grows to 3 by post-period 20. The second set of points is the
estimates from the two-stage difference-in-difference estimates which follows closely the true effects
but with additional noise from estimation error.

# Add the (mean) true effects
true_effects = tapply((df_het$te + df_het$te_dynamic), df_het$rel_year, mean)
true_effects = head(true_effects, -1)
points(-20:20, true_effects, pch = 20, col = "grey60")

# Legend
legend(x=-20, y=3, col = c("steelblue", "grey60"),

pch = c(20, 20),
legend = c("Two-stage estimate", "True effect"))

The event study estimates are found in Figure 2 and match closely to the true average treatment
effects. For comparison to traditional OLS estimation of the event-study specification, Figure 3 plots
point estimates from both methods. As pointed out by Sun and Abraham (2020), treatment effect
heterogeneity between groups biases the estimated pre-trends. In the figure below, the OLS estimates
appear to show violations of pre-trends even though the data was simulated under parallel pre-trends.

twfe = feols(dep_var ~ i(rel_year, ref=c(-1, Inf)) | unit + year, data = df_het)

fixest::iplot(list(es, twfe), sep = 0.2, ref.line = -0.5,
col = c("steelblue", "#82b446"), pt.pch = c(20, 18),
xlab = "Relative time to treatment",
main = "Event study: Staggered treatment (comparison)")

# True Effects
points(-20:20, true_effects, pch = 20, col = "grey60")

# Legend
legend(x=-20, y=3, col = c("steelblue", "#82b446", "grey60"), pch = c(20, 18, 20),

legend = c("Two-stage estimate", "TWFE", "True Effect"))
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Event study: Staggered treatment (comparison)
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Figure 3: This figure adds the standard ordinary-least squares estimates to the true effect and the
‘did2s‘ estimates present in Figure 2. The x-axis of this figure is the relative time to treatment, i.e. how
many years pre-/post- treatment that period is. The y-axis is estimated treatment effects. There are
three sets of points. The first two sets of points are the same as in Figure 2. The third set of points is
the ordinary-least squares estimates. These points exhibit show evidence of parallel pre-trends failing.

The event_study and plot_event_study command

The command event_study presents a common syntax that estimates the event-study TWFE model
for treatment-effect heterogeneity robust estimators recommended by the literature and returns all the
estimates in a data.frame for easy plotting by the command plot_event_study. The general syntax is

event_study(
data, yname, idname, tname, gname,
estimator,
xformla = NULL, horizon = NULL, weights = NULL

)

The option data specifies the data set that contains the variables for the analysis. The four
other required options are all names of variables: yname corresponds with the outcome variable of
interest; idname is the variable corresponding to the (unique) unit identifier, i; tname is the variable
corresponding to the time period, t; and gname is a variable indicating the period when treatment first
starts (group status).
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There are five main estimators available and the choice is specified for the estimator argument
and are described in Table 2.5 The following paragraphs will aim to highlight the differences and
commonalities between estimators. These estimators fall into two broad categories. First, did2s
and didimputation (Butts 2021) are imputation-based estimators as described above. Both rely on
“residualizing” the outcome variable Ỹ = Yit − µ̂g − η̂t and then averaging those Ỹ to estimate the
event-study average treatment effect τk. These two estimators return identical point estimates for
post-treatment effects, but differ in their asymptotic regime and hence their standard errors.

The second type of estimator, which we label 2x2 aggregation, takes a different approach for
estimating event-study average treatment effects. The packages did (Callaway and Sant’Anna 2021),
fixest and staggered (Roth and Sant’Anna 2021) first estimate τgt for all group-time pairs. To estimate
a particular τgt, they use a two-period (periods t and g − 1) and two-group (group g and a “control
group”) difference-in-differences estimator, known as a 2x2 difference-in-differences. The particular
“control group” they use will differ based on estimator and is discussed in the next paragraph. Then,
the estimator manually aggregate τgt across all groups that were treated for (at least) k periods to
estimate the event-study average treatment effect τk.

These estimators do not all rely on the same underlying assumptions, so the rest of the table
summarizes the primary differences between estimators. The comparison group column describes
which units are utilized as comparison groups in the estimator and hence will determine which units
need to satisfy a parallel trends assumption. For example, in some circumstances, treated units will
look very different from never-treated units. In this case, parallel trends may only hold between units
that receieve treatment at some point and hence only these units should be used in estimation. In
other cases, for example if treatment is assigned randomly, then it’s reasonable to assume that both
not-yet- and never-treated units would all satisfy parallel trends.

For estimators labeled “Not-yet- and/or never-treated”, the default is to use both not-yet- and
never-treated units in the estimator. However, if all never-treated units are dropped from the data
set before using the estimator, then these estimators will use only not-yet-treated groups as the
comparison group. did provides an option to use either the not-yet- treated or the never- treated group
as a comparison group depending on which group a researcher thinks will make a better comparison
group. staggered will automatically drop units that are never treated from the sample and hence only
use not-yet-treated groups as a comparison group.

The next column, Main Assumptions, summarize concisely the main theoretical assumptions
underlying each estimator. First, the assumptions about parallel trends match the previous discussion
on the correct comparison group. The only estimator that doesn’t rely on a parallel trends assumption
is staggered which relies on the assumption that when a unit receives treatment is random.

The next assumption, that is common across all estimators, is that there should be “limited
anticipation” of treatment. In general, anticipatory effects are when units respond to treatment before
it is actually implemented. For example, this can be common if the news of a policy triggers behavior
responses before the treatment is put in place. “Limited anticipation” is when these anticipatory effects
can only exist in a “few” pre-periods.6 In any of these cases, “treatment” should be manually moved
back by the maximum number of periods where anticipation can occur. For example, if treatment
starts in 2012 and anticipatory effects are reasonably only possible 2 years before, this units’ “group”
should be labeled as 2010 in the data.

The imputation-based estimators require an additional assumption that the parametric model
of Y(0) = µi + ηt + εit is correctly specified. This is because in the first stage, you have to accu-
rately impute Y(0) when residualizing Y which relies on the correct specification of Y(0). The 2x2
aggregation models do not estimate a parametric form of Y(0) and hence only relies on a parallel
trends assumption. While not in the table, it is worth noting that did allows for uniform inference of
estimates. This addresses the problem that multiple hypotheses tests are being done by researchers
(e.g. checking individually if all post period estimates are significant) by creating standard errors that
adjust for multiple testing.

Example usage of event_study The result of event_study is a tibble in a tidy format (Robinson,
Hayes, and Couch 2021) that contains point estimates and standard errors for each relative time indi-
cator for each estimator. The results of event_study are stored as a dataframe with event-study term,
the estimate, standard error, and a column containing which estimator is used for that estimate. This
output dataframe will in turn be passed to plot_event_study for easy comparison. plot_event_study
will return a ggplot object (Wickham 2016). We return to the df_het dataset to see example usage of
these functions.

5Except for Sun and Abraham, the estimator option is the package name. For Sun and Abraham, the estimator
option is sunab. A value of “all” will estimate all 5 estimators.

6There should be more periods before treatment in the sample than whatever number a “few” is.
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Figure 4: This figure contains six plots displayed in a grid of different event study estimators. The
estimators are labeled ’TWFE’, ’Borusyak, Jaravel, Spiess (2021)’, ’Callaway and Sant’Anna (2020)’,
’Gardner (2021)’, ’Roth and Sant’Anna (2021)’, and ’Sun and Abraham (2020)’. Each estimator’s
necessary assumptions are described above. Each plot in the figure displays point estimates from
pre-treatment year -5 through post-treatment year 10. Each estimator is approximately 0 for all pre-
treatment periods. In post-periods, each figure follows the true treatment effect starting at 1.5 in
post-period 1 and growing afterwards.

data(df_het, package = "did2s")
out = event_study(
data = df_het, yname = "dep_var", idname = "unit",
tname = "year", gname = "g", estimator = "all"

)

head(out)

#> estimator term estimate std.error
#> 1: TWFE -20 0.04097725 0.07167704
#> 2: TWFE -19 0.13665695 0.07147683
#> 3: TWFE -18 0.14015820 0.07245520
#> 4: TWFE -17 0.15793252 0.07431871
#> 5: TWFE -16 0.09910002 0.07379570
#> 6: TWFE -15 0.20561127 0.07116478

plot_event_study(out, horizon = c(-5, 10))

Conclusion

This article introduced the package did2s which provides a fast, memory-efficient, and treatment-effect
heterogeneity robust way to estimate two-way fixed-effect models. The package also includes the
event_study and plot_event_study functions to allow for a single syntax for the various estimators
introduced in the literature. A companion package in Stata is also available with similar syntax for the
did2s function.

While this package includes an event_study function that aims to help individuals implement any
of the proposed modern “solutions” to the difference-in-differences estimation, further research on
this topic is needed to help practitioners be able to more precisely determine which estimators work
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best in their settings. Potentially, there could be data-driven methods to try to identify the plausibility
of the different assumptions. Additionally, there is still more work to be done to formalize under what
conditions covariates can flexibly be used in estimation. There is some initial work from Caetano et al.
(2022), but there does not yet exist statistical software to perform their proposed estimator.
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rbw: An R Package for Constructing
Residual Balancing Weights
by Derick S. Baum and Xiang Zhou

Abstract We describe the R package rbw, which implements the method of residual balancing weights
(RBW) for estimating marginal structural models. In contrast to other methods such as inverse proba-
bility weighting (IPW) and covariate balancing propensity scores (CBPS), RBW involves modeling
the conditional means of post-treatment confounders instead of the conditional distributions of the
treatment to construct the weights. RBW is thus easier to use with continuous treatments, and the
method is less susceptible to model misspecification issues that often arise when modeling the condi-
tional distributions of treatments. RBW is also advantageous from a computational perspective. As
its weighting procedure involves a convex optimization problem, RBW typically locates a solution
considerably faster than other methods whose optimization relies on nonconvex loss functions —
such as the recently proposed nonparametric version of CBPS. We explain the rationale behind RBW,
describe the functions in rbw, and then use real-world data to illustrate their applications in three
scenarios: effect estimation for point treatments, causal mediation analysis, and effect estimation for
time-varying treatments with time-varying confounders.

1 Introduction

This paper describes the R package rbw, which implements the method of residual balancing weights
for estimating marginal structural models (MSMs) (Zhou and Wodtke, 2020). MSMs seek to estimate
causal effects in the presence of post-treatment confounding — a common issue in the social sciences.
In studies of time-varying treatments, prior treatments may affect the confounders of future treatments.
For example, research has shown that political candidates’ decision to run negative advertisements is
shaped by their positions in recent polling data, which are in turn affected by their previous decisions
to run negative advertisements (Lau et al., 2007; Blackwell, 2013). Post-treatment confounding can
also occur in causal mediation analysis when confounders of the mediator-outcome relationship
are affected by the treatment. For example, such a problem arises in a study of the mediating role
of morality in the effect of shared democracy on public support for war (Tomz and Weeks, 2013).
Post-treatment variables, such as respondents’ beliefs about the likelihood of victory, may affect both
perceptions of morality and support for military intervention.

MSMs aim to address two types of bias associated with conventional regression methods that
adjust naively for post-treatment confounders: overcontrol and collider-stratification bias (Robins,
1986; 2000). Conditioning naively on post-treatment confounders can create overcontrol bias as it
blocks the effect of the treatment on the outcome that passes through these variables. Additionally, it
can lead to collider-stratification bias when post-treatment confounders are affected by unobserved
determinants of the outcome. This is because the adjustment will create a spurious association between
the treatment and the unobserved variables.

Researchers often use inverse probability weighting (IPW) to fit MSMs (for an in-depth exposition
of the method, see Robins et al., 2000; Robins, 2000; Cole and Hernán, 2008). In longitudinal settings,
MSMs with IPW involve fitting a model for the conditional mean of the outcome given the treatment
history using weights that break the dependence between past confounders and the treatment at
each time point. In essence, the weights create a pseudo-population where the marginal mean of the
potential outcomes under a treatment history equals the conditional mean of the observed outcome
given the treatment history. The R package ipw provides functions for estimating inverse probability
weights (van der Wal and Geskus, 2011; Geskus and van der Wal, 2015).

However, IPW’s success depends on correct specification of the models for the conditional dis-
tributions of exposure to treatment and/or mediator (hereafter jointly referred to as “exposures”),
which is difficult to achieve in practice. Moreover, even when these models are correctly specified,
IPW is inefficient and susceptible to finite-sample bias (Zhou and Wodtke, 2020; Wang et al., 2006).
Finally, when the exposures are continuous, IPW may perform poorly due to unreliable estimation of
conditional densities (Naimi et al., 2014; Vansteelandt, 2009).

Alternative methods have attempted to mitigate these shortcomings. In particular, Imai and
Ratkovic’s (2014; 2015) covariate balancing propensity score (CBPS) method proposes a set of balancing
conditions when estimating the propensity scores. Because it seeks to maximize the covariate balance
between the treatment and control groups, this method is less sensitive to model misspecification
than IPW. Fong et al. (2018) expand CBPS to accommodate continuous exposures, but the challenges
involved in modeling conditional densities persist. With this in mind, they have also developed a
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nonparametric extension that constructs weights that maximize the empirical likelihood while meeting
a set of balancing conditions. Though the nonparametric CBPS (npCBPS) circumvents the need for
specifying a functional form for the propensity score, it does so at a cost: since the empirical likelihood
is not generally convex, the optimization procedure is often slow and may fail to find a solution. The
latter can happen, for example, when we have a large number of covariates. The authors advance a
workaround that adds flexibility to the covariate balancing conditions and penalizes the remaining
imbalance. In doing so, they ensure that a weighting solution exists. Users can implement CBPS in R
with the CBPS package (Fong et al., 2021).

Recently, Zhou and Wodtke (2020) propose the method of residual balancing weights (RBW)
for estimating MSMs. RBW involves fitting models for the conditional means of post-treatment
confounders given past treatments and confounders and extracting their residual terms. It then uses
Hainmueller’s (2012) entropy balancing method to find weights such that, in the weighted sample,
1) the residuals are orthogonal to future exposures, past treatments, and past confounders, and 2)
the relative entropy between the weights and a set of base weights (e.g., survey sampling weights)
is minimized. RBW is similar to npCBPS in that it relies on a set of balancing conditions to find the
weights and does not require modeling the conditional distributions of the exposures. Both methods
can, therefore, be easily adapted to cases where exposures are continuous.1 Despite their similarities,
RBW has a significant computational advantage: the relative entropy metric it uses to construct the
weights leads to a convex optimization problem, so finding the weighting solution is computationally
expeditious. As shown below, RBW manages to locate the solution considerably faster than npCBPS
when we compare the methods’ performance for the same problem.

In the sections that follow, we present an overview of the residual balancing method and how, in
addition to contexts involving time-varying treatments, we can use it in cases of point treatments and
causal mediation analysis. We then discuss the package that implements the method in R (rbw). Next,
we describe the functions included in rbw and illustrate their use with various real-world data sets.
The final section concludes.

2 Overview of residual balancing

This section gives an overview of RBW. We first describe the notation used throughout the paper and
briefly review MSMs. Next, we explain the underlying logic of RBW and provide an intuition for how
the method works using a directed acyclic graph (DAG).

Notation

Assume we have a study with T ≥ 2 time points, and we are interested in the effect of a time-varying
treatment, At (1 ≤ t ≤ T), on some end-of-study outcome Y. We also have a vector of observed
time-varying confounders, Lt, at each time point, which may be affected by prior treatments. Āt =
(A1, ..., At) and L̄t = (L1, ..., Lt) denote treatment and covariate histories up to time t. Furthermore,
Ā = ĀT and L̄ = L̄T represent a respondent’s complete treatment and covariate histories, respectively.
Finally, let Y(ā) be the potential outcome under some treatment history ā.

MSMs

An MSM is a model for the marginal mean of the potential outcomes under some treatment history:

E[Y(ā)] = µ(ā; β), (1)

where µ(.) is some function and β are a set of parameters capturing the causal effects of interest. We
can identify an MSM from observed data under three assumptions:

1. consistency: if Ā = ā, then Y = Y(ā);
2. sequential ignorability: at each time point t, treatment is unconfounded conditional on past

treatments and the covariate history up to that point. Formally, Y(ā) ⊥⊥ At|Āt−1, L̄t; and

1Other methods for estimating causal effects of continuous exposures include doubly robust estimators, which
model both the treatment and outcome processes and give consistent estimates as long as one of these models is
correctly specified. For example, Kennedy et al. (2017) introduce an approach that does not require any parametric
assumptions about the effect curve. Instead, it uses flexible data-adaptive methods both to estimate the treatment
and outcome models and to subsequently fit the dose-response curve. Readers can install the R package that
implements this method from GitHub (Kennedy, 2021).
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3. positivity: at each time point t, treatment assignment must not be deterministic. That is, if
f (Āt−1 = āt−1, L̄t = l̄t) > 0, then f (At = at|Āt−1 = āt−1, L̄t = l̄t) > 0, where f (·) represents a
probability mass or density function.

Under these assumptions, Robins (1986) shows that the expected value of the potential outcome
E[Y(ā)] can be identified via the g-computation formula:

E[Y(ā)] =
∫

...
∫

E[Y|Ā = ā, L̄ = l̄]
T

∏
t=1

f (lt|l̄t−1, āt−1)dµ(lt), (2)

where µ() is an appropriate dominating measure. While Equation 2 provides a general formula for
identifying causal effects in the presence of time-varying treatments, directly evaluating it is often
impractical, particularly when we have many covariates and time periods.

The rationale behind residual balancing

Now consider the formula for the conditional mean of the observed outcome Y given some treatment
history:

E[Y|Ā = ā] =
∫

...
∫

E[Y|Ā = ā, L̄ = l̄]
T

∏
t=1

f (lt|l̄t−1, ā)dµ(lt). (3)

By comparing Equations 2 and 3, we see that weighting the observed population by

Wl =
T

∏
t=1

f (Lt|L̄t−1, Āt−1)

f (Lt|L̄t−1, Ā)
(4)

creates a pseudo-population in which f ∗(lt|l̄t−1, ā) = f ∗(lt|l̄t−1, āt−1) = f (lt|l̄t−1, āt−1) and E∗[Y|Ā =
ā] = E∗[Y(ā)] = E[Y(ā)], where * represents quantities in the pseudo-population. Estimating the
conditional densities of Equation 4 is challenging because Lt is often high-dimensional.

Zhou and Wodtke (2020) demonstrate that the condition f ∗(lt|l̄t−1, ā) = f ∗(lt|l̄t−1, āt−1) =
f (lt|l̄t−1, āt−1) implies a series of moment conditions in the pseudo-population. Most importantly,

E∗[δ(g(Lt))h(L̄t−1, Ā)] = E∗[δ(g(Lt))]E
∗[h(L̄t−1, Ā)] = 0, (5)

where:

• g(.) and h(.) are scalar functions.
• δ(g(Lt)) is the residual of g(Lt) with respect to its conditional mean given the observed past:

δ(g(Lt)) = g(Lt)− E[g(Lt)|L̄t−1, Āt−1].

Residual balancing aims to emulate the moment conditions (5) that would hold in the pseudo-
population if it were possible to weight the observed population by Wl . To do so, the method
1) specifies a set of g(·) functions, G(Lt) = {g1(Lt), ..., gJt (Lt)} and a set of h(.) functions,
H(L̄t−1, Ā) = {h1(L̄t−1, Ā), ..., hKt (L̄t−1, Ā)}; 2) computes a set of residual terms δ(g(Lt)) = g(Lt)−
E[g(Lt)|L̄t−1, Āt−1]; and 3) finds a set of weights such that, for any j, k, and t, the cross-moment of
δ(gj(lit)) and hk(l̄i,t−1, āi) is zero in the weighted data. That is, RBW locates the rbwi weights subject
to the following balancing conditions:

n

∑
i=1

rbwicir = 0, 1 ≤ r ≤ nc, (6)

where cir is the rth element of ci = {δ(gj(lit))hk(l̄i,t−1, āi); 1 ≤ j ≤ Jt, 1 ≤ k ≤ Kt, 1 ≤ t ≤ T} and
nc = ∑T

t=1 JtKt denotes the total number of balancing conditions. The residualized confounders at
each time point are balanced across future treatments as well as past treatments and confounders (the
observed past). RBW thus adjusts for post-treatment confounding without inducing overcontrol and
collider-stratification bias.

Moreover, Zhou and Wodtke (2020) follow Hainmueller (2012) and minimize the relative entropy
between rbwi and a set of base weights qi (e.g., survey sampling weights):

min
rbwi

∑
i

rbwi log(rbwi/qi). (7)

We can then use the method of Lagrange multipliers to find a weighting solution that minimizes
the relative entropy between rbwi and qi subject to the nc balancing constraints. We discuss this
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procedure in greater depth below when describing the function rbw::eb2(). The convexity of the
relative entropy metric renders it considerably more computationally efficient than nonconvex loss
functions that can also be used to construct weights, such as the empirical likelihood (Fong et al., 2018).

A typical implementation of residual balancing can be summarized in three steps:

1. For each covariate j and at each time point t, fit a linear, logistic, or Poisson regression of lijt
(depending on its level of measurement) on l̄i,t−1 and āi,t−1. Then compute the residuals δ̂(lijt).
For the covariates in L1 (the first time period), the residuals are computed as deviations from
the sample mean: δ̂(lij1) = lij1 − avg(lj1). This step relies on the idea that gj(Lt) = Ljt, where
Ljt is the jth element of the covariate vector Lt, is a natural choice for the set of g(.) functions
constituting G(Lt).

2. Find a set of weights, rbwi, such that:

a) in the weighted sample, the residuals δ̂(lijt) are orthogonal to all future treatments and
the regressors of lijt (i.e., the past treatments and past confounders);

b) the relative entroy between rbwi and the base weights qi is minimized.

3. Use the weights to fit an MSM.

Figure 1 depicts the logic of RBW in a DAG. Following the notation described above, At denotes
our time-varying treatment, Lt is a vector of time-varying confounders, and Y is our end-of-study
outcome. Further, assume two time points, t = 1, 2. The rbwi weights break the dependence between
At and L̄t at each time point. That is, the weights create a pseudo-population where the confounding
arrows L1 → A1, L1 → A2, and L2 → A2 are broken while all others are preserved. It is important
to note that L1 is marginally independent of both A1 and A2 in the pseudo-population, but L2 is
conditionally independent of A2, given L1 and A1. Hence, RBW invokes a model for the conditional
mean of L2 given L1 and A1 and balances the residuals from this model across levels of A2 and levels
of (L1, A1) (the observed past). This procedure avoids overcontrol and collider-stratification bias when
adjusting for post-treatment confounding because it breaks the confounding arrow L2 → A2 while
leaving the causal arrow A1 → L2 intact.

Finally, since E∗[Y|Ā = ā] = E∗[Y(ā)] = E[Y(ā)] in the pseudo-population, we can estimate the
marginal effects of interest by fitting a model for the conditional mean of the observed outcome given
the treatment history (and possibly a set of baseline confounders) with weights equal to rbwi.

L1 L2

A1 A2 Y

X
XX

Figure 1: The underlying logic of residual balancing: At denotes the treatment at time t, Lt is a vector
of time-varying confounders at time t, and Y is the end-of-study outcome. Residual balancing weights
break the confounding arrows L1 → A1, L1 → A2, and L2 → A2.
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3 Uses of residual balancing

The rationale described in the previous section is targeted at estimating the causal effects of time-
varying treatments. With minor adaptations, we can expand the use of RBW to two other contexts
commonly encountered in the social and biomedical sciences: point treatment situations and causal
mediation analysis.

RBW for estimating the average effect of a point treatment

RBW can be easily adapted to a point treatment situation where the user aims only to adjust for a set
of baseline (i.e., time-invariant) confounders to estimate the average treatment effect. To this end, we
modify the procedure above as follows:

1. Compute the response residuals δ̂(xij) for each baseline confounder Xj by centering it around
its sample mean: δ̂(xij) = xij − avg(xj).

2. Find a set of weights, rbwi, such that:

a) in the weighted sample, the residuals δ̂(xij) are orthogonal to the treatment;
b) the relative entropy between rbwi and the base weights qi is minimized.

3. Use the weights to fit an MSM.

The DAG of Figure 2 illustrates the point treatment situation. A represents the one-shot treatment,
X is a vector of baseline confounders, and Y denotes our outcome. Weighting the observed population
by rbwi mimics a pseudo-population where the link between A and X is broken. We can then fit a
model for the conditional mean of Y given A to estimate the causal effects of interest.2

A Y

X

X

Figure 2: RBW in a point treatment: A represents the treatment, X is a vector of baseline confounders,
and Y denotes the outcome. Residual balancing weights break the confounding arrow X → A.

RBW in causal mediation analysis

In causal mediation analysis, researchers are often concerned with the joint effects of a one-shot
treatment, A, and a mediator, M, on some end-of-study outcome Y when both baseline confounders
(X) and some post-treatment confounders for the mediator-outcome relationship (Z) are present. With
minor adjustments, the RBW implementation for causal mediation analysis is similar to the case with
time-varying treatments:

1. As in the point treatment scenario, compute the response residuals δ̂(xij) for each baseline
confounder Xj by centering it around its sample mean.

• Note: users may skip this step by including the baseline confounders in the MSM in the
final step.

2. Estimate the response residuals δ̂(zij) for each post-treatment confounder Zj by fitting a linear,
logistic, or Poisson regression of zij (depending on its level of measurement) on the treatment ai

and the baseline confounders xi: δ̂(zij) = zij − E[zij|ai, xi].

2The vector X captures all confounding under the ignorability assumption.
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3. Find a set of weights, rbwi, such that:

a) in the weighted sample, i) the baseline residuals δ̂(xij) are orthogonal to the treatment ai

and the mediator mi; and ii) the post-treatment residuals δ̂(zij) are balanced across the
treatment ai, the mediator mi, and the baseline confounders xi;

b) the relative entropy between rbwi and the base weights qi is minimized.

4. Use the weights to fit an MSM for the joint effects of the treatment and the mediator on the
outcome:

a) In causal mediation analysis, the potential outcomes of interest are denoted by Y(a, m)
(this is the potential outcome under treatment a and mediator value m). We can then
express a saturated MSM as E[Y(a, m)] = α0 + α1a + α2m + α3am.

b) Alternatively, the baseline confounders can be included in the MSM if users decide to skip
the first step: E[Y(a, m)|X] = α0 + α1a + α2m + α3am + αT

4 X.
c) Finally, the controlled direct effects (CDE) of the treatment can be estimated as ĈDE(m) =

E[Y(1, m)− Y(0, m)] = α̂1 + α̂3m. The CDE measures the causal effect of the treatment on
the outcome when the mediator is fixed at some value m for all units.

4 The R package

The R package rbw contains four functions:

• eb2(), for generating minimum entropy weights subject to a set of balancing constraints.
• rbwPoint(), for constructing residual balancing weights to estimate the causal effects of one-shot

treatments.
• rbwMed(), for constructing residual balancing weights to estimate controlled direct effects in

causal mediation analysis.
• rbwPanel(), for constructing residual balancing weights to estimate the marginal effects of

time-varying treatments.

Next, we explain each of these functions. The package also includes several real-world data sets
(advertisement, peace, campaign_long, and campaign_wide), which we describe and analyze in the
examples below.

Function eb2()

This function is an adaptation of ebal::eb() (Hainmueller, 2014). It is called internally by other
functions in rbw to implement the method of Lagrange multipliers for locating a weighting solution
that minimizes the relative entropy between rbwi and qi subject to the set of nc balancing constraints
described in Equation 6. Zhou and Wodtke (2020) impose an additional normalization constraint
that ensures that the residual balancing weights sum to the sample size: ∑i rbwi = n. Following
Hainmueller (2012), the authors obtain the primal optimization problem:

min
rbwi

Lp =
n

∑
i=1

rbwi log(rbwi/qi) +
nc

∑
r=1

λr

n

∑
i=1

rbwicir + λ0

(
n

∑
i=1

rbwi − n

)
, (8)

where {λ1, ..., λnc} are the Lagrange multipliers for the balancing constraints and λ0 is the Lagrange
multiplier for the normalization constraint. Since the loss function Lp is strictly convex, the first order
condition of ∂Lp

∂rbwi
= 0 implies that the solution for each weight is

rbw∗
i =

nqiexp(−∑nc
r=1 λrcir)

∑n
i=1 qiexp(−∑nc

r=1 λrcir)
. (9)

We can then insert Equation 9 into Lp, leading to an unrestricted dual problem:

max
λr

Ld = − log

(
n

∑
i=1

qiexp

(
−

nc

∑
r=1

λrcir

))
, (10)

or equivalently,

min
Z

Ld = log
(
Q′exp(CZ)

)
, (11)
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where Q = [q1, ..., qn]′, C = [c1, ..., c1]
′, and Z = −[λ1, ..., λnc ]

′. Since Ld is strictly convex, the solution
is guaranteed to be unique — assuming one exists. Given that both the gradient and the Hessian
have closed-form expressions, we can solve the problem using Newton’s method. eb2() implements
the algorithm. If convergence is successful, the function tells the user that “Entropy minimization
converged within tolerance level.” Otherwise, it warns that entropy minimization did not converge
and suggests increasing the number of iterations or reducing the number of balancing constraints.

The convexity of our optimization problem leads to appreciable computational gains over other
methods that use alternative loss functions. This will be demonstrated later when we compare the
performance of RBW with that of npCBPS — which uses the empirical likelihood — for the same
problem.

eb2() is used as:

eb2(C, M, Q, Z = rep(0, ncol(C)), max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• C is a constraint matrix, with each column corresponding to a balancing constraint.
• M is a vector of moment conditions to be met in the reweighted sample (per Equation 6, this is a

vector of zeros with length equal to the number of columns of C when the other functions in
rbw call eb2() internally).

• Q is a vector of base weights.
• Z is a vector of Lagrange multipliers to be initialized.
• max_iter determines the maximum number of iterations for Newton’s method.
• tol is a tolerance parameter used to determine convergence. Specifically, convergence is

achieved if tol is greater than the maximum absolute value of the deviations between the
moments of the reweighted data and the target moments (i.e., M).

• print_level determines the level of printing:

– 1 normal: print whether the algorithm converges or not.
– 2 detailed: print also the maximum absolute value of the deviations between the moments

of the reweighted data and the target moments in each iteration.
– 3 very detailed: print also the step length of the line searcher in iterations where a full

Newton step is excessive.

The output returned by eb2() is a list containing the following elements:

• W is a vector of normalized minimum entropy weights.
• Z is a vector of Lagrange multipliers.
• converged is a logical indicator for convergence.
• maxdiff is a scalar indicating the maximum absolute value of the deviation between the mo-

ments of the reweighted data and the target moments.

Function rbwPoint()

This function produces residual balancing weights to be used in a point treatment situation. It first
takes a set of baseline confounders and computes the residuals for each confounder by centering it
around its sample mean. Then it calls eb2() to find a set of weights, rbwi, such that 1) the baseline
residuals are orthogonal to the treatment in the weighted sample, and 2) the relative entropy between
rbwi and the base weights is minimized. Additionally, rbwPoint() calls a function that ensures that
the matrix of balancing constraints comprises only linearly independent columns.

rbwPoint() is used as:

rbwPoint(treatment, data, baseline_x, base_weights, max_iter = 200,
tol = 1e-04, print_level = 1)

and takes the following arguments:

• max_iter, print_level, and tol have the same definitions as in eb2().
• treatment is a symbol or character string for the treatment variable.
• data is a data frame containing all variables in the model.
• baseline_x is an expression for a set of baseline confounders stored in data or a character vector

of the names of these variables.
• base_weights is an optional vector of base weights (or its name). If no value is supplied, the

function sets a vectors of ones with length equal to the sample size as the base weights.

The output returned by rbwPoint() is a list containing the following elements:

• weights is a vector of residual balancing weights.
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• constraints is a matrix of linearly independent residual balancing constraints.
• eb_out contains the results from calling the eb2() function.
• call is the matched call (the function call with all arguments specified by their full names).

Function rbwMed()

This function produces residual balancing weights for causal mediation analysis. It takes an optional
set of baseline confounders (as explained above, users can opt instead to include these covariates in
the MSM later) and a list of model objects for the conditional mean of each post-treatment confounder
given the treatment and baseline confounders. It then calls eb2() to find a set of weights, rbwi, such
that, in the weighted sample, 1) the baseline residuals are orthogonal to the treatment and the mediator;
2) the post-treatment confounders are balanced across the treatment, the mediator, and the baseline
confounders; and 3) the relative entropy between rbwi and the base weights is minimized.

rbwMed() takes an additional argument, interact, a logical variable indicating whether the base-
line and post-treatment confounders should be balanced against the treatment-mediator interaction.
This argument is set to FALSE by default, but users suspecting an interaction effect may find it prudent
to balance against it. Like rbwPoint(), rbwMed() calls a function internally to ensure that only linearly
independent columns constitute the matrix of balancing constraints.

It is used as:

rbwMed(treatment, mediator, zmodels, data, baseline_x, interact = FALSE,
base_weights, max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• treatment, data, base_weights, max_iter, print_level, and tol are defined as in rbwPoint().
• baseline_x is an optional expression for a set of baseline confounders stored in data or a

character vector of the names of these variables.
• mediator is a symbol or character string representing the mediator variable.
• zmodels is a list of fitted lm or glm objects for post-treatment confounders of the mediator-

outcome relationship. Users should set this argument to NULL if there are no post-treatment
confounders.

• interact is a logical variable indicating whether baseline and post-treatment confounders
should be balanced against the treatment-mediator interaction term(s).

The output returned by rbwMed() is a list containing the same elements as the output from
rbwPoint().

Function rbwPanel()

This function produces residual balancing weights for estimating the marginal effects of time-varying
treatments. It takes a list of model objects for the conditional mean of each post-treatment confounder
given past treatments and past confounders. Then it calls eb2() to find a set of weights, rbwi, such
that 1) residuals of the post-treatment confounders are orthogonal to future treatments and the
observed past in the weighted sample, and 2) the relative entropy between rbwi and the base weights
is minimized. Like the other functions, rbwPanel() ensures that the matrix of balancing constraints
consists only of linearly independent columns.

It is used as:

rbwPanel(treatment, xmodels, id, time, data, base_weights, future = 1L,
max_iter = 200, tol = 1e-04, print_level = 1)

and takes the following arguments:

• data, base_weights, max_iter, print_level, and tol are defined as in rbwPoint() and
rbwMed().

• treatment is a symbol or character string for the time-varying treatment.
• xmodels is a list of fitted lm or glm objects for time-varying confounders.
• id is a symbol or character string for the unit id variable.
• time is a symbol or character string for the time variable.
• future is an integer indicating the number of future treatments in the balancing conditions.

When future >0, the residualized time-varying covariates are balanced not only with respect to
current treatment At, but also with respect to future treatments At+1, ..., At+future. The default,
future = 1, assumes away higher-ordered lagged effects of the covariates on the treatment.
Users can leave out lagged effects entirely by setting future to zero.
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The output returned by rbwPanel() is essentially the same as those from rbwPoint() and rbwMed().
The only difference is that the weights object, instead of a vector, is now a data frame with two columns:
the id variable and the residual balancing weights (the column storing the weights is called rbw).

5 Examples

We now illustrate the functions rbwPoint(), rbwMed(), and rbwPanel() with data sets advertisement,
peace, campaign_long, and campaign_wide, which are included in rbw. We expect users to rarely need
to call eb2() manually since its primary use is to be called internally by the other functions. Hence,
we see little gain in providing a separate example for it.

Point treatment: effects of political advertisements on campaign contributions

Urban and Niebler (2014) studied the effects of televised political advertisements on campaign con-
tributions. Presidential candidates do not tend to deliberately advertise in states where competition
for electoral votes is tame. Yet, some areas of noncompetitive states have overlapping media markets
with battleground states. Because these media market spillovers do not encompass other forms of
campaigning (e.g., rallies, speeches, etc.), the authors can isolate the effect of television advertising
by restricting their analyses to noncompetitive states. Their original method involved estimating the
propensity score with a logistic model and then conducting propensity score matching. To do so, they
dichotomized the political advertising variable to indicate whether a zip code received more than 1000
advertisements.

Deeming this approach inadequate — in part because balancing against a dichotomous treatment
does not ensure covariate balance on the underlying continuous variable — Fong et al. (2018) revisit
the study using the CBPS method applied to a continuous treatment. Next, we examine how RBW
fares compared with CBPS and IPW in this point treatment situation.

Importantly, CBPS assumes that the treatment variable is normally distributed. To satisfy this
assumption, Fong et al. (2018) search across Box-Cox transformations to find the most appropriate
transformation of the treatment. Since Q-Q plots show no sizable differences between the Box-
Cox approach and a simple log transformation in achieving normality, we favor the latter to avoid
extraneous details that would divert the example from its primary objective of illustrating RBW’s
implementation. Hence, we have a∗i = log(ai + 1), where ai is the original treatment variable, the
total number of political advertisements in a zip code, and a∗i is the transformed treatment (we add
one to ai inside the log to avoid log(0) for zip codes receiving no advertisements). We also have a
vector of baseline confounders consisting of the zip code’s log population, population density, log
median income, percent Hispanic, percent black, percent over age 65, percent college graduates, and a
binary indicator of whether it is possible to commute to the zip code from a competitive state. Finally,
Y represents the outcome, campaign contributions in thousands of dollars.

Our MSM includes the transformed treatment variable and state dummies U to account for state
fixed effects:

E[Y(a∗)|U] = θ0 + θ1a∗ + θT
2 U. (12)

The data set advertisement contains the variables necessary for the analyses. We start by loading
the necessary packages and our data set:

library("rbw")
data("advertisement")

rbwPoint() will construct the residual balancing weights by following the steps described above.
It first computes the baseline residuals δ̂(xij) = xij − avg(xj) and then finds a set of weights such that,
in the weighted sample, δ̂(xij) are orthogonal to the treatment, and the relative entropy between the
residual balancing weights and a set of base weights is minimized. Since advertisement does not
include sampling weights, rbwPoint() will set a vector of ones with length equal to the sample size as
the base weights.

rbwPoint_fit <-
rbwPoint(
treatment = treat,
baseline_x = c(
log_TotalPop,
PercentOver65,
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log_Inc,
PercentHispanic,
PercentBlack,
density,
per_collegegrads,
CanCommute

),
data =
advertisement

)

Next, we attach the rbwi weights to the data:

advertisement$rbwPoint_weights <- rbwPoint_fit$weights

Following most applications of MSMs, we compute standard errors using the robust (“sandwich”)
variance estimator. This can be implemented with the function survey::svydesign(), which allows
us to specify a complex survey design and estimate standard errors consistent with this specification.3

library("survey")
rbwPoint_design <- svydesign(ids = ~ 1,

weights = ~ rbwPoint_weights,
data = advertisement)

We then use the residual balancing weights to fit the MSM defined in Equation 12:

rbwPoint_msm <- svyglm(Cont ~ treat + factor(StFIPS),
design = rbwPoint_design)

Since we have transformed our treatment variable, we need to make the necessary adjustments to
compute the treatment effect. As Urban and Niebler (2014) suggest, it is informative to study the effect
of going from zero to 1,000 political advertisements on campaign contributions. Hence, we create a
dose variable to account for this. If a∗i = log(ai + 1), we can define our dose as log(1000 + 1):

dose <- log(1000 + 1)

To find the estimate τ̂rbw of the average treatment effect, we multiply the coefficient for the
transformed treatment variable by our dose. We also multiply it by 1,000 since the outcome variable is
measured in thousands of dollars:

rbwPoint_tau <- 1000 * coef(rbwPoint_msm)[2] * dose

Next, we use the basic properties of the variance operator to derive the standard error. Again, we
multiply the result by 1,000 given the scale of the outcome variable:

rbwPoint_vcov <- stats::vcov(rbwPoint_msm)
rbwPoint_se <- 1000 * dose * sqrt(rbwPoint_vcov[2, 2])

We also report the results using the functions from the CBPS and ipw packages. Recall from
the introduction that the parametric CBPS is similar to IPW in that it requires explicit models for
the conditional distributions of the treatment. However, it improves IPW by considering a set of
balancing conditions during the propensity score estimation, thereby reducing sensitivity to model
misspecification. By contrast, the nonparametric CBPS (npCBPS) does not require direct estimation of
the propensity score; instead, it finds weights that maximize the empirical likelihood while meeting
a set of balancing constraints. As such, like RBW, it avoids the need to specify a propensity score
model. Readers can find the code detailing the construction of the CBPS and IPW weights in the
supplementary material.

Table 1 summarizes the findings. All methods yield relatively similar point estimates and standard
errors. In particular, they indicate that going from zero to 1,000 political advertisements increases
campaign contributions by around four thousand dollars, on average, although the point estimates
from CBPS and IPW are slightly larger than those produced by RBW and npCBPS. The last column
shows that different loss functions for the optimization problem can lead to stark differences in
computation time. While RBW’s relative entropy metric leads to a convex optimization problem that
Newton’s method can solve in less than one second, npCBPS’s algorithm takes much longer to run.

3Zhou and Wodtke (2020) conduct a set of simulation studies to assess the performance of the robust variance
estimator across different methods. They find that the estimator tends to overestimate the true sampling variance
for residual balancing across nearly all scenarios, making it consistently conservative for RBW. By contrast, the
estimator sometimes overestimates and other times underestimates the true sampling variance for other weighting
methods, including CBPS.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=CBPS
https://CRAN.R-project.org/package=ipw


CONTRIBUTED RESEARCH ARTICLE 184

Table 1: Comparison of RBW, npCBPS, CBPS, and IPW for a Point Treatment Situation

Method Estimate Standard Error Computation Time (in Seconds)

RBW 4043 2131 0.51
npCBPS 3914 2091 118.70
CBPS 4181 2118 7.71
IPW 4118 2078 0.04
Computation time may differ depending on system setup.
System setup used to generate the results:
MacBook Pro (15-inch, 2018), 2.2 GHz 6-Core Intel Core i7, 16GB RAM.

We next illustrate the use of rbwMed() and rbwPanel().

Causal mediation analysis: the controlled direct effect of shared democracy on public
support for war

A stylized fact in political science is that democracies do not engage in war with one another. To assess
the role of public opinion in keeping the peace, Tomz and Weeks (2013) designed survey experiments
that presented participants with a situation where a country was developing nuclear weapons. When
describing the situation, the authors randomly and independently changed three characteristics of
the country: its political regime (whether it was a democracy), alliance status (whether it had signed
a military alliance with the United States), and economic ties (whether it had high levels of trade
with the US). The outcome of interest was the respondent’s support for military action on a five-point
scale ranging from “oppose strongly” to “favor strongly.” The authors found that respondents were
considerably less supportive of military action against democracies than otherwise identical autocratic
regimes.

