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Editorial
by Catherine Hurley

On behalf of the editorial board, I am pleased to present Volume 14 Issue 4 of the R Journal.
In response to our increased number of publications (now about 80 per year), this is the first
year the R Journal moved to four issues. In addition, over the last year our software support-
ing the publication process has substantially improved. As a result of these developments,
accepted articles are now published in a more timely fashion.

We have also added some R Journal reporting summaries to our webpage, and will
expand on this in future. For published articles, the time from first submission to accept
averages at under a year. Currently, just a very small number of 2021 submissions await
a final decision, and even for 2022 submission, the majority of articles have received an
accept/reject decision.

This is my last issue as Editor-in-Chief. Simon Urbanek takes over as Editor-in-Chief
for 2023, having served as an Executive Editor since 2020. Simon is a huge contributor to
the R community as a long-standing member of the R-core team. During his term, he plans
to build further infrastructure to further streamline the R Journal submission and review
process.

Dianne Cook recently finished her Editorial board term. She has been a hugely positive
influence on the R Journal over the last number of years, and has been the driving force
behind new software for journal operations and article production. Personally, I was very
grateful for the guidance she provided as I took on the daunting role of EIC.

During the last year, Gavin Simpson stepped down from his editorial board role, having
served two years. Beth Atkinson and Earo Wang have completed their terms as Associate
Editors. On behalf of the board, I would like to thank Gavin, Beth and Earo for their hard
work on behalf of the Journal. New additions are Rob Hyndman who has joined the Editorial
board, and Vincent Arel-Bundock who has just joined the Associate Editor team.

The R Journal Editors recently held our first meeting with our Editorial Advisory Board.
The purpose of the board is to assist with continuity across editors and to provide indepen-
dent advice. We thank them for their time and guidance.

Behind the scenes, several people assist with the journal operations. Mitchell O’Hara-
Wild continues to work on infrastructure, H. Sherry Zhang continues to develop the rjtools
package under the direction of Professor Dianne Cook. In addition, articles in this issue
have been carefully copy edited by Hannah Comiskey.

In this issue

News from CRAN, Rcore, Bioconductor, RFoundation and RForwards are included in this
issue.

This issue features 20 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Reproducible Research

• knitrdata: A Tool for Creating Standalone Rmarkdown Documents
• Making Provenance Work for You
• A Study in Reproducibility: The Congruent Matching Cells Algorithm and cmcR

package
• The openVA Toolkit for Verbal Autopsies

Multivariate Statistics, Visualisation
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• Bootstrapping Clustered Data in R using lmeresampler
• Generalized Mosaic Plots in the ggplot2 Framework
• robslopes: Efficient Computation of the (Repeated) Median Slope

Econometrics

• DGLMExtPois: Advances in Dealing with Over and Underdispersion in a Double
GLM Framework

• Limitations of the R mcvis package

Spatial Analysis

• remap: Regionalized Models with Spatially Smooth Predictions
• populR: A Package for Population Down-Scaling in R

Ecological and Environmental analysis

• HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
• dycdtools: an R Package for Assisting Calibration and Visualising Output

Statistical Genetics

• SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis
• netgwas: An R Package for Network-Based Genome Wide Association Studies

Bayesian inference

• BayesPPD: An R Package for Bayesian Sample Size Determination Using the Power
and Normalized Power Prior for Generalized Linear Models

• ppseq: An R Package for Sequential Predictive Probability Monitoring

Other

• pCODE: Estimating Parameters of ODE Models
• TreeSearch: Morphological Phylogenetic Analysis
• OTrecod: An R Package for Data Fusion using Optimal Transportation Theory

Catherine Hurley
Maynooth University

https://journal.r-project.org
r-journal@r-project.org
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knitrdata: A Tool for Creating Standalone
Rmarkdown Source Documents
by David M. Kaplan

Abstract Though Rmarkdown is a powerful tool for integrating text with code for analyses in a single
source document exportable to a variety of output formats, until now there has been no simple way
to integrate the data behind analyses into Rmarkdown source documents. The knitrdata package
makes it possible for arbitrary text and binary data to be integrated directly into Rmarkdown source
documents via implementation of a new data chunk type. The package includes command-line and
graphical tools that facilitate creating and inserting data chunks into Rmarkdown documents, and the
treatment of data chunks is highly configurable via chunk options. These tools allow one to easily
create fully standalone Rmarkdown source documents integrating data, ancillary formatting files,
analysis code and text in a single file. Used properly, the package can facilitate open distribution of
source documents that demonstrate computational reproducibility of scientific results.

Introduction

The basic principles of open science are that the data, research methodologies and analysis tools (e.g.,
the specific computational tools) used for scientific research should be made publicly available so that
others can confirm and validate scientific analyses. Open science is particularly important for studies
and disciplines for which true experimental replication is often difficult or impossible due to spatial,
temporal or individual specificity [e.g., we cannot replicate Earth; Powers and Hampton (2019)]. In
these cases, computational reproducibility, i.e., the ability to reproduce analytic results given the
original data and analysis code, can still be achieved and can provide significant credibility to results
(Powers and Hampton 2019). Though scientists, governments and journals often place great emphasis
on access to raw data (Cassey and Blackburn 2006; Lowndes et al. 2017), it is important to remember
that computational reproducibility can only be assured if data, methods, computational tools and the
relationships between these are all openly accessible. Even when data are made publicly available,
there are often significant gaps between the Methods section of a publication and the raw data that
complicate reproducibility without access to the detailed code used to generate results. It is, therefore,
essential for computational reproducibility that the code used to generate results be distributed along
with the data and the publication itself. Though there are a number of potential ways to distribute all
these elements together, probably the most common current approach is to place the data in a publicly
accessible data store (e.g., Dryad) and to associate the code with the publication via the supplementary
material and/or by including it in the data store. Though this is a perfectly viable approach that
can greatly enhance transparency of research, it physically separates data from analysis code and
interpretation of results, potentially leading to confusion and/or loss of information regarding how
these different element interrelate. At times, it would be more convenient, transparent and/or effective
to join all the elements into a single document. The R package presented here, knitrdata (Kaplan
2020a), provides tools for doing just that - integrating data directly into Rmarkdown source documents
so that data, code for analyses and text interpreting results are all available in a single file.

Rmarkdown (Allaire, Xie, McPherson, et al. 2022) has become an increasingly popular tool for
generating rich scientific documents while maintaining a source document that makes explicit the
relationship between text and specific analyses used to produce results (Xie 2014; Lowndes et al.
2017). In a nutshell, Rmarkdown source documents are text documents comprised of two major
elements: structured text that make up the headings and paragraphs of the document, and blocks
of code (typically, but not exclusively, R code) for doing analyses and generating figures and tables.
Rmarkdown source documents can be processed into a variety of final output formats, including
PDF documents formatted for scientific publication. During this processing, the blocks of code in the
source document are executed and used to augment the final output document with figures, tables
and analytic results. In addition to providing a single source document that includes both written text
and code for carrying out analyses, Rmarkdown has other benefits for open science, such as requiring
the user to provide fully functioning code that runs from start to end without errors and facilitating
reuse and updating of documents when new data arrives.

Until now, however, it has been difficult to integrate the raw data itself that are the bases for
analyses directly into Rmarkdown source documents. Typically, data are placed in external files that
are accessed via R code contained in the Rmarkdown source document that is executed during the
knitting. As previously mentioned, this has the disadvantage of physically separating data from
analysis code and text contained in the Rmarkdown source document, potentially leading to confusion
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and/or information loss. Furthermore, on a practical level, it often can be extremely convenient to
merge all pertinent information into a single source document (e.g., to facilitate collaboration on an
Rmarkdown source document). knitrdata provides a simple mechanism for integrating arbitrary text
or binary data directly into Rmarkdown source documents, thereby allowing one to create standalone
source documents that include all the elements necessary for conducting analyses. This integration is
done with minimal additional formatting of the data (e.g., allowing one to insert comma-separated
value (CSV) data without escaping quotation marks directly into Rmarkdown documents) and in
a way that clearly visually separates data from R code, thereby facilitating comprehension of the
different elements that contribute to analyses. knitrdata also facilitates encryption of data integrated
into Rmarkdown source documents, thereby allowing one to merge data with analysis code and text
even in cases where industrial or ethical privacy constraints restrict data access to a specific group of
individuals.

Below, I briefly provide a conceptual overview of how knitrdata works, presenting some simple
examples of its use and the tools available to facilitate integrating data into Rmarkdown source
documents. I then discuss typical use cases and workflows for development of Rmarkdown source
documents with knitrdata, as well as a number of potential caveats for its use. I conclude by reflecting
on the value of knitrdata for achieving computational reproducibility and its place within the growing
pantheon of tools that make Rmarkdown an increasingly essential tool for research.

knitrdata installation and usage

The knitrdata package is available on CRAN, though the latest version can be installed from github
using the remotes (Csárdi et al. 2021) package:

remotes::install_github("dmkaplan2000/knitrdata",
build_vignettes=TRUE)

Once the package has been installed, all that is needed to use the functionality provided by the
package in a Rmarkdown source document is to load the library at the start of the document, typically
in the setup chunk:

library(knitrdata)

Conceptual overview of knitrdata

To understand how knitrdata works and the functionality it provides, one must first understand
some of the terminology and functioning of Rmarkdown itself. As previously mentioned, Rmarkdown
documents are a combination of text written in markdown, a simple, structured text format that can
be translated into a large number of final output formats, and code for doing analyses that can
augment the final output document with analytic results, tables and figures. The code is contained in
specially delimited blocks, referred to as chunks. For example, adding the following to an Rmarkdown
document:

```{r}
plot(-5:5,(-5:5)^2,type="l")
```

would add a plot of a parabola to the final output document. The process of translating a
Rmarkdown document into a final output document is known as knitting, and this process is carried
out using (often implicitly via RStudio) the knitr package (Xie 2015).

Though code chunks typically contain R code, knitr supports a large number of other language
engines, allowing one to integrate analyses in a number of other computer languages, including C,
Python and SQL. For example, one could use the SQL language engine to import the contents of a
database table into the R environment by including the following chunk in a Rmarkdown source
document:

```{sql connection="dbcon",output.var="d"}
SELECT * FROM "MyTable";
```
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During knitting, this will create in the R environment a variable d containing the contents of the
table MyTable accessible via the (previously created) active R database connection dbcon. Note that
the name of the database connection and the name of the output variable are supplied in the chunk
header via what are known as chunk options. Though this database table could be imported into the R
environment without the SQL language engine using R code:

```{r}
d = dbGetQuery(dccon,"SELECT * FROM \"MyTable\";")
```

the use of the SQL language engine has both practical and conceptual advantages. On the practical
side, it avoids the need to escape quotation marks and allows text editors to recognize and highlight
the code as SQL, both of which becoming increasingly valuable as the length and complexity of SQL
queries increase. On the conceptual side, using the SQL engine visually separates database queries
from R code and text, thereby better communicating the structure and functioning of analyses in
Rmarkdown documents.

The knitrdata package works in many ways analogously to the SQL language engine, adding a
new data language engine to the list of language engines known to knitr that is specifically designed
to import raw “data” into the R environment and/or export it to external files. Here the term “data” is
used in a very wide sense, including not only standard data tables (e.g., CSV text files) or binary data
(e.g., RDS files, NetCDF files, images), but also text and formatted text (e.g., XML files, BibTeX files).
For example, placing the following chunk in a Rmarkdown source document will, during the knitting
process, create in the R environment a data frame d containing the contents of the comma-separated
values (CSV) data in the chunk (provided that the knitrdata package has been previously loaded as
described above):

```{data output.var="d",loader.function=read.csv}
name,score
David M. Kaplan,1.2
The man formerly known as "Prince",3.4
Peter O'Toole,5.6
```

As with the SQL language engine, the name of the output variable for the chunk is supplied with
a chunk option and in this example a loader.function option instructs knitrdata how to translate
the contents of the chunk into a usable R object (in this example the R function read.csv is used to
translate the CSV data into a data frame).

There are of course a number of other ways that such a simple data table could be imported into
the R environment, including via an external data file or directly in R code, one approach to which
might be:

```{r}
d = read.csv(textConnection(
"name,score
David M. Kaplan,1.2
The man formerly known as \"Prince\",3.4
Peter O'Toole,5.6
"))
```

However, using the data language engine has much the same practical and conceptual advantages
as the SQL data language engine, avoiding the need for escaping certain characters and visually
separating data from code, both of which become increasingly valuable as dataset size increases.

Incorporating binary data into Rmarkdown source documents is a bit more complicated as the
data must first be encoded as ASCII text (see the Section below on Binary data chunks for details),
but the basic principles are the same - encoded binary data is incorporated into a data chunk and
chunk options are used to tell knitrdata how to decode the data and load it into the R environment
during knitting (see Table 1 for a full list of data chunk options). There is also the possibility of
saving data chunk contents out to external files using the output.file chunk option. This option is
particularly useful for integrating into Rmarkdown source documents ancillary text files used in the
final formatting of the output of the knitting process, such as BibTeX files with references, LaTeX style
files for PDF output and CSS style files for HTML output. For example, the following chunk would
export a BibTeX reference to a file named refs.bib, taking care not to overwrite an existing file with
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the same name [though note that similar functionality can also be achieved with the cat language
engine; Xie, Dervieux, and Riederer (2020)]:

```{data output.file = "refs.bib", eval=!file.exists("refs.bib")}

@book{allaireRmarkdownDynamicDocuments2020,
title = {Rmarkdown: {{Dynamic}} Documents for r},
author = {Allaire, JJ and Xie, Yihui and McPherson, Jonathan and Luraschi, Javier and Ushey, Kevin and Atkins, Aron and Wickham, Hadley and Cheng, Joe and Chang, Winston and Iannone, Richard},
year = {2020}

}
```

As code chunks are processed during knitting before generating the final output document, these
files can be generated at any point during the knitting process using data chunks (in particular, it is
often most practical to place this information at the end of a Rmarkdown document).

Table 1: Full list of knitrdata chunk options.

Chunk option Description

decoding.ops A list with additional arguments for data_decode. Currently only
useful for passing the verify argument to gpg::gpg_decrypt (Ooms
2022) for gpg encrypted chunks.

echo A boolean indicating whether or not to include chunk contents in
Rmarkdown output. Defaults to FALSE.

encoding One of 'asis', 'base64' or 'gpg'. Defaults to 'asis' for
format='text' and 'base64' for format='binary'.

eval A boolean indicating whether or not to process the chunk. Defaults to
TRUE.

external.file A character string with the name of a file whose text contents will be
used as if they were the contents of the data chunk.

format One of 'text' or 'binary'. Defaults to 'text'.
line.sep Only used when encoding='asis'. In this cases, specifies the character

string that will be used to join the lines of the data chunk before export
to an external file, further processing or returning the data. Defaults to
knitrdata::platform.newline().

loader.function A function that will be passed (as the first argument) the name of a file
containing the (potentially decoded) contents of the data chunk.

loader.ops A list of additional arguments to be passed to loader.function.
max.echo An integer specifying the maximum number of lines of data to echo in

the final output document. Defaults to 20. If the data exceeds this
length, only the first 20 lines will be shown and a final line indicating
the number of ommitted lines will be added.

md5sum A character string giving the correct md5sum of the decoded chunk data.
If supplied, the md5sum of the decoded data will be calculated and
compared to the supplied value, returning an error if the two do not
match.

output.file A character string with the filename to which the chunk output will be
written. At least one of output.var or output.file must always be
supplied.

output.var A character string with the variable name to which the chunk output
will be assigned. At least one of output.var or output.file must
always be supplied.

Using data chunks, just about any data or information that would typically be stored in external
files can be integrated directly into Rmarkdown source documents. In particular, this permits creating
standalone Rmarkdown source documents that can be knitted without need for external data files,
thereby uniting text, code and data in a single source document.

Note that this is different from the self_contained YAML header option permitted by some
Rmarkdown output formats, notably HTML output formats. This option attempts to create a single
output file that contains everything needed to visualize the final output document (e.g., in the case
of HTML documents, the output HTML file will contain any CSS styles, javascript libraries and/or
images used by the document), but it says nothing about whether or not external files are needed to
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knit the Rmarkdown source document (i.e., it is relevant to the output side of knitting, not the input
side). In fact, a source document can be standalone in that all data and formatting files needed for
knitting are incorporated within it using data chunks, but the final output (HTML) document may not
be self contained because it relies on external files or libraries for visualization, and vice-versa (i.e.,
standalone source documents and standalone output documents are two separate and independent
concerns).

Under the hood, the way knitrdata works is by adding (using the knitr::knit_engines$set()
function) to the list of language engines that knitr maintains internally a data entry that points to a
function inside the knitrdata package that processes data chunks (specifically the eng_data function,
though users would typically not interact directly with this function). When knitting a Rmarkdown
document, knitr will call this function each time a data chunk is encountered, passing it both the
textual contents of the chunk and any chunk options. The function then uses this information to process
the chunk, decoding it if necessary (via the format and encoding chunk options) and returning it as
either a variable in the R environment (output.var chunk option) and/or an external file (output.file
chunk option) after any additional processing has been carried out (via, e.g., the loader.function
chunk option).

Text data chunks

Though a basic example of a data chunk containing CSV tabular data has been presented in the
previous section, it is useful to develop that example a bit more to better understand the functioning of
knitrdata. The simplest data chunks contain plain text that is read, but not processed by knitrdata.
For example, omitting the loader.function chunk option from the previously presented data chunk
with CSV data produces a different outcome:

```{data output.var="txt"}
site,density
a,1.2
b,3.4
c,5.6
```

During the knitting process, this will place the text contents of the chunk into a R variable named
txt, but no further processing of the text will be carried out (i.e., the variable txt will contain the
literal text contents of the chunk, excluding the header with the chunk options and the tail). One could
later convert the text into a R data.frame using the read.csv command in a R chunk placed after the
data chunk:

```{r}
d <- read.csv(text=txt)
```

The loader.function chunk option used in the initial data chunk example above causes knitrdata
to combine into one process the two steps of (1) reading in the chunk contents and (2) converting
them into a usable R data object. Whereas the first of these steps, reading the chunk contents, is
carried out for all data chunks, the second only occurs if the loader.function chunk option is given.
loader.function should be a function that takes in the name of a file containing the chunk contents
and returns the processed contents. Though read.csv is likely to be a common choice, there are
many other possibilities including readRDS, read.csv2, scan, png::readPNG and custom, user-defined
functions. One can also supply a list of additional input arguments to the loader function using
the loader.ops chunk option (e.g., one could change the expected separator in CSV data using
loader.ops=list(sep="|")).

Binary data chunks

Though text data chunks can integrate into Rmarkdown source documents many small- to medium-
sized tabular data sets, binary data formats, such as RDS files, are more convenient for more com-
plicated and/or larger data sets. Incorporating binary data into Rmarkdown documents requires
additional steps relative to text data: encoding the binary data as text and telling the data chunk how
to decode the encoded data. knitrdata provides tools for simplifying these two steps that currently
support encoding and decoding of two widely-used encodings: base64 and gpg. base64 is a standard
format for encoding binary data as ASCII text based on translation of 6 bits of information into one
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of 64 alphanumeric and symbolic ASCII characters. Base64 encoded data looks like a somewhat
intimidating jumble of characters, but the format is extremely widely used behind the scenes in many
common web applications, such as email attachments and embedding images in HTML pages. In
particular, base64 is widely supported by a number of software packages and programming languages,
including R, Python, Matlab and Julia, so base64 encoded data is highly readable and likely to remain
so for a very long time.

gpg, standing for GNU Privacy Guard, is a standard protocol for encrypting information so that
only those with specific decryption keys can have access. This format can be used to ensure that only
specific individuals can actually read and utilize the data contained in a Rmarkdown source document,
as might be necessary when dealing with confidential (e.g., medical or trade-secret) data. Here, I
focus primarily on base64 encoding as this is the simplest and likely most common format for binary
data chunks, and a full description of the configuration and use of GPG is beyond the scope of this
document. The detailed use of gpg is, however, described in the package vignette.

Though knitrdata users rarely need to encode data by hand as the package provides graphical
tools for this, it is instructive to have a basic understanding of the underlying functions for encoding
and decoding data: data_encode and data_decode. data_encode takes the name of the file containing
the data and the name of the encoding format, and it returns the encoded data that one would
incorporate into a data chunk, either to the R command line or to a file. For example, if one saves the
data frame d created in the previous section to a binary RDS file:

saveRDS(d,"data.RDS")

then one can encode this data as base64 using:

b64 = knitrdata::data_encode("data.RDS","base64")
cat(b64)

#> H4sIAAAAAAAAA12OvQ+CMBDFKx+DGNTExPk2J1lc3HQwLsbIgInrBUokQmsKkbj5
#> PzsrXrEMekn72l/f693JY4zZzLEsZrt0ZO4x2s6XxCZ0sWiNvwbWJx1t8JYlsA9g
#> h9cchcEQnTkUKCCVquAqv8NFyFoAlhCqTMTc+PyQV1zBYRZJmXMCQ/336rloaz0w
#> Ok3bYjQVvfdM2BVY8NIMZBnoaNgZylgq/p+Kcyy7VAe9BCsMUqWzv/a+knXQNfJ1
#> owdtTdO8SN4fPb8RnS0BAAA=

This jumble of characters starting with "H4sI" is the base64 encoded contents of the binary file
that one would place in a data chunk. For large files, it is often more practical to output the encoded
data to a file by supplying the output argument:

knitrdata::data_encode("data.RDS","base64",
output="data.RDS.base64")

GPG encoding works similarly to base64 encoding, but one must change the format from "base64"
to "gpg" and specify the encryption key (i.e., the receiver ID) to be used to encrypt the data.

Once one has the encoded data, one can use it in a data chunk by supplying the format="binary"
chunk option and, optionally, an appropriate loader.function to convert the data into a R object:

```{data format="binary",output.var="d",loader.function=readRDS}
H4sIAAAAAAAAA12OvQvCMBDFz48OKn6A4Hybk11c3HQQFxE7VHA9aopimkgiFjf/
Z2etl5oOesO93I/3crdvA0ADmnXuAT8h2MWryYynIQ9MYfA1QIu1v6Tb6YCbENd0
kaQ8xvgoMCOFqTaZMPKOZ6VzhWQxMieVCO/rRuIqDG7HsdZSMOi5v+fPaVmLjtdR
WhaUV0HNhwNFmbD+oLqHTQcrg020Ef+pRJKtUhVsH+hKYWpc9tfeMjoPq0Vdt+jB
rSiKF8v7A6bdy9EtAQAA
```

During knitting, this chunk will be processed, decoding the encoded binary RDS file and loading
it into the variable d using the readRDS function. knitrdata will by default assume that the encoding
is base64 when format="binary", but one can also specify the chunk option encoding="base64" for
increased clarity. For GPG encoded data, one would use encoding="gpg". As with text data chunks,
one can alternatively output the decoded contents of the chunk to a file (output.file option) or return
it to the R session as a raw binary vector (by not supplying a loader.function).
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(a) (b)

Figure 1: The (a) ’Insert filled data chunk’ and (b) ’Remove chunks’ RStudio add-ins included with
knitrdata. The dialogues will open when selected from the ’Addins’ menu of RStudio. They allow
one to (a) insert a data chunk containing the contents of an existing external data file into an open
Rmarkdown document, and (b) delete one or more chunks from an open Rmarkdown document.

RStudio add-ins for creating data chunks

As manually encoding data and creating data chunks can be complicated, particularly for large data
files, knitrdata includes graphical RStudio add-ins that do all the hard work of incorporating data in
Rmarkdown documents. The principal add-in is called Insert filled data chunk (Fig. 1a). Though
its use is meant to be largely self-explanatory, an instructional video is available on YouTube (Kaplan
2020b). The basic idea is that one opens a Rmarkdown source document in the RStudio editor, places
the cursor at the location one wants to insert a data chunk and then activates the add-in. The add-in
prompts for the name of the data file to be incorporated, as well as values for various data chunk
output and processing options. Based on the type of data file selected, the add-in will attempt to select
or suggest various appropriate options. For example, if a RDS file is chosen, then format will be set to
binary, encoding will be set to base64 and the loader function will be set to readRDS. These defaults
can be manually modified if not appropriate. The add-in also greatly facilitates and encourages the
use of MD5 sum data integrity checks. After all options have been set, one clicks on Create chunk and
an appropriately-formatted data chunk will be inserted in the active Rmarkdown source document at
the cursor location.

knitrdata also provides a Remove chunks add-in that allows ones one to quickly delete unwanted
(data and non-data) chunks (Fig. 1b), as well as a set of functions for command-line examination,
creation and removal of chunks from Rmarkdown documents (e.g., create_chunk, insert_chunk,
list_rmd_chunks, remove_chunks).

If one is not using RStudio to edit and knit Rmarkdown documents, then one can invoke the Skiny
dialog to create data chunks directly from the command line using the create_data_chunk_dialog
function contained in the knitrdata package. In this case, chunk contents will be (silently) returned
on the command line for later insertion in a Rmarkdown document.

Use cases

There are a number of use cases for the functionality provided by knitrdata, primary among them
providing a single source for public diffusion of all information related to a publication or report,
and/or making collaboration on Rmarkdown source documents simpler by eliminating or reducing
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the need for external files. A simple example of the prior is the Rmarkdown source document used to
generate this publication, which includes text data chunks for the tabular data in Table 1, as well as the
ancillary formatting files associated with the document (BibTeX and LaTeX style files), and encoded
binary data chunks for the PNG images in Figs. 1 & 2.

A more complicated example is the Rmarkdown source document for Wain et al. (2021), publicly
available on github. In this case, we wished to provide a permanent public record of the methods used
in the paper and ensure that results could be verified, while at the same time respecting confidentiality
agreements with respect to fine scale fishing activity data used in the paper. To achieve this we
integrated the fine scale data in the Rmarkdown source document as an encrypted GPG data chunk.
This approach may have value for a wide number of other studies using sensitive economic, social
or medical data. To provide a complete record of the paper in a single document, we also integrated
the Rmarkdown source document for the online supplementary materials into a data chunk within
the Rmarkdown source document for the paper itself. As this supplementary materials document
contains Rmarkdown chunks that would otherwise confuse the knitting process if integrated as raw
text inside a data chunk, we base64 encoded this source document before including it in a data chunk.
The document also contains data chunks for small data tables and for exporting to external files the
ancillary formatting files required for knitting the document (BibTeX references, the LaTeX style file,
the CSL citation style file, etc.). Finally, during the knitting process, the document also generates a
lightweight version of itself that does not include the main data chunk, using the functionality of the
knitrdata package to remove large data chunks. Overall, knitrdata provided a convenient way of
generating a single document that contained all the necessary information for generating the final
publication, thereby demonstrating computational reproducibility for the publication.

The uses of data chunks tend to fall into one of four general, not mutually-exclusive use cases:

1) Integration of ancillary formatting files into the Rmarkdown source document, thereby reducing
the number of external files needed to knit a document

2) Inclusion of small- to medium-sized tabular data used in analyses and/or for tables
3) Inclusion of larger data sets using encoded binary data
4) Inclusion of confidential data using GPG-encrypted data chunks

Though the first of these use cases, integration of ancillary formatting files, can also be achieved
with the cat language engine that is included with the knitr package (Xie, Dervieux, and Riederer
2020), knitrdata provides functionality that make this task easier and more secure. First, knitrdata
allows for integrity checks on chunk contents that can control for unintentional modification of chunk
contents (see the section on data integrity below). Second, RStudio add-ins provided by the knitrdata
package facilitate the integration of data into Rmarkdown source documents and the use of integrity
checks. Finally, encoding of text documents permits integrating files that contain Rmarkdown chunks
or other formatting that would otherwise be problematic within a cat chunk.

The second of these use cases, tabular data, can also in principle be achieved using other tools in
R, such as a textConnection as shown above or via functionality in the tibble package (Müller and
Wickham 2022). Nevertheless, the use of data chunks is generally more ergonomic and flexible for
anything but the smallest data tables as it allows the user to format data exactly as it would be in an
external CSV file, without additional markup or the need to escape quotation marks. As an example,
the information contained in Table 1 was implemented in the source document for this paper as a data
chunk as it contains lots of quotations and formatting that would have been tedious to include using
other approaches.

The third and fourth use cases for data chunks, involving encoded binary data, are unique to
knitrdata and allow for integration of complex data sets that would otherwise be very difficult to
include in a Rmarkdown source document.

Workflow

When and in what ways to use the functionality provided by knitrdata during the development of
a Rmarkdown source document requires some thought and depends to some degree on the project
goals. If the goal is to create a final Rmarkdown source document that demonstrates computational
reproducibility of a set of results, then it may not be necessary or practical to use data chunks during
the development stages of the project as the use of data chunks necessarily weighs down a Rmarkdown
source document with information (e.g., binary data) that may not be immediately useful to authors
during development. In this case, it may be best to work initially as one has always done, relying
on external files for data and formatting. External data and formatting files can be incorporated in
data chunks at the end of development when it is time to generate a final archival/public version of a
Rmarkdown source document.
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On the other hand, if the objective of using knitrdata also includes reducing the complexity of
collaborating on a Rmarkdown source document by reducing the number of external files necessary
for knitting a document, then certain types of data chunks can be incorporated in a Rmarkdown
source document during the initial phases of development with little impact on authors. Small- to
medium-sized tabular data sets can be incorporated and this can have the benefit of making the tabular
data visually available during the development process. Similarly, most ancillary formatting files can
be placed at the very end of the Rmarkdown source document as these are only used after all chunks
have been processed and, therefore, will not encumber the development process. Larger data sets, and
in particular binary data sets, are a bit more problematic as they necessarily appear in the Rmarkdown
source document before the data is used for analyses and will introduce significant amounts of text
that are not human readable into the Rmarkdown source document. For this reason it may be best to
leave incorporation of these data until the final stages of development, though see the sections below
on file size and readability for workarounds to these issues.

This latter workflow involving incorporation of data chunks in two distinct stages of development
is what was used when creating the source document for Wain et al. (2021). Small data tables and
formatting files were incorporated directly into the document from the start, but the larger data set
that was the basis for statistical analyses and the Rmarkdown source document for the supplementary
materials were only incorporated at the end of development to provide an archival source document
for the paper capable of demonstrating computational reproducibility.

Caveats and concerns

There are a number caveats and concerns with respect to the use of knitrdata, all of which have some
validity, but for which a number of simple approaches exist to limit their impact. Below, I discuss four
of them: file size, document readability, data integrity and security.

Won’t this create huge Rmarkdown files?

Incorporation of large data sets into data chunks will significantly increase the file size of Rmarkdown
source documents, potentially making them more difficult to work with. Though it is unlikely to be
practical to place extremely large data sets in Rmarkdown source documents, there are many contexts
where data sets are sufficiently small so as to be included directly in a Rmarkdown source document.
For example, the 8 years of fine scale fishing data used in Wain et al. (2021) added about 2 MB to
the size of the Rmarkdown document when incorporated as a (compressed) RDS file, a size that is
manageable and well within the limits of typical email attachments. RStudio currently will not open
Rmarkdown documents larger than 5 MB in size, effectively limiting the amount of data that can be
placed in a document unless one is willing to forgo graphical editing tools (larger documents can be
rendered from the command line using the rmarkdown::render function, but not the more convenient
and common “Knit” button of RStudio). Despite being in the era of big data, many scientific studies
use primary data sets that are smaller than this size limit. As for Wain et al. (2021), many experimental
or field studies may rely on data sets that are relatively small, and building a standalone Rmarkdown
source document for these studies is an effective approach to documenting all quantitative information
needed to reproduce results.

Won’t Rmarkdown source documents become unreadable?

Large amounts of encoded binary data are undoubtedly not pretty to look at, but readability is not
necessarily the primary benefit of using Rmarkdown. Rather, completeness and the articulation of
text and analyses are the strengths of Rmarkdown, benefits that data chunks enhance as opposed to
diminish. Many Rmarkdown documents are already a complex mix of text and code that is difficult to
read and manage without the tools RStudio and other editors provide to navigate the document, such
as the ability to jump between sections and chunks. data chunks are no different in this sense, and use
of informative chunk labels can greatly facilitate document navigation. Furthermore, RStudio includes
the possibility of hiding chunk contents with a single click (Fig. 2), which can be quite practical when
dealing with large data chunks. Once hidden, data chunk contents can be ignored, allowing one to
edit the document unhindered.

Won’t a misplaced keystroke mess up my data?

It is possible to unintentionally corrupt a data chunk due to a misplaced keystroke, particularly if the
data is encoded and not readily human readable. However, the use of navigation tools and hiding

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 15

Figure 2: Images demonstrating before (top) and after (bottom) a data chunk has been hidden from
view in the RStudio editor. The top image shows two base64-encoded data chunks, one of which is
hidden, whereas the other is visible. In the bottom image, both chunks have been hidden. The control
for hiding chunk contents (top) and an indicator of a hidden chunk (bottom) are highlighted with red
boxes.

of data chunk contents as described above (Fig. 2) can drastically reduce interaction with chunk
contents, thereby limiting the possibility for error. Furthermore, there are a number of methods to
validate chunk contents, the simplest of which is to do a MD5 sum check using functionality included
in knitrdata. A MD5 sum is a very large number (typically encoded in hexadecimal) derived from a
file’s contents that has a vanishingly small probability of being equal to that of another file if the files
are not identical. data chunks can include a md5sum chunk option that specifies a MD5 sum that will
be checked against that of the decoded chunk contents, generating an error if the two do not match.
In this way, data corruption can be swiftly identified and corrected. The Insert filled data chunk
RStudio add-in will by default calculate and include a MD5 sum check when inserting binary data
chunks (and such a check can be optionally requested for text data chunks) so that users can easily
benefit from these checks without having to worry about the details.

Are there security concerns when using knitrdata?

Any time one runs code from a third party, there are security risks. Typically, code can write files
to disk, potentially modifying essential files or installing malicious software. Rmarkdown source
documents using the functionality of knitrdata are no different in this sense, though the practical risks
may be more important as knitrdata may encourage users to knit entire documents to gain access to
raw data and arbitrary data may be encoded in formats that are not human readable. Reducing these
risks involves responsibilities for both the authors and the users of Rmarkdown source documents.
For authors, the primary responsibilities are to assure that source documents cannot be modified by
third parties between the author and the user, and to use best practices when carrying out file input
and output during the knitting process. Integrity of source documents can be protected by using
reputable websites with established security protocols for publishing Rmarkdown source documents,
including, but not limited to, github, Zenodo and the Dryad. Authors can also publish MD5 sums
for Rmarkdown source documents so users can verify the integrity of those documents, though the
security of those MD5 sums is only as strong as the websites on which MD5 sums and Rmarkdown
source documents are published. Best practices for file input and output include using temporary files
and/or relative paths entirely within the base directory containing the Rmarkdown source document
when writing files to disk, using file names that are unique (e.g., avoiding generic names like data.csv)
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and performing checks for the existence of files with the same name before writing information to
disk. The Insert filled data chunk RStudio add-in provided by knitrdata encourages the use of
file existence checks in the eval chunk option controlling whether or not to process data chunks that
write data to disk using the output.file chunk option, thereby avoiding overwriting existing files.

For users of Rmarkdown source documents, there are a number of simple steps one can take to
avoid the most severe security risks. Knitting Rmarkdown source documents from an unprivileged
user account and placing Rmarkdown source documents in new, empty directories can reduce the
risks of the most malicious attacks. Users should also familiarize themselves with the workings of
Rmarkdown source documents before knitting them and check for potentially problematic actions,
such as use of absolute file paths and/or communication with external internet resources. This includes
examination of the chunk options associated with data chunks (in particular, the output.file and
loader.function). If one is primarily interested in just the raw data contained in data chunks within
a Rmarkdown source document, then RStudio permits manual execution of individual chunks. This
includes execution of data chunks, which can be processed individually using the Run current chunk
button of RStudio once the knitrdata library has been loaded.

Conclusion

knitrdata provides a simple, but effective, tool for integrating arbitrary data into Rmarkdown source
documents. If used appropriately, this can help assure computational reproducibility of many scien-
tific documents by allowing one to integrate all relevant external files and data directly into a single
Rmarkdown source document. Anyone who has attempted to validate the results in a publication by
requesting the associated data has potentially encountered, if they managed to get the data, a set of
one or more data tables with limited metadata and only the publication itself as documentation of the
methods. Validating publication results under these conditions is often difficult and time consuming.
By encouraging the integration of data, code for carrying out analyses, and text interpreting results
in standalone Rmarkdown source documents, Rmarkdown with knitrdata can make it much easier
to understand, reproduce and validate the details of scientific analyses. This combination can be
particularly powerful when combined with other enhancements to Rmarkdown that make it possi-
ble to produce a wide variety of sophisticated scientific documents entirely within the confines of
Rmarkdown, such as bookdown (Xie 2022), rticles (Allaire, Xie, Dervieux, et al. 2022) and starticles
(Kaplan 2022) for producing books and scientific publications with Rmarkdown, citr (Aust 2019) for
bibliographic citations, and kableExtra (Zhu 2021) for producing sophisticated data tables.

Online supporting information

The Rmarkdown source documents for this publication and Wain et al. (2021) are available online
at https://github.com/dmkaplan2000/knitrdata_examples. Additional examples and the package
vignette are available in the knitrdata package itself.
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netgwas: An R Package for Network-Based
Genome Wide Association Studies
by Pariya Behrouzi, Danny Arends and Ernst C. Wit

Abstract Graphical models are a powerful tool in modelling and analysing complex biological
associations in high-dimensional data. The R-package netgwas implements the recent methodological
development on copula graphical models to (i) construct linkage maps, (ii) infer linkage disequilibrium
networks from genotype data, and (iii) detect high-dimensional genotype-phenotype networks. The
netgwas learns the structure of networks from ordinal data and mixed ordinal-and-continuous data.
Here, we apply the functionality in netgwas to various multivariate example datasets taken from
the literature to demonstrate the kind of insight that can be obtained from the package. We show
that our package offers a more realistic association analysis than the classical approaches, as it
discriminates between direct and induced correlations by adjusting for the effect of all other variables
while performing pairwise associations. This feature controls for spurious interactions between
variables that can arise from conventional approaches in a biological sense. The netgwas package uses
a parallelization strategy on multi-core processors to speed-up computations.

1 Introduction

Graphical models are commonly used in statistics and machine learning to model complex dependency
structures in multivariate data (Lauritzen, 1996; Hartemink et al., 2000; Lauritzen and Sheehan, 2003;
Jordan, 2004; Friedman, 2004; Dobra et al., 2004; Edwards et al., 2010; Behrouzi et al., 2018; Vinciotti
et al., 2022) where each node in the graph represents a random variable and edges represent conditional
dependence relationships between pairs of variables. Therefore, the absence of an edge between two
nodes indicates that the two variables are conditionally independent. The netgwas package contains
an implementation of undirected graphical models to address the three key and interrelated goals
in genetics association studies: (i) building linkage maps, (ii) reconstructing linkage disequilibrium
networks, and (iii) detecting genotype-phenotype networks (see Fig 1). Below we provide a brief
introduction for each section of netgwas.

A linkage map describes the linear order of genetic markers within linkage groups (chromosomes).
It is the first requirement for estimating the genetic background of phenotypic traits in quantitative trait
loci (QTL) studies and are commonly used in QTL studies to link phenotypic traits to the underlying
genetics of the population. In practice, many software packages for performing QTL analysis require
linkage maps (Lander et al., 1987; Broman et al., 2003; Yang et al., 2008; Taylor et al., 2011; Huang et al.,
2012; Broman et al., 2019). Most organisms are categorized as diploid or polyploid by comparing the
copy number of each chromosome. Diploids have two copies of each chromosome (like humans).
Polyploid organisms have more than two copies of each chromosome (like most crops). Polyploidy
is common in plants and in different crops such as apple, potato, and wheat, which contain three
(triploid), four (tetraploid), and six (hexaploid) copies from each of their chromosomes, respectively.
Despite the importance of polyploids, statistical tools for their map construction are underdeveloped
(Grandke et al., 2017; Bourke et al., 2018). Most software packages such as R/qtl (Broman et al., 2003),
OneMap (Margarido et al., 2007), Pheno2Geno (Zych et al., 2015), and MSTMAP (Wu et al., 2008; Taylor and
Butler, 2017) contain functionality to only construct linkage maps for diploid species. Packages such
as MAPMAKER (Lander et al., 1987), TetraploidSNPMap (Hackett et al., 2017), and polymapR (Bourke et al.,
2018) have the functionality to construct polyploid linkage maps but focus mainly on a specific type
of polyploid species (e.g. tetraploids). All the aforementioned packages contain methods that use
pairwise estimation of recombination frequencies and LOD (logarithm of the odds ratio) scores (Wang
et al., 2016) that often require manual interaction. This often leads to an underpowered approach and
confounding of correlated genotypes by failing to correct for intermediate markers (Behrouzi and Wit,
2019b). In contrast, the netgwas R package uses a multivariate approach to construct linkage maps
for diploid and polyploid species in a unified way. This is achieved by utilising the pairwise Markov
property between any two genetic markers and constructing the linkage map by simultaneously
assessing the complete set of pairwise comparisons. This often leads to an improved marker order
over more conventional methods.

The linkage map, which can be constructed using the first key function of netgwas in Fig 1, provides
the genetic basis for the second key function which detects the patterns of linkage disequilibrium
and segregation distortion in a population. Segregation distortion (SD) refers to any deviation from
expected segregation ratios based on Mendelian rules of inheritance. And linkage disequilibrium
(LD) refers to non-random relations between loci (locations) on the same or different chromosomes.
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Figure 1: Configuration of the netgwas package. Depending on the data type different functions can
be used. Each color represents one main function of the package. The three main functions are: i)
netmap() (in green) constructs linkage maps for bi-parental species with any ploidy level, ii) netsnp()
(in blue) detects the conditional dependent short- and long-range linkage disequilibrium structure of
genomes and iii) netphenogeno() (in black) reconstructs association networks between phenotypes
and genetic markers.

Revealing the structures of LD is important for association mapping study as well as for studying
the genomic architecture of a genome. Various methods have been published in the literature for
measuring statistical associations between alleles at different loci, for instance see Hedrick (1987);
Mangin et al. (2012); Clarke et al. (2011); Bush and Moore (2012); Kaler et al. (2020). Most of these
measures are based on an exhaustive genome scan for pairs of loci and the r2 measure, the square
of the loci correlation. The drawback of such approaches is that association testing in the genome–
scale is underpowered, so that weak long–range LD will go undetected. Furthermore, they do not
simultaneously take the information of more than two loci into account to make full and efficient use of
modern multi–loci data. The netgwas package contains functionality to estimate pairwise interactions
between different loci in a genome while adjusting for the effect of other loci to efficiently detect short-
and long–range LD patterns in diploid and polyploid species (Behrouzi and Wit, 2019a). Technically,
this requires estimating a sparse adjacency matrix from multi-loci genotype data, which usually
contains a large number of markers (loci), where the number of markers can far exceed the number
of individuals. The non-zero patterns of the adjacency matrix created by the functions in netgwas
shows the structures of short– and long–range LD of the genome. The strength of associations between
distant loci can be calculated using partial correlations. Furthermore, the methods implemented in
netgwas already account for the correlation between markers, while associating them to each other
and thereby avoids the problem of population structure (that is physically unlinked markers are
correlated).

A major problem in genetics is the association between genetic markers and the status of a disease
(trait or phenotype). Genome-wide association studies are among the most important approaches
for further understanding of genetics underlying complex traits (Welter et al., 2013; Kruijer et al.,
2020). However, in genome-wide association methods genetic markers are often tested individually
for association with the phenotype. Since genome-wide scans analyze thousands or even millions of
markers, the issue of multiple testing is usually addressed by using a stringent significance threshold
(Panagiotou et al., 2011). Such methods work only if the associations are strong enough to pass the
stringent threshold. However, even if that is the case, this type of analysis has several limitations,
which have been discussed extensively in the literature (Hoggart et al., 2008; He and Lin, 2010; Rakitsch
et al., 2012; Buzdugan et al., 2016). Particularly, the main issue of this type of analysis is when we test
the association of the phenotype to each genetic marker individually, and ignore the effects of all other
genetic markers. This leads to failures in the identification of causal loci. If we consider two correlated
loci, of which only one is causal for the phenotype, both may show a marginal association, but only
the causal locus will be detected by our method. The methods implemented in the netgwas package
tackle this issue by using Gaussian copula graphical model (Klaassen and Wellner, 1997; Hoff, 2007),
which accounts for the correlation between markers, while associating them to the phenotypes. As it is
shown in Klasen et al. (2016), this key feature avoids the need to correct for population structure or any
genetic background, as the method implemented in the netgwas package simultaneously associates all
markers to the phenotype. In contrast, most GWAS methods rely on population structure correction to
avoid false genotype-phenotype associations due to their single-loci approach (Yu et al., 2006; Kang
et al., 2008, 2010; Lippert et al., 2011).
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2 Technical details

Graphical models combine graph theory and probability theory to create networks that model complex
probabilistic relationships. Undirected graphical models represent the joint probability distribution
of a set of variables via a graph G = (V, E), where V = {1, 2, . . . , p} specifies the set of random
variables and E ⊂ V × V represents undirected edges (i, j) ∈ E ⇔ (j, i) ∈ E. The pattern of edges
in the graph represents the conditional dependencies between the variables; the absence of an edge
between two nodes indicates that any statistical dependency between these two variables is mediated
via some other variable or set of variables. The conditional dependencies between variables, which are
represented by edges between nodes, are specified via parameterized conditional distributions. We
refer to the pattern of edges as the structure of the graph. In this paper, the goal is to learn the graph
structure from ordinal data and mixed ordinal-and-continuous data.

Sparse latent graphical model. A p-dimensional copula C is a multivariate distribution with uniform
margins on [0, 1]. Any joint distribution function can be written in terms of its marginals and a copula
which encodes the dependence structure. Here we consider a subclass of joint distributions encoded

by the Gaussian copula F(y1, . . . , yp) = Φp

(
Φ−1(F1(y1)), . . . , Φ−1(Fp(yp)) | Ω

)
where Φp(. | Ω) is

the cumulative distribution function (CDF) of p-variate Gaussian distribution with correlation matrix
Ω; Φ is the univariate standard normal CDF; and Fj is the CDF of j-th variable, Yj for j = 1, . . . , p.
Note that yj and yj′ are independent if and only if Ωjj′ = 0.

A Gaussian copula can be written in terms of latent variables Z: Let F−1
j (y) = inf{y : Fj(x) ≥ y, x ∈

R} be the pseudo-inverse of the marginals. Then a Gaussian copula is defined as Yij = F−1
j (Φ(Zij))

where Z ∼ Np(0, Ω) and Y = (Y1, . . . , Yp) and Z = (Z1, . . . , Zp) represent the non-Gaussian observed
variables and Gaussian latent variables, respectively. Without lose of generality, we assume that
Zj’s have unit variances of σjj = 1 for j = 1, . . . , p. Thus, Zj’s marginally follow standard Gaussian
distribution. Each observed variable Yj is discretized from its latent counterpart Zj. For the j-th
latent variable (j = 1, . . . , p), we assume that the range (−∞, ∞) splits into Kj disjointed intervals

by a set of thresholds −∞ = t(0)j < t(1)j < . . . < t
(Kj−1)
j < t

(Kj)
j = ∞ such that Yj = k if and only

if Zj falls in the interval (t(K−1)
j , t(K)j ). Let the parameter D = {t(k)j : j = 1, . . . , p; k = 1, . . . , Kj}

holds the boundaries for the truncation points and z(1:i) = [z(1), . . . , z(n)] where z(i) = (z(i)1 , . . . , z(i)p ).
In order to learn the graph structures, our objective is to estimate the precision matrix Θ = Ω−1

from n independent observations y(1:i) = [y(1), . . . , y(n)], where y(i) = (y(i)1 , . . . , y(i)p ). The conditional

Algorithm 1 Monte Carlo Gibbs sampling for estimating R̄ in (1)

Input: A data set containing the variables Y(i) for i = 1 . . . , n.

Output: Mean of the conditional expectation, R̄ = 1
n

n
∑

i=1
E(Z(i)Z(i)T |y(i);D, Θ(m−1)) in (1).

1: For each j = {1, . . . , p} generate the latent data from Yj = F−1
j (Φ(Zj)), where Fj and Φ

define the empirical marginals and the CDF of standard normal distribution, respectively
for i = 1 . . . , n and j = 1, . . . , p;

2: Estimate D, vectors of lower and upper truncation points, whose boundaries come from
Y(i) for i = 1 . . . , n;

3: for i = 1, . . . , n do
4: Sample from a p-variate truncated normal distribution with the boundaries in Line 2

above;
5: for N iterations do

6: Estimate R(i),N = E(Z(i)
⋆ Z(i)T

⋆ |y(i), Θ̂(m)), where Z(i)
⋆ =


Z(i)1
⋆
...

Z(i)N
⋆

 ∈ RN×p;

7: end for
8: Update R̂(i) = 1

N Z(i)
⋆ Z(i)T

⋆ ;
9: end for

10: Calculate ̂̄R = 1
n

n
∑

i=1
R̂(i).
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independence between two variables given other variables is equivalent to the corresponding element
in the precision matrix being zero, i.e. θij = 0; or put another way, a missing edge between two
variables in a graph G represents conditional independence between the two variables given all other
variables.

In the classical low-dimensional setting of p smaller than n, it is natural to implement a maximum
likelihood approach to obtain the inverse of the sample covariance matrix. However, in modern
applications the dimension p is routinely far larger than n, meaning that the inverse sample covari-
ance matrix does not exist. Motivated by the sparseness assumption of the graph we tackle the
high-dimensional inference problem for discrete Y’s by a penalized expectation maximization (EM)
algorithm as

Q(Θ | Θ̂(m−1)) =
n
2

[
log det(Θ)− tr(R̄Θ)

]
(1)

and

Θ̂(m) = arg max
Θ

Q̃(Θ|Θ̂(m−1))−
p

∑
j ̸=j′

Pρ(|θjj′ |), (2)

where m is the iteration number within the EM algorithm. The last term in equation (2) represents
different penalty functions. Here we impose the sparsity by means of L1 penalty, on the jj′-th element
of the precision matrix.

We compute the conditional expectation R̄ = 1
n

n
∑

i=1
E
(

Z(i)Z(i)T | y(i); D̂, Θ̂(m−1)
)

in equation

(1) using two different approaches: numerically through a Monte Carlo (MC) sampling method as
explained in algorithm 1, and through a first order approximation based on algorithm 2. The most
flexible and generally applicable approach for obtaining a sample in each iteration of an MCEM
algorithm is through a Markov chain Monte Carlo (MCMC) routine like Gibbs and Metropolis –
Hastings samplers (Metropolis et al., 1953; Hastings, 1970; Geman and Geman, 1984). Alternatively,
the conditional expectation in equation (1) can be computed by using an efficient approximation
approach which calculates elements of the empirical covariance matrix using the first and second

moments of a truncated normal distribution with mean µij = Ω̂j,−jΩ̂
(−1)
−j,−jz

(i)T

−j and variance σ2
i,j =

1 − Σ̂j,−jΣ̂
−1
−j,−jΣ̂−j,−j (see Behrouzi and Wit (2019a) for details). The two proposed approaches are

practical when some observations are missing. For example, if genotype information for genotype j
is missing, it is still possible to draw Gibbs samples for Zj or approximate the empirical covariance
matrix, as the corresponding conditional distribution is Gaussian.

The optimization problem in (2) can be solved efficiently in various ways by using glasso or
CLIME approaches (Friedman et al., 2008; Hsieh et al., 2011). Convergence of the EM algorithm for
penalized likelihood problems has been proved in Green (1990). Our experimental study shows that
the algorithm usually converges after several iterations (< 10). Note that the sparsity of the estimated
precision matrix in Equation (2) is controlled by a vector of penalty parameter ρ. We follow Foygel
and Drton (2010) in using the extended Bayesian information criterion (eBIC) to select a suitable
regularization parameter ρ∗ to produce a sparse graph with a sparsity pattern corresponding to Θ̂ρ∗ .
Alternatively, instead of using the EM algorithm, a nonparanormal skeptic approach can be used to
estimate graph structure through Spearman’s rho and Kendall’s tau statistics; details can be found in
Liu et al. (2012).

Extension to linkage map construction

Here we convert the estimated network to a one-dimensional map using two different approaches.
Depending on the type of (experimental) population (i.e. inbred or outbred), we order markers
based on dimensionality reduction or based on bandwidth reduction, which both result in an one-
dimensional map.

In inbred populations, loci in the genome of the progenies can be assigned to their parental
homologues, resulting in a simpler conditional independence relationship between neighboring
markers. Here, we use multidimensional scaling (MDS) to project markers in a p-dimensional space
onto a one-dimensional map while attempting to maintain pairwise distances. Let G(V(d), E(d)) be a
sub–graph on the set of unordered d markers, where V(d) = {1, . . . , d}, d ≤ p and the edge set E(d)

represents all the links among d markers. We calculate the distance matrix D as follows

Dij =

{
− log(rij) if i ̸= j
0 if i = j,

(3)
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rij = −
θij√
θiiθjj

, (4)

where θij is the ij-th element of the precision matrix Θ̂ρ∗ . We aim to construct a configuration of d
data points in a one–dimensional Euclidean space by using information about the distances between
the d nodes. In this regards, we define a sequential ordering L of d elements such that the distance D̂
between them is similar to D. We consider a metric multi-dimensional scaling

Ê = arg min
L

d

∑
i=1

d

∑
j=1

(Dij − D̂ij)
2, (5)

that minimizes the so called mapping error Ê across all sequential orderings (Sammon, 1969).