Tomz and Weeks (2013) then went on to investigate the causal mechanisms through which shared
democracy reduces public enthusiasm for war. In particular, they measured individuals’ beliefs
about the level of threat posed by the potential adversary (number of adverse events respondents
considered probable if the US did not engage in war); the cost of the intervention (number of negative
consequences anticipated if the US engaged in war); and the likelihood of success (a three-point scale
assigning values of 0, 1, and 2 to the following beliefs, respectively: the operation had less than a
50-50 chance of working even in the short run, it would succeed only in the short run, and it would be
successful both in the short and long run). They also collected data on people’s moral concerns about
using military force.

Their methodological framework focused on estimating the natural direct and natural indirect
effects (Imai et al., 2011, 2010), whose identification assumptions require that no post-treatment
confounding of the mediator-outcome relationship exists. As such, the authors examined the role of
each mediator separately by assuming they operate independently of one another. Yet, as discussed
in Zhou and Wodtke (2020), beliefs about the threat, cost, and likelihood of success may affect an
individual’s perceptions of morality while also influencing support for war directly. By treating these
variables as post-treatment confounders, Zhou and Wodtke (2020) analyzed the mediating role of
morality using controlled direct effects.

Let A denote the treatment, whether the country developing nuclear weapons was presented as a
democracy, M the mediator, a dummy variable indicating whether the participant deemed the military
action morally wrong, and Y the outcome, the respondent’s support for war on a five-point scale.
We also have a set of baseline confounders (X) including dummies for the other two randomized
treatments (alliance status and economic ties) in addition to several demographic and attitudinal
controls.4 Finally, Z is the vector of post-treatment confounders comprising measures of beliefs about
the threat, cost, and likelihood of success.

Our MSM is thus defined as:

E[Y(a, m)] = α0 + α1a + α2m + α3am. (13)

We can alternatively include the baseline confounders in the MSM instead of balancing them
across the treatment and the mediator with baseline residuals:

4For example, attitudinal controls include respondents’ attitudes toward ethnocentrism measured with a series
of questions about their opinions on immigration, affirmative action, and gay marriage.
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E[Y(a, m)|X] = α0 + α1a + α2m + α3am + αT
4 X. (14)

The peace data set includes the variables we will use in the analyses. Let us first consider the
approach where the baseline confounders are balanced across the treatment and the mediator using
the baseline residuals computed from centering each covariate around its sample mean.

As explained above, RBW in causal mediation analysis requires models for the conditional means of
each post-treatment confounder Zj given the treatment ai and the baseline confounders xi: Ê[zij|ai, xi].
Hence, we assume that threatc, cost, and successc are measured on a continuous scale and fit linear
models for each:

data("peace")
z1 <- lm(threatc ~ ally + trade + h1 + i1 + p1 + e1 + r1 +

male + white + age + ed4 + democ,
data = peace)

z2 <- lm(cost ~ ally + trade + h1 + i1 + p1 + e1 + r1 +
male + white + age + ed4 + democ,

data = peace)
z3 <- lm(successc ~ ally + trade + h1 + i1 + p1 + e1 + r1 +

male + white + age + ed4 + democ,
data = peace)

We then store the three model objects together in a list to be passed later to the zmodels argument
in rbwMed():

zmodels <- list(z1, z2, z3)

To construct the residual balancing weights, rbwMed() will 1) compute the baseline residuals
δ̂(xij) = xij − avg(xj) and the post-treatment residuals δ̂(zij) = zij − E[zij|ai, xi] and 2) find a set
of weights such that a) in the weighted sample, the baseline and post-treatment residuals meet
the orthogonality requirements described earlier, and b) the relative entropy between the residual
balancing weights and a set of base weights is minimized. The function will use a vector of ones as the
base weights since peace does not include sampling weights. We also pass the name of our mediator
to the mediator argument:

rbwMed_fit <- rbwMed(
treatment = democ,
mediator = immoral,
zmodels = zmodels,
baseline_x = c(ally, trade, h1, i1,

p1, e1, r1, male, white, age, ed4),
data = peace

)

#> Entropy minimization converged within tolerance level

Next, we attach the weights to peace:

peace$rbwMed_weights <- rbwMed_fit$weights

We use survey::svydesign() to estimate robust standard errors:

rbwMed_design <- svydesign(ids = ~ 1,
weights = ~ rbwMed_weights,
data = peace)

Finally, we use the residual balancing weights to fit the MSM from Equation 13:

rbwMed_msm <- svyglm(strike ~ democ * immoral,
design = rbwMed_design)

Steps are similar for the case where the baseline confounders are not balanced against the treatment
and the mediator but instead adjusted in the MSM, as defined in Equation 14. The models for the
conditional means of the post-treatment confounders are the same as before, but we now leave the
baseline_x argument empty:
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rbwMed2_fit <- rbwMed(
treatment = democ,
mediator = immoral,
zmodels = zmodels,
data = peace

)

#> Entropy minimization converged within tolerance level

peace$rbwMed2_weights <- rbwMed2_fit$weights
rbwMed2_design <- svydesign(ids = ~ 1,

weights = ~ rbwMed2_weights,
data = peace)

rbwMed2_msm <- svyglm(strike ~ ally + trade + h1 + i1 + p1 +
e1 + r1 + male + white + age + ed4 + democ * immoral,

design = rbwMed2_design)

We summarize the results in Table 2. The estimated CDE if respondents lacked any moral qualms
about military intervention, i.e., ĈDE(m = 0) = Ê[Y(1, 0)− Y(0, 0)] = α̂1, is −0.32 under the first
approach and −0.36 under the second. Both estimates are statistically significant at the level of 0.01.
The estimated CDE if respondents had moral qualms about military intervention, i.e., ĈDE(m = 1) =
Ê[Y(1, 1)− Y(0, 1)] = α̂1 + α̂3, is −0.36 under the first approach and −0.22 under the second.

Table 2: MSM Results for the Controlled Direct Effects of Shared Democracy on Public Support for
War: ĈDE(m = 0) Equals the Coefficient for Shared Democracy; ĈDE(m = 1) Equals the Coefficient
for Shared Democracy Plus the Coefficient for the Interaction Term

Baseline Confounders
Balanced

Baseline Confounders
Adjusted in the MSM

Shared democracy −0.317∗∗∗ −0.360∗∗∗

(0.098) (0.080)

Moral concerns −1.272∗∗∗ −1.201∗∗∗

(0.175) (0.135)

Shared democracy * Moral concerns −0.048 0.138
(0.210) (0.157)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

Time-varying treatment: the cumulative effect of negative advertising on vote shares

We conclude this section with an example of RBW applied to a context involving time-varying
treatments and confounders. Political scientists have shown interest in examining the cumulative
effect of negative campaign advertising on election outcomes (Lau et al., 2007; Blackwell, 2013; Imai
and Ratkovic, 2015). This is an intricate process because while polling results affect current campaign
strategies, they are also constantly shifting, as they respond both to previous results and candidates’
use of negative advertising in the past. For their ability to accommodate dynamic causal relationships
— particularly since they allow past treatments to affect current outcomes (i.e., “carryover effects”) and
past outcomes to influence current treatment (i.e., “feedback effects”) (Imai and Kim, 2019) — MSMs
are suitable for this research question.

We use a dataset on the campaign of 113 Democratic candidates in US Senate and Gubernatorial
Elections from 2000 to 2006. Let At represent our continuous treatment, the proportion of campaign
advertisements mentioning the adversary in each campaign week, Lt our time-varying confounders,
the Democratic share and the share of undecided voters in the polls, and Y the outcome, the Democratic
share of the two-party vote. Additionally, we have a set of baseline confounders X including total
campaign length, election year, and whether the election is senatorial or gubernatorial.

Zhou and Wodtke (2020) define an MSM as follows:

E[Y(ā)|X] = β0 + β1avg(ā) + β2V + β3avg(ā)V + βT
4 X, (15)
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where V is an indicator of incumbency status used to construct interactions that allow the effect to differ
between incumbents and nonincumbents, and avg(ā) is the average proportion of advertisements
that were negative over the final five weeks of the campaign multiplied by ten (following Zhou and
Wodtke (2020), we multiply this quantity by ten so that the regression coefficients can be interpreted
as the effect of a ten-percentage point increase in negative advertising).

rbw contains two data sets associated with this problem: campaign_long and campaign_wide. They
represent, respectively, the long-format and wide-format data on negative campaign advertising.

Recall that RBW requires us to fit a model for the conditional mean of each covariate at each time
point given the observed past. We thus estimate regression models of our time-varying confounders
Lt (t ≥ 2) on lagged treatment and lagged confounders. We also interact each regressor with the week
dummies, thus allowing the coefficients to change over time in a flexible manner:

data("campaign_long")
data("campaign_wide")
x1 <-
lm(dem.polls ~ (neg.dem.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)
x2 <-
lm(undother ~ (neg.dem.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

We then create a list with the model objects to be passed later to the xmodels argument in
rbwPanel():

xmodels <- list(x1, x2)

To construct the residual balancing weights, rbwPanel() first extracts the residual terms δ̂(Lt)
from the models above. Note that for each covariate in L1 (the first time period), the residuals are
computed as deviations from the sample mean. Then the function finds a set of weights, such that,
in the weighted sample, the residuals are orthogonal to current and future treatments as well as the
regressors of Ljt, and the relative entropy between the residual balancing weights and the base weights
is minimized. Note that we set the future argument to zero to replicate the results from Zhou and
Wodtke (2020) since the authors balance the residualized time-varying confounders only with respect
to the current treatment, thus assuming away lagged effects of the covariates on the treatment.5 Since
our data do not include sampling weights, a vector of ones is used as the base weights. Additionally,
we need to pass arguments indicating the unit id and the time variables due to the longitudinal
structure of our data set.

rbwPanel_fit <- rbwPanel(
treatment = neg.dem,
xmodels = xmodels,
id = id,
time = week,
data = campaign_long,
future = 0

)

#> Entropy minimization converged within tolerance level

We now attach the weights to campaign_wide using the pipe operator and the left_join() function
from the package dplyr (this merging is permitted because the weights object returned by rbwPanel()
is a data frame containing the id variable and the residual balancing weights):

library("dplyr")
campaign_wide <- campaign_wide %>%
left_join(rbwPanel_fit$weights, by = "id")

We use the functions from dplyr to rename the weights so that our variable’s name is consistent
with the previous examples:

campaign_wide <- campaign_wide %>%
rename(rbwPanel_weights = rbw)

Again, we use survey::svydesign() to compute robust standard errors:

5The negative advertising data set spans five weeks, so lagged effects of the time-varying covariates on the
treatment can be incorporated by setting future > 0, up to future = 4.
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rbwPanel_design <- svydesign(ids = ~ 1,
weights = ~ rbwPanel_weights,
data = campaign_wide)

Finally, we use the residual balancing weights to fit the MSM from Equation 15:

rbwPanel_msm <- svyglm(demprcnt ~ ave_neg * deminc + camp.length +
factor(year) + office,

design = rbwPanel_design)

We report the model results in Table 3. The estimate for nonincumbents is 0.49 and for incumbents
is 0.49 − 1.48 = −0.99. The effect of negative advertisement for nonincumbents is positive though not
statistically significant — a ten percentage point increase in the proportion of negative advertising
throughout the last five weeks of the campaign increases the Democratic vote share by about half a
percentage point, on average. However, the interaction term is significant at the level of 0.01, and
incumbents see a sizeable negative effect from negative advertising: a ten percentage point increase in
negative advertising reduces a candidate’s vote share by about one percentage point, on average.

Table 3: MSM Results for the Cumulative Effect of Negative Advertising on Vote Shares

Average proportion 0.490
(0.315)

Incumbency 14.971∗∗∗

(2.823)

Average proportion * Incumbency −1.484∗∗∗

(0.531)
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Robust standard errors in parentheses.

We conclude by comparing RBW’s computational performance to CBPS for a dichotomized version
of the treatment representing whether more than 10% of the candidate’s advertising was negative for
each week. We use this dichotomized variable because CBPS has not been extended to work with
continuous treatments in longitudinal settings. Additionally, we do not compare RBW to npCBPS
because the latter’s use is restricted to point treatment situations. Lastly, though we can construct IPW
weights almost immediately, Zhou and Wodtke (2020) show that IPW yields considerably larger effect
estimates than RBW and CBPS for this particular case (likely due to the method’s susceptibility to
model misspecification), so we do not report the IPW results.

Let us first construct the RBW weights. The steps are identical to the ones detailed above for the
continuous treatment, the only change being the name of our treatment variable. Next, we use the
CBMSM() function from the CBPS package to generate our CBPS weights. To facilitate comparisons of
computation time, we also call Sys.time() before and after running the functions that produce the
weights in each package. The scalar objects rbwPanel_time and CBPSPanel_time store how long each
method takes to construct the corresponding weights.

m1 <-
lm(dem.polls ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)
m2 <-
lm(undother ~ (d.gone.neg.l1 + dem.polls.l1 + undother.l1) * factor(week),

data = campaign_long)

xmodels <- list(m1, m2)

rbwPanel_start <- Sys.time()
rbwPanel_fit <- rbwPanel(
treatment = d.gone.neg,
xmodels = xmodels,
id = id,
time = week,
data = campaign_long,

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 189

future = 0
)

#> Entropy minimization converged within tolerance level

rbwPanel_end <- Sys.time()
rbwPanel_time <- rbwPanel_end - rbwPanel_start

CBPSPanel_form <-
"d.gone.neg ~ d.gone.neg.l1 + dem.polls + undother + camp.length + deminc + office + factor(year)"

CBPSPanel_start <- Sys.time()
CBPSPanel_fit <-
CBMSM(
formula = CBPSPanel_form,
time = campaign_long$week,
id = campaign_long$demName,
data = campaign_long,
type = "MSM",
iterations = NULL,
twostep = TRUE,
msm.variance = "approx",
time.vary = TRUE

)
CBPSPanel_end <- Sys.time()
CBPSPanel_time <- CBPSPanel_end - CBPSPanel_start

The output below shows the computation times:

rbwPanel_time

#> Time difference of 0.107008 secs

CBPSPanel_time

#> Time difference of 1.059287 mins

Whereas RBW takes less than one second to construct the weights, CBPS takes much longer. Hence,
the longitudinal setting presents the same pattern we saw above for the point treatment situation:
RBW has considerable gains in computational performance over alternative methods of constructing
weights for MSMs. Since our focus here is computational performance, we omit the effect estimates for
the dichotomized treatment. As shown in Zhou and Wodtke (2020), the results are broadly consistent
with those based on the continuous treatment, with RBW and CBPS yielding similar point estimates.

6 Conclusion

Compared to other methods of constructing weights for MSMs, RBW has several advantages. In
particular, it does not require modeling the conditional distributions of exposures and is thus easy to
use with continuous treatments. Previous simulation studies suggest that it is often more efficient and
more robust to model misspecification than alternative weighting strategies (Zhou and Wodtke, 2020).
RBW is also favorable from a computational perspective. Its procedure for finding weights involves a
convex optimization problem, allowing RBW to locate a solution substantially faster than alternative
methods whose optimization relies on nonconvex loss functions — such as the recently proposed
nonparametric version of CBPS, which uses the empirical likelihood (Fong et al., 2018). Table 4 sums
up these comparisons.

After explaining the underlying logic of RBW, we have described its implementation in the R
package rbw. With examples from several data sets, we have demonstrated the use of rbw in three
distinct contexts: effect estimation for point treatments, causal mediation analysis, and effect estimation
for time-varying treatments with time-varying confounders.

Nonetheless, RBW is not without limitations. In particular, it depends on models for the conditional
means of post-treatment confounders. When these models are incorrectly specified, the pseudo-
population generated by residual balancing weights will fail to mimic the original unweighted
population, and our estimates will be biased. Even when these models are correctly specified, RBW
may also yield biased estimates when we have insufficient balancing conditions. Adding more
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Table 4: Comparison of Methods and Software Implementation

Method
Models for

Conditional Distributions of
Exposures

Balancing
Constraints

Implemented for
Time-varying
Treatments?

R Package

IPW Required Absent Yes ipw
CBPS Required Present Yes CBPS

npCBPS Not Required Present No CBPS
RBW Not Required Present Yes rbw

functions such as cross-products and high-order terms to the set G(Lt) = {g1(Lt), ..., gJt (Lt)}, thereby
increasing the number of balancing constraints, may help — though at the risk of making exact
balance infeasible. Future work may extend RBW to allow for approximate balance with a penalty
for the remaining imbalance in the optimization problem (Fong et al., 2018). Finally, we have relied
on the “sandwich” variance estimator to compute standard errors. Though Zhou and Wodtke (2020)
demonstrate with simulation studies that this estimator is likely conservative for RBW, they do not
provide a variance estimator tailored to address the estimation uncertainty of the RBW weights.

Despite these limitations, RBW will be useful to many social scientists interested in using marginal
structural models to study causality in dynamic settings. We will continue to upgrade the package
by expanding RBW’s ranges of applicability — specifically, to censored data, to contexts involving
repeated outcome measures including survival data (Hernán et al., 2000, 2002), and to cases where, as
discussed above, exact balance is infeasible and approximate balance must be pursued.
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Tidy Data Neatly Resolves
Mass-Spectrometry’s Ragged Arrays
by William Kumler and Anitra E. Ingalls

Abstract Mass spectrometry (MS) is a powerful tool for measuring biomolecules, but the data
produced is often difficult to handle computationally because it is stored as a ragged array. In R, this
format is typically encoded in complex S4 objects built around environments, requiring an extensive
background in R to perform even simple tasks. However, the adoption of tidy data (Wickham, 2014)
provides an alternate data structure that is highly intuitive and works neatly with base R functions
and common packages, as well as other programming languages. Here, we discuss the current state of
R-based MS data processing, the convenience and challenges of integrating tidy data techniques into
MS data processing, and present RaMS, a package that produces tidy representations of MS data.

1 Introduction

Mass-spectrometry (MS) is a powerful tool for identifying and quantifying molecules in laboratory
and environmental samples. It has grown enormously over recent decades and has been responsible
for countless advances in chemical and biological fields. It is often paired with liquid chromatography
(LC) to separate compounds by retention time and improve detection limits. The large quantity of data
produced by increasingly rapid and sensitive instruments has facilitated the adoption of computational
methods that use algorithms to detect, identify, and quantify molecular signatures.

Many mass-spectrometrists have some exposure to programming, often in R, and this familiarity
is expected to increase in the future as computational methods continue to become more popular
and available. However, these researchers typically focus on results and the conclusions that can
be drawn from them rather than the arcane details of any particular language or package. This
produces a demand for simple data formats that can be quickly and easily understood by even a
novice programmer. One such representation is the "tidy" data format, which is rapidly growing in
popularity among R users for its consistent syntax and large library of supporting packages (Wickham,
2014). By formatting MS data tidily, the barrier to entry for novice programmers is dramatically
reduced, as tidyverse functions learned elsewhere will function identically on MS data.

This article begins by reviewing the current theory and implementation of MS data handling, as
driven by three major questions. First, why is it difficult to access and interpret MS data? Second, why
should it be easier to do this? Finally, why don’t current algorithms make it trivial to do this? In the
latter portion of this article, we introduce a new package, called R-based access to Mass Spectrometry
data (RaMS) that provides tidy access to MS data and will facilitate future analysis and visualization.

2 Why is it difficult to access mass-spectrometry data?

Mass spectrometers produce data in the form of ragged (also sometimes called "jagged") arrays. These
data structures contain an unequal number of columns per row because any number of ion masses
(m/z ratios) may be observed at a given time point. This data is typically managed in a list-of-lists
format, with a list of time points each containing a list of the ions observed and their abundances.
While this is an effective way to preserve the data structure as it was produced by the instrument, it is
less helpful when performing analysis. Typically, analysis (both manual and computational) iterates
over m/z windows rather than time. The main focus is the extracted ion chromatogram (EIC) which
represents all time points for a given mass, and the spectrum of masses obtained at a given time point
is less useful during the preliminary review and initial discovery phases. This nested syntax, often
itself contained within S4 objects and encoded as an environment, makes it difficult to extract EICs
quickly and intuitively.

Even so, "difficult" is a relative assessment. Veteran R programmers have little difficulty writing
elegant code that embraces these ragged arrays and the list-of-lists syntax. Indeed, the dominant MS
processing package in R, MSnbase currently uses the S4 object system to great effect. However, MS
experts are rarely also R experts and have a working familiarity with R rather than a comprehensive
background in computer science. This working knowledge typically includes creating plots, subsetting
data, and manipulating simple objects but does not extend to the nuances of the S4 object system
or methods for rewriting package code. Thus, a package capable of converting these complex data
structures into a familiar format appears to be very much in demand.

Finally, it should be noted that existing MS data processing packages are designed to be holistic
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pipelines which accept raw data and output definitive results. There is very little room for a user’s
customization beyond the provided function arguments despite the enormous variability in MS setups,
usage, and data quality. It is often challenging to access intermediate objects as a way to debug
unexpected results, and published code is rarely easy to edit safely due to poor documentation and
unit test coverage. These issues are compounded by the agglomerative nature of R packages that
build extensively upon other R packages; the popular xcms processing package has over a hundred
dependencies installed from across CRAN and Bioconductor, with further functionality provided by
unregulated code from GitHub and SourceForge. When combined with additional issues from C++
compilers, versioning, and operating system discrepancies, MS data analysis becomes very much a
"black box" with functioning pipelines treated as fragile rather than simple, robust, and reproducible.

3 Why should it be easier to access mass-spectrometry data?

Mass-spectrometry data is fundamentally simple. In LC-MS full-scan mode, each data point has
three coordinates corresponding to the time, molecular mass, and intensity dimensions. Even the
more complex fragmentation data requires only a single additional dimension, fragment mass. While
this ignores the large quantity of critical metadata associated with each file that must also be stored
somewhere, a core part of MS research is driven by the data alone. In this preliminary stage of analysis,
metadata is less relevant than simple exploratory questions about which molecules can be detected and
preliminary assessments of data quality. This exploratory phase is driven by rapid, ad hoc discovery
and hypothesis testing that typically requires visualizing chromatograms and the raw data to assess
quality: this appears to be one of the reasons why R and its built-in plotting ability is so popular for
MS analysis (Gatto et al., 2021). These queries should be trivial to implement, even for beginning R
users, but current data storage methods make them difficult and often time-consuming. Currently, the
easiest questions to answer about MS data are metadata-based queries about the instrument that the
analyst is usually already able to answer. This is an artifact of information storage in most raw data
files, with metadata available readily at the top level and measurements buried deep within.

Raw MS data is typically converted from vendor-specific formats into open-source versions that
can be parsed without proprietary software. The modern standard is the mzML document, which has
been designed to combine the best aspects of precursor standards in a single universal format (Deutsch,
2010). These XML documents have well-defined schema built around a controlled vocabulary to
enable consistent parsing. Most critically, the development of the modern mzML format established
accession numbers for each attribute which (according to the specification document) should never
change. This stability means that the data can be accessed robustly with any XML parser. Older
formats, such as mzXML, are currently deprecated and will not undergo further development, making
them equally stable.

Finally, simple data formats make it easier to work within existing frameworks rather than
developing exclusive functions. Tidy data interacts neatly with the entire tidyverse thanks to its
shared design philosophy and it’s simple to upgrade basic data frames to data.tables for improved
access speed. More crucially, however, simple formats make it possible to port MS data to other
languages and interfaces. It is straightforward to convert an R data frame to Python’s pandas version
via the reticulate package, encode it as a SQL database, or export it as a CSV file to be viewed in
Excel or other familiar GUIs. The same cannot be said for R’s environments and S4 objects. This
connectivity ensures that the best tools possible can be applied to a problem, rather than the subset
available in a given package or programming language. Simplifying access to and working storage of
MS data is a critical step for the further development of fast, accurate algorithms for the detection and
quantification of molecules across many areas of science.

4 Why isn’t it already easier to access mass-spectrometry data?

Of course, there are challenges that make simplification difficult and a trade-off must be made between
speed, storage, and sanity. Tidy data favors code readability and intuitiveness over computational
efficiency: for example, a list-of-lists model is more memory efficient than the proposed rectangular
data structure because each time point is stored once rather than repeated in each row. When
multiple files are analyzed simultaneously, tidy data also requires that the filename be repeated
similarly, resulting in essentially a doubling of object size in the computer memory. Given that
most MS experiments involve tens or hundreds of large files, this is a major concern and current
packages handle memory carefully, either reading from disk only what is needed or running files in
batches. There are several ways to resolve this problem within the tidy data model as well. During
the exploration phase, it is rarely necessary to load all data from files simultaneously, but viewing
some portion of the data is still critically important for quality control. With the tidy model, it’s not
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required to import all the data in a single comprehensive step. Instead, quality control files or pooled
samples can be viewed as representative of the whole run and rarely challenge memory requirements.
Additionally, tidy data makes it easy to subset only the masses of interest for targeted analyses, and
the remainder of the data can be discarded from memory. For the final comprehensive analysis, it is
much simpler to encode MS data into an external database for access via SQL or other query language
when formatted tidily than it is to wrangle current implementations into some accessible object that
can handle project sizes larger than the computer’s memory.

Theoretically, the ideal data structure for MS data processing speed would invert the current
list-of-lists schema by constructing a list of unique m/z values, each containing the time points at which
that mass ratio was observed and the corresponding intensity. However, this method is complicated by
the instrumental error inherent in measuring molecular masses. The same molecule may be measured
to have a slightly different mass at each time point, and "binning" these masses together across all time
points for a single consensus value risks incorporating nearby masses together even at hypothetical
sub-ppm mass accuracy (Kind and Fiehn, 2006). Instead, m/z values are continuous rather than discrete,
making it difficult to encode the data in this way. A tidy framework resolves part of this issue by
storing the time and m/z values in columns that can be indexed by a binary search, such as the one
implemented by data.table. This allows for rapid subsetting by both time and m/z. Finally, it is worth
noting that computers have rapidly grown faster and larger while human intuition has not grown as
quickly. This indicates that concerns with processing time and memory will lessen over time and that
in the long run, sanity should be prioritized over speed and storage.

There are other reasons that a tidy approach has not yet been implemented for MS data. MS files
include large amounts of metadata which should not be discarded, but are challenging to encode
efficiently in a rectangular format. A proper tidy approach requires that a separate table be constructed
to hold this per-file metadata, with a key such as file name that permits joining the metadata back to
the original information. Compared to the monolithic S4 objects constructed by traditional workflows,
managing multiple tables may be unappealing. S4 objects also excel at recording each process that is
performed on the data, and a specific "processes" slot is found in some objects to record exactly this.
However, with the emergence of code sharing and open-source projects it becomes less critical that the
data itself records the process because the source code is available.

Finally, a significant history exists for today’s methods. MSnbase, the first widely-used R package
designed to process MS data, implemented S4 objects as a way to hold entire MS experiments in
memory, and dependent packages extend this MSnExp object in various ways rather than discarding
it entirely. This development history and connected network of packages is incredibly useful and
represents an extensive process of innovation and refinement. We would like to emphasize that the
concerns raised here and the package introduced below are not designed to critique or replace this
significant effort. Instead, our goal is to function alongside prior work as a way to enable rapid,
interactive, and preliminary exploration. Following initial investigation, we recommend using the
existing pipelines and extensive package network to establish a reproducible, scripted process of MS
data analysis.

5 The RaMS package

The RaMS package implements in R a set of methods used to parse open-source mass-spectrometry
documents into the R-friendly data frame format. Functions in the package accept file names and
the type of data requested as arguments and return rectangular data objects stored in R’s memory.
This data can then be processed and visualized immediately using base R functions such as plot and
subset, passed to additional packages such as ggplot2 and data.table, or exported to language-agnostic
formats such as CSV files or SQL databases.

Installation

The RaMS package can be installed in two ways:

The release version from CRAN:

install.packages("RaMS")

Or the development version from GitHub:

# install.packages("remotes")
remotes::install_github("wkumler/RaMS")
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Input arguments

RaMS is simple and intuitive, requiring the memorization of a single new function grabMSdata with
the following usage:

grabMSdata(files)

Where files is a vector of file paths to mzML or mzXML documents, which can be located on the
user’s computer, a network drive, FTP site, or even at a URL on the Internet. Further parameters are
documented below in Table 1:

Parameter Description

grab_what Specifies the information to extract from the mzML or mzXML file. Can
currently accept any combination of "MS1", "MS2", "EIC", "EIC_MS2", "meta-
data", and "everything" (the default).

verbosity Controls progress messages sent to the console at three different levels: no
output, loading bar and total time elapsed, and detailed timing information
for each file.

mz Used when grab_what includes "EIC" or "EIC_MS2". This argument should
be a vector of the m/z ratios interesting to the user, if the whole file is too
large to load into memory at once or only a few masses are of interest.

ppm Used alongside the mz argument to provide a parts-per-million error window
associated with the instrument on which the data was collected.

rtrange A length-two numeric vector with start and end times of interest. Often
only a subset of the LC run is of interest, and providing this argument limits
the data extracted to those between the provided bounds.

Table 1: Parameters accepted by the grabMSdata function.

Usage

Extracting data with grabMSdata returns a list of tables, each named after one of the parameters
requested. A grab_what argument of "MS1" will return a list with a single entry, the MS1 (i.e. full-scan
data) for all of the files:

msfile <- system.file("extdata", "LB12HL_AB.mzML.gz", package = "RaMS")
msdata <- grabMSdata(files = msfile, grab_what="MS1")
head(msdata$MS1)

rt mz int filename
4.009 104.0710 1297755.000 LB12HL_AB.mzML.gz
4.009 104.1075 140668.125 LB12HL_AB.mzML.gz
4.009 112.0509 67452.859 LB12HL_AB.mzML.gz
4.009 116.0708 114022.531 LB12HL_AB.mzML.gz
4.009 118.0865 11141859.000 LB12HL_AB.mzML.gz
4.009 119.0837 9636.127 LB12HL_AB.mzML.gz

Table 2: Tidy format of RaMS output showing columns of MS1 data, with columns for retention time
(rt), mass-to-charge ratio (mz), intensity (int) and name of the source file (filename). Note that this is a
subset - the actual object contains 8,500 entries.

This table is already tidied, ready to be processed and visualized with common base R or tidyverse
operations. For example, it’s often useful to view the maximum intensity observed at each time
point: this is known as a base peak chromatogram or BPC. Below are two examples of calculating and
plotting a BPC using base R and the tidyverse.

# Base R
BPC <- tapply(msdata$MS1$int, msdata$MS1$rt, max)
plot(names(BPC), BPC, type="l")
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Figure 1: A simple chromatogram plotted using base R. This plot shows the retention time of all
compounds in a sample plotted against the maximum intensity at each timepoint. Base graphics were
used so the plot is fully customizable with normal graphics options.

# Tidyverse
library(tidyverse)
BPC <- msdata$MS1 %>%

group_by(rt) %>%
summarize(BPC_int=max(int))

ggplot(BPC) + geom_line(aes(x=rt, y=BPC_int))

Figure 2: A simple chromatogram plotted using the ggplot2 package. This plot shows the same data
as Figure 1 of retention time by maximum intensity across compounds but uses ggplot2 syntax and
defaults.

Importantly, note that the creation of these plots required no special knowledge of the S3 or
S4 systems and the plots themselves are completely customizable. While similar packages provide
methods for plotting output, it is rarely obvious what exactly is being plotted and how to customize
those plots because the data is stored in environments and accessed with custom code. RaMS was
written with the beginning R user in mind, and its design philosophy attempts to preserve the most
intuitive code possible.

RaMS uses data.table internally to enhance speed, but this also allows for more intuitive subsetting
in mass-spectrometry data. With data.table, operations are nearly as easy to write in R as they are
to write in natural language, leveraging the user’s intuition and decreasing the barrier to entry for
non-coder MS experts. For example, a typical request for MS data might be written in natural language
as:

"All MS1 data points with m/z values between an upper and lower bound, from start time
to end time."

This request can be written in R almost verbatim thanks to data.table’s intuitive indexing and
%between% function:

msdata$MS1[mz %between% c(upper_bound, lower_bound) &
rt %between% c(start_time, end_time)]
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Most importantly, this syntax doesn’t require the mass-spectrometrist to have an understanding
of how the data is stored internally. Current implementations use S4 objects with slots such as
"chromatograms" and "spectra" or derivatives of these, despite their inconsistent usage across the field
and unclear internal structure. (Smith et al., 2015)

RaMS enhances the intuitive nature of data.table’s requests slightly by providing the pmppm
function, short for "plus or minus parts-per-million (ppm)". Masses measured on a mass-spectrometer
have a certain degree of inherent deviation from the true mass of a molecule, and the size of this error
is a fundamental property of the instrument used. This means that mass-spectrometrists are often
interested in not only the data points at an exact mass, but also those within the ppm error range. MS
data exploration often makes requests for data in natural language like:

"All MS1 data points with m/z values within the instrument’s ppm error of a certain
molecule’s mass"

Which can again be expressed in R quite simply as:

msdata$MS1[mz %between% pmppm(molecule_mass, ppm_error)]

Internals

Fundamentally, RaMS can be considered an XML parser optimized for mzML and mzXML documents.
The rigorous specification and detailed documentation make it possible for a generic XML parser to
efficiently extract the document data. In R, the xml2 package provides modern parsing capabilities
and is efficient in both speed and memory usage by calling C’s libxml2 library, making it an attractive
choice for this processing step. Much of RaMS’s internal code consists of a library of XPath expressions
used to access specific nodes and extract the (often compressed) values . Table 3 below provides
several examples of XPath expressions used to extract various parameters from the mzML internals:

Parameter of interest mzML XPath expression

Fragmentation level //spectrum/cvParam[@name="ms level"]
Retention time //scanList/scan/cvParam[@name="scan start time"]

m/z values //binaryDataArrayList/binaryDataArray[1]/binary
Intensity values //binaryDataArrayList/binaryDataArray[2]/binary

Polarity (for positive mode) //spectrum/cvParam[@accession="MS:1000130"]

Table 3: A few example parameters extracted from the mzML file and the corresponding XPath
expression used to extract it.

These sample expressions illustrate the controlled vocabulary of the mzML parameters (the
cvParam elements above) and the remarkable stability of the specification that permits optimization.
While the "polarity" parameter for positive mode is the only one above that is specified via its accession
number ("MS:1000130"), it’s worth noting that the other parameters also have unique accession number
attributes that could be used but instead have been foregone in favor of readability.

MS data files are often highly compressed and the m/z and intensity data is typically encoded
as base 64 floating point arrays. MS data extracted from the binary data array must then first be
decoded from base64 to binary using the base64enc package, then decompressed if necessary using
R’s base memDecompress function, and finally cast to double-precision floating point values via base
R’s readBin.

After the data has been extracted from the XML document, RaMS uses the data.table package to
provide fast aggregation and returns data.table objects to the user. This is also the step which converts
the data from a ragged array format into a tidy format, and neatly illustrates the strength of tidy data.
Rather than continuing to store the data as a list-of-lists and preserving the nested data structure,
this step creates separate columns for retention time (rt) and m/z (mz) values. This allows the user to
perform rapid binary searches on both the retention time and m/z columns and can greatly accelerate
the extraction of individual masses of interest, as is often the goal when analyzing MS data.

Comparison to similar packages

While many packages exist to process MS data within R, very few can be found that actually read the
raw data into the R environment. The dominant package by far is MSnbase, which describes itself as
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providing "infrastructure for manipulation, processing and visualisation of mass spectrometry and pro-
teomics data", and is thus very similar to RaMS. MSnbase itself calls the Bioconductor package mzR
to provide the C++ backend used to parse the raw XML data. Other packages include readMzXmlData
and MALDIquantForeign, both developed by Sebastian Gibb and hosted on CRAN. One additional
package to note is the caMassClass package that no longer exists on CRAN but code from which can
be found in the CorrectOverloadedPeaks package and only parses the deprecated mzXML format.
Finally, the Spectra package is under active development by the RforMassSpectrometry initiative and
represents a useful comparison for other cutting-edge frameworks that will be expanded in the future
(Rainer et al., 2022). However, all of these packages preserve the list-of-list format and none produce
naturally tidy representations.

This section illustrates how RaMS compares to MSnbase as the current dominant processing
package and Spectra as the next iteration of MS processing. MSnbase has undergone constant revision
since its inception in 2010, while Spectra has been under development since 2020. The most recent
version of MSnbase as of this writing was announced in 2020 and focuses on the new "on-disk"
infrastructure that loads data into memory only when needed. This new infrastructure and the legacy
storage mode released in the first version of MSnbase provide useful comparisons for RaMS in terms
of memory usage and speed and the Spectra package will provide a useful future-oriented comparison.
As noted above, however, RaMS has different goals from either of these packages. RaMS is optimized
for raw data visualization and rapid data exploration while MSnbase and Spectra are designed to
provide a solid foundation for more streamlined data processing and these packages all can work
neatly in concert rather than replacing each other.

To compare the different methods, ten MS files were chosen from the MassIVE dataset
MSV000080030 to mimic the large-experiment processing of Gatto et al. (2021). Methods were com-
pared in terms of memory usage, time required to load the data into R’s working memory, and the
time required to subset an EIC and plot the data. Due to the differences in method optimization, we
expected MSnbase to be significantly faster when loading the data, RaMS to be significantly faster
during subsetting and plotting, and MSnbase to have the smallest memory footprint. The Spectra
package’s capabilities were less well known in advance but should represent a consistent improvement
over MSnbase. These expectations were well-validated by the results shown in Figure 3.

RaMS performed better than expected on the data load-time metric, taking approximately the
same amount of time as the new on-disk MSnbase backend and the Spectra package and significantly
less than the old in-memory method. This was surprising because while RaMS is performing the
physical I/O process essentially equivalent to the creation of the MSnExp, both the OnDiskMSnExp
method and the Spectra object instead create a system of pointers to the data and don’t actually read
the data into memory. However, the new backend begins to perform better as the number of files
increases and proportional improvements are expected with even larger file quantities. The Spectra
package, as expected, shows consistent improvements over both MSnbase backends.

For the subsetting and plotting metric, our expectation that RaMS would be the fastest method was
validated by times approximately two orders of magnitude smaller than those obtained by MSnbase
(note the log scale used in the figure). These results also validated earlier results demonstrating
the superiority of the new on-disk method (Gatto et al., 2021) and the improvements in the new
Spectra package. The sub-second subset and plot times of RaMS are so much smaller than the other
timings recorded in this trial that RaMS essentially has a single fixed cost associated with the initial
data import, making it ideal for the exploratory phase of data analysis where files are loaded once
and then multiple chromatograms may be extracted and reviewed. This design also aligns with the
user’s expected workflow in which data import is accepted as a time-consuming task, but subsequent
analysis should be relatively seamless and instantaneous.

The greatly reduced subsetting and plotting time required by RaMS and the observation that file
load times and data plotting times were approximately equal for MSnbase led to the creation of the
bottom-left graph in Figure 3. This follow-up analysis highlights that the slightly increased file load
time of RaMS combined with the very short subsetting and plotting phase is actually less than the
total time required by MSnbase and Spectra to read, subset, and plot, establishing RaMS as the fastest
option even if the end goal is to extract a single chromatogram. This follow-up also demonstrates
the largest improvements of the new MSnbase on-disk method over the old one and the clearest
improvements in Spectra.

As expected, this speed comes at a cost. RaMS has a larger memory footprint than even the old
in-memory MSnExp object. While all three objects grew approximately linearly with the number of
files processed, the RaMS object was approximately 2 times larger than the in-memory MSnbase
object and several orders of magnitude larger than the new, on-disk version. This was expected
because RaMS stores retention time and filename information redundantly in the tidy format while
the list-of-lists method only stores that information once. In fact, the RaMS object size was larger than
the uncompressed mzXML files themselves! However, this trade-off can be minimized through the
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Figure 3: Time and memory required by RaMS compared to the MSnbase and Spectra methods
across 1, 5, and 10 mzXML files. The top-left plot shows the time required to load the mzXMLs into
memory (RaMS and MSnExp) or construct pointers (OnDiskMSnExp, Spectra’s mzR backend) with
the MSnExp object taking approximately an order of magnitude longer than the other methods. The
top-right plot shows the time required to subset the data by m/z to a single chromatogram and plot
that subset after the object has already been created. The RaMS package performs this approximately
an order of magnitude faster than the other packages and the Spectra package is second-fastest, with
RaMS taking less than a second for up to 10 mzXMLs and the Spectra package taking between one and
ten seconds depending on the number of files to be subset. The bottom-left plot shows a combination
of the two plots above by timing each package as it performs the full object construction, subsets to a
single chromatogram, and plots it with RaMS again the fastest among the packages. The bottom-right
plot shows the memory required for each package across different numbers of files as well as the size
of the original mzXML documents as a benchmark. Both RaMS and the MSnExp objects occupied
more space in RAM than the original file size (RaMS occuying approximately 2x as much memory,
MSnExp closer to 1.1x), while the OnDiskMSnExp and mzR backend were consistently two orders
of magnitude smaller. Times were obtained by the microbenchmark package and object sizes were
obtained with pryr. Note the log-scaled y-axes.

use of RaMS’s vectorized grab_what = "EIC" and grab_what = "EIC_MS2" functions that can extract
a vector of masses of interest and discard the remainder of the data to free up memory for analyses
where the specific ions of interest are known beforehand. The general lesson from this analysis seems
to be that if the memory is available and a quick and intuitive interaction is desired, RaMS is now the
top contender. For other purposes, MSnbase or Spectra remain the obvious choices depending on
expected workflow.

Broader interactions

RaMS is intentionally simple. By encoding MS data in a rectangular, long data format, RaMS facilitates
not only R-specific development but contributes to MS analysis across languages and platforms. At
the most basic level, subsets of interest can be exported as CSV files for use in any language that can
read this ubiquitous format. Even users with zero programming background are familiar with Excel
and other spreadsheet GUIs, so this method of export and data-sharing improves transparency by
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allowing anyone to open the raw data corresponding to compounds of interest.