We propose a different ordering algorithm for outbred populations. In these populations, mating
of two non-homozygous parents result in markers in the genome of progenies that cannot easily
be mapped into their parental homologues. To order markers in outbred populations, we use the

Cuthill-McKee (RCM) algorithm (Cuthill and McKee, 1969) to permute the sparse matrix Θ̂(d)
ρ that

has a symmetric sparsity pattern into a band matrix form with a small bandwidth. The bandwidth
of the associated adjacency matrix A is defined as β = maxAij ̸=0 |i − j|. The algorithm produces a
permutation matrix P such that PAPT has a smaller bandwidth than matrix A does. The bandwidth
decreases by moving the non-zero elements of the matrix A closer to the main diagonal. The way to
move the non-zero elements is determined by relabeling the nodes in graph G(Vd, Ed) in consecutive
order. Moreover, all of the nonzero elements are clustered near the main diagonal.

3 Package design and functionality

The netgwas R package implements the Gaussian copula graphical models (Behrouzi and Wit, 2019a)
for (i) constructing linkage maps in diploid and polyploid species and learning (ii) linkage disequilib-
rium networks and (iii) genotype-phenotype networks. Below, we illustrate the three main functions
using a diploid A.thaliana population, a tetraploid potato, and maize NAM populations. Given that
the computational cost for the usual size of GWAS data (> 105) is expensive, we use small data sets to
explain the functionality of the package. All the results can be replicated using the functions in the
netgwas package (see Supplementary Materials).

Algorithm 2 Approximation of the conditional expectation in (1)

Input: A (n× p) data matrix Y, where Y(i)
j = F−1

j (Φ(Z(i)
j )) the Fj and Φ define the empirical

marginals and the CDF of standard normal, respectively for i = 1 . . . , n and j = 1, . . . , p;

Output: The conditional expectation R = 1
n

n
∑

i=1
E(Z(i)Z(i)T |y(i); D̂, Θ);

1: Initialize E(z(i)j | y(i); D̂, Θ̂) ≈ E(z(i)j | y(i)j ; D̂), E((zj
(i))2 | y(i); D̂, Θ̂) ≈

E((zj
(i))2 | y(i)j ; D̂), and E(z(i)j z(i)j′ | y(i); D̂, Θ̂) ≈ E(z(i)j | y(i)j ; D̂)E(z(i)j′ | y(i)j′ ; D̂) for

i = 1, . . . , n and j, j′ = 1, . . . , p;
2: Initialize rj,j′ for 1 ≤ j, j′ ≤ p using the Line 1 above, then estimate Θ̂ by maximizing (2);

3: for i = 1, . . . , n do
4: if j = j′ then
5: Calculate E((zj

(i))2 | y(i)j ; D̂, Θ̂) for j = 1, . . . , p;
6: else
7: Calculate E(z(i)j | y(i); D̂, Θ̂) and then

E(z(i)j z(i)j′ | y(i); D̂, Θ̂) = E(z(i)j | y(i); D̂, Θ̂)E(z(i)j′ | y(i); D̂, Θ̂) for i = 1, . . . , n and
j = 1, . . . , p;

8: end if
9: end for

10: Calculate rj,j′ =
1
n ∑n

i=1 E(z(i)j z(i)tj | y(i); D̂, Θ̂) for 1 ≤ j = j′ ≤ p.
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Linkage map construction

This module reconstructs linkage maps for diploid and polyploid organisms. Diploid organisms
contain two copies of each chromosome, one from each parent, whereas polyploids contain more than
two copies of each chromosome. In polyploids the number of chromosome sets reflects their level of
ploidy: triploids have three copies, tetraploids have four, pentaploids have five, and so forth.

Typically, mating is between two parental lines that have recent common biological ancestors; this
is called inbreeding. If they have no common ancestors up to roughly 4-6 generations, then this is
called outcrossing. In both cases the genomes of the derived progenies are random mosaics of the
genome of the parents. However, in the case of inbreeding parental alleles are distinguishable in the
genome of the progeny, in outcrossing this does not hold.

Some inbreeding designs, such as Doubled haploid (DH), lead to a homozygous population where
the derived genotype data include only homozygous genotypes of the parents namely AA and aa
(conveniently coded as 0 and 1) for diploid species. Other inbreeding designs, such as F2, lead to a
heterozygous population where the derived genotype data contain heterozygous genotypes as well as
homozygous ones, namely aa, Aa, and AA for diploid species, conveniently coded as 0, 1 and 2 which
correspond to the dosage of the reference allele A. We remark that the Gaussian copula graphical
models help us to keep heterozygous markers in the linkage map construction, rather than turn them
to missing values as most other methods do in map construction for recombinant inbred line (RIL)
populations.

Outcrossing or outbred experimental designs, such as full-sib families, derive from two non-
homozygous parents. Thus, the genome of the progenies includes a mixed set of many different
marker types containing fully informative markers and partially informative markers . Markers are
called fully informative when all of the resulting gamete types can be phenotypically distinguished
on the basis of their genotypes; markers are called partially informative when they have identical
phenotypes (Wu et al., 2002).

netmap()

The netmap() function handles various inbred and outbred mapping populations, including recombi-
nant inbred lines (RILs), F2, backcross, doubled haploid, and full-sib families, among others. Not all
existing methods for linkage mapping support all inbreeding and outbreeding experimental designs.
However, our proposed algorithm constructs a linkage map for any type of experimental design of
biparental inbreeding and outbreeding. Also, it covers a wide range of possible population types.
Argument cross in the map function must be specified to choose an ordering method. In inbred
populations, markers in the genome of the progenies can be assigned to their parental homologous,
resulting in a simpler conditional independence pattern between neighboring markers. In the case
of inbreeding, we use multidimensional scaling (MDS). A metric MDS is a classical approach that
maps the original high-dimensional space to a lower dimensional space, while attempting to maintain
pairwise distances. An outbred population derived from mating two non-homozygous parents results
in markers in the genome of progenies that cannot be easily assigned to their parental homologues.
Neighboring markers that vary only on different haploids will appear as independent, therefore requir-
ing a different ordering algorithm. In that case, we use the reverse Cuthill-McKee (RCM) algorithm
(Cuthill and McKee, 1969) to order markers.

The function can be called with the following arguments

netmap(data, method = "npn", cross = NULL, rho = NULL, n.rho = NULL, rho.ratio = NULL,
min.m = NULL, use.comu = FALSE, ncores = "all", verbose = TRUE)

The main task of this function is to construct a linkage map based on conditional (in)dependence
relationships between markers, which can be estimated using the methods, “gibbs", “approx", and
“npn". The estimation procedure relies on maximum penalized log-likelihood, where the argument
rho, a decreasing sequence of non-negative numbers, controls the sparsity levels, which corresponds
to the last term in Equation (2). Leaving the input as rho = NULL, the program automatically computes
a sequence of rho based on n.rho and rho.ratio. The argument n.rho specifies the number of regu-
larization parameters (the default is 6) and rho.ratio determines the ratio between the consecutive
elements of rho. Depending on the population type, inbred or outbred, different algorithms are
applied to order markers in the genome. If it is known, the user can specify an expected minimum
number of markers in a linkage group (LG) via the argument min.m. Furthermore, linkage groups can
be identified either using the fast greedy community detection algorithm (Newman, 2004) or simply
each disconnect sub-networks can form a linkage group. The ncores = "all" automatically detects
number of available cores and runs the computations in parallel on (available cores -1).
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Figure 2: Linkage map construction in tetraploid potato. A total of 156 F1 plants were genotyped
across 1972 genetic markers. (a) The estimated partial correlation matrix for the genotyping data. (b)
The estimated partial correlation matrix after ordering the genetic markers, where all the 12 potato
chromosomes are detected correctly.

The netmap() function returns an object of the S3 class type netgwasmap and plot.netgwasmap and
print.netgwasmap are summary method functions for this object class. The netgwasmap mainly holds
the estimated linkage map (in object map) and a list containing all output results (in object res) of the
regularization path rho.

buildMap()

The function buildMap() allows users to interact with the map construction procedure and to build
the linkage map on the manually selected penalty term. Whereas the function netmap() selects the
optimal penalty term ρ⋆ using the eBIC method.

The function can be called via

buildMap(res, opt.index, min.m = NULL, use.comu = FALSE).

The argument opt.index can be chosen manually which is a number between one and the number
of penalty parameter n.rho in netmap(). In the default setting, the n.rho is 6. So, the opt.index can
get a value between 1 and 6. Like function netmap(), the argument min.m is an optional argument in
buildMap() function, where it keeps the clusters of markers that at least have a size of min.m member
of markers. The default value for this argument is 2. The use.comu argument is an alternative approach
to find linkage groups. The use.comu argument is an alternative approach to find linkage groups.

Detecting linkage disequilibrium networks

The function netsnp() reconstructs a high-dimensional linkage disequilibrium interactions network for
diploid and polyploid (GWAS) genotype data. Genetic viability can be considered as a phenotype.
This function detects the conditional dependent short- and long-range linkage disequilibrium structure
of genomes and thus reveals aberrant marker-marker associations that are due to epistatic selection.
In other words, this function detects intra– and inter–chromosomal conditional interactions networks
and can be called via

netsnp(data, method = "gibbs", rho = NULL, n.rho = NULL, rho.ratio = NULL,
ncores = "all", verbose = TRUE)

for any bi-parental genotype data containing at least two genotype states and possibly missing values.
The input data can be either an (n × p) genotype data matrix, an object of class netgwasmap, which is
an output of functions netmap() and buildMap(), or a simulated data from the function simgeno().
Depending on the dimension of the input data a suitable ‘method’ and its related arguments can be
specified. The argument ncores determines the number of cores to use for the calculations. Using
ncores = "all" automatically detects number of available cores and runs the computations in parallel.
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This function returns an S3 object of class "netgwas", which holds mainly the following objects:
(i) Theta a list of estimated (p × p) precision (inverse of variance-covariance) matrices that infer
the conditional independence relationships patterns among genetic loci, (ii) path which is a list of
estimated (p × p) adjacency matrices. This is the graph path corresponding to Theta, (iii) rho which
is a vector with n.rho dimension containing the penalties, and (iv) loglik contains the maximum
log-likelihood values along the graph path. To select an optimal graph the function selectnet() can
be used.

Reconstructing genotype-phenotype networks

Complex genetic traits are influenced by multiple interacting loci, each with a possibly small effect.
Our approach reduces the number of candidate genes from hundreds to much fewer genes. It is
of great interest to geneticists and biologist to discover a set of most effective genes that directly
affect a complex trait in GWAS. To overcome the limitations of traditional analysis, such as single-
locus association analysis (looking for main effects of single marker loci), multiple testing and QTL
analysis, we use the proposed mixed graphical model to study the simultaneous associations between
phenotypes and SNPs. Our method allows for a more accurate interpretation of findings, because it
adjusts for the effects of remaining variables –SNPs and phenotypes– while measuring the pairwise
associations, whereas the traditional methods use marginal associations to often analyze SNPs and
phenotypes one at a time .

Graphical modeling is a powerful tool for describing complex interaction patterns among variables
in high-dimensional data used frequently in microarray analysis (Butte et al., 2000). In our modelling
framework, a genotype–phenotype network is a complex network made up of interactions among:
(i) genetic markers, (ii) phenotypes (e.g. disease), and (iii) between genetic markers and phenotypes.
The first problem in analyzing genotype-phenotype data is the mixed variable-types, where markers
are ordinal (counting the number of a major allele), and phenotypes (disease) can be measured in
continuous or discrete scales. We deal with mixed discrete-and-continuous variables by means of
copula. A second issue relates to the high-dimensional setting of the data, where thousands of genetic
markers are measured across a few samples; we deal with inferring potentially large networks with
only few biological samples. Fortunately, genotype-phenotype networks are intrinsically sparse, in
the sense that only few elements interact with each other. This sparsity assumption is incorporated
into our algorithm based on penalized graphical models. The proposed method is implemented in the
netphenogeno() function, where the input data can be an (n × p) matrix or a data.frame where n is
the sample size and p is the dimension that includes marker data and phenotype measurements. One
may consider including more columns, like environmental variables.

The function is defined by

netphenogeno(data, method = "npn", rho = NULL, n.rho = NULL, rho.ratio = NULL,
ncores = "all", em.iter = 5, em.tol = .001, verbose = TRUE)

and reconstructs genotype-phenotype interactions network for an input data of a genotype-phenotype
data matrix or a data.frame. Detecting interactions network among genotypes, phenotypes and
environmental factors is also possible using this function. Depending on the size of the input data,
the user may choose "gibbs", "approx", or "npn" method for learning the networks. For a medium (
∼500) and a large number of variables we recommend to choose "gibbs" and "approx", respectively.
Choosing "npn" for a very large number of variables ( >2000) is computationally efficient. The default
method is set to "npn". Like the function netsnp(), the netphenogeno() function returns an object of
class netgwas.

For objects of type ‘netgwas’ there are plot, print and summary methods available. The plotting
function plot.netgwas() provides a visualization plot to monitor the path of estimated networks for
a range of penalty terms. The functions plot.netgwasmap(), plot.select() and plot.simgeno()
visualize the corresponding network, the optimal graph and the results of model-based simulated
data, respectively.

To speed up computations in all the three key functions of the netgwas package, we use the
parallel package on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org
to support parallel computing on a multi-core machine to deal with large inference problems. For the
optimizing the memory usage, we use the Matrix package (Bates et al., 2022) for sparse matrix output
when estimating and storing full regularization paths for large datasets. The use of these libraries
significantly improves the computational speed of the functions within the package.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

http://CRAN.R-project.org


CONTRIBUTED RESEARCH ARTICLE 26

Network Before ordering markers

m
ar

ke
rs

markers

After ordering markers

m
ar

ke
rs

markers

Figure 3: Linkage map construction in A.thaliana using RILs (recombinant inbred lines) population
of 367 individuals and 90 genetic markers. The inferred network detects the five chromosomes of
A.thaliana and the structure of associations among SNPs (single nucleotide polymorphisms) within
chromosomes. The left figures show the partial correlation matrix before and after ordering the SNPs.

4 Application to real datasets

Linkage map construction

In Fig 2 and Fig 3, we provide two examples output of building linkage map in outbred tetraploid
potato and inbred diploid A.thaliana datasets. The map construction was computed in about 7 minutes
for tetraploid potato data and in 0.6 seconds for A.thaliana data on an Intel i7 laptop with 16 GB RAM.

Linkage map construction in potato. For the sake of illustration, below we show the steps to
construct a linkage map for TetraPotato in netgwas. The tetraploid potato data are derived from a cross
between “Jacqueline Lee” and “MSG227-2”, where 156 F1 plants were genotyped across 1972 genetic
markers (Massa et al., 2015). Five allele dosages are possible in this full-sib autotetraploid mapping
population (AAAA, AAAB, AABB, ABBB, BBBB), where the genotypes are coded as {0, 1, 2, 3, 4}. This
dataset includes 0.07% missing observations.

data(tetraPotato)
# Shuffle the order of markers
dat <- tetraPotato[ , sample(ncol(tetraPotato))]
potato.map <- netmap(dat, cross = "outbred")
potato.map.ordered <- buildMap(potato.map, opt.index = 3)
potato.map.ordered

Number of linkage groups: 12
Number of markers per linkage group: 165 157 129 153 183 196 173 148 152 161 187 146
Total number of markers in the linkage map: 1950.(22 markers removed from the input genotype data)
Number of sample size: n = 156
Number of categories in dataset: 5 ( 0 1 2 3 4 )
The estimated linkage map is inserted in <OUTPUT NAME>$map
To visualize the network consider plot(<OUTPUT NAME>)
-----------------------
To visualize the other associated networks consider plot(<OUTPUT NAME>$allres)
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plot(potato.map.ordered, vis = "unordered markers")
plot(potato.map.ordered, vis = "ordered markers")
map <- potato.map.ordered$map

The argument vis in the above plot function can be fixed to "interactive", which it gives a
better network resolution particularly for a large number of nodes. Fig 2 visualizes a summary of its
mapping process, where Fig 2a shows the conditional dependence pattern between unordered SNP
markers in the Jacqueline Lee × MSG227-2 population. Fig 2b shows the structure of the selected
graph after ordering markers. All 12 potato chromosomes were detected correctly. The tetraploid
potato map construction was computed in about 7 minutes on an Intel i7 laptop with 16 GB RAM.

Linkage map construction in A.thaliana. In this example, we construct a linkage map for the
Arabadopsis thaliana data which are derived from a RIL cross between Columbia-0 (Col-0) and Cape
Verde Island (Cvi-0), where 367 individual plants were genotyped across 90 genetic markers (Simon
et al., 2008). The dataset CviCol contains 0.2% missing values and three possible genotype states,
where A and B denote parental homozygous loci, coded as 0 and 2, respectively and H denotes
heterozygous loci which coded as 1.

data(CviCol)
set.seed(1)
cvicol <- CviCol[ ,sample(ncol(CviCol))]
out <- netmap(cvicol, cross= "inbred", ncores= 1)
out$opt.index
[1] 6

In the above code, the out$opt.index shows the index of the selected penalty term using the eBIC
method. If one is interested in building linkage map, for instance, on the 4th estimated network then
the buildMap() function can be used as follow

bm.thaliana <- buildMap(out, opt.index= 4)
bm.thaliana

Number of linkage groups: 5
Number of markers per linkage group: 24 14 17 16 19
Total number of markers in the linkage map: 90.
(0 markers removed from the input genotype data)
Number of sample size: n = 367
Number of categories in dataset: 3 ( 0 1 2 )
The estimated linkage map is inserted in <OUTPUT NAME>$map
To visualize the network consider plot(<OUTPUT NAME>)
-----------------------
To visualize the other associated networks consider plot(<OUTPUT NAME>$allres)
To build a linkage map for your desired network consider buildMap() function

thalianaMap <- bm.thaliana$map
plot(bm.thaliana, vis= "summary")

The estimated linkage map in Fig 3 is consistent with the existing linkage map in A.thaliana (Simon
et al., 2008; Behrouzi and Wit, 2019b).

If required, detect.err() function detects genotyping errors. This function calculates the error
LOD score for each individual at each marker using Lincoln and Lander (1992) approach; large scores
show likely genotyping errors. Here, the qtl package (Broman et al., 2003) is used for identification of
genotyping errors, where the output gives a list of genotypes that might be in error, when the error
LOD scores are smaller than 4 they can probably be ignored (Broman, 2009). This function supports
doubled haploid (DH), backcross (BC), non-advanced recombinant inbred line population with n
generations of selfing (RILn) and advanced RIL (ARIL) population types.

The cal.pos() function calculates the genetic distance for diploid populations. It uses the qtl
package to calculate genetic distance using different distance functions. The netgwas2cross() func-
tion converts the map object to a cross object from qtl package, and vice versa using the function
cross2netgwas(). These two functions make netgwas flexible with respect to further genetic investi-
gation using qtl package. Furthermore, cross objects from the qtl package can also be analyzed using
netgwas package.
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Figure 4: Short- and long-range linkage disequilibrium networks between 90 markers across the
A.thaliana genome. (a) Each color corresponds to a different chromosome: yellow, white, orange, gray,
and blue represent chromosomes 1 to 5, respectively. Different edge colors show positive and
negative values of partial correlations. (b) Plots simultaneous marker-marker interactions across
the genome. Values represent partial correlations.

Genome wide association studies

Linkage disequilibrium networks in A.thaliana. We use the dataset CviCol to learn conditionally
dependent short- and long-range LD structure in A.thaliana genome. The aim here is to identify
associations between distant markers that are due to epistatic selection rather than gametic linkage.

data(CviCol)
set.seed(2)
out <- netsnp(CviCol)
sel <- selectnet(out)
# Steps to visualize the selected network
cl <- c(rep("palegoldenrod", 24), rep("white",14), rep("tan1",17),
rep("gray",16), rep("lightblue2",19))
plot(sel, vis= "parcor.network", sign.edg = TRUE, layout = NULL, vertex.color = cl)
plot(sel, vis= "image.parcorMatrix", xlab="markers", ylab="markers")

In Fig 4, our method finds that in Cvi × Col population some trans-chromosomal regions con-
ditionally interact. In particular, the bottom of chromosome 1 and the top of chromosome 5 do not
segregate independently of each other. Besides this, interactions between the tops of chromosomes 1
and 3 involve pairs of loci that also do not segregate independently. Bikard et al. (2009) studied this
genotype data extensively in their lab. They reported that the first interaction (between chr 1 and 5)
that our method finds causes arrested embryo development, resulting in seed abortion, and the latter
interaction (between chr 1 and 3) causes root growth impairment. In addition to these two regions, we
have discovered a few other trans-chromosomal interactions in the A.thaliana genome. In particular,
two adjacent markers, c1-13869 and c1-13926 in the middle of the chromosome 1, interact epistatically
with the adjacent markers, c3-18180 and c3-20729, at the bottom of chromosome 3. The sign of their
conditional correlation score is negative, indicating strong negative epistatic selection in F2 population.
These markers therefore seem evolutionarily favored to come from the two different F0 grandparents.
This suggests some positive effect of the interbreeding of the two parental lines: it could be that the
paternal-maternal combination at these two loci protects against some underlying disorder, or that it
actively enhances the fitness of the resulting progeny. Regarding the computational time, this example
was run in 4 minutes on an Intel i7 laptop with 16 GB RAM.

Genotype-phenotype networks in A.thaliana. We apply our algorithm to the model plant Arabidop-
sis thaliana dataset, where the accession Kend-L (Kendalville-Lehle; Lehle-WT-16-03) is crossed with
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Figure 5: Genotype–phenotype association networks of A.thaliana. This shows an example of multi-
loci multi-trait genome-wide association analysis. Red nodes show phenotypes; white, yellow, gray,
blue, and brown colors stand for chromosomes 1 to 5, respectively. Phenotypes measured in long
days (TLN-LD, RLN-LD, DTF-LD) conditionally dependent on a region on top of chromosome 5.
Phenotypes measured in short days (CLN-SD, RLN-SD, DTF-SD) are linked mostly to chromosomes 1,
2, and 5.

the common lab strain Col (Columbia) (Balasubramanian et al., 2009). The resulting lines were taken
through six rounds of selfing without any intentional selection. The resulting 282 KendC (Kend-L
× Col) lines were genotyped at 181 markers. Flowering time was measured for 197 lines of this
population both in long days, which promote rapid flowering in many A. thaliana strains, and in short
days. Flowering time was measured using days to flowering (DTF) as well as the total number of
leaves (TLN), partitioned into rosette and cauline leaves. In total, eight phenotypes were measured,
namely days to flowering (DTF), cauline leaf number (CLN), rosette leaf number (RLN), and total
leaf number (TLN) in long days (LD), and DTF, CLN, RLN, and TLN in short days (SD). Thus, the
final dataset consists of 197 observations for 189 variables (8 phenotypes and 181 genotypes - SNP
markers).

data(thaliana)
head(thaliana, n = 3)

DTF_LD CLN_LD ... DTF_SD CLN_SD RLN_SD TLN_SD snp1 ... snp181
[1,] 17.58 3.42 ... 56.92 12.42 50.92 63.33 2 ... 2
[2,] 17.00 2.58 ... 53.33 8.42 41.58 50.00 0 ... 2
[3,] 27.50 8.08 ... 69.17 15.17 66.92 82.08 2 ... 0

set.seed(12)
out <- netphenogeno(thaliana)
sel <- selectnet(out)

# Steps to visualize the network
cl <- c(rep("red", 8), rep("white",56), rep("yellow2",31),

rep("gray",33), rep("lightblue2",31), rep("salmon2",30))

id <- c("DTF_LD","CLN_LD","RLN_LD","TLN_LD","DTF_SD","CLN_SD",
"RLN_SD", "TLN_SD","snp16", "snp49","snp50", "snp60","snp83",
"snp86", "snp113","snp150", "snp155","snp159","snp156",
"snp161","snp158", "snp160","snp162", "snp181")
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plot(sel, vis= "interactive", n.mem= c(8,56,31,33,31,30),
vertex.color= cl, label.vertex= "some", sel.nod.label= id,
edge.color= "gray", w.btw= 200, w.within= 20, tk.width = 900,
tk.height = 900)

The A.thaliana genotype-phenotype network in Fig 5 reveals those SNP markers that are directly affect
flowering phenotypes. For example, markers snp158, snp159, snp160, and snp162 on chromosome
5 with the assay IDs 44607857, 44606159, 44607242, and 44607209 regulate the phenotype days to
flowering (DTF-LD). For the same phenotype, Balasubramanian et al. (2009) have reported a wider
range of markers (from snp158 to snp162 with the assay ID 44607857 to 44607209) that associate
with DTF-LD. Our obtained smaller markers set is the result of controlling for all possible effects.
In particular, the proposed method finds that snp161 does not show any association with DTF-LD
after adjustments, but snp159, snp160 and snp162 on chromosome 5 do show an association with
DTF-LD, even after taking into account the effect of all other SNPs and phenotypes. Therefore, the
netphenogeno() function reduces the number of candidate SNPs and gives a small set of much more
plausible ones. Moreover, Balasubramanian et al. (2009) have reported that the TLN-SD phenotype is
associated with a region in chromosome 5, whereas our proposed method do not find any direct effect
between TLN-SD and the region in chromosome 5, only through the DTF-SD phenotype. Furthermore,
associations between phenotype CLN-LD and markers snp49 and snp50 have remained undetected in
the previous studies of this population. This example was run in about 4 minutes on an Intel i7 laptop
with 16 GB RAM.

In short, unlike traditional QTL analysis, the proposed method goes beyond the bivariate testing
of individual SNPs, which only look at marginal association, instead it uses a multivariate approach
which includes all the SNPs and phenotypes simultaneously.

Genotype-phenotype networks in maize. The high-dimensional genotypic and phenotypic maize
data used in this paper were downloaded from www.panzea.org. The data comprised three datasets:
a genotype data, and two phenotype datasets from the flowering time (Buckler et al., 2009) and the
leaf architecture (Tian et al., 2011). The SNP data included 1106 genetic markers for 194 diverse
maize recombinant inbred lines, which were derived from a cross between B73 and B97 from the
maize Nested Association Mapping (NAM) populations. The 194 maize lines were scored for their
flowering time using days to silking (DS), days to anthesis (DA), and the anthesis-silking interval (ASI)
phenotypes. The leaf related traits such as upper leaf angle (ULA), leaf length (LL) and leaf width
(LW) were also measured for all 194 maize lines.

Fig 6 reconstructs genotype–phenotype networks between the 6 phenotypes and 1106 SNPs. Five
SNPs on chromosome 1 (from i140 until i144) directly affect both DA and DS traits (related to flowering
time) after removing the effect of other variables. Moreover, a few SNPs on chromosome 1 (from i60
until i64) and on the beginning of chromosome 2 (i188 until i191) regulate DS. Two SNP markers (i762
and i763) on chromosome 7 affect DA, and chromosome 8 (i877 until i883) regulates ASI phenotype,
after adjustments. The two leaf related traits, ULA and LL, are linked together, but not to the LW.
Three SNPs i1064, i1062, and i1080 are yet conditionally associated to both LL and LW traits after
adjustments. Chromosomes 4 and 6 do not have any role in the studied flowering time and leaf
architecture traits.

Simulations and computational timing

The package generates simulated data in two ways

1. simgeno() function simulates genotype data based on a Gaussian copula graphical model.
An inbred genotype data can be generated for p number of SNP markers, for n number of
individuals, for k genotype states in a q-ploid species where q represents chromosome copy
number (or ploidy level of chromosomes). The simulated data mimic a genome-like graph
structure: First, there are g linkage groups (each of which represents a chromosome); then
within each linkage group adjacent markers, adjacent, are linked via an edge as a result of
genetic linkage. Also, with probability alpha a pair of non-adjacent markers in the same
chromosome are given an edge. Inter-chromosomal edges are simulated with probability beta.
These links represent long-range linkage disequilibriums. The corresponding positive definite
precision matrix Θ has a zero pattern corresponding to the non-present edges. The underlying
variable vector Z is simulated from either a multivariate normal distribution, Np(0, Θ−1), or a
multivariate t-distribution with degrees of freedom d and covariance matrix Θ−1. We generate
the genotype marginals using random cutoff-points from a uniform distribution, and partition
the latent space into k states. The function can be called with the following arguments
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Figure 6: Genotype–phenotype networks for 1106 SNP markers and 6 phenotypes in mazie NAM
population, where flowering traits (DS, DA, ASI) are shown in and leaf traits (LW, LL, ULA) are in ,
respectively. SNPs are shown on chromosome 1 (snp1 - snp175) as , chromosome 2 (snp176 - snp302)
as , chromosome 3 (snp303 - snp432) as , chromosome 4 (snp433 - snp543) as , chromosome 5
(snp544 - snp682) as , chromosome 6 (snp683 - snp760) as , chromosome 7 (snp761 - snp838) as ,
chromosome 8 (snp839 - snp944) as , chromosome 9 (snp945 - snp1029) as , and chromosome 10
(snp1030 - snp1106) as . Blue edges show negative and red positive partial correlations.

set.seed(2)
sim <- simgeno(p = 90, n = 200, k = 3, g = 5, adjacent = 3, alpha = 0.1,
beta = 0.02, con.dist = "Mnorm", d = NULL, vis = TRUE)

The output of the example is shown in Figure 7.

2. simRIL() function generates diploid recombinant inbred lines (RILs) using recombination
fraction and a CentiMorgan position of markers across the chromosomes. The function can be
called with the following arguments

set.seed(2)
ril <- simRIL(g = 5, d = 25, n = 200, cM = 100, selfing = 2)
ril$data[1:3, ]

M1.1 M2.1 M3.1 M4.1 M5.1 M6.1 M7.1 M8.1 ... M24.5 M25.5
ind1 0 0 0 0 0 0 0 0 ... 0 0
ind2 2 1 1 1 1 1 2 2 ... 1 1
ind3 1 2 2 2 2 2 2 1 ... 0 0

ril$map
chr marker cM

1 1 M1.1 0.000000
2 1 M2.1 4.166667
.
.
.
124 5 M24.5 95.833333
125 5 M25.5 100.00000

where g and d represent the number of chromosomes and the number of markers in each
chromosome, respectively. The number of sample size can be specified by n. The arguments cM
and selfing show the length of chromosome based on centiMorgan position and the number of
selfing in the RIL population, respectively.
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Figure 7: An example simulated (genotype) data using the function simgeno(). (left) Each node
presents an SNP marker and the colors correspond to a given number of linkage groups, (right) the
correspondent adjacency matrix. The connectivity between the pairs of non-adjacent markers in a
same linkage group can be controlled via the argument alpha and the inter-chromosomal edges with
beta.

Computational timing. Fig 8 shows computational timing of netgwas for different number of
variables p and different sample sizes n. In this figure, we report computational timing in minutes
for the genetic map construction, which includes the graph estimation procedure and the ordering
algorithm. Note that the other two functions netsnp() and nethenogeno() include only the graph
estimation, so we have only considered netmap() function to cover the computational aspect of the
netgwas package. For the simulated data, we generated p = 1000, 2000, 3500, 5000 markers using
simRIL function, which evenly are distributed across 10 chromosomes, for different individuals
n = 100, 200, 300. Fig 8 shows that computational time is not affected by sample size n and is roughly
proportional to p3, as long as p × max{n, p} elements can be stored in memory. The reported timing
is based on the result from a computer with an Intel Core i7–6700 CPU and 32GB RAM.

5 Conclusion and future directions

The netgwas package implements the methods developed by Behrouzi and Wit (2019b) and Behrouzi
and Wit (2019a) to (i) construct linkage maps for bi-parental species with any ploidy level, namely
diploid (2 sets), triploid (3 sets), tetraploid (4 sets) and so on; (ii) explore high–dimensional short– and
long–range linkage disequilibrium (LD) networks among pairs of SNP markers while controlling for
the effect of other SNPs. The inferred LD networks reveal epistatic interactions across a genome when
viability of the particular genetic recombination of the parental lines is considered as phenotype; (iii)
infer genotype-phenotype networks from multi–loci multi–trait data, where it measures the pairwise
associations with adjusting for the effect of other markers and phenotypes. Moreover, it detects
markers that directly are responsible for that phenotype (disease), and reports the strength of their
associations in terms of partial correlations. In addition, the package is able to reconstruct conditional
dependence networks among SNPs, phenotypes, and environmental variables.

The implemented method is based on copula graphical models that enables us to infer conditional
independence networks from incomplete non-Gaussian data, ordinal data, and mixed ordinal-and-
continuous data. The package uses a parallelization strategy on multi-core processors to speed-up
computations for large datasets. In addition, the code is memory-optimized, using the sparse matrix
data structure when estimating and storing full regularization paths for large data sets. The netgwas
package contains several functions for simulation and interactive network visualization. We note that
reproducibility of our results and all the example data used to illustrate the package is supported by
the open-source R package netgwas.

The netgwas and qtl2 (Broman et al., 2019) software are for high-dimensional genotype and
phenotype data. The qtl2 performs QTL analysis in multi-parental populations solely by genome scans
with single-QTL models. The function netphnogeno in netgwas uses a multivariate approach to detect
conditional interactions networks between genotypes and phenotypes. It uses network models to
detect multiple causal SNPs in a QTL region in bi-parental populations, while adjusting for the effect
of remaining QTLs. One of the primary directions for the future work is to extend our methodology for
multi-parental map construction and perform their QTL analysis. This would require the calculation
of genotype probabilities using hidden Markov models (Broman and Sen, 2009; Zheng et al., 2018)
before implementing the proposed Gaussian copula graphical model.
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Figure 8: The computational time of linkage map construction in netgwas for various simulated data
with different combinations of individuals n and the number of markers p, where they were distributed
evenly across 10 linkage groups. This shows that the computational time is roughly proportional to p3,
as long as p × max{n, p} elements can be stored in memory.

We will maintain and develop the package further. In the future we will include time component
into our model where the interest is to infer dynamic networks for longitudinal (phenotyping) data
and to learn changes of networks over time. Implementation of such model is desirable in many
fields, particularly in plant breeding where the main goal is to optimize yield using high-throughput
phenotypic data.
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robslopes: Efficient Computation of the
(Repeated) Median Slope
by Jakob Raymaekers

Abstract Modern use of slope estimation often involves the (repeated) estimation of a large number
of slopes on a large number of data points. Some of the most popular non-parametric and robust
alternatives to the least squares estimator are the Theil-Sen and Siegel’s repeated median slope estima-
tors. The robslopes package contains fast algorithms for these slope estimators. The implemented
randomized algorithms run in O(n log(n)) and O(n log2(n)) expected time respectively and use O(n)
space. They achieve speedups up to a factor 103 compared with existing implementations for common
sample sizes, as illustrated in a benchmark study, and they allow for the possibility of estimating
the slopes on samples of size 105 and larger thanks to the limited space usage. Finally, the original
algorithms are adjusted in order to properly handle duplicate values in the data set.

1 Introduction

The Theil-Sen estimator (Theil, 1950; Sen, 1968) is arguably the most popular non-parametric and
robust alternative to the least squares estimator for estimating the slope in simple linear regression. A
variation on this estimator, Siegel’s repeated median slope (Siegel, 1982), was the first slope estimator
to attain the maximal breakdown value of 50 %, which roughly means that it can withstand up to
50% of outliers in the data. Since their introduction, these estimators have seen widespread use in a
variety of applications including signal extraction (Davies et al., 2004; Gather et al., 2006), filtering
(Fried et al., 2006; Bernholt et al., 2006; Fried et al., 2007; Gelper et al., 2010), computer vision Meer
et al. (1991), climatology (Zhang et al., 2000; Zhai et al., 01 Apr. 2005; Kosaka and Xie, 2013) and very
recently differentially private estimation (Alabi et al., 2022; Fu et al., 2019).

Several implementations of these estimators exist, most notably in the R packages deming (Th-
erneau, 2018), zyp (Bronaugh and for the Pacific Climate Impacts Consortium, 2019), mblm (Komsta,
2019), and RobustLinearReg (Hurtado, 2020), all publicly available on CRAN. Despite their popularity
and importance, all of these publicly available implementations are based on a brute-force computation
of the (repeated) median slope. Given a sample of n observations, this approach requires a compu-
tational cost of O(n2) as well as O(n2) space. This makes the currently available implementations
unsuitable for modern applications involving larger data sets as they are rather slow and potentially
use prohibitively large amounts of storage space.

Nevertheless, there exist several algorithms for the Theil-Sen and repeated median estimators
which run in quasilinear time and require only O(n) space. For the Theil-Sen estimator, Cole et al.
(1989), Katz and Sharir (1993), and Brönnimann and Chazelle (1998) proposed algorithms running in
O(n log(n)) deterministic time. A randomized algorithm requiring O(n log(n))-expected time was
proposed in Matoušek (1991), Dillencourt et al. (1992) and Shafer and Steiger (1993). For the repeated
median slope, Stein and Werman (1992), Matoušek et al. (1993) and Matoušek et al. (1998) proposed
algorithms running in O(n log(n)) and O(n log(n)2) (-expected) time. A potential explanation for
these algorithms not being available in R may be twofold. Firstly, they are all more involved than
brute-force computation of the median slopes and sample implementations in other programming
languages are scarce, if available at all. Secondly, most of them make efficient use of features not
(readily) available in R, such as pointers and in-place assignment, as well as complex data structures.

In this article we discuss the R package robslopes (Raymaekers, 2022) which contains implementa-
tions of the randomized algorithms by Matoušek (1991) and Matoušek et al. (1998) for the Theil-Sen
and repeated median estimators respectively. The original algorithms have been adjusted in order to
properly deal with potential duplicates in the data. We start by briefly reviewing the problem setting
and the estimators. Next, we present a rough outline of the key ideas underlying the algorithms and
a brief description of the usage of the functions in the package. We end with a benchmarking study
comparing the implementation with existing implementations in publicly available R packages and
concluding remarks.
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2 The Theil-Sen and repeated median estimators

The typical problem setting of slope estimation is that of the simple linear model. Suppose we have n
observations (xi, yi) which follow the model

yi = α + βxi + ei

where α and β are the (unknown) true intercept and slope parameters and ei represents the noise. The
most popular estimator for the regression coefficients is the ordinary least squares (OLS) estimator, i.e.
the (α̂, β̂) minimizing ∑n

i=1 (yi − α̂ − β̂xi)
2. The OLS estimator possesses several attractive properties,

including ease of computation and interpretation and optimal performance when the errors are i.i.d.
and follow a normal distribution. Despite these properties, it is well known that the OLS estimator is
very sensitive to outliers and can have a quickly deteriorating performance as the error term deviates
from normality. For these reasons, many alternatives have been suggested, of which the Theil-Sen
estimator and Siegel’s repeated median slope are two popular and intuitively attractive examples.

The Theil-Sen (TS) estimator (Theil, 1950; Sen, 1968) of β is defined as the median of the slopes of
all the lines determined by two different observations (xi, yi) and (xj, yj):

β̂TS(x, y) = medi ̸=j
yi − yj

xi − xj
,

where the median avoids i = j as the slope through one point is undefined and where x = x1, . . . , xn
and y = y1, . . . , yn. In case there are duplicate values in x1, . . . , xn, the proposal of Sen (1968) is to only
include the slopes which are constructed using two observations with different x-values and we adopt
this approach here.

The TS estimator has been analyzed extensively from a theoretical point of view. Sen (1968) showed
its asymptotic normality and equivariance properties. In particular, we have

1. scale equivariance: β̂TS(x, cy) = cβ̂TS(x, y) for all c ∈ R

2. regression equivariance β̂TS(x, y + ax) = β̂TS(x, y) + a for all a ∈ R,

but the estimator is not equivariant under affine transformations of both predictor and response
variables. Wang and Yu (2005) give precise conditions for the unbiasedness of the TS estimator and
(Wilcox, 1998) studied its behavior in the case of heteroscedastic errors. From a robust statistics per-
spective, it is known that the TS estimator is much more robust against outliers than the OLS estimator
(see Rousseeuw and Leroy (2005)). In particular, it has a bounded influence function (Hampel et al.,

1986) and its breakdown value is 1 −
√

1
2 ≈ 0.293%, where the latter can be roughly interpreted as the

maximum percentage of contaminated samples that the estimator can handle (see Donoho and Huber
(1983) for an exact definition). Finally, its maximum bias properties under contamination have been
studied by Adrover and Zamar (2004).

The search for a slope estimator with a breakdown value higher than 30% prompted Siegel to
propose the repeated median (RM) slope (Siegel, 1982). It is the first slope estimator attaining the
maximal breakdown value of 50%. The repeated median estimator of β is computed by first calculating
the median slope per observation xi, yielding n values, and then taking the median of these values:

β̂RM(x, y) = medi medj ̸=i
yj − yi

xj − xi
,

where now the inner median avoids i = j. We handle duplicate values in x1, . . . , xn by skipping them
in the computation of the inner median, in the same spirit as duplicate handling for the TS estimator.
The consistency, unbiasedness and efficiency of the RM estimator were discussed by Siegel (1982),
whereas the asymptotic normality was analyzed in Hossjer et al. (1994). The estimator was designed
to have a 50 % asymptotic breakdown value, and like the TS estimator, its influence function is also
bounded (Rousseeuw et al., 1993, 1995; Rousseeuw and Leroy, 2005). Finally, it possesses the same
equivariance properties as the TS estimator, i.e. it is both scale and regression equivariant but not
affine equivariant, and its maximum bias properties are also discussed in Adrover and Zamar (2004).

It is clear that both β̂TS and β̂RM can be computed by calculating all n(n−1)
2 pairwise slopes, and

selecting the median or repeated median of these slopes. Clearly, this brute-force approach has a
O(n2) computational cost, and the available implementations of this approach also require storing
the O(n2) slopes. In the next section, we describe the more efficient algorithms implemented in the
robslopes package.

While not the main focus of this article, it is worth mentioning that the intercept can be estimated
in several ways. We opt for the most straight-forward approach of taking the median of the residuals
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as the estimator for α:
α̂ = medi

(
yi − β̂xi

)
,

where β̂ can be β̂TS or β̂RM.

3 Randomized algorithms for slope selection

The R-package robslopes contains an implementation of the randomized algorithm by Matoušek
(1991) for the Theil-Sen estimator and the algorithm of Matoušek et al. (1993, 1998) for the repeated
median estimator. Unlike in their original proposals, we haven taken into account the case of possible
duplicate values in the xi and adjusted the algorithms to work properly in that case as well. We now
briefly outline these algorithms without going too much into detail. For specific details and a complete
description we refer to the original references and our code.

Suppose we are given n data points (xi, yi) with i = 1, . . . , n and we are interested in the median
(or more generally, any order statistic) of the slopes formed by connecting two data points. The main
idea behind the algorithms is to consider each observed data point (xi, yi) in dual space by associating
it with the line

v = xiu − yi.

We will denote the coordinates in dual space with (u, v) in the following. It can be verified that the
u-coordinate of the intersection of two lines in dual space (also called “intersection abscissa” (IA))
is equal to the slope of the line passing through the two points in the original space. Therefore, the
problem of finding order statistics of slopes can be translated into the problem of finding order statistics
of intersection abscissas in dual space. To find these order statistics in dual space, the algorithms use
the following idea. Given an interval (ulow, uhigh] in dual space, the number of IAs in that interval can
be computed by counting the number of inversions in a certain permutation. For a permutation π
on 1, . . . , n, an inversion is a pair of elements (π(i), π(j)) for which i < j and π(i) > π(j). Figure
1 shows three lines in dual space and illustrates the connection between IAs and inversions which
works as follows. Suppose we have two lines associated with the points (xi, yi) and (xj, yj). The
v-coordinates of the intersection of these lines with ulow in dual space are given by xiulow − yi and
xjulow − yj respectively. Suppose without loss of generality that xiulow − yi < xjulow − yj. Now, if lines i
and j intersect in the interval (ulow, uhigh], we must have that the v-coordinate of the intersection of these
lines with uhigh have switched order: xiuhigh − yi > xjuhigh − yj. Therefore, there is a bijection between
the IAs in (ulow, uhigh] and the permutation obtained by going from the order of the intersections of the
lines with u = ulow to the order of the intersections with u = uhigh. Counting the number of inversions
in a permutation can be done in O(n log(n)) time using an adaptation of merge sort Knuth (1998), and
constructing the permutation itself has the same computational complexity.

ulow uhigh

1

2

3
1

2

3

Figure 1: Three lines in dual space, restricted to the interval (ulow, uhigh]. If two lines intersect in this
interval, the ordering of their values of the v-coordinate at ulow and uhigh must have turned around.
Therefore, the number of IAs in the interval (ulow, uhigh] is given by the number of inversions in the
permutation (3 1 2).

For the Theil-Sen estimator, we obtain n(n − 1) IAs in dual space, where parallel lines meet at
+∞ by convention. Suppose we want to find the k-th smallest IA (e.g., k could be ⌊(n(n − 1) + 1)/2⌋
for the lower median). The idea is to maintain a half-open interval (ulow, uhigh], which is initialized at
(−∞, ∞] and always contains the IA we are looking for. We also keep a count L and C of the total
number of IAs to the left and within the interval respectively. If the number of IAs in the interval
is of order O(n), we can enumerate them in O(n log(n)) time and select the desired element (we
call this “brute-force computation”). If there are more IAs left in the interval, we use a contraction
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strategy which makes the interval (ulow, uhigh] progressively smaller while still containing the target
k-th smallest slope, until it is small enough for brute-force computation.

In order to contract the interval, we randomly sample a O(n) number of IAs. These are then used
to estimate a new interval (u′

low, u′
high] ⊂ (ulow, uhigh] which contains the target IA with high probability.

To check whether the contracted interval contains the target, we count the number of IAs in the
intervals (ulow, u′

low] and (u′
low, u′

high]. If the current count L added to the number of IAs in the former
interval exceeds k, we know that the target IA is in (ulow, u′

low]. If not, we check whether additionally
adding the number of IAs in (u′

low, u′
high] gives a total count exceeding k, in which case the target IA is in

(u′
low, u′

high]. If neither of those cases hold, we know the target IA is in (u′
high, uhigh]. After the contraction,

we update L and C and this process is repeated until C, the number of IAs in the current interval, is of
the order O(n). To execute this strategy, we need a method to randomly sample IAs. It turns out that
this can be achieved in O(n log(n)) time, again using an adaptation of merge sort. For the Theil-Sen
estimator there is an expected O(1) number of iterations required for convergence, leading to a total
expected complexity of O(n log(n)).

For the repeated median estimator, the algorithm is similar to the previously described algorithm
in that it also works with an interval-contraction strategy. In contrast with the previous algorithm
however, we now keep track of the lines for which the median IA falls within the interval, in addition
to the number of abscissas on the left and within the current interval for each individual line. In each
contraction step, we first sample a O(

√
n) number of lines for which we know that their median IA lies

within the current interval. For each of these lines, a O(
√

n) number of IAs are now sampled which
allow for the estimation of a new interval (u′

low, u′
high] ⊂ (ulow, uhigh] containing the target slope with

high probability. The interval (ulow, uhigh] can then be contracted by counting the number of IAs for each
line on the left and within (u′

low, u′
high]. As before, the algorithm switches to brute-force computation

once the number of IAs in (ulow, uhigh] is of the order O(n). For this algorithm, there is an expected
O(log(n)) number of contraction steps required, resulting in a total complexity of O(n log2(n)).

The original algorithms were only described for the case where the xi values are all distinct. In
case of duplicate values however, some of the slopes are not defined and the natural way of handling
this is by ignoring the undefined slopes and computing the median (or any other order statistic) on
the remaining slopes. Fortunately, we can incorporate this into our algorithms by realizing that these
duplicate xi values correspond with parallel lines in dual space. Using the convention that parallel
lines in dual space meet at +∞, the (repeated) median slope can be found by appropriately adjusting
the value of the order statistic of the slope we want to find. For the Theil-Sen estimator, this means
we need to find the order statistic corresponding with n(n−1)

2 − ∑n
i=1

di−1
2 values, where di denotes

the number of times the value xi occurs in the predictor variable. For the repeated median estimator,
we only have to adjust the inner median, but the adjustment is dependent on the individual line i.
More specifically, the order statistic for the inner median needs to be computed on n − di values. Note
that we can count the number of duplicates easily in O(n) time and so the overall complexity of the
algorithm is not affected by this change. There is one additional complication, namely that of duplicate
pairs (xi, yi). If such pairs are present, one should be careful with computing the permutation of
intersections in dual space given an interval (ulow, uhigh]. Obtaining such a permutation involves sorting
(and ranking) a vector of IAs. However, in case of duplicate pairs, this sorting needs to be done using
stable sort. If not, duplicate pairs may randomly produce inversions, yielding sampled IAs at ∞ even if
the current interval has uhigh < ∞. In the original algorithm, this scenario was not considered and thus
not explicitly accounted for. These changes have been incorporated in the implementation provided in
the robslopes package.

4 Implementation and usage

We briefly describe the implementation and usage of the functions in the robslopes package. The
package revolves around 2 main functions, the TheilSen function and the RepeatedMedian function,
both returning a list with the self-explanatory elements intercept and slope. Both functions start with
input checking and duplicate counting, which are done in R. The duplicate counts are then used to set
the correct target order statistics for the main part of the algorithm. This information is then passed
on to the randomized algorithms which are implemented in C++, making use of the rcpparmadillo
package (Eddelbuettel and François; Eddelbuettel and Sanderson, 2014).

The TheilSen function has the layout TheilSen(x,y,alpha = NULL,verbose = TRUE), where the
x and y arguments are the input vectors for the predictor and response variable respectively. The
verbose option allows for switching off the printing of the computation progress. Finally, the alpha
argument is a value between 0 and 1 which determines the order statistic corresponding with the
target slope. When alpha = NULL, the default, the upper median of the m slopes is computed, which
corresponds with the ⌊(m + 2)/2⌋-th order statistic. For any other value of 0 ≤alpha≤ 1, the function
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computes the [alpha m]-th order statistic of the slopes, where [·] is the rounding operator.

The RepeatedMedian function has the layout RepeatedMedian(x,y,alpha = NULL,beta = NULL,verbose
= TRUE), where the x, y and verbose arguments play the same role as for the TheilSen function. The
arguments alpha and beta determine the order statistics of the inner and outer “median”. When NULL,
the default, they again correspond to the upper median. If they contain values between zero and
one, the order statistics corresponding with the inner and outer “median” are given by [alpha m] and
[beta m] respectively.

For convenience, the TheilSen and RepeatedMedian functions have been wrapped in the user-
friendly functions robslope and robslope.fit. These mimic the structure of common regression
functions (e.g., lm and lm.fit). In particular, robslope takes the standard arguments formula, data,
subset, weights and na.action, in addition to the type argument selecting which type of slope to com-
pute, as well as the optional alpha, beta and verbose arguments of the TheilSen and RepeatedMedian
functions.

As an example we analyze the flights data of the nycflights13 package (Wickham, 2019). It contains
on-time data for all flights that departed in New York City (i.e. JFK, LGA or EWR airports) in 2013.
We consider the distance traveled in miles as the predictor variable, and take the air time in minutes as
the response. After removing all NA values, we end up with a data set of 327,346 observations. In
contrast to the previous example, this one is too large to compute the TS or RM slope with a brute-force
algorithm (on most computers). We now calculate the TS and RM slopes three times each, where we
change the inner order statistic to the first, second and third quartiles. With the exception of graphical
parameters, the code executed is shown below.

library("robslopes")
library("nycflights13")
data("flights")

ts.out.25 <- robslope(formula = air_time~distance, data = data, alpha = 0.25)
ts.out.50 <- robslope(formula = air_time~distance, data = data, alpha = 0.50)
ts.out.75 <- robslope(formula = air_time~distance, data = data, alpha = 0.75)
plot(data$distance, data$air_time)
abline(coef(ts.out.25), col = "red", lwd = 3)
abline(coef(ts.out.50), col = "green", lwd = 3)
abline(coef(ts.out.75), col = "blue", lwd = 3)

rm.out.25 <- robslope(formula = air_time~distance, data = data, beta = 0.25,
type = "RepeatedMedian")

rm.out.50 <- robslope(formula = air_time~distance, data = data, beta = 0.50,
type = "RepeatedMedian")

rm.out.75 <- robslope(formula = air_time~distance, data = data, beta = 0.75,
type = "RepeatedMedian")

plot(data$distance, data$air_time)
abline(coef(rm.out.25), col = "red", lwd = 3)
abline(coef(rm.out.50), col = "green", lwd = 3)
abline(coef(rm.out.75), col = "blue", lwd = 3)

The resulting figure is shown in Figure 2. In this example, the slopes calculated by the TS and RM
estimators are virtually identical due to the very limited number of outliers and the large number of
data points. Note that there are many duplicates in this data set, which are handled appropriately by
the proposed implementation.

5 Benchmarking study

We now benchmark the implemented algorithm against the existing implementations in the deming,
zyp, mblm, and RobustLinearReg packages. Note that the deming and zyp packages only contain the
TS estimator, the others contain both the TS and RM estimators. All simulations were done using the
R-package microbenchmark (Mersmann, 2019) and were run on an Intel® Core™ i7-10750H @2.60GHz
processor. The setup is as follows. For each value of n = {10, 102, 103, 104}, we have generated 100
samples (xi, yi) from the bivariate standard normal distribution. Afterward, each of the available
implementations was used to estimate the regression parameters and the execution time was measured
(in nanoseconds).