The list-of-tables format that RaMS returns was inspired by traditional relational databases, and
this provides a slightly more complex method of storing data with several advantages over CSV
export. The dominant convenience of relational databases is that they can grow almost indefinitely,
rather than being limited by computer memory. While existing packages perform admirably when
operating on files that fit into RAM, there are few good solutions for the MS experiments that can
exceed hundreds of gigabytes in size. Both batching and subset analysis face issues with systematic
inter-sample variation rarely controlled for across subsets. Additionally, an external relational database
can be easily appended with additional files as experiments continue to be performed, rather than
demanding that all samples be run before any analysis can begin. RaMS output can be easily written
to SQL databases using existing packages such as DBI and RSQLite:

library(DBI)
db <- dbConnect(RSQLite::SQLite(), "msdata.sqlite")
dbWriteTable(db, "MS1", msdata$MS1)
dbListTables(db)
dbGetQuery(db, "SELECT * FROM MS1 LIMIT 3")
dbDisconnect(db)

Finally, with reticulate, R data frames can be directly coerced into Pandas DataFrames. This allows
for an unprecedented degree of interaction between R and Python for MS data analysis, reducing the
need for parallel development in both languages and allowing the optimal functions to be used at
each step rather than the limited selection that have already been implemented in R or Python. As
MS data exploration and analysis continues to grow increasingly machine-learning heavy, allowing R
to interact elegantly with Python enables the best of R’s extensive MS analysis history with Python’s
powerful interfaces to deep learning frameworks such as TensorFlow and Pytorch.

6 Summary

In this paper, we discussed the current paradigm of MS data analysis in R and identify an area where
tidy data techniques significantly improve user experience and support increased interaction with
other packages and software. We also present RaMS as a package that fills this gap by presenting MS
data to the R user in a tidy format that can be instantly queried and plotted.
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Log Likelihood Ratios for Common
Statistical Tests Using the likelihoodR
Package
by Peter Cahusac

Abstract The likelihoodR package has been developed to allow users to obtain statistics according to
the likelihood approach to statistical inference. Commonly used tests are available in the package,
such as: t tests, ANOVA, correlation, regression and a range of categorical analyses. In addition,
there is a sample size calculator for t tests, based upon the concepts of strength of evidence, and the
probabilities of misleading and weak evidence.

1 Introduction

Maximum likelihood estimation (MLE) is well-understood and widely used throughout statistics. In
contrast, the use of the likelihood function as a basis for inference is much less understood and even
confused with MLE. As Edwards wrote in his excellent book : "At one recent international conference
at which I laboured for three-quarters of an hour to make clear the advantages of likelihood inference,
the chairman thanked me for my lecture on the Method of Maximum Likelihood" (Edwards, 1992) p
101. In the Epilogue of this book on p 212, Edwards says that MLE is “a red herring”. To clarify: MLE is
used to estimate a parameter value according to a supposed probability distribution, while likelihood
inference is used to compare two hypotheses through the ratio of their values on a likelihood function.

All the main statistical approaches to scientific inference (frequentist, Bayesian and information
criterion) are based upon calculated probabilities. The frequentist approach, for example, typically
uses a sampling distribution centred on a null hypothesis and calculates the probability of obtaining
the observed value or values more extreme from the null. The likelihood approach, also known as the
evidential approach, differs in that it is simply based upon the evidence provided by the observed
data (not including more extreme values) and represented by the likelihood function. The ratio of the
heights under the likelihood function according to the hypothesis values tested provides the likelihood
ratio. To create a linear scale of evidence, the natural logarithm of this is taken to give us the log
likelihood ratio, also known as the support, a term that was first defined by Harold Jeffreys (Jeffreys,
1936).

The likelihood approach is not subject to the same criticisms often leveled at the frequentist and
Bayesian approaches (Goodman and Royall, 1988; Edwards, 1992; Royall, 1997; Goodman, 1999; Dixon,
2003; Dienes, 2008; Wasserstein and Lazar, 2016; Lakens, 2021). Likelihood ratios provide objective
measures of evidence between competing hypotheses, unaffected by the intentions of the investigator.
Log likelihood ratio (support, see below) values are proportional to the quantity of data, representing
the weight of evidence. This means that support values from independent studies can simply be
added together, e.g. for meta-analysis. Unlike other approaches based on probabilities, likelihood
ratios are unaffected by transformations of variables.

Despite the apparent advantages of the evidential approach there is a dearth of available resources
in statistical computing. None of the major commercial packages (e.g. SPSS, SAS, Minitab) pro-
vide likelihood ratios or support values. This should not be confused with the wide availability of
likelihood ratio tests (also known as G-tests), which ultimately provide p values according to the
frequentist approach. Because virtually no software is available for analysis, this impacts on the use
of the evidential approach in scientific reporting. This also impacts on the teaching of the evidential
approach, which then negatively feeds back to reduced scientific reporting. The likelihoodR package
for R (Cahusac, 2021) is an attempt to address this situation and calculations are based upon the recent
book (Cahusac, 2020b). R (Ihaka and Gentleman, 1996) is a widely used statistical platform with a
huge variety of packages.
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2 Support

The package always reports the support (log likelihood ratio). This relative evidence scale ranges from
-∞ to +∞, with zero representing no evidence either way. A working interpretation for this scale has
been offered by (Goodman and Royall, 1988), see Table 1. No threshold need be applied, and S values
are given to just one decimal place, e.g. 2.3.

S Interpretation of H1 vs H2
0 No evidence either way
1 Weak evidence
2 Moderate evidence
3 Strong evidence
4 Extremely strong evidence

Table 1: Interpretation for values of S, the support, calculated as the natural logarithm of the likelihood
ratio. Negative values would represent support for hypothesis values H2 vs H1. Typically, it is
sufficient to give S to one decimal place.

The support (S) values reported in the package are distinct from the surprise/surprisal S-values
described by (Palm, 2012) based on Shannon information theory, and that by (Greenland, 2019) pro-
duced by simply taking the negative log base 2 of the p value.

The likelihood intervals are reported wherever possible and these are given in terms of support
rather than likelihood ratio. A typical likelihood interval (support interval) is the S-2 interval, which
numerically often closely corresponds to the frequentist 95% confidence interval (Cahusac, 2020b).
The S-2 interval represents an interval based upon e−2 = 0.135 = 1 / 7.40 likelihood ratio interval. All
the values within the interval would have a likelihood ratio of no less than 1 / 7.40, or an S = -2. The
S-3 interval would be e−3 = 0.05 = 1 / 20.09, and so on. Analyses also report other relevant statistics,
such as t, F and χ2, as well as the corresponding frequentist p value. Where possible the likelihood
function is given, decorated with hypothesis parameter values shown as coloured lines. Currently
there are 14 different statistical tests implemented by the package, the summary for each are given in
Table 2 (listed alphabetically).

Function Description
L_1way_ANOVA Independent samples one-way ANOVA
L_1way_cat One-way categorical data analysis for binomial and multinomial
L_1way_RM_ANOVA One-way repeated measures ANOVA
L_2S_ttest Independent samples t test
L_2way_cat Two-way categorical data analysis
L_2way_Factorial_ANOVA Two-way independent samples factorial ANOVA
L_corr Bivariate normal correlation
L_efficacy Efficacy analysis for binomial categorical data
L_logistic_regress Multiple logistic regression
L_OR Odds ratio
L_regress Bivariate regression for linear, quadratic and cubic comparisons
L_RR Relative risk
L_ttest One sample and related samples t test
L_t_test_sample_size Sample size calculation using the evidential approach for t tests

Table 2: A summary of the functions available in the likelihoodR package

3 Continuous data

A range of tests for differences of continuous variables is available. One function L_ttest performs
a one sample and related samples test. As well as specifying the null value, two alternative hypoth-
esis values can be specified, one in terms of the measurements used and the other in terms of Cohen’s d.
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L_ttest(data1, data2, null=0, d=0.5, alt.2=NULL, L.int=2, verb=TRUE)

Where the arguments are:
data1 a (non-empty) numeric vector of data values
data2 a (non-empty) numeric vector of data values for related sample, default = NULL
null value for the null hypothesis, default = 0
d Cohen’s effect size, default = 0.5
alt.2 value for an alternative hypothesis, in units used for data, default = NULL
L.int likelihood interval given for a given support value, e.g. 2 or 3, default = 2
verb show output, default = TRUE

As an example:

> # one sample Gosset's original additional hours of sleep data Cahusac (2020) p 29
> mysample <- c(0.7, -1.6, -0.2, -1.2, -0.1, 3.4, 3.7, 0.8, 0.0, 2.0)
> a1=L_ttest(mysample, d=0.5, alt.2=2, L.int=2)

Maximum support for the observed mean 0.75 (dashed line) against the null 0 (black line) = 0.892
Support for d of 0.5 (0.8945048, blue line) versus null = 0.856
Support for d versus 2nd alt Hypothesis 2 (green line) = 2.131
Support for 2nd alt Hypothesis versus null = -1.275

S-2 likelihood interval (red line) is from -0.44025 to 1.94025

t(9) = 1.326, p = 0.2175978, d = 0.419

Figure 1: Graphical output from running the one-sample test function L_ttest. The likelihood function
for the mean value given the data, with the MLE (sample mean) represented by the vertical dashed
line. The black line is the specified null value (here at 0), the blue line is for a specified alternative
hypothesis (for an effect size of 0.5), and the green line represents a second alternative hypothesis (for
2 hours). The red horizontal line shows the S-2 likelihood interval.

The assigned object a1 contains values of interest which can be assessed in the usual way with a1$...,
but entering a1 on its own gives all the values:
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$obs.mean the observed mean or difference in mean for related samples
$df degrees of freedom
$alt.H1 mean value according to specified d
$alt.H2 specified second hypothesis value
$S_max maximum support for observed mean against the null
$S_10 support for d versus null
$S_12 support for d versus specified second hypothesis
$S_20 support for second hypothesis versus the null
$like.int likelihood interval
$L.int.spec specified likelihood interval in units of support
$null.value null value
$t.val t value for test against null
$p.val p value for test against null
$d.obs observed effect size

For the related sample test a second vector of values of equal length to data1 (and paired) is en-
tered for data2. The independent samples test function is L_2S_ttest. The data is entered as the first
argument followed by the vector of the same length coding groups. Similar arguments to the one
sample/related sample test can be specified and similar output, but this time showing the difference
in means.
The package includes one-way ANOVA (L_1way_ANOVA), one-way repeated measures ANOVA (L_1way_RM_ANOVA)
and two-way between-participants factorial ANOVA (L_2way_Factorial_ANOVA). All these functions
use contrasts, employing the model comparison approach espoused by Glover and Dixon (Dixon, 2003;
Glover and Dixon, 2004; Dixon, 2013). For the one-way analyses if the arguments for the contrasts are
not specified then they default to testing a linear and a quadratic contrast. In the factorial ANOVA, no
contrast comparisons are made if the contrasts are left unspecified. If the first contrast is specified then
this is compared to the main effects, and if the second contrast is specified then this is compared to the
first contrast. Such contrast comparisons are easy to do in this approach, and are difficult or impossible
to do using frequentist p values. The support values for the between-participants analyses are adjusted
using Akaike’s correction (Hurvich and Tsai, 1989). We will look at L_2way_Factorial_ANOVA. The
first line of output gives the S for comparing the full model of main effects and interaction with the
null model. Using data from Cahusac (2020b) p 91

> time <- c(6.4, 4.6, 6.4, 5.6, 5.9, 6.1, 6.3, 4.5, 4.8, 6.6, 7, 9.3, 7.9, 9.4, 8.2,
4.4, 4.2, 5, 6.9,4.5, 4, 4.3, 6.9, 5.5, 5.8, 4.4, 4.2, 5.1, 6.9, 4.5)

> Treatment = gl(3,5,30, labels=c("T1","T2","T3"))
> Health = gl(2,15,30, labels=c("Hemophiliac","Normal"))
> contrast1 <- c(-1, -1, 5, -1, -1, -1) # interaction Hemo T3 higher than others
> contrast2 <- c(-1, -1, -1, 1, 1, 1) # main effect of health status (Hemo higher)
> m1=L_2way_Factorial_ANOVA(time, Treatment, Health, contrast1, contrast2, verb=TRUE)

Support for full model (including interaction) versus null = 7.036
Support for full model versus main effects = 2.968
Support for contrast 1 versus main effects = 7.587
Support for contrast 1 versus contrast 2 = 8.462

First factor main effect F(2,24) = 5.039, p = 0.01488452, partial eta-squared = 0.296
Second factor main effect F(1,24) = 15.992, p = 0.0005281828, partial eta-squared = 0.4
Interaction F(2,24) = 6.219, p = 0.006664992, partial eta-squared = 0.341
Contrast 1 F(1,24) = 36.048, p = 3.373928e-06

As before, the assigned object m1 contains values of interest which can be assessed in the usual way
with m1$..., but entering m1 on its own gives all the values.
Bivariate normal correlation uses the L_corr function, and is demonstrated by using data from the
heptathlon (Cahusac, 2020b) p 104

> m200 <- c(22.6,23.7,23.1,23.6,23.6,23.6,25.5,23.9,24.5,23.9,24.9,24.8,24.7,
25.0,24.6,24.9,25.0,25.6,24.8,25.5,25.7,24.9,26.6,25.2,26.2)

> m800 <- c(128.5,126.1,124.2,132.5,134.7,132.5,138.5,127.9,133.7,132.2,136.1,142.8,
125.8,131.5,137.1,134.9,146.7,133.9,146.4,144.0,133.4,138.0,139.2,137.3,163.4)

> m2=L_corr(m200, m800, null=0, exp.r=0.5, L.int=3, alpha=.05, verb=TRUE)

Support for observed correlation 0.6198 (dashed line) versus null of 0 (black line) = 5.776
Support for specified correlation of 0.5 (blue line) versus observed r = -0.338
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Figure 2: Graphical output from running the L_2way_Factorial_ANOVA function. The interaction plot
shows the means for the 2 groups of patients (dashed line is hemophiliac, solid line is normal). The
horizontal axis represents the 3 different treatments. An interaction is apparent from the plot, where
the 3rd treatment shows a clear difference between the hemophiliac and normal patients.

Support for specified correlation versus null = 5.438
S-3 likelihood interval (red line) is from 0.19968 to 0.8474

P value = 0.00095
N = 25
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Figure 3: Graphical output from running the L_corr function. This is the likelihood function for the
correlation coefficient, given the data. As before, the vertical dashed line is the MLE (the sample r), the
blue line is a specified alternative value (0.5), and red horizontal line is the S-3 likelihood interval. The
null value at 0 is outside of this interval and the evidence against it is extremely strong.

The assigned object m2 contains values of interest which can be assessed in the usual way with m2$...,
but entering m2 on its own gives all the values.
The regression function L_regress only accommodates one predictor, while the logistic regression
function L_logistic_regress allows up to 6 predictors, which need to be dummy coded for nominal
data with more than 2 levels.

4 Categorical data

There are 5 different tests included in the package (excluding logistic regression mentioned above).
The simplest is the one-way categorical data analysis using the function L_1way_cat. Two categories
represents the binomial (giving the likelihood function plot), while multiple categories represents the
multinomial distribution. The two-way categorical analysis uses the L_2way_cat function. For these
two functions an additional evidence-based statistic S for the variance is calculated. This uses the
formula given by Cahusac (2020b) p 158 and derived from Edwards (1992) p 187:

S =
d f
2

(
log

d f
χ2

d f

)
− 1

2
(d f − χ2

d f ), (1)

where df is the degrees of freedom. This is most useful to test the variance in the model, specifically
whether data are "too good to be true", i.e. the data fit a particular hypothesis closer than we would
expect by chance (Edwards, 1986). Using just 2 categories in the one-way analysis can be demonstrated:

> obs <- c(18,5); exp.p <- c(0.7, 0.3) # observed and expected values
> m3 <- L_1way_cat(obs, exp.p, verb = TRUE)

Binomial support for difference of MLE 0.7826087 (dashed line)
from 0.7 (blue line) with 1 df = 0.398
Support for variance differing more than expected = 0.019

S-2 likelihood interval (red line) from 0.5853 to 0.91794

Chi-square(1) = 0.747, p = 0.3872968
Likelihood ratio test G(1) = 0.795, p = 0.37258, N = 23
Likelihood-based 95% confidence interval from 0.58958 to 0.91597

As previously, the assigned object m3 contains values of interest which can be assessed in the usual
way with m3$..., but entering m3 on its own gives all the values.
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Figure 4: Graphical output from running the L_1way_cat function. This shows the likelihood function
for the proportion, given the data. The vertical dashed line is the MLE, the blue line is the alternative
hypothesis value (0.7), and the red horizontal line is the S-2 likelihood interval.

Some of the functions provide likelihood-based % confidence interval (Aitkin et al., 1989).
Finally, there are functions to calculate the odds ratio L_OR, relative risk L_RR and binomial efficacy
L_efficacy.

5 Sample size calculations

The main challenge faced by the evidential researcher is of obtaining sufficiently strong evidence for or
against one of two specified hypotheses. Like the probability of a Type II error, this probability is large
with a small sample size and decreases as sample size increases. The function L_t_test_sample_size
can be used to calculate the pre-study sample size for all the t tests (Cahusac and Mansour, 2022). The
combined misleading and weak probability (Royall, 1997, 2000, 2004) is entered, with a default of 0.05,
together with the strength of evidence desired (default = 3). For a paired samples test, where we wish
to calculate sample size with a combined .2 probability of obtaining misleading or weak evidence,
strength of evidence S = 2 and effect size 0.5, we would obtain a value of 38 by using the following:

> L_t_test_sample_size(MW = 0.2, sd = 1, d = 0.5, S = 2, paired = TRUE)

For 1 sample, or related samples, t test with M1 + W1 probability of 0.2
Strength of evidence required is 2, and effect size of 0.5
Required sample size = 38

The somewhat comparable calculation for Type II error of 0.2, two-sided alpha = 0.05 and same
effect size of 0.5 produces a sample size of 34 (using stats::power.t.test(power = .80, delta = 0.5,
sig.level=0.05, type="paired")).

6 Conclusions

The functions described for the likelihoodR package may be useful for those researchers and statisti-
cians who wish to use the evidential approach for their data analysis (Cahusac, 2020a). In addition
to the advantages mentioned earlier in the introduction there are other desirable features. First,
categorical data analyses are not restricted by normality assumptions, and support values for indepen-
dent components of cross-tabulated data sum precisely and algebraically (unlike such calculations in
chi-square analyses). Second, in categorical and measurement analyses it is possible to show that the
data fit the null (or other) hypothesis too well (e.g. for detection of data fraud). Third, analyses are
versatile with unlimited complexity for model comparisons within a dataset, for example in ANOVA
(Glover and Dixon, 2004).
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As far as the author is aware, no other packages are available in R or other platforms. Currently users
calculate likelihood ratios manually. This package addresses this shortcoming and hopefully will
encourage more users to express their results in terms of log likelihood ratios.
One of the products of the likelihoodR package is that a module has been developed for jamovi
(The jamovi project, 2021), named jeva, which includes many of these functions. Hopefully this
will encourage further interest in the likelihood approach and facilitate teaching and research. The
equivalent jamovi analysis is given earlier for the L_ttest produces output given in Figure 5. The
output produced by jamovi is identical to that produced earlier by the package, although simpler in
that it lacks the option of comparing an effect size (d, illustrated by the blue line in package output).
The null versus observed (1st line of Support output) is -0.892, while in the package it is 0.892, the
positive value being due to comparing observed versus the null. Other outputs match apart from
decimal rounding, which can be selected in jamovi. The t, degrees of freedom (df) and p are the same
for the null versus observed, although the jamovi output includes another line giving these statistics
for the alternative hypothesis versus the observed. The jamovi output includes group descriptive
statistics (although these are available from the assigned object in the package, e.g. $obs.mean. The
jamovi output also includes the option of a descriptives plot (not shown) which displays the mean
with specified likelihood interval.
The likelihoodR package described in this article provides a large number of functions, currently many
more than envisaged for the jamovi module. As such, it will provide a major reference package for
users interested in the likelihood approach.

Figure 5: Graphical output from running the one-sample t test in the jamovi module jeva (created
from the L_ttest function). The screenshot should be compared directly with Figure 1. On the left
side is the dialog box where a variable can be selected (Drug A), and various settings chosen, including
the null and alternative hypothesis values, and to display the likelihood function. An additional
option gives an explanation about the obtained support values and likelihood interval, and their
interpretation. On the right side is a summary of the analysis, at the top showing the S values for
hypothesis comparisons (see text for the interpretation of the tabulated values). Below this is shown
the support interval, and finally below that the likelihood function. The line colours for the likelihood
function are the same as those given in Figure 1, although there is no option for a specified effect size
(no green line).
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CIMTx: An R Package for Causal
Inference with Multiple Treatments using
Observational Data
by Lianyuan Hu and Jiayi Ji

Abstract CIMTx provides efficient and unified functions to implement modern methods for causal
inferences with multiple treatments using observational data with a focus on binary outcomes. The
methods include regression adjustment, inverse probability of treatment weighting, Bayesian additive
regression trees, regression adjustment with multivariate spline of the generalized propensity score,
vector matching and targeted maximum likelihood estimation. In addition, CIMTx illustrates ways
in which users can simulate data adhering to the complex data structures in the multiple treatment
setting. Furthermore, the CIMTx package offers a unique set of features to address the key causal as-
sumptions: positivity and ignorability. For the positivity assumption, CIMTx demonstrates techniques
to identify the common support region for retaining inferential units using inverse probability of treat-
ment weighting, Bayesian additive regression trees and vector matching. To handle the ignorability
assumption, CIMTx provides a flexible Monte Carlo sensitivity analysis approach to evaluate how
causal conclusions would be altered in response to different magnitude of departure from ignorable
treatment assignment.

1 Introduction

Modern comparative effectiveness research (CER) questions often require comparing the effectiveness
of multiple treatments on a binary outcome (Hu et al., 2020a). To answer these CER questions,
specialized causal inference methods are needed. Methods appropriate for drawing causal inferences
about multiple treatments include regression adjustment (RA) (Rubin, 1973; Linden et al., 2016), inverse
probability of treatment weighting (IPTW) (Feng et al., 2012; McCaffrey et al., 2013), Bayesian Additive
Regression Trees (BART) (Hill, 2011; Hu et al., 2021b, 2020a), regression adjustment with multivariate
spline of the generalized propensity score (RAMS) (Hu and Gu, 2021), vector matching (VM) (Lopez
and Gutman, 2017) and targeted maximum likelihood estimation (TMLE) (Rose and Normand, 2019).
Drawing causal inferences using observational data, however, inevitably requires assumptions. A
key causal identification assumption is the positivity or sufficient overlap assumption, which implies
that there are no values of pre-treatment covariates that could occur only among units receiving one
of the treatments (Hu et al., 2020a). Another key assumption requires appropriately conditioning
on all pre-treatment variables that predict both treatment and outcome. The pre-treatment variables
are known as confounders and this requirement is referred to as the ignorability assumption (also
as no unmeasured confounding) (Hu et al., 2022b). An important strategy to handle the positivity
assumption is to identify a common support region for retaining inferential units. The ignorability
assumption can be violated in observational studies, and as a result can lead to biased treatment effect
estimates. One widely recognized way to address such concerns is sensitivity analysis (Erik von Elm
et al., 2007; Hu et al., 2022b).

The CIMTx package provides a suite of functions to easily implement the causal estimation meth-
ods, many of which were recently developed (Lopez and Gutman, 2017; Hu et al., 2020a; Hu and
Gu, 2021). In addition, CIMTx provides strategies to define a common support region to address the
positivity assumption using IPTW, BART, VM and implements a flexible Monte Carlo sensitivity anal-
ysis approach (Hu et al., 2022b) for unmeasured confounding to address the ignorability assumption.
Finally, CIMTx offers detailed examples of how to simulate data adhering to the complex structures
in the multiple treatment setting. The simulated data can then be used by an analyst to compare the
performance of different causal estimation methods. Table 1 summarizes key functionalities of CIMTx
in comparison to recent R packages designed for causal inference with multiple treatments using
observational data. CIMTx provides a comprehensive set of functionalities: from simulating data to
estimating the causal effects to addressing causal assumptions and elucidating their ramifications.
To assist applied researchers and practitioners who work with observational data and wish to draw
inferences about the effects of multiple treatments, this article provides a comprehensive illustration
of the CIMTx package.
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Table 1: Comparisons of R packages for causal inference.

R packages
Continuous

Outcome
Binary

Outcome
Sensitivity
Analysis

Identification of
Common Support

Design
factors

Estimation
procedure

CIMTx ✕ ✔ ✔ ✔∗ ✔

RA, IPTW-SL
IPTW-Multinomial

IPTW-GBM
VM, BART

RAMS, TMLE

PSweight ✔ ✔ ✕ ✔ ✕

OW, IPTW-SL
IPTW-Multinomial

IPTW-GBM
twang ✔ ✕ ✔ ✕ ✕ IPTW-GBM

WeightIt ✔ ✕ ✕ ✔ ✕

CBPS, IPTW-SL
IPTW-Multinomial
IPTW-GBM,EBCW

IPTW-TSBW
CBPS ✔ ✔ ✕ ✕ ✕ CBPS
optweight ✔ ✕ ✕ ✕ ✕ IPTW-TSBW

✔: the feature is offered in the method; ✕ indicates otherwise; RA: Regression adjustment; IPTW: Inverse
probability of treatment weighting; BART: Bayesian additive regression trees; RAMS: Regression adjustment
with multivariate spline of generalized propensity score; VM: Vector matching; TMLE: Targeted maximum
likelihood estimation; CBPS: Covariate balancing propensity score; OW: Overlap weights; IPTW-Multinomial:
Inverse probability of treatment weighting with weight estimated by multinomial logistic regression; IPTW-
GBM: Inverse probability of treatment weighting with weight estimated by generalized boosted model;
IPTW-SL: Inverse probability of treatment weighting with weight estimated by super learner; IPTW-TSBW:
Inverse probability of treatment weighting with targeted stable balancing weights; EBCW: Empirical balancing
calibration weights.
∗: Identification of Common Support is only for VM, BART and IPTW related methods
References: PSweight (Version 1.1.4): Zhou et al. (2020);twang (Version 1.6) Ridgeway et al. (2020);WeightIt
(Version 0.10.2) Greifer (2020);CBPS (Version 0.22): Fong et al. (2021); optweight (Version 0.2.5): Greifer (2019);

2 Design factors for data simulation

CIMTx provides specific functions to simulate data possessing complex data characteristics of the
multiple treatment setting. Seven design factors are considered: (1) sample size, (2) ratio of units
across treatment groups, (3) whether the treatment assignment model and the outcome generating
model are linear or nonlinear, (4) whether the covariates that best predict the treatment also predict
the outcome well, (5) whether the response surfaces are parallel across treatment groups, (6) outcome
prevalence, and (7) degree of covariate overlap.

Design factors (1)–(5)

For the data generating process of treatment assignment, consider a multinomial logistic regression
model,

ln
P(W = 1)
P(W = T)

= δ1 + XξL
1 + QξNL

1

...

ln
P(W = T − 1)

P(W = T)
= δ(T−1) + XξL

(T−1) + QξNL
(T−1),

(1)

where Q denotes the nonlinear transformations and higher-order terms of the predictors X. ξL
1 , . . . , ξL

(T−1)

are vectors of coefficients for the untransformed versions of the predictors X and ξNL
1 , . . . , ξNL

(T−1) for
the transformed versions of the predictors captured in Q. The intercepts δ1, . . . , δ(T−1) can be specified
to create the corresponding ratio of units across T treatment groups. The T sets of potential response
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surfaces can be generated as follows:

E[Y(1)|X] = logit−1{τ1 + XγL
1 + QγNL

1 }
...

E[Y(T)|X] = logit−1{τT + XγL
T + QγNL

T },

(2)

where the coefficient setting γL
1 = . . . = γL

T , γNL
1 = . . . = γNL

T and τ1 ̸= . . . ̸= τT corresponds to the
parallel response surfaces, and by assigning different values to γL

w and γNL
w and setting τ1 = . . . =

τT = 0, nonparallel response surfaces are generated, which imply treatment effect heterogeneity. Note
that the predictors X and the transformed versions of the predictors Q in the treatment assignment
model (1) can be different than those in the outcome generating model (2) to create various degrees of
alignment. The observed outcomes are related to the potential outcomes through Yi = ∑wi∈W Yi(w).
Covariates X can be generated from user-specified data distributions.

Outcome prevalence

Values for parameters τ1, . . . , τT in model (2) can be chosen to create various outcome prevalence rates.
The outcomes are considered rare if the prevalence rate is < 5%.

Covariate overlap

With observational data, it is important to investigate how the sparsity of covariate overlap impacts
the estimation of causal effects. We can modify the formulation of the treatment assignment model (1)
to adjust the sparsity of overlap by including a multiplier parameter ψ (Hu et al., 2021a) as follows:

ln
P(W = 1)
P(W = T)

= δ1 + XψξL
1 + QψξNL

1

...

ln
P(W = T − 1)

P(W = T)
= δ(T−1) + XψξNL

(T−1) + QψξNL
(T−1),

(3)

where larger values of ψ correspond to increased sparsity degrees of overlap.

Implementation in CIMTx

We will first demonstrate the functionality of data_sim() in CIMTx to simulate data in the multiple
treatment setting using the above 7 design factors. We first use the data_sim() function to simulate a
dataset with the following characteristics: (1) sample size = 500, (2) ratio of units = 1:1:1 across three
treatment groups, (3) nonlinear treatment assignment and outcome generating models, (4) different
predictors for the treatment assignment and outcome generating mechanisms, (5) parallel response
surfaces, (6) outcome prevalence = (0.16, 0.51, 0.75) in three treatment groups with an overall rate
around 0.5 and (7) moderate covariate overlap. Note that for the design factor (6), we can adjust tau to
generate rare outcome events.

The outputs of the simulated data object are: (1) data$covariates for X, (2) data$w for treatment
indicators, (3) data$y for observed binary outcomes, (4) data$y_prev for the outcome prevalence rates,
(5) data$ratio_of_units for the proportions of units in each treatment group, (6) data$overlap_fig
for the visualization of covariate overlap via boxplots of the distributions of true generalized propensity
score (GPS).

library(CIMTx)
set.seed(1)
data <- data_sim(
sample_size = 500, n_trt = 3,
x = c("rnorm(0, 0.5)", # x1

"rbeta(2, .4)", # x2
"runif(0, 0.5)", # x3
"rweibull(1, 2)", # x4
"rbinom(1, .4)"), # x5

# linear terms in parallel response surfaces
lp_y = rep(".2*x1 + .3*x2 - .1*x3 - .1*x4 - .2*x5", 3),
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# nonlinear terms in parallel response surfaces
nlp_y = rep(".7*x1*x1 - .1*x2*x3", 3),
align = F,# different predictors used in treatment and outcome models
# linear terms in treatment assignment model
lp_w = c(".4*x1 + .1*x2 - .1*x4 + .1*x5", # w = 1

".2*x1 + .2*x2 - .2*x4 - .3*x5"), # w = 2
# nonlinear terms in treatment assignment model
nlp_w = c("-.5*x1*x4 - .1*x2*x5", # w = 1

"-.3*x1*x4 + .2*x2*x5"), # w = 2
tau = c(-1.5, 0, 1.5), delta = c(0.5, 0.5), psi = 1)

In this simulated dataset, the ratio of units (data$ratio_of_units) and outcome prevalences
(data$y_prev) are:

#> w
#> 1 2 3
#> 0.35 0.35 0.30

#> w y_prev
#> 1 1 0.16
#> 2 2 0.51
#> 3 3 0.75
#> 4 Overall 0.46

Figure 1: Moderate overlap with psi = 1. Each panel presents boxplots by treatment group of the true
generalized propensity score for one of the treatments, P(Wi = w |X = x) for every unit in the sample.
The left-hand panel presents treatment 1 (W = 1), the middle panel presents treatment 2 (W = 2), and
the right-hand panel presents treatment 3 (W = 3).

Figure 1 (data$overlap_fig) shows the distributions of true GPS for each treatment group, sug-
gesting moderate covariate overlap. We can change structures of the simulated data by modifying
arguments of the data_sim() function. For example, setting delta = c(1.5,0.5) yields unequal
sample sizes across treatment groups with the ratio of unit .6 : .2 : .2. Assigning smaller values to psi
can increase overlap: psi = 0.1 corresponds to a strong covariate overlap as shown in Figure 2.
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Figure 2: Strong overlap with psi = 0.1. Each panel presents boxplots by treatment group of the true
generalized propensity score for one of the treatments for every unit in the sample.

3 Methodology and implementation in CIMTx

Estimation of causal effects

Consider an observational study with N individuals, indexed by i = 1, . . . , N, drawn randomly
from a target population. Each individual was exposed to one and only one treatment, indexed by
W. The goal of this study is to estimate the causal effect of treatment W on a binary outcome Y.
There are a total of T possible treatments, and Wi = w if individual i is observed under treatment w,
where w ∈ W = {1, 2, . . . , T}. Pre-treatment measured confounders are indexed by Xi. Under the
potential outcomes framework, (Rubin, 1974; Holland, 1986), individual i has T potential outcomes
{Yi(1), . . . , Yi(T)} under each treatment of W . For each individual, at most one of the potential
outcomes is observed – the one corresponding to the treatment to which the individual is exposed. All
other potential outcomes are missing, which is known as the fundamental problem of causal inference
(Holland, 1986). In general, three standard causal identification assumptions (Rubin, 1980; Hu et al.,
2020a) need to be maintained in order to estimate the causal effects from observational data:

(A1) The stable unit treatment value assumption: there is no interference between units and there are
no different versions of a treatment.

(A2) Positivity: the GPS for treatment assignment e(Xi) = P(Wi = 1 | Xi) is bounded away from 0
and 1.

(A3) Ignorability: pre-treatment covariates Xi are sufficiently predictive of both treatment assignment
and outcome, p(Wi | Yi(1), . . . , Yi(T), Xi) = p(Wi | Xi).

The CIMTx package addresses assumption (A2) in the section of “Identification of a common support
region” and (A3) in the section of “Sensitivity analysis for unmeasured confounding”.

Causal effects can be estimated by summarizing functionals of individual-level potential outcomes.
For dichotomous outcomes, causal estimands can be the risk difference (RD), odds ratio (OR) or
relative risk (RR). For purposes of illustration, we define causal effects based on the RD. Let s1 and s2
be two subgroups of treatments such that s1, s2 ⊂ W and s1 ∩ s2 = ∅, and define |s1| as the cardinality
of s1 and |s2| of s2. Two commonly used causal estimands are the average treatment effect (ATE),
ATEs1,s2 , and the average treatment effect on the treated (ATT), for example, among those receiving s1,
ATTs1|s1,s2

. They are defined as:

ATEs1,s2 = E
[

∑w∈s1
Yi(w)

|s1|
− ∑w′∈s2

Yi(w′)
|s2|

]
,

ATTs1|s1,s2
= E

[
∑w∈s1

Yi(w)

|s1|
− ∑w′∈s2

Yi(w′)
|s2|

∣∣∣∣Wi ∈ s1

]
.

(4)

We now introduce six methods implemented in CIMTx for estimating the causal effects of multiple
treatments: RA, IPTW, BART, RAMS, VM and TMLE.

Regression adjustment Regression adjustment (Rubin, 1973; Linden et al., 2016), also known as
model-based imputation (Imbens and Rubin, 2015), uses a regression model to impute missing
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potential outcomes: what would have happened to a specific individual had this individual received a
treatment to which he or she not exposed. RA regresses the outcomes on treatment and confounders,

f (w, Xi) = E[Yi |Wi = w, Xi] = logit−1
{

β0 + β1w + β⊤2 Xi

}
, (5)

where β0 is the intercept, β1 is the coefficient for treatment and β2 is a vector of coefficients for
covariates Xi. From the fitted regression model (5), the missing potential outcomes for each individual
are imputed using the observed data. The causal effects can be estimated by contrasting the imputed
potential outcomes between treatment groups. CIMTx implements RA with the Bayesian logistic
regression model via the bayesglm() function of the arm package. For the ATE effects, we first average
the L predictive posterior draws { f l(w, Xi), l = 1, . . . , L} over the empirical distribution of {Xi}N

i=1,
and for the ATT effects using s1 as the reference group, over the empirical distribution of {Xi}i:Wi∈s1 .
We then take the difference of the averaged values between two treatment groups w ∈ s1 and w′ ∈ s2.
Inferences about treatment effect can be obtained based on the L posterior average treatment effects.
The 95% credible interval is calculated using the 2.5th percentile and the 97.5th percentile of the
posterior draws (Kruschke, 2014).

In our package CIMTx, we can specify method = "RA" and estimand = "ATE" in the ce_estimate()
function to get the ATE effects via RA:

ra_ate_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "RA", estimand = "ATE", ndpost = 100)

The estimates, standard errors and 95% confidence intervals for the causal estimands would be
printed using the summary() generic function:

summary(ra_ate_res)

#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.28 0.04 -0.35 -0.21
#> RR 0.39 0.07 0.27 0.54
#> OR 0.26 0.06 0.17 0.40

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.60 0.06 -0.69 -0.47
#> RR 0.23 0.05 0.15 0.34
#> OR 0.07 0.02 0.03 0.13

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.31 0.04 -0.39 -0.25
#> RR 0.60 0.04 0.52 0.67
#> OR 0.25 0.05 0.17 0.34

Specifying estimand = "ATT" and setting reference_trt will get us the ATT effects:

ra_att_res <- ce_estimate(y = data$y, x = data$covariates,w = data$w, method = "RA",
estimand = "ATT", ndpost = 100, reference_trt = 1)

summary(ra_att_res)

#> $ATT12
#> EST SE LOWER UPPER
#> RD -0.28 0.05 -0.37 -0.18
#> RR 0.40 0.09 0.25 0.57
#> OR 0.27 0.08 0.16 0.44

#> $ATT13
#> EST SE LOWER UPPER
#> RD -0.59 0.06 -0.67 -0.46
#> RR 0.24 0.06 0.14 0.38
#> OR 0.07 0.03 0.03 0.13

Inverse probability of treatment weighting The idea of IPTW was originally introduced by Horvitz
and Thompson (1952) in survey research to adjust for imbalances in sampling pools. Weighting
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methods have been extended to estimate the causal effect of a binary treatment in observational
studies, and more recently reformulated to accommodate multiple treatments (Imbens, 2000; Feng
et al., 2012; McCaffrey et al., 2013). When interest is in estimating the pairwise ATE for treatment
groups s1 and s2, a consistent estimator of ATEs1,s2 is given by the weighted mean,

ÂTEs1,s2 =
∑N

i=1 Yi I(Wi ∈ s1)/|s1|
∑N

i=1 I(Wi ∈ s1)r(Wi, Xi)
− ∑N

i=1 Yi I(Wi ∈ s2)/|s2|
∑N

i=1 I(Wi ∈ s2)r(Wi, Xi)
, (6)

where r(w, Xi) is the weights satisfying r(w, Xi) = 1/P(Wi = w | Xi), and I(·) is the indicator
function. The CIMTx package provides three ways in which the weights can be estimated: (i)
multinomial logistic regression (Feng et al., 2012), (ii) generalized boosted model (GBM) (McCaffrey
et al., 2013), and (iii) super learner (Van der Laan et al., 2007). A challenge with IPTW is low GPS can
result in extreme weights, which may yield erratic causal estimates with large sample variances (Little,
1988; Kang et al., 2007). This issue is increasingly likely as the number of treatments increases. Weight
trimming or truncation can alleviate the issue of extreme weights (Cole and Hernán, 2008; Lee et al.,
2011)). CIMTx provides an argument for users to choose the percentile at which the weights should
be truncated. We briefly describe the three weight estimators.

(i) The multinomial logistic regression model for treatment assignment is as follows:

P(Wi = w|Xi) =
eα′

w Xi

1 + eα′
1Xi + . . . + eα′

T−1Xi
,

where α′w is a vector of coefficients for Xi corresponding to treatment w, and can be estimated
by using an iterative procedure such as generalized iterative scaling or iteratively reweighted
least squares.

(ii) GBM uses machine learning to flexibly model the relationships between treatment assignment
and covariates. It does this by growing a series of boosted classification trees to minimize
an exponential loss function. This process is effective for fitting nonlinear treatment models
characterized by curves and interactions. The procedure of estimating the GPS can be tuned to
find the GPS model producing the best covariate balance between treatment groups.

(iii) Super learner is an algorithm that creates the optimally weighted average of several machine
learning models. The machine learning models can be specified via the SL.library argument of
the SuperLearner package. This approach has been proven to be asymptotically as accurate as
the best possible prediction algorithm that is included in the library (Van der Laan et al., 2007).

IPTW can be implemented in CIMTx by setting a specific method and estimand. For IPTW
estimators, variance can be estimated via a robust sandwich-type variance estimator or a bootstrap
variance estimator. In practice, a bootstrap variance estimator is often recommended. (Austin, 2016).
The following shows the code to estimate ATE using IPTW with weights estimated by multinomial
logistic regression.

iptw_multi_res <- ce_estimate(y = data$y, x = data$covariates , w = data$w,
method = "IPTW-Multinomial", estimand = "ATE")

We can estimate the ATE effects with weights estimated by super learner and GBM by changing
the argument of method to "IPTW-SL","IPTW-GBM" respectively. We can then estimate the causal effects
and bootstrap confidence intervals by setting boot = TRUE.

iptw_sl_trim_ate_res <- ce_estimate(y = data$y, x = data$covariates , w = data$w,
method = "IPTW-SL", estimand = "ATE",
sl_library = c("SL.glm", "SL.glmnet", "SL.rpart"),
trim_perc = c(0.05,0.95), boot = TRUE,
nboots = 100, verbose_boot = F)

summary(iptw_sl_trim_ate_res)
#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.34 0.05 -0.42 -0.24
#> RR 0.33 0.07 0.19 0.48
#> OR 0.20 0.06 0.10 0.33

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.59 0.05 -0.67 -0.46

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=SuperLearner


CONTRIBUTED RESEARCH ARTICLE 220

#> RR 0.22 0.05 0.13 0.34
#> OR 0.07 0.02 0.04 0.13

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.25 0.05 -0.34 -0.15
#> RR 0.67 0.06 0.57 0.79
#> OR 0.34 0.09 0.21 0.54

Bayesian additive regression trees BART (Chipman et al., 2010) is a likelihood-based machine
learning model and has been adapted into causal inference settings in recent years (Hill, 2011; Hu et al.,
2020a; Hu and Gu, 2021; Hu et al., 2021a,c). For a binary outcome, BART uses the probit regression

f (w, Xi) = E[Yi|Wi = w, Xi] = Φ
{ J

∑
j=1

gj(w, Xi; Tj, Mj)

}
, (7)

where Φ is the the standard normal cumulative distribution function, (Tj, Mj) indexes a single subtree
model in which Tj denotes the regression tree and Mj is a set of parameter values associated with
the terminal nodes of the jth regression tree, gj(w, Xi; Tj, Mj) represents the mean assigned to the
node in the jth regression tree associated with covariate value Xi and treatment level w, and the
number of regression trees J is considered to be fixed and known. BART uses regularizing priors for
(Tj, Mj) to keep the impact of each tree small. Although the prior distributions can be specified via the
ce_estimate() function of CIMTx, the default priors tend to work well and require little modification
in many situations (Hill, 2011; Hu et al., 2020a,b). The details of prior specification and Bayesian
backfitting algorithm for posterior sampling can be found in Chipman et al. (2010). The posterior
inferences about the treatment effects can be drawn in a similar way as described in the Regression
adjustment section.

Setting method = "BART" and specifiying the estimand = "ATE" or estimand = "ATT" of the
ce_estimate() function implements the BART method.

bart_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w, method = "BART",
estimand = "ATT", ndpost=100, reference_trt = 1)

summary(bart_res)

#> $ATT12
#> EST SE LOWER UPPER
#> RD -0.38 0.07 -0.51 -0.25
#> RR 0.47 0.08 0.31 0.61
#> OR 0.21 0.07 0.10 0.35

#> $ATT13
#> EST SE LOWER UPPER
#> RD -0.56 0.07 -0.69 -0.43
#> RR 0.38 0.07 0.24 0.50
#> OR 0.06 0.03 0.02 0.13

Regression adjustment with multivariate spline of GPS For a binary outcome, the number of
outcome events can be small. The estimation of causal effects is challenging with rare outcomes
because the great majority of units contribute no information to explaining the variability attributable
to the differential treatment regimens in the health outcomes (Hu and Gu, 2021). Franklin et al. (2017)
found that regression adjustment on propensity score using one nonlinear spline performed best
with respect to bias and root-mean-squared-error in estimating treatment effects. Hu and Gu (2021)
proposed RAMS, which accommodates multiple treatments by using a nonlinear spline model for the
outcome that is additive in the treatment and multivariate spline function of the GPS as the following:

f (Wi, Xi) = E[Yi|Wi, Xi] = logit−1
{

βWi + h(R(Xi), ϕ)

}
, (8)

where h(·) is a spline function of the GPS indexed by ϕ and β = [β1, . . . , βT ]
⊤ are regression coeffi-

cients associated with the treatment Wi. The dimension of the spline function h(·) depends on the
number of treatments T. Confidence intervals of treatment effect estimates can be obtained using
nonparametric bootstrap for RAMS (Hu and Gu, 2021).
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In CIMTx, RAMS is implemented using the gam() function with tensor product smoother te()
between treatments from the mgcv package. Treatment effects can then be estimated by averaging
and contrasting the predicted f̂ (w, Xi) between treatment groups. The RAMS can be called by setting
method = "RAMS-Multinomial" and specifying the estimand estimand = "ATE" or estimand = "ATT".

rams_multi_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "RAMS-Multinomial", estimand = "ATE",
boot = TRUE, nboots = 100, verbose_boot = F)

Vector matching Lopez and Gutman (2017) proposed the VM algorithm, which matches individuals
with similar vector of the GPS. VM obtains matched sets using a combination of k-means clustering
and one-to-one matching with replacement within each cluster strata. Currently, VM is only designed
to estimate the ATT effects. In CIMTx , VM is implemented via method = "VM". The CIMTx does
not provide confidence intervals for treatment effect estimates because the authors of this method,
Lopez and Gutman (2017), did not provide an approach to estimate the sampling variance of the VM
estimator.

To implement VM in CIMTx, we set the reference group reference_trt = 1, the number of
clusters to form using k-means clustering n_cluster = 3.

vm_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w, method = "VM",
estimand = "ATT", reference_trt = 1, n_cluster = 3)

The number of matched individuals is also stored in the output list:

vm_res$number_matched

#> 158

Targeted maximum likelihood estimation TMLE is a doubly robust approach that combines out-
come estimation, IPTW estimation, and a targeting step to optimize the parameter of interest with
respect to bias and variance. Rose and Normand (2019) implemented TMLE to estimate the ATE
effects of multiple treatments. CIMTx calls the R package tmle to implement TMLE for the ATE effects.
As suggested by Rose and Normand (2019), nonparametric bootstrap is used in CIMTx to obtain the
confidence interval of the treatment effect estimate.

Calling method = "TMLE" implements TMLE in CIMTx. We use nonparametric bootstrap to
estimate the 95% confidence intervals by setting boot = TRUE and nboots = 100.

tmle_res_boot <- ce_estimate(y = data$y, x = data$covariates, w = data$w, nboots = 100,
method = "TMLE", estimand = "ATE", boot = TRUE,
sl_library = c("SL.glm", "SL.glmnet", "SL.rpart"))

summary(tmle_res)

#> $ATE12
#> EST SE LOWER UPPER
#> RD -0.36 0.04 -0.45 -0.29
#> RR 0.30 0.05 0.21 0.39
#> OR 0.17 0.04 0.11 0.24

#> $ATE13
#> EST SE LOWER UPPER
#> RD -0.60 0.04 -0.67 -0.51
#> RR 0.20 0.03 0.15 0.28
#> OR 0.06 0.02 0.04 0.10

#> $ATE23
#> EST SE LOWER UPPER
#> RD -0.24 0.05 -0.34 -0.14
#> RR 0.68 0.06 0.57 0.79
#> OR 0.34 0.09 0.21 0.55
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Identification of a common support region

Turning to causal identification assumptions. If the positivity assumption (A2) is violated, problems
can arise when extrapolating over the areas of the covariate space where common support does not
exist. It is important to define a common support region to which the causal conclusions can be
generalized. In CIMTx, the identification of a common support region is offered in three methods:
IPTW, VM and BART.

For IPTW, one strategy is weight truncation, by which extreme weights that fall outside a specified
range limit of the weight distribution are set to the range limit. This functionality is offered in CIMTx
via the trim_perc argument. trim_perc, which can take two values – one for the lower- and one for
the upper-percentile of the weight distribution for trimming. Figure 3 shows the distributions of the
weights estimated by the three methods before and after weight trimming at the 5% and 95% of the
weight distribution.

plot(iptw_multi_res, iptw_sl_res, iptw_gbm_res, iptw_multi_trim_res,
iptw_sl_trim_res, iptw_gbm_trim_res)

Figure 3: Distributions of the inverse probability of treatment weights estimated by multinomial
logistic regression, super learner and generalized boosted models. Panel (a) shows results before
weight trimming. Panel (b) displays results after trimming the weights at 5% and 95% of the distribu-
tion. Super learner and the generalized boosted models produced less extreme weights compared to
multinomial logistic regression.

For VM, Lopez and Gutman (2017) proposed a rectangular support region defined by the max-
imum value of the smallest GPS and the minimum value of the largest GPS among the treatment
groups. Individuals that fall outside the region are discarded from the causal analysis. This feature is
automatically implemented with "VM" in CIMTx.

For BART, Hu et al. (2020a) supplied BART with a strategy to identify a common support region
for retaining inferential units, which is to discard individuals with a large variability in their predicted
potential outcomes. Specifically, for the ATT effects, any individual i with Wi = w will be discarded if

s fw′
i > maxj{s

fw
j }, ∀j : Wj = w, w′ ̸= w ∈ W , (9)

where s fw
j and s fw′

i respectively denote the standard deviation of the posterior distribution of the
potential outcomes under treatment W = w and W = w′, for a given sample j. For the ATE ef-
fects, the discarding rule in equation (9) is applied to each treatment group. Users can implement
the discarding rule by setting the discard argument in CIMTx. Using ATT1|1,2 as an example, 5
(bart_dis_res$n_discard) individuals in the reference group w = 1 were discarded from the simu-
lated data.

bart_dis_res <- ce_estimate(y = data$y, x = data$covariates, w = data$w,
method = "BART", estimand = "ATT", discard = TRUE,
ndpost = 100, reference_trt = 1)
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Sensitivity analysis for unmeasured confounding

The violation of the ignorability assumption (A3) can lead to biased treatment effect estimates. Sen-
sitivity analysis is useful in gauging how much the causal conclusions will be altered in response
to different magnitude of departure from the ignorability assumption. CIMTx implements a new
flexible sensitivity analysis approach developed by Hu et al. (2022b). This approach first defines a
confounding function for any pair of treatments (w, w′) as

c(w, w′, x) = E [Y(w) |W = w, X = x]− E
[
Y(w) |W = w′, X = x

]
. (10)

The confounding function, also viewed as the sensitivity parameter in a sensitivity analysis,
directly represents the difference in the mean potential outcomes Y(w) between those treated with
W = w and those treated with W = w′, who have the same level of x. If the ignorability assumption
holds, the confounding function will be zero for all w ∈ W . When treatment assignment is not
ignorable, the unmeasured confounding is present and the causal effect estimates using measured X
will be biased. Hu et al. (2022b) derived the form of the resultant bias as:

Bias(w, w′) =− pwc(w′, w, x) + pw′ c(w, w′, x)

− ∑
l:l∈W \{w,w′}

pl
{

c(w′, l, x)− c(w, l, x)
}

, (11)

where pw = P(W = w |X = x), w ̸= w′ ∈ W = {1, . . . , T}.
Table 2 demonstrates the plausible assumptions about the confounding functions and their in-

terpretations. There are three ways in which we can specify the prior for the confounding functions:
(i) point mass prior; (ii) re-analysis over a range of point mass priors (tipping point); (iii) full prior
with uncertainty specified. Since the new sensitivity analysis approach was developed within the
Bayesian framework, strategy (iii) offers an advantage of incorporating the statistical uncertainty due
to sampling and the uncertainty about the values of the sensitivity parameters. In strategy (i), a fixed
value is assumed for the sensitivity parameter. Strategy (ii) expands on strategy (i) and examines how
the causal conclusion would change when a range of values are assumed for the sensitivity parameter.
We will demonstrate all three cases of prior specifications with sa() function in CIMTx package.
Hu et al. (2022b) further discussed (a) strategies to specify the confounding functions that represent
our prior beliefs about the degrees of unmeasured confounding via the remaining variability in the
outcomes unexplained by measured X (Hogan et al., 2014); and (b) ways in which the causal effects
can be estimated adjusting for the presumed degree of unmeasured confounding.

Table 2: Interpretation of assumed priors on c(w, w′, x) and c(w′, w, x) for causal estimands based on
the risk difference, assuming the outcome is an adverse event.

Prior assumption Interpretation and implications of the assumptions
c(w, w′, x) c(w′, w, x)

> 0 < 0 Unhealthier individuals are treated with w.
< 0 > 0 Contrary to the above interpretation, unhealthier individuals are

treated with w′.
< 0 < 0 The observed treatment allocation between w′ and w is beneficial

relative to the alternative which reverses treatment assignment for
everyone.

> 0 > 0 Contrary to the above interpretation, the observed treatment allo-
cation between w′ and w is undesirable relative to the alternative
which reverses treatment assignment for everyone.

The proposed sensitivity analysis algorithm proceeds with the following steps (Hu et al., 2022b):

1. Fit a multinomial probit BART model (Kindo et al., 2016) f MBART(A |X) to estimate the GPS,
pl ≡ P(W = l |X = x) ∀l ∈ W , for each individual.

2. for w← 1 to T do
Draw M1 GPS p̃l1, . . . , p̃lM1

, ∀l ̸= w ∧ l ∈ W from the posterior predictive distribution of
f MBART(W |X) for each individual.

for m← 1 to M1 do
Draw M2 values η∗lm1, . . . , η∗lmM2

from the prior distribution of each of the confounding
functions c(w, l, x), for each l ̸= j ∧ l ∈ W .

end for
end for
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3. Compute the adjusted outcomes, YCF
i ≡ Yi − ∑T

l ̸=w P(Wi = l |Xi = x)c(w, l, x), for each
treatment w, for each of M1 M2 draws of { p̃l1, η∗l11, . . . , η∗l1M2

, . . . , p̃lM1
, η∗lM11, . . . , η∗lM1 M2

; l ̸=
w ∧ l ∈ W }.

4. Fit a BART model to each of M1 ×M2 sets of observed data with the adjusted outcomes YCF.

5. Estimate the combined adjusted causal effects and uncertainty intervals by pooling posterior
samples across model fits arising from the M1 ×M2 data sets.

We now demonstrate the Monte Carlo sensitivity analysis approach for unmeasured confounding
(Hu et al., 2022b). We first simulate a small dataset in a simple causal inference setting. There are two
binary confounders: X1 is measured and X2 is unmeasured.

set.seed(111)
data_SA <- data_sim(
sample_size = 100, n_trt = 3,
x = c("rbinom(1, .5)", # x1: measured confounder

"rbinom(1, .4)"), # x2: unmeasured confounder
lp_y = rep(".2*x1+2.3*x2", 3),# parallel response surfaces
nlp_y = NULL,
align = F, # w model is not the same as the y model
lp_w = c("0.2 * x1 + 2.4 * x2", # w = 1

"-0.3 * x1 - 2.8 * x2"),# w = 2
nlp_w = NULL,
tau = c(-2, 0, 2), delta = c(0, 0), psi = 1)

Next we implement the sensitivity analysis algorithm step-by-step.

1. Estimate the GPS for each individual. Specifically, we fit a multinomial probit BART model
regressing treatment assignment on covariates, using mbart2() function from BART package.
We set the number of posterior draws for the GPS (m1) to 50.

m1 <- 50; sample_gap <- 10
w_model <- BART::mbart2(x.train = data_SA$covariates, y.train = data_SA$w,

ndpost = m1 * sample_gap)

2. Then we draw the GPS for each individual from the fitted multinomial probit BART model.

gps <- array(w_model$prob.train[seq(1, m1 * sample_gap, sample_gap),],
dim = c(m1, # 1st dimension is M1

length(unique(data_SA$w)), # 2nd dimension is w
dim(data_SA$covariates)[1])) # 3rd dimension is sample size

dim(gps)

#> 50 3 100

The output of the posterior GPS is a three-dimensional array. The first dimension is the number
of posterior draws for the GPS (M1). The second dimension is the number of treatment W, and
the third dimension is the total sample size.

3. Specify the prior distributions and the number of draws (M2) for the confounding functions
c(w, w′, x). In this illustrative simulation example, we use the true values of the confounding
functions within each stratum of x1. This represents the strategy (i) point mass prior.

x1 <- data_SA$covariates[, 1, drop = F]
x2 <- data_SA$covariates[, 2, drop = F] # x2 as the unmeasured confounder
w <- data_SA$w
x1w_data <- cbind(x1, w)
Y1 <- data_SA$y_true[, 1]
Y2 <- data_SA$y_true[, 2]
Y3 <- data_SA$y_true[, 3]
y <- data_SA$y
# Calculate the true confounding functions within x1 = 1 stratum
c_1_x1_1 <- mean(Y1[w == 1 & x1 == 1]) - mean(Y1[w == 2 & x1 == 1]) # c(1,2)
c_2_x1_1 <- mean(Y2[w == 2 & x1 == 1]) - mean(Y2[w == 1 & x1 == 1]) # c(2,1)
c_3_x1_1 <- mean(Y2[w == 2 & x1 == 1]) - mean(Y2[w == 3 & x1 == 1]) # c(2,3)
c_4_x1_1 <- mean(Y1[w == 1 & x1 == 1]) - mean(Y1[w == 3 & x1 == 1]) # c(1,3)
c_5_x1_1 <- mean(Y3[w == 3 & x1 == 1]) - mean(Y3[w == 1 & x1 == 1]) # c(3,1)
c_6_x1_1 <- mean(Y3[w == 3 & x1 == 1]) - mean(Y3[w == 2 & x1 == 1]) # c(3,2)
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c_x1_1 <- cbind(c_1_x1_1, c_2_x1_1, c_3_x1_1, c_4_x1_1, c_5_x1_1,
c_6_x1_1)# True confounding functions among x1 = 1

The true values of the confounding functions within the stratum x1 = 0 can be calculated in a
similar way.

c_1_x1_0 <- mean(Y1[w == 1 & x1 == 0]) - mean(Y1[w == 2 & x1 == 0])# c(1,2)
c_2_x1_0 <- mean(Y2[w == 2 & x1 == 0]) - mean(Y2[w == 1 & x1 == 0])# c(2,1)
c_3_x1_0 <- mean(Y2[w == 2 & x1 == 0]) - mean(Y2[w == 3 & x1 == 0])# c(2,3)
c_4_x1_0 <- mean(Y1[w == 1 & x1 == 0]) - mean(Y1[w == 3 & x1 == 0])# c(1,3)
c_5_x1_0 <- mean(Y3[w == 3 & x1 == 0]) - mean(Y3[w == 1 & x1 == 0])# c(3,1)
c_6_x1_0 <- mean(Y3[w == 3 & x1 == 0]) - mean(Y3[w == 2 & x1 == 0])# c(3,2)
c_x1_0 <- cbind(c_1_x1_0, c_2_x1_0, c_3_x1_0, c_4_x1_0, c_5_x1_0, c_6_x1_0)

The true values of the confounding functions within the stratum of x1 can be calculated using
the helper function true_c_fun_cal() in our package.

true_c_fun <- true_c_fun_cal(x = x1, w = w)

4. Calculate the confounding function adjusted outcomes with the drawn values of GPS and
confounding functions.

i <- 1; j <- 1
ycf <- ifelse(
x1w_data[, "w"] == 1 & x1 == 1,
# w = 1, x1 = 1
y - (c_x1_1[i, 1] * gps[j, 2, ] + c_x1_1[i, 4] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 1 & x1 == 0,
# w = 1, x1 = 0
y - (c_x1_0[i, 1] * gps[j, 2, ] + c_x1_0[i, 4] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 2 & x1 == 1,
# w = 2, x1 = 1
y - (c_x1_1[i, 2] * gps[j, 1, ] + c_x1_1[i, 3] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 2 & x1 == 0,
# w = 2, x1 = 0
y - (c_x1_0[i, 2] * gps[j, 1, ] + c_x1_0[i, 3] * gps[j, 3, ]),
ifelse(
x1w_data[, "w"] == 3 & x1 == 1,
# w = 3, x1 = 1
y - (c_x1_1[i, 5] * gps[j, 1, ] + c_x1_1[i, 6] * gps[j, 2, ]),
# w = 3, x1 = 0
y - (c_x1_0[i, 5] * gps[j, 1, ] + c_x1_0[i, 6] * gps[j, 2, ])

)
)

)
)

)

5. Use the adjusted outcomes to estimate the causal effects.

bart_mod_sa <- BART::wbart(x.train = x1w_data, y.train = ycf, ndpost = 1000)
predict_1_ate_sa <- BART::pwbart(cbind(x1, w = 1), bart_mod_sa$treedraws)
predict_2_ate_sa <- BART::pwbart(cbind(x1, w = 2), bart_mod_sa$treedraws)
predict_3_ate_sa <- BART::pwbart(cbind(x1, w = 3), bart_mod_sa$treedraws)
RD_ate_12_sa <- rowMeans(predict_1_ate_sa - predict_2_ate_sa)
RD_ate_23_sa <- rowMeans(predict_2_ate_sa - predict_3_ate_sa)
RD_ate_13_sa <- rowMeans(predict_1_ate_sa - predict_3_ate_sa)
predict_1_att_sa <- BART::pwbart(cbind(x1[w == 1,], w = 1), bart_mod_sa$treedraws)
predict_2_att_sa <- BART::pwbart(cbind(x1[w == 1,], w = 2), bart_mod_sa$treedraws)
RD_att_12_sa <- rowMeans(predict_1_att_sa - predict_2_att_sa) # w=1 is the reference

Repeat steps 3 and 4 M1 × M2 times to form M1 × M2 datasets with adjusted outcomes. The
uncertainty intervals are estimated by pooling the posteriors across the M1 ×M2 model fits.
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The sa() function implements the sensitivity analysis approach while fitting the M1 ×M2 models
using parallel computation.

sa_res <- sa(m1 = 50, m2 = 1, x = x1, y = data_SA$y, w = data_SA$w, ndpost = 100,
estimand = "ATE", prior_c_function = true_c_fun, nCores = 3)

summary(sa_res)

#> EST SE LOWER UPPER
#> ATE_RD12 -0.44 0.10 -0.64 -0.23
#> ATE_RD13 -0.58 0.11 -0.80 -0.36
#> ATE_RD23 -0.14 0.12 -0.38 0.10

We compare the sensitivity analysis results to the naive estimators where we ignore the unmeasured
confounder X2, and to the results where we had access to X2.

bart_with_x2_res <- ce_estimate(y = data_SA$y, x = cbind(x1, x2), w = data_SA$w,
method = "BART", estimand = "ATE", ndpost = 100)

bart_without_x2_res <- ce_estimate(y = data_SA$y, x = x1, w = data_SA$w,
method = "BART", estimand = "ATE", ndpost = 100)

Figure 4 compares the estimates of ATE1,2, ATE2,3 and ATE1,3 from the three analyses. The
sensitivity analysis estimators are similar to the results that could be achieved had the unmeasured
confounder X2 been made available.

Figure 4: Estimates and 95% credible intervals for ATE1,2, ATE2,3 and ATE1,3

We can also conduct the sensitivity analysis for the ATT effects by setting estimand = "ATT".

sa_att_res <- sa(m1 = 50, m2 = 1, x = x1, y = data_SA$y, w = data_SA$w, ndpost = 100,
estimand = "ATT", prior_c_function = true_c_fun, nCores = 1,
reference_trt = 1)

summary(sa_att_res)

#> EST SE LOWER UPPER
#> ATT_RD12 -0.42 0.10 -0.63 -0.22
#> ATT_RD13 -0.57 0.11 -0.79 -0.35

Finally, we demonstrate the sa() function in a more complex data setting with 3 measured
confounders and 2 unmeasured confounders.

set.seed(1)
data_SA_2 <- data_sim(
sample_size = 100, n_trt = 3,
x = c( "rnorm(0, 0.5)", # x1

"rbeta(2, .4)", # x2
"runif(0, 0.5)", # x3
"rweibull(1, 2)", # x4 as one of the unmeasured confounders
"rbinom(1, .4)" ), # x5 as one of the unmeasured confounders

lp_y = rep(".2*x1 + .3*x2 - .1*x3 - 1.1*x4 - 1.2*x5", 3),
nlp_y = rep(".7*x1*x1 - .1*x2*x3", 3), # parallel response surfaces
align = FALSE,
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lp_w = c(".4*x1 + .1*x2 - 1.1*x4 + 1.1*x5", # w = 1
".2*x1 + .2*x2 - 1.2*x4 - 1.3*x5"), # w = 2,

nlp_w = c("-.5*x1*x4 - .1*x2*x5", # w = 1
"-.3*x1*x4 + .2*x2*x5"), # w = 2,

tau = c(0.5,-0.5,0.5), delta = c(0.5,0.5), psi = 2)

We have demonstrated the strategy (i) point mass prior, and now show how strategy (ii) re-analysis
over a range of point mass priors and (iii) full prior with uncertainty specified can be used. For strategy
(ii), we can specify the grid of the specific confounding function using seq() function. In the following
example, we will set c(1, 3) as a grid of 5 negative numbers from -0.6 to 0 with an increment of
0.15, and set c(3, 1) as a grid of 5 positive numbers from 0 to 0.6 with an increment of 0.15. This
specification encodes our belief that unhealthier (suppose the outcome is death) individuals are treated
with treatment option 3 (see Table 2) because those receiving w = 1 would have lower probability of
death to either treatment. The other confounding functions are drawn from a uniform distribution
(strategy (iii)).

c_grid <- c("runif(-.6, 0)", "runif(0,.6)", "runif(-.6,0)", # c(1,2), c(2,1), c(2,3)
"seq(-.6, 0,.15)", "seq(0,.6,.15)", "runif(0,.6)") # c(1,3), c(3,1), c(3,2)

SA_grid_res <- sa(y = data_SA_2$y, w = data_SA_2$w, x = data_SA_2$covariates[,-c(4,5)],
prior_c_function = c_grid, m1 = 1, nCores = 3, estimand = "ATE")

The sensitivity analysis results can be visualized via a contour plot. Figure 5 shows how the
estimate of ATE1,3 would change under different values of the two confounding functions c(1, 3, x)
and c(3, 1, x). Under the assumption that unhealthier patients are treated with w = 3, when the effect
of unmeasured confounding increases (moving up along the −45◦ line), the beneficial treatment effect
associated with w = 3 becomes more pronounced evidenced by larger estimates of ATE1,3.

plot(SA_grid_res, ATE = "1,3")

Figure 5: Contour plot of the confounding function adjusted ATE1,3. The blue lines report the
adjusted causal effect estimates corresponding to pairs of values for c(1, 3) and c(3, 1) spaced on
a grid (−0.6, 0)× (0, 0.6) incremented by 0.15, and under the prior distributions: c(1, 2), c(2, 3) ∼
U(−0.6, 0); c(2, 1), c(2, 3) ∼ U(0, 0.6).

4 Discussion

We contribute a comprehensive R package CIMTx suitable for causal analysis of observational data
with multiple treatments and a binary outcome. In this package, we introduce six methods for the
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estimation of causal effects, including both the classical approaches and machine learning based
methods. Drawing causal inference from non-experimental data inevitably involves structural causal
assumptions. CIMTx offers a unique set of features to address two key assumptions: positivity and
ignorability, using appropriate estimation procedures. Additionally, the CIMTx package provides
guidance to readers on how to simulate data possessing the data characteristics in the multiple
treatment setting. Detailed step-by-step examples are provided to demonstrate all methods. The
current version of the CIMTx package focuses on binary outcomes. For future research, developing
methods and R packages for causal inferences with more complex outcomes such as censored survival
outcomes (Hu et al., 2022a) could be a worthwhile contribution.
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logitFD: an R package for functional
principal component logit regression
by Manuel Escabias, Ana M. Aguilera and Christian Acal

Abstract The functional logit regression model was proposed by Escabias et al. (2004) with the objective
of modeling a scalar binary response variable from a functional predictor. The model estimation
proposed in that case was performed in a subspace of L2(T) of squared integrable functions of finite
dimension, generated by a finite set of basis functions. For that estimation it was assumed that the
curves of the functional predictor and the functional parameter of the model belong to the same finite
subspace. The estimation so obtained was affected by high multicollinearity problems and the solution
given to these problems was based on different functional principal component analysis. The logitFD
package introduced here provides a toolbox for the fit of these models by implementing the different
proposed solutions and by generalizing the model proposed in 2004 to the case of several functional
and non-functional predictors. The performance of the functions is illustrated by using data sets of
functional data included in the fda.usc package from R-CRAN.

1 Introduction

A functional variable is that whose values depend on a continuous magnitude such as time. They
are functional in the sense that they can be evaluated at any time point of the domain, instead of
the discrete way, in which they were originally measured or observed (see for example Ramsay and
Silverman, 2005). Different approaches have been used for the study of functional data, among others,
the nonparametric methods proposed by Müller and Stadtmüller (2005) and Ferraty and Vieu (2006) or
the basis expansion methods considered in Ramsay and Silverman (2005). Most multivariate statistical
techniques have been extended for functional data, whose basic theory and inferential aspects are
collected in recent books by Horvath and Kokoszka (2012), Zhang (2014) and Kokoszka and Reimherr
(2018). The basic tools to reduce the dimension of the functional space to which the curves belong, are
Functional Principal and Independent Component Analysis (FPCA) (Ramsay and Silverman, 2005;
Acal et al., 2020; Vidal et al., 2021) and Functional Partial Least Squares (FPLS) (Preda and Saporta,
2005; Aguilera et al., 2010; Aguilera et al., 2016).

In the last decade of the XXth century and the first decade of XXIth century, where functional
data methods began to be developed, there was no adequate software available for using and fitting
functional data methods. In fact, nowadays classical statistical software like SPSS, STATA,... do not
have a toolbox for functional data analysis. The development of object-oriented software like R, Matlab
or S-plus and the great activity of scientific community in this field has made possible to emerge
different packages mainly in R for using functional data analysis (FDA) methods. Every package
is designed from the point of view followed by its developer and the method used to fit functional
data methods. For example Febrero-Bande and Oviedo (2012) used nonparametric methods in their
fda.usc package, Ramsay et al. (2009) designed their fda package under basis expansion philosophy,
Principal Analysis by Conditional Estimation (PACE) algorithm (see Zhu et al., 2014) was used for
curves alignment, PCA and regression in the fdasrvf package (see https://cran.r-project.org/web/
packages/fdasrvf/index.html). Recently Fabian Scheipl has summarized the available R packages
for FDA (see https://cran.r-project.org/web/views/FunctionalData.html).

This paper is devoted to logitFD an R package for fitting the different functional principal compo-
nent logit regression approaches proposed by Escabias et al. (2004). Functional logit regression is a
functional method for modeling a scalar binary response variable in different situations: firstly, from
one single functional variable as predictor; secondly, from several functional variables as predictors;
and thirdly, from several functional and nonfunctional variables as predictors which is the most
general case. There exist some R functions with this objective as the fregre.glm function of fda.usc
package (see https://rpubs.com/moviedo/fda_usc_regression). Different to the former the methods
proposed by Escabias et al. (2004), and developed in logitFD, are basis expansion based methods
what makes the logit model suffer from multicollinearity. The proposed solutions were based on
different functional principal components analysis: ordinary FPCA and filtered FPCA (see Escabias
et al., 2014). These models have been successfully applied to solve environmental problems (Aguilera
et al., 2008b; Escabias et al., 2005; Escabias et al., 2013) and classification problems in food industry
(Aguilera-Morillo and Aguilera, 2015). Extensions for the case of sparse and correlated data or gener-
alized models have been also studied (James, 2002; Müller and Stadtmüller, 2005; Aguilera-Morillo
et al., 2013; Mousavi and Sørensen, 2018; Tapia et al., 2019; Bianco et al., 2021).

This package adopts fda’s package philosophy of basis expansion methods of Ramsay et al. (2009)
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and it is designed to use objects inherited from the ones defined in fda package. For this reason fda
package is required for logitFD. The package consists of four functions that fit a functional principal
component logit regression model in four different situations

• Filtered functional principal components of functional predictors, included in the model accord-
ing to their variability explained power.

• Filtered functional principal components of functional predictors, included in the model auto-
matically according to their prediction ability by stepwise methods.

• Ordinary functional principal components of functional predictors, included in the model
according to their variability explained power.

• Ordinary functional principal components of functional predictors, included in the model
automatically according to their prediction ability by stepwise methods.

The designed functions of our package use as input the fd objects given by fda package and also
provide as output fd objects among others elements.

This paper is structured as follows: after this introduction, the second section shows the generalities
of the package with the needed definitions and objects of functional data analysis, functional logit
regression and extended functional logit regression, third and fourth sections board ordinary and
filtered functional principal component logit regression, respectively. In fifth section ordinary and
filtered functional principal components logit regression is addressed by including functional principal
components according prediction ability by stepwise methods. In every section a summary of the
theoretical aspects of the involved models is shown with a practical application with functional data
contained in fda.usc package (Febrero-Bande and Oviedo, 2012).

2 logitFD package: general statements

Functional data analysis

A functional data set is a set of curves {x1(t), . . . , xn(t)} , with t in a real interval T (t ∈ T). Each curve
can be observed at different time points of its argument t as xi = (xi (t0) , . . . , xi (tmi ))

′ for the set of
times t0, . . . , tmi , i = 1, . . . , n and these are not necessarily the same for each curve.

Basis expansion methods assume that the curves belong to a finite dimensional space generated by
a basis of functions

{
ϕ1 (t) , . . . , ϕp (t)

}
and so they can be expressed as

xi (t) =
p

∑
j=1

aijϕj (t) , i = 1, . . . , n. (1)

The functional form of the curves is determined when the basis coefficients ai =
(

ai1, . . . , aip

)′
are

known. These can be obtained from the discrete observations either by least squares or by interpolation
methods (see, for example, Escabias et al., 2005 and Escabias et al., 2007).

Depending on the characteristics of the curves and the observations, various types of basis can be
used (see, for example, Ramsay and Silverman, 2005). In practice, those most commonly used are, on
the one had, the basis of trigonometric functions for regular, periodic, continuous and differentiable
curves, and on the other hand, the basis of B-spline functions, which provides a better local behavior
(see De Boor, 2001). In fda package the type of basis used are B-spline basis, constant basis, exponential
basis, Fourier basis, monomial basis, polygonal basis and power basis (Ramsay et al., 2009). Due to
logitFD package use fd objects from fda package, the same types of basis can be used.

In order to illustrate the use of logitFD package we are going to use aemet data included in fda.usc
package of Febrero-Bande and Oviedo (2012). As can be read in the package manual, aemet data
consist of meteorological data of 73 Spanish weather stations. This data set contains functional and
nonfunctional variables observed in all the 73 weather stations. The information we are going to use
to illustrate the use of our logitFD package is the following:

• aemet$temp: matrix with 73 rows and 365 columns with the average daily temperature for the
period 1980-2009 in Celsius degrees for each weather station.

• aemet$logprec: matrix with 73 rows and 365 columns with the average logarithm of precip-
itation for the period 1980-2009 for each weather station. We are going to use the proper
precipitation, that is, exp(aemet$logprec)

• aemet$wind.speed: matrix with 73 rows and 365 columns with the average wind speed for the
period 1980-2009 for each weather station.
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• aemet$df[,c("ind","altitude","longitude","latitude")]: data frame with 73 rows and 4
columns with the identifications code of each weather station, the altitude in meters over sea
level and longitude and latitude of each weather station.

The problem with daily data is that they are too wiggly so if we need smooth curves with few
basis functions, the loose of information is big. So, in order to illustrate the use of logitFD package we
are going to use mean monthly data. So for each one of the previously defined matrices we consider
mean monthly data. On the other hand, logprec is also a very wiggly data set, so we considered their
exponential. So the final data sets considered were the following:

• TempMonth: matrix with 73 rows and 12 columns with the mean monthly temperature of
aemet$temp.

• PrecMonth: matrix with 73 rows and 12 columns with the mean monthly exponential of
aemet$logprec.

• WindMonth: matrix with 73 rows and 12 columns with the mean monthly wind speed of
aemet$wind.speed.

We are going to consider as binary response variable that variable with values: 1 if a weather station
is located in the north of Spain (above Madrid, the capital of Spain, and located in the geographic
center of the country) and 0 otherwise (stations of the south). Our objective will be to model the
location of weather stations (north/south) from their meteorological information. This is a really
artificial problem trying to explain the climate characteristics of Spanish weather stations classified
according to their geographical location. Let us observe that only latitude is enough to determine the
location of a weather station in the sense we are defining. In fact, latitude allows complete separation
that makes the estimation of the logit model impossible (see for example Hosmer et al., 2013).

The steps for reading data would be

library(fda.usc)
data(aemet)
Temp <- aemet$temp$data
Prec <- exp(aemet$logprec$data)
Wind <- aemet$wind.speed$data
StationsVars <- aemet$df[,c("ind","altitude","longitude","latitude")]
StationsVars$North <- c(1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,1,1,1,1,1,
0,0,0,1,1,1,1,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,1,1,1,1)

and the transformations to consider mean monthly data from daily data only for Temperature

TempMonth <- matrix(0,73,12)
for (i in 1:nrow(TempMonth)){
TempMonth[i,1] <- mean(Temp[i,1:31])
TempMonth[i,2] <- mean(Temp[i,32:59])
TempMonth[i,3] <- mean(Temp[i,60:90])
TempMonth[i,4] <- mean(Temp[i,91:120])
TempMonth[i,5] <- mean(Temp[i,121:151])
TempMonth[i,6] <- mean(Temp[i,152:181])
TempMonth[i,7] <- mean(Temp[i,182:212])
TempMonth[i,8] <- mean(Temp[i,213:243])
TempMonth[i,9] <- mean(Temp[i,244:273])
TempMonth[i,10] <- mean(Temp[i,274:304])
TempMonth[i,11] <- mean(Temp[i,305:334])
TempMonth[i,12] <- mean(Temp[i,335:365])
}

The rest of matrices (PrecMonth and WindMonth) were obtained in the same way.

logitFD is an R package for fitting functional principal component logit regression based on
ordinary and filtered functional principal components described in previous sections. As was stated
in the introduction, this package uses fda’s package philosophy of basis expansion methods and it is
designed to use objects inherited from the ones defined in fda package. For this reason fda package is
required for logitFD. The R functions designed in our package use as input the fd objects given by fda
package and also provide as output fd objects among others elements. In order to use our package it
is assumed that the reader manage with fda package, its objects and functions.

Let us begin with a brief explanation of the fda objects required in our proposal. fda package builds,
from discrete observations of curves, an fd object (named fdobj) that will be used by logitFD for its
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Figure 1: Curves of mean monthly Temperature (left), Precipitation (middle) and Wind Speed (right)
registered in Spanish weather stations along one year. Data set aemet from fda.usc package. Numbers
1, 2, . . . , 12 in the horizontal axis refer to months January, February, . . . , December respectively.

methods. So, let Xn×m = (xi(tk)), i = 1, . . . , n; k = 1, . . . , m be the matrix of discrete observations
of curves x1 (t) , x2 (t) , . . . , xn (t) at the same time points t1, t2, . . . , tm. An fd object is an R list with
elements:

• coefs: the matrix of basis coefficients.

• basis: an object of type basis with the information needed to build the functional form of
curves based on basis expansion methods explained before. Depending on the selected basis
the list of objects that contains the basis object can be different (see fda reference manual).

• fdnames: a list containing names for the arguments, function values and variables. This argu-
ment is not necessary.

The matrix of basis coefficients An×p = (aij), i = 1, . . . , n; j = 1, . . . , p (coefs) of all curves are

obtained by least squares as AT =
(
ΦTΦ

)−1 ΦT XT where Φm×p = (ϕj (tk)), j = 1, . . . , p; k = 1, . . . , m
is the matrix of basis functions evaluated at sampling points.

The basis object allows the basis expansion (1) of curves. We consider for aemet data these two
basis:

• 7-length Fourier basis for Temperature.

• 8-length cubic B-spline basis for Precipitation and Wind

The R parameters needed to define the basis object depend on the type of basis used (see fda R reference
manual). Fourier basis only needs the interval where basis functions are defined and the dimension
of the basis. B-spline basis needs also the degree of polynomials that define the basis functions. The
default degree is 3.

The code to create the used basis have been

FourierBasis <- create.fourier.basis(rangeval = c(1,12),nbasis=7)
BsplineBasis <- create.bspline.basis(rangeval = c(1,12),nbasis=8)

The main function of fda package that provides the fdobj object from discrete data in a matrix is
Data2fd function (see fda reference manual). Our fdobj were obtained with the code

TempMonth.fd <- Data2fd(argvals = c(1:12), y=t(TempMonth),basisobj = FourierBasis)
PrecMonth.fd <- Data2fd(argvals = c(1:12), y=t(PrecMonth),basisobj = BsplineBasis)
WindMonth.fd <- Data2fd(argvals = c(1:12), y=t(WindMonth),basisobj = BsplineBasis)

An fdobj allows plotting all curves by using the R plot() command. The functional data so
obtained can be seen in Figure 1.

Functional logit regression model

In order to understand how the functions of the logitFD work, let summarize the theoretical aspects
of the models involved.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=fda.usc
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=logitFD


CONTRIBUTED RESEARCH ARTICLE 235

Let Y be a binary response random variable and let {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} be a set
of functional covariates related to Y. Let x11 (t) , . . . , xn1 (t) , . . . , x1R (t) , . . . , xnR (t) be R samples of
curves of the functional predictors that can be summarized by columns in a matrix of curves

x11 (t) x12 (t) · · · x1R (t)
x21 (t) x22 (t) · · · x2R (t)
· · · · · · · · · · · ·

xn1 (t) xn2 (t) · · · xnR (t) .

 (2)

Let y1, . . . , yn be a sample of the binary response associated with the curves (yi ∈ {0, 1}), then the
functional logit model in terms of the functional predictors is formulated as

yi = πi + εi = π (xi1 (t) , . . . , xiR (t)) + εi ⇔ πi =
exp {li}

1 + exp {li}
, i = 1, . . . , n, (3)

where ε = (ε1, . . . , εn)
′ is the vector of independent centered random errors, with unequal variances

and Bernoulli distribution, and li (known as logit transformations) are modelized from functional
predictors as

li = ln
[

πi
1 − πi

]
= α +

∫
T

xi1 (t) β1 (t) dt +
∫

T
xi2 (t) β2 (t) dt + · · ·+

∫
T

xiR (t) βR (t) dt. (4)

This model has R functional parameters to be estimated β1 (t) , . . . , βR (t) . If we consider that the
curves of each functional predictor belong to a finite space generated by a basis of functions as in (1)
and that the corresponding functional parameter belongs to the same space (same basis for each pair
(Xr(t), βr(t)), r = 1, . . . , R)

βr (t) =
pr

∑
l=1

βrlϕrl (t) , r = 1, . . . , R, (5)

the functional logit model in terms of the logit transformations is expressed in matrix form as

L = 1α + A1Ψ1β1 + A2Ψ2β2 + · · ·+ ARΨRβR, (6)

where

• L = (l1, . . . , ln)′ is the vector of logit transformations.

• (1 | A1Ψ1 | A2Ψ2 | · · · | ARΨR) is the design matrix, and | indicating the separation between
the boxes of the matrix.

• 1 = (1, . . . , 1)′ is a n−length vector of ones.

• Ψr = (ψjkr), r = 1, . . . , R is the matrix whose entries are the inner products between basis
functions of the space where curves belong to

ψjkr =< ϕjr(t), ϕkr(t) >=
∫

T
ϕjr(t)ϕkr(t)dt, j, k = 1, . . . , pr; r = 1, . . . , R. (7)

• Ar, r = 1, . . . , R is the matrix of basis coefficients as rows of sample curves of the space where
curves belong to.

• βr =
(

βr1, . . . , βrpr

)′ , r = 1, . . . , R are the basis coefficients of the functional parameter
βr(t), r = 1, . . . , R.

Let us observe that each functional predictor (and functional parameter) can be expressed in terms
of a different type of basis and different number of basis functions.

This functional logit model provides severe multicollinearity problems as was stated in Escabias
et al. (2004) for the case of a single functional predictor that was the original formulation of the model.

Extended functional logit model: several functional and nonfunctional predictors

We can finally formulate the functional logit model in terms of more than one functional predictor and
non-functional ones. So let Y be a binary response variable and let {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T}
be a set of functional covariates related to Y and U1, U2, . . . , US a set of non-functional predictors. Let
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us consider the sample of curves (2) and
u11 u12 · · · u1S
u21 u22 · · · u2S
· · · · · · · · · · · ·
un1 un2 · · · unS

 ,

the sample of observations of nonfunctional predictors. Let y1, . . . , yn be a sample of the response
associated with the curves. Then the model is expressed in terms of logit transformations as

li = α +
∫

T
xi1 (t) β1 (t) dt + · · ·+

∫
T

xiR (t) βR (t) dt + ui1δ1 + · · ·+ uiSδS, i = 1, . . . , n. (8)

Now the model has R functional parameters to estimate β1 (t) , . . . , βR (t) and S nonfunctional param-
eters δ1, . . . , δS. As in the previous case, each functional predictor and functional parameter can be
expressed in terms of a different type of basis and different number of basis functions as in (1) and (5).
We consider again the same basis for each pair (Xr(t), βr(t)), r = 1, . . . , R. The functional logit model
in terms of the logit transformations is expressed in matrix form as

L = 1α + A1Ψ1β1 + A2Ψ2β2 + · · ·+ ARΨRβR + U1δ1 + · · ·+ USδS.