The following code snippets show the code used for benchmarking the TS and RM estimator for a
sample of size n = 103, the same code was used for the other sample sizes, with exception of n = 104,
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Figure 2: The TS (left) and RM (right) slopes fitted on the flights data. The first, second and third
quartiles as the (inner) order statistic are shown in red, green and blue respectively. The slopes are
virtually identical for both estimators in this example, as there are not many outliers in the data. The
implemented algorithm appropriately deals with the many duplicate x-values in this data set.

in which case the implementation of the mblm package was left out due to its computational burden
(it takes several hours to compute it once).

n <- 10^3
mbm <- microbenchmark("deming" = deming::theilsen(y~x, data = data),

"zyp" = zyp::zyp.sen(y~x, dataframe = data),
"mblm" = mblm::mblm(y~x, dataframe = data, repeated = FALSE),
"RobustLinearReg" = RobustLinearReg::theil_sen_regression(y~x,
data = data),
"robslopes" = robslopes::TheilSen(x, y),
setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

autoplot(mbm)

n <- 10^3
mbm <- microbenchmark("mblm" = mblm::mblm(y~x, dataframe = data, repeated = TRUE),

"RobustLinearReg" = RobustLinearReg::siegel_regression(y~x,
data = data),
"robslopes" = robslopes::RepeatedMedian(x, y),
setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

autoplot(mbm)

Figure 3 shows the results for the Theil-Sen estimator. We see that for the smallest sample size,
n = 10, the absolute computation times are extremely low and while there are visible differences,
they are probably not of practical relevance. For n = 100, the robslopes package is roughly five times
faster than the fastest competitor, and the mblm implementation starts to run away from the other
competitors. For n = 103, the differences become much clearer. The robslopes implementation is now
between one and two orders of magnitude faster than the best competitor. Finally, for n = 104 the gap
widens further to a difference of over two orders of magnitude. Note that for n = 104, we have left out
the mblm package in the comparison as a single run takes several hours and the resulting plot would
hinder a clear comparison.

Figure 4 shows the results for the RM estimator. As for the TS estimator, the difference in
computation time is already visible for small sample sizes of n = 10 and n = 100, where the robslopes
implementation is roughly a factor 20 faster than the competition. However, the absolute computation
times for these sample sizes is by no means prohibitive for any of the implementations. Starting at
n = 1000 however, we start to see a larger difference, especially between the robslopes and mblm
implementations. The former is now roughly 800 times faster than the latter, and 60 times faster
than the RobustLinearReg implementation. For sample size n = 104, we did not include the mblm
implementation as it now takes roughly half an hour to compute, in contrast with 16 seconds for the
RobustLinearReg implementation and 0.034 seconds (on average) for the robslopes implementation.
Finally note that interestingly, the repeated median of the mblm package is much faster than the
Theil-Sen estimator of the same package. This is somewhat counter-intuitive, but turns out to be
caused by a much higher number of calls to the c() function (concatenate) in the implementation of
the TS estimator.
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Figure 3: Computation times of the different implementations of the Theil-Sen slope estimator for the
sample size n equal to 10, 102, 103 and 104 in the top left, top right, bottom left and bottom right panels
respectively. The robslopes implementation is consistently faster than the competition by orders
of magnitude. The difference scales close to linearly in n, gaining almost one order of magnitude
advantage for a similar increase in the sample size, which is what we expect based on the theoretical
computational complexities. The mblm estimator was left out for sample size n = 104 due to it
requiring several hours to compute once.

As explained before, the brute-force implementations of the (repeated) median slope require O(n2)
storage as they typically compute all slopes and store them in a n × n matrix. Therefore, while a
sample size of n = 104 is by no means extremely large, we cannot go much higher than that. A sample
size of n = 105 for example, would require a RAM memory of about 75GB, which is rather uncommon
on most computers and laptops. The implementations in the robslopes package however, require
only O(n) storage space, and we can thus easily compute the estimators on much larger samples. To
illustrate this, we have continued the benchmarking study with only the robslopes implementation,
but this time for the sample sizes n = 105, 106 and 107. This was done using the following code snippet,
where the saving of the results in the for loop is omitted:

for (n in 10^(5:7)) {
mbm <- microbenchmark("robslopes" = robslopes::TheilSen(x, y),

setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

}

for (n in 10^(5:7)) {
mbm <- microbenchmark("robslopes" = robslopes::RepeatedMedian(x, y),

setup = {x = rnorm(n); y = rnorm(n);
data = as.data.frame(cbind(x, y))}, times = 100)

}

Figure 5 shows the mean computation times of the TS estimator and the RM estimator for sample
sizes up to n = 107. As an example, for a sample size of n = 106, the TS estimator requires roughly
4 seconds of computation time, whereas the RM estimator requires roughly 6 seconds. The blue
shade on the figure indicates the maximum and minimum computation time over the 100 replications,
showing that the computation times have a fairly small variance around their mean. The red line
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Figure 4: Computation times of the different implementations of the repeated median slope estimator
for the sample size n equal to 10, 102, 103 and 104 in the top left, top right, bottom left and bottom
right panels respectively. The robslopes implementation is consistently faster than the competition by
orders of magnitude. The difference scales close to linearly in n, which is what we expect based on the
theoretical computational complexities. Note that the mblm estimator was left out for sample size
n = 104 due to it requiring more than 106 milliseconds (approx. 30 minutes) to compute.

shows a (robustly) estimated fit of the theoretical computation times to the observed ones (i.e. of
the functions f (n) = βn log(n) and f (n) = βn log2(n) for a β ∈ R), indicating that for n ≥ 103, the
observed computational cost grows according to the theoretical complexity.
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Figure 5: Mean computation times of the Theil-Sen (left) and repeated median (right) estimators as
implemented in robslopes for increasing sample size n. The red line is an estimate of the ∼ n log(n)
(for TS) and ∼ n log2(n) (for RM) expected computational cost. The blue shade indicates the minimum
and maximum computation times. Other than the deviations for very small n which are due to
computational overhead, the computational cost scales precisely as the theory predicts. Furthermore,
the variance of the computation times around their mean is negligible.
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6 Summary

We have introduced the robslopes package which contains fast implementations of the popular Theil-
Sen and repeated median slope estimators. The implemented algorithms are randomized algorithms
running in quasilinear expected time and use linear space. In contrast, the currently available im-
plementations in different R packages on CRAN require quadratic time and space. A benchmark
study comparing the common implementations of the slope estimator with the newly introduced one
illustrates speedups up to a factor 103 compared with the next best alternative implementation for
common sample sizes. Additionally, due to the linear space requirements of the algorithms, the slope
estimators can be computed on much larger sample sizes than the current maximum. Finally, the
original algorithms were adjusted to properly deal with potential duplicates in the predictor variable.

The fast implementation of these popular slope estimators unlocks new possibilities for their use
in modern applications where the slope has to be estimated repeatedly and on a large number of
data points. Evidently, inferential procedures based on bootstrapping are also highly facilitated by
these fast algorithms. Finally, the underlying C++ implementation may serve as a useful reference for
implementations of these algorithms in other programming languages, which also seem to be scarce.
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Generalized Mosaic Plots in the ggplot2
Framework
by Haley Jeppson and Heike Hofmann

Abstract Graphical methods for categorical variables are not well developed when compared with
visualizations for numeric data. One method available for multidimensional categorical data visual-
izations is mosaic plots. Mosaic plots are an easy and powerful option for identifying relationships
between multiple categorical variables. Although various packages have implemented mosaic plots,
no implementation within the grammar of graphics supports mosaic plots. We present a new im-
plementation of mosaic plots in R, ggmosaic, that implements a custom ggplot2 geom designed
for generalized mosaic plots. Equipped with the functionality and flexibility of ggplot2, ggmosaic
introduces new features not previously available for mosaic plots, including a novel method of in-
corporating a rendering of the underlying density via jittering. This paper provides an overview of
the implementation and examples that highlight the versatility and ease of use of ggmosaic while
demonstrating the practicality of mosaic plots.

1 Introduction

Graphical methods for categorical variables are not as thoroughly developed when compared with
what is available for numeric variables. Categorical variables in scientific publications often appear in
the form of bar charts (first published in the Commercial and Political Atlas by William Playfair in
1789, re-edited by Playfair, Wainer, and Spence (2005)) and spine plots (Hummel 1996).

Beyond those visualizations, categorical variables with a low number of levels are often incor-
porated in visualizations in the form of aesthetics such as color and shape. However, these indirect
methods of visualizing categorical information are better suited as supplemental information and
not as the primary source of information due to the associated loss of accuracy in retrieving the
corresponding information (Cleveland and McGill 1984).

Mosaic plots provide a direct method of visualizing multidimensional categorical data; they are
similar to a stacked bar chart but include the marginal distribution in addition to the conditional
distribution, can be extended beyond two variables, and provide additional flexibility. Modern mosaic
plots are usually attributed to Hartigan and Kleiner (Hartigan and Kleiner 1981, 1984; Kleiner and
Hartigan 1981), but historical versions of mosaic plots can be found as far back as the late 1800s. The
first mosaic plot is often attributed to Georg von Mayr (Friendly 2002); however, the mosaic plots in
the Statistical Atlas of the 1870 Decennial Census (United States Census office. 9th census, 1870 and
Walker 1874) pre-dates Mayr’s by a few years. Mosaic plots may also be identified as Marimekko
charts (mainly in the InfoVis world) or Eikosograms (Oldford et al. 2018).

In R, mosaic plots have been implemented in a variety of packages. Base R is equipped with
the function mosaicplot() from the graphics package based on code by Emerson (1998) adapted by
Kurt Hornik. The base R generic function plot() contains a method for table objects and produces
a mosaic plot from a contingency table using the mosaicplot() function. Similarly, the yardstick
package (Kuhn, Vaughan, and Hvitfeldt 2022) provides a method for the ggplot2 (Wickham et al. 2020)
function autoplot() to visualize confusion matrices, with one of the options being a mosaic plot.

The vcd package (Meyer, Zeileis, and Hornik 2020), influenced by Michael Friendly’s “Visualizing
Categorical Data,” provides the functions mosaic() and strucplot() which allow for expanded
versions of the original mosaic plot (Hartigan and Kleiner 1981). The eikosogram package (Oldford
et al. 2018) is another R package capable of producing mosaic plots. The function tileplot() in the
latticeExtra package (Sarkar and Andrews 2016) provides functionality to create mosaic plots in the
lattice framework (Sarkar 2020).

The productplots package (Wickham and Hofmann 2016) provides a wrapper of ggplot2 function-
ality but does not provide universal access to all aspects of the ggplot2 framework like a geom does.
The left plot in Figure 1 is an example of a mosaic plot created with the productplots package. While
the default plot can be annotated with additional aesthetics, labels, themes, and color schemes, we can
not add layers to this plot, and faceting is unavailable. A preview of the relevant code follows the next
paragraph.

We present a new implementation of mosaic plots in R, ggmosaic, that implements a ggplot2 geom
for mosaic plots. While several other packages are available for constructing mosaic plots, ggmosaic
allows users to fully leverage the widely used ggplot2 framework resulting in a flexible package for
generalized mosaic plots. More noteworthy, ggmosaic introduces several new features not previously
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Figure 1: Example mosaic plots made with the productplots package (left) and the ggmosaic package
(right). While the differences are subtle in this basic example, the differences between the two packages
become more apparent as the customization of the mosaic plot increases.

available for mosaic plots, including a novel method of incorporating a rendering of the underlying
density via jittering. ggmosaic includes a Shiny app to preview plots interactively and allow for
model exploration. Many of the features we describe are possible because ggmosaic is implemented
within the architecture defined by ggplot2. A preview of the syntax used in ggmosaic is shown below
compared to that of the productplots package. The resulting plot is the right plot of Figure 1.

# productplots
productplots::prodplot(flights, ~do_you_recline + rude_to_recline, mosaic()) +
aes(fill = do_you_recline)

## ggmosaic
ggplot(data = flights) +

geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),
fill = do_you_recline))

In this paper, we motivate the ggmosaic implementation and introduce it with examples demon-
strating the versatility and ease of use of ggmosaic. Next, we describe new features available in
the latest release of ggmosaic, version 0.3.3, and discuss how these features can enhance the data
visualizations made with ggmosaic. Finally, we conclude with a preview of a shiny application
(Chang et al. 2021) designed for an exploratory model framework of logistic regression and loglinear
models. The Shiny application is included in the development version of ggmosaic available from
https://github.com/hjeppson/ggmosaic.

2 ggmosaic: A ggplot2 implementation of mosaic plots

ggplot2 implements an adaptation of the grammar of graphics (Wilkinson 1999), a layered grammar
(Wickham 2010). Because of its flexibility and ease of use, ggplot2 has become one of the most popular
plotting packages available in the R ecosystem. Version 2.0.0 of ggplot2 introduced a method for other
R packages to implement custom geometries, or “geoms”, allowing for an expansion of the utility of
ggplot2. In turn, the increasingly popular package has continued to appeal to a more extensive user
base.

In creating a ggplot2 geom for mosaic plots, we seek to appeal to this user base and leverage the
robust framework of the grammar of graphics. Having mosaic plots in the ggplot2 framework makes
creating mosaic plots more accessible as it is more straightforward for the novice user to create mosaic
plots for data exploration purposes. For many users, having mosaic plots function as a true ggplot2
geom reduces the amount of syntax required, eliminates the need for prior calculations, and provides
complete access to additional benefits of ggplot2, allowing for highly customized generalized mosaic
plots.

With the R package ggmosaic, a custom ggplot2 geom designed for generalized mosaic plots is
implemented. ggmosaic makes mosaic plots compatible with ggplot2 and creates a flexible method
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to generate a wide variety of categorical data visualizations. The remainder of the paper presents
a thorough description of the ggmosaic package featuring examples that go beyond how to use
ggmosaic and demonstrate how to make more informed decisions about how to use mosaic plots to
answer various questions.

We begin with an introduction to the package with examples of the flexible framework that
ggmosaic offers. The following three sections illustrate how to use ggmosaic. First, we address
the data structures required for constructing mosaic plots and which structures are compatible with
ggmosaic. Next, we demonstrate how ggmosaic fits mosaic plots into the ggplot2 framework and how
to define the aesthetic mappings to construct the desired plot from the variables in the data. Lastly, we
provide examples of mosaic plots customized with parameters unique to ggmosaic.

The remaining half of the paper presents the new features included in version 0.3.3 of ggmosaic.
Frist, we introduce geom_mosaic_text(), designed to place text, or labels, in the center of each tile,
followed by geom_mosaic_jitter(), a geom for jittered points designed to be superimposed on the
mosaic plot and with multiple proposed applications. Next, we present theme_mosaic(), a theme for
mosaic plots to remove items from the background of the plot. We conclude with an overview of an
interactive Shiny app for exploratory data analysis (EDA) of high-dimensional categorical data using
mosaic plots.

Many of the features we describe are possible because ggmosaic is implemented within the ggplot2
framework. While other packages are available for constructing mosaic plots, ggmosaic allows users
to leverage the widely used ggplot2 infrastructure to create highly customized generalized mosaic
plots. Most notably, ggmosaic introduces several new features not previously available for mosaic
plots. In total, ggmosaic offers users a way to make mosaic plots with ggplot2 to visualize and explore
categorical data more effectively.

3 The ggmosaic package

The R package ggmosaic implements a custom ggplot2 geom, geom_mosaic(), designed to offer a
flexible framework for visualizing categorical data. The geom for mosaic plots was created using
the productplots package and ggplot2’s custom object-oriented system and extension mechanism,
ggproto. A stable version of ggmosaic is available on CRAN, and a development version is available
at https://github.com/hjeppson/ggmosaic. This section provides a brief description of the package,
the methods used in its implementation, and an example that showcases the flexibility that ggmosaic
offers.

Designed to create visualizations of categorical data, geom_mosaic() has the capability to produce
bar charts, stacked bar charts, mosaic plots, and double-decker plots and therefore offers a wide range
of potential plots. Figures 2, 3, and 4 highlight the package’s versatility. The code for these examples is
provided below and can be summarized as consisting of the following components. First, the mosaic
plot is created by adding a mosaic geom. The x aesthetic takes one or more variables wrapped in the
product() function, and the fill aesthetic determines the fill color of the rectangles. An optional
divider parameter determines the partitioning strategy for the rectangles. The code will be explained
in greater detail in the subsequent sections.

# one-dimensional examples:
# spine plot
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline))

# bar chart
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "hbar")

# two-dimensional examples:
# mosaic plot (2 variables)
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline))

# stacked bar chart
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Do you recline?
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Figure 2: Both plots represent the distribution of do_you_recline and allow the same comparisons,
though the spine plot does so with proportions and the bar chart with frequencies. The relative group
sizes are more difficult to compare in the spine plot, but the "sometimes" group is still discernable as
the largest and the "never" group as the smallest. The bar chart provides an easier comparisons of the
relative group sizes.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline),
divider = c("vspine", "hbar"))

never

sometimes

usually

no somewhat yes
Is it rude to recline?

Mosaic Plot (2 variables)

never

sometimes

usually

no somewhat yes
Is it rude to recline?

Stacked Bar Chart

Do you recline?

usually

sometimes

never

Figure 3: The conditional distribution of do_you_recline given rude_to_recline is represented by
the heights of the bars in both the mosaic plot (left) and the stacked bar chart (right). The mosaic plot
displays the joint and marginal distribution of rude_to_recline with the area and width of the tile,
respectively. The stacked bar chart reveals a nearly equal number of never reclining responses across
the categories of rude_to_recline. The conditional probabilities of "never" given "somewhat" and
"never" given "yes" have a more significant impact in the mosaic plot, from which we understand
that there is a positive correlation between a respondent considering reclining to be rude and electing
never to recline their seat. There are, however, respondents that do not consider reclining to be rude
and yet never recline, and perhaps more egregious, there are those that do regard reclining as rude
and yet usually recline their seats, a group that is important in the mosaic plot but challenging to see
in the stacked bar chart.
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# three-dimensional examples:
# mosaic plot (3 variables)
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

# double-decker plot
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, eliminate_reclining,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = ddecker())
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Figure 4: The mosaic plot (left) and double-decker plot (right) include the three variables
(do_you_recline, rude_to_recline, eliminate_reclining), though the direction of the splits varies
between the two plots. Both plots display a connection between a passenger’s opinions of reclin-
ing and their tendency to recline. Those that consider reclining to be rude are less likely to recline
and more likely to wish for reclining to be eliminated. The mosaic plot reveals an increasing de-
sire to eliminate reclining when the respondents believe reclining to be rude across all categories of
do_you_recline. There appears to be a slight positive correlation between reclining and not electing to
eliminate reclining across all levels of rude_to_recline. The double-decker plot (a mosaic plot with a
specific structure) best highlights the conditional distribution of do_you_recline and allows for easier
comparisons across the categories of the other two variables. For example, the relationship between
do_you_recline and eliminate_reclining seems consistent across categories of rude_to_recline, a
conclusion that is less readily available from the mosaic plot.

Furthermore, ggmosaic allows various features to be customized:

• the type of data structure,

• the order of the variables (Figure 6),

• the formula setup of the plot (Figure 7),

• faceting (Figure 7),

• the type of partition (Figure 10 and Figure 11), and
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• the space between the categories (Figure 12).

The following sections will discuss these features and provide examples of their use.

Data structure

The first step to creating a mosaic plot with ggmosaic is to ensure the data are in a supported format.
There are three data structures to consider (Friendly 2016), and two of the three data structures are
compatible with ggmosaic. The structure of the data impacts the use of geom_mosaic(), so the user
must understand their data’s structure. This section provides an example of each of the three data
structures and highlights the essential differences.

The data set used for these examples, and all examples in this paper, is from a SurveyMonkey
Audience poll conducted by FiveThirtyEight for two days in August of 2014. The survey asked
twenty-six questions ranging from background information regarding the respondent to feelings on
potentially aggravating behavior one might encounter on an airplane (Hickey 2014). The survey had
1,040 respondents (874 of whom had flown) aged 18-60+ from across the United States. The data set is
available from FiveThirtyEight’s data GitHub repository, and a cleaned version of it is one of the three
data sets included in the ggmosaic package.

Here, we will use three variables do_you_recline, rude_to_recline, and eliminate_reclining
from the fly data. For this paper, we made the following adjustments: remove all non-responses
and collapse the variable do_you_recline from a factor with five levels (always, usually, about half
the time, once in a while, and never) to a factor with three levels (usually, sometimes, never).
Incidentally, by removing all non-responses, we also remove responses from those that have never
flown. The code below completes the necessary modifications to the data.

# A few modifications to data
flights <- fly %>%
select(do_you_recline, rude_to_recline, eliminate_reclining) %>%
filter(!is.na(do_you_recline), !is.na(rude_to_recline)) %>%
mutate(do_you_recline = do_you_recline %>%

forcats::fct_collapse(
usually = c("always", "usually"),
sometimes = c("about half the time", "once in a while"),
never = "never") %>%

forcats::fct_relevel("never", "sometimes", "usually")
)

# Summary of the modified data
flights %>% summary()

#> do_you_recline rude_to_recline eliminate_reclining
#> never :170 no :502 no :595
#> sometimes:373 somewhat:281 yes:259
#> usually :311 yes : 71

To simplify the examples of the three data structures, we will focus on the two variables do_you_recline
and rude_to_recline from the flights data. The following code creates the desired subset:

flights_examp <- flights %>% select(do_you_recline, rude_to_recline)
names(flights_examp)

#> [1] "do_you_recline" "rude_to_recline"

The example data, flights_examp, contains the individual observations from the survey. Each
row accounts for one survey response to each of the questions, and there are two columns, one for
do_you_recline and one for rude_to_recline. This is the first of the three types of data structure.

glimpse(flights_examp)

#> Rows: 854
#> Columns: 2
#> $ do_you_recline <fct> sometimes, usually, usually, sometimes, usually, somet~
#> $ rude_to_recline <fct> somewhat, no, no, no, no, somewhat, no, no, yes, no, n~
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The second data structure is a summary of the first data structure. This format consists of a data
frame where each row is one of the possible combinations of levels of the categorical variables. In this
structure, there is an additional column for the variable freq that supplies the number of observations
in the first data structure with the row’s particular combination of levels.

flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
glimpse()

#> Rows: 9
#> Columns: 3
#> $ do_you_recline <fct> never, never, never, sometimes, sometimes, sometimes, ~
#> $ rude_to_recline <fct> no, somewhat, yes, no, somewhat, yes, no, somewhat, yes
#> $ freq <int> 35, 81, 54, 198, 164, 11, 269, 36, 6

The second data structure also occurs with weighted data. In which case, rather than a variable
representing the counts or frequencies, a variable represents the weights. A typical example of
weighted data is census data, where a weighting variable is used to compensate for a representation
differential.

The final data structure summarizes the second data structure: it is the contingency table format.
This data structure is not supported by ggmosaic and needs to be transformed into data structure one
or two. Both as.data.frame() and as_tibble() provide a method for tables that converts this format
into the summary format of data structure two.

flights_examp %>% table()

#> rude_to_recline
#> do_you_recline no somewhat yes
#> never 35 81 54
#> sometimes 198 164 11
#> usually 269 36 6

While the contingency table data structure is incompatible with ggmosaic, or ggplot2, either the
first or second structure is acceptable, and neither is preferable to the other. The data structure will
affect the set of mappings constructed from the variables to the aesthetics, the topic of the next section.

Aesthetics

To fit ggmosaic within the ggplot2 infrastructure, we must create the desired plot from the variables
in the data. The first step, defining the aesthetic mappings, requires specifications of how variables
in the data will be mapped to the visual properties of the plot. In ggmosaic, the aesthetic mappings
are transformed into a model formula using the R formula notation with the ~ operator. The formula
then determines what is represented in the mosaic plot, or how the joint distribution of the variables is
broken down into the marginal distribution and conditional distribution(s). Understanding how the
aesthetics translate into the model formula helps a user specify the correct aesthetics for the desired
plot. This section describes each of the aesthetics used in geom_mosaic(), some of which are unique to
ggmosaic, describes how the aesthetics are translated into the model formula, and provides examples
of the impact changes in the aesthetic mappings have on the final plot.

Conflicting with the infrastructure provided by ggplot2, mosaic plots do not have a one-to-one
mapping between a variable and the x or y axis. Instead, the grammar of graphics defines the
coordinate system of mosaic plots as a system based on recursive partitioning that can integrate
several variables (Wilkinson 1999). To accommodate the variable number of variables, the mapping to
x is created by the product() function. For example, the variables var1 and var2 are read in as x =
product(var1, var2). However, if only one variable is to be included, it does not need to be wrapped
in product(), and can be read in simply as x = var1. The product() function alludes to ggmosaic’s
predecessor productplots and to the joint distribution as the product of the conditional and marginal
distributions. The product function creates a special type of list that is evaluated internally and is
what allows us to integrate multiple variables into the mosaic plot.

In order to include a variable in the mosaic plot, it must be specified as an aesthetic. In geom_mosaic(),
the following aesthetics can be specified:

• x: select variables to add to the formula
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– declared as x = product(var1, var2, ...)

• alpha: add an alpha transparency to the rectangles of the selected variable

– unless the variable is already part of the formula, it is added explicitly in the formula in
the first position.

• fill: select a variable to determine the fill color of the rectangles

– unless the variable is already part of the formula, it is added explicitly in the formula in
the first position after the optional alpha variable.

• conds: select a variable to condition on

– declared as conds = product(cond1, cond2, ...)

• weight: select a weighting variable

The specified aesthetics are then translated into the formula, weight ~ alpha + fill + x | conds,
which determines what is to be represented in the mosaic plot and how to calculate the size of the
corresponding tiles and determine their placement. Understanding the ordering of the specified
aesthetics in the translation helps a user specify the correct aesthetics for the desired plot.

The minimal required aesthetics to create a mosaic plot is one variable mapped to the x aesthetic,
wrapped in the product() function. Without a defined weight aesthetic, all observations are assumed
to have equal weights, a weight of 1. In this minimal scenario, the resulting formula is 1 ~ x.

The weight aesthetic

A mosaic plot is constructed such that the area of each rectangle is proportional to the number
of observations that the tile represents. Without weighting, each row of a data set represents one
observation. Alternatively, the aesthetic weight is available to modify the interpretation of each row of
the data. For example, the weight aesthetic will need to be used with data that contains a variable that
supplies the number of observations for each row’s particular combination of levels. In this case, if the
weight aesthetic is left unused, the resulting mosaic plot will resemble the case of equal probabilities,
as can be seen in Figure 5.

# unweighted plot
flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
ggplot() +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

# weighted plot
flights_examp %>%
count(do_you_recline, rude_to_recline, name = "freq") %>%
ggplot() +
geom_mosaic(aes(weight = freq,

x = product(rude_to_recline),
fill = do_you_recline))

The weight aesthetic is also necessary with weighted data, such as weighted surveys. Otherwise,
the resulting mosaic plot may not be a faithful representation of the relationship in the data. Here,
weights serve to correct imbalances between the sample and the population.

The ordering of the variables

Because of a mosaic plot’s hierarchical construction, the ordering of the variables in the formula is
vital. While any order of the variables ultimately represents the same data, different variable orders
may better support different comparisons. Ideally, the comparison of interest is positioned along a
common scale, an easier perceptual task than comparing areas (Cleveland and McGill 1984). In the
simple case of two variables, with one an explanatory variable and the other considered the response,
the explanatory variable is best placed on the first split of the mosaic and the response variable as
the last split, those that occur within each of the tiles created by the first split. The code below and
corresponding mosaic plots in Figure 6 illustrate the change that occurs when the variables in the
formula are swapped.
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Figure 5: When using summarized data, a weighting aesthetic must be defined for the resulting mosaic
plot to remain a faithful representation of the data. The mosaic plot on the left contains nine equally
sized tiles for the nine combinations that result from the three levels of rude_to_recline crossed with
the three levels of do_you_recline. The mosaic plot on the right considers the frequency of those nine
combinations resulting in nine tiles proportional to the number of observations each tile represents.

# original order
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline))

# order reversed
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline, do_you_recline),

fill = do_you_recline))

The mosaic plots in Figure 6 represent the same joint distribution but are composed differently.
The original order, the plot on the left, shows that most of those who believe it is rude to recline never
recline their own seat. With the reversed order, we can see that of those who never recline their seats,
a roughly equal proportion consider reclining rude as those that do not. The difference highlights how
mosaic plots are more than a visualization of the joint distribution; mosaic plots are a visualization
of the product of the conditional distribution and marginal distribution, which results in the joint
distribution.

In the original order, x = product(do_you_recline, rude_to_recline), the joint distribution
is the product of the conditional distribution of do_you_recline given rude_to_recline and the
marginal distribution of rude_to_recline. With this order, we can address questions regarding
the marginal distribution of rude_to_recline, such as “what proportion of respondents believe it
is rude to recline?”, and questions regarding the conditional distribution of do_you_recline given
each response to rude_to_recline, such as “Is there an association between a passenger’s reclining
tendencies and their opinion reclining.

In contrast, x = product(rude_to_recline, do_you_recline), while resulting in the same joint dis-
tribution, is the product of the conditional distribution of rude_to_recline given do_you_recline and
the marginal distribution of do_you_recline. Here, we can compare the responses to rude_to_recline
within each response to do_you_recline, which reveals an interesting relationship between a passen-
ger’s perceived rudeness given their own inclination to recline. We can see that those that usually
recline their seats are more likely to not find reclining to be a rude behavior. Those that never re-
cline their seats, however, are evenly divided with their opinions on reclining. While it is easier to
estimate the proportion that never reclines in the reversed order, it is more challenging to decipher
what proportion of the respondents believe it is rude to recline, an artifact of the plot representing
rude_to_recline only through its conditional distribution given the responses to do_you_recline.

Ultimately, the preferred order of the variables depends on the comparisons of interest. To
(re)arrange the categories within a variable, the levels of the factor variable must be reordered before
using ggmosaic.
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Figure 6: While the mosaics represent the same data, each supports different comparisons. The mosaic
plot on the left emphasizes the effect rude_to_recline has on do_you_recline. The variable order
was reversed in the construction of the mosaic plot on the right resulting in a plot that emphasizes the
effect do_you_recline has on rude_to_recline.

The conds aesthetic

The formula setup of the plot can be further altered by electing to view a conditional distribution
rather than the full joint distribution. Conditioning can be used to better focus on the comparison
of interest either by removing relationships that are not of interest or positioning the comparison of
interest along a common scale (Wickham and Hofmann 2011; Cleveland and McGill 1984). When a
variable is mapped to the conds aesthetic, the mosaic plot is no longer represents the joint distribution,
but instead maps the conditional distribution.

Faceting splits the data into subsets and generates a plot for each subset. Faceting therefore
provides another method to accomplish conditioning. The result is the same as with the conds
aesthetic, but the formatting is altered. The formatting difference will be discussed in more detail later.
Figure 7 contains an example of each method of conditioning and is based on the code below.

# not conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

# conditioned with aesthetic mapping
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline,
conds = product(rude_to_recline)))

# conditioned with facets
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline)) +
facet_grid(cols = vars(rude_to_recline))

For two variables, as in Figure 7, the difference between conditioning and not conditioning
amounts to the difference between a mosaic plot and a stacked bar chart with a standardized height
of 1. That is, when conditioning on rude_to_recline, the plot no longer represents the marginal
distribution of rude_to_recline. Instead, as in a stacked bar chart, the plot only represents the
conditional distribution of do_you_recline given the responses to rude_to_recline.

In the case of three variables, relationships can be removed via conditioning to focus on one
relationship in particular and position that relationship along a common scale (Wickham and Hofmann
2011). Figure 8 provides an example of conditioning used to focus on the conditional distribution
of eliminate_reclining by removing the joint distribution of do_you_recline and rude_to_recline.
The example is based on the code below.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 60

never

sometimes

usually

D
o 

yo
u 

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Not Conditioned

never

sometimes

usually

D
o 

yo
u 

re
cl

in
e?

no somewhat yes
Is it rude to recline?

Conditioned via Aesthetic Mapping

never

sometimes

usually

D
o 

yo
u 

re
cl

in
e?

no somewhat yes

Is it rude to recline?

Conditioned via Facets

Figure 7: Mosaic plots typically depict the joint distribution (top left mosaic plot) but can instead
depict the conditional distribution using facetting (bottom left mosaic plot) or the ‘conds‘ aesthetic (top
right mosaic plot). Conditioning on rude_to_recline may provide a clearer view of the relationship
the responses to do_you_recline has with rude_to_recline. However, we lose information on the
marginal distribution of rude_to_recline, and the area of a tile is only comparable to the other tiles
within that same level of rude_to_recline.
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Figure 8: An example of using conditioning to focus on one relationship. The left mosaic plot represents
the joint distribution of reclining tendencies, the perceived rudeness of reclining, and the desire to
eliminate reclining, providing an overall picture. In the mosaic plot on the right, conditioning on
rude_to_recline and do_you_recline removes the representation of the joint distribution of reclining
tendencies and the perceived rudeness of reclining but provides a clearer view of the conditional
distribution of eliminate_reclining.

# not conditioned
ggplot(flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

# conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(do_you_recline, rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

The conditioning completed in Figure 8 provides a better view of how responses to eliminate_reclining
relate to do_you_recline and rude_to_recline responses. We can see that desires to eliminate reclin-
ing are less likely when the respondent reclines their seat. eliminate_reclining may have a stronger
association with responses to rude_to_recline, but that comparison is more difficult to make since it
is comparing areas rather than positions along a common scale.

When conditioning on multiple variables, it is again important to consider how the variables’
order impacts the plot. The two mosaic plots in Figure 9 display the same data, but the direction of the
final split is different. The orientation of the final split determines which comparisons are positioned
along a common scale.

# conditioned order 1
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(do_you_recline, rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

# conditioned order 2
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining),

conds = product(rude_to_recline, do_you_recline),
fill = do_you_recline,

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 62

never

sometimes

usually

D
o 

yo
u 

re
cl

in
e?

no
:n

o

ye
s:

no

no
:s

om
ew

ha
t

ye
s:

so
m

ew
ha

t

no
:y

es

ye
s:

ye
s

Eliminate reclining:Is it rude to recline?

no:never

yes:never

no:sometimes

yes:sometimes

no:usually

yes:usually

E
lim

in
at

e 
re

cl
in

in
g:

D
o 

yo
u 

re
cl

in
e?

ne
ve

r

so
m

et
im

es

us
ua

lly

Is it rude to recline?

Figure 9: The two mosaic plots both portray the distribution of eliminate_reclining conditioned
on do_you_recline and rude_to_recline, but the direction of the final split is different. The lefthand
plot is better suited to compare eliminate_reclining with do_you_recline, while the righthand plot
is better suited to compare eliminate_reclining with rude_to_recline. The comparison of interest
should influence the order of the conditioning variables.

alpha = eliminate_reclining)) +
coord_flip()

Figure 9 rearranges the conditioned variables’ order to gauge the strength of the relationship
between eliminate_reclining and rude_to_recline. For a fixed level of do_you_recline, the desire
to eliminate reclining correlates with an increasingly hostile stance on reclining. While this example
flips the orders of the conditioned variables and then uses coord_flip(), ggmosaic provides additional
methods of manually modifying the directions of the splits in the mosaic plot, which will be discussed
in the next section.

The defined set of aesthetic mappings impacts more than the look of the final graphic; it impacts
the analysis and the inquiries the plot can support. ggmosaic requires the x and cond aesthetics to be
defined using the product() function to accommodate a variable number of variables. The defined
set of aesthetic mappings will result in a model formula that will determine which of the potentially
numerous ways the mosaic plot will represent the decomposition of the joint distribution.

Parameters

Easy customization is necessary for mosaic plots to be effective. Additional aspects of the mosaic
plot that can be modified include the strategy used to partition the area into the tiles and the width
of the spacing between the tiles. ggmosaic provides the parameters divider and offset to facilitate
adjustments to the partitioning strategy and the spacing. This section demonstrates how to create
generalized mosaic plots modified by these parameters and how they can be used to highlight different
aspects of the data.

In ggmosaic, the desired type of partition is specified with the divider parameter (by setting
divider = " "). The area of a mosaic plot can be partitioned into bars or spines, and partitions can
be added horizontally or vertically, as shown in Figure 10 and the code below. When the area is
partitioned into bars, the height is proportional to value, and the width equally divides the space. Bars
can be arranged horizontally ("hbar") or vertically ("vbar"). Alternatively, space can be partitioned
into spines, where the section’s width is proportional to the value, and the height occupies full range.
Spines are space-filling and can be arranged horizontally ("hspine") or vertically ("vspine"). The
default divider for a single variable is "hspine".

# default / hspine
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline))
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# vspine
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "vspine")

# hbar
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "hbar")

# vbar
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

fill = do_you_recline),
divider = "vbar")

hspine vspine hbar vbar

Figure 10: Examples of the four ways each dimension in a mosaic plot can be partitioned. While the
values are easier to compare with the bars in this one-dimensional example, the advantages of spines
become more apparent in higher-dimensional examples.

In the case of multiple variables, a type of partition must be defined for each variable. The default
divider (divider = mosaic()) and the double-decker divider (divider = ddecker()) automatically
select a pre-defined pattern for the partitions. For example, if three variables are plotted, the default,
divider = mosaic(), partitions the plot with spines in alternating directions, beginning with a
horizontal spine, i.e. divider = c("hspine", "vspine", "hspine"). Alternatively, we can declare the
type of partition for each variable, e.g. divider = c("hbar", "vspine", "vspine"). The first partition
declared in the vector will be used last in the plot. As mentioned above, an unspecified divider leads
to the default divider = mosaic(), and the partition begins with a horizontal spine and alternate
directions for each subsequent variable. To begin with a vertical spine and alternate directions from
there, use divider = mosaic(direction = "v"). A preview of these options is available in Figure 11,
and the associated code is below.

# default / mosaic("h")
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining))

# mosaic("v")
ggplot(data = flights) +
geom_mosaic(aes(x = product(eliminate_reclining, do_you_recline,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = mosaic(direction = "v"))

# ddecker
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mosaic() (default) mosaic("v") ddecker() c("hbar", "hbar", "vspine")

Figure 11: When multiple variables are included, a partition type must be defined for each variable,
and the different partitions emphasize different relationships. The mosaic() and ddecker() functions
automatically define a partition for each variable, and are shown in the first and third mosaic plots,
respectively. mosaic("v"), shown in the second plot, is similar to mosaic("h"), but the coordinates are
flipped and inversed. Alternatively, a type of partition can be defined manually for each dimension.
ddecker() emphasizes the conditional distribution of the final variable. In the final plot, the divider
c("hbar", "hbar", "vspine") creates a plot similar to a faceted bar chart that supports compar-
isons similar to those supported by the double-decker plot but for relative values instead of relative
proportions.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, eliminate_reclining,

rude_to_recline),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = ddecker())

# c("hbar", "hbar", "vspine")
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline,

eliminate_reclining),
fill = do_you_recline,
alpha = eliminate_reclining),

divider = c("hbar", "hbar", "vspine"))

The divider parameter provides an additional mechanism for modifying the plot’s arrange-
ment to focus on a particular relationship by enabling a user to modify any dimension of the di-
vider to position the comparison of interest along a common scale. For instance, the double-decker
plot in Figure 11 helps compare the effects changes in eliminate_reclining and rude_to_recline
have on the responses to do_you_recline and how the relationship between do_you_recline and
eliminate_reclining differs for different levels of rude_to_recline.

ggmosaic adopts the procedure followed by Hartigan and Kleiner (1981), Friendly (2002), Theus
and Urbanek (2009), and Hofmann (2003), where an amount of space is allocated for each of the splits,
with subsequent divisions receiving a smaller amount of space. The splits between the categories of the
first variable are the widest and the splits decrease in width with each additional variable. Decreasing
the widths of the splits with each additional variable allows the categories to group together according
to the recursive strategy (Theus and Urbanek 2009) and the created spaces preserve the impact of small
counts (Friendly 2002). The effect becomes apparent when an empty group is included. In this case,
the spaces between the empty categories create a gap equal to the amount of space that is between
non-empty categories.

For variables with many categories, it may be of interest to decrease the size of the spacing between
the spines. The parameter offset can widen or shrink the size of the spacing between the categories
of the first variable and the subsequent splits then gradually decrease in width with each additional
variable. The default setting of this parameter is offset = 0.01, equivalent to 1% of the width of the
plotting area. The code below and the corresponding mosaic plots in Figure 12 demonstrate how to
use the offset parameter.

# increased spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),
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Figure 12: Three examples of how the spacing of the splits in the mosaic plot can be increased or
decreased with the offset parameter.

offset = 0.03)

# decreased spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),
offset = 0)

# default spacing
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

While the examples so far include up to three variables, there is no technical limit to the number of
variables in a mosaic plot. However, when many categorical variables are present, mosaic plots can
quickly become cluttered and difficult to interpret, and a judgment call must be made on the practical
limit to the number of variables included in the mosaic plot. This practical limit could depend on
many factors, including the number of categories within each variable, the viewing size of the result
mosaic plot, and the viewer’s familiarity with the data.

The customization offered via the ggmosaic parameters allows users to easily make complex
generalized mosaic plots that are more readable and simpler to interpret. The parameters provide
additional dimensions of freedom with the ability to switch between bars and spines and allow
users to highlight different aspects of high-dimensional categorical data to identify and communicate
interesting patterns.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 66

Figure 13: Users can create interactive mosaic plots using ggmosaic with plotly. With plotly, users
gain the ability to hover over a tile to see the names of the combination of levels and the number of
observations that the tile represents.

Interactivity

Having a geom designed for generalized mosaic plots allows for a ggplotly() hook to create interac-
tive mosaic plots with the plotly package, version 4.9.3 (Sievert et al. 2016). The ggplotly() function
translates most of the basic geoms bundled with the ggplot2 package. To expand the functionality
to custom geoms, we make use of the infrastructure provided in the plotly package that allows for
a translation. In ggplot2, many geoms are special cases of other geoms. For example, geom_line()
is equivalent to geom_path() once the data is sorted by the x variable. Because GeomMosaic can be
reduced to the lower-level geom GeomRect, we were able to write a method for the to_basic() generic
function in plotly (Sievert 2020). Figure 13 features an example of an interactive mosaic plot created
with ggplotly() and the corresponding code is below.

p1 <- ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline))

plotly::ggplotly(p1)

4 New features in ggmosaic version 0.3.3

The layered grammar implemented by ggplot2 provides a means to add additional layers (typically
resulting in additional geometric objects) to a graphic. The unique scale system in ggmosaic, however,
makes a correct placement of items in additional layers tricky. The x and y scales in a mosaic plot are
both numeric and categorical; the numeric scale determines the placement of additional objects on a
range between 0 and 1. Thus, to place an object in the center of each tile, it is necessary to know the
numeric values for the corners of each of the tiles. Version 0.3.3 of ggmosaic introduced two additional
geoms designed to build on stat_mosaic() and geom_mosaic() that bypass these calculations.

The two geoms, geom_mosaic_text() and geom_mosaic_jitter(), are provided to further enhance
the generalized mosaic plots created with ggmosaic. These features are designed to add labels
to the mosaic plot tiles and to view the tiles’ density via jittered points, and are implemented as
additional geom items that can layer on top of the original mosaic geom. Lastly, we also provide
a new minimal theme, theme_mosaic(), designed for mosaic plots. The theme removes items from
the plot background in order to reduce clutter and increase readability. Together, these features add
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new functionality to mosaic plots to increase their usability and facilitate more profound insights into
high-dimensional categorical data.

A labeling geom

The flexibility of generalized mosaic plots can lead to inadequate space around the perimeter of the
plot to label each of the categories for the variables displayed, making labeling a challenge. To ease
the burden on the axis labels, geom_mosaic_text() applies labels to the tiles. This section introduces
geom_mosaic_text(), its parameters, and its customization options with sample code and graphics.

One aspect of mosaic plots is that while the text and tick marks on the axes may be aligned with
the correct category levels on one side of the plot, the alignments may not be appropriate for category
levels on the opposite side of the plot. Thus, it may be advantageous to label the tiles to ensure the
group identities are apparent to a viewer. geom_mosaic_text() provides the means to place text, or
labels, in each of the tiles. geom_mosaic_text() has its counterpart, stat_mosaic_text(), perform the
necessary mapping calculations to place each tile’s label in the center of the tile. Figure 14 features
an example created with geom_mosaic() with geom_mosaic_text() added to place text in each of the
tiles corresponding to the tiles’ combination of categories. The associated code is below.

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)))
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Figure 14: In this example, a geom of labels is layered on top of the mosaic geom to produce a
mosaic plot with labels centered in each tile. Directly labeling each tile can alleviate issues caused by
inadequate space around the perimeter for labels.

As a default, the label text contains the combinations of category levels the tile represents. Alter-
native labels may be desired and are achievable through the label aesthetic. For example, to label
the tiles of a mosaic with counts, that variable can be mapped to the label aesthetic. The counts,
however, need not be contained in the underlying data before plotting; the function after_stat()
supports aesthetic mappings of variables calculated by the stat, in this case, the variable .wt calculated
in stat_mosaic_label() (see Figure 15 and the code below).

ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline),

label = after_stat(.wt)))

To help label the areas of the plots where labels may be densely packed and overlapping, ggmosaic
uses the ggplot2 extension package, ggrepel (Slowikowski 2021). The geoms provided by ggrepel help
ensure the text is readable by repelling the labels away from each other, data points, and edges of the
plot panel. In addition to the standard "Text" and "Label" geoms, ggmosaic’s use of ggrepel allows
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Figure 15: Variables calculated by the associated stat can be used for the label. In this example, .wt is
used to place the frequencies represented by the tile in the center of that tile, providing a glance at the
size of the data and removing potential guessing work aimed at comparing areas of unaligned tiles.

the use of the "TextRepel" and "LabelRepel" geoms within mosaic plots. Thus, geom_mosaic_text()
provides access to the features of four geoms. To access these four geoms, the parameters as.label
and repel are introduced; their use is demonstrated in Figure 16, and the code is below. Furthermore,
the parameter repel_params is available to use with either of the ggrepel options, and the parameter
check_overlap is available to use with the "Text" geom.

# default / text
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)))

# label
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

as.label = TRUE)

# repel text
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

repel = TRUE)

# repel label
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline, rude_to_recline),

fill = do_you_recline)) +
geom_mosaic_text(aes(x = product(do_you_recline, rude_to_recline)),

repel = TRUE, as.label = TRUE)

Mosaic plots with many categories can quickly become unreadable, geom_mosaic_text() helps alle-
viate congestion-related confusion by providing quick and effective labeling in various formats. The pa-
rameters repel and as.label provide access to three additional geoms. The geom geom_mosaic_text()
can add the text geom, the label geom, the ggrepel text geom, or the ggrepel label geom. The parame-
ters repel_params and check_overlap provide access to the parameters native to the ggrepel geoms
and label geoms, respectively. Labels add value to the mosaic plot as they ensure easy and correct
identification of the tiles, which, in turn, eases the visual analysis.
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Figure 16: Examples of the four geoms accessible to geom_mosaic_text(). The geoms, from left to
right and top to bottom, are "Text", "Label", "TextRepel", and "LabelRepel".
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A jittering geom

In constructing of a mosaic plot, the tile area is proportional to the number of observations that the
tile represents. In other words, the density of each tile in a mosaic plot is constant throughout the
plot. While the number of observations, or density, is typically masked in a mosaic plot, a user can
visualize these individual data points with geom_mosaic_jitter(). This added layer of visualization
unlocks a range of applications, from adding additional aesthetic mappings, both included in the
formula and not, to model diagnosis. Research suggests visualizations that incorporate individuals in
charts allow viewers to digest and understand probabilities and risks involved more easily (Galesic,
Garcia-Retamero, and Gigerenzer 2009; Ancker et al. 2006). These features further extend the ability of
generalized mosaic plots to communicate interesting features of high-dimensional categorical data.

When used in conjunction with geom_mosaic(), geom_mosaic_jitter() adds a layer of jittered
points superimposed on the mosaic plot. The number of points in each rectangle is equal to the number
of observations that the rectangle represents. The result is an even dispersal of points throughout the
one-by-one square mosaic plot.

When conditioning on a variable, geom_mosaic_jitter() provides a visual representation of the
differences between the conditional probability and the joint probability; the spread of the points
throughout the mosaic plot can help decipher a conditioning variable’s effect on a mosaic plot’s
construction. In Figure 17, conditioning on the variable rude_to_recline causes a change in the
density of the jittered points. The visual difference serves as an effective tool for teaching the concept.
The plots are based on the following lines of code:

# not conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline),

fill = do_you_recline),
alpha = 0.3) +

geom_mosaic_jitter(aes(x = product(rude_to_recline),
color = do_you_recline))

# conditioned
ggplot(data = flights) +
geom_mosaic(aes(x = product(do_you_recline),

conds = product(rude_to_recline),
fill = do_you_recline),

alpha = 0.3) +
geom_mosaic_jitter(aes(x = product(do_you_recline),

conds = product(rude_to_recline),
color = do_you_recline))

Including the jittered points generates an awareness of the size of the data, something customarily
masked in a mosaic plot. For smaller data sets such as the titanic data set, using geom_mosaic_jitter()
may encourage engagement as the points connect with the individuals in the data. This connection
may provide a more compelling and profound visual impact.

geom_mosaic_jitter() is more effective when the alpha argument is used in both geom_mosaic_jitter()
and geom_mosaic() to create semi-transparent jittered points and semi-transparent rectangles. An
alpha value of 0.3 for geom_mosaic() and an alpha value of 0.7 for geom_mosaic_jitter() is aesthet-
ically pleasing.

geom_mosaic_jitter() introduces an additional parameter, drop_level. The drop_level parame-
ter controls which level defines the color of the generated points. In other words, if a color aesthetic is
defined, should that variable be included in the formula? If the formula includes the color aesthetic,
drop_level = FALSE, the colored points are at the top level. If the formula does not include the color
aesthetic, drop_level = TRUE, color is added to the points one level down. Figure 18 provides an
example of these two options.

# drop level
ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline)),

alpha = 0.1) +
geom_mosaic_jitter(aes(x = product(rude_to_recline),

color = do_you_recline),
drop_level = TRUE)

# do not drop level
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Figure 17: This example highlights the differences between the conditional (right) and joint (left)
probability with the density of the jittered dots. When conditioning, the columns are equally sized,
and the jittered points condense into the leftmost column, previously the widest column, rather than
being evenly dispersed.

ggplot(data = flights) +
geom_mosaic(aes(x = product(rude_to_recline)),

alpha = 0.1) +
geom_mosaic_jitter(aes(x = product(rude_to_recline),

color = do_you_recline),
drop_level = FALSE)

An additional aesthetic, weight2, is implemented in geom_mosaic_jitter(). The weight2 aesthetic
allows the number of points generated within each tile to be different from the number of points the
cell represents.

While mosaic plots are typically drawn according to the observed values, they can be drawn
according to the model’s expected values.

flights_model %>% glimpse()

#> Rows: 9
#> Columns: 4
#> $ do_you_recline <fct> never, never, never, sometimes, sometimes, sometimes, ~
#> $ rude_to_recline <fct> no, somewhat, yes, no, somewhat, yes, no, somewhat, yes
#> $ Observed <int> 35, 81, 54, 198, 164, 11, 269, 36, 6
#> $ Expected <dbl> 100, 56, 14, 219, 123, 31, 183, 102, 26

Figure 19 displays the observed values on the left and the expected values from the independence
model on the right. The difference between the two plots represents the lack of fit. The plot is based
on the following lines of code:

flights_model %>%
gather("wt_type", "wt", Expected:Observed) %>%
ggplot() +
geom_mosaic(aes(weight = wt,

x = product(rude_to_recline),
fill = do_you_recline)) +

facet_wrap(vars(wt_type))

In Figure 19, the mosaic plot drawn according to the observed values represents the data space,
whereas the mosaic plot drawn according to the expected values represents the model space. Rather
than requiring two plots, jittering connects in one plot both the data space with the model space
highlighting the differences between the two.
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Figure 18: The parameter drop_level controls which level defines the colors of the generated points.
On the left, color is added to the points one level down, and a mixing of the colored points occurs. In
the plot on the right, the heights of the sorted points’ spaces represent the conditional distribution of
do_you_recline given rude_to_recline.

In Figure 20, the jittered points represent the observed values, while the tiles’ size represents
the expected values. We can evaluate the fit of the model according to how evenly the points
spread throughout the plot. For example, the overcrowded points seen in the leftmost bottom tile
communicate that the independence model underestimates the number of respondents that think it is
rude to recline and never recline their seats.

ggplot(flights_model) +
geom_mosaic(aes(weight = Expected,

x = product(do_you_recline, rude_to_recline)),
alpha = .2) +

geom_mosaic_jitter(aes(weight2 = Observed,
weight = Expected,
x = product(do_you_recline, rude_to_recline)))

The jitter geom, with its additional aesthetic mappings, provides a convenient visual aide that
can help solidify what the mosaic plot represents and help communicate the differences between
conditional and joint probabilities. The implementation of the jitter geom allows the user to extend the
functionality of mosaic plots beyond what has previously been available.

A custom theme

Mosaic plots have two main characteristics that set mosaic plots apart from other graphics. First, at
its foundation, a mosaic plot is a one-by-one square, and the area of each tile in the mosaic plot is
proportional to the frequency of the combination of categories that the tile represents. Second, mosaic
plots do not have a standard coordinate system. Rather, mosaic plots have a coordinate system based
on recursive partitioning that can integrate several variables. These two characteristics clash with the
default ggplot2 theme. For this reason, version 0.3.3 of ggmosaic includes a custom theme for mosaic
plots, theme_mosaic(), that can be added to the plot in the same manner as any other ggplot2 theme.
(Figure 21)

The plot grid lines suffer from the same issue as the axis labels; while the grid lines may be aligned
with the correct category levels on one side of the plot, the alignments may not be appropriate for
category levels on the opposite side of the plot. theme_mosaic() removes all grid lines but does not
remove the axis labels and ticks.

Seeking a more faithful representation of a mosaic plot, theme_mosaic() enforces a fixed aspect
ratio of 1. When faceting, the aspect ratio should be modified according to the number of panels
and the direction of the faceting. For example, in Figure 22, the faceting represents the responses
to do_you_recline conditioned on the responses to rude_to_recline. The conditioning variable,
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Figure 19: While mosaic plots are typically drawn according to the observed values, they can be drawn
according to the model’s expected values. The mosaic plot on the right displays the expected values
from the independence model, recognizable by the lattice structure. The differences in the heights
of the tiles in the observed data mosaic plot on the left reveal a strong association between the two
variables, and the differences between the two plots highlight the lack of model fit.

rude_to_recline, contains three categories, and the faceting represents a horizontal spine. Hence, the
aspect ratio is modified from 1 (the default) to 3.