This model has as only difference with respect the previous one the design matrix of the model
(1 | A1Ψ1 | A2Ψ2 | · · · | ARΨR |U1| · · · |US) , where U1, . . . , US represent the columns of observations
of the nonfunctional predictors, and a set of scalar parameters δ1, . . . , δS. As in the previous case, this
model has multicollinearity problems.

3 Ordinary functional principal components logit regression

The proposed solution to solve the multicollinearity problems in Escabias et al. (2004) for the single
model (only one functional predictor) was to use as predictors a set of functional principal components.
Let us briefly remember the functional principal component analysis principles.

Let x1 (t) , . . . , xn (t) be a set of curves with mean curve and covariance surface respectively

x (t) =
1
n

n

∑
i=1

xi (t) , C (s, t) =
1

n − 1

n

∑
i=1

(xi (s)− x (s)) (xi (t)− x (t)) .

Functional principal components are defined as

ξij =
∫

T
(xi (t)− x (t)) f j (t) dt, f j (t) =

p

∑
k=1

Fjkϕk (t) , j = 1, . . . , p; i = 1, . . . , n.

In this formulation it is assumed that curves are expressed as in (1), and, as a consequence, the eigen-
functions f j(t), that define the functional principal components, are also basis expansion expressed,
being the basis coefficients Fj the eigenvectors of AΨ1/2 matrix (see Ocaña et al., 2007). For a more
general and detailed situation see Ramsay and Silverman (2005). The original curves can be expressed
in terms of the functional principal components as

xi (t) = x(t) +
p

∑
j=1

ξij f j (t) = x(t) +
p

∑
j=1

p

∑
k=1

ξijFjkϕk (t) , i = 1, . . . , n.

If a reduced set of functional principal components is considered, the original curves can be approxi-
mated by

xi (t) ≃ x(t) +
q<p

∑
j=1

ξij f j (t) = x(t) +
q<p

∑
j=1

p

∑
k=1

ξijFjkϕk (t) , i = 1, . . . , n (9)

The quality of this approximation will depend on the percentage of explained variability that acumu-
lates the first q functional principal components, given by

∑
q
j=1 λj

∑
p
j=1 λj

.

The ordinary functional principal components logit regression solution to solve the multicollinear-
ity problems of the functional logistic regression model consists of considering a functional principal
component expansion of each sample curve for each functional predictor and turning the functional
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model into a multivariate one whose covariates are the considered functional principal components.
The number of principal components required can be different in each functional predictor, but the
same for all curves of a specific functional predictor.

In order to get an estimation of the functional parameter for the case of a single functional covariate,
by considering the principal component expansion of curves, the logit model adopts the following
expression

li = α +
∫

T

x(t) +
p

∑
j=1

ξij f j (t)

 β (t) dt = α +
∫

T
x(t)β (t) dt +

p

∑
j=1

ξij

∫
T

f j (t) β (t) dt,

= γ0 +
p

∑
j=1

ξijγj, i = 1, . . . , n.

These expressions enables to express the basis coefficients of the functional parameter and the intercept
parameter of the logit model in terms of the parameters estimated from the functional principal
components of the curves.

α = γ0 −
∫

T
x(t)β (t) dt = α + (a1, . . . , ap)Ψ(β1, . . . βp)

′, (10)

(β1, . . . , βp)
′ = ΨF(γ1, . . . , γp)

′ (11)

with Ψ =
(

ψjk

)
being the inner products between the basis functions (as in (7)) and F the orthogonal

matrix of basis coefficients of principal component curves shown in (9).

If we consider the principal component expansion of curves in terms of a reduced set of functional
principal components we can get an estimation of the basis coefficients of the functional parameter
whose accuracy depends on the accumulated variability of the selected principal components (see
Escabias et al., 2004).

So, if we denote by Γ1, Γ2, . . . , ΓR the ordinary functional principal components matrices of the sam-
ple curves associated with the functional predictors {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} , respectively,
the functional principal component logit model in terms of the logit transformations is expressed in
matrix form as

L = 1α + Γ1γ1 + Γ2γ2 + · · ·+ ΓRγR + U1δ1 + · · ·+ USδS,

where (1 | Γ1 | Γ2 | · · · | ΓR|U1| · · · |US) is the design matrix in terms of ordinary functional princi-
pal components, γr =

(
γr1, . . . , γrpr

)′ are the coefficients of the multiple model associated to the
corresponding functional principal components and (δ1, . . . , δs)

′ the scalar parameters associated to
non-functional variables. By using a reduced set of q1, q2, . . . , qR functional principal components,
being the scores matrix denoted as Γ1(q1), Γ2(q2), . . . , ΓR(qR), respectively, the model is then expressed
as

L = 1α + Γ1(q1)γ1 + Γ2(q2)γ2 + · · ·+ ΓR(qR)γR + U1δ1 + · · ·+ USδS.

Basis coefficients for each functional parameter are then obtained by formula (11) from their
corresponding γ parameter and the intercept α by formula (10).

logitFD.pc is the function from logitFD package that fits the ordinary functional principal com-
ponent logit regression model. The declaration of the function has this form:

logitFD.pc(Response,FDobj=list(),ncomp=c(),nonFDvars=NULL),

and the function arguments are the following:

• Response: vector of responses y1, . . . , yn.

• FDobj: list of the different functional objects (fdobj) to use from the fd package. Theoretically
x1(t), . . . , xR(t).

• ncomp: vector with the number of functional principal components q to use in the model for
each functional predictor. The length of the vector must be equal to the length of the FDobj list.
The first element of the vector corresponds with the number of functional principal components
of the first functional predictor (columns of Γ1), the second with the columns of Γ2, . . ., the Rth
with the columns of ΓR.

• nonFDvars: data frame with the observations of the scalar predictor variables, that is, with
columns U1 . . . , US. Let us observe that the number of rows of this data frame must be the same
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as the length of the response vector. Likewise, the number of functions in each functional object
must be the same for all functional objects.

In order to illustrate the performance of the function, let us consider StationsVar$North as a
binary response variable, TempMonth and PrecMonth as functional predictors, and StationsVar[,c(
"altitude","longitude")] as scalar predictor variables. We are going to consider the first 3 and 4
functional principal components of TempMonth and PrecMonth respectively.

Our fit is obtained as

Fit1 <- logitFD.pc(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
ncomp = c(3,4),nonFDvars = StationsVars[,c("altitude","longitude")])

The output of the function is an R list with objects: glm.fit, Intercept, betalist, PC.variance
and ROC.curve. These elements are explained next.

glm.fit object of Fit1: Object of class inherited from "glm". This object contains details about the
fit of the multiple logit model to explain the binary response from the selected functional principal
components and the scalar variables. This output allows to use different R functions as summary()
function to obtain or print a summary of the fit, or anova() function to produce an analysis of variance
table, and to extract various useful features of the values returned by "glm" as coefficients, effects,
fitted.values or residuals (see R help). In our example the summary of the fit can be seen on page (241).
Let us observe that the package assigns the names A.1, A.2 and A.3 and B.1, B.2, B.3 and B.3 to the
first 3 and 4 functional principal components of the functional covariates. From this object it would
easily be able to make an analysis of residuals, with residuals() function, or fitted values, with
fitted.values() function, testing goodness of fit, etc. A classical goodness of fit measure is the correct
classification rate (CCR) from the classification table. In our example both elements can be easily
obtained through these sentences table(StationsVars$North,round(predict(Fit1$glm.fit,type =
"response"))) and 100*sum(diag(table(StationsVars$North,round(predict(Fit1$glm.fit,type
= "response")))))/nrow(StationsVars). From the results we can conclude that if we want to model
the weather stations location from the temporal evolution of temperatures and precipitation and from
altitude and longitude variables, we classify correctly 94.5% of stations.

Intercept object of Fit1: The α (intercept) estimated parameter through expression (10) is given in
the object Fit1$Intercept.

betalist object of Fit1: A list of functional objects. Each element of the list contains the functional
parameter corresponding to the associated functional predictor variable located in the same position of
FDobj parameter that appears in the function. In our case, firsty temperature curves where introduced,
and precipitation curves were added in second place. Then the first two elements of betalist, that
is, [[1]] and [[2]] will be the functional parameters associated with temperature and precipitation
curves respectively. If we use more functional data, [[3]],[[4]],... provide the corresponding
functional parameters. Let us remember that as fdobj, its elements are coefs: the matrix (vector in this
case) of basis coefficients, basis: the same basis used in FDobj object and the rest elements as fdnames.
Besides, multiple functions from fd package can be used such as the plot() function, used here as
plot(Fit1$betalist[[1]]) and plot(Fit1$betalist[[2]]) for the parameter functions associated
to Temperature and Precipitation curves respectively. The plots that generate these sentences can be
seen in Figure 2. We could also evaluate these functions in a grid with the function eval.fd(), for
example in the observed months-time, we could obtain the values on page (241).

PC.variance object of Fit1: A list of data.frames with explained variability of functional principal
components. Each element of the list contains the cumulative variance matrix corresponding to
the associated functional variable in the same position. In our case, the first input curves were
temperature curves and the second ones, the precipitation curves. In this point, the first element
[[1]] of PC.variance will be the matrix of explained variability of functional principal components
associated with temperature curves whereas the second element [[2]] of the PC.variance will be the
matrix of explained variability of principal components associated with precipitation curves as with
betalist. If we use more functional data [[3]],[[4]],... the function provides the corresponding
explained variability matrices. The output got in PC.variance list is on page (242). We can observe
that the first two functional principal component of temperature and precipitation accumulate 99.4%
and 99.1% of the total variability respectively, so that the selection of 3 components for temperature
and 4 for precipitation are enough for a good representation of the curves.
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β̂1(t) β̂2(t) ROC curve

Figure 2: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 1. The graph on the right is the ROC Curve of the
fit. These graphs are obtained from Fit 1 by means of logitFD.pc() function.

ROC.curve object of Fit1: an object of the roc() function from pROC package whose mission is to
test the prediction ability of the model. This function builds a ROC curve and returns a roc object, i.e.
a list of class roc. This object can be printed, plotted, or passed to many other functions (see reference
manual). As default this element returns the area under the ROC curve with the object Fit1$ROC. The
plot of the ROC curve with sentence plot(Fit1$ROC) can be seen in Figure 2. As it was stated from
the correct classification rate, the ROC curve and its graph allows us to observe that the fit is accurate
for this modeling.

4 Filtered functional principal components included in the model accord-
ing to their explained variability

Alternatively to ordinary functional principal component logit regression, Escabias et al. (2014) dis-
cussed a different approach based on equivalences proved by Ocaña et al. (2007) and Ocaña et al.
(1999) between different functional principal component analysis. These equivalences stated that given
x1 (t) , . . . , xn (t) a set of curves, the functional principal component analysis of the transformed curves
L(x1(t)), . . . , L(xn(t)) defined by L(xi(t)) = ∑

p
j=1 a∗ijϕj(t), being (a∗i1, . . . , a∗ip)

′ = Ψ1/2(ai1, . . . , aip)
′, is

equivalent to multivariate PCA of the design matrix AΨ associated with the functional logit model. In
this expansion, the principal component curves f ∗j (t) are expressed in terms of the basis functions as

f ∗j (t) =
p

∑
k=1

F∗
jkϕk (t) , j = 1, . . . , p,

where basis coefficients in matrix form are obtained as F∗ = Ψ−1/2V, being V the eigenvectors of the
covariance matrix of AΨ.

The original curves can be also approximated

L(xi (t)) = L(x(t)) +
p

∑
j=1

ξ∗ij f ∗j (t) , i = 1, . . . , n,

where ξ∗ij are the functional principal components scores of the transformed curves L(x1(t)), . . . , L(xn(t)).

Now again the original curves can be approximated by using a reduced set of these functional
principal components

L(xi (t)) ≃ L(x(t)) +
q<p

∑
j=1

ξ∗ij f ∗j (t) , i = 1, . . . , n.

In order to avoid multicollinearity in functional logit model an alternative is to use filtered principal
components (see Escabias et al., 2004). So let x1 (t) , . . . , xn (t) be a set of curves with mean curve x (t)
and y1, . . . , yn the response associated observations. Let Γ∗ = (ξ∗ij) be the n × p matrix of functional
principal components, and f ∗1 (t), . . . , f ∗p (t) the principal component curves. The filtered functional
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principal component logit regression can be expressed

li = α +
∫

T

x(t) +
p

∑
j=1

ξ∗ij f ∗j (t)

 β (t) dt = α +
∫

T
x(t)β (t) dt +

p

∑
j=1

ξ∗ij

∫
T

f ∗j (t) β (t) dt,

= γ∗
0 +

p

∑
j=1

ξ∗ijγ
∗
j , i = 1, . . . , n.

This expression also allows expressing the basis coefficients of the functional parameter and the
intercept parameter of the logit model alternatively in terms of the parameters estimated from the
filtered functional principal components of the curves equivalently to (11) and (10) respectively:

α = γ∗
0 −

∫
T

x(t)β (t) dt = α + (a1, . . . , ap)Ψ(β1, . . . βp)
′, (12)

(β1, . . . , βp)
′ = ΨF∗(γ∗

1 , . . . , γ∗
p)

′, (13)

due to F∗ and Ψ matrices are orthogonal and Ψ is also a symmetric matrix.

If we consider a principal component expansion of curves in terms of a reduced set of filtered
functional principal components we can get an estimation of the basis coefficients of the functional
parameter whose accuracy depends of the accumulated variability of the selected principal components
(see Escabias et al., 2004).

So, if we denote by Γ∗
1 , Γ∗

2 , . . . , Γ∗
R the matrices of filtered functional principal components of

the sample curves of the functional predictors {X1 (t) , X2 (t) , . . . , XR (t) : t ∈ T} respectively, the
functional principal component logit model in terms of the logit transformations is expressed in matrix
form as

L = 1α + Γ∗
1γ∗

1 + Γ∗
2γ∗

2 + · · ·+ Γ∗
Rγ∗

R + U1δ1 + · · ·+ USδS,

where
(
1 | Γ∗

1 | Γ∗
2 | · · · | Γ∗

R
∣∣U1| · · · |US) is the design matrix in terms of ordinary functional princi-

pal components, γ∗
r =

(
γ∗

r1, . . . , γ∗
rpr

)′
are the coefficients of the multiple model associated to the

corresponding filtered functional principal components and (δ1, . . . , δs)
′ the scalar parameters associ-

ated to non-functional variables. By using a reduced set of q1, q2, . . . , qR filtered functional principal
components Γ∗

1(q1)
, Γ∗

2(q2)
, . . . , Γ∗

R(qR)
, respectively, the model is then expressed as

L = 1α + Γ∗
1(q1)

γ∗
1 + Γ∗

2(q2)
γ∗

2 + · · ·+ Γ∗
R(qR)

γ∗
R + U1δ1 + · · ·+ USδS.

Basis coefficients for each functional parameter are then obtained by formula (11) from their
corresponding γ∗ parameters and the Intercept α∗ by formula (10).

The function of the logitFD package that allows fitting the filtered functional principal components
logit regression model is logitFD.fpc. The performance of the function is the same as the logitFD.pc
function.

In order to illustrate the performance of the functions, let us again consider StationsVar$North as
binary response variable, TempMonth and PrecMonth as functional predictors, and as scalar predictor
variables StationsVar[,c("altitude","longitude")]. We are going to consider the first 3 and 4
functional principal components of TempMonth and PrecMonth, respectively.

Our fit is obtained as

Fit2 <- logitFD.fpc(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
ncomp = c(3,4),nonFDvars = StationsVars[,c("altitude","longitude")])

The output of this function is an R list with the same elements that were explained in the previous
section. Next, the results of the fit are shown.

glm.fit object of Fit2: explained in the previous section, its results can be seen next to the ones
obtained for Fit1
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-----------------------------------------------------
summary(Fit1$glm.fit)

Call:
glm(formula = design, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.77059 -0.01185 0.00000 0.01309 2.02115

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 15.10398 8.80373 1.716 0.0862 .
A.1 -1.94776 1.05278 -1.850 0.0643 .
A.2 -0.19686 0.58414 -0.337 0.7361
A.3 -6.69297 3.49893 -1.913 0.0558 .
B.1 0.41633 0.78514 0.530 0.5959
B.2 0.51503 6.42736 0.080 0.9361
B.3 -3.11044 3.06542 -1.015 0.3103
B.4 -2.44083 5.69108 -0.429 0.6680
altitude -0.02846 0.01576 -1.806 0.0709 .
longitude 1.40203 0.85922 1.632 0.1027
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 100.857 on 72 degrees of freedom
Residual deviance: 14.785 on 63 degrees of freedom
AIC: 34.785

Number of Fisher Scoring iterations: 15
------------------------------------------------------

------------------------------------------------------
summary(Fit2$glm.fit)

Call:
glm(formula = design, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.671e-04 -2.100e-08 2.100e-08 2.100e-08 2.939e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 598.163 75918.975 0.008 0.994
A.1 -99.485 11468.867 -0.009 0.993
A.2 -13.281 10608.315 -0.001 0.999
A.3 -264.950 45230.675 -0.006 0.995
B.1 26.123 7055.585 0.004 0.997
B.2 174.667 31244.941 0.006 0.996
B.3 318.127 79802.859 0.004 0.997
B.4 -828.247 233825.008 -0.004 0.997
altitude -1.251 142.820 -0.009 0.993
longitude 50.865 7090.131 0.007 0.994
---
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 2.2821e-07 on 63 degrees of freedom
AIC: 20

Number of Fisher Scoring iterations: 25
------------------------------------------------------

Classification table of Fit2: obtained as explained for Fit1, we can observe that the filtered func-
tional principal components provide a better fit with CCR of 100% in spite a less accurate estimation
of parameters due to the high standard error of coefficients estimation. This fact was observed and
stated in Aguilera et al. (2008a) for example.

Intercept object of Fit2: provides the same result seen in the Fit1 case.

betalist object of Fit2: The functional parameters obtained by this fit can be seen in Figure 3. We
can observe the great similarity of the functional parameters form provided by the fit in terms of
ordinary functional principal components and in terms of filtered functional principal components.
The evaluation of these functions in the observed months-time, appears next with the ones obtained
for Fit1:

Fit1
--------------------------------

Months Beta1 Beta2
1 Jan -2.6186728 -0.3861178
2 Feb 0.6541213 -0.2615488
3 Mar 2.6530440 -0.5074478
4 Apr 2.2007300 0.4053187
5 May 1.4871676 1.3946294
6 Jun 0.7918409 0.3944050
7 Jul -0.9034488 -1.8776571
8 Aug -2.1700722 -2.6123256
9 Sep -1.9520934 -1.1094367
10 Oct -2.2614869 0.5243271
11 Nov -3.4888495 0.9816193
12 Dec -2.6186728 1.1577407
--------------------------------

Fit2
--------------------------------

Months Beta1 Beta2
1 Jan -114.45858 -208.85221
2 Feb 16.52657 -295.08973
3 Mar 97.13723 -142.07106
4 Apr 80.32782 29.22866
5 May 54.09383 91.48928
6 Jun 29.28698 -28.35074
7 Jul -36.52664 -219.37744
8 Aug -87.77921 -234.26248
9 Sep -81.81846 -18.66271
10 Oct -97.27569 226.44071
11 Nov -148.43166 303.70498
12 Dec -114.45858 61.99109
--------------------------------

The code used for generating these results is data.frame("Months" = names(monthLetters),"Beta1"
= eval.fd(c(1:12),Fit1$betalist[[1]]),"Beta2" = eval.fd(c(1:12),Fit1$betalist[[2]])) for
the left-hand side and changing Fit1 by Fit2 for the right-hand side.

PC.variance object of Fit2: it can be observed that there are several differences in the dynamic of
variance accumulation between ordinary and filtered functional principal component analysis.
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Figure 3: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 2. The graph on the right is the ROC Curve of the
fit. These graphs are obtained from Fit 1 by means of logitFD.fpc() function.

----------------------------------
Fit1$PC.variance
[[1]]
Comp. % Prop.Var % Cum.Prop.Var

1 A.1 85.9 85.9
2 A.2 13.5 99.4
3 A.3 0.4 99.8
4 A.4 0.1 99.9
5 A.5 0.0 99.9
6 A.6 0.0 99.9
7 A.7 0.0 99.9
[[2]]
Comp. % Prop.Var % Cum.Prop.Var

1 B.1 98.2 98.2
2 B.2 0.9 99.1
3 B.3 0.6 99.7
4 B.4 0.3 100.0
5 B.5 0.1 100.1
6 B.6 0.0 100.1
7 B.7 0.0 100.1
8 B.8 0.0 100.1
----------------------------------

----------------------------------
Fit2$PC.variance
[[1]]
Comp. % Prop.Var % Cum.Prop.Var

1 A.1 85.888 85.888
2 A.2 13.479 99.367
3 A.3 0.440 99.807
4 A.4 0.132 99.939
5 A.5 0.034 99.973
6 A.6 0.016 99.989
7 A.7 0.010 99.999
[[2]]
Comp. % Prop.Var % Cum.Prop.Var

1 B.1 99.070 99.070
2 B.2 0.536 99.606
3 B.3 0.311 99.917
4 B.4 0.049 99.966
5 B.5 0.031 99.997
6 B.6 0.002 99.999
7 B.7 0.000 99.999
8 B.8 0.000 99.999
----------------------------------

ROC.curve object of Fit2: explained in the previous Section, the plot of the ROC curve appears
Figure 3. This graph and the area under the ROC curve (100%) show an improvement of the prediction
ability of the fit with filtered functional principal components in comparison with ordinary functional
principal components.

5 Ordinary and filtered functional principal components included in the
model according to their prediction ability (stepwise method)

Escabias et al. (2004) proposed two alternative methods to include functional principal components
in the logit model for both FPCA types: ordinary or filtered. On the one hand, functional principal
components would be able to be included in the model in the order given by their explained variability.
In that case the user should decide the number of functional principal components to include in the
model for getting an accurate estimation of the functional parameter or for getting good prediction
ability for the response. On the other hand, an automatic selection method of functional principal
components could be used by a stepwise method. In this case the prediction ability of functional
principal components would be the criterium to select the functional principal components and data
would be the responsible of the model fit and prediction.

logitFD package contains two functions to fit the functional logit model after a stepwise selection
procedure of functional principal components (ordinary and filtered) and nonfunctional variables.
The fits obtained by these stepwise procedures are shown next.
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Fit3 <- logitFD.pc.step(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
nonFDvars = StationsVars[,c("altitude","longitude")])
Fit4 <- logitFD.fpc.step(Response=StationsVars$North,FDobj=list(TempMonth.fd,PrecMonth.fd),
nonFDvars = StationsVars[,c("altitude","longitude")])

Let us observe that for these functions it is not necessary to use a number of components parameter
in the functions. We call Fit3 for ordinary functional principal component analysis and Fit4 for
filtered functional principal component analysis.

The output of these function are R lists with the same elements as the ones seen in Fit1 and Fit2.
We only show and explain here some of the results.

glm.fit objects of Fit3 and Fit4: We can observe from these results that stepwise method selected
three functional principal components for Temperature and only one for Precipitation. Regarding
scalar predictors, the method selected the altitude variable. Note that stepwise selection included the
same components for both approaches, although the values of their parameters and standard errors
are different. The classification ability of these fits is 100% of correct classification rate and can be
obtained by using the same code shown fof Fit1 and Fit2.

-------------------------------------------------------
summary(Fit3$glm.fit)

Call:
glm(formula = Response ~ A.1 + altitude + A.7 + A.3 + B.5,
family = binomial, data = design)

Deviance Residuals:
Min 1Q Median 3Q Max

-3.677e-04 -2.000e-08 2.000e-08 2.000e-08 2.960e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 936.784 71065.432 0.013 0.989
A.1 -223.554 16658.601 -0.013 0.989
altitude -2.543 191.207 -0.013 0.989
A.7 4016.721 300525.378 0.013 0.989
A.3 -972.450 73148.168 -0.013 0.989
B.5 308.717 23326.153 0.013 0.989

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 4.7820e-07 on 67 degrees of freedom
AIC: 12

Number of Fisher Scoring iterations: 25
------------------------------------------------------

------------------------------------------------------
summary(Fit4$glm.fit)

Call:
glm(formula = Response ~ A.1 + altitude + A.7 + A.3 + B.5,
family = binomial, data = design)

Deviance Residuals:
Min 1Q Median 3Q Max

-6.974e-04 -2.000e-08 2.000e-08 2.000e-08 5.753e-04

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.938e+03 3.312e+05 0.006 0.995
A.1 -3.899e+02 3.754e+04 -0.010 0.992
altitude -4.731e+00 6.218e+02 -0.008 0.994
A.7 6.724e+03 1.132e+06 0.006 0.995
A.3 -1.557e+03 8.121e+04 -0.019 0.985
B.5 6.409e+02 6.659e+04 0.010 0.992

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.0086e+02 on 72 degrees of freedom
Residual deviance: 1.1402e-06 on 67 degrees of freedom
AIC: 12

Number of Fisher Scoring iterations: 25
------------------------------------------------------

betalist objects of Fit3 and Fit4: The graphs of estimated functional parameters are shown in
Figure 4. It can be seen the similarity in the forms of the functional parameters, in spite of the
evaluation values are different as can be seen next:

-----------------------------------------------------
Months Fit3.Beta1 Fit3.Beta2 Fit4.Beta1 Fit4.Beta2

1 Jan 693.10831 -63.47274 1172.6949 -24.28034
2 Feb -98.76707 -157.45404 -186.0346 -144.18907
3 Mar -229.11217 -122.61836 -423.5395 -199.28285
4 Apr 1711.91853 -70.18329 2831.9461 -170.88030
5 May 1152.29655 -24.62758 1904.3853 -76.25583
6 Jun -1640.56224 26.48668 -2761.1827 49.39343
7 Jul -1066.07148 66.45460 -1780.0473 143.75270
8 Aug 1580.73125 57.60667 2663.1874 126.59096
9 Sep 543.54551 24.31157 921.5509 29.89969
10 Oct -2086.28319 71.63066 -3481.0951 31.57623
11 Nov -1163.57269 171.95001 -1925.9015 198.33040
12 Dec 693.10831 -10.48963 1172.6949 326.95671
-----------------------------------------------------

The code used for thsese evaluations was similar as the one shown for Fit 1 and Fit 2: data.frame("Months"
= names(monthLetters),"Fit3.Beta1" = eval.fd(c(1:12),Fit3$betalist[[1]]),"Fit3.Beta2" =
eval.fd(c(1:12),Fit3$betalist[[2]]),"Fit4.Beta1" = eval.fd(c(1:12),Fit4$betalist[[1]]),"Fit4.
Beta2" = eval.fd(c(1:12),Fit4$betalist[[2]]))
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Ordinary FCPA and stepwise order

Filtered FCPA and stepwise order

Figure 4: Left and middle curves are the estimated functional parameters associated with Temperature
and Precipitation functional data respectively of Fit 3 (up) and Fit 4 (down). The graphs on the right are
the ROC Curve of the fits. These graphs are obtained from Fits 3 and 4 by means of logitFD.pc.step()
and logitFD.fpc.step() functions respectively.

PC.variance objects of Fit3 and Fit4: The objects of variance accumulation of the different func-
tional principal components analysis do not change from the ones shown in previous sections. We do
not show them here, the reader can check these equalities through the objects Fit3$PC.variance and
Fit4$PC.variance.

ROC.curve objects of Fit3 and Fit4: Roc objects with Roc areas provide an area under the roc curve
of 100% in each case. The plot of the ROC curves showing the good performance of the fits can be
seen in Figure 4.

6 Conclusions

In this work the functions of the logitFD package have been shown for fitting an extended functional
principal components logistic regression model. The package provides two alternative solutions (ordi-
nary and filtered FPCA) for the multicollinearity problem that arises when the functional predictors
and the parameter functions are assumed to belong to the same finite dimensional space generated
by a basis of functions. The dimension of the basis can be different in each functional variable in the
model. Likewise, for each of the proposed solutions, two ways of choosing the functional principal
components are provided: on the one hand, the users must manually choice the adequate number of
components to be included in the model in order of variability, i.e., the first q principal components that
overcome a certain variability percentage; on the other hand in the automatic order provided by the
stepwise method, that is, according to predictive ability of principal components and non-functional
variables.

The illustration of the use of the package’s functionalities has been carried out using a set of
functional and non-functional data, included in the fda.usc package. In particular, weather functional
variables observed in 73 Spanish weather stations, such as the mean monthly evolution of temperatures
and rainfall, and non-functional as the spatial location of the weather stations in the Spanish territory
are considered throughout the current manuscript.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=logitFD
https://CRAN.R-project.org/package=fda.usc


CONTRIBUTED RESEARCH ARTICLE 245

Figure 5: Diagram of steps for Functional Principal Components Logit Regression fit in its different
situations considered in logitFD package: (1) basis expansion representation from discrete observations
of curves, (2) choice the type of FPCA (ordinary or filtered) and (3) choice the method for scores
selection (variability order or stepwise order).

The conclusions we have reached after the fits can be summarized in that the variables that best
describe the North-South location of the meteorological stations are the mean monthly precipitation
and temperature (through their first, third and seventh principal components for temperature and
fifth for rainfall) and the own altitude of the weather stations. All the models provide good predictive
ability, with the solutions based on ordinary and filtering FPCA by stepwise selection being the best
(100 % CCR) due to their balance between reduced dimension and predictive ability. Likewise, the
filtered FPCA solution including the components in order of variability provides results equally
good to the previous ones but with more variables. The ordinary FPCA-based solution including the
components in order of variability provides results similar to those previously described.

As was stated in the Introduction section, the fregre.glm function of the fda.usc package aim to
achieve the same goal as the functions included in logitFD package, but through different point of
view: fregre.glm use a discrete based methodology of functional data and logitFD functions use a
purely functional approach using fd objects from the fda package. This approach makes the functional
models of scalar response to suffer of multicollinearity problems with the inaccurate estimation of the
functional parameters as a consequence (see Escabias et al., 2004). Two solutions based on functional
PCA are implemented in logitFD package: (1) classic functional PCA and (2) filtered functional
PCA. Each of PCA methods have been revealed to be useful in a different aspect: the first allow a
lower estimation error of the basic coefficients of the functional parameters, while the second allow a
lower estimation error of the proper curve, in terms of mean integrated quadratic error (see Escabias
et al., 2004). Moreover the literature has also shown for methods involving principal components,
that sometimes principal components with low variability explanation can be good predictors of the
response, so a stepwise selection method of functional principal components has been included. So
the main difference among logitFD functions and fregre.glm is that all the mentioned issues are
addressed in the logitFD package and solved in a fast and transparent way and they are not taken into
account in fregre.glm. Finally it is important to point out that the output of the functional elements of
the logitFD functions (as the functional parameters) are also fd objects and therefore all the functions
of the fda package could be used with them for plotting, evaluating, etc.

In short, logitFD package provides its users with the possibilities to deal with the functional logit
regression model from basis expansion methodology of sample curves and solving in a fast and
transparent way, the problems that arise through functional principal component analysis. In our
opinion, if we wanted to solve the same problems by using alternative R functions with similar goal, it
would be necessary give many steps that would make the process to be highly tedious. For this reason,
and due to logit regression is highly considered in real problems, we think that the current manuscript
can be very interesting for the readers given that they could use it as reference manual in their analysis

Figure 5 give a schematic diagram that summarize the steps of the methodology followed along
the paper
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eat: An R Package for fitting Efficiency
Analysis Trees
by Miriam Esteve, Victor España, Juan Aparicio, and Xavier Barber

Abstract eat is a new package for R that includes functions to estimate production frontiers and techni-
cal efficiency measures through non-parametric techniques based upon regression trees. The package
specifically implements the main algorithms associated with a recently introduced methodology for
estimating the efficiency of a set of decision-making units in Economics and Engineering through Ma-
chine Learning techniques, called Efficiency Analysis Trees (Esteve et al. 2020). The package includes
code for estimating input- and output-oriented radial measures, input- and output-oriented Russell
measures, the directional distance function and the weighted additive model, plotting graphical repre-
sentations of the production frontier by tree structures, and determining rankings of importance of
input variables in the analysis. Additionally, it includes the code to perform an adaptation of Random
Forest in estimating technical efficiency. This paper describes the methodology and implementation of
the functions, and reports numerical results using a real data base application.

1 Introduction

Efficiency analysis refers to the discipline of estimating production frontiers while measuring the
efficiency of a set of observations, named Decision Making Units (DMUs), which use several inputs to
produce several outputs. In the literature of Economics, Engineering and Operations Research, the
estimation of production frontiers is a current topic of interest (see, for example, Arnaboldi, Azzone,
and Giorgino 2014; Aparicio et al. 2017; O’Donnell et al. 2018). In this line, many models for estimating
production frontiers have been developed, resorting to parametric and non-parametric approaches. In
the non-parametric approach, a functional form does not need to be specified (e.g. a Cobb-Douglas
production function) through the specification of a set of parameters to be estimated, since they
are usually data-driven. Additionally, non-parametric models innately cope with multiple-output
scenarios. In contrast, the parametric approach aggregates the outputs into a single production index
or attempts to model the technology using a dual cost function (Orea and Zof ’io 2019). These are
some of the advantages that makes the non-parametric approaches for measuring technical efficiency
more appealing than their parametric counterparts.

Contextualizing the non-parametric measurement of efficiency analysis requires outlining the
following works. Farrel (1957) was a renowned opponent of estimating efficiency by determining
average performance and, indeed, he was the first author in the literature to introduce a method for
constructing production frontiers as the maximum producible output from an input bundle. Inspired
by Koopmans (1951) and Debreu (1951), Farrell introduced a piece-wise linear upper enveloping
surface of the data cloud as the specification of the production frontier, satisfying some microeconomics
postulates: free disposability, convexity and minimal extrapolation. A DMU is considered technically
inefficient if it is located below the frontier. Furthermore, Farrell’s measure of efficiency, inspired
by Shephard (1953), is based on radial movements (equiproportional changes) from technically
inefficient observations to their benchmarks located at the estimated production frontier. In the
same context as Farrell, Afriat (1972) determined a production frontier under non-decreasing and
concavity mathematical assumptions and, at the same time, as close as possible to the sample of
observations. Finally, in the same line of research, Charnes, Cooper, and Rhodes (1978) and Banker,
Charnes, and Cooper (1984) proposed Data Envelopment Analysis (DEA), rooted in mathematical
programming to provide a relative efficiency assessment of a set of DMUs by the construction of
a piece-wise linear frontier. Along with DEA, Free Disposal Hull (FDH) is another of the most
recognized non-parametric models for estimating production frontiers. FDH is a deterministic model
introduced by Deprins and Simar (1984), which is only based on the free disposability and minimal
extrapolation principles, as opposed to DEA, which also assumes convexity. In fact, FDH can be
considered the skeleton of DEA, since the convex hull of the former coincides with DEA’s frontier
(see Daraio and Simar 2005). In addition, other recent alternative non-parametric techniques for
estimating production frontiers are: Banker and Maindiratta (1992) and Banker (1993), who showed
that DEA can be interpreted as a Maximum Likelihood estimator; Simar and Wilson (1998, 2000;
2000), who introduced how to determine confidence intervals for the efficiency score of each DMU
through adapting the bootstrapping methodology by Efron (1979) to the context of FDH and DEA;
or Kuosmanen and Johnson (2010; 2017), who have recently shown that DEA may be interpreted as
non-parametric least-squares regression, subject to shape constraints on the production frontier and
sign constraints on residuals; to name a few.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=eat


CONTRIBUTED RESEARCH ARTICLE 250

However, few of the above methodologies are based upon Machine Learning techniques, despite
being a rising research field (see, for example, the recent papers by Khezrimotlagh et al. 2019; and Zhu
et al. 2019; or the book by Charles, Aparicio, and Zhu 2020). Recently, a bridge has been built between
these literatures, Machine Learning and production theory, through a new technique proposed in
Esteve et al. (2020), called Efficiency Analysis Trees. This new method shares some similarities with
the standard FDH technique. In contrast to FDH, Efficiency Analysis Trees overcomes the well-known
problem of overfitting linked to FDH and DEA, by using cross-validation to prune back the deep tree
obtained in a first stage. Esteve et al. (2020) also showed that the performance of Efficiency Analysis
Trees, checked through Monte Carlo simulations, clearly outperforms the FDH technique with respect
to bias and mean squared error.

Many of the standard models for estimating technical efficiency are nowadays available as R
packages such as: Benchmarking (Bogetoft and Otto 2010), for estimating technologies and measuring
efficiencies using Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA); nonpara-
eff (Oh and Suh 2013), for measuring efficiency and productivity using DEA and its variations; npbr
(Daouia, Laurent, and Noh 2017), which covers data envelopment techniques based on piece-wise
polynomials, splines, local linear fitting, extreme values and kernel smoothing; snfa (McKenzie 2018),
which fits both a smooth analogue of DEA and a non-parametric analogue of SFA; or semsfa (Ferrara
and Vidoli 2018), which, in a first stage, estimates Stochastic Frontier Models by semiparametric or
non-parametric regression techniques to relax parametric restrictions and, in a second stage, applies a
technique based on pseudolikelihood or the method of moments for estimating variance parameters.
Additionally, there are other packages on efficiency measurement developed for alternative platforms.
In MATLAB (The MathWorks Inc. 2021), we can find the Data Envelopment Analysis Toolbox
(Álvarez, Barbero, and Zofio 2020), which implements the main DEA models and solves measures
like the directional distance function (with desirable and undesirable outputs), the weighted additive
model, and the Malmquist-Luenberger index; or the Total Factor Productivity Toolbox (Balk, Barbero,
and Zof ’Io 2018), which includes functions to calculate the main Total Factor Productivity indices and
their decomposition by DEA models. In Stata (StataCorp 2021), it is possible to find a similar package
in Ji and Lee (2010).

In this paper, we introduce a new package in R, called eat, for fitting regression trees to estimate
production frontiers in microeconomics and engineering, by implementing the main features of
Efficiency Analysis Trees (Esteve et al. 2020). In particular, eat includes a complete set of baseline
functions, covering a wide range of efficiency models fitted by Efficiency Analysis Trees (Esteve et al.
2020) and Random Forest (Esteve et al. 2021), and reporting numerical and graphical results. eat is
available as free software, under the GNU General Public License version 3, and can be downloaded
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=eat,
including supplementary material as datasets or vignettes to replicate all the results presented in
this paper. In addition, eat is hosted on an open source repository on GitHub at https://github.
com/MiriamEsteve/EAT. The main objective of this package is the estimation of a production frontier
through regression trees satisfying the microeconomic principles of free disposability, convexity and
deterministic data. Free disposability states that if a certain input and output bundle is producible,
then any input and output bundle that presents a greater value for inputs and a lower value for
outputs is also producible. In some sense, it means that doing it worse is always feasible. Convexity
means that if two input-output bundles are assumed producible, then any convex combination of
them are also feasible. Finally, the deterministic quality means that the observations that belong to the
data sample have been observed without noise. In other words, the technology always contains all
these observations and, graphically, the production frontier envelops all the data cloud from above.

The efficiency measurement field has witnessed the introduction of many different technical
efficiency measures throughout the last decades. Regarding the technical efficiency measures imple-
mented in the new eat package, it is worth mentioning that numerical scores and barplots are provided
for the output-oriented and input-oriented BCC radial models (Banker, Charnes, and Cooper 1984), the
directional distance function (Chambers, Chung, and Färe 1998), the weighted additive model (Lovell
and Pastor 1995; and W. W. Cooper, Park, and Pastor 1999) and the output-oriented and input-oriented
Russell measures (Färe and Lovell 1978). Additionally, the adaptation of Random Forest (Breiman
2001) for dealing with ensembles of Efficiency Analysis Trees, recently introduced in Esteve et al. (2021)
and denoted as RF+EAT, has been also incorporated into the new eat package. The frontier estimator
based on Random Forest, which is associated with more robust results, also allows to determine
out-of-sample efficiency evaluation for the assessed DMUs. Another remarkable aspect of Efficiency
Analysis Trees is the inherited ability to calculate feature importance as performed by other tree-based
models of Machine Learning. Specifically, this fact allows the researchers to know which are the most
relevant variables for obtaining efficiency and thus getting an explanation of the level of technical
efficiency identified for each assessed unit. This ranking of importance variable has been implemented
in the eat package. Finally, and from a data visualization point of view, the obtained frontier from
Efficiency Analysis Trees can be represented by means of a tree structure, ideal for high-dimensional
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scenarios where the patterns between the inputs and the efficient levels of outputs are very complex.
In addition, FDH and DEA standard models have been included in the new package in order to
facilitate comparison with the efficiency scores determined by the Efficiency Analysis Trees technique.
Also, the convexification of the estimation of the technology provided by Efficiency Analysis Trees,
named Convexified Efficiency Analysis Trees (CEAT) by Aparicio et al. (2021), is implemented in the
eat package, with the objective of determining estimations under the axiom of convexity.

The functions included in the eat package are summarized in Table 1. This table comprises two
columns divided into four subsections for Efficiency Analysis Trees, Random Forest for Efficiency
Analysis Trees, Convexified Efficiency Analysis Trees and functions for data simulation. The first
column is the name of the main functions and the second one is the description of the functions
and the reference of the paper in which we can find the most detailed theoretical explanation of the
corresponding function.

The paper is organized as follows. The following section summarises the two methodologies
implemented in the eat package in R: Efficiency Analysis Trees and Random Forest for Efficiency
Analysis Trees. Section Data Structure describes the data structures that characterize the production
possibility sets, the structure of the functions, the results, etc., and briefly explains which data are
used to illustrate the package. Section Basic functions of the library presents the basic methods. The
next Section Basic EAT and RFEAT models deals with the measurement of economic efficiency of
FDH, DEA, Efficiency Analysis Trees, Random Forest for Efficiency Analysis Trees and Convexified
Efficiency Analysis Trees models. Advanced options, including displaying and exporting results can
be found in Section Advanced options and displaying and exporting results. Section Conclusions
concludes.

Table 1: eat package functions.

Function Description
Subsection 1: Efficiency Analysis Trees

EAT It generates a pruned Efficiency Analysis Trees model and returns an EAT
object.

bestEAT It computes the root mean squared error (RMSE) for a set of Efficiency
Analysis Trees models made up of a set of user-entered hyperparameters.
These models are fitted with a training sample and evaluated with a test
sample.

efficiencyEAT It computes the efficiency scores of a set of DMUs through an Efficiency
Analysis Trees model and returns a data.frame. The FDH scores can also be
computed. Alternative mathematical programming models for calculating
the efficiency scores are:

• "BCC.OUT": The output-oriented BCC radial model.