The custom theme, theme_mosaic(), seeks to help a viewer extract the correct information from
the plot by providing a more suitable default aspect ratio and removing the axes lines that are not
always appropriate across the entire plot. As with any theme, however, theme_mosaic() is merely a
suggestion of a starting-off point, and it can be modified as seen fit for each individual plot.

5 Interactive exploratory mosaic plot building

Mosaic plots help identify interesting relationships in high-dimensional categorical data and are
an influential tool for exploratory data analysis (EDA). Because of the complexities that arise from
comparing many categories, it is often necessary to iterate through many of the potential mosaic plots
and obtain many views on the data. The addition of interactivity to the generation of mosaic plots can
ease this process and help mosaic plots become more valuable and insightful (Hofmann 2003).

To facilitate exploring data with mosaic plots, ggmosaic version 0.3.4 includes a Shiny application
that can be launched with the function ggmosaic_app() (Figure 23). This app accommodates structural
changes to the mosaic plot with the press of certain keystrokes or buttons provided in the side panel.
The app enables quick iterations between visualizations, providing a mechanism for discoveries and
achieving more profound insight.

The app is organized into two tabs (Figure 23), “MOSAIC PLOT” and “DATA”, setting the stage for
data set and variable selection. Creating a mosaic plot consists of several steps. Using the drop-down
menu provided on the left-hand side, the user first selects from one of the three data sets exported with
ggmosaic, the titanic data set, the happy data set, or the fly data set (the default selection). After
the data set is selected, the user can create mosaic plots by selecting various variables to include and
different dividers to be used, all completed with keystrokes or a set of buttons in the side panel.

The arrow keys (up, down, left, right) add, remove, or switch variables. The ordering of the
variables can be quickly modified, allowing the user to find a sensible order for the variables in a
streamlined manner. Additionally, the ‘h’, ‘v’, ‘s’, and ‘b’ keys switch the type of divider. The ‘h’ and
‘v’ keys switch between horizontal and vertical spines or bars, switching between ‘hspine’ and ‘vpsine’
or ‘hbar’ and ‘vbar’. Similarly, the ‘s’ and ‘b’ keys can be used to select to split the categories into
spines or bars, switching between ‘hspine’ and ‘hbar’ or ‘vspine’ and ‘vbar’. If the user does not press
the ‘h’, ‘v’, ‘s’, or ‘b’ keys, the ‘mosaic()’ divider is the default, corresponding to the default divider in
geom_mosaic(). The ‘h’, ‘v’, ‘s’, or ‘b’ keystrokes and buttons will only affect the top-level variable. To
modify the divider used on a lower-level variable, the user must backtrack via the down arrow key.
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Figure 20: In this example, the tiles of the mosaic plot are drawn according to the expected values. A
jitter geom representing the observed values is layered on top. The uneven dispersal of the points
indicates a lack of fit.
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Figure 21: This example highlights the differences between the custom theme (left) and the default
theme (right). The custom theme for mosaic plots seeks to minimize clutter by removing the plot
background and the grid lines.
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Figure 22: When using faceting, the aspect ratio might need to be adjusted according to the desired
outcome. The default (left) represents each facet as a 1-by-1 mosaic plot, whereas an aspect ratio of 3
(right) represents each facet as one equal-sized column within a 1-by-1 mosaic plot.

Figure 23: A snapshot of the Shiny application that can be launched with the function ggmosaic_app().
The Shiny app facilitates learning how to create mosaic plots. The user can explore one of three data
sets provided with the package with mosaic plots created and modified via keystrokes or buttons, and
no coding is required.
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The Shiny app accommodates a better understanding of the myriad of possible forms a mosaic
plot can take by accommodating a thorough search through the variables and structural changes to the
mosaic plot with the simple press of certain keystrokes. The app provides an exploratory setting for
visualizing many mosaic plots, and provide the user with the code necessary to recreate the selected
mosaic plot.

6 Summary

By bringing mosaic plots into the ggplot2 infrastructure, ggmosaic provides a highly customizable
framework for generalized mosaic plots with a familiar syntax. The latest release of ggmosaic
introduces novel uses of mosaic plots and exemplifies the opportunity the methods of visualizing
multidimensional categorical data have for growth.

This manuscript is based on version 0.3.3 of the ggmosaic package. It can be installed from CRAN.
The development version is available from the GitHub repository.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://github.com/haleyjeppson/ggmosaic


CONTRIBUTED RESEARCH ARTICLE 77

7 References

References

Ancker, Jessica S., Yalini Senathirajah, Rita Kukafka, and Justin B. Starren. 2006. “Design Features of
Graphs in Health Risk Communication: A Systematic Review.” Journal of the American Medical
Informatics Association 13 (6): 608–18. https://doi.org/10.1197/jamia.M2115.

Chang, Winston, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan
McPherson, Alan Dipert, and Barbara Borges. 2021. Shiny: Web Application Framework for r.
https://CRAN.R-project.org/package=shiny.

Cleveland, W. S., and R. McGill. 1984. “Graphical Perception: Theory, Experimentation and Applica-
tion to the Development of Graphical Methods.” Journal of the American Statistical Association 79
(387): 531–54. https://doi.org/10.1080/01621459.1984.10478080.

Emerson, John W. 1998. “Mosaic displays in S-PLUS: A general implementation and a case study.”
Statistical Computing and Graphics Newsletter 9 (1): 17–23.

Friendly, Michael. 2002. “A Brief History of the Mosaic Display.” Journal of Computational and Graphical
Statistics 11 (1): 89–107. https://doi.org/10.1198/106186002317375631.

———. 2016. “Working with categorical data with R and the vcd and vcdExtra packages.” In.
https://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf.

Galesic, Mirta, Rocio Garcia-Retamero, and Gerd Gigerenzer. 2009. “Using Icon Arrays to Com-
municate Medical Risks: Overcoming Low Numeracy.” Health Psychology 28 (2): 210–16. https:
//doi.org/10.1037/a0014474.

Hartigan, John A., and Beat Kleiner. 1981. “Mosaics for Contingency Tables.” In Computer Science and
Statistics: Proceedings of the 13th Symposium on the Interface, 268–73. Fairfax Station, VA: Interface
Foundation of North America, Inc. https://doi.org/10.1007/978-1-4613-9464-8_37.

———. 1984. “A Mosaic of Television Ratings.” The American Statistician 38: 32–35. https://doi.org/
10.1080/00031305.1984.10482869.

Hickey, Walt. 2014. “41 Percent of Fliers Think You’re Rude If You Recline Your Seat.” FiveThirtyEight.
http://fivethirtyeight.com/datalab/airplane-etiquette-recline-seat/.

Hofmann, Heike. 2003. “Constructing and Reading Mosaicplots.” Computational Statistics and Data
Analysis 43 (4): 565–80. https://doi.org/10.1016/S0167-9473(02)00293-1.

Hummel, Jürgen. 1996. “Linked Bar Charts: Analysing Categorical Data Graphically.” Computational
Statistics 11 (1): 23–33.

Kleiner, B., and J. A. Hartigan. 1981. “Representing Points in Many Dimensions by Trees and Castles.”
Journal of the American Statistical Association 76 (374): 260–69. https://doi.org/10.1080/01621459.
1981.10477638.

Kuhn, Max, Davis Vaughan, and Emil Hvitfeldt. 2022. Yardstick: Tidy Characterizations of Model
Performance. https://CRAN.R-project.org/package=yardstick.

Meyer, David, Achim Zeileis, and Kurt Hornik. 2020. Vcd: Visualizing Categorical Data. https:
//CRAN.R-project.org/package=vcd.

Oldford, Wayne, Erle Holgersen, Ben Lafreniere, and Tianlu Zhu. 2018. Eikosograms: The Picture of
Probability. https://CRAN.R-project.org/package=eikosograms.

Playfair, William, Howard Wainer, and Ian Spence. 2005. Playfair’s Commercial and Political Atlas and
Statistical Breviary. Cambridge University Press.

Sarkar, Deepayan. 2020. Lattice: Trellis Graphics for r. https://CRAN.R-project.org/package=lattice.
Sarkar, Deepayan, and Felix Andrews. 2016. latticeExtra: Extra Graphical Utilities Based on Lattice.

https://CRAN.R-project.org/package=latticeExtra.
Sievert, Carson. 2020. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. Chapman;

Hall/CRC. https://plotly-r.com.
Sievert, Carson, Chris Parmer, Toby Hocking, Scott Chamberlain, Karthik Ram, Marianne Corvellec,

and Pedro Despouy. 2016. Plotly: Create Interactive Web Graphics via ’Plotly.js’. https://CRAN.R-
project.org/package=plotly.

Slowikowski, Kamil. 2021. Ggrepel: Automatically Position Non-Overlapping Text Labels with ’Ggplot2’.
https://CRAN.R-project.org/package=ggrepel.

Theus, Martin, and Simon Urbanek. 2009. Interactive Graphics for Data Analysis: Principles and Examples.
Chapman & Hall/CRC Computer Science & Data Analysis. CRC Press.

United States Census office. 9th census, 1870, and Francis Amasa Walker. 1874. “Statistical atlas of the
United States based on the results of the ninth census, 1870 with contributions from many eminent
men of science and several departments of the government.” digitized version provided through
Library of Congress, https://www.loc.gov/item/05019329/.

Wickham, Hadley. 2010. “A Layered Grammar of Graphics.” Journal of Computational and Graphical
Statistics 19: 3–28. https://doi.org/10.1198/jcgs.2009.07098.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1197/jamia.M2115
https://CRAN.R-project.org/package=shiny
https://doi.org/10.1080/01621459.1984.10478080
https://doi.org/10.1198/106186002317375631
https://cran.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf
https://doi.org/10.1037/a0014474
https://doi.org/10.1037/a0014474
https://doi.org/10.1007/978-1-4613-9464-8_37
https://doi.org/10.1080/00031305.1984.10482869
https://doi.org/10.1080/00031305.1984.10482869
http://fivethirtyeight.com/datalab/airplane-etiquette-recline-seat/
https://doi.org/10.1016/S0167-9473(02)00293-1
https://doi.org/10.1080/01621459.1981.10477638
https://doi.org/10.1080/01621459.1981.10477638
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=eikosograms
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=latticeExtra
https://plotly-r.com
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=plotly
https://CRAN.R-project.org/package=ggrepel
https://www.loc.gov/item/05019329/
https://doi.org/10.1198/jcgs.2009.07098


CONTRIBUTED RESEARCH ARTICLE 78

Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2020. Ggplot2: Create Elegant Data
Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, and Heike Hofmann. 2011. “Product Plots.” IEEE Transactions on Visualization and
Computer Graphics 17 (12): 2223–30. https://doi.org/10.1109/tvcg.2011.227.

———. 2016. Productplots: Product Plots for r. https://CRAN.R-project.org/package=productplots.
Wilkinson, Leland. 1999. The Grammar of Graphics. Springer New York. https://doi.org/10.1007/

978-1-4757-3100-2.

Haley Jeppson
Department of Statistics
Iowa State University
2438 Osborn Dr
Ames, IA 50011
ORCiD: 0000-0003-2524-4063
hjeppson@iastate.edu

Heike Hofmann
Department of Statistics
Center for Statistics and Applications in Forensic Evidence
Iowa State University
2438 Osborn Dr
Ames, IA 50011
ORCiD: 0000-0001-6216-5183
hofmann@iastate.edu

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2
https://doi.org/10.1109/tvcg.2011.227
https://CRAN.R-project.org/package=productplots
https://doi.org/10.1007/978-1-4757-3100-2
https://doi.org/10.1007/978-1-4757-3100-2
https://orcid.org/0000-0003-2524-4063
mailto:hjeppson@iastate.edu
https://orcid.org/0000-0001-6216-5183
mailto:hofmann@iastate.edu


CONTRIBUTED RESEARCH ARTICLE 79

A Study in Reproducibility: The
Congruent Matching Cells Algorithm and
cmcR Package
by Joseph Zemmels, Susan VanderPlas, and Heike Hofmann

Abstract Scientific research is driven by our ability to use methods, procedures, and materials from
previous studies and further research by adding to it. As the need for computationally-intensive
methods to analyze large amounts of data grows, the criteria needed to achieve reproducibility,
specifically computational reproducibility, have become more sophisticated. In general, prosaic
descriptions of algorithms are not detailed or precise enough to ensure complete reproducibility of a
method. Results may be sensitive to conditions not commonly specified in written-word descriptions
such as implicit parameter settings or the programming language used. To achieve true computational
reproducibility, it is necessary to provide all intermediate data and code used to produce published
results. In this paper, we consider a class of algorithms developed to perform firearm evidence
identification on cartridge case evidence known as the Congruent Matching Cells (CMC) methods.
To date, these algorithms have been published as textual descriptions only. We introduce the first
open-source implementation of the Congruent Matching Cells methods in the R package cmcR. We
have structured the cmcR package as a set of sequential, modularized functions intended to ease the
process of parameter experimentation. We use cmcR and a novel variance ratio statistic to explore
the CMC methodology and demonstrate how to fill in the gaps when provided with computationally
ambiguous descriptions of algorithms.

1 Introduction

Forensic examinations are intended to provide an objective assessment of the probative value of a
piece of evidence. Typically, this assessment of probative value is performed by a forensic examiner
who visually inspects the evidence to determine whether it matches evidence found on a suspect.
The process by which an examiner arrives at their evidentiary conclusion is largely opaque and has
been criticized (President’s Council of Advisors on Sci. & Tech. 2016) because its subjectivity does
not allow for an estimation of error rates. In response, National Research Council (2009) pushed to
augment subjective decisions made by forensic examiners with automatic algorithms that objectively
assess evidence and can be explained during court testimony. In addition to the objectivity of these
algorithms, there is an additional benefit: we expect that an algorithm with the same random seed
run on the same data multiple times will produce the same answer; that is, that the results are
repeatable. This is extremely beneficial because it allows the prosecution and defense to come to the
same conclusion given objective evidence or data.

Repeatability and reproducibility

Repeatability in forensic labs is enforced primarily using standard operating procedures (SOPs), which
specify the steps taken for any given evaluation, along with the concentrations of any chemicals used,
the range of acceptable machine settings, and any calibration procedures required to be completed
before the evidence is evaluated. When labs use computational procedures, this SOP is augmented with
specific algorithms, which are themselves SOPs intended for use by man and machine. Algorithms are
generally described on two levels: we need both the conceptual description (intended for the human
using the algorithm) and the procedural definition (which provides the computer hardware with a
precise set of instructions). For scientific and forensic repeatability and reproducibility, it is essential
to have both pieces: the algorithm description is critical for establishing human understanding and
justifying the method’s use in court, but no less important is the computer code which provides
the higher degree of precision necessary to ensure the results obtained are similar no matter who
evaluates the evidence. As with SOPs in lab settings, the code parameters function like specific
chemical concentrations; without those details, the SOP would be incomplete and the results produced
would be too variable to be accepted in court.

The National Academy of Sciences, Engineering, and Medicine (2019) defines reproducibility as
“obtaining consistent computational results using the same input data, computational steps, methods,
code, and conditions of analysis.” This form of reproducibility requires that the input data, code,
method, and computational environment are all described and made available to the community. In
many situations, this level of reproducibility is not provided – not just in forensics but in many other
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applied disciplines. In forensics in particular, it is easier to list the exceptions: reproducible algorithms
have been proposed in sub-disciplines including DNA (Tvedebrink, Andersen, and Curran 2020;
Goor, Hoffman, and Riley 2020; Tyner et al. 2019), glass (Curran, Champod, and Buckleton 2000; Park
and Tyner 2019), handwriting (Crawford 2020), shoe prints (Park and Carriquiry 2020), and ballistic
evidence (Hare, Hofmann, and Carriquiry 2017; Tai and Eddy 2018).

We find it useful to instead consider a more inclusive hierarchy of reproducibility. Algorithms at
higher tiers of the hierarchy are more easily reproducible in the sense that fewer resources are required
to (re)-implement the algorithm.

Definition 1 Hierarchy of Reproducibility

Conceptual description The algorithm is described and demonstrated in a scientific publication.

Pseudocode The algorithm is described at a high level of detail with pseudocode implementation
provided, and results are demonstrated in a scientific publication.

Reproducible data The algorithm is described and demonstrated in a scientific publication, and
input data are available in supplementary material.

Comparable results The algorithm is described and demonstrated in a scientific publication, and
input data and numerical results are provided in supplementary material.

Full reproducibility The algorithm is described and demonstrated in a scientific publication,
and the input data, source code, parameter settings, and numerical results are provided in
supplementary material.

To aid in comprehension of an algorithm, it is useful to supplement conceptual descriptions with
pseudocode. However, a conceptual description and pseudocode alone do not contain sufficient
detail (e.g., parameter settings) to ensure computational reproducibility. Implementing algorithms
based on conceptual descriptions or pseudocode requires enumerating and testing possible parameter
choices which, depending on their complexity, can be a lengthy and expensive process. In contrast,
implementing fully reproducible algorithms requires only as much time as it takes to emulate the
original development environment. Commonly identified reasons for unreproducible results include
(1) ambiguity in how procedures were implemented, (2) missing or incomplete data, and (3) missing
or incomplete computer code to replicate all statistical analyses (Leek and Jager 2017). In particular,
for statistical algorithms which depend on input data, we find that full reproducibility depends on the
provision of both original data and any manual pre-processing applied to said data, as this manual
process is not reproducible by itself. In combination with the code, the algorithm description, and the
numerical results presented in the paper, it should be possible to fully reproduce the results of a paper.

In this paper, we demonstrate the importance of higher levels of reproducibility by examining
the Congruent Matching Cells (CMC) algorithm for cartridge case comparisons and developing an
open-source, fully reproducible version for general use in the forensics community.

The Congruent Matching Cells algorithm

A cartridge case is the portion of firearm ammunition that encases a projectile (e.g., bullet, shots, or
slug) along with the explosive used to propel the projectile through the firearm. When a firearm
is discharged, the projectile is propelled down the barrel of the firearm, while the cartridge case is
forced towards the back of the barrel. It strikes the back wall, known as the breech face, of the barrel
with considerable force, thereby imprinting any markings on the breech face onto the cartridge case
and creating the so-called breech face impressions. These markings are used in forensic examinations
to determine whether two cartridge cases have been fired by the same firearm. During a forensic
examination, two pieces of ballistic evidence are placed under a comparison microscope. Comparison
microscopes allow for a side-by-side comparison of two objects within the same viewfinder, as seen in
Figure 1. A pair of breech face images is aligned along the thin black line in the middle of the images.
The degree to which these breech face markings can be aligned is used to determine whether the two
cartridge cases came from the same source; i.e., were fired from the same firearm. These breech face
impressions are considered analogous to a firearm’s “fingerprint” left on a cartridge case (Thompson
2017).

The Congruent Matching Cells (CMC) pipeline is a collection of algorithms to process and compare
cartridge case evidence (Song 2013). Since its introduction, the pipeline and its extensions (Tong, Song,
and Chu 2015; Chen et al. 2017; Song et al. 2018) have shown promise in being able to differentiate
between matching and non-matching cartridge cases. However, so far the CMC pipelines have
only been introduced in the form of conceptual descriptions. Further, the cartridge case scans used
to validate the pipelines are only available in their raw, unprocessed forms on the NIST Ballistics
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Figure 1: A cartridge case pair with visible breech face impressions under a microscope. A thin line
can be seen separating the two views. The degree to which the markings coincide is used to conclude
whether the pair comes from the same source.

Toolmark Research Database (Zheng, Soons, and Thompson 2016). While it is clear that the creators of
the CMC pipeline have a working implementation, the wider forensic science community only has
access to conceptual descriptions of the pipeline and summary statistics describing its performance.
In our hierarchy of reproducibility, this puts the CMC algorithm somewhere between the conceptual
description and reproducible data stage: the steps are described but no code is available, and the raw
data are available but manual pre-processing steps make this raw data insufficient to replicate the
pipeline even with newly written code.

The development of the CMC algorithm seems to be representative of how many forensic algo-
rithms are developed: after an algorithm is introduced, researchers build upon the foundation laid
by the original algorithm in subsequent papers. These changes are often incremental in nature and
reflect a growing understanding of the algorithm’s behavior. While this cycle of scientific progress
certainly is not unique to forensic algorithms, given the gravity of the application it is imperative
that these incremental improvements not be unnecessarily delayed. As such, we believe that the
forensic community at-large would benefit greatly by establishing an open-source foundation for their
algorithms upon which additional improvements can be developed. Using open-source algorithms
are cheaper to use than writing one’s own code, enables the process of peer review by providing an
accessible benchmark, and helps other research groups or companies stay on the leading edge of
technology development (The Linux Foundation 2017).

Here, we describe the process of implementing the CMC pipeline for the comparison of marks on
spent cartridge cases, using the descriptions from two published papers, Song et al. (2014) and Tong,
Song, and Chu (2015). Our R package, cmcR, provides an open-source implementation of the CMC
pipeline. We use cmcR to illustrate how ambiguities in the textual description of an algorithm can
lead to highly divergent results. In particular, our implementation highlights an extreme sensitivity
to processing and parameter decisions that has not been discussed previously. Additionally, we
argue that our implementation can be used as a template for future implementations of forensic
pattern-matching algorithms to not only ensure transparency and auditability, but also to facilitate
incremental improvements in forensic algorithms.

In the remainder of this paper, we describe a general, reproducible, and open-source CMC pipeline
which encompasses those discussed in Song (2013), Song et al. (2014), and Tong, Song, and Chu (2015).
Song (2013) lays out the conceptual framework for the original CMC pipeline later implemented in
Song et al. (2014) and Tong et al. (2014). An improvement of the pipeline presented in Tong, Song, and
Chu (2015) and used in subsequent papers is referred to as the “High CMC” method (Chen et al. 2017).
However, it should be noted that what the authors refer to as the original and High CMC decision
rules are variations of one step of a larger CMC pipeline.

The cmcR package contains implementations designed for use with 3D topographical scans of the
original decision rule described in Song (2013) and Song et al. (2014) and the High CMC decision rule
described in Tong, Song, and Chu (2015). The source code to the full cmcR package is accessible at
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https://github.com/CSAFE-ISU/cmcR.

2 The CMC pipeline

In this section, we examine the process of implementing the CMC pipeline for automatic comparisons
of 3D cartridge case scans. At each step, we will discuss how we filled in the gaps of the original
description during the creation of cmcR.

All of the CMC pipelines can be broken down into three broad stages: (1) pre-processing, (2) cell-
based similarity feature extraction, and (3) application of a decision rule as illustrated in Figure 2. In the
following sections we break each of these stages further into a set of modular steps. One advantage of
modularizing these algorithms is that we can implement an algorithm as a set of sequential procedures.
This allows us to test new variations against the old implementation in a coherent, unified framework.

Figure 2: The stages of CMC pipelines. In the pre-processing stage, each scan is prepared for analysis,
removing extraneous information and noise. Then, each scan is broken up into cells, which are
numerically compared to cells in the other scan to determine an optimal alignment. Finally, each of the
scores arising from the cells in the second stage are compared to a reference distribution to determine
whether the scans originate from the same source or from different sources.

The primary difference between the two pipelines presented here, using the original and High
CMC decision rules, lies in how the decision rules are utilized to separate matching vs. non-matching
cartridge case pairs. In addition, there are also several small differences in the parameters used in the
pre-processing and comparison procedures.

Initial data

Digital microscopy is capable of precision measurements of surface topology at high resolutions.
Using a 3D microscope, we can obtain scans of breech face impressions at the micron level (1µm =
10−3mm = 10−6m). These 3D topological scans are used as input to automated comparison algorithms,
such as the CMC pipeline originally proposed in Song (2013). We will use the same data set referenced
in Song et al. (2014) and Tong, Song, and Chu (2015) to illustrate usage of the cmcR package. These 3D
scans of cartridge cases are available from the NIST Ballistics Toolmark Research Database (Zheng,
Soons, and Thompson 2016). The strings defined below refer to three cartridge case scans available on
the NBTRD from Fadul et al. (2011) and will be used throughout the remainder of this paper.

library(cmcR)

nbtrd_url <- "https://tsapps.nist.gov/NRBTD/Studies/CartridgeMeasurement"

x3p_ids <- c("DownloadMeasurement/2d9cc51f-6f66-40a0-973a-a9292dbee36d",
"DownloadMeasurement/cb296c98-39f5-46eb-abff-320a2f5568e8",
"DownloadMeasurement/8ae0b86d-210a-41fd-ad75-8212f9522f96")

file_names <- c("fadul1-1.x3p","fadul1-2.x3p","fadul2-1.x3p")

purrr::walk2(.x = x3p_ids,
.y = file_names,
.f = function(x3p_id,file_name){
download.file(url = file.path(nbtrd_url, x3p_id),

destfile = paste0("data/",file_name),mode = "wb")
})

Cartridge case scans are commonly stored in the ISO standard x3p file format (“Geometrical
product specifications (GPS) — Surface texture: Areal — Part 72: XML file format x3p” 2017). x3p
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is a container format which consists of a single surface matrix representing the height value of the
breech face surface and metadata concerning the parameters under which the scan was taken (size,
resolution, creator, microscope, microscopy software versions, etc.). The x3ptools package provides
functionality to work with the format in R (Hofmann et al. 2020).

Figure 3 shows the surface matrices of a known match (KM) pair of cartridge cases from a study
by Fadul et al. (2011). In this study, a total of 40 cartridge cases were scanned with a lateral resolution
of 6.25 microns (micrometers) per pixel. The surface matrices are approximately 1200 × 1200 pixels in
size corresponding to an area of about 3.8 × 3.8 mm2.

(a) (b)

Figure 3: Unprocessed surface matrices of the known-match Fadul 1-1 and Fadul 1-2 Fadul et al. 2011.
The observations in the corners of these surface matrices are artifacts of the staging area in which these
scans were taken. The holes on the interior of the primer surfaces are caused by the firing pin striking
the primer during the firing process. The region of the primer around this hole does not come into
uniform contact with the breech face of the firearm.

Only certain regions of a cartridge case contain identifying breech face impression markings.
Song (2013) defines “valid correlation regions” as regions where “the individual characteristics of the
ballistics signature are found that can be used effectively for ballistics identification.” Prior to applying
the CMC comparison procedure, cartridge scans must undergo some pre-processing to isolate the
valid correlation regions.

Pre-processing procedures

During the pre-processing stage, we apply sequential steps to prepare each cartridge case for analysis.
The goal of this process is to remove the edges and center of the scan which did not come into contact
with the breech face, as well as any artifacts of the scan and microscope staging which do not accurately
represent the breech face surface. The various iterations of the CMC algorithm describe different
variations of these steps. A summary of these steps is shown in Figure 4.

Translating the pre-processing steps in Figure 4 into an implementation requires the implementer
to decide between potentially many implicit parameter choices. For example, Table 1 compares the
pre-processing procedures as described in Song et al. (2014) to considerations that need to be made
when implementing the procedures. Depending on one’s interpretation of the description, there are
many possible implementations that satisfy the described procedure - in contrast, there was only one
implementation that led to the original results. While not explicitly mentioned in Song et al. (2014),
Song et al. (2018) indicates that the “trimming” of the unwanted regions of the scan is performed
manually. It is difficult to replicate manual steps as part of a reproducible pipeline; the best solution is
for the authors to provide intermediate data after the manual steps have been completed.

The pre-processing procedures are implemented via modularized functions of the form preProcess_*.
Modularizing the steps of the pre-processing procedures makes the overall process easier to under-
stand and allows for experimentation. Figure 5 shows an overview of the pre-processing framework
for the Fadul 1-1 breech face from reading the scan (left) to an analysis-ready region (right). For each
scan in Figure 5, eleven height value percentiles: the Minimum (0th), 1st, 2.5th, 10th, 25th, Median
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Figure 4: Overview of the set of pre-processing steps used in the CMC algorithms. Where a procedure
step is not discussed or explicitly not applied in the paper, the path traverses empty space.

Table 1: Description of pre-processing procedures from Song et al. 2014 vs. considerations that need to
be made when implementing these procedures. Each of these considerations requires the implementer
to decide between potentially many choices.

Description from Song et al. (2014) Implementation Considerations

"Trim off the inside firing pin surface and
other areas outside the breech face mark,
so that only breech face impression data
remain for correlation."

Removal of firing pin hole, primer exterior,
global trend, and primer roll-off

"Identify and remove dropouts or outliers." Definition of outliers, what "removal" of
dropouts or outliers means

"Apply a band-pass Gaussian regression
filter with 40 µm short cut-off length and
400 µm long cut-off length to remove low
frequency components, including surface
curvature, form error, waviness and high
frequency components which mainly arise
from the instrument noise."

Wavelength cut-off parameters, specific
implementation of the filter
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(50th), 75th, 90th, 97.5th, 99th, and Maximum (100th) are mapped to a purple-to-orange color gradient.
This mapping is chosen to highlight the extreme values in each scan.

Figure 5: Illustration of the sequential application of pre-processing steps implemented in cmcR.
We map the cartridge case surface height values to a divergent purple-white-orange color scale to
emphasize deviations from the median height value (represented here as 0 micrometers). At each
stage, the variability in height across the scan decreases as we emphasize the regions containing breech
face impressions.

We demonstrate usage of the preProcess_* functions on the Fadul 1-1 scan. Each code chunk is
followed up with an explanation of the functions used.

# Step (1)
fadul1.1 <- x3ptools::x3p_read("data/fadul1-1.x3p")

We begin with a 3D scan. Typically, we downsample scans to about 25% of their size by only
retaining every other row and column in the surface matrix. The breech faces in Fadul et al. (2011)
were initially scanned at a resolution of 3.125 µm per pixel. Downsampling reduces the resolution to
6.25 µm per pixel. Step (1) in Figure 5 shows an unprocessed breech face scan.

# Step (2)
fadul1.1_cropped <- fadul1.1 %>%
cmcR::preProcess_crop(region = "exterior") %>%
cmcR::preProcess_crop(region = "interior")

We then use a labeling algorithm to identify three major regions of the scan: the exterior of the
cartridge case primer, the breech face impression region of interest, and the firing pin impression
region in the center of the scan (Hesselink, Meijster, and Bron 2001; Barthelme 2019). We remove
observations outside of the breech face impression region (i.e., replaced with NA). The resulting breech
face scan, like the one shown in step (2) of Figure 5, is reproducible assuming the same parameters
are used. The preProcess_crop function removes the exterior and firing pin impression region on the
interior based on the region argument.

# Step (3)
fadul1.1_deTrended <- fadul1.1_cropped %>%
preProcess_removeTrend(statistic = "quantile", tau = .5, method = "fn")

In step (3), we remove the southwest-to-northeast trend observable in steps (1) and (2) of Figure 5 by
subtracting the estimated conditional median height value. The result of the preProcess_removeTrend
function the median-leveled breech face scan in step (3) of Figure 5.

# Step (4)
fadul1.1_processed <- fadul1.1_deTrended %>%
preProcess_gaussFilter(filtertype = "bp", wavelength = c(16,500)) %>%
x3ptools::x3p_sample(m = 2)
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Finally, we apply a band-pass Gaussian filter to the surface values to attenuate noise and unwanted
large-scale structure. Step (4) of Figure 5 shows the effect of the preProcess_gaussFilter function.
There is currently no determination or removal of outliers in the cmcR package’s pre-processing
procedures. Instead, we rely on the low-pass portion of the Gaussian filter to reduce the effects of any
high-frequency noise.

Figure 6 displays the processed Fadul 1-1 and Fadul 1-2 scans; the second matrix is processed
using the same parameters. Next, similarity features are extracted from a processed cartridge case pair
in the cell-based comparison procedure.

Fadul 1−1 Fadul 1−2

0% [0]

1% [0]

20% [0]

50% [0]

80% [0]

99% [0]

100% [0]

Rel. Height [µm]

Figure 6: Fadul 1-1 and Fadul 1-2 after pre-processing. Similar striated markings are now easier to
visually identify on both surfaces. It is now clearer that one of the scans needs to be rotated to align
better with the other.

“Correlation cell” comparison procedure

As described in Song (2013), breech face markings are not uniformly impressed upon a cartridge case
during the firing process. As such, only certain sections of the cartridge case are used in a comparison.
In the CMC pipeline as proposed by Song (2013) two scans are compared by partitioning one breech
face scan into a grid of so-called “correlation cells”. These cells are compared individually to their
best-matching counterpart on the other scan. If a large proportion of these correlation cells are highly
similar to their counterparts on the other breech face scan, this is considered as evidence that the
markings on the two cartridge cases were made by the same source. The number of highly similar
cells is defined as the CMC count C (Song 2013) of the breech-face comparison. The CMC count is
considered to be a more robust measure of similarity than the correlation calculated between two full
scans.

Figure 7 illustrates the cell-based comparison procedure between two cartridge case scans. The
scan on the left serves as the reference; it is divided into a grid of 8 × 8 cells.

Figure 8 shows the steps of the correlation cell comparison process in each of the papers as well as
the cmcR implementation. Each cell is paired with an associated larger region in the other scan. The
absolute location of each cell and region in their respective surface matrices remain constant. However,
the scan on the right is rotated to determine the rotation at which the two scans are the most “similar,”
as quantified by the cross-correlation function (CCF).

For real-valued matrices A and B of dimension M× N and P×Q, respectively, the cross-correlation
function, denoted (A ⋆ B) is defined as

(A ⋆ B)[m, n] =
M

∑
i=1

N

∑
j=1

A[i, j]B[(i + m), (j + n)],

where 1 ≤ m ≤ M + P − 1 and 1 ≤ n ≤ N + Q − 1. By this definition, the [m, n]th element of the
resulting M + P − 1 × N + Q − 1 CCF matrix quantifies the similarity between matrices A and B
for a translation of matrix B by m pixels horizontally and n pixel vertically. The index at which the
CCF attains a maximum represents the optimal translation needed to align B with A. The CCF as
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Figure 7: Illustration of comparing a cell in the reference cartridge case scan (left) to a larger region
in a questioned cartridge case scan (right). Every one of the cells in the reference cartridge case is
similarly paired with a region in the questioned cartridge case. To determine the rotation at which the
two cartridge cases align, the cell-region pairs are compared for various rotations of the questioned
cartridge case.

Figure 8: Each CMC implementation uses a slightly different procedure to obtain a similarity score
between two cartridge cases. Steps which are implemented with additional user-specified parameters
are shaded purple; steps which are described but without sufficient detail are shaded grey.
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defined need not be bounded between −1 and 1. However, it is common to normalize the CCF for
interpretability, and this is the convention adopted in the cmcR package.

Prior to calculating the CCF, the matrices A and B are standardized through subtraction of their
respective means and division by their respective standard deviations. This is referred to as the Areal
Cross-Correlation Function (ACCF) in some CMC papers (Ott, Thompson, and Song 2017). A direct
calculation of the CCF for breech face scans based on the definition above is prohibitively slow. While
computationally feasible alternatives exist, Song (2013) and other CMC papers do not specify the
algorithm used to calculate the CCF.

Published descriptions of the CMC algorithm do not detail how the CCF is calculated. In image
processing, it is common to use an implementation based on the Fast Fourier Transform (Brown 1992).
This implementation leverages the Cross-Correlation Theorem, which states that for matrices A and B,
the CCF can be expressed in terms of a frequency-domain pointwise product:

(A ⋆ B)[m, n] = F−1
(
F (A)⊙F (B)

)
[m, n],

where F and F−1 denote the discrete Fourier and inverse discrete Fourier transforms, respectively,
and F (A) denotes the complex conjugate (Brigham 1988). Because the product on the right-hand side
is calculated pointwise, we trade the moving sum computations from the definition of the CCF for two
forward Fourier transformations, a pointwise product, and an inverse Fourier transformation. The
Fast Fourier Transform (FFT) algorithm can be used to reduce the computational load considerably.
Our implementation of this FFT-based CCF calculation is adapted from the cartridges3D package (Tai
2021).

No computational shortcut comes without some trade-offs, though, and this FFT-based CCF
calculation is no different. The FFT does not tolerate missing values, and breech faces are not
continuous surfaces – all of the white regions in Figure 7 correspond to missing values. While
it is unclear how the CCF is implemented in the CMC papers, the cmcR package adopts the following
conventions:

• Only cells with a minimum proportion of non-missing pixels are assessed. This minimum
threshold differs across CMC papers (15% in Chen et al. (2017) vs. 10% in Song et al. (2018),
as shown in Figure 8), and is referenced but not specified in several other papers (Tong et al.
2014; Song et al. 2014; Chu, Tong, and Song 2013). The comparison_calcPropMissing function
computes the proportion of a matrix that is missing (NA-valued).

• Missing values are replaced with the overall mean value when the FFT-based CCF is computed
(using function comparison_replaceMissing).

• The optimal translation is determined using the FFT-based CCF (using comparison_fft_ccf).

• Based on the optimal translation determined from the FFT-based CCF, we compute the pairwise
complete CCF directly, avoiding any distortion of the CCF computation based on compensation
for missing values (using function comparison_cor).

All of the steps dealing with cell-based comparisons are implemented as functions of the form
comparison_*. Similar to the preProcess_* functions, the comparison_* functions can be chained
together through a sequence of pipes. Below, we use the comparison_allTogether function to perform
the entire cell-based comparison procedure in one call. The comparison procedure is performed twice:
once with Fadul 1-1 considered the “reference” scan divided into cells that are compared to the “target”
scan Fadul 1-2 and again with the roles reversed.

# Fill in most of the arguments first
comp_w_pars <- purrr::partial(.f = comparison_allTogether,

numCells = c(8,8), maxMissingProp = .85)

# Then, map the remaining values to theta
kmComparisonFeatures <- purrr::map_dfr(
seq(-30,30,by = 3),
~comp_w_pars(reference = fadul1.1, target = fadul1.2, theta = .))

kmComparisonFeatures_rev <- purrr::map_dfr(
seq(-30,30,by = 3),
~comp_w_pars(reference = fadul1.2, target = fadul1.1, theta = .))

The comparison_allTogether function consists of the following steps wrapped into a single
convenience function:
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Table 2: Example of output from correlation cell comparison procedure between Fadul 1-1 and Fadul
1-2 rotated by -24 degrees. Due to the large proportion of missing values that are replaced to compute
the FFT-based correlation, the pairwise-complete correlation is most often greater than the FFT-based
correlation.

Cell Index Pairwise-
comp. corr.

FFT-based
corr.

∆x ∆y θ

2, 7 0.432 0.228 -14 -33 -24

2, 8 0.464 0.176 9 -44 -24

3, 1 0.841 0.478 -7 15 -24

3, 8 0.699 0.277 -7 5 -24

4, 1 0.850 0.375 -4 11 -24

• comparison_cellDivision: Divide the reference scan into cells
• comparison_getTargetRegions: Extract regions associated with each reference cell from the

target scan
• comparison_calcPropMissing: Compute missing proportions and filter out cells with a propor-

tion of missing values above the threshold.
• comparison_standardizeHeights: Standardize height values
• comparison_replaceMissing: Replace missing values
• comparison_fft_ccf: Compute CCF and estimated translations using FFT
• comparison_alignedTargetCell: Extract a matrix from the target scan corresponding to the

region of the target scan to which the reference cell aligns
• cor: Calculate the pairwise-complete correlation between each cell pair

The comparison_allTogether is called repeatedly while rotating the target scan by a set of ro-
tation angles. When implementing the High CMC decision rule (Tong, Song, and Chu 2015), both
combinations of reference and target scan are examined (e.g. A-B and B-A).

Table 2 shows several rows of the data frame output of the comparison_allTogether function for
the comparison of Fadul 1-1 vs. Fadul 1-2 considering Fadul 1-1 as the reference scan. Although we
used a grid of 8 × 8 cells, there were only 26 cell-region pairs that contained a sufficient proportion of
non-missing values (15% in this example). The features derived from the correlation cell procedure
(CCFmax, ∆x, ∆y, θ) are then used to measure the similarity between scans.

Decision rule

For each cell on the reference scan, we calculate the translation (∆x, ∆y) and cross-correlation across
rotations by a set of angles θ of the target scan. The task is to determine whether multiple cells come to
a “consensus” on a particular translation and rotation. If such a consensus is reached, then there is
evidence that a true aligning translation and rotation exists and the cartridge cases match. The CMC
decision rules principally differ in how they identify consensus among the ∆x, ∆y, θ values. Here,
we describe the two pipelines implemented in the cmcR package: using the original decision rule
described in Song et al. (2014) and the High CMC decision rule proposed in Tong, Song, and Chu
(2015).

The Original CMC decision rule

This section briefly describes the decision rule used in the first CMC paper (Song 2013). For a thorough
explanation of the procedure, refer to the CMC Decision Rule Description vignette of the cmcR
package.

Let xi, yi, θi denote the translation and rotation parameters which produce the highest CCF for
the alignment of cell-region pair i, i = 1, ..., n where n is the total number of cell-region pairs con-
taining a sufficient proportion of non-missing values. Song (2013) propose the median as a con-
sensus (xref, yref, θref) across the cell-region pairs. Then, the distance between each (xi, yi, θi) and
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Table 3: Different thresholds for translation, rotation, and CCFmax are used across different papers.
The range in CCFmax is particularly notable.

Paper Translation Tx, Ty
(in pixels)

Rotation θ (in
degrees)

CCFmax

Song et al. (2014) 20 6 0.60

Tong et al. (2014) 30 3 0.25

Tong et al. (2015) 15 3 0.55

Chen et al. (2017) 20 3 0.40

Song et al. (2018) 20 6 0.50

(xref, yref, θref) is compared to thresholds Tx, Ty, Tθ , TCCF. A cell-region pair i is declared a “match” if
all of the following conditions hold:

|xi − xref| ≤ Tx, (1)

|yi − yref| ≤ Ty,

|θi − θref| ≤ Tθ ,

CCFmax,i ≥ TCCF.

The number of matching cell-region pairs, the “CMC count,” is used as a measure of similarity
between the two cartridge cases. Song et al. (2014) indicate that the thresholds Tx, Ty, Tθ , TCCF need to
be determined experimentally. Table 3 summarizes the thresholds used in various CMC papers.

Unlike the original CMC pipeline, the High CMC decision rule considers multiple rotations for
each cell-region pair.

The High CMC decision rule

For the High CMC decision rule, two scans are compared in both directions - i.e., each scan takes on
the role of the reference scan that is partitioned into a grid of cells. Tong, Song, and Chu (2015) claim
that some matching cell-region pairs “may be mistakenly excluded from the CMC count” under the
original decision rule because they attain the largest CCF at a rotation outside the range allowed by Tθ

“by chance.”

Tong, Song, and Chu (2015) introduce consensus values across all cell-region pairs for each rotation
angle θ and calculate a θ-dependent CMC count as the sum of matches observed. Under the High
CMC rule, a cell-region pair i is defined as a match conditional on a particular rotation θ if it satisfies
the following three conditions:

|xi,θ − xre f ,θ | ≤ Tx (2)

|yi,θ − yre f ,θ | ≤ Ty

CCFi,θ ≥ TCCF.

The θ-dependent CMC count, CMCθ , is defined as the sum of matching cell-region pairs.

Tong, Song, and Chu (2015) assert that for a truly matching cartridge case pair, the relationship
between θ and CMCθ should exhibit a “prominent peak” near the true rotation value. That is, CMCθ

should be largest when the scans are close to being correctly aligned. Further, non-matching pairs
should exhibit a “relatively flat and random [. . . ] pattern” across the CMCθ values.

To determine whether a “prominent peak” exists in the relationship between θ and CMCθ , Tong,
Song, and Chu (2015) consider an interval of rotation angles with large associated CMCθ values. Let
CMCmax = maxθ CMCθ be the maximum CMCθ count across all rotation angles. For τ > 0, define
S(τ) = {θ : CMCθ > (CMCmax − τ)} as the set of rotations with “large” CMCθ values. Tong, Song,
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and Chu (2015) consider the “angular range” as R(τ) = |maxθ S(τ)− minθ S(τ)|. If R(τ) is small,
then there is evidence that many cells agree on a single rotation and that the scans match. To arrive at
a CMC count similarity score, Tong, Song, and Chu (2015) suggest a value for τ of 1 and determine:

If the angular range of the “high CMCs” is within the range Tθ , identify the CMCs for
each rotation angle in this range and combine them to give the number of CMCs for this
comparison in place of the original CMC number.

If the angular range is larger than Tθ , we say that the cartridge case pair “fails” the High CMC
criteria and the original CMC number is used. The High CMC decision rule returns a CMC count at
least as large as the original decision rule.

Implementation of decision rules

In this section, we implement the decision rules in cmcR for both the original and High CMC decision
rules. For illustrative purposes, we consider a set of thresholds: Tx = Ty = 20, Tθ = 6, and TCCF = 0.5.

Decision rules in cmcR are implemented as functions of the form decision_*. In particular,
the decision_CMC function applies both the original and High CMC decision rules depending on
if the parameter τ is set. The code below demonstrates the use of decision_CMC on the features
kmComparisonFeatures, extracted from the comparison of scans Fadul 1-1 vs. Fadul 1-2. Convserely,
kmComparisonFeatures_rev contains the features from a comparison of Fadul 1-2 vs. Fadul 1-1. For
comparison, we also compute the CMCs under both decision rules for the comparison between the
non-match pair Fadul 1-1 and Fadul 2-1 (not shown to avoid redundancy).

kmComparison_cmcs <- kmComparisonFeatures %>% mutate(
originalMethodClassif =
decision_CMC(cellIndex = cellIndex, x = x, y = y, theta = theta,

corr = pairwiseCompCor, xThresh = 20, thetaThresh = 6,
corrThresh = .5),

highCMCClassif =
decision_CMC(cellIndex = cellIndex, x = x, y = y, theta = theta,

corr = pairwiseCompCor, xThresh = 20, thetaThresh = 6,
corrThresh = .5, tau = 1))

We use the cmcPlot function to visualize congruent matching cells (CMCs) and non-congruent
matching cells (non-CMCs). Figure 9 shows the CMCs and non-CMCs in blue and red, respectively,
based on the original decision rule. The (red) non-CMC patches are shown in the position where
the maximum CCF value in the target scan is attained. The top row shows 18 CMCs in blue and 8
non-CMCs in red when Fadul 1-1 is treated as the reference and Fadul 1-2 the target. The bottom row
shows the 17 CMCs and 13 non-CMCs when the roles are reversed. There is no discussion in Song
(2013) about combining the results from these two comparison directions, but Tong, Song, and Chu
(2015) propose using the minimum of the two CMC counts (17 in this example).

Similarly, CMCs and non-CMCs determined under the High CMC decision rule are shown in
Figure 10. Treating Fadul 1-1 and Fadul 1-2 as the reference scan yields 20 and 18 CMCs, respectively.
Combining the results as described above, the final High CMC count is 24.

In contrast, Figure 11 shows the CMC results for a comparison between Fadul 1-1 and a known
non-match scan, Fadul 2-1, under the exact same processing conditions. Only two cells are classified
as congruent matching cells under the original decision rule when Fadul 1-1 is the reference scan. No
cells are classified as CMCs in the other direction. While not shown, this pair fails the High CMC
criteria and thus was assigned 0 CMCs under the High CMC decision rule.

3 Discussion

Ambiguity in algorithmic descriptions

During the implementation process we encountered ambiguous descriptions of the various CMC
pipelines. We include the pre-processing and cell-based comparison procedures in the description of
CMC methodology to emphasize how sensitive the final results are to decisions made in these first two
steps. The pre-processing and cell-based comparison procedures are discussed only briefly, if at all, in
Song et al. (2014), Tong et al. (2014), Tong, Song, and Chu (2015), or Chen et al. (2017). However, the
results reported often indicate a sensitivity to these procedures. Ambiguities range from minor implicit
parameter choices (e.g., the convergence criteria for the robust Gaussian regression filter (Brinkman
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Figure 9: CMC results for the comparison between Fadul 1-1 and Fadul 1-2 using the original decision
rule. The two plots in the top row show the 18 CMCs when Fadul 1-1 is treated as the "reference"
cartridge case to which Fadul 1-2 (the "target") is compared. The second row shows the 17 CMCs when
the roles are reversed. Red cells indicate where cells not identified as congruent achieve the maximum
pairwise-complete correlation across all rotations of the target scan.
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Figure 10: Applying the High CMC decision rule to the comparison of Fadul 1-1 and Fadul 1-2 results
in 20 CMCs when Fadul 1-1 is treated as the reference (top) and 18 CMCs when Fadul 1-2 is treated as
the reference (bottom). Although the individual comparisons do not yield considerably more CMCs
than under the original CMC pipeline, Tong et al. (2015) indicate that the High CMCs from both
comparisons are combined as the final High CMC count (each cell is counted at most once). Combining
the results means that the High CMC decision rule tends to produce higher CMC counts than the
original CMC pipeline. In this example, the combined High CMC count is 24 CMCs.
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Figure 11: Applying both decision rules to the comparison between the non-match pair Fadul 1-1 and
Fadul 2-1 results in 2 CMCs under the original decision rule (shown above) and 0 CMCs under the
High CMC decision rule (not shown). The seemingly random behavior of the red cells exemplifies
the assumption that cells in a non-match comparison do not exhibit an observable pattern. Random
chance should be the prevailing factor in classifying non-match cells as CMCs.
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and Bodschwinna 2003)) to procedures that are fundamental to feature calculation (e.g., how the
cross-correlation is calculated). We bring up these ambiguities to demonstrate the difficulties that we
faced when translating the conceptual description of the CMC pipeline into an actual pipeline. While
many of these choices are unlikely to affect the results dramatically, we believe that any amount of
variability that exists solely because of uncertainty in how the method was intended to be implemented
is both unnecessary and dangerous in this application.

The only solution to such ambiguity is to enumerate, implement, and pare-down the possible
choices that could have been made to arrive to published results. Unsurprisingly, this process takes a
considerable amount of time and resources that would be better spent furthering the state of the field.
During the creation of the cmcR package, the process of re-implementing the comparison and decision
steps of the pipeline was fairly straightforward. Emulating the pre-processing procedures used, on the
other hand, took months of trial and error. Even after this effort, we still have no assurances that our
implementation would match the results of the original implementation if applied to other data sets.

In the next section, we describe the process of resolving these ambiguities in the CMC pipeline
descriptions. In doing so, we abstract a set of principles by which pipelines and results can be rendered
both computationally reproducible and more thoroughly understood.

CMC pattern matching pipeline

As described in the initial data section, the set of cartridge case scans from Fadul et al. (2011) is
commonly used to compare the performance of various classification methods (Song et al. 2014; Tong,
Song, and Chu 2015; Chen et al. 2017). This set consists of 40 cartridge cases and 780 total comparisons:
63 known match comparisons and 717 known non-match comparisons. Scans of each breech face
impression were taken with a Nanofocus Confocal Light Microscope at 10 fold magnification for a
nominal lateral resolution of 3.125 microns per pixel and published to the NBTRD (Zheng, Soons, and
Thompson 2016). We also use the Weller et al. (2012) data set of 95 cartridge cases for comparison.
For the Weller et al. (2012) dataset, we manually isolated the breech face impression regions using
the FiX3P software (accessible here: https://github.com/talenfisher/fix3p). We compare results
from the cmcR package to published results using processed scans available through the Iowa State
University DataShare repository (Zemmels, Hofmann, and Vanderplas 2022). Our goal is to show that
results obtained from cmcR are similar, at least qualitatively, to previously published results. However,
justification for any differences will ultimately involve educated guesses due to the closed-source
nature of the original implementations.

For each cartridge case pair, we calculate CMC counts under both the original and High CMC
decision rules. In practice, we classify a cartridge case pair as “matching” if its CMC count surpasses
some threshold; 6 CMCs being the generally accepted threshold in many papers (Tong, Song, and
Chu 2015; Song et al. 2018; Song 2013). However, this threshold has been shown to not generalize
well to all proposed methods and cartridge case data sets (Chen et al. 2017). We instead use an
optimization criterion to select parameters. In doing so, we will demonstrate the sensitivity of the
pipeline to parameter choice. Additionally, we introduce a set of principles designed to reduce the
need for brute-force searches across parameter settings when re-implementing algorithms without
accompanying code. Adherence to these principles yields not only computationally reproducible
results, but also improves a reader’s understanding of a proposed pipeline.

Processing condition sensitivity

Choosing threshold values Tx, Ty, Tθ , TCCF for translation, rotation, and maximum cross-correlation is
crucial in declaring a particular cell-region pair “congruent.” However, many combinations of these
thresholds yield perfect separation between the matching and non-matching CMC count distributions.
Therefore, choosing parameters based on maximizing classification accuracy does not lead to an
obvious, single set of parameters. We instead consider the ratio of between- and within-group
variability to measure separation between match and non-match CMC counts.

Let Cij denote the CMC count assigned to the jth cartridge case pair, j = 1, ..., ni from the ith group,
i = 1, 2 representing matches and non-matches, respectively. For each set of thresholds we calculate
the Variance Ratio r as:

r = r
(
Tx, Ty, Tθ , TCCF

)
=

∑2
i=1

(
Ci. − C..

)2

∑2
i=1

1
ni−1 ∑ni

j=1

(
Cij − Ci.

)2 ,

where Ci. denotes the within-group CMC count average and C.. denotes the grand CMC count
average. Greater separation between and less variability within the match and non-match CMC count
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distributions yields larger r values.

For example, Figure 12 shows results for the original decision rule and the High CMC decision rule
for parameters Tx = 20 = Ty pixels, TCCF = 0.5, and Tθ = 6. Despite both decision rules resulting in
separation between the matching and non-matching CMC count distributions, the High CMC decision
rule yields greater separation as evidenced by the larger r value.

Figure 12: CMC count relative frequencies under the original decision rule and the High CMC decision
rule for T∆x = 20 = T∆y pixels, TCCF = 0.5, and Tθ = 6 degrees. An AUC = 1 corresponds to perfect
separation of the match and non-match CMC count distributions. We can see that, for this set of
processing parameters, the High CMC decision rule yields higher CMC counts for known matches that
the original decision rule while known non-matches have the same distribution under both methods.

To explore the pipeline’s sensitivity, we consider five dimensions that have a demonstrable impact
on CMC counts:

• the decision rule (original or High CMC) used,

• whether the global trend is removed during pre-processing, and

• choice of congruency thresholds: translation Tx, Ty, rotation Tθ , and cross-correlation TCCF.

Choosing a single parameter setting that results in perfect identification is not enough to generally
understand the algorithm. Instead, we use the variance ratio r to identify promising ranges of
parameters. Figure 13 shows the value of the variance ratio under different parameter settings. We
see that the High CMC decision rule yields better separation than the original decision rule under
any parameter setting. The largest variance ratio values are achieved for thresholds Tx, Ty ∈ [10, 20],
Tθ = 6, and TCCF ∈ [0.4, 0.5]. Interestingly, considering Table 3, only the parameters used in Song et al.
(2018) fall into these ranges.

As shown in Figure 13, de-trending breech-scans in the pre-processing stage emerges as a critical
step to achieve good algorithmic results. This step is not explicitly mentioned in the written-word
descriptions of the algorithm in Song (2013), Tong et al. (2014), Tong, Song, and Chu (2015), Chen et
al. (2017), or Song et al. (2018), though it appears from their examples that it was used in the process.
Figure 13 also illustrates how breaking a pipeline up into modularized steps eases experimentation.
We will expand upon this idea in the next section.

We compare the best results from cmcR to results presented in previous papers. In particular, we
have calculated variance ratio statistics shown in Figure 14 based on CMC counts reported in Song
(2013), Tong et al. (2014), Tong, Song, and Chu (2015), Chen et al. (2017), and Song et al. (2018). The last
row in each facet shows the variance ratio values obtained from cmcR. We see that the implementation
provided in cmcR yields comparable results to previous CMC papers.

4 Conclusion

Reproducibility is an indispensable component of scientific validity (Goodman, Fanelli, and Ioannidis
2016). In this paper, we demonstrate at least three ways reproducibility can go awry: ambiguity
in procedural implementation, missing or incomplete data, and missing or incomplete code. In
forensics, many matching algorithms are commonly presented in the form of conceptual descriptions
with accompanying results. There is sound reasoning to this; conceptual descriptions are more easily
understood by humans compared to computer code. However, using the CMC pipelines as an example
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Figure 13: Variance ratio values are plotted for different parameter settings. High variance ratios are
indicative of a a good separation between CMC counts for known matching pairs and known-non
matching pairs. The High CMC decision rule generally performs better than the original decision
rule. Removing the trend during pre-processing has a major impact on the effectiveness of the CMC
pipeline. In this setting, translation thresholds Tx, Ty ∈ [15, 20], a rotation threshold Tθ = 6, and a CCF
threshold TCCF ∈ [0.4, 0.5] lead to a separation of results.

Figure 14: Variance ratios based on results reported in various CMC papers. The High CMC decision
rule tends to outperform the original decision rule. However, it should be emphasized that each paper
uses very different processing and parameter settings meaning the results are difficult to compare. The
values labeled "cmcR" show the largest variance ratio values for the original and High CMC decision
rules based on a limited grid search. These results indicate that the CMC pipeline implementation
provided in cmcR yields comparable results to previous CMC papers.
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we have observed the gaps that can exist when translating a conceptual description of an algorithm to
a genuine implementation. This is largely due to the fact that conceptual descriptions rarely detail
implicit parameter choices required to run an algorithm. Consequently, there are multiple choices
that are compatible with the description of an algorithm in a publication. This is dangerous in a
forensics context because if many parameter settings are valid but only a narrow range lead to the
same conclusion, it is entirely possible that witnesses for the prosecution and defense comef to different
conclusions. In order to prevent such misunderstandings, it is not enough to have guidelines for
parameter settings and/or a sensitivity study – it is also necessary to standardize the specific computer
code. The parameter values are only useful within the context of a single software package or pipeline.

These principles of open, accessible, interoperable code are also critical for a fair (in the legal
sense) justice system: the defense has access to the code to understand the evidence against them,
lawyers and examiners can assess the utility of the analysis method, and judges can determine whether
a method is admissible in court. Transparent and intuitive open-source algorithms, such as cmcR,
should be considered the gold standard in allowing the forensic science community to validate a
pipeline.

Our contribution to the CMC literature is the open-source implementation, which fills the gaps
in the human-friendly descriptions in the original papers. In addition, because we have structured
the cmcR implementation as a modular pipeline, it is easier to improve upon the CMC method
and document the effects of specific changes to the algorithm compared to previous versions. The
modularization creates an explicit framework to assess the utility and effectiveness of each piece of the
algorithm, and allows us to independently manipulate each step while monitoring the downstream
impact on the results. Additionally, it allows future collaborators to improve on pieces of the pipeline,
adding new options and improving the method without having to re-invent the wheel. Indeed,
re-implementing steps of the pipeline is at best a useful academic exercise and at worst a waste of time
and resources that could be spent actually improving the pipeline. Even after many months of trial
and error, although we have succeeded in obtaining qualitatively similar results on two data sets, it
is difficult to know whether our implementation will behave the same as previous implementations
on external data sets. Generalizability is an important assessment for any computational algorithm
(Vanderplas et al. 2020).

Our application is far from unique: some journals have adopted policies encouraging or requiring
that authors provide code and data sufficient to reproduce the statistical analyses, with the goal of
building a “culture of reproducibility” in their respective fields (Peng 2009, 2011; Stodden, Guo, and
Ma 2013). Peer-review and scientific progress in the truest sense requires that all pre-processed data,
code, and results be made openly available (Kwong 2017; Desai and Kroll 2017). Our experience
with the CMC algorithm suggests that these standards should be adopted by the forensic science
community, leveraging open-source ecosystems like R and software sharing platforms such as Github.
We firmly believe that the forensic community should not go only halfway, trading a subjective, human
black box for objective, proprietary algorithms that are similarly opaque and unauditable. Open,
fully reproducible packages like cmcR allow research groups to make incremental changes, compare
different approaches, and accelerate the pace of research and development.
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6 Computational details

sessionInfo()

#> R version 4.2.2 (2022-10-31)
#> Platform: aarch64-apple-darwin20 (64-bit)
#> Running under: macOS Ventura 13.0
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#>
#> Matrix products: default
#> BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
#>
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] patchwork_1.1.2 rgl_1.0.1 x3ptools_0.0.3 forcats_1.0.0
#> [5] stringr_1.5.0 dplyr_1.1.0 purrr_1.0.1 readr_2.1.3
#> [9] tidyr_1.3.0 tibble_3.1.8 ggplot2_3.4.0 tidyverse_1.3.2
#> [13] cmcR_0.1.11
#>
#> loaded via a namespace (and not attached):
#> [1] fs_1.6.1 lubridate_1.9.1 webshot_0.5.4
#> [4] httr_1.4.4 hunspell_3.0.2 tools_4.2.2
#> [7] backports_1.4.1 utf8_1.2.3 R6_2.5.1
#> [10] DBI_1.1.3 colorspace_2.1-0 withr_2.5.0
#> [13] readbitmap_0.1.5 gridExtra_2.3 tidyselect_1.2.0
#> [16] compiler_4.2.2 extrafontdb_1.0 textshaping_0.3.6
#> [19] quantreg_5.94 cli_3.6.0 rvest_1.0.3
#> [22] SparseM_1.81 xml2_1.3.3 labeling_0.4.2
#> [25] bookdown_0.32 scales_1.2.1 systemfonts_1.0.4
#> [28] digest_0.6.31 tiff_0.1-11 yulab.utils_0.0.6
#> [31] svglite_2.1.1 rmarkdown_2.20 base64enc_0.1-3
#> [34] jpeg_0.1-10 pkgconfig_2.0.3 htmltools_0.5.4
#> [37] extrafont_0.19 dbplyr_2.3.0 fastmap_1.1.0
#> [40] htmlwidgets_1.6.1 rlang_1.0.6 readxl_1.4.2
#> [43] rstudioapi_0.14 farver_2.1.1 gridGraphics_0.5-1
#> [46] generics_0.1.3 zoo_1.8-11 jsonlite_1.8.4
#> [49] googlesheets4_1.0.1 magrittr_2.0.3 kableExtra_1.3.4
#> [52] ggplotify_0.1.0 Matrix_1.5-3 Rcpp_1.0.10
#> [55] munsell_0.5.0 fansi_1.0.4 ggnewscale_0.4.8
#> [58] lifecycle_1.0.3 stringi_1.7.12 yaml_2.3.7
#> [61] MASS_7.3-58.2 grid_4.2.2 crayon_1.5.2
#> [64] lattice_0.20-45 cowplot_1.1.1 splines_4.2.2
#> [67] haven_2.5.1 hms_1.1.2 magick_2.7.3
#> [70] knitr_1.42 pillar_1.8.1 igraph_1.3.5
#> [73] codetools_0.2-19 imager_0.42.18 reprex_2.0.2
#> [76] glue_1.6.2 evaluate_0.20 rjtools_1.0.9.9001
#> [79] bmp_0.3 BiocManager_1.30.19 modelr_0.1.10
#> [82] vctrs_0.5.2 png_0.1-8 tzdb_0.3.0
#> [85] yesno_0.1.2 MatrixModels_0.5-1 Rttf2pt1_1.3.12
#> [88] cellranger_1.1.0 gtable_0.3.1 assertthat_0.2.1
#> [91] xfun_0.37 cranlogs_2.1.1 broom_1.0.3
#> [94] pracma_2.4.2 ragg_1.2.5 viridisLite_0.4.1
#> [97] survival_3.5-0 googledrive_2.0.0 gargle_1.3.0
#> [100] timechange_0.2.0 ellipsis_0.3.2
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Bootstrapping Clustered Data in R using
lmeresampler
by Adam Loy and Jenna Korobova

Abstract Linear mixed-effects models are commonly used to analyze clustered data structures. There
are numerous packages to fit these models in R and conduct likelihood-based inference. The imple-
mentation of resampling-based procedures for inference are more limited. In this paper, we introduce
the lmeresampler package for bootstrapping nested linear mixed-effects models fit via lme4 or nlme.
Bootstrap estimation allows for bias correction, adjusted standard errors and confidence intervals for
small samples sizes and when distributional assumptions break down. We will also illustrate how
bootstrap resampling can be used to diagnose this model class. In addition, lmeresampler makes it
easy to construct interval estimates of functions of model parameters.

Introduction

Clustered data structures occur in a wide range of studies. For example, students are organized within
classrooms, schools, and districts, imposing a correlation structure that must be accounted for in the
modeling process. Similarly, cholesterol measurements could be tracked across time for a number
of subjects, resulting in measurements being grouped by subject. Other names for clustered data
structures include grouped, nested, multilevel, hierarchical, longitudinal, repeated measurements,
and blocked data. The covariance structure imposed by clustered data is commonly modeled using
linear mixed-effects (LME) models, also referred to as hierarchical linear or multilevel linear models (J.
C. Pinheiro and Bates 2000; Raudenbush and Bryk 2002; Goldstein 2011).

In this paper, we restrict attention to the Gaussian response LME model for clustered data struc-
tures. For cluster i = 1, . . . , g, this model is expressed as

yi
(ni×1)

= Xi
(ni×p)

β
(p×1)

+ Zi
(ni×q)

bi
(q×1)

+ εi
(ni×1)

, (1)

where
εi ∼ N (0, σ2 Ini ), bi ∼ N (0, D), (2)

where εi and bi are independent for all i, εi is independent of εj for i ̸= j, and bi is independent of bj
for i ̸= j. Here, 0 denotes a vector of zeros of length ni (the number of observations in group i), Ini

denotes the ni-dimensional identity matrix, and D is a q × q covariance matrix.

In R, the two most popular packages to fit LME models are nlme (J. Pinheiro et al. 2017) and
lme4 (Bates et al. 2015). Both packages fit LME models using either maximum likelihood or restricted
maximum likelihood methods. These methods rely on the distributional assumptions placed on the
residual quantities, εi and bi, as well as large enough sample sizes. While some aspects of LME models
are quite robust to model misspecification, others are more sensitive, leading to biased estimates
and/or incorrect standard errors. Jacqmin-Gadda et al. (2007) found that inference for the fixed
effects is robust if the distribution of the error terms, εi, is non-normal or heteroscedastic, but that
variance components and random effects are biased if the covariance structure for the error terms is
misspecified. The fixed intercept is not robust to misspecification of the random effects (Hui, Müller,
and Welsh 2021). In addition, misspecification of the random effects distribution can lead to biased
estimates of the variance components and undercoverage of the confidence intervals (Hui, Müller,
and Welsh 2021). In cases where distributional assumptions are suspect, bootstrapping provides an
alternative inferential approach that leads to consistent, bias-corrected parameter estimates, standard
errors, and confidence intervals. Standard errors and confidence intervals for functions of model
parameters are also easily calculated using a bootstrap procedure, and are available even in situations
where closed-form solutions are not.

A variety of bootstrap procedures for clustered data and the LME model have been proposed and
investigated, including the cases (non-parametric) bootstrap, the residual bootstrap, the parametric
bootstrap, the random effect block (REB) bootstrap, and the wild bootstrap (Morris 2002; Carpenter,
Goldstein, and Rasbash 2003; Field and Welsh 2007; Chambers and Chandra 2013; Modugno and Gian-
nerini 2015). Van der Leeden, Meijer, and Busing (2008) provide a thorough overview of bootstrapping
LME models. Sánchez-Espigares and Ocaña (2009) developed a full-featured bootstrapping framework
for LME models in R; however, this package is not available and there appears to be no active develop-
ment. Consequently, R users must pick and choose packages based on what bootstrap procedure they
wish to implement. The parametric bootstrap is available in lme4 via the bootMer() function, as is the
semi-parametric (residual) bootstrap proposed by Morris (2002). The simulateY() function in nlmeU

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=lme4


CONTRIBUTED RESEARCH ARTICLE 104

(Galecki and Burzykowski 2013) makes it easy to simulate values of the response variable for lme
model objects; however, the user is required to implement the remainder of the parametric bootstrap.
Chambers and Chandra (2013) made R code available to implement their REB bootstrap as well as the
parametric bootstrap and the residual bootstrap proposed by Carpenter, Goldstein, and Rasbash (2003)
for LME models fix via nlme::lme(). Unfortunately, these functions were not published on CRAN
or extended to models fit via lme4::lmer(). Bootstrap procedures for specific inferential tasks have
also been implemented. The parametric bootstrap has been implemented to carry out likelihood ratio
tests for the presence of variance components in RLRsim (Scheipl, Greven, and Kuechenhoff 2008).
pbkrtest (Halekoh and Højsgaard 2014) provides a Kenward-Roger approximation for performing
F-tests using a parametric bootstrap approach for LME models and generalized LME models. rptR
uses the parametric bootstrap to estimate repeatabilities for LME models (Stoffel, Nakagawa, and
Schielzeth 2017). Finally, constrained inference for LMEs using the residual bootstrap is implemented
in CLME (Farnan, Ivanova, and Peddada 2014).

In this paper, we introduce the lmeresampler package which implements a suite of bootstrap
methods for LME models fit using either nlme or lme4 in a single package. lmeresampler provides
a unified bootstrap() command to reduce cognitive load on the user and also provides access to
procedures that were not previously available on CRAN. In the next section, we will clarify some
notation and terminology for LME models. In Bootstrap procedures for clustered data, we provide
an overview of the bootstrap methods implemented in lmeresampler. We then give an Overview
of lmeresampler, discuss a variety of Example applications for LME models, and show how to
Bootstrapping in parallel works in lmeresampler. We conclude with a Summary and highlight areas
for future development.

Bootstrap procedures for clustered data

In lmeresampler, we implement five bootstrap procedures for clustered data: a cases (i.e., nonparam-
teric) bootstrap, a residual bootstrap (i.e., semiparametric), a parametric bootstrap, a wild bootstrap,
and a block bootstrap. In this section, we provide an overview of these bootstrap approaches. Our
discussion focuses on two-level models, but procedures generalize to higher-level models unless
otherwise noted.

The cases bootstrap

The cases bootstrap is a fully non-parametric bootstrap that resamples the clusters in the data set to
generate bootstrap resamples. Depending on the nature of the data, this resampling can be done only
for the top-level cluster, only at the observation-level within a cluster, or at both levels. The choice
of the exact resampling scheme should be dictated by the way the data were generated, since the
cases bootstrap generates new data by mimicking this process. Van der Leeden, Meijer, and Busing
(2008) provide a cogent explanation of how to select a resampling scheme. To help ground the idea of
resampling, consider a two-level hierarchical data set where students are organized into schools.

One version of the cases bootstrap is implemented by only resampling the clusters. This version of
the bootstrap is what Field and Welsh (2007) term the cluster bootstrap and Goldstein (2011) term the
non-parametric bootstrap. We would choose this resampling scheme, for example, if schools were
chosen at random and then all students within each school were observed. In this case, the bootstrap
proceeds as follows:

1. Draw a random sample, with replacement, of size g from the clusters.
2. For each selected cluster, k, extract all of the cases to form the bootstrap sample

(
y∗

k , X∗
k , Z∗

k
)
.

Since entire clusters are sampled, the total sample size may differ from the that of the original
data set.

3. Refit the model to the bootstrap sample and extract the parameter estimates of interest.
4. Repeat steps 1–3 B times.

An alternative version of the cases bootstrap only resamples the observations within clusters, which
makes sense in our example if the schools were fixed and students were randomly sampled within
schools.

1. For each cluster i = 1, . . . , g, draw a random sample of the rows for cluster i, with replacement,
to form the bootstrap sample

(
y∗

i , X∗
i , Z∗

i
)
.

2. Refit the model to the bootstrap sample and extract the parameter estimates of interest.
3. Repeat steps 1–2 B times.
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A third version of the cases bootstrap resamples both clusters and cases within clusters. This is what
Field and Welsh (2007) term the two-state bootstrap. We would choose this resampling scheme if both
schools and students were sampled during the data collection process.

All three versions of the case bootstrap are implemented in lmeresampler. We explain how the
resampling is specified in our Overview of lmeresampler. Regardless of which version of the cases
bootstrap you choose, it requires the weakest conditions: it only requires that the hierarchical structure
in the data set is correctly specified.

The parametric bootstrap

The parametric bootstrap simulates random effects and error terms from the fitted distributions to
form bootstrap resamples. Consequently, it requires the strongest conditions—that is, the parametric
bootstrap assumes that the model, as specified by Equations (1) and (2), is correctly specified.

Let β̂, D̂, and σ̂2 be maximum likelihood or restricted maximum likelihood estimates of the fixed
effects and variance components from the fitted model. The parametric bootstrap is then implemented
through the following steps:

1. Simulate g error term vectors, e∗i , of length ni from N
(
0, σ̂2 Ini

)
.

2. Simulate g random effects vectors, b∗i , from N
(

0, D̂
)

.

3. Generate bootstrap responses y∗
i = Xi β̂ + Zib∗i + e∗i .

4. Refit the model to the bootstrap responses and extract the parameter estimates of interest.
5. Repeat steps 2–4 B times.

The residual bootstrap

The residual bootstrap resamples the residual quantities from the fitted LME model in order to
generate bootstrap resamples. There are three general types of residuals for LME models (Haslett and
Haslett 2007; Singer, Rocha, and Nobre 2017). Marginal residuals correspond to the errors made using
the marginal predictions, r̂i = yi − ŷi = yi − Xi β̂. Conditional residuals correspond to the errors
made using predictions conditioned on the clusters, êi = yi − ŷi|bi = yi − Xi β̂ − Zi b̂i. The predicted

random effects are the last type of residual quantity and are defined as b̂i = D̂Z′
iV̂

−1
i

(
yi − Xi β̂

)
where V̂i = ZiD̂Z′

i + σ̂2 Ini .

A naive implementation of the residual bootstrap would draw random samples, with replacement,
from the estimated conditional residuals and the best linear unbiased predictors (BLUPS); however,
this will consistently underestimate the variability in the data because the residuals are shrunken
toward zero (Morris 2002; Carpenter, Goldstein, and Rasbash 2003). Carpenter, Goldstein, and Rasbash
(2003) solve this problem by “reflating” the residual quantities so that the empirical covariance matrices
match the estimated covariance matrices prior to resampling:

1. Fit the model and calculate the empirical BLUPs, b̂i, and the predicted conditional residuals, êi.

2. Mean center each residual quantity and reflate the centered residuals. Only the process to reflate
the predicted random effects is discussed below, but the process is analogous for the conditional
residuals.

i. Arrange the random effects into a g × q matrix, where each row contains the predicted
random effects from a single group. Denote this matrix as Û. Define Γ̂ = Ig ⊗ D̂, the block
diagonal covariance matrix of Û.

ii. Calculate the empirical covariance matrix as S = Û ′Û/g. We follow the approach of
Carpenter, Goldstein, and Rasbash (2003), dividing by the number of groups, g, rather
than g − 1.

iii. Find a transformation of Û, Û∗ = Û A, such that Û∗′Û∗/g = Γ̂. Specifically, we will
find A such that A′Û ′Û A/g = A′SA = Γ̂. The choice of A is not unique, so we use the

recommendation given by Carpenter, Goldstein, and Rasbash (2003): A =
(

LD L−1
S

)′
where LD and LS are the Cholesky factors of Γ̂ and S, respectively.

3. Draw a random sample, with replacement, from the set {u∗
i } of size g, where u∗

i is the ith row
of the centered and reflated random effects matrix, Û∗.

4. Draw g random samples, with replacement, of sizes ni from the set of the centered and reflated
conditional residuals, {e∗i }.
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5. Generate the bootstrap responses, y∗
i , using the fitted model equation: y∗

i = Xi β̂ + Ziû∗
i + e∗i .

6. Refit the model to the bootstrap responses and extract the parameter estimates of interest.

7. Repeat steps 3–6 B times.

Notice that the residual bootstrap is a semiparametric bootstrap, since it depends on the model
structure (both the mean function and the covariance structure) but not the distributional conditions
(Morris 2002).

The random-effects block bootstrap

Another semiparametric bootstrap is the random effect block (REB) bootstrap proposed by Chambers
and Chandra (2013). The REB bootstrap can be viewed as a version of the residual bootstrap where
conditional residuals are resampled from within clusters (i.e., blocks) to allow for weaker assumptions
on the covariance structure of the residuals. The residual bootstrap requires that the conditional
residuals are independent and identically distributed, whereas the REB bootstrap relaxes this to only
require that the covariance structure of the error terms is similar across clusters. In addition, the REB
bootstrap utilizes the marginal residuals to calculate non-parametric predicted random effects rather
than relying on the model-based empirical best linear unbiased predictors (EBLUPS). Chambers and
Chandra (2013) developed three versions of the REB bootstrap, all of which have been implemented in
lmeresampler. We refer the reader to Chambers and Chandra (2013) for a discussion of when each
should be used. It’s important to note that at the time of this writing, that the REB bootstrap has only
been explored and implemented for use with two-level models.

REB/0 The base algorithm for the REB bootstrap (also known as REB/0) is as follows:

1. Calculate non-parametric residual quantities for the model.

a. Calculate the marginal residuals for each group, r̂i = yi − Xi β̂.
b. Calculate the non-parametric predicted random effects, b̃i =

(
Z′

i Zi
)−1 Z′

iri.
c. Calculate the non-parametric conditional residuals using the residuals quantities obtained

in the previous two steps, ẽi = r̂i − Zi b̃i.

2. Take a random sample, with replacement, of size g from the set {b̃i}. Denote these resampled
random effects as b̃∗i .

3. Take a random sample, with replacement, of size g from the cluster ids. For each sampled
cluster, draw a random sample, with replacement, of size ni from that cluster’s vector of error
terms, ẽi.

4. Generate bootstrap responses, y∗
i , using the fitted model equation: y∗

i = Xi β̂ + Zi b̃∗i + ẽ∗i .
5. Refit the model to the bootstrap sample and extract the parameter estimates of interest.
6. Repeat steps 2–5 B times.

REB/1 The first variation of the REB bootstrap (REB/1) zero centers and reflates the residual quanti-
ties prior to resampling in order to satisfy the conditions for consistency (Shao and Tu 1995). This is
the same process outlined in Step 2 of the residual bootstrap outlined above.

REB/2 The second variation of the REB bootstrap (REB/2 or postscaled REB) addresses two issues:
potential non-zero covariances in the joint bootstrap distribution of the variance components and
potential bias in the parameter estimates. After the REB/0 algorithm is run, the following post
processing is performed:

Uncorrelate the variance components. To uncorrelate the bootstrap estimates of the variance
components produced by REB/0, Chambers and Chandra (2013) propose the following procedure:

1. Apply natural logarithms to the bootstrap distribution of each variance component and form
the following matrices. Note that we use ν to denote the total number of variance components.

• S∗: a B × ν matrix formed by binding the columns of these distributions together
• M∗: a B × ν matrix where each column contains the column mean from the corresponding

column in S∗

• D∗: a B × ν matrix where each column contains the column standard deviation from the
corresponding column in S∗
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2. Calculate C∗ = cov (S∗).

3. Calculate L∗ = M∗ + {(S∗ − M∗)C∗−1/2} ◦ D∗, where ◦ denotes the Hadamard (elementwise)
product.

4. Exponentiate the elements of L∗. The columns of L∗ are then uncorrelated versions of the
bootstrap variance components.

Center the bootstrap estimates at the original estimate values. To correct bias in the estimation
of the fixed effects, apply a mean correction. For each parameter estimate, β̂k, adjust the bootstrapped

estimates, β̂∗
k as follows: β̃∗

k = β̂k1B + β̂∗
k − avg

(
β̂∗

k

)
. To correct bias in the estimation of the vari-

ance components, apply a ratio correction. For each estimated variance component , σ̂2
v , adjust the

uncorrelated bootstrapped estimates, σ̂2∗
v as follows: σ̃2∗

v = σ̂2∗
v ◦ {σ̂2

v /avg
(
σ̂2∗

v
)
}

The wild bootstrap

The wild bootstrap also relaxes the assumptions made on the error terms of the model, allowing
heteroscedasticity both within and across groups. The wild bootstrap is well developed for the
ordinary regression model (Liu 1988; Flachaire 2005; Davidson and Flachaire 2008) and Modugno and
Giannerini (2015) adapt it for the nested LME model.

To begin, we can re-express model (1) as

yi = Xiβ + vi, where vi = Zibi + εi. (3)

The wild bootstrap proceeds as follows:

1. Draw a random sample, w1, w2, . . . , wg, from an auxiliary distribution with mean zero and unit
variance.

2. Generate bootstrap responses using the re-expressed model equation (3): y∗
i = Xi β̂ + ṽiwj,

where ṽi is a heteroscedasticity consistent covariance matrix estimator. Modugno and Giannerini
(2015) suggest using what Flachaire (2005) calls HC2 or HC3 in the regression context:

HC2 : ṽi = diag (Ini − Hi)
−1/2 ◦ ri (4)

HC3 : ṽi = diag (Ini − Hi) ◦ ri, (5)

where Hi = Xi
(
X ′

i Xi
)′ X ′

i , the ith diagonal block of the orthogonal projection matrix, and ri is
the vector of marginal residuals for group i.

3. Refit the model to the bootstrap sample and extract the parameter estimates of interest.

4. Repeat steps 1–3 B times.

Five options for the auxiliary distribution are implemented in lmeresampler:

• The two-point distribution proposed by Mammen (1993) takes value wi = −(
√

5 − 1)/2 with
probability p = (

√
5 + 1)/(2

√
5) and wi = (

√
5 + 1)/2 with probability 1 − p.

• The two-point Rademacher distribution places equal probability on wi = ±1.

• The six-point distribution proposed by Webb (2013) places equal probability on wi = ±
√

1/2,±1,±
√

3/2.

• The standard normal distribution.

• The gamma distribution with shape parameter 4 and scale parameter 1/2 (Liu 1988) that is
centered to have mean zero. w∗

i are randomly sampled from the gamma distribution, and then
centered via wi = w∗

i − 2.

Modugno and Giannerini (2015) found the Mammen distribution to be preferred based on a Monte
Carlo study, but only compared it to the Rademacher distribution.

Overview of lmeresampler

The lmeresampler package implements the five bootstrap procedures outlined in the previous section
for Gaussian response LME models for clustered data structures fit using either nlme (J. Pinheiro et al.
2017) or lme4. The workhorse function in lmeresampler is
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Bootstrap Function name Required arguments

Cases case_bootstrap model,.f,type,B,resample,orig_data,.refit
Residual resid_bootstrap model,.f,type,B,orig_data,.refit
REB reb_bootstrap model,.f,type,B,reb_type,orig_data,.refit
Wild wild_bootstrap model,.f,type,B,hccme,aux.dist,orig_data,.refit
Parametric parametric_bootstrap model,.f,type,B,orig_data,.refit

Table 1: Summary of the specific bootstrap functions called by ‘bootstrap()’ and their required
arguments.

bootstrap(model, .f, type, B, resample = NULL, reb_type = NULL, hccme, aux.dist,
orig_data, .refit)

The four required parameters to bootstrap() are:

• model, an lme or merMod fitted model object.

• .f, a function defining the parameter(s) of interest that should be extracted/calculated for each
bootstrap iteration.

• type, a character string specifying the type of bootstrap to run. Possible values include:
"parametric", "residual", "reb", "wild", and "case".

• B, the number of bootstrap resamples to generate.

• .refit, whether the model should be refit to the bootstrap sample. This defaults to TRUE.

There are also five optional parameters: resample, reb_type, hccme, aux.dist, and orig_data.

• If the user sets type = "case", then they must also set resample to specify what cluster
resampling scheme to use. resample requires a logical vector of length equal to the number
of levels in the model. A value of TRUE in the ith position indicates that cases/clusters at that
level should be resampled. For example, to only resample the clusters (i.e., level 2 units) in a
two-level model, the user would specify resample = c(FALSE, TRUE).

• If the user sets type = "reb", then they must also set reb_type to indicate which version of the
REB bootstrap to run. reb_type accepts the integers 0, 1, and 2 to indicate REB/0, REB/1, and
REB/2, respectively.

• If the user sets type = "wild", then they must specify both hccme and aux.dist. Currently,
hccme can be set to "hc2" or "hc3" and aux.dist can be set to "mammen", "rademacher", "norm",
"webb", or "gamma".

• If variables are transformed within the model formula and lmer() is used to fit the LME model,
then orig_data should be set to the original data frame, since this cannot be recovered from the
fitted model object.

The bootstrap() function is a generic function that calls functions for each type of bootstrap. The
user can call the specific bootstrap function directly if preferred. An overview of the specific bootstrap
functions is given in Table 1.

Each of the specific bootstrap functions performs four general steps:

1. Setup. Key information (parameter estimates, design matrices, etc.) is extracted from the fitted
model to eliminate repetitive actions during the resampling process.

2. Resampling. The setup information is passed to an internal resampler function to generate the B
bootstrap samples.

3. Refitting. The model is refit for each of the bootstrap samples and the specified parameters are
extracted/calculated.

4. Clean up. An internal completion function formats the original and bootstrapped quantities to
return a list to the user.

Each function returns an object of class lmeresamp, which is a list with elements outlined in Table 2.
print(), summary(), plot(), and confint() methods are available for lmeresamp objects.

lmeresampler also provides the extract_parameters() helper function to extract the fixed effects
and variance components from merMod and lme objects as a named vector.
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Element Description

observed values for the original model parameter estimates.
model the original fitted model object.
.f the function call defining the parameters of interest.
replicates a B× p tibble containing the bootstrapped quantities. Each column contains a single

bootstrap distribution.
stats a tibble containing the observed, rep.mean (bootstrap mean), se (bootstrap standard

error), and bias values for each parameter.
B the number of bootstrap resamples performed.
data the original data set.

seed a vector of randomly generated seeds that are used by the bootstrap.
type a character string specifying the type of bootstrap performed.
call the user’s call to the bootstrap function.
message a list of length B giving any messages generated during refitting. An entry will be

NULL if no message was generated.
warning a list of length B giving any warnings generated during refitting. An entry will be

NULL if no warning was generated.
error a list of length B giving any errors encountered during refitting. An entry will be

NULL if no error was encountered.

Table 2: Summary of the values returned by the bootstrap functions.

Example applications

A two-level example: JSP data

As a first application of the bootstrap for nested LME models, consider the junior school project (JSP)
data (Goldstein 2011; Mortimore et al. 1988) that is stored as jsp728 in lmeresampler. The data set is
comprised of measurements taken on 728 elementary school students across 48 schools in London.

library(lmeresampler)
tibble::as_tibble(jsp728)

#> # A tibble: 728 x 9
#> mathAge11 mathAge8 gender class school normAge11 normAge8 schoo~1 mathA~2
#> <dbl> <dbl> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 39 36 M nonmanual 1 1.80 1.55 22.4 13.6
#> 2 11 19 F manual 1 -2.29 -0.980 22.4 -3.42
#> 3 32 31 F manual 1 -0.0413 0.638 22.4 8.58
#> 4 27 23 F nonmanual 1 -0.750 -0.460 22.4 0.579
#> 5 36 39 F nonmanual 1 0.743 2.15 22.4 16.6
#> 6 33 25 M manual 1 0.163 -0.182 22.4 2.58
#> 7 30 27 M manual 1 -0.372 0.0724 22.4 4.58
#> 8 17 14 M manual 1 -1.63 -1.52 22.4 -8.42
#> 9 33 30 M manual 1 0.163 0.454 22.4 7.58
#> 10 20 19 M manual 1 -1.40 -0.980 22.4 -3.42
#> # ... with 718 more rows, and abbreviated variable names 1: schoolMathAge8,
#> # 2: mathAge8c

Suppose we wish to fit a model using the math score at age 8, gender, and the father’s social class
to describe math scores at age 11, including a random intercept for school (Goldstein 2011). This LME
model can be fit using the lmer() function in lme4.

library(lme4)
jsp_mod <- lmer(mathAge11 ~ mathAge8 + gender + class + (1 | school), data = jsp728)

To implement the residual bootstrap to estimate the fixed effects, we can use the bootstrap()
function and set type = "residual".

(jsp_boot <- bootstrap(jsp_mod, .f = fixef, type = "residual", B = 2000))
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#> Bootstrap type: residual
#>
#> Number of resamples: 2000
#>
#> term observed rep.mean se bias
#> 1 (Intercept) 14.1577509 14.1583389 0.66117666 0.0005879882
#> 2 mathAge8 0.6388895 0.6386906 0.02434348 -0.0001989161
#> 3 genderM -0.3571922 -0.3472943 0.33820746 0.0098978735
#> 4 classnonmanual 0.7200815 0.7197059 0.38367036 -0.0003755777
#>
#> There were 0 messages, 0 warnings, and 0 errors.

We can then calculate normal, percentile, and basic bootstrap confidence intervals via confint().

confint(jsp_boot)

#> # A tibble: 12 x 6
#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 (Intercept) 14.2 12.9 15.5 norm 0.95
#> 2 mathAge8 0.639 0.591 0.687 norm 0.95
#> 3 genderM -0.357 -1.03 0.296 norm 0.95
#> 4 classnonmanual 0.720 -0.0315 1.47 norm 0.95
#> 5 (Intercept) 14.2 12.9 15.4 basic 0.95
#> 6 mathAge8 0.639 0.592 0.688 basic 0.95
#> 7 genderM -0.357 -1.05 0.301 basic 0.95
#> 8 classnonmanual 0.720 -0.0246 1.46 basic 0.95
#> 9 (Intercept) 14.2 12.9 15.5 perc 0.95
#> 10 mathAge8 0.639 0.590 0.685 perc 0.95
#> 11 genderM -0.357 -1.02 0.332 perc 0.95
#> 12 classnonmanual 0.720 -0.0203 1.46 perc 0.95

The default setting is to calculate all three intervals, but this can be restricted by setting the type
parameter to "norm", "basic", or "perc".

User-specified statistics: Estimating repeatability/intraclass correlation

The beauty of the bootstrap is its flexibility. Interval estimates can be constructed for functions of
model parameters that would otherwise require more complex derivations. For example, the bootstrap
can be used to estimate the intraclass correlation. The intraclass correlation measures the proportion of
the total variance in the response accounted for by groups, and is an important measure of repeatability
in ecology and evolutionary biology (Nakagawa and Schielzeth 2010). As a simple example, we’ll
consider the BeetlesBody data set in rptR (Stoffel, Nakagawa, and Schielzeth 2017). This simulated
data set contains information on body length (BodyL) and the Population from which the beetles were
sampled. A simple Guassian-response LME model of the form

yij = β0 + bi + εij, bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2),

can be used to describe the body length of beetle j from population i. The repeatability is then
calculated as R = σ2

b /(σ2
b + σ2). Below we fit this model using lmer():

data("BeetlesBody", package = "rptR")
(beetle_mod <- lmer(BodyL ~ (1 | Population), data = BeetlesBody))

#> Linear mixed model fit by REML ['lmerMod']
#> Formula: BodyL ~ (1 | Population)
#> Data: BeetlesBody
#> REML criterion at convergence: 3893.268
#> Random effects:
#> Groups Name Std.Dev.
#> Population (Intercept) 1.173
#> Residual 1.798
#> Number of obs: 960, groups: Population, 12
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#> Fixed Effects:
#> (Intercept)
#> 14.08

To construct a bootstrap confidence interval for the repeatability, we first must write a function to
calculate it from the fitted model. Below we write a one-off function for this model to demonstrate a
“typical” workflow rather than trying to be overly general.

repeatability <- function(object) {
vc <- as.data.frame(VarCorr(object))
vc$vcov[1] / (sum(vc$vcov))

}

The original estimate of repeatability can then be quickly calculated:

repeatability(beetle_mod)

#> [1] 0.2985548

To construct a bootstrap confidence interval for the repeatability, we run the desired bootstrap proce-
dure, specifying .f = repeatability and then pass the results to confint().

(beetle_boot <- bootstrap(beetle_mod, .f = repeatability, type = "parametric", B = 2000))

#> Bootstrap type: parametric
#>
#> Number of resamples: 2000
#>
#> observed rep.mean se bias
#> 1 0.2985548 0.2862509 0.090186 -0.01230394
#>
#> There were 0 messages, 0 warnings, and 0 errors.

(beetle_ci <- confint(beetle_boot, type = "basic"))

#> # A tibble: 1 x 6
#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 "" 0.299 0.135 0.473 basic 0.95

Notice that the term column of beetle_ci is an empty character string since we did not have
repeatability return a named vector.

Alternatively, we can plot() the results, as shown in Figure 1. The plot method for lmeresamp
objects uses stat_halfeye() from ggdist (Kay 2021) to render a density plot with associated 66% and
95% percentile intervals.

plot(beetle_boot, .width = c(.5, .9)) +
ggplot2::labs(
title = "Bootstrap repeatabilities",
y = "density",
x = "repeatability"

)

Bootstrap tests for a single parameter

While lmeresampler was designed with a focus on estimation, the bootstrap functions can be used
to conduct bootstrap tests on individual parameters. For example, returning to the JSP example, we
might be interested in generating approximate p-values for the fixed effects:

summary(jsp_mod)$coefficients
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Figure 1: Density plot of the repeatabilities from the beetle model. The median bootstrap repeatability
is approximatley .28 and denoted by a point under the density. 66% and 95% confidence intervals for
the bootstrap repeatability are (0.217, 0.394) and (0.118, 0.475), respectively, and are displayed as line
segments below the density.

#> Estimate Std. Error t value
#> (Intercept) 14.1577509 0.73344165 19.303173
#> mathAge8 0.6388895 0.02544478 25.108865
#> genderM -0.3571922 0.34009284 -1.050279
#> classnonmanual 0.7200815 0.38696812 1.860829

To generate a bootstrap p-value for a fixed effect, we must generate B bootstrap resamples under
the reduced model (i.e., the null hypothesis), refit the full model, and then calculate the t-statistic for
each resample, denoted t∗i . The bootstrap p-value is then calculated as (nextreme + 1)/(B + 1) (Davison
and Hinkley 1997; Halekoh and Højsgaard 2014).

Using the bootstrap() function, you can implement this procedure for a single parameter. For
example, if we wish to calculate the bootstrap p-value for the class fixed effect we first generate
B = 1000 bootstrap samples from the reduced model without class. In this example, we use the Wild
bootstrap to illustrate that we are not restricted to a parametric bootstrap.

reduced_model <- update(jsp_mod, . ~ . - class)
reduced_boot <- bootstrap(reduced_model, type = "wild", B = 1000, hccme = "hc2",

aux.dist = "mammen", .refit = FALSE)

Next, we refit the full model, jsp_mod, to each simulation and extract the t-statistic for the class
variable. Note that the function extract_t() extracts the specified t-statistic from the coefficient table
from model summary.

extract_t <- function(model, term) {
coef(summary(model))[term, "t value"]

}

tstats <- purrr::map_dbl(
reduced_boot,
~refit(jsp_mod, .x) %>% extract_t(., term = "classnonmanual")

)

With the bootstrap t-statistics in hand, we can approximate the p-value using basic logical and
arithmetic operators

(sum(abs(tstats) >= extract_t(jsp_mod)) + 1) / (1000 + 1)

#> [1] 0.2637363

While the above process is not particularly difficult to implement using the tools provided by
lmeresampler, things get tedious if multiple parameters are of interest in this summary table. To
help reduce this burden on the user, we have provided the bootstrap_pvals() function that will add
bootstrap p-values for each term in the coefficient summary table. For jsp_mod, this is achieved in the
below code chunk:

bootstrap_pvals(jsp_mod, type = "wild", B = 1000, hccme = "hc2", aux.dist = "mammen")
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#> Bootstrap type: wild
#>
#> Number of resamples: 1000
#>
#> # A tibble: 4 x 5
#> term Estimate `Std. Error` `t value` p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 14.2 0.733 19.3 0.000999
#> 2 mathAge8 0.639 0.0254 25.1 0.000999
#> 3 genderM -0.357 0.340 -1.05 0.257
#> 4 classnonmanual 0.720 0.387 1.86 0.0569

It’s important to note that running bootstraps for each term in the model is computationally
demanding. To speed up the computation, you can run the command in parallel, as we discuss below
in Bootstrapping in parallel.

Model comparison

The bootstrap can be useful during model selection. For example, if you are comparing a full and
reduced model where the reduced model has fewer random effects, a 50:50 mixture of χ2 distributions
is often used (Stram and Lee 1994); however, J. C. Pinheiro and Bates (2000) point out that this
approximation is not always optimal. In this example, we explore the Machine data set discussed by J.
C. Pinheiro and Bates (2000), which consists of productivity scores for six workers on three brands of
machine. This data set can be loaded from nlme:

data("Machines", package = "nlme")

J. C. Pinheiro and Bates (2000) consider two LME models for these data. The first model has a
fixed effect for the machine and a random intercept for the worker.

reduced_mod <- lmer(score ~ Machine + (1 | Worker), data = Machines, REML = FALSE)

The second model has the same fixed effects structure, but adds an additional random effect for
the machine within the worker.

full_mod <- lmer(score ~ Machine + (1 | Worker/Machine), data = Machines, REML = FALSE)

J. C. Pinheiro and Bates (2000) note that the approximate null distribution given by 0.5χ2
0 + 0.5χ2

1
is not successful when the models are fit via maximum likelihood, and that the mixture is closer
to 0.65χ2

0 + 0.35χ2
1. Instead of relying on the conventional approximation, a bootstrap test can be

conducted using bootstrap() to simulate the responses from the reduced model.

To conduct this bootstrap test, we first extract the observed statistic obtained via anova() and then
generate B = 1000 bootstrap responses from the reduced model, fm1_machine. Recall that specifying
.refit = FALSE returns a data frame of the simulated responses. Here, we use a residual bootstrap
for illustration.

observed <- anova(full_mod, reduced_mod)$Chisq[2]

reduced_boot <- bootstrap(reduced_mod, type = "residual", B = 1000, .refit = FALSE)

Next, we must fit both the full and reduced models to the bootstrap responses and calculate the
test statistic. The user-written compare_models() function performs this refit and calculation for given
models and bootstrap responses. The control argument for the full model was set to reduce the
number of convergence warnings, since the null model had a variance component of 0 for machines
within workers, so we expect warnings as we fit an expanded model.

compare_models <- function(full, reduced, newdata) {
full_mod <- refit(full, newdata,

control = lmerControl(check.conv.singular = "ignore",
check.conv.grad = "ignore"))

reduced_mod <- refit(reduced, newdata)
anova(full_mod, reduced_mod)$Chisq[2]

}

chisq_stats <- purrr::map_dbl(reduced_boot, ~compare_models(full_mod, reduced_mod, newdata = .x))

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 114

−5.0

−2.5

0.0

2.5

5.0

1 2 3
Transmembrane pressure (dmHg)

R
es

id
ua

ls
 (

m
l/h

r)

Figure 2: A plot of the conditional residuals against the transmembrane pressure for the dialyzer
model. It appears that the variability of the conditional residuals increases with transmembrance
pressure, but does this indicate a model condition is violated?

With the test statistics in hand, we can quickly calculate the p-value

(sum(chisq_stats >= observed) + 1) / (1000 + 1)

#> [1] 0.000999001

Simulation-based model diagnostics

Our final example illustrates how the bootstrap() function can be used for model diagnosis. Loy,
Hofmann, and Cook (2017) propose using the lineup protocol to diagnose LME models, since artificial
structures often appear in conventional residual plots for this model class that are not indicative of a
model deficiency.

In this example, we consider the Dialyzer data set provided by nlme. The data arise from a study
characterizing the water transportation characteristics of 20 high flux membrane dialyzers, which
were introduced to reduce the time a patient spends on hemodialysis (Vonesh and Carter 1992). The
dialyzers were studied in vitro using bovine blood at flow rates of either 200 or 300 ml/min. The
study measured the the ultrafiltration rate (ml/hr) at even transmembrane pressures (in mmHg). J. C.
Pinheiro and Bates (2000) discuss modeling these data. Here, we explore how to create a lineup of
residual plots to investigate the adequacy of the initial homoscedastic LME model fit by J. C. Pinheiro
and Bates (2000).

library(nlme)
dialyzer_mod <- lme(
rate ~ (pressure + I(pressure^2) + I(pressure^3) + I(pressure^4)) * QB,
data = Dialyzer,
random = ~ pressure + I(pressure^2)

)

J. C. Pinheiro and Bates (2000) construct a residual plot of the conditional residuals plotted against
the transmembrane pressure to explore the adequacy of the fitted model (Figure 2). There appears to
be increasing spread of the conditional residuals, which would indicate that the homoscedastic model
is not sufficient.

To check if this pattern is actually indicative of a problem, we construct a lineup of residual plots.
To do this, we must generate data from a number of properly specified models, say 19, to serve as
decoy residual plots. Then, we create a faceted set of residual plots where the observed residual plot
(Figure 2) is randomly assigned to a facet. To generate the residuals from properly specified models,
we use the parametric bootstrap via bootstrap() and extract a data frame containing the residuals
from each bootstrap sample using hlm_resid() from HLMdiag (Loy and Hofmann 2014).

set.seed(1234)
library(HLMdiag)
sim_resids <- bootstrap(dialyzer_mod, .f = hlm_resid, type = "parametric", B = 19)

The simulated residuals are stored in the replicates element of the sim_resids list. sim_resids$replicates
is a tibble containing the 19 bootstrap samples, with the the replicate number stored in the .n column.
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dplyr::glimpse(sim_resids$replicates)

#> Rows: 2,660
#> Columns: 15
#> $ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
#> $ rate <dbl> -0.8579226, 17.0489029, 34.3658738, 44.8495547, 44.525~
#> $ pressure <dbl> 0.240, 0.505, 0.995, 1.485, 2.020, 2.495, 2.970, 0.240~
#> $ `I(pressure^2)` <I<dbl>> 0.0576, 0.255025, 0.990025, 2.205225, 4.0804, 6~
#> $ `I(pressure^3)` <I<dbl>> 0.013824, 0.128787625, 0.985074875, 3.274759~
#> $ `I(pressure^4)` <I<dbl>> 0.00331776, 0.065037...., 0.980149...., 4.863017.~
#> $ QB <fct> 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,~
#> $ Subject <ord> 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, ~
#> $ .resid <dbl> -1.19758632, 0.65600425, -0.90104247, 1.39131045, 0.11~
#> $ .fitted <dbl> 0.3396637, 16.3928987, 35.2669162, 43.4582443, 44.4100~
#> $ .ls.resid <dbl> -0.51757746, 1.23968783, -1.32231163, 0.59071041, 0.30~
#> $ .ls.fitted <dbl> -0.3403452, 15.8092151, 35.6881854, 44.2588443, 44.223~
#> $ .mar.resid <dbl> -2.1236410, -0.3100360, -2.1298323, -0.3453118, -2.455~
#> $ .mar.fitted <dbl> 1.265718, 17.358939, 36.495706, 45.194867, 46.981057, ~
#> $ .n <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~

Now, we use the lineup() function from nullabor (Buja et al. 2009) to generate the lineup data.
lineup() will randomly insert the observed (true) data into the samples data, “encrypt” the position
of the observed data, and print a message that you can later decrypt in the console.

library(nullabor)
lineup_data <- lineup(true = hlm_resid(dialyzer_mod), n = 19, samples = sim_resids$replicates)

#> decrypt("CLg7 X161 sO bJws6sJO qj")

dplyr::glimpse(lineup_data)

#> Rows: 2,800
#> Columns: 15
#> $ id <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
#> $ rate <dbl> -0.8579226, 17.0489029, 34.3658738, 44.8495547, 44.525~
#> $ pressure <dbl> 0.240, 0.505, 0.995, 1.485, 2.020, 2.495, 2.970, 0.240~
#> $ `I(pressure^2)` <I<dbl>> 0.0576, 0.255025, 0.990025, 2.205225, 4.0804, 6~
#> $ `I(pressure^3)` <I<dbl>> 0.013824, 0.128787625, 0.985074875, 3.274759~
#> $ `I(pressure^4)` <I<dbl>> 0.00331776, 0.065037...., 0.980149...., 4.863017.~
#> $ QB <fct> 200, 200, 200, 200, 200, 200, 200, 200, 200, 200, 200,~
#> $ Subject <ord> 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, ~
#> $ .resid <dbl> -1.19758632, 0.65600425, -0.90104247, 1.39131045, 0.11~
#> $ .fitted <dbl> 0.3396637, 16.3928987, 35.2669162, 43.4582443, 44.4100~
#> $ .ls.resid <dbl> -0.51757746, 1.23968783, -1.32231163, 0.59071041, 0.30~
#> $ .ls.fitted <dbl> -0.3403452, 15.8092151, 35.6881854, 44.2588443, 44.223~
#> $ .mar.resid <dbl> -2.1236410, -0.3100360, -2.1298323, -0.3453118, -2.455~
#> $ .mar.fitted <dbl> 1.265718, 17.358939, 36.495706, 45.194867, 46.981057, ~
#> $ .sample <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~

With the lineup data in hand, we can create a lineup of residual plots using facet_wrap():

ggplot(lineup_data, aes(x = pressure, y = .resid)) +
geom_hline(yintercept = 0, color = "gray60") +
geom_point(shape = 1) +
facet_wrap(~.sample) +
theme_bw() +
labs(x = "Transmembrane pressure (dmHg)", y = "Residuals (ml/hr)")

In Figure 3, the observed residual plot is in position 13. If you can discern this plot from the field
of decoys, then there is evidence that the fitted homogeneous LME model is deficient. In this case,
we believe 13 is discernibly different, as expected based on the discussion in J. C. Pinheiro and Bates
(2000).

Since we have discovered signs of within-group heteroscedasticity, we could reformulate our
model via nlme::lme() adding a weights argument using varPower, or we could utilize the Wild
bootstrap, as illustrated below.
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Figure 3: A lineup of the conditional residuals against the transmembrane pressure for the dialyzer
model. One of the facets contains the true residual plot generated from the fitted model, the others
are decoys generated using a parametric bootstrap. Facet 13 contains the observed residuals and is
discernibly different from decoy plots, providing evidence of that a model condition has been violated.
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wild_dialyzer <- bootstrap(dialyzer_mod, .f = fixef, type = "wild", B = 1000,
hccme = "hc2", aux.dist = "webb")

confint(wild_dialyzer, type = "perc")

#> # A tibble: 10 x 6
#> term estimate lower upper type level
#> <chr> <dbl> <dbl> <dbl> <chr> <dbl>
#> 1 (Intercept) -16.0 -18.0 -13.9 perc 0.95
#> 2 pressure 88.4 77.4 99.1 perc 0.95
#> 3 I(pressure^2) -44.3 -57.1 -30.8 perc 0.95
#> 4 I(pressure^3) 9.17 2.45 15.5 perc 0.95
#> 5 I(pressure^4) -0.690 -1.70 0.425 perc 0.95
#> 6 QB300 -1.26 -4.55 2.06 perc 0.95
#> 7 pressure:QB300 0.621 -16.0 16.9 perc 0.95
#> 8 I(pressure^2):QB300 3.15 -18.5 27.6 perc 0.95
#> 9 I(pressure^3):QB300 0.102 -12.0 11.1 perc 0.95
#> 10 I(pressure^4):QB300 -0.172 -1.98 1.84 perc 0.95

Bootstrapping in parallel

Bootstrapping is a computationally demanding task, but bootstrap iterations do not rely on each other
so they are easy to implement in parallel. Rather than building parallel processing into lmeresampler,
we created a utility function, combine_lmeresamp(), that allows the user to easily implement parallel
processing using doParallel (Microsoft and Weston 2020a) and foreach (Microsoft and Weston 2020b).
The code is thus concise and simple enough for users without much experience with parallelization,
while also providing flexibility to the user.

doParallel and foreach default to multicore (i.e., forking) functionality when using parallel com-
puting on UNIX operating systems and snow-like (i.e., clustering) functionality on Windows systems.
In this section, we will use clustering in our example. For more information on forking, we refer the
reader to the vignette in Microsoft and Weston (2020a).