• "BCC.INP": The input-oriented BCC radial model.

• "DDF": The directional distance function.

• "RSL.OUT": The output-oriented Russell model.

• "RSL.INP": The input-oriented Russell model.

• "WAM.MIP": The weighted additive model with Measure of Inefficiency
Proportion.

• "WAM.RAM": The weighted additive model with Range Adjusted Mea-
sure of Inefficiency.

efficiencyJitter It returns a jitter plot (from ggplot2) that represents the dispersion of the
efficiency scores of the set of DMUs in the leaf nodes of an Efficiency Analysis
Trees model. Mean and standard deviation of scores are shown.

efficiencyDensity It returns a density plot (from ggplot2) to compare the distribution of effi-
ciency scores between two given models ("EAT", "FDH", "CEAT", "DEA" and
"RFEAT" are available).

Continued on next page
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Table 1 – continued from previous page
Function Description

plotEAT It returns a plot of the tree-structure (from ggparty and partykit) of an
Efficiency Analysis Trees model.

frontier It returns a plot (from ggplot2) of the estimated production function obtained
by an Efficiency Analysis Trees model in a two-dimensional scenario (1 input
and 1 output). Optionally, the FDH frontier can be plotted.

predict Generic function to predict the expected output by an EAT object. The result
is a data.frame with the predicted values.

rankingEAT It returns a data.frame with the scores of variable importance obtained by
an Efficiency Analysis Trees model and optionally a barplot representing the
variable importance.

Subsection 2: Random Forest for Efficiency Analysis Trees

RFEAT It generates a Random Forest for Efficiency Analysis Trees model and returns
an RFEAT object.

bestRFEAT It computes the root mean squared error (RMSE) for a set of Random Forest
for Efficiency Analysis Trees models made up of a set of user-entered hyper-
parameters. These models are fitted with a training sample and evaluated
with a test sample.

efficiencyRFEAT It computes the efficiency scores of a set of DMUs through a Random Forest
for Efficiency Analysis Trees model and returns a data.frame. The FDH
scores can also be computed. Only the output-oriented BCC radial model is
available.

plotRFEAT It returns a line plot (from ggplot2) with the Out-of-Bag (OOB) error for a
random forest consisting of k trees.

predict Generic function to predict the expected output by an RFEAT object. The
result is a data.frame with the predicted values.

rankingRFEAT It returns a data.frame with the scores of variable importance obtained by a
Random Forest for Efficiency Analysis Trees model and optionally a barplot
representing the variable importance.

Subsection 3: Convexified Efficiency Analysis Trees

efficiencyCEAT It computes the efficiency scores of a set of DMUs through a Convexified
Efficiency Analysis Trees model and returns a data.frame. The DEA scores
can also be computed. Alternative mathematical programming models for
calculating the efficiency scores are:

• "BCC.OUT": The output-oriented BCC radial model.

• "BCC.INP": The input-oriented BCC radial model.

• "DDF": The directional distance function.

• "RSL.OUT": The output-oriented Russell model.

• "RSL.INP": The input-oriented Russell model.

• "WAM.MIP": The weighted additive model with Measure of Inefficiency
Proportion.

• "WAM.RAM": The weighted additive model with Range Adjusted Mea-
sure of Inefficiency.

Subsection 4: Functions for data simulation

Y1.sim It returns a data.frame with simulated data in a single output scenario (1, 3,
6, 9, 12 and 15 inputs can be generated).

Continued on next page
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Table 1 – continued from previous page
Function Description

X2Y2.sim It returns a data.frame with simulated data in a scenario with 2 inputs and
2 outputs.

2 Background

Efficiency Analysis Trees

In this section, we briefly introduce the main fundaments of Efficiency Analysis Trees. Nevertheless,
we first need to introduce some notation related to the standard Free Disposal Hull (FDH) and
Classification and Regression Trees (CART) techniques.

We consider the observation of n Decision Making Units (DMUs), which consumes xi = (x1i, ..., xmi)
∈ Rm

+ quantity of inputs for the production of yi = (y1i, ..., ysi) ∈ Rs
+ quantity of outputs1. The dataset

is denoted in a compact way as ℵ = {(x, y)}i=1,...,n. The so-called production possibility set or tech-
nology, which is the set of technically feasible combinations of (x, y), is defined, in general terms,
as:

ψ =
{
(x, y) ∈ Rm+s

+ : x can produce y
}

. (1)

On this set, certain assumptions are usually made (see, Färe and Primont 1995), such as: monotonic-
ity (free disposability) of inputs and outputs, which means that if (x, y) ∈ ψ, then (x’, y’) ∈ ψ, as long as
x’ ≥ x and y’ ≤ y; and convexity, i.e., if (x, y) ∈ ψ and (x’, y’) ∈ ψ, then λ (x, y) + (1 − λ) (x’, y’) ∈ ψ,
∀λ ∈ [0, 1]. In the case of the FDH estimator, only free disposability is assumed. Additionally, FDH
is assumed to be deterministic. In other words, the production possibility set determined by FDH
always contains all the observations that belong to the data sample and, graphically, the production
frontier envelops the data cloud from above. Also, FDH satisfies the minimal extrapolation postulate,
which is associated with the typical problem-solving principle of Occam’s razor. That is, additional
requirements are needed to select the right estimator because there are a lot of possible estimators that
can meet free disposability and the deterministic quality. In this sense, according to Occam’s razor, the
most conservative estimate of the production frontier would be that related to a surface that would
envelop the data from above, satisfy free disposability and, at the same time, be as close as possible to
the data cloud. In contrast, the DEA estimator requires stronger assumptions, such as convexity of the
set ψ.

With regard to the measurement of technical efficiency, a certain part of the set ψ is actually
of interest. It is the efficient frontier or production frontier of ψ, which is defined as ∂(ψ) :=
{(x, y) ∈ ψ : x̂ < x, ŷ > y ⇒ (x̂, ŷ) /∈ ψ}. Technical efficiency is understood as the distance from a
point belonging to ψ to the production frontier ∂(ψ). In particular, Deprins and Simar (1984) proposed
the FDH estimator of the set ψ from the dataset ℵ as:

ψ̂FDH =
{
(x, y) ∈ Rm+s

+ : ∃i = 1, ..., n such that y ≤ yi, x ≥ xi
}

. (2)

The FDH technique is very attractive because it is based on very few suppositions, but it suffers
from overfitting due to its construction. This problem is shared by other well-known data-based
approaches. For example, Classification and Regression Trees (CART), a technique that belongs to the
field of machine learning, suffer problems of overfitting when a deep tree is developed. However, this
problem can be fixed using a cross-validation process to prune the deep tree. The principle behind
CART is relatively simple: a certain criterion is chosen to recursively generate binary partitions of the
data until a meaningful division is no longer possible or a stopping rule is maintained. The graphic
result of this approach is a tree that starts at the root node, develops through the intermediate nodes
and ends at the terminal nodes, also known as leaves. The binary nature of CART is represented by
each parent node, except for the leaves, giving rise to two child nodes.

Next, we briefly introduce the recent technique named Efficiency Analysis Trees by Esteve et al.
(2020). This technique allows the estimation of production frontiers, fulfilling the common axioms of
microeconomics, through a data-based approach that is not founded on any particular distribution on
the data noise and, in addition, creates a step function as a estimator. It shares these characteristics with
the FDH technique, but the overfitting problem related to FDH can be solved through cross-validation
based on pruning.

We now introduce the main steps of the algorithm linked to the Efficiency Analysis Trees technique.

1We use bold for denoting vectors, and non-bold for scalars.
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Let us assume that we have a node t in the tree structure to be split. This node contents a subset of
the original sample ℵ. The algorithm has to select an input variable j, j = 1, ..., m, and a threshold
sj ∈ Sj, where Sj is the set of possible thresholds for variable j, such that the sum of the mean squared
error (MSE) calculated for the data that belong to the left child node tL and the MSE corresponding
to the data belonging to the right child node tR is minimized. The data of the left child node tL
satisfies the condition xj < sj, while the data of the right child node tR satisfies the condition xj ≥ sj.
Additionally, in the algorithm, the set Sj is defined from the observed values of the input j in the

data sample ℵ. Formally, the split consists in selecting the combination
(

xj, sj

)
which minimizes

R (tL) + R (tR) = 1
n ∑(xi ,yi)∈tL ∑s

r=1 (yri − yr (tL))
2 + 1

n ∑(xi ,yi)∈tR ∑s
r=1 (yri − yr (tR))

2, where yr (t)
denotes the estimation of the r-th output of the node t. One of the most important aspects in the
production context is how to define yr (t) in each node for fulfilling the free disposability property
during the growing process of the tree. In this sense, the notion of Pareto-dominance between nodes
introduced in Esteve et al. (2020) is really relevant.

As described above, each node t is defined by a series of conditions in the input space as{
xj < sj

}
or
{

xj ≥ sj

}
. In this sense, after executing the split, a region in the input space is cre-

ated. This region in the input space is called the “support” of node t and is defined as supp (t) ={
x ∈ Rm

+ : at
j ≤ xj < bt

j , j = 1, ..., m
}

. The parameters at
j and bt

j are originated from the several thresh-
olds selected during the splitting process. Giving the notion of support of a node, it is possible to estab-
lish the concept of Pareto-dominance. Let k = 1, ..., K be the total number of splits executed. Let Tk (ℵ)
be the tree built after the k-th split. Let T̃k (ℵ) be the set of leaves in the tree Tk (ℵ). More notation: let
t∗ ∈ T̃k (ℵ) be the node to be split in a certain step of the algorithm, then T (k|t∗ → tL, tR) denotes the
tree associated with this specific split. Let k = 1, ..., K and t ∈ T̃k (ℵ), then the set of Pareto-dominant
nodes of node t is defined as PTk(ℵ) (t) = {t′ ∈ T̃k (ℵ)− t : ∃x ∈ supp (t) , ∃x’ ∈ supp (t′) such that
x’ ≤ x}. PTk(ℵ) (t) contains all the nodes such that at least one input vector in its corresponding
support, non-necessarily observed, dominates at least one input vector belonging to the support of
node t (in the Pareto sense). To do so, in practice, it is only necessary to compare the components of at′

and bt. Specifically, at′ < bt if and only if t′ ∈ PTk(ℵ) (t).
Now, we return to how to estimate the outputs in each child node with the aim of guaranteeing

the satisfaction of free disposability. For any node t∗ ∈ T̃k (ℵ), the way to estimate the value of
the outputs for the right child node is through the estimation of the outputs of its parent node, i.e.,
yr (tR) = yr(t∗), r = 1, ..., s, while the estimation of outputs for the left child node is:

yr (tL) = max
{

max {yri : (xi, yi) ∈ tL} , yr

(
IT(k|t∗→tL ,tR) (tL)

)}
, r = 1, ..., s, (3)

where yr

(
IT(k|t∗→tL ,tR) (tL)

)
= max

{
yr (t′) : t′ ∈ IT(k|t∗→tL ,tR) (tL)

}
and yr (t′) is the estimation

of the output yr at node t′ ∈ T̃ (k|t∗ → tL, tR), r = 1, ..., s. This way of estimating the output values
guarantees free disposability.

Accordingly, the algorithm selects the best pair
(

xj∗ , sj∗
)

such that the sum of the MSE of the left

and right child nodes is minimized. Once the split of node t∗ is executed, the tree T
(
k|t∗ → t∗L, t∗R

)
is

obtained. This process continues until bipartition is not possible because all the data in a node have the
same input values or a certain stopping rule is satisfied. The usual stopping rule is n (t) ≤ nmin = 5,
where n(t) is the sample size of node t. The final tree built is denoted as Tmax (ℵ), which usually is a
deep tree.

Tmax (ℵ) suffers from the same problem as FDH, i.e., overfitting. Esteve et al. (2020) proposed to
prune the tree exploiting the same technique as Breiman et al. (1984). This pruning process resorts to
the notion of the error-complexity measure Rα (T (ℵ)), which is a combination between a measure of
the accuracy of the tree, defined as the sum of the MSE determined at each leaf node, and a measure
of the number of leaf nodes. Also, Rα (T (ℵ)) depends on a parameter α, which compensates the
values of the two components of the error: Rα (T (ℵ)) = R (T (ℵ)) + α

∣∣T̃ (ℵ)
∣∣. The idea behind the

pruning of Tmax (ℵ) is to minimize Rα (T (ℵ)). The pruning process is also based on cross-validation
(see Breiman et al. (1984) for more details). The tree resulting from the pruned process is T∗ (ℵ). This
tree doesn’t suffer from the overfitting problem. For this reason, the use of T∗ (ℵ) is recommended
rather than Tmax (ℵ), unless a descriptive analysis of the sample is required.

Finally, dT∗(ℵ) (x) will denote hereinafter the multi-dimensional estimator defined from T∗ (ℵ) and
the sample ℵ, i.e., drT∗(ℵ) (x) = ∑t∈T∗(ℵ) yr (t) I (x ∈ t), for all r = 1, ..., s, with I (·) being the indication
function. From this estimator, it is possible to define a production possibility set or technology
estimated from the Efficiency Analysis Trees technique as:

Ψ̂T∗(ℵ) =
{
(x, y) ∈ Rm+s

+ : y ≤ dT∗(ℵ) (x)
}

. (4)
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Ψ̂T∗(ℵ) satisfies free disposability and the deterministic quality.

By analogy with the existing relationship between FDH and DEA, it is possible to derive an
estimation of Ψ by the convexification of the set Ψ̂T∗ . In this sense, the convexification of the production
possibility set derived from EAT would be as follows:

conv
(
Ψ̂T∗

)
=

{
(x, y) ∈ Rm+s

+ : x ≥ ∑
t∈T̃∗

λtat, y ≤ ∑
t∈T̃∗

λtdT∗
(
at) , ∑

t∈T̃∗

λt= 1, λ ≥ 0|T̃∗|

}
. (5)

Under the convexity assumption, the EAT methodology is known as the Convexified Efficiency
Analysis Trees technique (hereinafter referred to as CEAT) (see Aparicio et al. 2021).

Random Forest for Efficiency Analysis Trees

In this section, we briefly describe the extension of the approach by Esteve et al. (2020) to the context
of using ensembles of trees to provide estimates of production frontiers (see Esteve et al. 2021).
Specifically, we briefly revise the way to adapt the standard Random Forest (Breiman 2001) for
estimating production frontiers satisfying fundamental postulates of microeconomics, such as free
disposability. The adaptation of Random Forest to the estimation of production frontiers by Esteve et
al. (2021) is the first one that focuses on the introduction of a methodology for measuring technical
efficiency that is robust to the resampling of data and, at the same time, to the specification of input
variables.

Data robustness and resampling methods for input modeling are both topics of interest in the
literature on technical efficiency measurement. Regarding robustness to data, Simar and Wilson (1998,
2000; 2000) were the first ones to adapt the bootstrapping methodology (Efron 1979) to the context
of DEA and FDH. As regards the importance of the robustness of input and output variables in
non-parametric efficiency analysis, since the beginning of DEA and FDH, researchers have always
been aware that the selection of input and output variables to be considered in efficiency analysis is one
of the crucial issues in the specification of the model. In practice, the researchers’ previous experience
may lead to the selection of some inputs and outputs considered essential to represent the underlying
technology. However, there may be other variables whose inclusion in the model the analyst is not
always sure of (Pastor, Ruiz, and Sirvent 2002). Some approaches focus on balancing the experience of
researchers with the information provided by observations (see, for example, Banker 1993, 1996; Pastor,
Ruiz, and Sirvent 2002). Another recent approach is based, in contrast, on determining efficiency
scores that are robust to variable selection by considering all the possible combinations of inputs and
outputs and their aggregation (Landete, Monge, and Ruiz 2017).

On the whole, Random Forest (Breiman 2001) is an ensemble learning method that works by
constructing a multitude of decision trees by CART (Breiman et al. 1984) at training time and
aggregating the information of the individual trees in a final prediction value. In particular, when
Random Forest is applied to regression problems, the final estimator corresponds to the mean of each
individual prediction (Breiman 2001). Random Forest modifies the growing process of an individual
tree as follows, by: (i) applying bootstrapping on the data training for each individual tree and (ii)
selecting a random subset of the predictors in each iteration. In this way, given a learning sample ℵ of
size n, Random Forest repeatedly selects random samples of size n with replacement of the set ℵ. Then,
the method fits the trees to these samples but, to do this, it uses a modified tree learning algorithm
that chooses, in each candidate division of the learning process, a random subset of predictors. The
reason for doing this is due to the instability of the model. It is known that individual decision trees,
such as CART, are very unstable (Berk 2016). This means that completely different tree structures are
given when the training data is modified slightly. In this way, the result of applying Random Forest is
an estimator that overcomes overfitting and instability problems in general, resulting in a substantial
reduction in variance.

The algorithm associated with the adaptation of the Random Forest technique to the world of
technical efficiency assessment, called RF+EAT, is introduced in Esteve et al. (2021). The steps that
must be carried out in Random Forest for Efficiency Analysis Trees are shown in Algorithm 1. This
algorithm is based on the typical algorithm of Random Forest that can be found in Kuhn, Johnson, et
al. (2013). In Algorithm 1, the first step consists of selecting the number of trees that will make up
the forest, that is, the hyperparameter p. Then, p (bootstrap) random samples from the original data
sample with replacement are generated. Next, the Efficiency Analysis Trees algorithm by Esteve et
al. (2020) is applied to each subsample applying the stopping rule n (t) ≤ nmin, but without pruning.
Also, in this algorithm, nmin is treated as an additional hyperparameter that could be tuned. During
the execution of the Efficiency Analysis Trees algorithm, a subset of input variables (mtry) from the
original set is randomly selected each time the splitting subroutine is applied. To do that, one of the
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following five thumb rules is used following the literature:

• Breiman’s Rule: mtry = m
3 ,

• Rule DEA1: mtry =
n(t)

2 − s (Golany and Roll 1989; Homburg 2001),

• Rule DEA2: mtry =
n(t)

3 − s (Nunamaker 1985; Banker et al. 1989; Friedman and Sinuany Stern
1998; Raab and Lichty 2002),

• Rule DEA3: mtry =
n(t)
2s (Dyson et al. 2001),

• Rule DEA4: mtry = min
{

n(t)
s , n(t)

3 − s
}

(W. Cooper et al. 2007).

Input: p, number of trees
ℵ, original data
Output: {T(ℵq) : q = 1, ..., p}
for q = 1 to p do

ℵq := Bootstrap sample of ℵ
T(ℵq) := Efficiency Analysis Tree trained on ℵq
foreach split do

Randomly in T(ℵq) selects mtry(≤ m) of the original inputs using a specific
rule;

Select the best input in T(ℵq) among the mtry inputs and split the data
end
T(ℵq) is completed when n(t) ≤ nmin, ∀t leaf node of T(ℵq)
(T(ℵq) is not pruned)

end
Algorithm 1: Random Forest for Efficiency Analysis Trees algorithm for estimating
production frontiers

Once Algorithm 1 has been applied, p fitted trees are determined with the aim of obtaining an
output estimation giving an input vector x ∈ Rm

+. In this regard, we have T (ℵ1) , ..., T
(
ℵp
)

tree
structures derived from the application of the Efficiency Analysis Trees algorithm on the p bootstrap
subsamples ℵ1, ...,ℵp. Given an input vector x ∈ Rm

+, an output estimator is determined by averaging
the individual estimator corresponding to each tree:

yRF+EAT(ℵ) (x) :=
1
p

p

∑
q=1

dT(ℵq) (x) . (6)

where dT(ℵq) (x) denotes the output estimator associated with each tree structure T
(
ℵq
)
, given an

input vector x ∈ Rm
+.

In addition, this estimator allows the technology or production possibility set to be defined as:

Ψ̂RF+EAT =
{
(x, y) ∈ Rm+s

+ : y ≤ yRF+EAT(ℵ) (x)
}

. (7)

As happens with the standard Random Forest, Random Forest for Efficiency Analysis Trees also
exploits the Out-Of-Bag (OOB) concept. The OOB estimate at observation (xi, yi) consists in evaluating
the prediction of the ensemble just using the individual models T

(
ℵq
)

whose corresponding bootstrap
samples ℵq are such that (xi, yi) /∈ ℵq. From this definition, the generalization error is defined as the
average of the OOB estimates calculated over all the observations in the learning sample ℵ:

errRF+EAT(ℵ) =
1
n ∑

(xi ,yi)∈ℵ

s

∑
r=1

(
yri − yRF+EAT(ℵ)

r (xi)
)2

. (8)

The generalization error is useful for determining a measure of variable importance, which can
be used for creating a sorted list of inputs x1, ..., xm. The way to calculate the input importance of
variable xj is: firstly, generate a new database, ℵj, identical to the original one ℵ, where specifically
the values of variable xj were randomly permuted; secondly, apply Algorithm 1 on the new ‘virtual’

learning sample ℵj; thirdly, determine the value of the generalization error, i.e., errRF+EAT(ℵj); and,
finally, calculate the percentage increase of the generalization error when variable xj is shuffled as:

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 257

%IncRF+EAT
(

xj

)
= 100 ·

(
errRF+EAT(ℵj) − errRF+EAT(ℵ)

errRF+EAT(ℵ)

)
. (9)

3 Data structure

Data are managed as a regular R data.frame in the eat functions (matrix is often accepted but will be
converted to a data.frame in the functions pre-processing). The main functions of the eat package are
EAT() and RFEAT(), which return structured objects named EAT and RFEAT, respectively. These objects
contain fields with relevant information such as the estimation results or the arguments introduced by
the user in the function call.

The fields of the EAT object are the following:

• data: Contains the input and output variables.

– df: Data introduced by the user in a data.frame structure after being preprocessed.
– x: Input indexes in df.
– y: Output indexes in df.
– input_names: Name of the input variables in df.
– output_names: Name of the output variables in df.
– row_names: Name of the observations in df.

• control: Contains the hyperparameters selected by the user.

– fold: Number of folds in which is divided df to apply cross-validation.
– numStop: Minimum number of observations in a node.
– max.leaves: Maximum number of leaf nodes.
– max.depth: Maximum number of nodes between the root node (not included) and the

furthest leaf node.
– na.rm: A logical variable that indicates if NA rows should be ignored.

• tree: list containing the nodes of the fitted Efficiency Analysis Trees model. Each node is
made up of the following elements:

– id: Node index
– F: Father node index.
– SL: Left child node index.
– SR: Right child node index.
– index: Set of indexes corresponding to the observations in a node.
– R: Error at the node.
– xi: Index of the variable that produces the split in a node.
– s: Threshold of the variable xi.
– a: The components of the vector at.
– b: The components of the vector bt.

• nodes_df: Contains the following information related to the nodes of the fitted Efficiency
Analysis Trees model in a data.frame structure:

– id: Node index
– N: Number of observations in a node.
– Proportion: Proportion of observations in a node.
– y: Fitted values.
– R: Error at the node.
– index: Indexes of the observations in a node.

• model: Contains the following information related to the fitted Efficiency Analysis Trees model:

– nodes: Number of nodes in the tree.
– leaf_nodes: Number of leaf nodes in the tree.
– a: The components of the vector at.
– y: Output estimation for each leaf node.

Regarding the RFEAT object, it contains the following fields:

• data: same fields as the EAT object.

• control: Contains the hyperparameters selected by the user.
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– numStop: Minimum number of observations in a node.
– m: Number of trees that make up the random forest.
– s_mtry: Number of inputs that can be randomly selected in each split.
– na.rm: A logical variable that indicates if NA rows should be ignored.

• forest: A list containing the individual Efficiency Analysis Trees that make up the random
forest.

• Error: The Out-of-Bag error at the random forest.
• OOB: A list containing the observations used for training each Efficiency Analysis Tree that

makes up the random forest.

Dataset and statistical sources

# We load the library
library("eat")

# We load the data
data("PISAindex")

We illustrate all the models presented in this paper resorting to a single dataset (PISAindex)
available in the eat package. Our dataset consists of 72 countries with 3 outputs and 13 inputs. The
output data have been collected by the PISA (Programme for International Student Assessment) 2018
survey (OECD 2018) and refers to the average score in mathematics, reading and science domains for
schools in these countries. Regarding the input data, the variables have been collected from the Social
Progress Index (2018) and are related to the socioeconomic environment of these countries. These
inputs can be classified into four blocks as follows:

• Basic Human Needs:

– Nutrition and Basic Medical Care (NBMC)
– Water and Sanitation (WS)
– Shelter (S)
– Personal Safety (PS).

• Foundations of Wellbeing:

– Access to Basic Knowledge (ABK)
– Access to Information and Communications (AIC)
– Health and Wellness (HW)
– Environmental Quality (EQ).

• Opportunity:

– Personal Rights (PR)
– Personal Freedom and Choice (PFC)
– Inclusiveness (I)
– Access to Advanced Education (AAE).

• Economy:

– Gross Domestic Product based on Purchasing Power Parity (GDP_PPP).

Finally, in order to simplify the examples and reduce computation time, a subset of variables is
selected as follows:

# Inputs (5): PR, PFC, I, AAE, GDP_PPP
# Outputs (3): S_PISA, R_PISA, M_PISA
PISAindex <- PISAindex[, c(3, 4, 5, 14, 15, 16, 17, 18)]

head(PISAindex)

#> S_PISA R_PISA M_PISA PR PFC I AAE GDP_PPP
#> SGP 551 549 569 71.70 87.90 48.26 74.31 97.745
#> JPN 529 504 527 94.07 82.40 62.32 81.29 41.074
#> KOR 519 514 526 92.71 79.06 63.54 86.32 41.894
#> EST 530 523 523 95.67 84.10 55.58 73.16 35.308
#> NLD 503 485 519 96.34 89.04 75.82 82.99 56.455
#> POL 511 512 516 86.41 78.25 57.58 76.21 31.766

Table 2 reports the descriptive statistics for these variables (outputs and inputs).
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Table 2: Descriptive statistics (averages, standard deviations, minimum, median and maximum) of
input–output.

variable type mean sd min median max
S_PISA output 455.06 48.32 336.00 466.00 551.00
R_PISA output 450.89 50.52 340.00 466.00 549.00
M_PISA output 454.81 52.17 325.00 463.50 569.00
PR input 81.62 17.98 21.14 88.40 98.07
PFC input 75.42 11.03 47.25 78.19 91.65
I input 54.17 17.07 12.37 55.51 81.91
AAE input 69.87 10.75 48.37 71.65 90.43
GDP_PPP input 36.04 21.91 7.44 31.42 114.11

4 Basic functions of the library

In this section, we introduce the main functions of the library related to Efficiency Analysis Trees and
Random Forest for Efficiency Analysis Trees. To execute the following examples, the package eat must
be loaded and the seed 100 must be set for reproducibility.

# We set the seed
set.seed(100)

The EAT basic model

The basic model of Efficiency Analysis Trees that we explained in subsection Efficiency Analysis Trees
can be implemented in R using the function EAT():

EAT(
data, x, y,
numStop = 5,
fold = 5,
max.depth = NULL,
max.leaves = NULL,
na.rm = TRUE

)

The EAT() function is the cornerstone of the eat library. The minimum arguments of this function
are the data (data) containing the study variables, the indexes of the predictor variables or inputs (x)
and the indexes of the predicted variables or outputs (y). Additionally, the numStop, fold, max.depth
and max.leaves arguments are included for more experienced users in the fields of machine learning
and tree-based models. Modifying these four hyperparameters allows obtaining different frontier
estimates and therefore selecting the one that best suits the needs of the analysis. The description of
these parameters is as follows:

• numStop refers to the minimum number of observations in a node to be split and is directly
related to the size of the tree. The higher the value of numStop, the smaller the size of the tree.

• fold refers to the number of parts in which the data is divided to apply the cross-validation
technique. Variations in the fold argument are not directly related to the size of the tree.

• max.depth limits the number of nodes between the root node (not included) and the furthest leaf
node. When this argument is introduced, the typical process of growth-pruning is not carried
out. In this case, the tree is allowed to grow to the required depth.

• max.leaves determines the maximum number of leaf nodes. As in max.depth, the process of
growth-pruning is not performed. In this respect, the tree grows until the required number of
leaf nodes is reached, and then, the tree is returned.

Notice that including the arguments max.depth or max.leaves reduces the computation time by
eliminating the pruning procedure. However, the pruning process is preferred if the objective of the
study is inferential instead of simply descriptive. If both are included at the same time, a warning
message is displayed and only max.depth is used.

As an example, using data from subsection Dataset and statistical sources, we next create a multi
response tree using the suitable code as follows. Results are returned as an EAT object, as explained in
Section Data structure.

modelEAT <- EAT(data = PISAindex, x = 4:8, y = 1:3)
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The RFEAT basic model

The basic model of Random Forest for Efficiency Analysis Trees that we explained in subsection
Random Forest for Efficiency Analysis Trees can be implemented in R using the function RFEAT():

RFEAT(
data, x, y,
numStop = 5,
m = 50,
s_mtry = "BRM",
na.rm = TRUE

)

The RFEAT() function has also been developed with the aim of providing greater statistical robust-
ness to the results obtained by the EAT() function. The RFEAT() function requires the data containing
the variables for the analysis, x and y corresponding to the inputs and outputs indexes respectively,
the minimum number of observations in a node for a split to be attempted (numStop) and na.rm to
ignore observations with NA cells. All these arguments are used for the construction of the p (this is
denoted with m in the RFEAT() function) individual Efficiency Analysis Trees that make up the random
forest. Finally, the argument s_mtry indicates the number of inputs that can be randomly selected in
each split. It can be set as any integer although there are also certain predefined values. Let m be the
number of inputs, let s be the number of outputs and let n(t) be the number of observations in a node.
Then, the predefined values for s_mtry are:

• BRM = m
3 ,

• DEA1 = n(t)
2 − s,

• DEA2 = n(t)
3 − s,

• DEA3 = n(t)
2s ,

• DEA4 = min
{

n(t)
s , n(t)

3 − s
}

.

As an example, using data from subsection Dataset and statistical sources, we next create a forest
with 30 trees. Results are returned as an RFEAT object, as explained in Section Data structure.

modelRFEAT <- RFEAT(data = PISAindex, x = 4:8, y = 1:3, m = 30)

Predictions

The estimators of the Efficiency Analysis Trees and Random Forest for Efficiency Analysis Trees can be
computed in R using the function predict():

predict(
object,
newdata,
x, ...

)

Regarding the arguments of predict(), object can be an EAT or an RFEAT object, newdata refers
to a data.frame and x to the set of inputs to be used. This function returns a data.frame with the
expected output for a set of observations. For predictions using an EAT object, only one tree is used.
However, for the RFEAT model, the output is predicted by each of the p (m in the RFEAT() function)
individual trees trained and subsequently the mean value of all predictions is obtained.

As an example, we next evaluate the last 3 DMUs from the data of subsection Dataset and statistical
sources and the corresponding EAT and RFEAT models. Results are returned in a data.frame structure
with the output predictions:

predict(object = modelEAT, newdata = tail(PISAindex, 3), x = 4:8)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 428 424 437
#> 2 377 359 368
#> 3 377 359 368
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predict(object = modelRFEAT, newdata = tail(PISAindex, 3), x = 4:8)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 439.9667 435.1333 441.2000
#> 2 402.0667 389.0667 403.9000
#> 3 399.0333 389.3333 399.6333

In the same way, the user can also create a new data.frame and calculate predictions for it as
follows:

new <- data.frame(AAE = c(61, 72), PR = c(76, 81), I = c(41, 55), GDP_PPP = c(19, 31),
PFC = c(67, 78))

predict(object = modelEAT, newdata = new, x = 1:5)

#> S_PISA_pred R_PISA_pred M_PISA_pred
#> 1 428 424 421
#> 2 481 479 488

Importance of predictor variables

The way to compute in R the predictor variables importance in the Efficiency Analysis Trees methodol-
ogy is using the functions rankingEAT() or rankingRFEAT():

# Through Efficiency Analysis Trees
rankingEAT(
object,
barplot = TRUE,
threshold = 70,
digits = 2

)

# Through Random Forest for Efficiency Analysis Trees
rankingRFEAT(
object,
barplot = TRUE,
digits = 2

)

These functions allow a selection of variables by calculating a score of importance through Effi-
ciency Analysis Trees or Random Forest for Efficiency Analysis Trees, respectively. These importance
scores represent how influential each variable is in the model. Regarding the Efficiency Analysis
Trees [RankingEAT()], the notion of surrogate splits by Breiman et al. (1984) was implemented. In
this regard, the measure of importance of a variable xj is defined as the sum over all nodes of the
decrease in mean squared error produced by the best surrogate split on xj at each node (see Definition
5.9 in Breiman et al. (1984)). Since only the relative magnitudes of these measures are interesting
for researchers, the actual measures of importance that we report are normalized. In this way, the
most important variable has always a value of 100, and the others are in the range 0 to 100. As for the
Random Forest for Efficiency Analysis Trees [RankingRFEAT()], (9) was implemented for each input
variable. Regarding the available arguments of the functions, the user can specify the number of
decimal units (digits) and include a barplot (from ggplot2) with the scores of importance (barplot).
Additionally, the rankingEAT() function allows to display a horizontal line in the graph to facilitate
the cut-off point between important and irrelevant variables (threshold).

As an example, we next use the objects modelEAT (an EAT object from the EAT() function) and
modelRFEAT (an RFEAT object from the RFEAT() function) created in the previous section to assess the
predictors used. These functions return the name of the predictor variables, the scores of importance
(in the range 0-100 for the rankingEAT() function) and a barplot (without horizontal line for the
rankingRFEAT() function).

rankingEAT(object = modelEAT)

#> $scores
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Figure 1: Barplot generated by applying ‘rankingEAT()‘ to the PISAindex database to determine the
ranking of variable importance.

#> Importance
#> AAE 100.00
#> GDP_PPP 82.13
#> I 72.58
#> PR 72.45
#> PFC 29.07
#>
#> $barplot

rankingRFEAT(object = modelRFEAT)

#> $scores
#> Importance
#> PR 1.75
#> PFC -1.64
#> GDP_PPP -2.16
#> I -2.87
#> AAE -3.67
#>
#> $barplot

Note that negative scores may appear when calculating the importance of variables using the
rankingRFEAT() function. The appearance of this type of (negative) score can be understood as, if that
variable were removed from the model, ceteris paribus, then an improvement in the predictive capacity
of the model would be produced.

5 Basic EAT and RFEAT models

Efficiency scores are numerical values that indicate the degree of efficiency of a set of Decision Making
Units (DMU). In the eat package, these scores can be calculated through an Efficiency Analysis Trees
model, a Random Forest for Efficiency Analysis Trees model or a Convexified Efficiency Analysis
Trees model. The code is as follows:

# For Efficiency Analysis Trees
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Figure 2: Barplot generated by applying ‘rankingRFEAT()‘ to the PISAindex database to determine
the ranking of variable importance.

efficiencyEAT(
data, x, y, object, scores_model, digits = 3,
FDH = TRUE, print.table = FALSE, na.rm = TRUE

)

# For Random Forest for Efficiency Analysis Trees
efficiencyRFEAT(
data, x, y, object, digits = 3,
FDH = TRUE, print.table = FALSE, na.rm = TRUE

)

# For Convexified Efficiency Analysis Trees
efficiencyCEAT(
data, x, y, object, scores_model, digits = 3,
DEA = TRUE, print.table = FALSE, na.rm = TRUE

)

A dataset (data) and the corresponding indexes of input(s) (x) and output(s) (y) must be entered.
It is recommended that the data with the DMUs whose efficiency is to be calculated coincide with
those used to estimate the frontier. However, it is also possible to calculate the efficiency scores for
new data. The efficiency scores are calculated using the mathematical programming model included
in the argument scores_model. The following models are available:

• BCC.OUT: The output-oriented radial model (Banker, Charnes, and Cooper 1984).

• BCC.INP: The input-oriented radial model (Banker, Charnes, and Cooper 1984).

• RSL.OUT: The output-oriented Russell model (Färe and Lovell 1978).

• RSL.INP: The input-oriented Russell model (Färe and Lovell 1978).

• DDF: The Directional Distance Function (Chambers, Chung, and Färe 1998).

• WAM.MIP: The Measure of Inefficiency Proportions as a type of Weighted Additive Model (Lovell
and Pastor 1995).

• WAM.RAM: The Range-Adjusted Measure of Inefficiency as a type of Weighted Additive Model
(Lovell and Pastor 1995; W. W. Cooper, Park, and Pastor 1999).

FDH or DEA scores can optionally be computed by setting FDH = TRUE or DEA = TRUE, respectively.
Finally, a summary descriptive table of the efficiency scores can be displayed with the argument
print.table = TRUE.
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The output-oriented radial model

The output-oriented radial model determines the efficiency score for (xk, yk) ∈ Rm+s
+ by equipro-

portionally increasing all its outputs while maintaining inputs constant: ϕ (xk, yk) = max{ϕk ∈ R :
(xk, ϕkyk) ∈ Ψ}.

The efficiency score ϕ (xk, yk) can be estimated through FDH by plugging Ψ̂FDH from (2) into
max {ϕk ∈ R : (xk, ϕkyk) ∈ Ψ} in place of Ψ. In that case, the optimization problem can be rewritten
as a mixed-integer linear optimization program, as follows:

ϕFDH (xk, yk) = max ϕ,
s.t.

∑n
i=1 λixji ≤ xjk, j = 1, ..., m

∑n
i=1 λiyri ≥ ϕyrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(10)

The Linear Programming model that should be solved under Data Envelopment Analysis would
be:

ϕDEA (xk, yk) = max ϕ,
s.t.

∑n
i=1 λixji ≤ xjk, j = 1, ..., m

∑n
i=1 λiyri ≥ ϕyrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(11)

The following Mixed-Integer Linear Program should be solved for Efficiency Analysis Trees:

ϕEAT (xk, yk) = max ϕ,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕyrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗

(12)

In R, this model can be computed by setting scores_model = "BCC.OUT" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 1.03 0.04 1 1 1.01 1.01 1.16
#> FDH 1.01 0.02 1 1 1.00 1.00 1.12

scores %>% sample_n(3)

#> EAT_BCC_OUT FDH_BCC_OUT
#> CHL 1.09 1.05
#> SAU 1.05 1.00
#> CAN 1.01 1.01

Finally, the optimization model that should be solved for Convexified Efficiency Analysis Trees is:

ϕCEAT (xk, yk) = max ϕ,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕyrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗

(13)

In R, this model can be computed by setting scores_model = "BCC.OUT" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
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scores_model = "BCC.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 1.11 0.07 1 1.05 1.09 1.09 1.31
#> DEA 1.05 0.04 1 1.01 1.05 1.05 1.18

scores %>% sample_n(3)

#> CEAT_BCC_OUT DEA_BCC_OUT
#> BLR 1.07 1.00
#> SVK 1.07 1.04
#> RUS 1.04 1.00

In the case of the output-oriented radial model, Esteve et al. (2021) showed how this measure
can be computed through Random Forest where ϕ (xk, yk) = max {ϕk ∈ R : (xk, ϕkyk) ∈ Ψ} can be
estimated by substituting the theoretical production possibility set Ψ by its estimation Ψ̂RF+EAT ,
i.e., ϕRF+EAT (xk, yk) = max

{
ϕk ∈ R : (xk, ϕkyk) ∈ Ψ̂RF+EAT

}
. In particular, ϕRF+EAT (xk, yk) may be

calculated as:

ϕRF+EAT (xk, yk) = min
r=1,...,s

{
yRF+EAT(ℵ)

r (xk)

yrk

}
, (14)

where yRF+EAT(ℵ)
r (xk) is the estimation of the r-th output given the input bundle xk.

In R, this model can be computed using efficiencyREAT():

scores <- efficiencyRFEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelRFEAT,
digits = 2, print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> RFEAT 1.03 0.04 0.94 1 1.02 1.02 1.15
#> FDH 1.01 0.02 1.00 1 1.00 1.00 1.12

scores %>% sample_n(3)

#> RFEAT_BCC_OUT FDH_BCC_OUT
#> SGP 0.94 1
#> HUN 0.99 1
#> MEX 1.00 1

The input-oriented radial model

By analogy with the previous section, where the output-oriented radial model was shown, it is possible
to calculate the input-oriented radial technical efficiency of the input-output bundle (xk, yk) by solving
the following Mixed-Integer Linear Program, counterpart to (10):

min θ,
s.t.

∑n
i=1 λixji ≤ θxjk, j = 1, ..., m

∑n
i=1 λiyri ≥ yrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(15)

The same type of technical measure can be estimated through DEA by convexification of the
production frontier generated by FDH. Next, we show the Linear Programming model that should be
solved in that case:

min θ,
s.t.

∑n
i=1 λixji ≤ θxjk, j = 1, ..., m

∑n
i=1 λiyri ≥ yrk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(16)
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The input-oriented radial model in the case of the Efficiency Analysis Trees technique can be
determined through the following Mixed-Integer Linear Program:

min θ,
s.t.

∑t∈T̃∗ λtat
j ≤ θxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗

(17)

In R, this model can be computed by setting scores_model = "BCC.INP" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.94 0.06 0.69 0.90 0.96 0.96 1
#> FDH 0.98 0.03 0.90 0.97 1.00 1.00 1

scores %>% sample_n(3)

#> EAT_BCC_INP FDH_BCC_INP
#> DEU 0.88 0.92
#> KAZ 1.00 1.00
#> SRB 0.99 1.00

Additionally, under the Convexified Efficiency Analysis Trees technique, the optimization model
corresponding to the convexification of the production possibility set derived from conv(Ψ̂T∗ ) from (5)
should be solved in order to determine an estimation of the input-oriented radial measure as follows:

min θ,
s.t.

∑t∈T̃∗ λtat
j ≤ θxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗

(18)

In R, this model can be computed by setting scores_model = "BCC.INP" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "BCC.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.82 0.08 0.69 0.76 0.81 0.81 1
#> DEA 0.92 0.07 0.72 0.87 0.91 0.91 1

scores %>% sample_n(3)

#> CEAT_BCC_INP DEA_BCC_INP
#> QAT 0.93 1.00
#> CYP 0.69 0.78
#> CHE 0.73 0.85

The output-oriented Russell measure

The output-oriented Russell measure under FDH must be calculated through the following optimiza-
tion model:
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max 1
s ∑s

r=1 ϕr,
s.t.

∑n
i=1 λtxji ≤ xjk, j = 1, ..., m

∑n
i=1 λtyri ≥ ϕryrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ∈ {0, 1} , i = 1, ..., n
ϕ ≥ 1s.