The basic idea behind clustering is to execute tasks as a “cluster” of computers. Each cluster needs
to be fed in information separately, and as a consequence clustering has more overhead than forking.
Clusters also need to be made and stopped with each call to foreach() to explicitly tell the CPU when
to begin and end the parallelization.

Below, we revisit the JSP example and distribute 2000 bootstrap iterations equally over two cores:

library(foreach)
library(doParallel)

#> Loading required package: iterators

#> Loading required package: parallel

set.seed(5678)

# Starting a cluster with 2 cores
no_cores <- 2
cl <- makeCluster(no_cores)
registerDoParallel(cores = no_cores)

# Run 1000 bootstrap iterations on each core
boot_parallel <- foreach(
B = rep(1000, 2),
.combine = combine_lmeresamp,
.packages = c("lmeresampler", "lme4")

) %dopar% {
bootstrap(jsp_mod, .f = fixef, type = "parametric", B = B)

}

# Stop the cluster
stopCluster(cl)
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The combine_lmeresamp() function combines the two lmeresamp objects that are returned from the
two bootstrap() calls into a single lmeresamp object. Consequently, working with the returned object
proceeds as previously discussed.

It’s important to note that running a process on two cores does not yield a runtime that is twice as
fast as running the same process on one core. This is because parallelization takes some overhead to
split the processes, so while runtime will substantially improve, it will not correspond exactly to the
number of cores being used. For example, the runtime for the JSP example run on a single core was

#> user system elapsed
#> 23.084 1.212 24.376

and the runtime for the JSP run on two cores was

#> user system elapsed
#> 23.550 1.800 12.747

These timings were generated using system.time() on a MacBook Pro with a 2.9 GHz Quad-Core
Intel Core i7 processor. In this set up, running the 2000 bootstrap iterations over two cores reduced the
runtime by a factor of about 1.91, but this will vary based on the hardware and setting used.

Summary

In this paper, we discussed our implementation of five bootstrap procedures for nested, Gaussian-
response LME models fit via the nlme or lme4 packages. The bootstrap() function in lmeresampler
provides a unified interface to these procedures, allowing users to easily bootstrap their fitted LME
models. In our examples, we illustrated the basic usage of the bootstrap, how it can be used to
estimate functions of parameters, how it can be used for testing, and how it can be used to create
simulation-based visual diagnostics. The bootstrap approach to inference is computationally intensive,
so we have also demonstrated how users can bootstrap in parallel.

While this paper focused solely on the nested, Gaussian-response LME model, lmeresampler
implements bootstrap procedures for a wide class of models. Specifically, the cases, residual, and
parametric bootstraps can be used to bootstrap generalized LME models fit via lme4::glmer(). Ad-
ditionally, the parametric bootstrap works with LME models with crossed random effects, though
the results may not be optimal (Mccullagh 2000). Future development of lmeresampler will focus on
implementing additional extensions, especially for crossed data structures.
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DGLMExtPois: Advances in Dealing with
Over and Under-dispersion in a Double
GLM Framework
by Antonio J. Sáez-Castillo, Antonio Conde-Sánchez and Francisco Martínez

Abstract In recent years the use of regression models for under-dispersed count data, such as
COM-Poisson or hyper-Poisson models, has increased. In this paper the DGLMExtPois package is
presented. DGLMExtPois includes a new procedure to estimate the coefficients of a hyper-Poisson
regression model within a GLM framework. The estimation process uses a gradient-based algorithm
to solve a nonlinear constrained optimization problem. The package also provides an implementation
of the COM-Poisson model, proposed by Huang (2017), to make it easy to compare both models.
The functionality of the package is illustrated by fitting a model to a real dataset. Furthermore, an
experimental comparison is made with other related packages, although none of these packages allow
you to fit a hyper-Poisson model.

1 Introduction

The Poisson regression model is the most common framework for modeling count data, such as the
number of accidents on a stretch of road, the number of visits to the doctor, the number of recreational
or shopping trips, etc (Cameron and Trivedi, 2013; Hilbe, 2011; Winkelmann, 2008). This model is
constrained by its equi-dispersion assumption, that is, the mean is equal to the variance. However, this
constraint is not usually met in real applications due to the existence of over-dispersion (the variance
is greater than the mean) or under-dispersion (the variance is less than the mean). As over-dispersion
is more common than under-dispersion, the former has received more attention from the research
community.

Although the number of probabilistic models for count data affected by under-dispersion is not as
high as that for over-dispersion, in recent years a significant effort has been made to provide suitable
alternatives for applied researches to fit the data when the variance is below the mean. Generalized
Poisson (Consul and Famoye, 1992; Wang and Famoye, 1997; Famoye et al., 2004; Zamani and Ismail,
2012; Grover et al., 2015; Sellers and Morris, 2017), Double Poisson (Efron, 1986; Zou et al., 2013;
Sellers and Morris, 2017), Gamma count (Winkelmann, 1995; Oh et al., 2006; Lord et al., 2010; Daniels
et al., 2010, 2011; Zeviani et al., 2014; Sellers and Morris, 2017), discrete Weibull (McShane et al., 2008;
Ong et al., 2015; Klakattawi et al., 2018; Yoo, 2019) or Extended Poisson Process (Faddy and Smith,
2011; Smith and Faddy, 2016) are examples of models that may facilitate, in a regression context, a
flexible dispersion structure wherein the Poisson assumption of equi-dispersion cannot be admitted
because of the existence of factors that determine an excess or a shortfall of variability. In any case,
Conway-Maxwell-Poisson, from now on CMP, is probably the most widely used model to fit data
in the presence of under-dispersion. Sellers and Shmueli (2010) presented a formulation of CMP
in a regression context and demonstrated that the model could provide good fits to data not only
affected by over-dispersion but also by under-dispersion, in the presence of covariates. The number of
subsequent papers applying the model in different contexts is noteworthy (Sellers et al., 2012; Sellers
and Morris, 2017; Chatla and Shmueli, 2018; Abdella et al., 2019).

Nevertheless, the use of this CMP model has also been subject to criticism because of some
limitations. First, there are some convergence problems in the calculation of the normalizing constant,
the mean and the variance (since there are no closed expressions for them) (Francis et al., 2012).
Second, and this is in our opinion its most important drawback, the original implementation of
Sellers and Shmueli (2010) and, therefore, all other applications based on it, consider a log-linear
relationship between the covariates and the location parameter instead of the mean, so that the
regression coefficients cannot be interpreted in terms of the effect size. In fact, some authors have
considered a reparameterization looking for a central tendency parameter (Guikema and Coffelt, 2008;
Lord et al., 2010; Francis et al., 2012; Chanialidis et al., 2018), although it is not really the mean.

Fortunately, Huang (2017) has recently implemented a new CMP parametrization where covariates
are log-linearly related to the mean and the dispersion parameter, which has been continued in
subsequent works (Huang and Kim, 2019; Ribeiro et al., 2019; Forthmann et al., 2019). The mpcmp
package is based on the work of Huang (2017). The hyper-Poisson regression model (Saez-Castillo
and Conde-Sanchez, 2013; Khazraee et al., 2015; Sáez-Castillo and Conde-Sánchez, 2017), hereafter
hP, provided an alternative that also presented both characteristics: on the one hand, covariates
are introduced in the equation of the mean, commonly using a log-linear link, with regression

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 122

coefficients measuring the effect size; on the other hand, the dispersion parameter may also be
related to the covariates to facilitate a better fit of datasets which may be affected by over- or under-
dispersion. Unfortunately, although the authors provided the necessary R code for a complete fit,
the computational time needed to fit real data with medium or high sample size was so huge that its
usefulness in real applications was very limited.

That is why our main aim in this paper is to improve the estimation procedure of the hP model.
For this purpose, we have developed an R package, called DGLMExtPois, in which the maximum
likelihood optimization procedure has been accelerated. Of course, the package includes the common
methods and functions that allow for a complete analysis, including model diagnostics. The package
also provides the Huang (2017) implementation of the CMP model that admits covariates in the
dispersion parameter, mainly to facilitate comparisons between hP and CMP fits. In conclusion, what
we want to demonstrate is the usefulness of CMP and hP models in a genuine GLM framework to test
the significance and to assess the size effect of any explanatory variable on the mean value. At the
same time, other explanatory variables may take part in the explanation of the dispersion structure,
providing over- or under-dispersion depending on their different values.

Comparison with other packages

There is currently no other package in R that estimates the hyper-Poisson model. There are two
other packages that fit a COM-Poisson model: the mpcmp package that estimates the Huang’s GLM
implementation (Huang, 2017), named CMPµ,ν, and the COMPoissonReg package that estimates
the (Sellers and Shmueli, 2010) model, denoted as CMPθ,ν. The DGLMExtPois package also fits
the CMPµ,ν model applying an optimization process similar to the one used in fitting hPµ,γ models.
The CMPµ,ν model was included in the DGLMExtPois package because, at the time the package
was developed, no other package estimated this model with covariates in the dispersion parameter.
However, recently the mpcmp package has included this feature. Table 1 summarizes this comparison
along with some additional features included in these packages for the analysis of the previously
mentioned models.

DGLMExtPois mpcmp COMPoissonReg

hPµ,γ model Yes No No
CMPµ,ν model Yes Yes No
CMPθ,ν model No No Yes
Covariates in dispersion parameter Yes Yes Yes
Zero inflated models No No Yes

Table 1: Feature comparison between packages DGLMExtPois (version 0.2.1), mpcmp (version 0.3.6)
and COMPoissonReg (version 0.7.0).

The remainder of this paper is structured as follows. First, we theoretically describe the hPµ,γ
model and the main estimation results for fitting data. Second, we do the same for the CMPθ,ν and
CMPµ,ν models. After that, we describe the DGLMExtPois package, illustrating the fit of a real dataset.
Next, we include a comparison of fits of hPµ,γ, CMPθ,ν and CMPµ,ν models with different well-known
datasets. Finally, we carry out a simulation to assess the performance of the estimates and standard
errors of the hPµ,γ model and discuss the optimization process.

2 The hPµ,γ model

Let us consider Y as count variable of a hyper-Poisson distribution, whose probability mass function
is (Saez-Castillo and Conde-Sanchez, 2013)

P [Y = y] =
1

1F1 (1, γ; λ)

λy

(γ)y
, λ, γ > 0, (1)

where

1F1 (1, γ; λ) =
∞

∑
y=0

λy

(γ)y
,

and (γ)y = Γ(γ + y)/Γ(γ). The parameter γ is known as the dispersion parameter because for γ > 1
the distribution is over-dispersed and for γ < 1 it is under-dispersed (for γ = 1 we have the Poisson
distribution).
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Let
(
X1, . . . , Xq1

)
∈ Rq1 and

(
Z1, . . . , Zq2

)
∈ Rq2 be two sets of explanatory variables or covariates.

These two sets can be disjoint or overlapping (they can even be equal). In an hPµ,γ GLM model, Y
follows a hyper-Poisson distribution whose mean, µ, and dispersion parameter, γ, are functions of the
covariates. In our case, log-linear relations are always considered, so log µ = Xβ and log γ = Zδ, such
that X =

(
1, X1, . . . , Xq1

)
and Z =

(
1, Z1, . . . , Zq2

)
the design matrices, and β′ =

(
β0, β1, . . . , βq1

)
and

δ′ =
(
δ0, δ1, . . . , δq2

)
the regression coefficients. Moreover, the parameter λ is the solution of

µ = exp(Xβ) =
∞

∑
y=0

y × P[Y = y]. (2)

Saez-Castillo and Conde-Sanchez (2013) include a study of the relationship between λ(µ, γ), which
can be interpreted as a location parameter, and the mean, µ, for a wide range of γ values.

The hP distribution belongs to the exponential family only for a given γ value. This justifies that
the hPµ,γ model can be considered as a member of the GLM family. Moreover, since the model also
allows you to introduce covariates in the dispersion parameter, we refer to it as double GLM , although
we highlight that the hP distribution does not properly belong to the exponential family for unknown
γ.

The previous definition of the hPµ,γ model (Saez-Castillo and Conde-Sanchez, 2013) was based
on an alternative equation, different from (2). Concretely, the authors proposed a closed equation
that involves the mean, the variance and the normalizing constant. The substitution of the previous
equation by equation (2) and the change of the optimization algorithm have been the key points in
the great reduction of the computational time needed to fit real data provided by the DGLMExtPois
package.

To this end, we consider maximum likelihood for the estimation of the regression coefficients.
Letting (Yi, X1i, . . . , Xq1i, Z1i, . . . , Zq2i), i = 1, ..., n, be a random sample, the log-likelihood is given by

lhP (β, δ) =
n

∑
i=1

{Yi log (λ (µi, γi))− log (Γ (γi + Yi)) + log (Γ (γi))− log(1F1 (1, γi; λ (µi, γi)))} (3)

where
log µi = x′i β

and
log γi = z′iδ,

being x′i and z′i the ith row of the design matrices and each λi = λ (µi, γi) is a solution of (2) for
a given µi and γi. This converts the maximum likelihood procedure into a nonlinear constrained
optimization problem where the objective function is (n + q1 + q2 + 2)-dimensional, depending on n
nuisance λi parameters, q1 + 1 regression coefficients for the mean, β, and q2 + 1 regression coefficients
for the dispersion parameter, δ, and it is constrained by n non-linear equations from (2). We have
implemented it using a sequential quadratic programming (SQP) gradient-based algorithm (Kraft,
1994); concretely, the NLOPT_LD_SLSQP algorithm included in the nloptr package (Ypma et al., 2022).

In the implementation, it was necessary to compute the gradient of the objective function and the
gradient of restriction (2), in which the reparameterization of λ′ = log λ has been considered to ensure
the positivity of λ. These expressions have been included in the appendix.

Moreover, the following results are verified:

Result 1 For a sample Y1, . . . , Yn from a hyper-Poisson the score function with respect to β is

Sβ =
∂lhP
∂β

=
n

∑
i=1

Yi − µi
V (µi, γi)

µix
′
i (4)

where V (µi, γi) is the variance of an hP with a probability mass function given by (1), which depends on µi
and γi. This way, the MLE of β can be characterized as the solution to the usual GLM score equations.

Result 2 For a sample of size n from a hyper-Poisson it is verified that

Sδ =
∂lhP
∂δ

=
n

∑
i=1

{
(Yi − µi)

Cov [Yiψ (γi + Yi)]

V (µi, γi)
− ψ (γi + Yi) + E [ψ (γi + Yi)]

}
γiz

′
i (5)

where ψ() is the digamma function.

The proof is included in the appendix. We have obtained estimates of the standard errors of the
maximum likelihood estimators of β and δ based on Cramer-Rao bound, which requires a closed
expression of the Fisher information matrix.
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Result 3 The Fisher information matrix in the sample can be approximated by

In

(
β̂, δ̂
)
=


n

∑
i=1

E
[
S

β̂
S′

β̂

]
0

0
n

∑
i=1

E
[
S

δ̂
S′

δ̂

]


where
n

∑
i=1

E
[
SβS′

β

]
=

n

∑
i=1

µ2
i

V (µi, γi)
xix

′
i

n

∑
i=1

E
[
SδS′

δ

]
=

n

∑
i=1

[
Var (ψ (γi + Yi))−

Cov (Yi, ψ (γi + Yi))

V (µi, γi)

]
γ2

i ziz
′
i .

are evaluated in the maximum likelihood estimates, β̂ and δ̂. The proof is included in the appendix.

Standard error estimates would appear in the diagonal of the inverse of In

(
β̂, δ̂

)
. We have not

experienced any difficulties in this computation, nor in the inversion of ∑n
i=1 E

[
SβS′

β

]
. In contrast,

∑n
i=1 E

[
SδS′

δ

]
is sometimes nearly singular, so the standard errors of δ̂ are not always estimated

and, sometimes, are quite large. That is the reason why we recommend assessing the significance of
covariates included in Z using the likelihood ratio test (LRT) instead of the Wald test, since it requires
a convenient estimation of δ̂ standard errors.

3 The CMPθ,ν and CMPµ,ν models

The probabilities of the CMP distribution are given by

P [Y = y] =
1

Z (θ, ν)

θy

(y!)ν , θ, ν > 0, (6)

with

Z (θ, ν) =
∞

∑
y=0

θy

(y!)ν .

Here, ν < 1 corresponds to over-dispersion and ν > 1 to under-dispersion. The distribution belongs
to the bi-parametric exponential family (Huang, 2017). In this distribution, θ is a location parameter
with a similar role to λ for the hP distribution. It is worth emphasizing that θ is not a mean, see for
example Francis et al. (2012) for the exact relationship between θ and µ.

If Y is again the response count variable and X and Z are defined as above, then we denote as
CMPθ,ν the model wherein

log θ = Xβ

and
log ν = Zδ.

This is the model with constant ν defined by Sellers and Shmueli (2010), later extended to consider
covariates in the ν equation (Sellers et al., 2012; Chatla and Shmueli, 2018). In contrast, the model
defined by Huang (2017) is given as

log µ = Xβ

and

log ν = Zδ,

where additionally equation (2) must be verified for each observation, and the probabilities in (6). We
denote this model as CMPµ,ν.

Estimation and inference for the CMPθ,ν is described, for example, in Sellers and Shmueli (2010).
The COMPoissonReg package (Sellers et al., 2018) provides adequate methods and functions to
estimate such a model. Huang (2017) also provides theoretical results describing the procedure to
obtain estimates of β and δ using maximum-likelihood and related inference results for CMPµ,ν, which
are included in the mpcmp package.
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Function Description

glm.hP Fits an hPµ,γ model
glm.CMP Fits an CMPµ,ν model
lrtest Likelihood ratio chi-squared test
residuals Extracts model residuals (Pearson, response and quantile) and produces

a simulated envelope
fitted Fitted values of the model
plot Plot of residuals against fitted values and a Normal Q-Q plot
predict Predictions
confint Confidence intervals for β regression coefficients
dhP Probability mass function for an hP distribution
phP Distribution function for an hP distribution
rhP Random generation for an hP distribution
hP_expected Expected frequencies for hPµ,γ model
CMP_expected Expected frequencies for CMPµ,ν model

Table 2: Main functions in the DGLMExtPois package.

4 The DGLMExtPois package

At present, packages such as COMPoissonReg provide what a practitioner commonly requires to fit
real data. Our main criticism, as we have mentioned in the introduction section, is that β regression
coefficients cannot be interpreted in terms of the effect size. In this sense, mpcmp is, in our opinion, a
better proposal for practitioners looking for a clearer interpretation of the β regression coefficients in
relation to the effect of each explanatory variable on the mean of the response variable.

In this context, what the DGLMExtPois package provides is, first, a much faster implementation
of the hPµ,γ model than the previous existing R code and, second, our own implementation of CMPµ,ν
to facilitate the comparison of the models.

DGLMExtPois has been created by trying to reproduce the syntax of GLM fits. Thus, functions
glm.hP and glm.CMP provide the corresponding fits for hPµ,γ and CMPµ,ν, respectively. There are also
print and summary methods to visualize the fitted models and AIC, confint, predict, residuals and
plot methods to evaluate the goodness of fit, obtain confidence intervals of β regression coefficients,
predictions, residuals and some associated plots, such as QQ-plots and simulated envelopes. The
package additionally incorporates expected, a function which calculates the marginal probabilities
of the Y variable, and lrtest to get the likelihood ratio test in nested models. Other functions are
provided, for example, to work with probabilities of CMP and hP distributions. A brief description of
the main functions in the package is given in Table 2.

Installation

As usual, you can install the DGLMExtPois package from CRAN with the code:

install.packages("DGLMExtPois")

You may encounter problems on Windows operating systems if you are not logged in with
administrator rights due to the strong dependency on the nloptr package.

5 Numerical examples

In this section the main methods and functions in the package are illustrated by fitting a real dataset.
Also, several well-known datasets in regression on count variables have been used to compare
COMPoissonReg and DGLMExtPois in terms of goodness of fit, computational times and reliability.
Finally, some guidelines are given on the optimization process for estimating the models.

Example of application

The dataset originates from research on customer profiles for a household supplies company. An
observation corresponds to census tracts within 10-mile radius around a certain store. The response
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Poisson hPµ,γ CMPµ,ν

Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) 2.9424 0.2072 2.9465 0.2155 2.9426 0.2051
nhu 0.0606 0.0142 0.0600 0.0147 0.0606 0.0141
aid -0.0117 0.0021 -0.0115 0.0022 -0.0117 0.0021
aha -0.0037 0.0018 -0.0038 0.0018 -0.0037 0.0018
dnc 0.1684 0.0258 0.1662 0.0269 0.1683 0.0255
ds -0.1288 0.0162 -0.1285 0.0168 -0.1288 0.0160

(Intercept) 0.6229 0.6574 0.0219 0.1407

Table 3: Estimation of coefficients and standard errors for fitted models with a constant dispersion
parameter. The last row is the estimation of δ0 and its standard error.

variable is the number of customers of each census tract who visit the store and the explanatory
variables are related to relevant demographic information for each tract. The dataset was analyzed
in Neter et al. (1996) as an example of a Poisson regression model, since it is a classic instance of
equidispersed count data. They consider the number of housing units (nhu), the average income
in dollars (aid), the average housing unit age in years (aha), the distance to the nearest competitor
in miles (dnc) and the distance to store in miles (ds) as covariates. Here, we consider this dataset
to illustrate the performance of DGLMExtPois fitting models with all the explanatory variables in
the mean equation and one of them, dnc, in the dispersion parameter equation. The dataset is also
analyzed in (Bonat et al., 2018) considering the Extended Poisson-Tweedie distribution, but they also
obtain an equidispersed distribution.

First, we fit a Poisson regression model, an hPµ,γ model and a CMPµ,ν model without explanatory
variables in the dispersion parameter:

library(DGLMExtPois)
formula.loc <- ncust ~ nhu + aid + aha + dnc + ds # Mean formula
formula.disp0 <- ncust ~ 1 # Dispersion parameter formula

pois <- glm(formula.loc, data = CustomerProfile, family = 'poisson')

hp0 <- glm.hP(formula.loc, formula.disp0, data = CustomerProfile)
cmp0 <- glm.CMP(formula.loc, formula.disp0, data = CustomerProfile)
c(AIC(pois), AIC(hp0), AIC(cmp0))
[1] 571.0243 571.7983 573.0006

The functions glm.hP and glm.CMP return S3 objects of classes "glm_hP" and "glm_CMP", respec-
tively, with information on the fitted models. The most suitable model according to AIC is Poisson. The
fits for these models, shown in Table 3, indicate that there is equidispersion. In fact, if the LRT is carried
out to determine whether the dispersion parameter is equal to 1 (Poisson model), the hypothesis is not
rejected:

lrt_hp <- -2 * (hp0$logver + logLik(pois)[1])
pchisq(lrt_hp,1, lower.tail = FALSE)
[1] 0.2681826
lrt_cmp <- -2 * (cmp0$logver + logLik(pois)[1])
pchisq(lrt_cmp,1, lower.tail = FALSE)
[1] 0.8777006

However, if we introduce covariates in the dispersion parameter we find that the equidispersion
hypothesis is rejected, hence the importance of being able to include variables that determine a
different variability in the model. We have checked that none of the explanatory variables lead to a
statistically significant improvement in the likelihood of the CMPµ,ν model when they are introduced
as covariates for the dispersion parameter. That is why, from now on, we concentrate on how to use
the package with the hPµ,γ model.

Let us now consider a new hPµ,γ model with dnc in the dispersion parameter equation:

formula.disp1 <- ncust ~ dnc # New dispersion parameter formula
hp1 <- glm.hP(formula.loc, formula.disp1, data = CustomerProfile)
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The summary method provides, as usual, the regression coefficient estimates, their standard errors,
the corresponding t-statistics and p-values and other details about the model:

summary(hp1)

Call:
glm.hP(formula.mu = formula.loc, formula.gamma = formula.disp1,

data = CustomerProfile)

Mean model coefficients (with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.996083 0.204212 14.671 < 2e-16 ***
nhu 0.054473 0.013960 3.902 9.54e-05 ***
aid -0.010930 0.002068 -5.285 1.26e-07 ***
aha -0.003631 0.001751 -2.074 0.0381 *
dnc 0.156249 0.026233 5.956 2.58e-09 ***
ds -0.128101 0.015636 -8.193 2.55e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Dispersion model coefficients (with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.749 2.416 1.965 0.0494 *
dnc -2.782 2.272 -1.224 0.2208
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

AIC: 568.1

The Wald test assesses whether the dnc variable is significant or not for the dispersion parameter.
In any case, as previously mentioned, we also used the LRT to confirm the adequacy of hp1 versus
the hp0 model, with a significance level of 0.05, resulting in the rejection of the constant dispersion
hypothesis:

lrtest(hp0, hp1)
Statistics: 5.668851
Degrees of freedom: 1
p-value: 0.01726877

Since the dispersion parameter in the hp1 model depends on dnc, its values may determine over-
or under-dispersion. It is interesting to note that low values of the dnc variable show over-dispersion
while high values show under-dispersion. Specifically, the point at which the change occurs is
1.7069. There are 24 out of the 110 cases with γi > 1, and thus over-dispersed, underlying hP(µi, γi)
distributions, see Figure 1. The plot suggests a certain correlation between under-dispersion and high
response variable values.

0 5 10 15 20 25 30

0
10

20
30

40

ncusti

γ i

Figure 1: Value of the dispersion parameter according to the response variable. The points above the
dashed line are greater than 1, so the distribution is over-dispersed. These points occur for low values
of the response variable.
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(a) Residuals versus fitted values.
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(b) Normal QQ plot.
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(c) Bar_plot for the observed marginal frequencies. The
blue line represents the expected marginal frequencies for
the response variable.
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(d) Normal QQ plot with simulated envelopes of resid-
uals. The shaded gray region contains 95% of the sim-
ulated points for each observation.

Figure 2: Regression diagnostics. The plots do not show evidence against the adequacy of the model.

plot(CustomerProfile$ncust, hp1$gamma,
xlab = expression(ncust[i]),
ylab = expression(gamma[i]),
pch = 19

)
abline(h = 1, lty = "dashed", col = "blue")

The plot method provides two classical plots for the model diagnostics: residuals against fitted
values and a normal QQ-Plot. In relation to the residuals, Pearson, deviance and response residuals
are offered, although here we only calculate the Pearson type (top row of Figure 2). The package
also provides the possibility to compare in a barplot the observed and expected marginal frequencies
of the response variable with the hP_expected and the CMP_expected functions (Figure 2c). Finally,
the diagnostic can be completed by a simulated envelope for the residuals to assess the accuracy of
the model on the entire dataset (Atkinson, 1981; Garay et al., 2011). The residuals method provides
this diagnostic tool, and in Figure 2d the cases for which the model assumptions are rejected are
highlighted in red. In this case there are 5 observations that fall outside the envelope, therefore there is
no evidence against the adequacy of the model.

par(mfrow = c(2, 2))
set.seed(21)
plot(hp1) # Residuals against fitted values and normal QQ plot

# Observed and expected marginal frequencies
expec_hp <- hP_expected(hp1)
barplot(expec_hp$observed_freq[0:33], xlab = "ncust", ylab = "Frequencies")
lines(expec_hp$frequencies[1:33], x = c(0:32), col = "blue")
text(x = c(25, 25), y = c(10, 9), c(paste("Dif = ", round(expec_hp$dif, 2)),

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 129

paste(expression(chi ^ 2), "=", round(expec_hp$chi2, 2))), pos = 4)

# Envelope
r1 <- residuals(hp1, envelope = TRUE)
envelope_down <- apply(r1$sim_residuals, 1, min)
envelope_up <- apply(r1$sim_residuals, 1, max)
weirds <- which(r1$residuals < envelope_down | r1$residuals > envelope_up)
score_weirds <- qnorm(weirds / 111)
points(score_weirds, r1$residuals[weirds], col = "red")

Performance comparison

In this section eight datasets, previously used in different works, have been used to compare the
performance of fitting hPµ,γ and CMPµ,ν models with the DGLMExtPois package (version 0.2.1, with
nloptr version 2.0.0), CMPθ,ν models with the COMPoissonReg package (version 0.7.0) and CMPµ,ν
models with the mpcmp package (version 0.3.6). We think that the selected datasets cover a wide
range of examples, with low, medium and large sample sizes, and under- and over-dispersion in their
variability structure.

For each dataset we have tried to fit hPµ,γ, CMPµ,ν and CMPθ,ν models, and we have computed
some goodness of fit criteria (Lord et al., 2010), such as AIC, mean prediction bias (MPB), mean absolute
deviance (MAD), mean squared predictive error (MSPE) and the Pearson statistic. Additionally, we
have calculated the time needed to fit the models with these R packages. The experimentation has
been carried out on a computer equipped with an Intel Core i7 processor (3.20GHz) and 64 GB of RAM.
Table 4 shows the AICs and the computational times obtained by the different models for the different
datasets. The first column of the table lists the names of the datasets and the second column lists the
number of observations of each dataset. The best AICs results are highlighted in bold. Unfortunately,
the COMPoissonReg and mpcmp packages crash with some datasets, which is indicated by a dash in
the table. In relation to the crashes, we clarify that all the fits have been carried out with the default
optional arguments. To obtain a better approximation of the execution time needed to estimate a
model, we have estimated each model 10 times and computed the average time required for the
estimate. These average times are presented in Table 4 as follows. A value of 1.0 means the model
has the fastest average estimate time and this fastest average time, in seconds, is shown in the last
column. A value of, e.g., 41.4 means the average estimate time of the model is 41.4 times larger than
the average of the fastest. Table 5 shows the results of the hPµ,γ and CMPµ,ν models, fitted with the
DGLMExtPois package, according to other goodness of fit criteria.

AIC average estimate time

Dataset obs. hPµ,γ CMPµ,ν CMPθ,ν mpcmp hPµ,γ CMPµ,ν CMPθ,ν mpcmp fastest

Takeover bids 126 355.1 354.8 – 357.8 1.0 41.4 – 4.9 0.7
Days absent 314 1739.2 1736.1 – – 1.0 5.1 – – 23.6
Cotton bolls 125 555.1 446.3 466.4 447.2 1.0 53.4 10.0 11.5 0.7
Korea 162 218.2 214.5 – – 1.0 6.0 – – 2.5
Toronto 868 5088.4 5067.4 – 5069.4 17.6 27.6 – 1.0 9.0
Insurance 64 407.8 399.0 469.4 394.2 1.8 1.7 1.0 7.4 6.7
Credit card 1319 2392.9 – – – 1.0 – – – 1591.1
Children 1761 5380.4 5372.4 5393.2 5374.4 512.5 583.5 4.6 1.0 6.3

Table 4: Comparison of models based on AIC (the smallest value is highlighted in bold) and relative
average estimate time. For the estimate times a value of 1.0 means the model is the fastest on average
for the dataset. A value of, e.g., 41.4 means the average estimate time of the model is 41.4 times larger
than the average of the fastest. The fastest time is expressed in seconds. The symbol – means that the
model could not be estimated.

Next, the datasets used in the comparison are described, together with some comments about the
fits for the different models:

• Takeover bids. The response variable is the number of bids received by 126 US firms that were
successful targets of tender offers between 1978–1985. We consider 9 explanatory variables on
the defensive actions taken by the management of the target firm, firm-specific characteristics
and the intervention taken for both the mean and the dispersion parameter with a log-linear link.
See Saez-Castillo and Conde-Sanchez (2013) for more details about these explanatory variables
and other references where the dataset was analyzed. For this dataset the COMPoissonReg
package crashes with the CMPθ,ν model. The lowest AIC is obtained by the CMPµ,ν model.
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MPB MAD MSPE Pearson

Dataset hPµ,γ CMPµ,ν hPµ,γ CMPµ,ν hPµ,γ CMPµ,ν hPµ,γ CMPµ,ν

Takeover bids 0.0005 -0.0834 0.83 0.90 1.66 1.99 128.4 127.4
Days absent 0.0287 0.0257 4.51 4.51 40.20 40.20 374.3 370.2
Cotton bolls 0.0009 0.0183 0.98 1.00 1.60 1.73 29.6 131.4
Korea -0.0052 0.0206 0.36 0.35 0.24 0.24 119.9 –
Toronto -0.0121 -0.0006 4.14 4.14 32.67 32.66 951.2 935.6
Insurance 0.0830 -0.0254 3.51 3.45 25.80 25.33 48.0 54.4
Credit card 0.0156 – 0.66 – 1.66 – 9267.8 –
Children -0.0000 -0.0017 0.95 0.95 1.44 1.44 1653.1 1718.1

Table 5: Comparison of models based on additional goodness of fit criteria. MPB: mean prediction
bias; MAD: mean absolute deviance; MSPE: mean squared predictive error and Pearson statistic. The
best results are highlighted in bold.

The main difference between the fits of hPµ,γ and CMPµ,ν is that the former identifies 108 out
of 126 of the cases as being under-dispersed, whereas the latter identifies only 88. In general,
the goodness of fit measures are quite similar, being somewhat smaller for the hPµ,γ model. In
addition, the CMPµ,ν model obtained with the DGLMExtPois package is slower, but with a
lower AIC, than the one obtained with the mpcmp package.

• Days absent. The sample refers to 314 students sampled from two urban high schools. The
response variable is the number of days absent from high school, and the explanatory variables
for both the mean and the dispersion parameter are gender, math’s score (standardized score
out of 100) and academic program (General, Academic and Vocational). The dataset has been
analyzed, among others, by Huang (2017). The COMPoissonReg package crashes again with
the CMPθ,ν model, as does the mpcmp package with the CMPµ,ν model. CMPµ,ν achieves a
slightly better AIC than hPµ,γ, but again requires more computational time and the goodness of
fit measures are quite similar. In relation to the dispersion structure, both models identify all the
cases as being over-dispersed.

• Cotton bolls. Here, the response variable is the number of bolls produced by 125 cotton plants.
The explanatory variables, again for both the mean and the dispersion parameter, are the growth
stage (vegetative, flower-bud, blossom, fig and cotton boll), and the defoliation level (with 5
levels). The model also includes the square of the defoliation level. It reproduces the analysis
carried out by Zeviani et al. (2014). This is one of the cases where COMPoissonReg provides a
CMPθ,ν fit, although the one provided by the CMPµ,ν model obtains a lower AIC (very similar to
both the DLGMExtPois and mpcmp packages). Here hPµ,γ performs worse and obtains a higher
AIC. Another interesting point in relation to the CMPµ,ν fit is that, regardless of the strong under-
dispersion of the complete dataset, the introduction of covariates in the dispersion parameter
allows us to identify 5 cases that are actually described with over-dispersed distributions. Note
also that hPµ,γ is the fastest approach.

• Korea crashes. The dataset contains crash count data, which is the response variable, collected
at 162 railway-highway crossings in Korea. The explanatory variables include the average
daily vehicle traffic (in logarithmic scale) and 7 characteristics of the crossing. See, for example,
Khazraee et al. (2015) for more details. For this dataset both the COMPoissonReg and mpcmp
packages crash. The CMPµ,ν fit obtains the best AIC, although the rest of the goodness of fit
measures are quite similar to those provided by the hPµ,γ fit. Once the effect of the covariates is
taken into account, both fits detect over 50 cases with under-dispersed underlying distributions.

• Toronto crashes. The dataset provides Toronto intersection crash data. The response variable is
the number of crashes at 868 intersections, and the explanatory variables for the mean and the
dispersion parameter are the average annual daily traffic in the major and minor approaches to
the intersection. These data have been widely used as an example of over-dispersed crash data.
See, for example, Khazraee et al. (2015). Whereas COMPoissonReg once again leads to a crash
in the fit of a CMPθ,ν model, CMPµ,ν and hPµ,γ provide similar fits in terms of goodness of fit
measures. The CMPµ,ν model obtained with the DGLMExtPois package has a slightly lower
AIC than the model obtained with the mpcmp package. In this case, the mpcmp package is the
fastest estimating the model. There are 2 under-dispersed cases for the hPµ,γ fit.

• Insurance claims. Data consist of the numbers of policyholders of an insurance company who
were exposed to risk, and the number of car insurance claims made by those policyholders
in the third quarter of 1973. The response variable is the number of claims, with the number
of policyholders being an offset for the mean. Apart from this offset, there are 3 explanatory
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variables for the mean and the dispersion parameter: district of residence of the policyholder,
car group and an ordered factor with the age of the insured in 4 groups. The CMPµ,ν model of
the mpcmp package obtains the best AIC, but it is the slowest in terms of computational time.
On this occasion the COMPoissonReg package does not fail and is the fastest, however its AIC
is clearly the highest among the estimated models. Most of the cases show under-dispersion (52
and 44 for hPµ,γ and CMPµ,ν respectively).

• Credit card reports. The response variable is the number of major derogatory reports. Three
explanatory variables are considered: age in years plus twelfths of a year, yearly income (in
USD 10,000) and average monthly credit card expenditure. For this dataset the only model that
can be estimated is hPµ,γ. This is a case of over-dispersed data, but as a result of introducing
covariates in the dispersion parameter, 5 under-dispersed cases appear in the hPµ,γ model. In
any case a negative binomial model fits better due to the strong over-dispersion of data.

• Children. In this dataset the response variable is the number of children a woman has. The
explanatory variables are: age of the woman in years, years of education, nationality of the
woman (German or not), belief in God (with 6 categories) and attended university (yes or no).
This is an example of equidispersed data (Tutz, 2011), although our models detected under-
dispersion (1164 and 1238 cases for hPµ,γ and CMPµ,ν respectively). In this case the mpcmp
package provides a very fast CMPµ,ν fit, but with a slightly higher AIC.

In summary, the hPµ,γ model is the only one that can provide fits for all the datasets. Regarding the
AIC, the CMPµ,ν model seems to be better than the hPµ,γ model, although the latter usually requires
less estimation time. As for the comparison of the CMPµ,ν model in the DGLMExtPois and mpcmp
packages, the CMPµ,ν model of the mpcmp package fails in more datasets and provides better results
in terms of AIC for only one dataset.

Simulation

In order to assess the performance of the estimates and standard errors in finite samples of the hPµ,γ
model a simulation has been performed. The simulation process consists of the following steps:

1. 500 values of two covariates X and Z are generated from a uniform distribution on the interval
(0, 1).

2. The mean and γ are obtained as µi = exp{β0 + β1xi} and γi = exp{δ0 + δ1zi}, i = 1, . . . , 500,
for several values of the regression coefficients β0, β1, δ0 and δ1.

3. The λ parameter is obtained as solution of (2) by means of the base R optimize function.

4. Each value of Y in the sample is randomly generated using the rhP function.

5. Once the dataset (Y, X, Z) is available, the coefficients of the hPµ,γ model are estimated.

This process was repeated 1000 times and the average of the estimates and standard errors, as well
as the standard deviation of the estimates, were calculated. The standard deviation of the estimates
allows us to check whether the standard errors have been calculated correctly, while the average of
the estimates allows us to determine whether there is a bias in the estimation of the coefficients. The
results obtained for different values of the coefficients are shown in Table 6.

β0 β1

Coefficients mean sd s.e. mean sd s.e.

Comb. I: β = (1, 0.5) 0.998 0.0504 0.0507 0.501 0.0827 0.0829
Comb. II: β = (1, 0.5) 0.998 0.0552 0.0555 0.501 0.0902 0.0904
Comb. III: β = (1, 0.5) 0.998 0.0490 0.0492 0.501 0.0805 0.0805

δ0 δ1

Coefficients mean sd s.e. mean sd s.e.

Comb. I: δ = (0.5,−1) 0.461 0.4237 0.4232 -1.041 0.8408 0.8164
Comb. II: δ = (0.5, 0.25) 0.456 0.3834 0.3839 0.273 0.6625 0.6567
Comb. III: δ = (0,−0.5) -0.058 0.4943 0.4866 -0.531 0.9329 0.8980

Table 6: Simulation process for hPµ,γ models. For each combination of coefficients the mean and
standard deviation (sd) of the estimates were calculated, as well as the mean of the standard errors
(s.e.).
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The first combination of coefficients (β = (1, 0.5) and δ = (0.5,−1)) allows for under- and over-
dispersion situations. The coefficients in the second combination (β = (1, 0.5) and δ = (0.5, 0.25))
determine a model with over-dispersion only. And finally, the third combination of coefficients
(β = (1, 0.5) and δ = (0,−0.5)) corresponds to an under-dispersed model. It can be seen that the
estimates of the β coefficients are practically unbiased and very precise, while those of the δ coefficients
are more biased and much less precise. In any case the mean standard errors are very close to the
standard deviations of the 1000 estimates, so the calculation of these standard errors seem to be correct.

A similar simulation has been performed for the CMPµ,ν model in the DGLMExtPois package,
and the results are shown in Table 7. It can be seen that, although the estimates of the δ coefficients
are still less precise than those of the β coefficients, these estimates are less biased and more precise
than those of the hPµ,γ model. In this sense, the CMPµ,ν model leads to better estimates than the
hyper-Poisson model.

β0 β1

Coefficients mean sd s.e. mean sd s.e.

Comb. I: β = (1, 0.5) 0.998 0.0497 0.0498 0.502 0.0818 0.0812
Comb. II: β = (1, 0.5) 0.999 0.0383 0.0386 0.501 0.0626 0.0627
Comb. III: β = (1, 0.5) 0.998 0.0557 0.0556 0.502 0.0909 0.0911

δ0 δ1

Coefficients mean sd s.e. mean sd s.e.

Comb. I: δ = (0.5,−1) 0.515 0.1415 0.1415 -1.0132 0.2640 0.2641
Comb. II: δ = (0.5, 0.25) 0.513 0.1349 0.1343 0.2426 0.2362 0.2319
Comb. III: δ = (0,−0.5) 0.012 0.1526 0.1539 -0.5085 0.2807 0.2800

Table 7: Simulation for CMPµ,ν models. For each combination of coefficients the mean and standard
deviation (sd) of the estimates were calculated, as well as the mean of the standard errors (s.e.).

The optimization process

As previously mentioned, the estimation of hPµ,γ and CMPµ,ν models in the DGLMExtPois package
was performed using the SLSQP optimizer included in the nloptr package. Because the SLSQP
algorithm uses dense-matrix methods, it requires O(m2) storage and O(m3) time in m dimensions
(where m is the number of estimated parameters, i.e., the number of observations plus the number of
model coefficients), which makes it less practical for optimizing more than a few thousand parameters.
Table 8 shows the datasets from the above performance comparison sorted by the dimension of the
objective function when fitting an hPµ,γ model. Also, the average estimation time for 10 estimations
and the number of iterations taken by the optimizer are listed. Clearly, the dimension of the objective
function has the greatest impact on optimization time, while the number of iterations plays a less
important role.

Dataset dimension average time iterations

Insurance 84 12.0 987
Takeover bids 146 0.7 78
Cotton bolls 155 0.7 96
Korea 180 2.5 283
Days absent 324 23.6 558
Toronto 874 158.8 111
Credit card 1327 1591.1 135
Children 1781 3221.0 61

Table 8: Optimization process for hPµ,γ models. For each dataset, the dimension of the objective
function, the average optimization time (in seconds) and the number of iterations are shown.

The nloptr optimization function from the nloptr package was used to fit the models. This function
allows several termination conditions for the optimization process, of which the DGLMExtPois
package uses, by default, the following:

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 133

• A maximum number of iterations of 1000 and,

• a fractional tolerance (xtol_rel) is used in the parameters x, so that the optimizer stops when
|∆xi|/|xi| < xtol_rel, with a default value for xtol_rel of 0.01.

Information on the optimization process can be obtained through the component nloptr, of class
"nloptr", included in the S3 object returned by the glm.hP function:

library(mpcmp)
formula <- daysabs ~ gender + math + prog
fit <- glm.hP(formula, formula, data = attendance)
fit$nloptr$message # termination condition
[1] "NLOPT_XTOL_REACHED: Optimization stopped because xtol_rel or xtol_abs (above) was
reached."
fit$nloptr$iterations # number of iterations
[1] 558

The user can modify the termination conditions. For example, in the following code the second
call to glm.hP removes the termination condition on fractional tolerance used in the parameters and
set the maximum number of iterations:

fit1 <- glm.hP(formula, formula, data = attendance) # default termination conditions
AIC(fit1)
[1] 1739.192
fit1$nloptr$iterations
[1] 558
fit2 <- glm.hP(formula, formula, data = attendance,

opts = list(xtol_rel = -1, maxeval = 250))
AIC(fit2)
[1] 1739.369
fit2$nloptr$iterations
[1] 250

Another interesting termination condition is an approximate maximum optimization time, ex-
pressed in seconds:

fit3 <- glm.hP(formula, formula, data = attendance,
opts = list(xtol_rel = -1, maxeval = -1, maxtime = 5))

AIC(fit3)
[1] 1741.672
fit3$nloptr$iterations
[1] 124

The user can also see how the optimization process evolves:

fit4 <- glm.hP(formula, formula, data = attendance,
opts = list(xtol_rel = -1, maxeval = 5, print_level = 1))

iteration: 1
f(x) = 1550.509229

iteration: 2
f(x) = -0.000000

iteration: 3
f(x) = 33443.986687

iteration: 4
f(x) = 2980.009033

iteration: 5
f(x) = 1444.775141

6 Conclusion

In this paper we have presented DGLMExtPois, the only package on CRAN that allows fitting count
data using the hyper-Poisson model. This model is able to fit data with over- or under-dispersion, or
both for different levels of covariates. Additionally, DGLMExtPois can also fit COM-Poisson models,
considering covariates in the mean and the dispersion parameter. The mpcmp package also presents
this feature, so the results obtained by both packages can be compared. We have found that the mpcmp
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package fails to fit some datasets and the fits obtained are, in general, somewhat worse than those
obtained with the DGLMExtPois package. The COMPoissonReg package allows covariates in the
location parameter, but it models a location parameter instead of the mean. In addition, this latter
package fails to fit many of the datasets used in the experimentation.

The two models implemented by the DGLMExtPois package achieved similar results in the
experimentation, with the COM-Poisson model obtaining, in general, slightly lower AICs and needing
more computational time to fit the models. We have also verified, by means of a simulation, that
the COM-Poisson model is more accurate in estimating the coefficients of the covariates included
in the dispersion parameter. But, overall, it cannot be said that one model is clearly better than the
other. Thus, two competitive models are available to deal with count data. As shown in the example,
the possibility of including covariates in the dispersion parameter is suitable for situations where
there may be both over- and under-dispersion for different levels of the covariates, which makes
these models especially attractive compared to those where the dispersion is constant. In fact, in the
example with a constant dispersion parameter, equidispersion was obtained, whereas if covariates are
considered in the dispersion parameter over- or under-dispersion can be found.

It should also be noted that the algorithm used to estimate the parameters of the hyper-Poisson
model is much faster than the previous algorithms (Huang, 2017; Saez-Castillo and Conde-Sanchez,
2013).
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Appendix

Preliminaries

Firstly, given that

1F1 (1, γ; λ) =
∞

∑
y=0

λy

(γ)y
,

it is verified that

∂

∂λ 1F1 (1, γ; λ) =
∞

∑
y=0

yλy−1

(γ)y
=

1
λ

∞

∑
y=0

y
λy

(γ)y
= 1F1 (1, γ; λ)

µ

λ

and therefore
∂
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log (1F1 (1, γ; λ)) =

1

1F1 (1, γ; λ)

∂

∂λ 1F1 (1, γ; λ) =
µ

λ
. (7)

Furthermore, since

∂ (γ)y

∂γ
=

∂
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Γ (γ + y)
Γ (γ)

=
Γ (γ + y)ψ (γ + y) Γ (γ)− Γ (γ + y) Γ (γ)ψ (γ)

Γ (γ)2

=
Γ (γ + y)

Γ (γ)
(ψ (γ + y)− ψ (γ)) = (γ)y (ψ (γ + y)− ψ (γ)) ,

(8)

where we have used
∂Γ (γ)

∂γ
= Γ (γ)ψ (γ) .

Thus, you get that

∂

∂γ 1F1 (1, γ; λ) =
∞

∑
y=0

yλy−1 ∂λ
∂γ (γ)y − λy ∂(γ)y

∂γ
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}
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so
∂
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log (1F1 (1, γ; λ)) =

1

1F1 (1, γ; λ)

∂

∂γ 1F1 (1, γ; λ) =
µ

λ

∂λ
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− E [ψ (γ + Y)] + ψ (γ) . (9)

Proof of result 1

Using the chain rule:
∂lhP
∂β

=
∂lhP
∂µi

∂µi
∂β

,
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so that the score function for µi is:
∂lhP
∂µi

=
∂lhP
∂λi

∂λi
∂µi

.

Let us start with the first of the previous derivatives:

∂lhP
∂λi

=
n

∑
i=1

{
Yi
λi

− ∂

∂λi
log (1F1 (1, γi; λi))

}
=

n

∑
i=1

Yi − µi
λi

, (10)

where the result (7) has been used.

The second of the above derivatives is obtained using implicit differentiation, taking into account
that λ(µi, γi) is solution of equation (2). Thus,

0 =
∞

∑
y=0

(y − µ)
λy

(γ)y
,

wherein subscript i has been omitted, and by differentiating with respect to µ

0 =−
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∑
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+
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]
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,

and clearing
∂λ

∂µ
=

λ

V (µ, γ)
. (11)

Therefore, plugging (10) and (11) into the score function, we obtain

∂lhP
∂µi

=
n

∑
i=1

Yi − µi
λi

λi
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=
n
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. (12)

The only thing left to consider to achieve expression (4) is that

∂µi
∂β

= µix
′
i .

Proof of result 2

Using the chain rule we get
∂lhP
∂δ

=
∂lhP
∂γi
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.

We develop the first of these derivatives (score for γ)
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,

wherein we have used (9).

The derivative of λi with respect to γi is also obtained by explicit differentiation from equation (2)
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with respect to γ, getting (without considering subscripts):
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∂λ

∂γ
= λ

E [(Y − µ)ψ (γ + Y)]
V (µ, γ)

= λ
Cov [Y, ψ (γ + Y)]

V (µ, γ)
. (13)

Therefore, replacing (13) in the score of γ we obtain

∂lhP
γi

=
n

∑
i=1

{
(Yi − µi)

Cov [Yi, ψ (γi + Yi)]

V (µi, γi)
− ψ (γi + Yi) + E [ψ (γi + Yi)]

}
. (14)

The only thing left to consider to get the expression (5) is that

∂γi
∂δ

= γiz
′
i .

Proof of result 3

The Fisher information matrix can be calculated by blocks:

E
[
SβS′

β

]
= E

[
(Y − µ)2

] µ2

σ4 XX′ =
µ2

σ2 XX′.

E
[
SδS′

δ

]
=

E
[
(Y − µ)2

]
σ4 Cov (Y, ψ (γ + Y))2 + E

[
ψ (γ + Y)2

]
+ E [ψ (γ + Y)]2

− 2
E [(Y − µ)ψ (γ + Y)]

σ2 Cov (Y, ψ (γ + Y))

+2E [ψ (γ + Y)]
E [Y − µ]

σ2 Cov (Y, ψ (γ + Y))− 2E [ψ (γ + Y)] E [ψ (γ + Y)]
}

ZZ′γ2

=

{
Cov (Y, ψ (γ + Y))2

σ2 + E
[
ψ (γ + Y)2

]
− E [ψ (γ + Y)]2 − 2

Cov (Y, ψ (γ + Y))2

σ2

}
ZZ′γ2

=

[
Var (ψ (γ + Y))− Cov (Y, ψ (γ + Y))2

σ2

]
ZZ′γ2.

E
[
SβS′

δ

]
=

E
[
(Y − µ)2

]
σ4 Cov (Y, ψ (γ + Y))− E [(Y − µ) (ψ (γ + Y))]

σ2 +
E [Y − µ]

σ2 E [ψ (γ + Y)]

XZ′µγ

= 0.
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Gradient of the objective function

Considering the log-likelihood function (3) as a function of β, λ′
i = log λi and δ, the gradient of the

objective function is:

∂lhP
∂β

= 01×(q1+1).

∂lhP
∂λ′

i
=

∂lhP
∂λi

∂λi
∂λ′

i
=

1
λi

(
n

∑
i=1

Yi − nµi

)
λi =

n

∑
i=1

Yi − nµi.

∂lhP
∂δ

=
∂lhP
∂γ

∂γ

∂δ
=

(
−

n

∑
i=1

ψ (γi + Yi) + E [ψ (γi + Yi)]

)
γiz

′
i .

The proof is straightforward from expressions (7) and (8).

Gradient of the restriction (2)

Restriction (2) can be expressed as

ceqi = ex′i β −
∞

∑
yi=0

yi
1

1F1 (1, γi; λi)

λ
yi
i

(γi)yi

, i = 1, . . . , n,

whose gradient is given by:

∇ceqi =

(
∂ceqi
∂β

,
∂ceqi
∂λi

,
∂ceqi

∂δ

)
,

where

∂ceqi
∂β

= µix
′
i .

∂ceqi
∂λi

= −V (µi, γi)

λi
=⇒ ∂ceqi

∂λ′
i

= −V (µi, γi) .

∂ceqi
∂δ

= Cov (Yi, ψ (γi + Yi)) γiz
′
i .