(19)

Under DEA, the corresponding model would be:

max 1
s ∑s

r=1 ϕr,
s.t.

∑n
i=1 λtxji ≤ xjk, j = 1, ..., m

∑n
i=1 λtyri ≥ ϕryrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ≥ 0, i = 1, ..., n
ϕ ≥ 1s.

(20)

If we resort to the Efficiency Analysis Trees technique, then the model to be solved should be the
following:

max 1
s ∑s

r=1 ϕr,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗ (at) ≥ ϕryrk, r = 1, ..., s
∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , i = 1, ..., n
ϕ ≥ 1s.

(21)

In R, this model can be computed by setting scores_model = "RSL.OUT" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.OUT", digits = 2,
print.table = TRUE)

scores %>% sample_n(3)

Finally, under the Convexified Efficiency Analysis Trees technique, the model would be:

max 1
s ∑s

r=1 ϕr,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ ϕryrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, i = 1, ..., n
ϕ ≥ 1s.

(22)

In R, this model can be computed by setting scores_model = "RSL.OUT" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.OUT", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 1.13 0.08 1 1.07 1.10 1.10 1.34
#> DEA 1.06 0.05 1 1.02 1.06 1.06 1.22

scores %>% sample_n(3)

#> CEAT_RSL_OUT DEA_RSL_OUT
#> LVA 1.07 1.05
#> CHL 1.18 1.13
#> MAR 1.14 1.00
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The input-oriented Russell measure

By analogy with the output-oriented Russell measure, the input-oriented Russell measure should be
calculated through the following optimization models, depending on the selected approach:

min 1
m ∑m

j=1 θj,
s.t.

∑n
i=1 λtxji ≤ θjxjk, j = 1, ..., m

∑n
i=1 λtyri ≥ yrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ∈ {0, 1} , i = 1, ...n
θ ≤ 1m.

(23)

Under DEA, the corresponding model would be:

min 1
m ∑m

j=1 θj,
s.t.

∑n
i=1 λtxji ≤ θjxjk, j = 1, ..., m

∑n
i=1 λtyri ≥ yrk, r = 1, ..., s

∑n
i=1 λt = 1,

λi ≥ 0, i = 1, ...n
θ ≤ 1m.

(24)

If we resort to the Efficiency Analysis Trees technique, then the model to be solved should be the
following:

min 1
m ∑m

j=1 θj,
s.t.

∑t∈T̃∗ λtat
j ≤ θjxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , i = 1, ..., n
θ ≤ 1m.

(25)

In R, this model can be computed by setting scores_model = "RSL.INP" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "RSL.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.58 0.09 0.43 0.52 0.56 0.56 0.81
#> FDH 0.87 0.10 0.59 0.81 0.86 0.86 1.00

scores %>% sample_n(3)

#> EAT_RSL_INP FDH_RSL_INP
#> LBN 0.58 0.73
#> MAR 0.69 0.97
#> MKD 0.58 0.87

Finally, under the Convexified Efficiency Analysis Trees technique, the model would be:

min 1
m ∑m

j=1 θj,
s.t.

∑t∈T̃∗ λtat
j ≤ θjxjk, j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk, r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, i = 1, ..., n
θ ≤ 1m.

(26)

In R, this model can be computed by setting scores_model = "RSL.INP" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
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scores_model = "RSL.INP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.54 0.08 0.43 0.49 0.53 0.53 0.79
#> DEA 0.80 0.11 0.59 0.74 0.78 0.78 1.00

scores %>% sample_n(3)

#> CEAT_RSL_INP DEA_RSL_INP
#> ARG 0.44 0.59
#> LUX 0.44 0.65
#> CHE 0.49 0.74

The directional distance function

Chambers, Chung, and Färe (1998) introduced the directional distance function (DDF) as a techni-
cal efficiency measure that projects (xk, yk) through a pre-assigned direction g = (−g−j ,+g+r ) ̸=
0m+s, g−j ∈ Rm, g+r ∈ Rs to the efficiency frontier of the corresponding technology. Under FDH, the
DDF is calculated as follows:

max βk,
s.t.

∑n
i=1 λixji ≤ xjk − βkg−j , j = 1, ..., m

∑n
i=1 λiyri ≥ yrk + βkg+r , r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n

(27)

The corresponding linear program in DEA is as follows:

max βk,
s.t.

∑n
i=1 λixji ≤ xjk − βkg−j , j = 1, ..., m

∑n
i=1 λiyri ≥ yrk + βkg+r , r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n

(28)

In the context of Efficiency Analysis Trees, the DDF is calculated through the following Mixed-
Integer Linear Program:

max βk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − βkg−j , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + βkg+r , r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ∈ {0, 1} , t ∈ T̃∗.

(29)

In R, this model can be computed by setting scores_model = "DDF" in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "DDF", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 0.02 0.02 0 0 0.01 0.01 0.13
#> FDH 0.01 0.01 0 0 0.00 0.00 0.05

scores %>% sample_n(3)

#> EAT_DDF FDH_DDF
#> MDA 0.00 0.00
#> LVA 0.00 0.00
#> BRA 0.03 0.01
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In the case of Convexified Efficiency Analysis Trees, the optimization model is as follows.

max βk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − βkg−j , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + βkg+r , r = 1, ..., s

∑t∈T̃∗ λt = 1,
λt ≥ 0, t ∈ T̃∗.

(30)

In R, this model can be computed by setting scores_model = "DDF" in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "DDF", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 0.07 0.04 0 0.05 0.06 0.06 0.18
#> DEA 0.03 0.03 0 0.00 0.03 0.03 0.12

scores %>% sample_n(3)

#> CEAT_DDF DEA_DDF
#> IRL 0.05 0.03
#> LBN 0.15 0.10
#> FRA 0.07 0.06

The weighted additive model

The additive model measures technical efficiency based on input excesses and output shortfalls. It
characterizes efficiency in terms of the input and output slacks: s− ∈ Rm and s+ ∈ Rs, respectively.
The eat package implements the weighted additive model formulation of Lovell and Pastor (1995),
where (w−, w+) ∈ Rm

+ × Rs
+ are the input and output weights whose elements can vary across DMUs.

In the case of the FDH, the optimization program to be solved would be:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑n
i=1 λtxji ≤ xjk − s−jk , j = 1, ..., m

∑n
i=1 λtyri ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(31)

Under DEA, the model would be as follows:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑n
i=1 λtxji ≤ xjk − s−jk , j = 1, ..., m

∑n
i=1 λtyri ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(32)

Within the framework of Efficiency Analysis Trees, the weighted additive model would be calcu-
lated as follows:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − s−jk , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ∈ {0, 1} , i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(33)
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In R, this model can be computed by setting scores_model = "WAM.MIP" for the Measure of
Inefficiency Proportions or "WAM.RAM" for the Range-Adjusted Measure of Inefficiency (W. W. Cooper,
Park, and Pastor 1999) in efficiencyEAT():

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.MIP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 2.07 0.56 0.61 1.58 2.18 2.18 3.14
#> FDH 0.40 0.58 0.00 0.00 0.00 0.00 2.37

scores %>% sample_n(3)

#> EAT_WAM_MIP FDH_WAM_MIP
#> MLT 2.54 0
#> SVN 1.86 0
#> HRV 2.30 0

scores <- efficiencyEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.RAM", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> EAT 2704.65 1677.11 455.3 1467.78 2425.09 2425.09 8293.59
#> FDH 959.09 1388.56 0.0 0.00 0.00 0.00 5413.27

scores %>% sample_n(3)

#> EAT_WAM_RAM FDH_WAM_RAM
#> ITA 2192.98 0.00
#> LVA 1890.38 0.00
#> CAN 1724.26 1182.66

And, finally, the Convexified Efficiency Analysis Trees weighted additive model would be:

max ∑m
j=1 w−

j s−jk + ∑s
r=1 w+

r s+rk,
s.t.

∑t∈T̃∗ λtat
j ≤ xjk − s−jk , j = 1, ..., m

∑t∈T̃∗ λtdrT∗
(
at) ≥ yrk + s+rk, r = 1, ..., s

∑n
i=1 λi = 1,

λi ≥ 0, i = 1, ..., n
s−k ≥ 0m, s+k ≥ 0s.

(34)

In R, this model can be computed by setting scores_model = "WAM.MIP" for the Measure of Ineffi-
ciency Proportions or "WAM.RAM" for the Range-Adjusted Measure of Inefficiency in efficiencyCEAT():

scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.MIP", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 2.39 0.45 0.96 2.24 2.50 2.50 3.14
#> DEA 0.90 0.62 0.00 0.23 1.07 1.07 2.37

scores %>% sample_n(3)

#> CEAT_WAM_MIP DEA_WAM_MIP
#> ISR 2.74 1.13
#> ITA 2.73 1.31
#> SGP 1.91 0.00
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scores <- efficiencyCEAT(data = PISAindex, x = 4:8, y = 1:3, object = modelEAT,
scores_model = "WAM.RAM", digits = 2,
print.table = TRUE)

#> Model Mean Std. Dev. Min Q1 Median Q3 Max
#> CEAT 5285.99 2573.13 612.54 3362.98 4836.79 4836.79 12088.64
#> DEA 2413.66 1821.33 0.00 746.22 2495.20 2495.20 7167.29

scores %>% sample_n(3)

#> CEAT_WAM_RAM DEA_WAM_RAM
#> KOR 1538.61 0.00
#> ROU 7239.16 4727.17
#> EST 612.54 0.00

6 Advanced options and displaying and exporting results

Advanced optimization options

The bestEAT() and bestRFEAT() functions are aimed at finding the value of the hyperparameters that
minimize the root mean squared error (RMSE) calculated from a test sample through an Efficiency
Analysis Trees or a Random Forest for Efficiency Analysis Trees model fitted using a training sample.
The code of these functions is as follows:

# Hyperparameter tuning for Efficiency Analysis Trees
bestEAT(
training, test, x, y,
numStop = 5, fold = 5,
max.depth = NULL,
max.leaves = NULL,
na.rm = TRUE
)

# Hyperparameter tuning for Random Forest for Efficiency Analysis Trees
bestRFEAT(
training, test, x, y,
numStop = 5, m = 50,
s_mtry = c("5", "BRM"),
na.rm = TRUE
)

Here is an example of using the bestEAT() function. First, the PISAindex database explained in
Section Data structure is divided into a training subset with 70% of the DMUs and a test subset with
the remaining 30% (these values can be modified).

n <- nrow(PISAindex) # Observations in the dataset
selected <- sample(1:n, n * 0.7) # Training indexes
training <- PISAindex[selected, ] # Training set
test <- PISAindex[- selected, ] # Test set

Then, we can apply the bestEAT() function. This function, and its equivalent bestRFEAT(), requires
a training set (training) on which to fit an Efficiency Analysis Trees model (with cross-validation), a
test set (test) on which to calculate the root mean squared error and the input and output indexes (x
and y, respectively). The rest of the arguments (numStop, fold, max.depth and max.leaves in case of
using the bestEAT() function) are used to create a grid of combinations that determines the number of
models to fit. Notice that it is not possible to enter NULL and a certain value in max.depth or max.leaves
arguments at the same time (i.e. max.depth = c(NULL, 5, 3)).

In the following example, the arguments numStop = (3, 5, 7) and fold = (5, 7) are entered and,
consequently, six different models are constructed and fitted with {numStop = 3, fold = 5}, {numStop
= 3, fold = 7}, {numStop = 5, fold = 5}, {numStop = 5, fold = 7}, {numStop = 7, fold = 5} and
{numStop = 7, fold = 7}. Let us show a numerical example:
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bestEAT(training = training, test = test, x = 4:8, y = 1:3,
numStop = c(3, 5, 7), fold = c(5, 7))

#> numStop fold RMSE leaves
#> 1 5 5 74.74 15
#> 2 7 7 83.61 13
#> 3 3 5 84.17 13
#> 4 3 7 84.17 13
#> 5 7 5 86.39 8
#> 6 5 7 104.93 8

The best model is given by the hyperparameters {numStop = 5, fold = 5} with RMSE = 74.74 and
15 leaf nodes. Note that sometimes it might be interesting to select a model with a higher RMSE but
with a lower number of leaf nodes. With this result, we fit the final Efficiency Analysis Trees model
using all the original data.

bestEAT_model <- EAT(data = PISAindex, x = 4:8, y = 1:3, numStop = 5, fold = 5)

Displaying results

General functions for the EAT object

The simplest functions to use in order to explore the results of an EAT object are print() and summary().
The function print() returns the tree-structure of an Efficiency Analysis Trees model; while the
function summary() returns general information about the fitted model. We show the results with an
example:

modelEAT2 <- EAT(data = PISAindex, x = 7, y = 3)

print(modelEAT2) # [node] y: [prediction] || R: error n(t): nº of DMUs

#> [1] y: [ 569 ] || R: 15724.19 n(t): 72
#>
#> | [2] AAE < 70.12 --> y: [ 486 ] || R: 3094.43 n(t): 34
#>
#> | | [4] AAE < 60.75 --> y: [ 472 ] <*> || R: 1553.93 n(t): 17
#>
#> | | [5] AAE >= 60.75 --> y: [ 486 ] <*> || R: 1006.94 n(t): 17
#>
#> | [3] AAE >= 70.12 --> y: [ 569 ] <*> || R: 3753.38 n(t): 38
#>
#> <*> is a leaf node

# Primary & surrogate splits: Node i --> {SL, SR} || var --> {R: error, s: threshold}
summary(modelEAT2)

#>
#> Formula: M_PISA ~ AAE
#>
#> # ========================== #
#> # Summary for leaf nodes #
#> # ========================== #
#>
#> id n(t) % M_PISA R(t)
#> 3 38 53 569 3753.38
#> 4 17 24 472 1553.93
#> 5 17 24 486 1006.94
#>
#> # ========================== #
#> # Tree #
#> # ========================== #
#>
#> Interior nodes: 2
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#> Leaf nodes: 3
#> Total nodes: 5
#>
#> R(T): 6314.25
#> numStop: 5
#> fold: 5
#> max.depth:
#> max.leaves:
#>
#> # ========================== #
#> # Primary & surrogate splits #
#> # ========================== #
#>
#> Node 1 --> {2,3} || AAE --> {R: 6847.81, s: 70.12}
#>
#> Node 2 --> {4,5} || AAE --> {R: 2560.88, s: 60.75}

Representing the efficiency scores

efficiencyJitter() returns a jitter plot from ggplot2. This graphic shows how DMUs are grouped
into leaf nodes in a model built using the EAT() function where each leaf node groups DMUs with
the same level of resources. A black dot and a black line represent, respectively, the mean value and
the standard deviation of the scores (df_scores from the efficiencyEAT() or the efficiencyCEAT()
functions) of a given node. Additionally, efficient DMU labels are always displayed based on the
model entered in the scores_model argument. Finally, the user can specify an upper bound (upb) and
a lower bound (lwb) in order to show, in addition, the labels whose efficiency score lies between them.
The code is as follows:

efficiencyJitter(
object,
df_scores,
scores_model,
upb = NULL,
lwb = NULL

)

As an example, using data from Section Data structure, we create a new Efficiency Analysis Trees
model containing only the AAE and the M_PISA variables. Next, we evaluate the Efficiency Analysis
Trees efficiency scores corresponding to the output-oriented radial model and plot them through
efficiencyJitter().

scores <- efficiencyEAT(data = PISAindex, x = 7, y = 3, object = modelEAT2,
scores_model = "BCC.OUT", digits = 2,
print.table = FALSE)

efficiencyDensity() returns a density plot from ggplot2. This graphic allows to verify the
similarity between the scores obtained by the different available methodologies (EAT, FDH, CEAT, DEA
and RFEAT) in the eat package.

efficiencyDensity(
df_scores,
model = c("EAT", "FDH")

)

In this case, a comparison between the scores of the EAT and FDH models is shown, where it can
be clearly seen how FDH is less restrictive when determining a unit as efficient:

Other graphics

In the limited case of using only one input for producing only one output, we can display the frontier
(from ggplot2) estimated by the EAT() function through the frontier() function:
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Figure 4: Density plot generated by ’efficiencyDensity()’ to show the difference between the score
obtained by EAT and FDH.
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Figure 5: Plot of productions functions corresponding to the EAT and the FDH estimator when
’frontier()’ is applied.

frontier(
object, FDH = TRUE,
observed.data = TRUE,
observed.color = "black",
pch = 19,vsize = 1,
rwn = FALSE,
max.overlaps = 10

)

Optionally, the frontier estimated by FDH can also be plotted if FDH = TRUE. Observed DMUs can
be showed by a scatterplot if observed.data = TRUE and its color, shape and size can be modified
with observed.color, pch and size respectively. Finally, row names can be included with rwn = TRUE.

As an example, we use data simulated from the eat package to generate a data.frame with 50
rows (N = DMUs) and 1 input (nX):

simulated <- Y1.sim(N = 50, nX = 1)
modelEAT3 <- EAT(data = simulated, x = 1, y = 2)

Then, we apply the frontier() function, where it can be observed how the Efficiency Analysis
Trees model generalizes the results obtained by the FDH model:

The function frontier() shown above only works for the simple case of a low-dimensional
scenario with one input and one output. For multiple input and/or output scenarios, the typical tree-
structure showing the relationships between outputs and inputs is given by the function plotEAT().

plotEAT(
object

)

The nodes of the tree are colored according to the variable by which the split is performed or they
are black, in the case of being a leaf node. For each node, we can obtain the following information:

• id: node index.
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• R: error at the node.

• n(t): number of DMUs at the node.

• input variable associated with the split.

• y: vector of output predictions.

Next, we limit the growth of an Efficiency Analysis Trees model to a maximum size of 5 (max.depth
= 4) and display the tree-structure using the plotEAT() function:

Finally, the function plotRFEAT() returns the Out-Of-Bag error for a random forest consisting of k
trees. The code of the function and an example with the object modelRFEAT are shown above:

plotRFEAT(
object

)

In view of the results, it can be seen how the OOB error presents a great variability for a small
number of trees, however, it usually levels off. In our case, it seems that the OOB error levels off from
20 trees onwards around an OOB error of 56, so it could be interesting not to include a greater number
of trees in the random forest in order to reduce the computational cost.

7 Conclusions

The eat package allows the estimation of production frontiers in microeconomics and engineering
through suitable adaptations of Regression Trees and Random Forest. In the first case, the package
implements in R the so-called Efficiency Analysis Trees (EAT) by Esteve et al. (2020), which is a non-
parametric technique that competes against the more standard Free Disposal Hull (FDH) technique. In
this regard, the EAT technique overcomes the overfitting problem suffered by the FDH technique. FDH
is based on three microeconomic postulates. First, the technology determined by FDH satisfies free
disposability in inputs and outputs. Second, it is assumed to be deterministic, that is, the production
possibility set built by this technique always contains all the observations that belong to the data
sample. Third, FDH meets the minimal extrapolation principle. This last postulate implies that
FDH generates the smallest set that satisfies the first two postulates. Consequently, the derived
efficient frontier is as close to the data as possible, generating overfitting problems. In contrast, the
Efficiency Analysis Trees (EAT) technique meets the first two postulates but does not satisfy the
minimal extrapolation principle. This fact avoids possible overfitting problems. The difficulty for
non-overfitted models lies in where to locate the production possibility set in such a way that it is
close to the (unknown) technology associated with the underlying Data Generating Process. In the
case of EAT, it is achieved through cross-validation and pruning. A subsequent convexification of the
EAT estimation of the technology, known as CEAT by its acronym, yields an alternative estimate of the
production possibility set in contrast to the traditional Data Envelopment Analysis (DEA) technique.
In the second case, an ensemble of tree models is fitted and aggregated with the objective of achieving
robustness in the estimation of the production frontier (Esteve et al. 2021).

Several functions have been implemented in the eat package for determining the best model,
through a pruning process based on cross-validation, graphing the results, calculating a ranking
of importance of inputs and comparing the efficiency scores estimated by EAT with respect to the
standard approaches, i.e., FDH and DEA, through a list of standard technical efficiency measures. We
refer to the input and output-oriented radial models, the input and output-oriented Russell measures,
the Directional Distance Function and the Weighted Additive model.

Throughout the paper, we have also shown how to organize the data, use the available functions,
and interpret the results. In particular, to illustrate the different functions implemented in the package,
we applied all of them on a common empirical example so that results can easily be compared. In
this way, we believe that the eat package is a valid self-contained R package for the measurement of
technical efficiency from the popular machine learning technique: Decision Trees. Finally, since the
code is freely available in an open source repository, users will benefit from the collaboration and
review of the community. Users may check and modify the code to adapt it to their own needs and
extend it with new definitions.

8 Acknowledgments

M. Esteve, V. España and J. Aparicio thank the grant PID2019-105952GB-I00 funded by Ministerio de
Ciencia e Innovación/ Agencia Estatal de Investigación /10.13039/501100011033. Additionally, M.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 278

<  78.25

<  68.39

<  50.5 ≥  50.5

<  9.85 ≥  9.85

≥  68.39

≥  78.25

Id: 1
R: 13194.48

n(t): 71
PFC

y: [551,549,569]

Id: 2
R: 2887.5

n(t): 36
AAE

y: [481,479,488]

Id: 4
R: 714.51

n(t): 25
AAE

y: [438,428,440]

Id: 7
R: 504.69

n(t): 23
GDP_PPP

y: [438,428,440]

Id: 6
R: 17.93

n(t): 2
y:[377,359,368]

Id: 8
R: 4.63
n(t): 1

y:[377,359,368]

Id: 9
R: 402
n(t): 22

y:[438,428,440]

Id: 5
R: 170.68

n(t): 11
y:[481,479,488]

Id: 3
R: 2676.47

n(t): 35
y:[551,549,569]

Figure 6: Plot of the tree structure obtained through an EAT model with the parameter max.depth
defined as 4.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 279

56

58

60

62

0 10 20 30
k

O
ut

−
of

−
B

ag
 e

rr
or

Figure 7: Plot of the OOB error corresponding to 30 different RFEAT where k represents the number
of trees belonging to each RF.

Esteve gratefully acknowledges the financial support from the Spanish Ministry of Science, Innovation
and Universities under Grant FPU17/05365. X. Barber gratefully acknowledges the financial support
from the Spanish Ministry of Science and the State Research Agency under grant PID2019-106341GB-
I00. X Barber and J. Aparicio gratefully acknowledge the financial support from the University Miguel
Hernandez and the Vice-Rectorate for Research under grant AW1020IP-2020/NAC/00073. This work
was also supported by the Generalitat Valenciana under Grant ACIF/2021 (V. España).

References

Afriat, Sidney N. 1972. “Efficiency Estimation of Production Functions.” International Economic Review,
568–98.

Álvarez, Inmaculada, Javier Barbero, and José Zofio. 2020. “A Data Envelopment Analysis Toolbox for
MATLAB.” Journal of Statistical Software (Online) 95 (3).

Aparicio, Juan, Miriam Esteve, Jesus J Rodriguez-Sala, and José Zofio. 2021. “The Estimation of
Productive Efficiency Through Machine Learning Techniques: Efficiency Analysis Trees.” In
Data-Enabled Analytics: DEA for Big Data, edited by Joe Zhu and Vicent Charles. Springer.

Aparicio, Juan, Jesús T Pastor, Fernando Vidal, and José L Zof ’io. 2017. “Evaluating Productive Perfor-
mance: A New Approach Based on the Product-Mix Problem Consistent with Data Envelopment
Analysis.” Omega 67: 134–44.

Arnaboldi, Michela, Giovanni Azzone, and Marco Giorgino. 2014. Performance Measurement and
Management for Engineers. Academic Press.

Balk, Bert M, Javier Barbero, and José L Zof ’Io. 2018. “A Total Factor Productivity Toolbox for
MATLAB.” Available at SSRN 3178911.

Banker, Rajiv D. 1993. “Maximum Likelihood, Consistency and Data Envelopment Analysis: A
Statistical Foundation.” Management Science 39 (10): 1265–73.

———. 1996. “Hypothesis Tests Using Data Envelopment Analysis.” Journal of Productivity Analysis 7
(2): 139–59.

Banker, Rajiv D, Abraham Charnes, and William Wager Cooper. 1984. “Some Models for Estimating
Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science 30 (9):
1078–92.

Banker, Rajiv D, Abraham Charnes, William W Cooper, and Roger Clarke. 1989. “Constrained Game
Formulations and Interpretations for Data Envelopment Analysis.” European Journal of Operational
Research 40 (3): 299–308.

Banker, Rajiv D, and Ajay Maindiratta. 1992. “Maximum Likelihood Estimation of Monotone and
Concave Production Frontiers.” Journal of Productivity Analysis 3 (4): 401–15.

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 280

Berk, Richard A. 2016. Statistical Learning from a Regression Perspective. Vol. 14. Springer.
Bogetoft, Peter, and Lars Otto. 2010. Benchmarking with DEA, SFA, and r. Vol. 157. Springer Science &

Business Media.
Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32.
Breiman, Leo, Jerome Friedman, Charles J Stone, and Richard A Olshen. 1984. Classification and

Regression Trees. CRC press.
Chambers, Robert G, Yangho Chung, and Rolf Färe. 1998. “Profit, Directional Distance Functions, and

Nerlovian Efficiency.” Journal of Optimization Theory and Applications 98 (2): 351–64.
Charles, Vincent, Juan Aparicio, and Joe Zhu. 2020. Data Science and Productivity Analytics. Springer.
Charnes, Abraham, William W Cooper, and Edwardo Rhodes. 1978. “Measuring the Efficiency of

Decision Making Units.” European Journal of Operational Research 2 (6): 429–44.
Cooper, William W, Kyung Sam Park, and Jesus T Pastor. 1999. “RAM: A Range Adjusted Measure of

Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA.”
Journal of Productivity Analysis 11 (1): 5–42.

Cooper, WW, LM Seiford, K Tone, and J Zhu. 2007. “Some Models and Measures for Evaluating
Performances with DEA: Past Accomplishments and Future Prospects.” Journal of Productivity
Analysis 28 (3): 151–63.

Daouia, Abdelaati, Thibault Laurent, and Hohsuk Noh. 2017. “npbr: A Package for Nonparametric
Boundary Regression in R.” Journal of Statistical Software 79 (9): 1–43. https://doi.org/10.18637/
jss.v079.i09.

Daraio, Cinzia, and Léopold Simar. 2005. “Introducing Environmental Variables in Nonparametric
Frontier Models: A Probabilistic Approach.” Journal of Productivity Analysis 24 (1): 93–121.

Debreu, Gerard. 1951. “The Coefficient of Resource Utilization.” Econometrica: Journal of the Econometric
Society, 273–92.

Deprins, D, and L Simar. 1984. “Measuring Labor Efficiency in Post Offices, the Performance of Public
Enterprises: Concepts and Measurements, M. Marchand, P. Pestieau and H. Tulkens.” Amsterdam,
North (Holland, 243 (267.

Dyson, Robert G, Rachel Allen, Ana S Camanho, Victor V Podinovski, Claudia S Sarrico, and Estelle
A Shale. 2001. “Pitfalls and Protocols in DEA.” European Journal of Operational Research 132 (2):
245–59.

Efron, Brad. 1979. “Bootstrap Methods: Another Look at the Jackknife.” Annals of Statistics 7 (1): 1–26.
Esteve, Miriam, Juan Aparicio, Alejandro Rabasa, and Jesus J Rodriguez-Sala. 2020. “Efficiency

Analysis Trees: A New Methodology for Estimating Production Frontiers Through Decision Trees.”
Expert Systems with Applications 162: 113783.

Esteve, Miriam, Juan Aparicio, Jesus J Rodriguez-Sala, and Joe Zhu. 2021. “Estimation of Production
Frontiers Through Random Forest: The Treatment of Lack of Robustness, Ranking of Inputs and
Curse of Dimensionality Under Free Disposal Hull. Working Paper.” Working paper.

Färe, Rolf, and CA Knox Lovell. 1978. “Measuring the Technical Efficiency of Production.” Journal of
Economic Theory 19 (1): 150–62.

Färe, Rolf, and Daniel Primont. 1995. Multi-Output Production and Duality: Theory and Applications.
Springer Science & Business Media.

Farrel, MJ. 1957. “The Measure of Productive Efficiency.” Journal of the Royal Statistical Society 120.
Ferrara, Giancarlo, and Francesco Vidoli. 2018. Semsfa: Semiparametric Estimation of Stochastic Frontier

Models. https://CRAN.R-project.org/package=semsfa.
Friedman, Leo, and Zilla Sinuany Stern. 1998. “Combining Ranking Scales and Selecting Variables

in the DEA Context: The Case of Industrial Branches.” Computers & Operations Research 25 (9):
781–91.

Golany, Boaz, and Yaakov Roll. 1989. “An Application Procedure for DEA.” Omega 17 (3): 237–50.
Homburg, Carsten. 2001. “Using Data Envelopment Analysis to Benchmark Activities.” International

Journal of Production Economics 73 (1): 51–58.
Ji, Yong-bae, and Choonjoo Lee. 2010. “Data Envelopment Analysis.” The Stata Journal 10 (2): 267–80.
Khezrimotlagh, Dariush, Joe Zhu, Wade D Cook, and Mehdi Toloo. 2019. “Data Envelopment Analysis

and Big Data.” European Journal of Operational Research 274 (3): 1047–54.
Koopmans, Tjalling C. 1951. “An Analysis of Production as an Efficient Combination of Activities.”

Activity Analysis of Production and Allocation.
Kuhn, Max, Kjell Johnson, et al. 2013. Applied Predictive Modeling. Vol. 26. Springer.
Kuosmanen, Timo, and Andrew Johnson. 2017. “Modeling Joint Production of Multiple Outputs in

StoNED: Directional Distance Function Approach.” European Journal of Operational Research 262 (2):
792–801.

Kuosmanen, Timo, and Andrew L Johnson. 2010. “Data Envelopment Analysis as Nonparametric
Least-Squares Regression.” Operations Research 58 (1): 149–60.

Landete, Mercedes, Juan F Monge, and José L Ruiz. 2017. “Robust DEA Efficiency Scores: A Proba-
bilistic/Combinatorial Approach.” Expert Systems with Applications 86: 145–54.

Lovell, CA Knox, and Jesús T Pastor. 1995. “Units Invariant and Translation Invariant DEA Models.”

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://doi.org/10.18637/jss.v079.i09
https://doi.org/10.18637/jss.v079.i09
https://CRAN.R-project.org/package=semsfa


CONTRIBUTED RESEARCH ARTICLE 281

Operations Research Letters 18 (3): 147–51.
McKenzie, Taylor. 2018. Snfa: Smooth Non-Parametric Frontier Analysis. https://CRAN.R-project.org/

package=snfa.
Nunamaker, Thomas R. 1985. “Using Data Envelopment Analysis to Measure the Efficiency of

Non-Profit Organizations: A Critical Evaluation.” Managerial and Decision Economics 6 (1): 50–58.
O’Donnell, Christopher J et al. 2018. Productivity and Efficiency Analysis. Springer.
OECD, PISA. 2018. “Assessment and Analytical Framework, PISA.” OECD Publishing. Paris., PISA

(OECD, 2019).
Oh, Dong-hyun, and Dukrok Suh. 2013. Nonparaeff: Nonparametric Methods for Measuring Efficiency and

Productivity. https://CRAN.R-project.org/package=nonparaeff.
Orea, Luis, and José Luis Zof ’io. 2019. “Common Methodological Choices in Nonparametric and

Parametric Analyses of Firms’ Performance.” In The Palgrave Handbook of Economic Performance
Analysis, 419–84. Springer.

Pastor, Jesús T, JosÉ L Ruiz, and Inmaculada Sirvent. 2002. “A Statistical Test for Nested Radial DEA
Models.” Operations Research 50 (4): 728–35.

Raab, Raymond L, and Richard W Lichty. 2002. “Identifying Subareas That Comprise a Greater
Metropolitan Area: The Criterion of County Relative Efficiency.” Journal of Regional Science 42 (3):
579–94.

Shephard, Ronald William. 1953. Theory of Cost and Production Functions. Princeton University Press.
Simar, Leopold, and Paul W Wilson. 1998. “Sensitivity Analysis of Efficiency Scores: How to Bootstrap

in Nonparametric Frontier Models.” Management Science 44 (1): 49–61.
———. 2000. “Statistical Inference in Nonparametric Frontier Models: The State of the Art.” Journal of

Productivity Analysis 13 (1): 49–78.
Simar, Léopold, and Paul W Wilson. 2000. “A General Methodology for Bootstrapping in Non-

Parametric Frontier Models.” Journal of Applied Statistics 27 (6): 779–802.
Social Progress Index. 2018. “Social Progress Index 2018.” https://www.socialprogress.org/.
StataCorp. 2021. “Stata Statistical Software: Release 14.” http://www.stata.com/.
The MathWorks Inc. 2021. “MATLAB – the Language of Technical Computing.” http://www.

mathworks.com/products/matlab/.
Zhu, Joe et al. 2019. “DEA Under Big Data: Data Enabled Analytics and Network Data Envelopment

Analysis.” Annals of Operations Research, 1–23.

Miriam Esteve
Miguel Hernandez University
Center of Operations Research
03202 Elche, Spain
https://cio.umh.es/
ORCiD: 0000-0002-5908-0581
miriam.estevec@umh.es

Victor España
Miguel Hernandez University
Center of Operations Research
03202 Elche, Spain
https://cio.umh.es/
ORCiD: 0000-0002-1807-6180
vespana@umh.es

Juan Aparicio
Miguel Hernandez University
Center of Operations Research
03202 Elche, Spain
https://cio.umh.es/
ORCiD: 0000-0002-0867-0004
j.aparicio@umh.es

Xavier Barber
Miguel Hernandez University
Center of Operations Research
03202 Elche, Spain
https://cio.umh.es/
ORCiD: 0000-0003-3079-5855
xbarber@umh.es

The R Journal Vol. 14/3, September 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=snfa
https://CRAN.R-project.org/package=snfa
https://CRAN.R-project.org/package=nonparaeff
https://www.socialprogress.org/
http://www.stata.com/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://cio.umh.es/
https://orcid.org/0000-0002-5908-0581
mailto:miriam.estevec@umh.es
https://cio.umh.es/
https://orcid.org/0000-0002-1807-6180
mailto:vespana@umh.es
https://cio.umh.es/
https://orcid.org/0000-0002-0867-0004
mailto:j.aparicio@umh.es
https://cio.umh.es/
https://orcid.org/0000-0003-3079-5855
mailto:xbarber@umh.es


CONTRIBUTED RESEARCH ARTICLE 282

Will the Real Hopkins Statistic Please
Stand Up?
by Kevin Wright

Abstract Hopkins statistic (Hopkins and Skellam 1954) can be used to test for spatial randomness of
data and for detecting clusters in data. Although the method is nearly 70 years old, there is persistent
confusion regarding the definition and calculation of the statistic. We investigate the confusion and its
possible origin. Using the most general definition of Hopkins statistic, we perform a small simulation
to verify its distributional properties, provide a visualization of how the statistic is calculated, and
provide a fast R function to correctly calculate the statistic. Finally, we propose a protocol of five
questions to guide the use of Hopkins statistic.

1 Introduction

Hopkins and Skellam (1954) introduced a statistic to test for spatial randomness of data. If the null
hypothesis of spatial randomness is rejected, then one possible interpretation is that the data may be
clustered into distinct groups. Since one of the problems with clustering methods is that they will
always identify clusters, (even if there are no meaningful clusters in the data), Hopkins statistic can be
used to determine if there are clusters in the data before applying clustering methods. In the description
below on how to calculate Hopkins statistic, we follow the terminology of earlier authors and refer to
an “event” as one of the existing data values in a matrix X, and a “point” as a new, randomly chosen
location. For clarity in the discussions below we make a distinction between D, the dimension of the
data, and d, the exponent in the formula for Hopkins statistic.

Let X be a matrix of n events (in rows) and D variables (in columns). Let U be the space defined
by X.

Hopkins statistic is calculated with the following algorithm:

1. Sample at random one of the existing events from the data X. Let wi be the Euclidean distance
from this event to the nearest-neighbor event in X.

2. Generate one new point uniformly distributed in U. Let ui be the Euclidean distance from this
point to the nearest-neighbor event in X.

3. Repeat steps (1) and (2) m times, where m is a small fraction of n, such as 10%.
4. Calculate H = ∑m

i=1 ud
i
/

∑m
i=1(u

d
i + wd

i ), where d = D.

Because of sampling variability, it is common to calculate H multiple times and take the average.
Under the null hypothesis of spatial randomness, this statistic has a Beta(m,m) distribution and will
always lie between 0 and 1. The interpretation of H follows these guidelines:

• Low values of H indicate repulsion of the events in X away from each other.
• Values of H near 0.5 indicate spatial randomness of the events in X.
• High values of H indicate possible clustering of the events in X. Values of H > 0.75 indicate a

clustering tendency at the 90% confidence level (Lawson and Jurs 1990).

2 A short history of Hopkins statistic

There exists considerable confusion about the definition of Hopkins statistic in scientific publications.
In particular, when calculating Hopkins statistic, there are 3 different values of the exponent d (in step
4 above) that have been used in statistical literature: d = 1, d = 2, and the generalized d = D. Here is
a brief timeline of how this exponent has been presented.

• 1954: Hopkins and Skellam (1954) introduced Hopkins statistic in a two-dimensional setting.
The formula they present is in a slightly different form, but is equivalent to ∑ u2

i
/

∑(u2
i + w2

i ).
The exponent here is d = 2.

• 1976: Diggle, Besag, and Gleaves (1976) presented a formula for Hopkins statistic in a two-
dimensional setting as ∑ ui

/
∑(ui + wi). This formula has no exponents and therefore at first

glance appears to use the exponent d = 1 in the equation for Hopkins statistic. However, a
careful reading of their text shows that their ui and wi values were actually squared Euclidean
distances. If their ui and wi had represented ordinary (non-squared) Euclidean distances, then
their formula would have been ∑ u2

i
/

∑(u2
i + w2

i ). We suspect this paper is the likely source of
confusion by later authors.
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Figure 1: Results of a simulation study of the distribution of Hopkins statistic. The red and blue lines
are the empirical density curves of 1000 Hopkins statistics calculated with exponents d = 1 (red) and
d = 3 (blue). The black line is the theoretical distribution of the Hopkins statistic. The red line is
very far away from the black line and shows that calculating Hopkins statistic with exponent d = 1 is
incorrect.

• 1982: Cross and Jain (1982) generalized Hopkins statistic for X of any dimension d = D as
∑ ud

i
/

∑(ud
i + wd

i ). This formula was also used by Zeng and Dubes (1985a), Dubes and Zeng
(1987), and Banerjee and Dave (2004).

• 1990: Lawson and Jurs (1990) and Jurs and Lawson (1990) give the formula for Hopkins statistic
as ∑ ui

/
∑(ui + wi), but used ordinary distances instead of squared distances. Perhaps this was

a result of misunderstanding the formula in Diggle, Besag, and Gleaves (1976).

• 2015: The R function hopkins() in the clustertend package (YiLan and RuTong 2015 version
1.4) cited Lawson and Jurs (1990) and used also used the exponent d = 1.

• 2022: The new function hopkins() in the hopkins package (Wright 2022 version 1.0) uses the
general exponent d = D as found in Cross and Jain (1982).

3 Simulation study for the distribution of Hopkins statistic

Having identified the confusion in the statistical literature, we now ask the question, “Does it matter
what value of d is used in the exponent?” In a word, “yes”.

According to Cross and Jain (1982), under the null hypotheses of no structure in the data, the
distribution of the Hopkins statistic is Beta(m,m) where m is the number of rows sampled in X. This
distribution can be verified in a simple simulation study:

1. Generate a matrix X with 100 rows (events) and D = 3 columns, filled with random uniform
numbers. (This is the assumption of no spatial structure in a 3D hypercube.)

2. Sample m = 10 events and also generate 10 new uniform points.
3. Calculate Hopkins statistic with exponents d = 1 (incorrect value).
4. Calculate Hopkins statistic with exponents d = 3 (correct value).
5. Repeat 1000 times.
6. Compare the empirical density curves of the two different methods to the Beta(m,m) distribution.

In Figure 1:

• The black curve is the density of Beta(10,10).
• The red curve is the density of Hopkins statistic when d = 1 is used in the calculation (incorrect).
• The blue curve is the density of Hopkins statistic when d = 3 (the number of columns in X) is

used (correct).
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Figure 2: An example of how Hopkins statistic is calculated with systematically-spaced data. The black
circles are the events of the ‘cells‘ data. Each blue ‘W‘ represents a randomly-chosen event. Each blue
arrow points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-generated
point. Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers are the length
of the arrows. In systematically-spaced data, red arrows tend to be shorter than blue arrows.

The empirical density of the blue curve is similar to the theoretical distribution shown by the black
line. The empirical density of the red curve is clearly dissimilar. The distribution of Hopkins statistic
with d = 1 is clearly incorrect (except in trivial cases where X has only 1 column). One more thing to
note about the graph is that the blue curve is slightly flatter than the theoretical distribution shown in
black. This is not accidental, but is caused by edge effects of the sampling region and will be discussed
in a later section.

4 Examples

The first three examples in this section are adapted from Gastner (2005). The datasets are available in
the spatstat.data package (Baddeley, Turner, and Rubak 2021). A modified version of the hopkins()
function was written for this paper to show how the Hopkins statistic is calculated (inspired by Figure
1 of Lawson and Jurs (1990)). In order to minimize the amount of over-plotting, only m = 3 sampling
points are used for these examples. In each figure, 3 of the existing events in X are chosen at random
and a light-blue arrow is drawn to the nearest neighbor in X. In addition, 3 points are drawn uniformly
in the plotting region and a light-red arrow is drawn to the nearest neighbor in X. The colored numbers
are the lengths of the arrows.

Example 1: Systematically-spaced data

The cells data represent the centers of mass of 42 cells from insect tissue. The scatterplot of the data in
Figure 2 shows that events are systematically spaced as nearly far apart as possible. Because the data
is two-dimensional, Hopkins statistics is calculated as the sum of the squared distances u2

i divided by
the sum of the squared distances u2

i + w2
i :

(.046^2 + .081^2 + .021^2) /
( (.046^2 + .081^2 + .021^2) + (.152^2 + .14^2 + .139^2) )

#> [1] 0.1281644

The hopkins() function returns the same value:
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Figure 3: An example of how Hopkins statistic is calculated with randomly-spaced data. The black
circles are the events of the ‘japanesepines‘ data. Each blue ‘W‘ represents a randomly-chosen event.
Each blue arrow points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-
generated point. Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers
are the length of the arrows. In randomly-spaced data, red arrows tend to be similar in length to blue
arrows.

set.seed(17)
hopkins(cells, m=3)

#> [1] 0.1285197

The value of the Hopkins statistic in this calculation is based on only m = 3 events and will
have sizable sampling error. To reduce the sampling error, a larger sample size can be used up to
approximately 10% of the number of events. To reduce sampling error further while maintaining
the independence assumption of the sampling in calculating Hopkins statistic, repeated samples can
be drawn. Here we use the idea of Gastner (2005) to calculate Hopkins statistic 100 times and then
calculate the mean and standard deviation for the 100 values of Hopkins statistic, which in this case
are 0.21 and 0.06. This value of the statistic is quite a bit lower than 0.5 and indicates the events are
spaced more evenly than purely-random events (p-value 0.05).