For this, you have to take into account that:
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= −
∞

∑
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y2
i

1
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λ
yi−1
i

(γi)yi

+
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µ

λ

1
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λ
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i

(γi)yi

= − 1
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1
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λ
yi
i
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1
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= − 1
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E
[
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i
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i
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= −V (µi, γi)
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,

where expression (7) has been used. Considering expressions (8) and (9), it is verified that:

∂ceqi
∂γi

=
∞

∑
yi=0

yi (ψ (γi + yi)− ψ (γi))
1

1F1 (1, γi; λi)

λ
yi
i

(γi)yi

+
∞

∑
yi=0

yi (ψ (γi)− E [ψ (γi + Yi)])
1

1F1 (1, γi; λi)

λ
yi
i

(γi)yi

= E [Yiψ (γi + Yi)]− E [Yi] E [ψ (γi + Yi)] = Cov (Yi, ψ (γi + Yi)) ,

from which it is straightforward to obtain the gradient for δ.
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Making Provenance Work for You
by Barbara Lerner, Emery Boose, Orenna Brand, Aaron M. Ellison, Elizabeth Fong, Matthew K. Lau,
Khanh Ngo, Thomas Pasquier, Luis Perez, Margo Seltzer, Rose Sheehan, Joseph Wonsil

Abstract To be useful, scientific results must be reproducible and trustworthy. Data provenance—the
history of data and how it was computed—underlies reproducibility of, and trust in, data analyses.
Our work focuses on collecting data provenance from R scripts and providing tools that use the
provenance to increase the reproducibility of and trust in analyses done in R. Specifically, our “End-to-
end provenance tools” (“E2ETools”) use data provenance to: document the computing environment
and inputs and outputs of a script’s execution; support script debugging and exploration; and explain
differences in behavior across repeated executions of the same script. Use of these tools can help both
the original author and later users of a script reproduce and trust its results.

1 Introduction

In today’s data-driven world, an increasing number of people are finding themselves needing to
analyze data in the course of their work. Often these people have little or no background or formal
coursework in programming and may think of it solely as a tedious means to an interesting end.
Writing scripts to work with data in this way is often exploratory. The researcher may be writing a
script to produce a plot that enables visual understanding of the data. This understanding might then
lead to a realization that the data need to be cleaned to remove bad values, and statistical tests need
to be performed to determine the strength or trends of relationships. Examining these results may
raise more questions and lead to more code. This type of exploratory programming can easily lead to
scripts that grow over time to include both useful and irrelevant code that is difficult to understand,
debug, and modify.

Creating a script and successfully running it once to analyze a dataset is one thing. Reproducing it
later is another thing entirely. We might expect that re-running a script and reproducing a data analysis
should be a simple matter of rerunning a program or script on the same data, but it is rarely that
simple. Anyone who has tried to retrieve the version of the data and scripts used to produce the results
presented in a paper will likely appreciate how difficult this can be. Data and scripts can be modified
or lost. But even if care is taken to save the scripts and data, new versions of programming languages,
libraries and operating systems may make scripts behave differently or be unable to run at all. In
an ideal world, everything would be backwards-compatible, but in reality, what ran last week often
doesn’t run next week. It can be difficult to determine what went wrong, especially if programming is
an occasional activity. The National Academy of Sciences report on Reproducibility and Replicability
in Science (National Academies of Sciences, Engineering, and Medicine, 2019) describes at length the
challenges associated with computational reproducibility of scientific results.

Motivated by an interest in supporting reproducibility of R scripts, we developed a package called
rdtLite to collect data provenance containing a record of a script’s execution and the environment
in which it was executed (Lerner et al., 2018). Having done that, we then realized that the wealth
of information contained in the data provenance could serve other purposes as well. This led to the
development of End-to-End Provenance Tools (“E2ETools”): an evolving set of R packages that use
data provenance to help users save workable copies of their data and scripts, debug them, understand
how data and results of analyses were derived, discover what has changed when a script stops
working, and reproduce prior results.

2 What is data provenance?

Provenance is the history of creation, ownership, chain-of-custody, and location of an object. In
its original and still most-frequently used sense, provenance is used to authenticate and trace the
legitimate ownership of a work of art; it confers, creates, or adds value to the work itself. But
provenance can be constructed, identified, or traced for any object, including data (Becker and
Chambers, 1988). Data provenance is analogous to provenance of a work of art in that it includes the
history of a datum or entire dataset from the point at which it was collected (by a person or sensor),
created (by a computational process), or derived (from other data). Data provenance also confers
or adds value—as trustworthiness—to data, but data provenance can do more: it can be used to
reproduce computational analyses and validate scientific conclusions.

More precisely, data provenance is the history of a data item (“datum”) or a dataset (“data”); it
describes how the datum or data came to be in its present state. Our E2ETools focus on language-level
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# Load the mtcars data set that comes with R
data(mtcars)

# All the cars
allCars.df <- mtcars

# Create separate data frames for each number of cylinders
cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]
cars6Cyl.df <- allCars.df[allCars.df$cyl == 6, ]
cars8Cyl.df <- allCars.df[allCars.df$cyl == 8, ]

# Create a table with the average mpg for each # cylinders
cylinders = c(4, 6, 8)
mpg = c(mean(cars4Cyl.df$mpg), mean(cars6Cyl.df$mpg), mean(cars8Cyl.df$mpg))
cyl.vs.mpg.df <- data.frame (cylinders, mpg)

# Plot it
plot(cylinders, mpg)

Figure 1: Source code for mtcars_example.R. This code is used to demonstrate the lineage traces
provided by the debug.lineage function as described in the text.

provenance : how data are created and manipulated by a programming language such as R during
the execution of a script or program. Provenance is also referred to in other computing contexts.
For example, data provenance can be used to understand results of queries to a database or to the
processes that were used to create or modify a file. In the remainder of this paper, however, when we
say “provenance” or “data provenance”, we specifically mean language-level provenance.

We associate three types of information with provenance: environment information, coarse-grained
information, and fine-grained information. Environment information includes information about
the computing environment in which the script was executed. This includes information such as the
operating system version, the R version, and the versions of the R libraries used, as each of these may
play a role in understanding the details of how a script behaves. Coarse-grained information includes
the source code of the script(s), the data input to the script, the data output by the script, and plots
produced by the script. Fine-grained information includes an execution trace. Specifically, for each
line of the script that is executed, fine-grained information includes the data used on that line and any
data computed by, or object created by, that line. Our E2ETools can use this fine-grained information
to help a user understand exactly how any data value or object in the script was computed or derived.

3 A first example

Consider this simple example, ‘mtcars_example.R’, that loads in the ‘cars’ dataset and plots miles per
gallon (mpg) as a function of the number of cylinders (cylinders) (Figure 1).

The following commands run the script, collect its provenance, and produce a textual summary of
the provenance.

library(rdtLite)
prov.run("mtcars_example.R")
prov.summarize()

The provenance summary is shown in Figure 2. The environment information (lines 3–18) reports
details of the computing environment in which the script was executed, such as the processor and
operating system on which it ran and the version of R and R libraries used. The coarse-grained
information (lines 20–36) identifies the location in the file system of the script, the input dataset,
and the plot produced. The fine-grained information, which is not displayed by prov.summarize()
but is accessible via other tools, indicates the input and output data for each line of code executed,
linking them together so that one can see how the values computed in one statement are used in
later statements. For example, the provenance debugger can use fine-grained information to display
everything that is derived from a variable.
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PROVENANCE SUMMARY for mtcars_example.R

ENVIRONMENT:
Executed at 2022-07-28T13.52.25EDT
Total execution time was 1.516 seconds
Script last modified at 2022-07-22T10.41.25EDT
Executed with R version 4.2.1 (2022-06-23)
Platform was x86_64, darwin17.0
Operating system was macOS Catalina 10.15.7
User interface was 2022.02.3+492 Prairie Trillium (desktop)
Document converter was 2.2.1 @ /usr/local/bin/pandoc
Provenance was collected with rdtLite1.4
Provenance is stored in /Users/blerner/tmp/prov/prov_mtcars_example
Hash algorithm is md5

LIBRARIES (loaded by script):
None (see notes below)

SCRIPTS:
1[:] /Users/blerner/Documents/Process/DataProvenance/Papers/RJournal/scripts/

examples/mtcars_example.R

PRE-EXISTING:
None

INPUTS:
1[:] /Library/Frameworks/R.framework/Versions/4.2/Resources/library/datasets/

data/Rdata.rds

OUTPUTS:
1[-] /Users/blerner/Documents/Process/DataProvenance/Papers/RJournal/scripts/

dev.off.11.pdf

CONSOLE:
None

ERRORS & WARNINGS:
None

NOTES: Files are listed in the order of execution (script 1 = main script).
The status of each file in its original location is marked as follows:
File unchanged [:], File changed [+], File missing [-], Not checked [ ].
Copies of original files are available on the provenance directory.

Libraries loaded by the user's script at the time of execution are displayed.
Note that some libraries may have been loaded before execution. Use details =
TRUE to see all loaded libraries along with script, file, and message details.

Figure 2: Provenance summary for mtcars_example.R, showing the environment in which the script
was executed, identifying the script, input and output files, and any errors or warnings encountered
when the script was executed.
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library(provDebugR)
prov.debug()
debug.lineage("cars4Cyl.df", forward = TRUE)

The resulting output displays the line numbers and code for everything computed, either directly
or indirectly, from cars4Cyl.df .

Var cars4Cyl.df
8: cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]
14: mpg = c(mean(cars4Cyl.df$mpg), mean(cars6Cyl.df ...
15: cyl.vs.mpg.df <- data.frame (cylinders, mpg)
18: plot(cylinders, mpg)
NA: mtcars_example.R

Alternatively, a modified version of the same command

debug.lineage("cars4Cyl.df")

shows the lines of code that lead to the value for cars4Cyl.df being computed.

Var cars4Cyl.df
2: data(mtcars)
5: allCars.df <- mtcars
8: cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]

Having seen an introductory example of some things the E2ETools can do, we now turn to a more
detailed discussion of each tool.

4 The end-to-end provenance tools

The E2ETools consist of three types of packages:

• A package to collect provenance: rdtLite;

• Packages that process data provenance to provide information to the user about a particular
script and its execution: provSummarizeR, provDebugR, provViz, and provExplainR;

• Packages to enable tool developers to more easily use data provenance: provParseR and
provGraphR.

We describe each of these packages, beginning with provenance collection. All the tools described
are available on CRAN.

Collecting provenance with rdtLite

The rdtLite package collects provenance from R scripts as they execute.1 rdtLite captures provenance
data from both scripts and interactive console sessions. To capture provenance for a script, the user
runs the script using the prov.run function.

library(rdtLite)
prov.run("script.R")

To collect provenance for an interactive session, the user begins the session with the prov.init function
and concludes it with prov.quit.

library(rdtLite)
prov.init()
data <- read.csv("mydata.csv")
plot(data$x, data$y)
prov.quit()

rdtLite collects information about each file or URL read by the script, each file written by the
script, and each plot created by the script. In addition, it records an execution trace of the top-level R
statements. This trace identifies the statement executed. It records any variables set or used by the
statement. When a variable is set, it records the type of the value, including its container (such as

1rdtLite is a simplified version of RDataTracker (Lerner and Boose, 2014b; Lerner et al., 2018).
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vector, data frame, etc.), dimensions, and class (e.g., character, numeric). If the container is a vector
of length 1, rdtLite records its data value, embedded in the provenance (which is stored in a JSON
file). rdtLite can save the values of larger containers in separate snapshot files. The user controls how
much data to save using the snapshot.size parameter in prov.init and prov.run. The default is to
not save snapshots. rdtLite also records any warning or error messages generated when the statement
is executed. To capture similar information about scripts that are included using the source function,
calls to source must be replaced with calls to prov.source.

The provenance is stored in a JSON file using a format that extends the PROV-JSON standard
(W3C, 2014).2 The extended format provides structured information about fine-grained provenance,
such as a list of libraries used, a mapping from functions called to the libraries from which they came,
script line numbers, and data values and their types. More information about the extended JSON
format is provided in the Appendix.

The JSON file is stored in a provenance directory that also contains copies of all input and output
files and the R scripts executed. By default, the provenance data is stored in the R session temporary
directory, but the user can change this location either at the time that prov.run or prov.init is called
or by setting the prov.dir option, for example, in the .Rprofile file.

Upon completion of a script called with prov.run, or after a call to prov.quit, rtdLite creates and
populates a directory named either ‘prov_script’, where ‘script’ is the name of the script file, or
‘prov_console’ for an interactive session. The directory will contain:

• ‘prov.json’ - the JSON file containing the fine-grained provenance
• ‘data’ - a directory containing copies of input and output files, URLs, plots created, and snapshot

files.
• ‘scripts’ - a directory containing a copy of the scripts for which provenance was collected.

The rdtLite default is to overwrite this information if the same script is executed again or if
prov.init is used again in a console session. However if the overwrite parameter is set to FALSE,
the provenance is stored in a unique, time-stamped directory, allowing provenance from multiple
executions to be analyzed and compared.

Using provenance

Having the provenance is extremely valuable, but it is not particularly usable without tools that read
the provenance and provide information or enable reproducibility. We next describe four tools that use
provenance to help R programmers understand executions of their script. The provSummarizeR
package provides a concise textual summary of an execution. The provViz package provides a
graphical visualization of the provenance. The provDebugR package uses collected provenance to
help programmers debug their code. The provExplainR package compares provenance from two
executions to help the programmer understand changes between them. These applications exist in
packages separate from rdtLite and would work equally well with provenance collected by other tools
that produce the same JSON format.

provSummarizeR

The purpose of provSummarizeR is to produce a concise record of the environment in which a script
was executed. This information could be particularly valuable when including a script and its results
in a paper, or when sharing a script with a colleague. For an example, please see Figure 2 above. The
summary includes the following information:

• The ENVIRONMENT section shows information about when the script was modified and
executed, what version of R was used, what hardware and operating system were used, what
R environment (such as RStudio) was used, what tool collected the provenance, where the
provenance is stored, and what hash algorithm was used to store hash values for files used in
the input and output of the script.

• The LIBRARIES section shows the libraries loaded by the script and their version numbers.
• The SCRIPTS section lists the main script and any scripts that are included in the execution of

this script using the source or prov.source functions.
• The PRE-EXISTING section shows any variables where the script uses a value that was bound

to the variable before the script started. This is a common R programming error that can lead to
unexpected results if the script is run again in a different environment, where such a variable
might have a different value or not be set at all.

2https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.md.
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• The INPUTS and OUTPUTS sections list all input and output files, the date they were last
modified, and their hash values, using the hash algorithm shown in the environment section.

• The CONSOLE section shows any output sent to the console when the script executed.

• The ERRORS & WARNINGS section lists any errors or warnings that occurred when the script
executed, including the number of the line that caused them.

In our own day-to-day work, we use provSummarizeR to document the processing of real-time
meteorological and hydrological data at Harvard Forest. Data and plots of data captured in the past 30
days, including air temperature, precipitation, stream discharge, and water temperature, are updated
and posted every 15 minutes.3 Also posted at the same site are provenance summaries for the script
execution that creates the plots.

There are three functions provided to generate summaries:

prov.summarize(details = FALSE)
prov.summarize.file(prov.file, details = FALSE)
prov.summarize.run(r.script, details = FALSE)

• prov.summarize produces a summary for the last provenance collected in the current R session.

• prov.summarize.file takes the name of a JSON file containing provenance and produces a
summary from it.

• prov.summarize.run takes the name of a file containing an R script. It runs the script, collects
its provenance, and produces a summary.4

By passing TRUE for the details parameter, the user can see more detail about some aspects of the
provenance. In particular,

• The libraries section is divided into three parts. The first part shows the libraries loaded by the
script. The second part shows the libraries that were loaded before the script starts. The third
part shows the libraries loaded by the rdtLite code itself.

• The information about script, inputs, and output files includes modification date and hash
value.

• The information about errors and warnings includes the line number on which each occurred.

The provViz and provDebugR tools described below provide a similar set of three functions: one
to use the last provenance collected, one to use a specific JSON file, and one to run a script and use its
provenance.

provViz

The provViz package allows visual exploration of script execution as shown in Figure 3. There are
two types of nodes: data nodes and procedure nodes. Data nodes represent things such as variables,
files, plots, and URLs. Procedure nodes represent executed R statements. An edge from a data node
to a procedure node indicates that the statement represented by the procedure node uses the data
represented by the data node. For example, the edge from data item, ‘7-mpg’, to procedure node,
‘9-plot(cylinders,mpg)’, indicates that mpg was used in the call to the plot function. Conversely,
an edge from a procedure node to a data node indicates that the procedure produced the data, for
example, by assigning to a variable or writing to a file. An edge between two procedure nodes
represents control flow, indicating the order in which the statements were executed.

provViz also allows the user to view the graph and explore it to examine intermediate data values
or input and output files and to perform lineage queries. The node colors indicate node type. Data
nodes representing variables are purple. Files are tan. Orange nodes represent standard output, while
red data nodes represent warnings and errors. Yellow nodes represent R statements. Green nodes
come in pairs and represent the start and end of a group of R statements. Clicking on a green node
reduces the set of statements between the matching ‘Start’ and ‘Finish’ nodes into a single node,
which is useful for making large graphs more manageable.

To see everything that depends on the value of a variable at a particular point in the execution of
the script, the user can right-click on the data node and select ‘Show what is computed using this
value’. This will display a subgraph containing just the data and procedure nodes that are in the
lineage of the data node, as shown in Figure 4, which shows the lineage of ‘3-cars4Cyl.df’. Notice
that statements that do not use the value of cars4Cyl.df, either directly or indirectly, are not shown.

3https://harvardforest.fas.harvard.edu/met-hydro-stations
4All three functions have additional optional parameters. For details, see the online help page.
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2-allCars.df <- read.csv("mtcars.csv")

1-car.R Start

3-cars4Cyl.df <- allCars.df[allCars.df$cyl == 4, ]

4-cars6Cyl.df <- allCars.df[allCars.df$cyl == 6, ]

5-cars8Cyl.df <- allCars.df[allCars.df$cyl == 8, ]

6-cylinders <- c(4, 6, 8)

7-mpg <- c(mean(cars4Cyl.df$mpg, mean(cars6Cyl.df$mpg, mean(

8-cyl.vs.mpg.df <- data.frame(cylinders, mpg)

9-plot(cylinders, mpg)

10-car.R Finish

10-dev.off.10.pdf

1-mtcars.csv

2-allCars.df

3-cars4Cyl.df

4-cars6Cyl.df

5-cars8Cyl.df

6-cylinders

7-mpg

8-cyls.vs.mpg.df

9-dev.2

Figure 3: A provenance graph as displayed using provViz. Yellow nodes represent statements in the
code, blue nodes represent variables, orange nodes represent files and green nodes mark the start and
end of the script.

3-cars4Cyl.df

7-mpg <- c(mean(cars4Cyl.df$mpg, mean(cars6Cyl.df$mpg, mean(

7-mpg

8-cyl.vs.mpg.df <- data.frame(cylinders, mpg) 9-plot(cylinders, mpg)

8-cyls.vs.mpg.df 9-dev.2

10-car.R Finish

10-dev.off.10.pdf

Figure 4: Displaying the Lineage of 3-cars4Cyl.df
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In addition to examining data values and tracing lineages as in this example, provViz supports the
following ways of exploring the provenance:

• Viewing input and output data files

• Viewing plots created

• Viewing the source code for a node or the entire script

• Comparing R scripts

• Comparing provenance graphs

• Searching for nodes by name and type

• Sorting procedure nodes based on execution time

provViZ itself is a small R program that connects to a Java program called DDG Explorer (Lerner
and Boose, 2014a), which does the actual work of creating and managing the display.

provDebugR

The provDebugR package provides debugging support by using the provenance to help users un-
derstand the state of their script at any point during execution. It provides command-line debugging
capabilities, but one could imagine building a GUI on top of these functions to produce a friendly in-
teractive debugging environment. By using provenance, provDebugR provides insight into the entire
execution and creates a rich debugging environment that provides execution context not typically
available in debuggers.

For example, consider a simple, but buggy script.

w <- 4:6
x <- 1:3
y <- 1:10
z <- w + y
y <- c('a', 'b', 'c')
xyz <- data.frame (x, y, z)

Running this script produces a warning and an error.

Error in data.frame(x, y, z) :
arguments imply differing number of rows: 3, 10

In addition: Warning message:
In w + y : longer object length is not a multiple of shorter object length

Of course, with a short script like this, a user could simply step through the script one line at a
time and examine the results, but for the purposes of demonstrating the debugger, imagine that this
code is buried within a large script. The lines of code might not be consecutive as shown here, and it
may even be difficult to determine what lines caused the reported errors.

The debugger provides some functions that are particularly helpful for understanding warning
and error messages. For example, if the user needs help understanding where a warning came from,
calling debug.warning with no arguments lists all the warnings; when called with a warning number,
it displays the lines of code leading up to the warning.

> debug.warning()
Possible results:

1 In w + y : longer object length is not a multiple of shorter object length

Pass the corresponding numeric value to the function for info on that warning
> debug.warning(1)
Warning: In w + y : longer object length is not a multiple of shorter object length

1: w <- 4:6
3: y <- 1:10
4: z <- w + y

By omitting lines that do not contribute to the computations that lead to the warning, the R programmer
should be able to find the problem more easily.

Similarly, the user can get information about what led up to an error using debug.error.
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> debug.error(stack.overflow=TRUE)
Your Error: Error in data.frame(x, y, z): arguments imply differing number
of rows: 3, 10

Code that led to error message:
1: w <- 4:6
2: x <- 1:3
3: y <- 1:10
4: z <- w + y
5: y <- c('a', 'b', 'c')
6: xyz <- data.frame (x, y, z)

Results from StackOverflow:
[1] "What does the error \"arguments imply differing number of rows: x, y\"

mean?"
[2] "ggplot gives \"arguments imply differing number of rows\" error in

geom_point while it isn't true - how to debug?"
[3] "Checkpoint function error in R- arguments imply differing number of rows:

1, 38, 37"
[4] "qdap check_spelling Error in checkForRemoteErrors(val) : one node

produced an error: arguments imply differing number of rows"
[5] "Creating and appending to data frame in R (Error: arguments imply

differing number of rows: 0, 1)"
[6] "Caret and GBM: task 1 failed - \"arguments imply differing number of rows\""

Choose a numeric value that matches your error the best or q to quit:

Figure 5: The output of a call to debug.error, showing the titles of posts on Stack Overflow related
to the error encountered in the script. The user can select an option to be taken to the corresponding
Stack Overflow page.

> debug.error()
Your Error: Error in data.frame(x, y, z): arguments imply differing number of rows: 3, 10

Code that led to error message:
1: w <- 4:6
2: x <- 1:3
3: y <- 1:10
4: z <- w + y
5: y <- c('a', 'b', 'c')
6: xyz <- data.frame (x, y, z)

The debug.error function has an optional logical parameter, stack.overflow. When set to TRUE,
debug.error uses the stackexchange API to search Stack Overflow for posts about similar error
messages. It lists the questions asked in the top six posts. The user can select one and a tab will open
in the user’s browser displaying the selected post.

Figure 5 shows a sample dialog using debug.error. Selecting 1 results in the user’s browser going
to the page displayed in Figure 6.5 By scrolling down through answers to this question (not shown
here), users will ideally obtain helpful information allowing them to solve their problem quickly.

A common cause of programming errors in R is caused by automatic type conversions as occurs
here:

x <- 1
y <- 1:10
z <- 2
x <- x + y
if (x == 2) {
print ("x is 2")

5https://stackoverflow.com/questions/26147558/what-does-the-error-arguments-imply-differing-
number-of-rows-x-y-mean
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Figure 6: Stack Overflow Page to Resolve an Error

} else {
print ("x is not 2")

}

Running this simple script produces this output.

Error in if (x == 2) { : the condition has length > 1

The programmer may be surprised or confused to get this warning message, as the assignment back
to x may have been a mistake. Since R is a dynamically-typed language, there is no error at the time of
the assignment, but only later when the value is used. The programmer can use debug.variable to
quickly identify the type of x at each assignment

> debug.variable(x, showType=TRUE)
Var: x

1: 1 x <- 1
container dimension type

1 vector 1 numeric
4: 2 3 4 5 6 7 8 9 10 11 x <- x + y

container dimension type
2 vector 10 numeric

This shows that on line 4, x changed from a single element vector whose value was 1 to a 10-element
vector containing the numbers 2 through 11.

Next, the programmer may want to find out why x became a vector. The debug.lineage function
provides this information.

> debug.lineage(x)
Var x

1: x <- 1
2: y <- 1:10
4: x <- x + y

By showing the lines that led to x’s value and type at line 4, we see the vector assignment to y in line 2,
followed by the computation of x in line 4. Notice that line 3, the assignment to z, is not included in
the lineage, since it played no role, either directly or indirectly in the value assigned to x. Ideally, by
examining the provenance, the programmer realizes that the assignment should have been to y rather
than to x.

An experienced R programmer may realize that unexpected type changes such as these can
commonly lead to errors. Even if no error had been reported, they might want to check preemptively
for type changes. This can be done by calling debug.type.changes, which reports all variables where
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the container, dimension, or type of value in the container have changed, showing just the values
immediately before and after the type change.

> debug.type.changes()
The type of variable x has changed. x was declared on line 1 in debugScript4.R.

1: debugScript4.R, line 4
dimension changed to: 10
from: 1
code excerpt: x <- x + y

The debug.line and debug.state functions allow the user to inspect variable values at specific
lines in the code. The debug.line function shows the values of all variables used or modified on a
specific line.

> debug.line(4)
Results for line(s): 4

4: x <- x + y
Inputs:

1. x 1
2. y 1 2 3 4 5 6 7 8 9 10

Outputs:
1. x 2 3 4 5 6 7 8 9 10 11

The debug.state function shows the values that all variables have after execution of a specific line,
showing the line number where the variable was set.

> debug.state(4)
Results for line(s): 4

Line 4
4: x 2 3 4 5 6 7 8 9 10 11
2: y 1 2 3 4 5 6 7 8 9 10
3: z 2

Earlier we showed the debug.lineage function that shows the user how a particular value was
computed. That was an example of backward lineage or ancestry, because it starts with a variable
and goes back in time to show all the computations on which a variable depends. The debug.lineage
function can also display forward lineage to show how a value is used, i.e., all the subsequent
computations that depend on it. This is particularly helpful in identifying all the information that
might be affected by a programmatic change or modification to an input file.

> debug.lineage(x, forward = TRUE)
Var x

1: x <- 1
4: x <- x + y
5: if (x == 2) {

Note that by using provenance, provDebugR is able to display information about the execution
state of the script at different points in its execution without the need to set breakpoints or insert print
statements and re-run the script. This is particularly helpful for stochastic processes where the output
might vary on each execution, causing some bugs to be challenging to track down.

provExplainR

Whereas provSummarizeR provides a summary of a single script execution, provExplainR goes a
step further and provides a textual description of the difference between two script executions. If two
executions of a script produce different outputs, provExplainR can be used to expose differences. This
can be helpful when returning to work on an old script, when porting a script to a new environment,
or when inheriting a script from someone else.

The prov.explain function reads two provenance directories and identifies differences in the
computing environment, the input data, the versions of R or its libraries, and/or the main and sourced
scripts.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=provSummarizeR
https://CRAN.R-project.org/package=provExplainR
https://CRAN.R-project.org/package=provExplainR


CONTRIBUTED RESEARCH ARTICLE 152

prov.explain(
dir1 = "prov_factorial_2021-03-31T12.01.36EDT",
dir2 = "prov_factorial_2021-04-26T16.34.16EDT")

Results are displayed in the console (Figure 7).

The prov.diff.script function can be used to identify differences between two scripts.

prov.diff.script(
dir1 = "prov_MyScript_2019-08-06T15.59.18EDT",
dir2 = "prov_MyScript_2019-08-21T16.25.58EDT")

This function uses the diffobj package to identify and display differences (Figure 8).

We are planning to extend the functionality of provExplainR so that it also helps the programmer
understand the impact of any reported changes by identifying where the behavior of the two executions
start to differ. We expect this will help the programmer understand more specifically why the script is
behaving differently. For example, if the line of code where changes first appear involves calling a
function from an updated library, the programmer will likely want to understand better what changed
with the new version of the library.

Developing new provenance-based tools

In addition to end-user tools as described above, we have also made available packages intended for
programmers interested in developing their own tools incorporating provenance information.

provParseR

The provParseR package parses the JSON provenance and provides a convenient API to access
portions of the provenance. To get started the tool developer calls the prov.parse function.

prov.parse(prov.input, isFile = TRUE)

The prov.input parameter is a string that can either be the path to a JSON file containing prove-
nance or it can be a string containing the provenance. The second parameter (isFile) is used to
disambiguate these cases. The default assumption is that prov.input is the path to a file. This function
returns an object whose class is ProvInfo. The remaining functions provided by provParseR are
getters that are passed a ProvInfo object and return information, typically a data frame containing
that portion of the provenance.

For example, get.input.files returns a data frame containing a subset of the data nodes that cor-
respond to files read by the script. The data frame that is returned includes the following information:

• id - a unique id

• name - the file name

• value - the path to a saved copy of the file

• hash - the hash value of the file

• location - the path to the original file

The get.environment function returns a data frame including information about the execution
environment, such as the architecture and operating system on which the script was executed, the
version of R, and the modification and execution times of the script.

Two functions provide information about the R libraries used. The get.libs function returns the
name and version of each library, and whether it was loaded by the script, loaded before the script ran,
or loaded by rdtLite code. The get.func.lib function returns the name of each function called from a
library and the library from which it came.

Other functions provide information about the R statements executed and the edges between
nodes. See the package’s help page for a complete list of the functions and what they do.

The provSummarizeR, provDebugR and provExplainR tools all use provParseR to extract the
information they need from the JSON file.

provGraphR

The provGraphR package provides an API that allows a tool developer to make lineage queries over
provenance, as provDebugR does. To get started, the tool developer calls the create.graph function.
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You entered:
dir1 = prov_factorial_2021-03-31T12.01.36EDT
dir2 = prov_factorial_2021-04-26T16.34.16EDT
SCRIPT CHANGES: The content of the main script factorial.R has changed
Run prov.diff.script to see the changes.
### dir1 main script factorial.R was last modified at: 2021-03-31T11.58.03EDT
### dir2 main script factorial.R was last modified at: 2021-03-31T11.58.21EDT

LIBRARY CHANGES:
Library version differences:

name dir1.version dir2.version
base 4.0.0 4.0.5

datasets 4.0.0 4.0.5
ggplot2 3.3.2 3.3.3

graphics 4.0.0 4.0.5
grDevices 4.0.0 4.0.5

methods 4.0.0 4.0.5
stats 4.0.0 4.0.5
utils 4.0.0 4.0.5

Libraries in dir2 but not in dir1: No such libraries were found
Libraries in dir1 but not in dir2:

name version
dplyr 1.0.0

provDebugR 1.0
provExplainR 1.0

INPUT FILE CHANGES:
No input files were found in dir 1
No input files were found in dir 2

ENVIRONMENT CHANGES: Value differences:
Attribute: language version
### dir1 value: R version 4.0.0 (2020-04-24)
### dir2 value: R version 4.0.5 (2021-03-31)
Attribute: scriptHash
### dir1 value: c6b976a5ba662833323d56543817671b
### dir2 value: 426ecf01ebab431cdcbb000a20c3e273
Attribute: total elapsed time
### dir1 value: 1.483
### dir2 value: 1.752
Attribute: working directory
### dir1 value: /Users/blerner/Documents/workspace/factorial-1
### dir2 value: /Users/blerner/Documents/workspace/factorial-2
Attribute: provenance directory
### dir1 value: /Users/blerner/tmp/prov/prov_factorial_2021-03-31T12.01.36EDT
### dir2 value: /Users/blerner/tmp/prov/prov_factorial_2021-04-26T16.34.16EDT
Attribute: provenance collection time
### dir1 value: 2021-03-31T12.01.36EDT
### dir2 value: 2021-04-26T16.34.16EDT

PROVENANCE TOOL CHANGES: Tool differences: No differences have been detected

Figure 7: Output from prov.explain describing the differences found in the provenance of two execu-
tions of factorial. Items referenced as dir1 refer to the first execution, while items referenced as dir2
refer to the second execution. In this case, the significant differences are differences in the factorial
script, the library versions, and the version of R. Other less significant differences that are identified
include when the script was executed, the time it took the script to execute, the directory in which the
script was executed, and the directory in which the provenance is stored.
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Figure 8: Comparing scripts using provExplainR.

create.graph(prov.input = NULL, isFile = TRUE)

The create.graph function uses the igraph package to calculate an adjacency matrix representation
of the graph. The value returned by create.graph can be used as an argument to the get.lineage
function to perform lineage queries. As with prov.parse, the default behavior is for prov.input to
be the path to a JSON provenance file and for isFile to be TRUE. Alternatively, prov.input can be a
string containing JSON provenance if isFile is FALSE.

The get.lineage function computes either backward or forward provenance.

get.lineage(adj.graph, node.id, forward = FALSE)

Its node.id parameter is the unique id assigned to each node in the graph. Using parser functions,
such as get.input.files, get.output.files, get.variables.set, and get.variables.used, a tool
developer can find the id of a file or variable and then obtain its lineage.

These functions provide information about how input data is used or how the values stored in an
output file or a plot were computed. The return value is a vector of node ids identifying the nodes in
the lineage. The functions return complete lineage, so backward provenance traces back to input files
or constants, while forward lineage traces to output. This function underlies the various trace and
lineage functionality provided in provDebugR.

5 Limitations

There are two techniques used to capture provenance, each with its own limitations.

First, provenance information concerning files that are read or written is done by using R’s
trace function. Specifically, we trace the low-level I/O functions provide by R, such as writeLines,
write.table, readLines, and read.table, as well as I/O functions from the vroom package. We also
trace plotting functions provided by the grDevices package, like pdf, and functions from the ggplot2
package, like ggsave. Any I/O function built on top of any traced functions will effectively be traced.
However, I/O functions that instead use an external library to do the actual I/O will not be traced. It is
not difficult to add new functions to trace, but it requires a modification to rdtLite for that to happen.

Second, statement-level provenance is captured by parsing each statement to find the variables
used and set and then executing the statement to capture the values of variables that are modified.
Each top-level statement is executed atomically. As a result, an if-statement, loop, or a function
call is executed as a unit. While I/O information is captured internally to these, provenance at the
level of variables is not captured on a line-by-line basis internally to these programming constructs.
Provenance collection slows down the execution of scripts, and collecting more detailed provenance
seems prohibitive, although it does limit the usefulness of provDebugR, in particular.

For a similar reason, a statement that uses the pipe operator is also executed as a unit. The variables
used within pipes, and the final value computed by a statement that uses pipes is captured. However,
the intermediate values passed through the pipe are not captured.

rdtlite may misidentify some expressions as variables when non-standard evaluation is used. For
example, in the statement

cars6Cyl.df <- subset(allCars.df, cyl == 6)

cyl is not a variable, but rather the name of a column in the allCars.df data frame. In order to
know that cyl is not a variable, rdtLite would need to know how the subset function evaluates its
parameters. There is no general purpose way of determining this. Handling this situation would
require creating a list of known functions and which parameters use non-standard evaluation. rdtLite
does not do this currently.

Finally, rdtLite captures values associated with R’s base types. However, it has not been extensively
tested with the various class systems supported by R.
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6 Related work

There are many systems that collect provenance and several excellent survey papers on provenance
systems (Freire et al., 2008; Herschel et al., 2018; Pimentel et al., 2019). Provenance collection is
common in workflow systems where it is built directly into the execution environment, such as
in Kepler (Altintas et al., 2006), VisTrails (Koop et al., 2013), and Taverna (Missier et al., 2008). Of
particular interest is the work of de Oliveira et al. (2014) who use provenance to debug long-running
workflows, and Why-Diff (Thavasimani et al., 2019) which compares provenance of multiple workflow
executions to find differences. Provenance collection in programming languages is much less common,
with the exception of the noWorkflow (Murta et al., 2014) implementation for Python.

There has been previous work on collecting provenance for R. Much of this work collects prove-
nance at the level of files. The rctrack package (Liu and Pounds, 2014) uses R’s trace function to record
information about files read and written and the computing environment. It saves copies of data files
and scripts with the goal of being able to reproduce a computation. Similarly, recordr (Slaughter et al.,
2018) records information about files read and written and the computing environment. It can also
save copies of those files.

The CodeDepends (Lang et al., 2019), trackr (Becker et al., 2017), and histry (Becker et al., 2017)
packages coordinate to provide insights and records of code execution similar to how rdtLite and its
associated tools work. The techniques used to collect provenance and the functionality built on top
of the collected provenance are different, however. The CodeDepends package collects dependency
information from R code based on static analysis of the code, rather than through execution. The
histry package tracks expression evaluation and weaving as with RMarkdown. The trackr package
(Becker et al., 2017) captures the provenance of plots created by a script. Metadata about how a plot is
created comes from the dependencies and provenance gathered by CodeDepends and histry. The
plots can later be discovered by performing searches on the metadata.

The adapr package (Gelfond et al., 2018) stores hash values of data files with the R code in a
GitHub repository. They assume the data themselves are stored elsewhere. Their goal is to be able to
confirm that data match the data used by the code. If the data are modified, the modification will be
observable, but the original data cannot be restored by adapr.

While these R provenance systems collect valuable information useful for archiving data prove-
nance, they do not produce the fine-grained provenance needed for debugging. In contrast, CXXR
(Silles and Runnalls, 2010; Runnalls and Silles, 2012) computes fine-grained provenance using a mod-
ified R interpreter where the read-eval-print loop is modified to collect provenance. The collected
provenance is available interactively but is not stored persistently. This type of provenance can be
helpful for debugging but does not support archiving the provenance.

In contrast to these, rdtLite saves information persistently about file inputs and outputs that is
useful for archival purposes and saves fine-grained provenance useful for debugging. The E2ETools
also build on top of this provenance to provide useful functionality to the user and provide building
blocks to enable more tools to be built. Since the JSON provenance format is language-agnostic, the
same provenance tools should be usable for different programming languages, and we are currently
working on supporting Python by translating provenance collected by noWorkflow (Murta et al., 2014)
into the E2ETool JSON format.

7 Conclusions and future work

Data provenance contains a wealth of information. Although provenance initially was thought of as
documentation to bolster trust in the data, it has many uses beyond that. In particular, fine-grained
provenance offers rich opportunities to develop tools that can be helpful for debugging, learning how
a script works, maintaining scripts, and porting scripts to new environments.

Reproducibility as a Service (RaaS) (Wonsil, 2021), a web-based reproducibility tool, strongly
benefits from collecting and using provenance data. This tool automatically constructs a computational
environment in a Docker container for a given set of R scripts and the data they analyze. It then
executes all the scripts, collecting provenance with rdtLite and saving all the results to a Docker image.
The resulting provenance currently allows RaaS to build a report for its users and situates it perfectly
to use the E2ETools in the future. For example, it could use provSummarizeR to generate its reports. If
researchers want to compare the RaaS execution to their initial execution on their machine, RaaS could
integrate provExplainR for easy comparisons. Finally, RaaS could also incorporate provDebugR to
allow users to step through the execution of the scripts entirely within their browser without needing
an R session or even downloading the data.

Our collaborators have used a variant of provDebugR to explore asynchronous collaboration
between data scientists. This variant, called the Multilingual Provenance Debugger (MPD) (Yoo et al.,
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2021), is not tied to the R language. Instead, it works on provenance for any language that exports
to the same PROV-JSON format as rdtLite. An experimental feature in MPD allows users to record
and annotate a debugging session as a trace to send to another collaborator, who can replay the trace
step-by-step or view the whole session as a pretty-printed markdown file. We could implement similar
features in provDebugR and extend it to include a visualization component.

Finally, another avenue for future work is the semi-automatic generation of model cards, an
artifact that Mitchell et al. (2019) proposed to increase transparency for machine-learning models.
One of our current collaborations includes contributions to the open-source Tribuo machine-learning
library (Pocock, 2021), which contains a built-in provenance collection system focused on machine-
learning provenance. Using the provenance that Tribuo generates, our collaborators built a feature to
automatically generate the technical details for model cards and provide support for annotations to
supplement the data on the card. We can bring a variant of this feature back into the R ecosystem as an
extension of provSummarizeR, either directly for machine learning in R or, more generally, to build
an ’analysis card’ or ’script card.’ As these ongoing projects demonstrate, collecting provenance is just
the beginning. Developing software that builds on collected provenance to support reproducibility,
understanding, and enhancement of software is the long-term goal of this work.
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1 Appendix: Extended Prov JSON format

The provenance collected by rdtLite uses a JSON format that extends the Prov JSON format defined by
W3C W3C (2014). The W3C Prov JSON format was designed to capture workflow involving multiple
activities with information flowing between them. An activity might be performed by a piece of
software, or by a person. The detailed provenance captured by rdtLite has activities that are at the
level of R statements, with the data being files and variables. The extensions use the same schema as
defined by W3C, encoding the provenance data as described below.

Prov JSON has three types of elements: entities, agents, and activities. In the extended JSON used
by rdtLite, information about data, libraries, and functions, as well as the runtime environment are
encoded as entities. The tool used to collect the provenance is encoded as an agent. Information about
statements is encoded as activities.

Prov JSON provides many types of relationships. In the extended JSON, just four of these are used.
The wasInformedBy relationship is used to represent edges connecting statement elements. Specifically,
these edges capture control flow information. The wasGeneratedBy relationship connects a statement
element to the data elements that it generates, such as a variable that is modified, or a file that is
output. The used relationship is used to connect a data element to the statement elements that uses the
data, such as a variable used within a statement or a file input by a statement. The used edge also is
used to record what functions are used by each statement. The hadMember relationship records which
library each function comes from.

See https://github.com/End-to-end-provenance/ExtendedProvJson/blob/master/JSON-format.
md for more details about this format.
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remap: Regionalized Models with
Spatially Smooth Predictions
by Jadon Wagstaff and Brennan Bean

Abstract Traditional spatial modeling approaches assume that data are second-order stationary,
which is rarely true over large geographical areas. A simple way to model nonstationary data is to
partition the space and build models for each region in the partition. This has the side effect of creating
discontinuities in the prediction surface at region borders. The regional border smoothing approach
ensures continuous predictions by using a weighted average of predictions from regional models. The
R package remap is an implementation of regional border smoothing that builds a collection of spatial
models. Special consideration is given to distance calculations that make remap package scalable to
large problems. Using the remap package, as opposed to global spatial models, results in improved
prediction accuracy on test data. These accuracy improvements, coupled with their computational
feasibility, illustrate the efficacy of the remap approach to modeling nonstationary data.

1 Introduction

When observations exhibit spatial autocorrelation, geographic location can be leveraged to improve
predictions of the response variable by considering responses in nearby observations. Typical spatial
statistical models assume that the covariance between two observations can be modeled as a function
of location difference, i.e., the relationship needs to be second-order stationary. For sufficiently large
distances, the stationarity assumption often fails. Even when external drift or secondary variables are
used, continental scale models may still not be second-order stationary.

The simplest way to use traditional spatial modeling with nonstationary data is to partition the
global region into smaller sub-regions that are locally stationary and create separate models for each
region. The naïve implementation of this approach leads to noncontinuous predictions at the borders
of each region. Previous attempts to smooth out discontinuities at region boundaries often involved
taking weighted averages of local regional model output where the weights of each local model
prediction or covariance structure are a function of the distance between a new observation and the
centers of each region (Fuentes, 2001; Fuentes and Smith, 2001; Gosoniu et al., 2006, 2009; Konomi
et al., 2014). While the center based approach may be appropriate for symmetrical regions, it is likely
not appropriate for oddly shaped or disjoint regions not well represented by their centers. In some
cases, a region may not even contain its center. The center-based approach also fails to respect major
geographic features that can cause sharp changes in response variables over very short distances.

The regional border smoothing approach described in this article is a novel method that uses a
weighted average of predictions from local models, but gives weight to regional models based on the
nearest distance to the border of each region rather than distance to the center of each region. With
this method, regions may be chosen that more naturally reflect local climate and topography with
smoothing only occurring near the borders of each region. Figure 1 is an example of the regional
border smoothing approach applied to three regions with different spatial models.

The R package remap is a General Public License implementation of this regional border smoothing
method that scales well to large problems (Wagstaff, 2022). Using remap, regional border smoothing
is applied to two different modeling problems. The first problem is a national set of 50-year ground
snow loads and the second problem is modeling April 1st snow water content for Utah. Mapped
values from both projects show improvement in model accuracy using the regional border smoothing
approach over global models for a variety of spatial modeling approaches.

The body of this article will proceed with a description of the regional border smoothing approach.
This will be followed by an illustration of the available functions and tools in remap as well as two
demonstrations of the software on a state and national-level data set. These examples show the
utility of remap in producing smooth estimates when applied to spatial modeling problems over large
geographical areas with irregularly shaped partitions.

Background

There are many proposed methods to model nonstationary data using locally stationary models. Haas
(1990b,a) describes a moving window approach where only data within a pre-specified bounding box
are used to fit a local dependence structure and then make predictions. This process is computationally
intensive and may not result in continuous predictions.
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Figure 1: With (bottom) and without (top) application of regional border smoothing where predictions
are a linear combination of longitude and latitude. The gray line shows predicted values at 0.7°N.
Left region predicts lon − lat + 1, bottom region predicts lat − lon + 1.4, and right region predicts
lon − lat + 0.7. Smoothing zone is 30 km (≈ 0.27°).
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Fuentes (2001) and Fuentes and Smith (2001) propose a method for nonstationary problems where
a global covariance structure that changes continuously as a function of location is used in a Gaussian
process model. The data are first partitioned into locally stationary regions and a global covariance
structure is calculated by taking a weighted average of regional covariance structures. Weights are
based on the distance from the prediction location to a point in each region, usually the center. Regions
are either given a priori or by using subgrids chosen using the Bayesian information criterion.

Applications of local partition modeling approaches include Kim et al. (2005), who describe a
method to deal with sudden changes in spatial covariance structure that occur between layers of rock
strata. The spatial domain is partitioned into independent regions using Voronoi Tessellations (Green
and Sibson, 1978), with each region fit using an independent Gaussian model. The resulting global
model has sharp changes at the borders of each region, which was desirable given the context of
the problem. Konomi et al. (2014) illustrate a decision tree based method for partitioning the spatial
domain when modeling global Ozone levels. Heaton et al. (2017) use a hierarchical clustering method
to partition the spatial domain for temperature data in Houston, TX. The hierarchical clustering
method has the benefit of creating a partition that more naturally follows changes in the covariance
structure rather than partitioning the space into symmetrical blocks or spheres.

Gosoniu et al. (2006, 2009) provide an additional application of local partitioning models mapping
malaria risk using a priori partitions of West Africa. The 2006 study uses three large rectangular regions
and the 2009 study uses agro-ecological regions to partition the spatial domain. In these studies, spatial
random effects are modeled as a weighted sum of regional stationary effects based on the distance
to region centroids. The authors note problems with sudden changes at region borders as a result of
using region centroids for the weighted sum of effects.

Most of the methods discussed so far create a global covariance structure from local covariance
structures of Gaussian process models (Fuentes, 2001; Fuentes and Smith, 2001; Kim et al., 2005;
Konomi et al., 2014; Heaton et al., 2017). Each method has a different way of smoothing regional
transitions that are specifically tied to their methodology. Many of the methods use a Bayesian
framework that requires computationally expensive Markov chain Monte Carlo simulations (Kim
et al., 2005; Konomi et al., 2014; Heaton et al., 2017; Gosoniu et al., 2006, 2009). Many of the techniques
are only applied to purely spatial data rather than multivariate data (Kim et al., 2005; Konomi et al.,
2014; Heaton et al., 2017). There is a lack of methodology that allow for smooth transitions between
partitions and works for multiple modeling techniques.

The regional border smoothing method described in this article can be thought of as stitching
together images to form a larger image with no sharp changes. The approach is similar to those used
to combine black and white images from microscopes into a larger image (Thévenaz and Unser, 2007).
Individual microscope images are aligned and the overlapping regions are smoothed by taking a
weighted average of the overlapping pixel brightness. The weights are based on the distance from the
pixel to the outer edge of each image with more weight being applied to pixels closer to the center of
an image.

The process described in this article provides a simple way of combining regional model predictions
to form a continuous global prediction surface. The method can be applied to problems that are not
strictly spatial. For example, Osborne and Suárez-Seoane (2002) show that building models for
partitioned space can improve the accuracy of large scale species distribution models. The regional
border smoothing method works for any model that produces continuous predictions.

Computer code availability and competing interests

The remap package is available on the Comprehensive R Archive Network (see https://cran.r-
project.org/web/packages/remap/index.html) with the most current version available at https:
//github.com/jadonwagstaff/remap. The code and data used to generate the results in this article are
available as supplementary materials.

The figures and tables in this article are made using the R programming language. Figures are
created with the tidyverse (Wickham et al., 2019), gridExtra (Auguie, 2017), cowplot (Wilke, 2020),
and maps (Becker et al., 2021) packages. The sf (Pebesma, 2018), nngeo (Dorman, 2022), and raster
(Hijmans, 2022) packages are used to manipulate spatial data. Kriging models are built with automap
(Hiemstra et al., 2009) and gstat (Pebesma, 2004; Gräler et al., 2016) and generalized additive models
are built with mgcv (Wood, 2011). A docker container with these packages installed and all code is
available at https://hub.docker.com/r/jadonwagstaff/remap_manuscript_code.

This research was funded by the American Society of Civil Engineers and the Structural Engineer-
ing Institute (award number 202827). The authors have no affiliation with any organization with a
direct or indirect financial interest in the subject matter discussed in the manuscript. This article is
based on the first author’s master’s thesis (Wagstaff, 2021).
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2 The regional border smoothing approach

Regional border smoothing is the process of using regional models to make predictions that are
globally continuous. Regional border smoothing may be used on any spatially referenced data (XXX)
in conjunction with a modeling approach and a finite set of regions Rp where each Rpi ∈ Rp,
i = 1 . . . m, is a closed set of points contained in the region of interest R. The intention is that Rp is a

set of non-overlapping polygons with shared borders and
m⋃

i=1
Rpi = R, but these are not necessary

conditions. While Rp does not meet the strict definition of a partition, Rp will be referred to as a
partition throughout this article.

The border smoothing approach described in this article was originally designed for regression-
based models, but can be used with any modeling approach that produces a continuous response.
This technically includes classification techniques that make continuous probability predictions prior
to classifying based on probability threshold, such as logistic regression. Presumably, the predictions
from a chosen modeling approach will result in continuous predictions as a function of location.

Modeling regions are defined by the borders of Rp. The data contained by a modeling region
Rpi are used to inform a distinct regression model ( fpi (XXX)) for that region. In some cases it may
be desirable to include observations near each Rpi when building regional regression models. In
these cases, data within Rpi and within a buffer zone around each modeling region are used to build
each fpi (XXX) (Figure 2). Using points within a buffer zone that extends beyond the region boundaries
avoids edge extrapolation when using a regional model for interpolation in the smoothing zones of
neighboring regions.

Figure 2: Example showing how observations are selected within a region’s buffer zone. Seven
arbitrary regions represented as polygons contain 169 observations represented as points. During the
regional modeling process, a model is built for each of the seven regions. For this example, all points
within 50km of a region are used to build each model. For the highlighted region, all observations
within a 50km buffer zone (dashed line) are used to build that region’s model. Highlighted points are
observations used to build the highlighted region’s model.

Simply making predictions within each Rpi using each corresponding fpi (XXX) results in noncontin-
uous predictions at region boundaries. Regional border smoothing results in continuous predictions
for the entire space by taking a weighted average of the predictions provided by each fpi (XXX). The
smoothed global prediction surface is continuous, but not necessarily differentiable.
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Smoothing at borders

Let ŷ1, ŷ2, ..., ŷm represent predictions from regional models fp1 (xxx
∗), fp2 (xxx

∗), ..., fpm (xxx
∗) for location

of interest xxx∗ where xxx∗ represents both spatial and non-spatial information. A final prediction ŷ′ is
calculated by the weighted average of each ŷ, i.e.,

ŷ′ =
∑m

i=1 w(di|S)ŷi

∑m
i=1 w(di|S)

. (1)

The weights are calculated based on the smallest great-circle distances (d1, d2, ..., dm) between the
location of xxx∗ and the boundaries of Rp1 ,Rp2 , ...,Rpm . If xxx∗ is located within a region, the distance
between xxx∗ and that region is 0. The weight w(di|S) given to ŷi is non-zero when di is within some
threshold S, i.e.,

w(di|S) =


(

S−di
S

)2
di ≤ S

0 di > S.
(2)

Consider now the special case when a prediction is made in region j and di ̸=j > S, then w(di ̸=j|S) =
0 and Equation 1 reduces to ŷ′ = ŷj. As prediction location in region j approach Rpk , then the weight

of ŷk increases gradually and ŷ′ = ŷj+((S−dk)/S)2 ŷk

1+((S−dk)/s)2 . At the border of regions j and k, ŷ =
(

ŷj + ŷk

)
/2.

Finally, as prediction locations progress into Rpk , weights for yij decrease gradually to zero and

ŷ′ = ((S−dj)/S)
2
ŷj+ŷk

((S−dj)/S)
2
+1

. All locations within S of a region are referred to as the smoothing zone for that

region.

Standard error approximations

The smoothing approach described in this paper represents a spatially weighted ensemble of model
predictions along region boundaries, with each model (possibly) estimating prediction standard error
(SE) or variance. There is no consensus in the literature on how SE should be calculated for ensemble
model predictions. The methods for SE calculation that do exist tend to be specific to model type (e.g.
Wager et al. (2014)) or averaging approach (e.g. Hoeting et al. (1999)). For this reason, the method
for estimating SE in remap relies on the general properties of variance for the summation of random
variables.

Suppose that each ŷi is an unbiased estimate from of fpi (xxx
∗) with the SE of ŷi represented as σ̂i.