Example 2: Randomly-spaced data

The japanesepines data contains the locations of 65 Japanese black pine saplings in a square 5.7 meters
on a side. The plot of the data in Figure 3 is an example of data in which the events are randomly
spaced.

The value of Hopkins statistic using 3 events and points is:

(.023^2+.076^2+.07^2) /
((.023^2+.076^2+.07^2) + (.104^2+.1^2+.058^2))

#> [1] 0.3166596

The mean and standard deviation of the 100 Hopkins statistics are 0.48 and 0.12. The value of the
statistic is close to 0.5 and indicates no evidence against a random distribution of data (p-value 0.9).

Example 3: Clustered data

The redwood data are the coordinates of 62 redwood seedlings in a square 23 meters on a side. The
plot in Figure 4 shows events that exhibit clustering. The value of Hopkins statistic for the plot is:
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Figure 4: An example of how Hopkins statistic is calculated with clustered data. The black circles are
the events of the ‘redwood‘ data. Each blue ‘W‘ represents a randomly-chosen event. Each blue arrow
points from a ‘W‘ to the nearest-neighboring event. Each red ‘U‘ is a new, randomly-generated point.
Each red arrow points from a ‘U‘ to the nearest-neighboring event. The numbers are the length of the
arrows. In clustered data, red arrows tend to be longer in length than blue arrows.

(.085^2+.078^2+.158^2) /
((.085^2+.078^2+.158^2) + (.028^2+.028^2+.12^2))

#> [1] 0.7056101

The mean and standard deviation of the 100 Hopkins statistics are 0.79 and 0.13. The value of the
statistic is much higher than 0.5, which indicates that the data are somewhat clustered (p-value 0.03).

Example 4

Adolfsson, Ackerman, and Brownstein (2017) provide a review of various methods of detecting
clusterability. One of the methods they considered was Hopkins statistic, which they calculated using
10% sampling. They evaluated the clusterability of nine R datasets by calculating Hopkins statistic 100
times and then reporting the proportion of time that Hopkins statistic exceeded the appropriate beta
quantile. We can repeat their analysis and calculate Hopkins statistic for both d = 1 dimension and
d = D dimensions, where D is the number of columns for each dataset.

In Table 1:

• Column 1 is the name of the R dataset.
• Column 2 is the number of observations n.
• Column 3 is the number of dimensions D.
• Column 4 is the proportion of 100 times that Hopkins statistic is significant as reported by

Adolfsson, Ackerman, and Brownstein (2017).
• Columns 5 and 6 use the hopkins package. Column 5 is the proportion of 100 times that

Hopkins statistic with exponent d = 1 and column 6 is the proportion of 100 times that Hopkins
statistic with exponent d = D is significant.

Since the Adolfsson and Hopkins1 columns are similar (within sampling variability), it appears
that Adolfsson, Ackerman, and Brownstein (2017) used Hopkins statistic with d = 1 as the exponent.
This would be expected if they had used the clustertend package (YiLan and RuTong 2015 version 1.4)
to calculate Hopkins statistic.

For a few of the datasets, there is substantial disagreement between the last two columns. For
example, the swiss data is significantly clusterable 41% of the time according to Adolfsson, Ackerman,
and Brownstein (2017), but 94% of the time when using Hopkins statistic with exponent d = D. A
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Table 1: In this table, ‘dataset‘ is the R dataset name, ‘n‘ is the number of rows in the data, ‘D‘ is the
number of columns in the data, ‘Adolfsson‘ is the the proportion of 100 times that Hopkins statistic
was significant as appearing in the paper by Adolfsson et al. (2017), ‘Hopkins1‘ is the proportion of
100 times that Hopkins statistic was significant when calculated with the exponent d = 1 (similar to
the ‘clustertend‘ package), and ‘HopkinsD‘ is the proportion of 100 times that Hopkins statistic was
significant when calculated with the exponent d = D. Since the ‘Adolfsson‘ and ‘Hopkins1‘ columns
are similar (within samling variation), it appears that Adolfsson et al. (2017) used the ‘clustertend‘
package to calculate Hopkins statistic.

dataset n D Adolfsson Hopkins1 HopkinsD
faithful 272 2 1.00 1.00 1.00
iris 150 5 1.00 1.00 1.00
rivers 141 1 0.92 0.89 0.90
swiss 47 6 0.41 0.25 0.94
attitude 30 7 0.00 0.00 0.59
cars 50 2 0.19 0.23 0.68
trees 31 3 0.18 0.22 0.71
USJudgeRatings 43 12 0.69 0.53 1.00
USArrests 50 4 0.01 0.00 0.56

scatterplot of the swiss data in Figure 5 shows that the data are strongly non-random, which agrees
with the 94%.

Similarly, the trees data is significantly clusterable 18% of the time according to the Adolfsson
column, but 71% of the time according to HopkinsD. The scatterplot in Figure 6 shows strong non-
random patterns, which agrees with the 71%

Scatterplot matrices of the swiss, attitude, cars, trees, and USArrests datasets can be found in
Brownstein, Adolfsson, and Ackerman (2019). Each scatterplot matrix shows at least one pair of the
variables with notable correlation and therefore the data are not randomly-distributed, but rather are
clustered. For each of these datasets, the proportion of times Hopkins1 is significant is less than 0.5, but
the proportion of times HopkinsD is significant is greater than 0.5. The HopkinsD statistic is accurately
detecting the presence of clusters in these datasets.

5 Correcting for edge effects

In the cells, japanesepines and redwood examples above, it is possible or even probable that there
are additional events outside of the sampling frame that contains the data. The sampling frame thus
has the effect of cutting off potential nearest neighbors from consideration. If the distribution of the
data can be assumed to extend beyond the sampling frame and if the shape of the sampling frame can
be viewed as a hypercube, then edge effects due to the sampling frame can be corrected by using a
torus geometry that wraps edges of the sampling frame around to the opposite side (Li and Zhang
2007). To see an illustration of this, look again at the plot of the japanesepines data in Figure 3. The
randomly-generated event U in the upper left corner is a distance of 0.076 away from the nearest event.
However, if the left edge of the plot is wrapped around an imaginary cylinder and connected to the
right edge of the plot, then the nearest neighbor is the event in the upper-right corner at coordinates
(0.97, 0.86).

To see what effect the torus geometry has on the distribution of the Hopkins statistic, consider the
following simulation. We generate n = 100 events uniformly in a D = 5 dimension unit cube and
sample m = 10 events to calculate the value of Hopkins statistic using both a simple geometry and a
torus geometry. Repeat these steps B = 1000 times. The calculation of the nearest neighbor using a
torus geometry is computationally more demanding than using a simple geometry, especially as the
number of dimensions D increases, so the use of parallel computing can reduce the computing time
linearly according to the number of processors used. As a point of reference, this small simulation study
was performed in less than 1 minute on a reasonably-powerful laptop with 8 cores using the doParallel
package (Microsoft Corporation and Weston 2020). We found that B = 1000 provided results that were
stable, regardless of the seed value for the random number generation in the simulations.

In Figure 7:

• The black curve is the density of Beta(10,10).
• The blue curve is the empirical density of the 1000 values of Hopkins statistic calculated using a

simple geometry.
• The green curve is the empirical density of the 1000 values of Hopkins statistic calculated using

a torus geometry.
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Figure 5: Pairwise scatterplots of the R dataset ‘swiss‘. The meaning of the variables is not important
here. Because some panels show a lack of spatial randomness of the data, we would expect Hopkins
statistic to be significant.
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Figure 6: Pairwise scatterplots of the R dataset ‘trees‘. The data are ‘Girth‘, ‘Height‘, and ‘Volume‘ of
31 black cherry trees. Because all panels show a lack of spatial randomness of the data, we would
expect Hopkins statistic to be significant.
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Figure 7: Results of a simulation study considering how the spatial geometry affects Hopkins statistic.
The thin black line is the theoretical distribution of Hopkins statistic. The blue and green lines are the
empirical density curves of 1000 Hopkins statistics calculated with simple geometry (blue) and torus
geometry (green). Calculating Hopkins statistic with a torus geometry aligns closely to the theoretical
distribution.
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Figure 8: The left figure shows 250 points simulated randomly in a unit square. As expected, the value
of Hopkins statistic is close to 0.5. The right figure shows the same points, but only those inside a
unit-diameter circle. The value of Hopkins statistic H is much larger than 0.5. Although both figures
depict spatially-uniform points, the square shape of the sampling frame affects the value of Hopkins
statistic.

When using a torus geometry to correct for edge effects in this example, the empirical distribution
of Hopkins statistic is remarkably close to its theoretical distribution. In contrast, when a simple
geometry is used, the empirical distribution of Hopkins statistic is somewhat flattened with heavier
tails. The practical result is that when no edge correction is used, the Hopkins statistic is more likely
to deviate from 0.5 and therefore more likely to suggest the data is not uniformly distributed. This
erroneous interpretation is a greater risk as the number of dimensions D increases and edge effects
become more pronounced

6 Sampling frame effects

Another practical problem affecting the correct use and interpretation of Hopkins statistic has to do
with the shape of the sampling frame. Consider the example data in Figure 8. On the left side, there
were 250 random events simulated in a 2-dimensional unit square. On the right side, the same data
are used, but have been subset to keep only the events inside a unit-diameter circle. For both figures,
Hopkins statistic was calculated 100 times with 10 events sampled each time.

On the left side, both the bounding box and the actual sampling frame are the unit square. The
median of 100 Hopkins statistics is 0.51, providing no evidence against random distribution. On the
right side, the actual sampling frame of the data is a unit-circle, but the Hopkins statistic still uses
the unit square (for generating new points in U) and the median Hopkins statistic is 0.75, indicating
clustering of the data within the sampling frame, even though the distribution of the data was generated
uniformly. A few more examples of problems related to the sampling frame can be found in Smith
and Jain (1984).

To consider the problem with the sampling frame on real data, refer again to the trees data in
Figure 6. Because trees usually grow both in height and girth at the same time, it would be unexpected
to find tall trees with narrow girth or short trees with large girth. Also, since the volume is a function
of the girth and height, it is correlated with those two variables. In the scatterplot of girth versus
volume, it would be nearly impossible to find points in the upper left or lower right corner of the
square. From a biological point of view, the sampling frame cannot be shaped like a square and the
null hypothesis of uniform distribution of data is violated a priori, which means the distribution of
Hopkins statistic does not follow a Beta(m,m) distribution.
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7 A protocol for using Hopkins statistic

Because Hopkins statistic is not hard to calculate and is easy to interpret, yet can be misused (as shown
in the previous sections), we propose a protocol for using Hopkins statistic. The protocol simply asks
the practitioner to consider the following five questions before calculating Hopkins statistic.

1. Is the number of events n > 100 and the number of randomly-sampled events at most 10%
of n? This is recommended by Cross and Jain (1982).

2. Is spatial randomness of the events even possible? If the events are known or suspected to be
correlated, this violates the null hypothesis of spatial uniformity, and may also mean that the
sampling frame is not shaped like a hypercube.

3. Could nearest-neighbor events have occurred outside the boundary of the sampling frame?
If yes, it may be appropriate to calculate nearest-neighbor distances using a torus geometry.

4. Is the sampling frame non-rectangular? If yes, then be extremely careful with the use of
Hopkins statistic in how points are samples from U.

5. Is the dimension of the data much greater than 2? Edge effects are more common in higher
dimensions.

The important point of this protocol is to raise awareness of potential problems. We leave it to the
practitioner to decide what do with the answers to these questions.

8 Conclusion

The statistical literature regarding Hopkins statistic is filled with confusion about how to calculate the
statistic. Some publications have erroneously used the exponent d = 1 in the formula for Hopkins
statistic and this error has propagated into much statistical software and led to incorrect conclusions.
To remedy this situation, the R package hopkins (Wright 2022) provides a function hopkins() that
calculates Hopkins statistic using the general exponent d = D for D-dimensional data. The function
can use simple geometry for fast calculations or torus geometry to correct for edge effects. Using
this function, we show that the distribution of Hopkins statistic calculated with the general exponent
d = D aligns closely with the theoretical distribution of the statistic. Because inference with Hopkins
statistic can be trickier than expected, we introduce a protocol of five questions to consider when using
Hopkins statistic.

Alternative versions of Hopkins statistic have been examined by Zeng and Dubes (1985b), Rotondi
(1993), Li and Zhang (2007). Other methods of examining multivariate uniformity of data have been
considered by Smith and Jain (1984), Yang and Modarres (2017), and Petrie and Willemain (2013).
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Multivariate Subgaussian Stable
Distributions in R
by Bruce J. Swihart, John P. Nolan

Abstract We introduce and showcase mvpd (an acronym for multivariate product distributions), a
package that uses a product distribution approach to calculating multivariate subgaussian stable
distribution functions. The family of multivariate subgaussian stable distributions are elliptically
contoured multivariate stable distributions that contain the multivariate Cauchy and the multivariate
normal distribution. These distributions can be useful in modeling data and phenomena that have
heavier tails than the normal distribution (more frequent occurrence of extreme values). Application
areas include log returns for stocks, signal processing for radar and sonar data, astronomy, and hunting
patterns of sharks.

1 Introduction

Multivariate subgaussian stable distributions are the elliptically contoured subclass of general multi-
variate stable distributions. To begin a brief introduction to multivariate subgaussian stable distribu-
tions, we start with univariate stable distributions which may be more readily familiar and accessible.
Univariate stable distributions are a flexible family and have four parameters, α, β, γ, and δ, and at
least eleven parameterizations (!) which has led to much confusion (Nolan, 2020). Here we focus on the
1-parameterization of the Nolan style. Location is controlled by δ, scale by γ ∈ (0, ∞), while α ∈ (0, 2]
and β ∈ [−1, 1] can be considered shape parameters. Being a location-scale family, a “standard" stable
distribution will be when γ = 1 and δ = 0. A solid introduction to univariate stable distributions can
be found in the recent textbook Univariate Stable Distributions (Nolan, 2020) and its freely available
Chapter 1 online (https://edspace.american.edu/jpnolan/stable/).

Univariate symmetric stable distributions are achieved by setting the skew parameter β = 0, which
gives symmetric distributions that are bell-shaped like the normal distribution. A way to remember
that these are called subgaussian is to see that as α ∈ (0, 2] increases from 0 it looks more and more
normal until it is normal for α = 2 (Figure 1). The sub in subgaussian refers to the tail behavior in
that the rate of decrease in the tails is less than that of a gaussian – note how the tails are above the
gaussian for α < 2 in Figure 1. Equivalently, as α decreases, the tails get heavier. A notable value of α
for subgaussian distributions is α = 1 which is the Cauchy distribution. The Cauchy and Gaussian
distribution are most well-known perhaps because they have closed-form densities, which all other
univariate symmetric stable distributions lack.

Therefore, numerically computing the densities is especially important for application. For uni-
variate stable distributions, there is open-source software to compute modes, densities, distributions,
quantiles and random variates, including a number of R packages (stabledist, stable, libstableR, for
example – see CRAN Task View: Probability Distributions for more).

As generalizations of the univariate stable distribution, multivariate stable distributions are a
very broad family encompassing many complicated distributions (e.g. support in a cone, star shaped
level curves, etc.). A subclass of this family is the multivariate subgaussian stable distributions.
Multivariate subgaussian stable distributions are symmetric and elliptically contoured. Similar to the
aforementioned univariate symmetric stable distributions, the value α = 2 is the multivariate gaussian
and α = 1 is the multivariate Cauchy. Being that they are elliptically contoured and symmetric makes
them applicable to finance where joint returns have an (approximately) elliptical joint distribution
(Nolan, 2020). Signal processing, such as with radar and sonar data, tasks itself with filtering impulsive
noise from a signal of interest and linear filters in the presence of extreme values tend to underperform,
whereas using multivariate stable distributions have been fruitful (Tsakalides and Nikias, 1998; Nolan,
2013). The (multivariate) Holtsmark distribution is a multivariate subgaussian stable distribution
(α = 1.5) that has applications in astronomy, astrophysics, and plasma physics. Lévy flights, which are
random walks with steps having a specific type of multivariate subgaussian stable distribution, are
used to model interstellar turbulence as well as hunting patterns of sharks (Boldyrev and Gwinn, 2003;
Sims et al., 2008).

For multivariate subgaussian stable distributions, the parameter α is a scalar as in the univariate
family, while δ (location) becomes a d-dimensional vector and the analogue for the scale parameter is a
d× d shape matrix Q. The shape matrix Q needs to be semi-positive definite and is neither a covariance
matrix nor covariation matrix. An introduction to multivariate subgaussian stable distributions can be
found in Nolan (2013).

Including mvpd, the focus of this paper, if one wanted R functions to interact with multivariate
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Figure 1: The lower the value of alpha, the heavier the tails. The superimposed standard univariate
subgaussian densities for selected values of alpha are displayed. Commonly known distributions
include the Cauchy (alpha=1) and normal (alpha=2).

Functionality alphastable stable mvpd
random variates ✓ ✓ ✓
parameter estimation ✓ ✓ ✓
density ✓ ✓ ✓
cumulative distribution (monte carlo) x ✓ ✓
cumulative distribution (integrated) x x ✓
multivariate subgaussian stable ✓ ✓ ✓
multivariate independent stable x ✓ x
multivariate isotropic stable x ✓ x
multivariate discrete-spectral-measure stable x ✓ x

Table 1: Summary of functionality among R packages. Note: The stable package referenced is not
the one on CRAN – it is proprietary software produced by the company Robust Analysis.

subgaussian stable distributions they have three R package options. These packages are compared in
Table 1 and detailed below:

• alphastable provides random univariate and multivariate generation, density calculation, and
parameter fitting (albeit for modest sample sizes) via an EM algorithm method (Teimouri et al.,
2018, 2019).

• stable provides support for all stable univariate distributions and multivariate subgaussian
stable distributions. Other cases are handled, to varying degrees, such as isotropic, independent,
and spectral measure. For the purposes of this paper, we will note that the stable package
provides random variate generation, density calculation, parameter fitting, distribution calcula-
tions via Monte Carlo methods for multivariate subgaussian stable distributions 2 ≤ d ≤ 100.
The stable package is developed by Robust Analysis and is available for purchase or through
a software grant at http://www.robustanalysis.com/. It is distinct from the univariate stable
package on CRAN authored by Jim Lindsey.

• mvpd provides random variate generation, density calculation, parameter fitting, distribution
function calculations via Monte Carlo methods, as well as an integrated method for distribution
calculations that allows tolerance specification.

While the lack of a tractable density and distribution function impedes directly calculating mul-
tivariate subgaussian stable distributions, it is possible to represent them in terms of a product
distribution for which each of the two distributions in the product has known numerical methods
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developed and deployed (in R packages on CRAN). This paper utilizes this approach. The next section
covers some product distribution theory.

2 Product distribution theory

This section reviews some known results of product distributions and describes our notation. Allow
univariate positive random variable A with density fA(x) and d-dimensional random variable G to
have density fG(x) and distribution function FG(v, w) = P(v < x ≤ w). Consider the d−dimensional
product H = A1/2G. From standard product distribution theory we know the density fH is represented
by 1-dimensional integral:

fH(x) =
∫ ∞

0
fB(u) fG(x/u)

1
|u|d

du , (1)

where B = A1/2 so that fB(x) := 2x fA(x2). Consequently the distribution function FH (with lower
bound v and upper bound w) of the r.v. H is represented by

FH(v, w) =
∫ ∞

0
fB(u)

∫ w1

v1

· · ·
∫ wd

vd

fG(t/u)
1

|u|d
dt1 . . . dtddu , (2)

=
∫ ∞

0
fB(u)

∫ w1/u

v1/u
· · ·

∫ wd/u

vd/u
fG(t)dt1 . . . dtddu ,

=
∫ ∞

0
fB(u)FG(v/u, w/u)du. (3)

Take note of the representation in (1) and (3). From a practical standpoint, if we have a (numerical)
way of calculating fA, fG, and FG we can calculate fH and FH . Different choices can be made for fA,
fG, and FG in this general setup. The choices required for multivariate subgaussian stable distributions
are covered in the following Implementation section.

Multivariate elliptically contoured stable distributions

From Nolan (2013), H is a d-dimensional subgaussian stable distribution if A is a positive univariate
stable distribution

A ∼ S

(
α

2
, 1, 2 cos

(πα

4

)( 2
α ) , 0; 1

)
and G is a d-dimensional multivariate normal G ∼ MVN(0, Q), where the shape matrix Q is positive
semi-definite. This corresponds to Example 17 in Hamdan (2000).

3 Implementation

Using the aforementioned theory of product distributions, we can arrive at functions for a mul-
tivariate subgaussian stable density and distribution function thanks to established functions for
univariate stable and multivariate normal distributions. A key package in the implementation of
multivariate subgaussians in R is mvtnorm (Genz et al., 2020; Genz and Bretz, 2009). In the basic
product-distribution approach of mvpd, fG and FG are mvtnorm::dmvnorm and mvtnorm::pmvnorm
respectively. Allow the density of A, fA (to be numerically calculated in R) using stable::dstable or
libstableR::stable_pdf (del Val et al., 2017). Presented as pseudo-code:

• fA(x, α) := libstableR::stable_pdf(x, pars =
(

α
2 , 1, 2 cos{πα

4 }(
2
α ), 0

)
; pm = 1)

• fB(x, α) := 2x fA(x2, α)

• fH(x, α, Q) =
∫ ∞

0 fB(u; α)× mvtnorm::dmvnorm(x/u, sigma = Q) 1
|u|d du

• FH(v, w, α, Q) =
∫ ∞

0 fB(u; α)× mvtnorm::pmvnorm(lower = v/u, upper = w/u, sigma = Q)du

The (outermost) univariate integral is numerically evaluated with stats::integrate.
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Figure 2: A lattice of scatterplots of 5,000 draws from a 5-dimensional subgaussian stable distribution,
showing the pairwise relations. The outliers from the cloud in each plot demonstrate the heavy tails.

4 Quick start

We present an outline of the [dpr]mvss (multivariate subgaussian stable) functions, and walk through
the code in the subsequent sections. As an overview, we generate 5000 5-dimensional subgaussian
variates with α = 1.7 and an “exchangeable” shape matrix using rmvss. We then recover the param-
eters with an illustrative call to fit_mvss. We can calculate the density (dmvss) at the center of the
distribution and get a quick estimate of the distribution between -2 and 2 for each member of the
5-dimensional variate using pmvss_mc. We investigate a refinement of that quick distribution estimate
using pmvss.

5 Random variates generation with rmvss

We’ll generate 5000 5-dimensional subgaussian random variates with a specified α and shape matrix.
They are pictured in Figure 2. In the next section we will fit a distribution to these.

R> library(mvpd)
## reproducible research sets the seed
R> set.seed(10)
## specify a known 5x5 shape matrix
R> shape_matrix <- structure(c(1, 0.9, 0.9, 0.9, 0.9,

0.9, 1, 0.9, 0.9, 0.9,
0.9, 0.9, 1, 0.9, 0.9,
0.9, 0.9, 0.9, 1, 0.9,
0.9, 0.9, 0.9, 0.9, 1),
.Dim = c(5L, 5L))

## generate 5000 5-dimensional random variables
## with alpha = 1.7 and shape_matrix
R> X <- mvpd::rmvss(n = 5000, alpha = 1.7, Q = shape_matrix)
## plot all pairwise scatterplots (Figure 2)
R> copula::pairs2(X)

The ability to simulate from a distribution is useful for running simulations to test different
scenarios about the phenomena being modeled by the distribution, as well as in this case, to generate
a dataset with a known shape matrix and alpha to show our fitting software (next section) can recover
these parameters. Our quick start code begins with generating a dataset from a known alpha and
shape matrix. However, often a practitioner might start with a dataset from which parameters are
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estimated and then random samples can be generated from the distribution specified with those
parameters to learn more about the data generating distribution and the behavior of the phenomena.

6 Fitting a multivariate subgaussian distribution with fit_mvss

If you have data in a n × d matrix X and want to fit a d-dimensional multivariate subgaussian
distribution to those data, then fit_mvss will return estimates of the parameters using the method
outlined in Nolan (2013). The method involves fitting univariate stable distributions for each column
and assessing the resulting α, β and δ parameters. The column-wise α estimates should be similar
and the column-wise β estimates close to 0. This column-wise univariate fitting is carried out by
libstableR::stable_fit_mle2d(W,parametrization = 1L) and the off diagonal elements can be
found due to the properties of univariate stable distributions (see Nolan (2013)). For your convenience,
the univariate column-wise estimates of α, β, γ and δ are returned in addition to the raw estimate
of the shape matrix and the nearest positive definite shape matrix (as computed by Matrix::nearPD
applied to the raw estimate).

## take X from previous section and estimate
## parameters for the data generating distribution
R> fitmv <- mvpd::fit_mvss(X)
R> fitmv
$univ_alphas
[1] 1.698617 1.708810 1.701662 1.696447 1.699372

$univ_betas
[1] -0.02864287 -0.04217262 -0.08444540 -0.06569907 -0.03228573

$univ_gammas
[1] 1.016724 1.000151 1.008055 1.012017 1.002993

$univ_deltas
[1] -0.03150732 -0.06525291 -0.06528644 -0.07730645 -0.04539796

$mult_alpha
[1] 1.700981

$mult_Q_raw
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0337276 0.9034599 0.8909654 0.8937814 0.8647089
[2,] 0.9034599 1.0003026 0.9394846 0.9072368 0.8535091
[3,] 0.8909654 0.9394846 1.0161748 0.8929937 0.9037467
[4,] 0.8937814 0.9072368 0.8929937 1.0241777 0.9281714
[5,] 0.8647089 0.8535091 0.9037467 0.9281714 1.0059955

$mult_Q_posdef
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0337276 0.9034599 0.8909654 0.8937814 0.8647089
[2,] 0.9034599 1.0003026 0.9394846 0.9072368 0.8535091
[3,] 0.8909654 0.9394846 1.0161748 0.8929937 0.9037467
[4,] 0.8937814 0.9072368 0.8929937 1.0241777 0.9281714
[5,] 0.8647089 0.8535091 0.9037467 0.9281714 1.0059955

An alternative for fitting this distribution is alphastable::mfitstab.elliptical(X,1.70,shape_matrix,rep(0,5))
and takes 8 minutes (and requires initial values for alpha, the shape matrix, and delta). This analysis
with fit_mvss(X) took under 2 seconds. For a run of n=1e6,d=20, fit_mvss scales well, taking 60
minutes.

Once the distribution has been fitted, fitmv$mult_alpha, fitmv$mult_Q_posdef, and fitmv$univ_deltas,
can be used as the alpha, Q, and delta arguments, respectively, in calls to dmvss to calculate densities
and pmvss_mc or pmvss to calculate probabilities. They could also be passed to rmvss to generate
random variates for simulations.
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7 Density calculations with dmvss

We can calculate the density at the center of the distribution.

## density calculation
R> mvpd::dmvss(x = fitmv$univ_deltas,
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas)[1]
$value
[1] 0.1278952

8 Distribution calculation by Monte Carlo with pmvss_mc

The method of calculating the distribution by Monte Carlo relies on the ability to produce random
variates quickly and then calculate what proportion of them fall within the specified bounds. To
generate multivariate subgaussian stable variates, a scalar A is drawn from

libstableR::stable_rnd(n, pars =
(α

2
, 1, 2 cos{πα

4
}(

2
α ), 0

)
; pm = 1)

and then the square-root of A multiplied by a draw G from

mvtnorm::rmvnorm(n, sigma = Q).

This allows for quick calculations but to increase precision requires generating larger number of
random variates. For instance, if we wanted the distribution between -2 and 2 for each dimension, we
could generate 10,000 random variates and then see how many of them fall between the bounds. It
looks like 6,820 variates were within the bounds:

## first-run of pmvss_mc
R> mvpd::pmvss_mc(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ n = 10000)
[1] 0.6820

We run it again and the answer changes:

## second-run of pmvss_mc
R> mvpd::pmvss_mc(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ n = 10000)
[1] 0.6742

With the Monte Carlo method, precision is not specified and no error is calculated. The next
section introduces how to use the integrated distribution function FH from product theory and specify
precision.

9 Distribution function calculation via integration with pmvss

There are three inexact entities involved in the distribution calculation FH as found in pmvss: the
numerically calculated FG, the numerically calculated fA, and the outer numerical integration.

The outer integral by integrate assumes the integrand is calculated without error, but this is not
the case. See the supplementary materials section “Thoughts on error propagation in pmvss” for justifi-
cation and guidance for specifying the values of abs.tol.si, abseps.pmvnorm, and maxpts.pmvnorm.
The first of these three arguments is passed to the abs.tol argument of stats::integrate and
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controls the absolute tolerance of the numerically evaluated outer 1-dimensional integral. The re-
maining two are passed to maxpts and abseps of mvtnorm::GenzBretz and control the accuracy of
mvtnorm::pmvnorm.

Briefly, our experience suggests that to be able to treat abs.tol.si as the error of the result,
abseps.pmvnorm should be 1e-2 times smaller than the specified abs.tol.si which may require a
multiple of the default 25000 default of maxpts.pmvnorm – which will lead to more computational
intensity and longer computation times as demonstrated below (as conducted on Macbook Intel Core
i7 chip with 2.2 GHz):

## abs.tol.si abseps.pmnvorm maxpts Time
## 1e-01 1e-03 25000
## 1e-02 1e-04 25000*10 3 sec
## 1e-03 1e-05 25000*100 22 sec
## 1e-04 1e-06 25000*1000 4 min
## 1e-05 1e-07 25000*10000 26 min
## 1e-06 1e-08 25000*85000 258 min

With this in mind, the output from the Quick Start code is:

## precision specified pmvss
R> mvpd::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps.pmvnorm = 1e-4,
+ maxpts.pmvnorm = 25000*10,
+ abs.tol.si = 1e-2)[1]
$value
[1] 0.6768467

Both pmvss and pmvss_mc take infinite limits. Since pmvss_mc calculates how many random variates
Hi, i ∈ {1, . . . , n} are within the bounds, pmvss might be preferred to pmvss_mc when calculating the
tails of the distribution, unless n is made massively large.

10 Speed and accuracy trials

We provide a sense of accuracy and computational time trade-offs with a modest simulation experiment
(Figure 3, see supplementary materials for code). Estimating these distributions is inherently difficult –
difficult in the sense that expecting accuracy farther out than the 5th decimal place for distribution
functions is unreasonable. Therefore, we will define our “gold standard" targets for accuracy evaluation
as the numerical density produced by Robust Analysis’ dstable integrated by cubature::hcubature()
with tolerance tol=1e-5.

We will time three functions using bench::mark() in different scenarios. The first function is Robust
Analysis’ pmvstable.MC() (abbreviated as RAMC, below) and the other two are mvpd::pmvss_mc()
(abbreviated as PDMC, below) and mvpd::pmvss() (abbreviated as PD, below). Fixing α = 1.7 and
dimension d = 4, the different test scenarios will involve a low level of pairwise association vs. a high
level in a shape matrix of the form:

• Qexch =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 for ρ = 0.1 and ρ = 0.9.

We calculate the distributions in the hypercube bounded by (-2,2) in all four dimensions. The
gold standard for the ρ = 0.1 case was 0.5148227 and 0.7075104 for the ρ = 0.9 case. The numerical
integration of the former took 3 minutes whereas the latter took 1 hour – which portends that higher
associations involve more computational difficulty. We back-calculated the number of samples needed
to give the methods involving Monte Carlo (RAMC and PDMC) a 95% CI width that would fall within
0.001 and 0.0001 of the gold standard, and display the scatter plots of estimate and computational time
in (Figure 3).

From Figure 3, some high-level conclusions can be drawn: higher pairwise associations require
more computational resources and time, increasing the precision requires more computational re-
sources and time, and sometimes the Monte Carlo methods are faster than PD, sometimes not. PD
seems to be quite precise and possibly underestimating the gold standard.
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Of course, we cannot test every possible instance of alpha and shape matrices for all d dimensions,
integration limits, and specified precision. In our experience, the computational intensity is an
interplay between alpha, the integration limits, the shape matrix structure, delta, and the requested
precision. We provide the code that we used for our simulation study and encourage the readers who
need to explore these issues for their particular integral to edit the code accordingly.

Figure 3: Speed and accuracy of distribution calculations. Consider a multivariate subgaussian stable
distribution of d = 4, α = 1.7, with limits of integration being (-2,2) for each dimension. In panels A)
and B) we have an exchangeable shape matrix with ρ = 0.1, and specified precision of 1e-3 and 1e-4
for pmvss (PD), respectively. Analogously, panels C) and D) display results for an exchangeable shape
matrix with ρ = 0.9. Concurrently in each panel, are the results for Robust Analysis’ pmvstable.MC
(RAMC) and pmvss_mc (PDMC) with enough simulated variates to produce a 95 CI width that matches
the precision. Each point is an independent call and the calculated distribution is on the Y-axis vs the
median benchmark time on the X-axis. There are 20 calls per function per scenario. The dotted line is
the 1e-3 boundary of the gold standard and the dashed line is the 1e-4 boundary.

11 Bonus: faster distribution calculations via a modified QRSVN algorithm

Insight: multivariate student’s t distributions are a product distribution

The derivation of the univariate student’s t distribution is commonly motivated with a ratio of two
quantities each involving random variables: a standard normal Z in the numerator and a V ∼ χ2(ν)
in the denominator:

Tν =
Z√
V/ν

= Z
√

ν

V
,

but what often is left out of the instruction is that Aν = ν
V ∼ IG

(
ν
2 , ν

2
)

has an inverse-gamma
distribution, where X ∼ IG (r, s) with rate r, shape s, and density f (x; r, s) = rs

Γ(s) x(−s−1)e−r/x. This

implies we equivalently have a product distribution of the type Tν = A1/2
ν Z. This notion holds for

the multivariate case as well, where for G ∼ MVN(0, Q) as before and Aν is an inverse-gamma
with r = s = ν/2 then Hν = A1/2

ν G is a d-dimensional student’s t distribution with ν degrees of
freedom and covariance matrix Q. This corresponds to Example 16 in in Hamdan (2000), and is
equivalent to the ‘chi-normal’ (χ-Φ) formulation in Genz and Bretz (2002) (earning the namesake
‘χ‘ due to the fact that V ∼ χ2(ν) =⇒

√
V ∼ χ(ν)). For d ≥ 4, the QRSVN algorithm (https:

//www.math.wsu.edu/faculty/genz/software/fort77/mvtdstpack.f) is used in mvtnorm::pmvt. The
reordering and rotational methodology that makes pmvtnorm::pmvt so fast is independent of the part
that generates

√
1/Av random variates. This means that if one replaced

√
1/Av with

√
1/A variates,

mvtnorm::pmvt would produce not multivariate student’s t distributions but multivariate subgaussian
stable distributions. We implement a modified QRSVN algorithm for multivariate subgaussian stable
distributions in a separate package, mvgb in honor of Genz and Bretz.
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Implementation of mvgb::pmvss

Generating random variates of A requires two independent uniform random variates, and only one of
which is Quasi-Random in our implementation. Regardless, this modified QRSVN approach enables
the potential advantage of the rotation of the distribution and the reordering of integration limits. The
takeaway is, that for similar precision, mvgb::pmvss may be much faster than mvpd::pmvss, such as 10
seconds vs 500 seconds for 4 digits of precision in the following example:

R> set.seed(321)
R> library(mvgb)
R> tictoc::tic()
## probability calculated by mvgb takes about 10 seconds
R> gb_4digits <-
+ mvgb::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps = 1e-4,
+ maxpts = 25000*350)
R> tictoc::toc()
9.508 sec elapsed
> gb_4digits
[1] 0.6768
## now calculate same probability with similar precision
## in mvpd
R> tictoc::tic()
## probability calculated by mvpd takes about 10 MINUTES
R> pd_4digits <-
+ mvpd::pmvss(lower = rep(-2,5),
+ upper = rep( 2,5),
+ alpha = fitmv$mult_alpha,
+ Q = fitmv$mult_Q_posdef,
+ delta = fitmv$univ_deltas,
+ abseps.pmvnorm = 1e-6,
+ maxpts.pmvnorm = 25000*1000,
+ abs.tol.si = 1e-4)
R> tictoc::toc()
518.84 sec elapsed
R> pd_4digits[1]
[1] 0.6768

Although currently on CRAN, we include mvgb::pmvss here as a proof-of-concept and as an area
of future work. More research is needed into its computational features and accuracy, and this is
encouraged by promising preliminary results. Additionally, more research may be warranted for other
R package methodologies that use a multivariate Gaussian, Cauchy, or Holtsmark distribution to
generalize to a multivariate subgaussian stable distribution (a helpful reviewer suggested generalizing
the multivariate distributions as used in fHMM (Oelschläger and Adam, 2021) and generalizing
the normally mixed probit model in RprobitB). For more about elliptically contoured multivariate
distributions in general, consult Fang and Anderson (1990); Fang et al. (2018).
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Bioconductor Notes, Autumn 2022
by Bioconductor Core Developer Team

Abstract We discuss the release of Bioconductor 3.16, along with educational activities and general
project news.

1 Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data.
The project has entered its twentieth year, with funding for core development and infrastructure
maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Additional support is provided by
NIH NCI, Chan-Zuckerberg Initiative, National Science Foundation, Microsoft, and Amazon. In this
news report, we give some details about the software and data resource collection, infrastructure for
building, checking, and distributing resources, core team activities, and some new initiatives.

2 Software

Bioconductor 3.16 was released on 2 November, 2022. It is compatible with R 4.2 and consists of 2183
software packages, 416 experiment data packages, 909 up-to-date annotation packages, 28 workflows,
and 3 books. Books are built regularly from source and therefore fully reproducible; an example is
the community-developed Orchestrating Single-Cell Analysis with Bioconductor. The Bioconductor
3.16 release announcement includes descriptions of 71 new software packages, 9 new data experiment
packages, 2 new annotation packages, and updates to NEWS files for many additional packages.

3 Core team updates

• New developer Robert Shear of the Department of Data Science at Dana-Farber Cancer Institute
has joined the Bioconductor Core Developer Team.

• Robert is joined by long-term core members Lori Kern of Roswell Park Comprehensive Cancer
Center, Marcel Ramos of CUNY and Roswell, Herv'e Pages of Fred Hutchinson Cancer Research
Center, Jennifer Wokaty of CUNY, and Alex Mahmoud at Channing Division of Network
Medicine.

4 Educational activities and resources

Engagement with The Carpentries

In August 2022, Bioconductor joined The Carpentries. Details and opportunities for receiving training
on teaching are discussed in this blog post. We are currently inviting applications to become a
Bioconductor Carpentries instructor through this form and particularly encourage people who could
teach underserved communities in their local languages to apply.

Three lessons are under development in the Carpentries incubator: Introduction to data analysis
with R and Bioconductor, RNA-seq analysis with Bioconductor and The Bioconductor project. We
welcome any contributions, feedback or testing of the material.

Anyone is welcome to join the #education-and-training channel in Bioconductor Slack or the
monthly Bioconductor Teaching Committee meetings to learn more.

YES for CURE

The Dana-Farber/Harvard Cancer Center Young Empowered Scientists program included a module
on cancer data science for Summer 2022 participants. Materials presented are assembled at a pkgdown
site; contact Vince Carey for information on an interactive deployment of these materials.
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5 Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain access to
standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows as well

as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from recent confer-

ences including BioC2022, EuroBioC2022, and BiocAsia2021, in addition to video recordings of
training courses.

• Our package submission repository for open technical review of new packages.

Upcoming and recently completed conferences are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the project
addresses leading-edge biological problems with advanced technical approaches, and adopts practices
(such as a project-wide Code of Conduct that encourages all to participate. We look forward to
welcoming you!

Bioconductor Core Team
Channing Division of Network Medicine
Mass General Brigham
Harvard Medical School, Boston, MA

Department of Data Science
Dana-Farber Cancer Institute
Harvard Medical School, Boston, MA

Biostatistics and Bioinformatics
Roswell Park Comprehensive Cancer Center, Buffalo, NY

Fred Hutchinson Cancer Research Center, Seatlle, WA

CUNY Graduate School of Public Health, New York, NY

Bioconductor Core Developer Team
Dana-Farber Cancer Institute, Roswell Park Comprehensive Cancer Center, City University of New York, Fred
Hutchinson Cancer Research Center, Mass General Brigham
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Changes on CRAN
2022-07-01 to 2022-10-31

by Kurt Hornik, Uwe Ligges and Achim Zeileis

In the past 4 months, 664 new packages were added to the CRAN package repository.
154 packages were unarchived, 353 were archived and 6 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2022-10-31, the number of active packages was around 18730.

CRAN package submissions

From September 2022 to October 2022 CRAN received 5227 package submissions. For these,
9429 actions took place of which 6070 (64%) were auto processed actions and 3359 (36%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting
auto 1335 1211 926 0 0 1560 513 525
manual 1250 35 325 232 39 1054 353 71

These include the final decisions for the submissions which were

archive publish
auto 1283 (25.1%) 1239 (24.3%)
manual 1222 (23.9%) 1361 (26.7%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.

CRAN mirror security

Currently, there are 100 official CRAN mirrors, 81 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
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Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

There are three new task views:

Agricultural Science Maintained by Julia Piaskowski, Adam Sparks, and Janet Williams.

Mixed, Multilevel, and Hierarchical Models in R Maintained by Ben Bolker, Julia Pi-
askowski, Emi Tanaka, Phillip Alday, and Wolfgang Viechtbauer.

Phylogenetics Maintained by William Gearty, Brian O’Meara, Jacob Berv, Gustavo A. Ballen,
Diniz Ferreira, Hilmar Lapp, Lars Schmitz, Martin R. Smith, Nathan S. Upham, and
Jonathan A. Nations.

Currently there are 42 task views (see https://cran.r-project.org/web/views/), with
median and mean numbers of CRAN packages covered 102 and 115, respectively. Overall,
these task views cover 4015 CRAN packages, which is about 21% of all active CRAN
packages.

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Uwe Ligges
TU Dortmund, Germany
Uwe.Ligges@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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