Then the combined model SE for ŷ′ can be represented as

σ̂′ =

√√√√∑m
i=1 w(di|S)2σ̂2

i + ∑m
i=1 ∑j<i 2w(di|S)w(dj|S)ρijσ̂iσ̂j

(∑i w(di|S))2 , (3)

where ρij represents the correlation between predictions for model i and j. One primary difficulty with
estimating σ̂′ in the smoothing zones is a lack of information regarding ρij. It is highly likely that SE
estimates are correlated for models in adjacent regions. In the absence of a computationally efficient
and theoretically robust estimate for ρij the Cauchy–Schwarz inequality can be used to provide an
upper bound on σ̂′ given as

σ̂′ ≤

√√√√∑m
i=1 w(di|S)2σ̂2

i + ∑m
i=1 ∑j<i 2w(di|S)w(dj|S)σ̂iσ̂j

(∑i w(di|S))2 , (4)

where ρij has been replaced with a constant value of one.

The remap package provides a method for estimating the upper bound of the prediction SE using
the inequality specified in (4). It is important to note that it may not always be appropriate to combine
model SE estimates in this way. This is particularly true for models that ignore spatial autocorrelation.
It is also important to remember that the primary focus of remap is to provide a practical approach for
smoothing model predictions, and not to preserve the theoretical integrity of the SE estimates. It is
up to the end user to determine that the SE calculations are valid and appropriate for their modeling
purposes.
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A note on smoothing

The “smoothing” described throughout this article refers to smoothing in the colloquial sense. A
continuous prediction surface is created with a steady transition between regions. The prediction
surface is not always differentiable. If a region is not convex, the rate of change in the distance to a
region can shift suddenly at locations that are equidistant to different parts of the region. Figure 3
shows an example of a prediction surface near a non-convex region where the prediction surface is not
differentiably smooth.

Figure 3: Example of where predictions are not differentiable near non-convex regions. The bottom
region predicts a constant value of one and the top region predicts a constant value of two with a
smoothing zone of 40 km (≈ 0.36°). The gray line shows predicted values along the 0.5°N transect.
This example illustrates that the smoothing approach always produces continuous predictions, but
differentiability is dependent on the shape of the polygon partition.

Since each region is a closed set of points, di is continuous. It therefore follows that the weight
function w(di|S) described in Equation 2 is continuous as limx→0+ w(x|S) = w(0|S) = 1 and
limx→S− w(x|S) = w(S|S) = 0 for x ∈ [0, ∞) and S > 0. Since the right side of Equation 1 is
the multiplication and addition of continuous functions, it is guaranteed to have max (w(di|S)) > 0
as long as xxx∗s is within S units of any Rp and it follows that Equation ŷ′ is also continuous. Given
continuous predictions as a function of location for each region, the regional border smoothing method
is guaranteed to be continuous for any location within the smoothing zone of at least one region.
Once all di > S, then the denominator of y′ is equal to zero, which means y′ is no longer well-defined.
As long as all of the data XXX are located within Rp, any prediction location outside of Rp is spatial
extrapolation that is generally discouraged.

3 remap

The R package remap is an implementation of the regional border smoothing approach to spatial
modeling. The function remap creates a set of regionalized models given:

• A set of observations as spatially projected or geographic points.

• A set of regions as spatially projected or geographic polygons.

• A desired buffer zone distance.

• A modeling function to apply to observations in each region.

Predictions can be made on new observations given a regionalized model and the smoothing parameter
smooth used for weighted averages in smoothing zones (variable S in Equation 2). Detailed descrip-
tions of function parameters can be found in the package documentation. Some working examples
using the remap package are provided via the vignette which accompanies the package. The develop-
ment version of the code for remap can be found at https://github.com/jadonwagstaff/remap.

Calculating distances

The weights for regional predictions require the distances from all observations to the boundary of each
region. The modeling process of the remap function also requires the distances from all observations to
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each region to assign the correct observations to each regional model. The process of fine-tuning a
model can result in recalculating these distances many times. To avoid recalculating distances, the
function redist is included in the remap package to pre-compute the distances from a given set of
observations to a given set of regions. These pre-computed distances can be supplied as a parameter
to the remap function to reduce computational time while fine-tuning models.

Calculating distances in the remap package takes advantage of tools already available for spatial
analysis in the R package sf (Pebesma, 2018). The function sf::st_distance is used to find either
Euclidean or great-circle distances depending on the spatial projection of the locations and regions. The
sf::st_distance function uses the S2 geometry library (Google, 2022) when calculating great-circle
distances. The S2 geometry library is designed specifically to efficiently compute distances between
nearby objects given large sets of geographic data. Regardless, calculating distances can still take a lot
of computational time if the regions are complex and/or there are a lot of observations.

The naïve approach to regional border smoothing is to find all distances between each location
and each region. This approach may be necessary during the modeling process if any region does not
contain a required minimum number of observations (detailed in the implementation considerations
section). If predictions are being made using new observations, then distances do not need to be
calculated between every observation and every region.

Because the weight for predictions in different regions is zero when the distance to those regions is
greater than the smoothing parameter (Equation 2), distances do not need to be calculated between
every region and every prediction location. To determine which observations require distance calcula-
tions, an approximate polygon is constructed that encompasses the original region plus the smoothing
zone around the region. The function sf::st_within is used to determine which observations are
within the new polygon and equivalently, which observations are within the smoothing zone of the
original region. Observations in the approximate polygon become candidates for precise distance
calculations.

An approximate polygon that contains a region and the region’s smoothing zone is created using
the sf::st_buffer function. For geographic coordinates, sf::st_buffer requires a buffer value in
degrees. Since the great-circle distance between a unit degree of longitude changes with latitude,
Equation 5 is used to find c: the shortest distance (measured in kilometers) required to move one
degree longitude at the observation in the data set that is nearest to a geographical pole. The set λλλ is
the set of Latitude values of the observations and 6380 km is the radius of the earth at a pole (rounded
down). A sufficient buffer value in degrees for sf::st_buffer is calculated by dividing the smoothing
zone length in km by c. The resulting buffered polygon contains all of the observations within the
smoothing zone of the original polygon,

c =
π ∗ 6350

180
∗ cos

(
π ∗ max (|λλλ|)

180

)
. (5)

Assuming each region contains a sufficient number of observations to fit each regional model, the
same process used for reducing the number of distance calculations for model predictions can be used
to reduce the number of distance calculations required for model training. The function redist is able
to restrict distance calculations to only observations within a certain buffer zone or smoothing zone of
each region using the max_dist parameter. This eliminates the need to calculate distances to points
with a known weight of zero when smoothing.

Practical implementation considerations

Reliable regression results depend upon sufficient sample sizes, which differ based on the variability
of the response and dimensionality of the inputs. A strict (and obvious) minimum sample size for
the remap function is one observation per region, though this threshold will rarely, if ever, ensure
reasonable results. An additional parameter min_n is included in the remap function to specify a
minimum number of observations be used to build each model. If a region and the buffer around that
region do not contain the minimum number of observations specified, the min_n observations closest
to the boundaries of the region are used to train that region’s model.

The remap package has the ability to make predictions outside of all modeling regions. If the
prediction location is within the smoothing zone of a region, then Equation 1 applies and the nearest
region will have the most weight. If the prediction location is outside the smoothing zone of all regions,
then the model from the closest region is used to make a prediction. This may result in non-continuous
transitions in predictions when the closest region changes across geographic space, but this is only
possible at locations outside of the smoothing zone of all regions. As a general rule, extrapolation of
predictions to a location beyond those represented in the input data is not recommended. See Figure 4
for a visual depiction of how predictions behave outside of all modeling regions.
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Figure 4: Example of what happens when predictions are made outside of any modeling region. The
gray line shows predicted values along the 0.6°N transect. The dashed gray line shows predicted
values along the 0.95°N transect. The left region predicts a constant 0, the bottom region predicts a
constant 2, and the right region predicts a constant 4. Smoothing zone is 35 km (≈ 0.32°).

The ability to predict outside of all regions means that the remap package can make smooth
predictions across small gaps at polygon borders, provided the gaps are no larger than two times the
smoothing zone distance. This encourages the use of rgeos::gSimplify (Bivand and Rundel, 2021) or
sf::st_simplify (Pebesma, 2018) to simplify complex polygons and ease the computational burden
associated with distance calculations, even if those simplifications slightly compromise the topology
of the original geometry.

4 Applications

Design snow loads

Snow loads are obtained from weather stations throughout the United States in the National Oceanic
and Atmospheric Administration’s (NOAA) Global Historical Climatology Network (Menne et al.,
2012). Snow loads are either measured directly, or estimated from measured snow depth using a depth
to load conversion model. Engineers have historically used estimates of 50-year ground snow loads
when designing structures. The 50-year snow load is traditionally obtained by fitting a probability
distribution to yearly maximum snow load measurements and extracting the 98th percentile. A recent
effort by the American Society of Civil Engineers has resulted in a new set of 50-year ground snow
loads at 7964 measurement locations (Bean et al., 2021).

Building a geospatial snow load model with remap

Building design requirements call for continuous maps that estimate design loads between measure-
ment locations. This has historically been accomplished using various mapping techniques (Tobiasson
et al., 2002; Liel et al., 2017; Bean et al., 2019). The problem is that the relationship between predictor
variables and snow load can change drastically on a continental scale. For example, the typical loads
at 1500 meter elevation in the Rocky Mountains of Montana are much lower than loads at 1500 meters
in the Cascade Mountains of Washington State (Figure 5). Commonly used geospatial models for
mapping are not well suited for the nonstationary nature of this problem.

Snow loads are typically assumed to share a log-linear relationship with elevation. This relationship
can be modeled directly using ordinary least squares (OLS), which ignores any potential spatial
dependencies among the observations. A generalized additive model (GAM) built with the mgcv R
package (Wood, 2011) characterizes the log of 50-year loads as a function of elevation and a spatial
smoother called splines on the sphere (Wood, 2003). Universal kriging interpolates values using
a Gaussian process model after accounting for the log-linear trend in elevation. Variograms are
individually fit within each region using the automap R package (Hiemstra et al., 2009).

Geographic regions defined by the US Environmental Protection Agency (EPA) define regions with
similar ecology and climate called eco-regions (Commission for Environmental Cooperation, 1997).
The eco-regions provide a natural partition of the conterminous United States and give no regard to
political boundaries. Snow load can be modeled using observations within each eco-region where
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Figure 5: 50-year events for measurement locations within Washington and Montana. Trend lines are
fit with cubic regression splines. In both regions, loads eventually increase as elevation increases, but
the inflection points are about 1000 m apart and the rate of change is different. This demonstrates
the need for an approach which adapts to the changing relationship between predictor variables and
response in different regions.

the relationship between predictor variables and the response are more consistent on a local level.
The remap package facilitates modeling in separate eco-regions and creates a smooth model on the
national scale. There are 86 eco-regions that fall within the conterminous United States, so 86 separate
models are built using the remap function with a buffer zone of 50 km and a min_n of 150 observations.
The regional models are smoothed to a single continuous model using a smooth parameter of 25 km.

The following code demonstrates how remap is used to build these models. The script and data for
the following examples are provided as supplementary materials with this article. The example data
include three "sf" objects: a spatial points data frame with 50-year snow loads at locations within
the US and Canada (loads), a spatial polygons data frame of eco-regions (eco3), a spatial polygon of
the conterminous United States (cont_us), and a "raster" object with elevations comprising a 0.8 km
grid over the conterminous United States (grd).

library(tidyverse)
library(sf)
library(raster)
library(mgcv)
library(automap)
library(gstat)
library(remap)
load("wagstaff-bean.RData")

The eco-regions have more complex borders than is necessary for this problem, so they can be
simplified to the same extent as shown in Figure 6.

eco3_simp <- eco3 %>%
sf::st_simplify(dTolerance = 10000) %>%
dplyr::filter(!sf::st_is_empty(.)) %>%
sf::st_cast("MULTIPOLYGON")

Since multiple models are built with the same set of measurement locations, pre-calculating the
distances from measurement location to region boundaries can save some computational time.

eco3_dist <- redist(loads, regions = eco3_simp, region_id = ECO3)
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Figure 6: Results of simplification of eco-regions. The highlighted region is an area with some of the
most severe gaps between polygons. Notice that the width of the gaps are still much smaller than two
times the smoothing parameter (2 × 25 km).

Linear models and GAMs are easiest to build with remap. The remap function accepts additional
arguments for a selected model function but passes the spatial data to the function as an unnamed
parameter. Since the data parameter is the second parameter of the stats::lm function, we need
to formally specify the first argument of the function (i.e. the formula parameter) to pass along
to stats::lm, rather than relying on the stats::lm function defaults. Otherwise the data for each
sub-region will be sent as the wrong parameter.

lmod <- remap(loads, regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = stats::lm,
formula = log(EVENT50) ~ ELEVATION)

lmod
#> remap model with 86 regional models

The lmod object has class "remap" and contains a models object and a regions object. The models
object is a list of gam models where the model names correspond to each modeling region ID. The
regions object is an "sf" multipolygon object with one row per region and the first column is the
region IDs.

head(names(lmod$models), 3)
#> [1] "10.1.2" "10.1.3" "10.1.4"

class(lmod$models[[1]])
#> [1] "lm"

head(lmod$regions, 3)
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#> Simple feature collection with 3 features and 1 field
#> Geometry type: MULTIPOLYGON
#> Dimension: XY
#> Bounding box: xmin: -121.3721 ymin: 40.15434 xmax: -105.4847 ymax: 49.39082
#> Geodetic CRS: WGS 84
#> ECO3 geom
#> 1 10.1.2 MULTIPOLYGON (((-115.8435 4...
#> 2 10.1.3 MULTIPOLYGON (((-120.5262 4...
#> 3 10.1.4 MULTIPOLYGON (((-108.8632 4...

Similar to the stats::lm function, the mgcv::gam function needs a formula parameter and a family
parameter passed to the remap function since data is the third parameter of mgcv::gam. In this example
a wrapper function for mgcv::gam is written to allow a custom predict function which either return
predicted values (se.fit = FALSE) or standard errors (se.fit = TRUE).

gam_wrap <- function(data, ...) {
model <- mgcv::gam(data, ...)
class(model) <- "gam_wrap"
return(model)

}

predict.gam_wrap <- function(object, data, se.fit = FALSE) {
class(object) <- "gam"
if (se.fit) { # return standard errors
return(predict(object, data, se.fit = TRUE)$se.fit)

} else { # return predictions
return(predict(object, data))

}
}

gm <- remap(loads,
regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = gam_wrap,
formula = log(EVENT50) ~ s(ELEVATION, k = 15) +
s(LATITUDE, LONGITUDE, bs = 'sos', k = 75),

family = stats::gaussian)

predict(gm, loads[1:3, ], smooth = 25)
#> [1] -0.003297382 0.132882034 -0.170530457

predict(gm, loads[1:3, ], smooth = 25, se = TRUE, se.fit = TRUE)
#> Upper bound for standard error calculated at each location.
#> Reminder: make sure that the predict function outputs a vector of standard
#> error values for each regional model in your remap object.
#> [1] 0.3177003 0.3383906 0.2142151

The kriging example requires a bit more work to implement in remap since the automap::autoKrige
and gstat::krige functions do not accept data as an "sf" object. A custom modeling function can be
written to pass to remap and a custom predict function can be written for remap to use for predictions.

projection <- sf::st_crs("+proj=laea +x_0=0 +y_0=0 +lon_0=-100 +lat_0=45")

krig <- function(data, formula) {
data <- data %>%
sf::st_transform(projection) %>%
sf::as_Spatial()

out <- list(data = data, formula = formula)
class(out) <- "krig"

return(out)
}
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predict.krig <- function(object, data) {
if (nrow(data) == 0) return(NULL)
data <- data %>%
sf::st_transform(projection) %>%
sf::as_Spatial()

variogram_object <- automap::autofitVariogram(
formula = object$formula,
input_data = object$data,
model = "Sph")

k <- gstat::krige(formula = object$formula,
locations = object$data,
newdata = data,
model = variogram_object$var_model,
debug.level = 0)

return(k$var1.pred)
}

kg <- remap(loads,
regions = eco3_simp, region_id = ECO3,
buffer = 50, min_n = 150,
distances = eco3_dist,
model_function = krig,
formula = log(EVENT50) ~ ELEVATION)

Since the buffer distance is greater than the smoothing distance, the resulting "remap" object can
be used to interpolate the same way that a global kriging model interpolates between points.

loads_us <- sf::st_filter(loads, cont_us)

kg_preds <- exp(predict(kg, loads_us, smooth = 25))

all(dplyr::near(kg_preds, loads_us$EVENT50))
#> [1] TRUE

Snow load modeling methods are compared in Table 1 using national scale models and models built
with the remap package on EPA Level III Eco-Regions (Commission for Environmental Cooperation,
1997). Table 1 shows that the remap package framework improves the cross validated accuracy of
every spatial modeling method. This demonstrates that the remap package has the ability to generally
improve modeling results, as improvements are not isolated to a single spatial modeling case. Even
though the regional models are made up of 86 different regional models, the estimated 50-year loads
are smooth across the prediction surface.

Model MSE ×102
ImprovementNational Regional

GAM 8.1 5.5 32%
Kriging 7.2 5.9 18%
OLS 89.3 17.8 80%

Table 1: Ten fold cross-validation results from modeling the log of 50-year snow loads. Mean squared
error (MSE) is multiplied by 102 for readability. Improvement is (national - regional) / national.

Computational challenges

National snow load maps require a sufficiently fine resolution to be feasibly used to design buildings
in topographically complex areas. To accomplish this, snow load maps are created that match the
resolution of PRISM climate output (PRISM Climate Group, 2020), which maps at a 0.8 km resolution
for the conterminous United States. This means that predicted snow loads are calculated at 12,113,556
locations using a model created by the remap package with 86 different regions. Elevation values
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for the grid are obtained from the United States Geological Survey (United States Geological Survey,
2020a).

Since the remap package uses the distances between prediction locations and regions to make a
smooth model, calculating these distances is a potential bottleneck in the prediction process. Also,
since the prediction area is so large, geographic coordinates rather than projected coordinates must
be used to find distances. Prior to sf version 1.0.0 (Pebesma, 2018), the S2 geometry library (Google,
2022) had not been implemented. Without the S2 geometry library, simply calculating all geographic
distances would have taken nearly half a year to run on a typical personal computer, as illustrated
in Table 2. The test computer used for Table 2 has 16 GB of RAM and an Intel Core I7-7820HQ CPU
which runs at 2.9 GHz. Maps for the national design snow loads were developed before S2 had been
integrated into sf, so the steps described later in this section had previously been necessary to use
remap to build these maps.

Remedial steps Run time in hours
Geographic Geographic (S2) Projected

None 4200∗ 8.1∗ 100.0∗

Simplify polygons 14∗ 2.3∗ 1.0
+ set max_dist to 25 km 1.1 0.3 0.8
+ run in parallel on 4 cores 0.8 0.3 0.8

Table 2: Run times for redist to calculate geographic and projected distances from 0.8 km grid points
to 86 different eco-regions (polygons) in the conterminous US. Remedial steps are additive, i.e., each
row in the table includes all previous remedial steps. ∗ Approximate run time based on random
sample of 10,000 grid points.

The first step to reduce the run time for distance calculations is to simplify the polygons as
discussed in the implementation considerations. Using a tolerance of 10000 with the function
sf::st_simplify, the size of the polygons are reduced from 21 MB to 0.2 MB. The results of polygon
simplification are visualized in Figure 6. When making predictions, the smooth parameter is set to
25 km; therefore, the max_dist parameter of redist can be set to 25 km to further reduce run time.
The distances may also be calculated in parallel; however, on the test computer the improvements are
marginal. The relevant distances may be calculated for all points using great circle distance in as fast
as 20 minutes (Table 2). This tremendous computational speed-up is made possible by the ability of
the remap package to smoothly fill in the gaps that occur in aggressively simplified polygons.

Here is an example of the code used to find distances from grid points to eco-regions. Due to
space and time constraints, the 0.8 km prediction grid is aggregated to a 7.2 km grid (grd) over the
conterminous United States. The grid is also converted to an "sf" spatial points data frame for use
with remap.

ag_grd <- grd %>%
raster::aggregate(9) %>%
raster::rasterToPoints() %>%
as.data.frame() %>%
mutate(LONGITUDE = x, LATITUDE = y) %>%
sf::st_as_sf(coords = c("x", "y"), crs = 4326) %>%
filter(sf::st_intersects(., cont_us, sparse = FALSE)[,1])

grd_dist <- redist(ag_grd, regions = eco3_simp, region_id = ECO3, max_dist = 25)

Smoothed regional predictions are made automatically by using the generic predict function on
a "remap" object and setting the smooth parameter to value greater than zero. Below is an example
of predicting values on the grid points using the 50-year load regionalized GAM model. Since we
already calculated distances from grd to eco3_simp, the grd_dist object can be passed to the distances
parameter of the predict function. The distance matrix is optional and remap will calculate distances
internally if not provided with a distance matrix. Predictions are smoothed to 25 km on either side of
each border. Note that predictions from gm are on the log scale.

gm_preds <- predict(gm, ag_grd, smooth = 25, distances = grd_dist)
gm_preds <- exp(gm_preds)

Here, the predictions from the regionalized GAM reveal some extrapolation issues when making
predictions at elevations outside of the range of available data within each sub-region. To get a better
visualization of the predictions, the predicted values can be truncated to the range observed in the
input data.
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range(gm_preds)
#> [1] 0.04273189 444.34484622
range(loads$EVENT50)
#> [1] 0.1 40.2

gm_preds[gm_preds > 40.2] <- 40.2
gm_preds[gm_preds < 0.1] <- 0.1

The smooth predictions from the gm model are visualized in Figure 7 with the following code.

ggplot(cont_us) +
geom_tile(data = ag_grd %>% dplyr::mutate(EVENT50 = gm_preds),

aes(x = LONGITUDE, y = LATITUDE, fill = EVENT50)) +
geom_sf(fill = NA, color = NA) +
scale_fill_viridis_c(option = "inferno",

trans = "log10",
breaks = c(0.1, 1, 7, 40),
labels = c("0.1 kPa", "1 kPa", "7 kPa", "40 kPa"),
name = "50-year event") +

theme_void()

Figure 7: Prediction map for 50-year loads from the regional GAM model built with the remap package
using 7,936 observations wthin 86 eco-regions. GAM models are built using a buffer zone of 50 m and
predictions are smoothed using a smoothing zone of 25 m. Values are restricted to be within the range
of values observed in the load data. This figure illustrates how remap functions can be used to create
continuous predictions of snow loads for all of the Conterminous United States.

Utah snowpack

The state of Utah assesses snow water content or snowpack every April 1st to plan for yearly water
resource availability. These measurements are much more variable than the 50-year snow loads since
the values are based on a single measurement at each location instead of the 98th percentile of a
distribution fit to annual maximum values at each location. This example uses direct measurements
of the water content made via Snowpack Telemetry (SNOTEL) stations included in NOAA’s Global
Historical Climatology Network (Menne et al., 2012). In addition to SNOTEL station data, Snow
Course data collected by the National Water and Climate Center are also included in the data set
(Natural Resources Conservation Service, 2017). SNOTEL and Snow Course data measure the water
equivalent of snow depth (WESD) and are located in the mountainous areas of Utah above 1777 m
elevation. This negates the need to estimate water content from snow depth, which is typically the
case when measuring snow at non-mountainous locations in the state.
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SNOTEL stations and Snow Course data within 100 km of the border of Utah are included in the
data set. There are 3511 April 1st WESD observations available for modeling which range from 0 to
1746 mm of water. The observations have 178 unique locations and span 30 years (1986-2015). Each
year is modeled separately with no regard for any temporal correlations and each year has at least 97
observations.

Models for GAM, kriging, and OLS are created using the same model structure as the national
snow load example, but a different response variable. Since there are 142 zero values for WESD
within the data, the log of (WESD + 1) is used as the response variable for the April 1st snowpack.
Predictions are also constrained to be between [1, max(WESD)] to avoid excessive extrapolation. The
regions used for regional modeling are watershed boundaries defined by the USGS (United States
Geological Survey, 2020b). Watersheds are defined by a hierarchy of hydrologic unit codes (HUC)
with a two-digit designation for continental scale watersheds (HUC2) and a four-digit designation
that partitions each HUC2 region (HUC4). There are four HUC2 regions and 12 HUC4 regions within
the boundaries of the state of Utah (see Figure 8). A buffer zone of 20 km, a smoothing parameter of
10 km, and a min_n of 30 observations are used when modeling over both HUC2 and HUC4 regions
with the remap function.

Figure 8: HUC4 regions (lines) and HUC2 regions (shades) in Utah.

The following code shows how remap models are built for the 2011 snowpack values using HUC2
watershed regions. Included in the supplied example data are an sf points data frame with snowpack
Utah snowpack values (utapr1, and an sf polygons data frame of HUC2 and HUC4 watersheds
within Utah (utws). Note that the maximum number of knots (k) in the GAM formula are reduced to
accommodate a smaller min_n in the remap function.

utsp2011 <- utapr1 %>%
dplyr::filter(YEAR == 2011) %>%
dplyr::mutate(WESD = WESD + 1)

utlmod <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,
model_function = stats::lm,
formula = log(WESD) ~ ELEVATION)

utgm <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,
model_function = mgcv::gam,
formula = log(WESD) ~ s(ELEVATION, k = 5) +
s(LATITUDE, LONGITUDE, bs = 'sos', k = 20),

family = gaussian)

utkg <- remap(utsp2011,
regions = utws, region_id = HUC2,
buffer = 20, min_n = 30,
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model_function = krig,
formula = log(WESD) ~ ELEVATION)

Table 3 shows that the gains in accuracy are more modest in this application than in the national
example shown previously. This is expected as the partitions are on the state level instead of the
national level. Nevertheless, the consistent improvement in accuracy at various scales using different
polygons and different input data highlight the general ability of the remap package to improve
predictive accuracy without sacrificing continuity.

Model MSE ×102

State HUC2 HUC4

GAM 88 75(15%) 78(11%)
Kriging 90 87 (3%) 83 (8%)
OLS 140 111(21%) 89(36%)

Table 3: Ten fold cross-validation mean squared error from modeling log(WESD + 1) for Utah
snowpack. Mean squared error (MSE) is multiplied by 102 for readability. Improvement in parentheses
is calculated with (state - HUC) / state.

5 Conclusions

Partitioning a space for geospatial modeling is a practical approach for handling nonstationary data;
however, smooth transitions in mapped values are a desirable constraint of many projects, such as the
design snow load requirements set forth by the American Society of Engineers. The remap R package
provides a ready-to-use framework for regional models with smooth transitions at region borders that
overcomes the computational difficulties of naïve implementations.

The remap package creates continuous prediction surfaces by weighting regional predictions
based on the proximity to region borders. Smoothing at region borders makes the package particularly
equipped to handle irregularly shaped regions not well represented by their geographic centers.
Because the remap package has the ability to smooth over small gaps formed when simplifying
polygons, computation times can be drastically reduced without sacrificing the continuity of the
predictions. Methods that automatically subset the number of required distance calculations further
reduce computational times. This article has demonstrated accuracy improvements using the remap
package on two separate data sets with two sets of polygon inputs. These examples highlight the
feasibility of applying the remap framework to large spatial regression modeling problems.

6 Acknowledgements

The development of remap was funded in part by the American Society of Civil Engineers (ASCE) and
the Structural Engineering Institute in partnership with several organizations including (in alphabetical
order): Factory Mutual, Metal Building Manufacturer’s Association, National Council of Structural
Engineering Associations, Nucor, Simpson Gumpertz and Heger, the State of Montana, the Steel Deck
Institute, the Steel Joist Institute, Structural Engineers Association of Montana, Wiss Janney and Elstner
Associates. Further, the authors would like to thank Dr. Kevin Moon of Utah State University for his
insight on the ensemble SE estimation problem.

Bibliography

B. Auguie. gridExtra: Miscellaneous Functions for "Grid" Graphics, 2017. URL https://CRAN.R-project.
org/package=gridExtra. R package version 2.3. [p162]

B. Bean, M. Maguire, and Y. Sun. Comparing design ground snow load prediction in Utah and Idaho.
Journal of Cold Regions Engineering, 33(3):04019010, 2019. URL https://doi.org/10.1061/(ASCE)CR.
1943-5495.0000190. [p167]

B. Bean, M. Maguire, Y. Sun, J. Wagstaff, S. A. Al-Rubaye, J. Wheeler, S. Jarman, and M. Rogers.
The 2020 national snow load study. Technical Report 276, Utah State University Department of

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
https://doi.org/10.1061/(ASCE)CR.1943-5495.0000190
https://doi.org/10.1061/(ASCE)CR.1943-5495.0000190


CONTRIBUTED RESEARCH ARTICLE 176

Mathematics and Statistics, Logan, UT, Feb 2021. URL https://doi.org/10.26077/200k-pr86.
[p167]

R. A. Becker, A. R. Wilks, R. Brownrigg, T. P. Minka, and A. Deckmyn. maps: Draw Geographical Maps,
2021. URL https://CRAN.R-project.org/package=maps. R package version 3.4.1. [p162]

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine - Open Source (’GEOS’), 2021. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.5-9. [p167]

Commission for Environmental Cooperation. Ecological regions of North America: To-
ward a common perspective. Technical report, Commission for Environmental Coopera-
tion, 1997. URL http://www3.cec.org/islandora/en/item/1701-ecological-regions-north-
america-toward-common-perspective. Accessed: 2020-04-09. [p167, 171]

M. Dorman. nngeo: k-Nearest Neighbor Join for Spatial Data, 2022. URL https://CRAN.R-project.org/
package=nngeo. R package version 0.4.6. [p162]

M. Fuentes. A high frequency kriging approach for non-stationary environmental processes. Environ-
metrics, 12(5):469–83, 2001. URL https://doi.org/10.1002/env.473. [p160, 162]

M. Fuentes and R. L. Smith. A new class of nonstationary spatial models. Technical report, North
Carolina State University, 2001. URL https://repository.lib.ncsu.edu/bitstream/handle/1840.
4/213/nonstat.pdf?sequence=1. [p160, 162]

Google. S2, 2022. URL https://s2geometry.io/. Source code. [p166, 172]

L. Gosoniu, P. Vounatsou, N. Sogoba, and T. Smith. Bayesian modelling of geostatistical malaria risk
data. Geospatial Health, 1:127–39, 2006. URL https://doi.org/10.4081/gh.2006.287. [p160, 162]

L. Gosoniu, P. Vounatsou, N. Sogoba, N. Maire, and T. Smith. Mapping malaria risk in West Africa
using a Bayesian nonparametric non-stationary model. Computational Statistics & Data Analysis, 53
(9):3358–71, 2009. URL https://doi.org/10.1016/j.csda.2009.02.022. [p160, 162]

P. J. Green and R. Sibson. Computing Dirichlet tessellations in the plane. The Computer Journal, 21(2):
168–73, 1978. URL https://doi.org/10.1093/comjnl/21.2.168. [p162]

B. Gräler, E. Pebesma, and G. Heuvelink. Spatio-temporal interpolation using gstat. The R Journal, 8:
204–218, 2016. URL https://doi.org/10.32614/RJ-2016-014. [p162]

T. C. Haas. Kriging and automated variogram modeling within a moving window. Atmospheric
Environment. Part A. General Topics, 24(7):1759–69, 1990a. URL https://doi.org/10.1016/0960-
1686(90)90508-K. [p160]

T. C. Haas. Lognormal and moving window methods of estimating acid deposition. Journal of the
American Statistical Association, 85(412):950–63, 1990b. URL https://doi.org/10.1080/01621459.
1990.10474966. [p160]

M. J. Heaton, W. F. Christensen, and M. A. Terres. Nonstationary Gaussian process models using
spatial hierarchical clustering from finite differences. Technometrics, 59(1):93–101, 2017. URL
https://doi.org/10.1080/00401706.2015.1102763. [p162]

P. Hiemstra, E. Pebesma, C. Twenhöfel, and G. Heuvelink. Real-time automatic interpolation of ambient
gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8):
1711–21, 2009. URL https://doi.org/10.1016/j.cageo.2008.10.011. [p162, 167]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2022. URL https://CRAN.R-project.org/
package=raster. R package version 3.6-3. [p162]

J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model averaging: a tutorial (with
comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors). Statistical
science, 14(4):382–417, 1999. URL https://doi.org/10.1214/ss/1009212519. [p164]

H.-M. Kim, B. K. Mallick, and C. C. Holmes. Analyzing nonstationary spatial data using piecewise
Gaussian processes. Journal of the American Statistical Association, 100(470):653–68, June 2005. URL
https://doi.org/10.1198/016214504000002014. [p162]

B. A. Konomi, H. Sang, and B. K. Mallick. Adaptive Bayesian nonstationary modeling for large spatial
datasets using covariance approximations. Journal of Computational and Graphical Statistics, 23(3):
802–29, 2014. URL https://doi.org/10.1080/10618600.2013.812872. [p160, 162]

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.26077/200k-pr86
https://CRAN.R-project.org/package=maps
https://CRAN.R-project.org/package=rgeos
http://www3.cec.org/islandora/en/item/1701-ecological-regions-north-america-toward-common-perspective
http://www3.cec.org/islandora/en/item/1701-ecological-regions-north-america-toward-common-perspective
https://CRAN.R-project.org/package=nngeo
https://CRAN.R-project.org/package=nngeo
https://doi.org/10.1002/env.473
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/213/nonstat.pdf?sequence=1
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/213/nonstat.pdf?sequence=1
https://s2geometry.io/
https://doi.org/10.4081/gh.2006.287
https://doi.org/10.1016/j.csda.2009.02.022
https://doi.org/10.1093/comjnl/21.2.168
https://doi.org/10.32614/RJ-2016-014
https://doi.org/10.1016/0960-1686(90)90508-K
https://doi.org/10.1016/0960-1686(90)90508-K
https://doi.org/10.1080/01621459.1990.10474966
https://doi.org/10.1080/01621459.1990.10474966
https://doi.org/10.1080/00401706.2015.1102763
https://doi.org/10.1016/j.cageo.2008.10.011
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1198/016214504000002014
https://doi.org/10.1080/10618600.2013.812872


CONTRIBUTED RESEARCH ARTICLE 177

A. B. Liel, D. J. DeBock, J. R. Harris, B. R. Ellingwood, and J. M. Torrents. Reliability-based design
snow loads. II: Reliability assessment and mapping procedures. Journal of Structural Engineering,
143(7):04017047, 2017. URL https://doi.org/10.1061/(ASCE)ST.1943-541X.0001732. [p167]

M. Menne, I. Durre, B. Korzeniewski, R. Vose, B. Gleason, and T. Houston. Global historical climatology
network - daily, version 3.26, 2012. URL https://doi.org/10.7289/V5D21VHZ. Accessed: 2020-06-04.
[p167, 173]

Natural Resources Conservation Service. Snow course stations, 2017. URL https://wcc.sc.egov.
usda.gov/reportGenerator. Accessed: 2020-04-03. [p173]

P. E. Osborne and S. Suárez-Seoane. Should data be partitioned spatially before building large-scale
distribution models? Ecological Modelling, 157(2):249–59, 2002. URL https://doi.org/10.1016/
S0304-3800(02)00198-9. [p162]

E. Pebesma. Simple features for R: Standardized support for spatial vector data. The R Journal, 10(1):
439–46, 2018. URL https://doi.org/10.32614/RJ-2018-009. [p162, 166, 167, 172]

E. J. Pebesma. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30:683–691,
2004. URL https://doi.org/10.1016/j.cageo.2004.03.012. [p162]

PRISM Climate Group. 30-year normals, 2020. URL https://prism.oregonstate.edu/normals/.
[p171]

P. Thévenaz and M. Unser. User-friendly semiautomated assembly of accurate image mosaics in
microscopy. Microscopy Research and Technique, 70(2):135–46, 2007. URL https://doi.org/10.1002/
jemt.20393. [p162]

W. Tobiasson, J. Buska, A. Greatorex, J. Tirey, and J. Fisher. Ground snow loads for New Hampshire.
Technical report, Cold Regions Research and Engineering Laboratory, 2002. URL https://www.senh.
org/wp-content/uploads/2010/12/tr02-6.pdf. [p167]

United States Geological Survey. The national map, 2020a. URL https://www.usgs.gov/core-
science-systems/national-geospatial-program/national-map. Accessed: 2020-04-01. [p172]

United States Geological Survey. National hydrography dataset, 2020b. URL https://www.usgs.gov/
core-science-systems/ngp/national-hydrography/access-national-hydrography-products.
Accessed: 2020-10-16. [p174]

S. Wager, T. Hastie, and B. Efron. Confidence intervals for random forests: The jackknife and the
infinitesimal jackknife. The Journal of Machine Learning Research, 15(1):1625–1651, 2014. URL http:
//jmlr.org/papers/v15/wager14a.html. [p164]

J. Wagstaff. Regionalized models with spatially continuous predictions at the borders. Master’s thesis,
Utah State University, 2021. URL https://doi.org/10.26076/f25f-3104. Document No. 8065.
[p162]

J. Wagstaff. remap: Regional Spatial Modeling with Continuous Borders, 2022. URL https://CRAN.R-
project.org/package=remap. R package version 0.3.0. [p160]

H. Wickham, M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes,
L. Henry, J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson,
D. P. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. Welcome to the
tidyverse. Journal of Open Source Software, 4(43):1686, 2019. URL https://doi.org/10.21105/joss.
01686. [p162]

C. O. Wilke. cowplot: Streamlined Plot Theme and Plot Annotations for ggplot2, 2020. URL https://CRAN.R-
project.org/package=cowplot. R package version 1.1.1. [p162]

S. N. Wood. Thin plate regression splines. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 65(1):95–114, 2003. URL https://doi.org/10.1111/1467-9868.00374. [p167]

S. N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of semi-
parametric generalized linear models. Journal of the Royal Statistical Society (B), 73(1):3–36, 2011. URL
https://doi.org/10.1111/j.1467-9868.2010.00749.x. [p162, 167]

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1061/(ASCE)ST.1943-541X.0001732
https://doi.org/10.7289/V5D21VHZ
https://wcc.sc.egov.usda.gov/reportGenerator
https://wcc.sc.egov.usda.gov/reportGenerator
https://doi.org/10.1016/S0304-3800(02)00198-9
https://doi.org/10.1016/S0304-3800(02)00198-9
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.1016/j.cageo.2004.03.012
https://prism.oregonstate.edu/normals/
https://doi.org/10.1002/jemt.20393
https://doi.org/10.1002/jemt.20393
https://www.senh.org/wp-content/uploads/2010/12/tr02-6.pdf
https://www.senh.org/wp-content/uploads/2010/12/tr02-6.pdf
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products
https://www.usgs.gov/core-science-systems/ngp/national-hydrography/access-national-hydrography-products
http://jmlr.org/papers/v15/wager14a.html
http://jmlr.org/papers/v15/wager14a.html
https://doi.org/10.26076/f25f-3104
https://CRAN.R-project.org/package=remap
https://CRAN.R-project.org/package=remap
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=cowplot
https://CRAN.R-project.org/package=cowplot
https://doi.org/10.1111/1467-9868.00374
https://doi.org/10.1111/j.1467-9868.2010.00749.x


CONTRIBUTED RESEARCH ARTICLE 178

Jadon Wagstaff
Huntsman Cancer Institute, University of Utah
Department of Oncological Sciences
2000 Circle of Hope
Salt Lake City, UT 84112, USA
jadonw@gmail.com

Brennan Bean
Utah State University
Department of Mathematics and Statistics
3900 Old Main Hill
Logan, UT 84322, USA
Brennan.Bean@usu.edu

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

mailto:jadonw@gmail.com
mailto:Brennan.Bean@usu.edu


CONTRIBUTED RESEARCH ARTICLE 179

HostSwitch: An R Package to Simulate the
Extent of Host-Switching by a Consumer
by Valeria Trivellone, Sabrina B. L. Araujo and Bernd Panassiti

Abstract In biology a general definition for host switch is when an organism (consumer) uses a new
host (which represents a resource). The host switch process by a consumer may happen through its
pre-existing capability to use a sub-optimal resource. The HostSwitch R package provides functions
to simulate the dynamics of host switching (extent and frequency) in the population of a consumer
that interacts with current and potential hosts over the generations. The HostSwitch package is based
on a Individual-Based mock-up model published in FORTRAN by Araujo et al. (2015). The package
largely improve the previous mock-up model, by implementing numerous new functionalities such
as comparison and evaluation of simulations with several customizable parameters to accommodate
several types of biological consumer-host associations, an interactive visualization of the model, an
in-depth description of the parameters in a biological context. Finally, we provided three real world
scenarios taken from the literature selected from ecology, agriculture and parasitology. This package is
intended to reach researchers in the broad field of biology interested in simulating the process of host
switch of different types of symbiotic biological associations.

1 Introduction

In several branches of biology (such as for example ecology, evolution, parasitology) a general
definition for host-switching (or host shift) is when a consumer uses a newly colonized host, which
represents its resource. Different spatial and temporal outcomes may result from the new host-
consumer association depending on whether or not the colonization is successful. Studies on the
evolution of biotic associations relies on an increasing body of literature covering all prototypical
examples of symbiotic relationship categories (Thompson, 2010). Symbiosis sensu lato is defined here as
any interaction between two organisms of different species. The possible influence between interacting
organisms has been placed in a continuum of association types defined by their role, direction, and
extension; and it varies from mutual consumption to unidirectional exploitation (Dimijian, 2000a,b).
In the interspecific associations, the interacting organisms may play the role of strict consumer (e.g.,
predator) or resource (e.g., prey). Evolution of the associations may include several concatenated
events of speciation affecting one or both species and it is driven by four main processes: cospeciation,
host switch, failure to speciate and "missing the boat" (Page, 2002). While the prevalent paradigm
considers cospeciation to be the main process driving evolution of most biological associations, recent
evidence showed that, given the opportunity, a consumer may use a sub-optimal resource (or host)
by host-switching without the need for any genetic innovation. This may explain the rapid origin of
novel associations (i.e. colonization of novel hosts at the ecological time scale) eventually followed by
speciation (at the evolutionary time) as well the observed incongruences of the paired phylogenies (see
Brooks et al. (2019) for a review). Computer simulation modeling provide a valid tool to understand
ecological and evolutionary dynamic of interacting species. To theoretically support the importance
of host switch events, an Individual-Based Model (IBM) has been proposed by Araujo et al. (2015)
(mock-up model hereafter). The model simulates the extent of host-switching in a host-parasite
association formalized as the probability of an individual to disperse and successfully colonize a
novel host. Recently, Feronato et al. (2021) provided a further add-on to the model by exploring the
significance and the interaction of three parameters thought to be of paramount importance for the
acquisition of a new host by a parasite. By using simulated data, these two initial papers provided
important insights on the dynamic of host-switches for a parasite species. The main results were that
host switch on a new host does not require prior evolutionary novelty, pathogens may survive on
sub-optimal hosts which results in increased chance of host-switching to hosts more distant, and some
parameters facilitate host switching (e.g., mutation and reproductive rate).

Both models were coded and run in FORTRAN language. Although available in an executable
version (Windows, Linux, and MacOS), the previous mock-up model still lacks a user-friendly interface,
and the manipulation of parameters is broadly limited. The current access to the model is restricted to
certain groups of users who know how to compile and code in FORTRAN.

We present here a user-friendly R package, called HostSwitch, which improves the earlier version
published in FORTRAN (Araujo et al., 2015; Feronato et al., 2021) in three main ways:

(1) by increasing the accessibility of the model to researchers that are not familiar with FORTRAN;

(2) by including customizable parameters, some previously unreleased (e.g., jump_back), that allow
us to extend the mock-up model from strict pathology (i.e., simulating host switches by pathogen) to
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other branches of biology such as ecology, microbiology, agriculture (covering a very broader spectrum
of symbiotic sensu lato associations, see Implementation and Usage scenarios sections for further
details) reaching a broader audience;

(3) by providing in-depth descriptions of the parameters in a biological context, and examples of
possible uses with real world data (see Usage scenarios section).

To our knowledge, there are no R packages that simulate the events of host switch using the
theoretical approach briefly presented above and widely discussed in previous papers (Araujo et al.,
2015; Agosta et al., 2010; Brooks et al., 2019). However, is worth to mention that there are one
putatively similar packages that may be used to simulate host switches. Notably, the package EpiILM
(Vineetha Warriyar et al., 2020) uses discrete-time individual-level models to simulate the dynamic
of infection disease transmission. The EpiILM package differs from the one present here for a
fundamental point: HostSwitch simulate the host switch using the point of view of the consumer,
rather than the host, and formalize the probability as random encounters of new hosts different to one
other. For further details of the model formalize in EpiILM are presented in Deardon et al. (2010).

In Section "The model", we describe the mathematical framework for simulating the dispersion
and the survival of individuals of a population on a novel resource which describes the event of
host-switching. In Section "Implementation", we describe the implementation of the mock-up model
in the HostSwitch package, including a description of the arguments of the main functions. In Section
"Usage scenarios" we used empirical data gathered from the literature to simulate and compare
different scenarios of host switch. We also present possible hypotheses and research questions that can
be explored using the simulation approach.

2 The model

The simulation model of HostSwitch aims to measure the dynamics of host switching (extent and
frequency) in the population of an organism (hereafter Consumer) that interacts with current and
potential hosts (hereafter Resource) over generations. A successful host switch implies that a Consumer
may colonize a new Resource, which in turn imposes selection pressure that impacts the Consumers’
survival. The host-switching relies on a mechanism of ecological readjustment or ecological fitting, i.e.
the capability of the Consumer to use a similar Resource even if sub-optimal (Janzen, 1985; Agosta and
Klemens, 2008). The fundamental aspect of the HostSwitch simulation model is to track, summarize
and compare the dispersion and successful host switch events in a new Resource by the populations
of the Consumer. Although the model and the basic parameters have been previously described in
Araujo et al. (2015) and Feronato et al. (2021), we provide here a revised description of the modeling
dynamic which accommodates all symbiotic (sensu lato) associations.

The Resource is characterized by a real number, pOpt, randomly selected from a uniform distribu-
tion ranging from pRes_min to pRes_max. This number represents the optimum phenotype imposed on
Consumers by the Resource. Besides, the Resource imposes a carrying capacity K on the Consumer
population. Individuals of the Consumer have a phenotype which can evolve over generations due to
the emergence of novelties (hereafter mutations). Each individual consumer i is characterized by one
phenotype pi. The simulation starts (generation n = 0) with all M consumer individuals having the
same phenotype value (pi = pInd) which is equal to the average value in the resource range ((pRes_min
+ pRes_max)/2). At each generation, a novel Resource is offered and all Consumers have a probability
mig to migrate from the current to the novel Resource. The number of dispersing individuals is
calculated by assigning to each individual a value that follows the random uniform distribution. All
the individuals with a value lower than mig disperse to the new Resource. Then, the assigned value
may be interpreted ecologically as intrinsic or extrinsic characteristics involved in the dispersal event
(e.g., morphological features, environmental constraints). The parameter mig defines a criterion for
inclusion, with higher values allowing more individuals to disperse at each generation. The dispersion
event has two possible outcomes: no migration (m1) and migration (m2).

• (m1) No individual disperses to the novel Resource and the model continues in the current
Resource through the selection event. The Resource imposes on each individual a selection and
the survival probability is calculated using the following equation:

P(pi, pOpt) = exp [−
(pi − pOpt)

2

2σ2
sel

], (1)

where pi is the phenotype of i-th Consumer attempting to survive on the Resource; pOpt
is the optimum phenotype the Consumer should have to maximize survival success on the
Resource; σsel is the standard deviation of a Gaussian distribution which is inversely related to
the strength of selection. It may be interpreted as a proxy for the amplitude of the fitness space
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of the Consumer, the higher the σsel, the lower the selection and the higher the probability of
surviving. Ecologically this value may be related to the niche breadth for the Consumer.

• (m2) Some individuals disperse and they go through a selection event on the novel Resource
following eqn 1 (but with new pOpt values, randomly defined). Here, the survival event has
two possible outcomes: no survival (s1) and survival (s2).

– (s1) None of the individuals survive and the model continues with the portion of individu-
als that did not migrate and are in the current (original) Resource, if dispersing individuals
are not allowed to come back to the current Resource, or with individuals that did not
migrate and those jumping back to the current Resource. The model imposes to these
individuals a survival probability according to eqn 1.

– (s2) Some individuals survive and the model continues only with those individuals.

All other individuals are ignored in subsequent steps. The novel Resource then becomes current
Resource and the individuals will reproduce with a net reproduction rate b, limited to the carrying
capacity K. The offspring’s phenotype (inherit from the parents, plus variation δ) is assigned to each
individual and calculated using the normal probability function:

P(δ) = exp [
−δ2

2σ2
mut

], (2)

where δ is random phenotypic variation assigned to each individual; σmut is the standard deviation
for mutation. The parameter δ is randomly defined from a Gaussian distribution centered in zero and
with a standard deviation σmut. Offspring phenotypes are equal to the arithmetic average of their
parent’s phenotypes plus δ (i.e the extent of genetic novelty introduced with the reproduction). The
descendants replace their parents and will populate generation n+1 that will start over with another
dispersion event to a novel Resource.

The overview of the main steps of the model are summarized in Figure 1.

Figure 1: Overview of the host-switching simulation model. At each generation every individual
consumer has the chance to disperse to a novel Resource (on the right in green) and colonize it, or
to jump back to the original Resource (on the left in blue). Selection (see eqn 1) is imposed by the
current and the novel Resource. Individuals that survive the selection start a new generation after the
reproduction event (see eqn 2). The framework is largely modified from Figure 1 after Araujo et al.
(2015), more details in the text. zi = phenotype of i-th Consumer; zopt = phenotype that the Consumer
should have to fit the novel Resource; zopt new = phenotype that the Consumer retains on the current
Resource after successful colonization of novel Resource; mig = a parameter defining the probability
of dispersion of each Consumer.
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3 Implementation

The HostSwitch R package is available for download from CRAN at https://cran.r-
project.org/web/packages/HostSwitch/index.html. Latest versions of future developments of the
R-package will be available on Github at https://github.com/berndpanassiti/HostSwitch.

This package provides an easy-to-use toolbox for users who want to simulate the host-switching of
consumers and currently includes six functions (Table 1).

The package is installed and loaded by typing:

> install.packages("HostSwitch")
> library(HostSwitch)

Table 1: Description of the six functions in HostSwitch package

Function Description

plotHostSwitch
Plots dispersal and colonization (host-switching events) of Con-
sumers on a novel Resource offered at each generation given the
values of parameters related to carrying capacity, fitness space,
migration, reproduction, selection, and biological model.

shinyHostSwitch
Plots simulations of Consumer’s host-switching on interactive
web-based front-end using Shiny App.

simHostSwitch
Simulates the number of dispersion and successful host switch
events by individuals of the Consumer until all individuals die.

summaryHostSwitch Generates summary statistics for the object generated by
simHostSwitch function.

survivalProbability Includes the formula to calculate the survival probability used
in the simHostSwitch function.

testHostSwitch
Tests the significance of the difference between two objects gen-
erated by simHostSwitch function.

The HostSwitch package is implemented around two main functions: survivalProbability and
simHostSwitch. The former includes the formula of the survival probability (eqn 1), and the latter
simulates host switches according to Figure 1 and encompasses dispersion, selection and reproduction
events. simHostSwitch uses the survivalProbability function to calculate the probability of survival
of the individuals on the current and new Resources.

The arguments of the simHostSwitch function are:

• K: carrying capacity, positive integer (min = 1, max = 1000), default value: 100.

• b: net reproduction rate; average number of offspring that a population of the Consumer
produces at each generation, integer value (min = 0), default value: 10.

• mig: define the number of migrating individuals at each generation, numeric value (min = 0,
max = 1), default value: 0.01. Larger values indicate higher probability to migrate.

• sd: standard deviation for mutation, numeric value (min = 0, max = 10), default value: 0.2. It
corresponds to σmut in (eqn 2).

• sigma: standard deviation of the survival function, numeric value (min = 0, max = 10), default
value: 1. It corresponds to σsel in (eqn 1).

• pRes_min: smallest optimum phenotype value imposed by the Resource, numeric value (min =
1, max = pRes_max), default value: 1.

• pRes_max: highest optimum phenotype value imposed by the Resource, numeric value (min =
pRes_min, max = 100), default value: 10.

• n_generations: number of generations, positive integer (min = 1, max = 50000), default value:
200.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=HostSwitch
https://cran.r-project.org/web/packages/HostSwitch/index.html
https://cran.r-project.org/web/packages/HostSwitch/index.html
https://github.com/berndpanassiti/HostSwitch
https://CRAN.R-project.org/package=HostSwitch
https://CRAN.R-project.org/package=HostSwitch


CONTRIBUTED RESEARCH ARTICLE 183

• jump_back: option for Consumers that do not survive on the novel Resource. If "yes" the
consumer(s) is able to jump back to the current Resource and will be considered in the selective
pressure and reproduction stage for the n+1 generation, if "no" (default) it cannot jump back
and dies on the new host.

• seed: a single value useful for creating simulations or random objects that can be reproduced,
positive integer (>0), default value: NULL.

• n_sim: number of simulations, positive integer (min = 1, max = 50000), default value: 1.

• nInitConsumer: propagule size (or number of initial individuals) at the generation n = 0, default
value: 20.

• data, column: instead of the arguments outlined above, the user may pass to the function a
vector (column =) saved in a matrix or dataframe (data =) which specifies all or some of the
arguments above, default value: NULL. The default value will be set if the argument is not
provided. The arguments provided in dataframe will be overwritten if provided as an argument
in the simHostSwitch function.

Using the simHostSwitch function, the R command below generates an object of class ’HostSwitch’
which is a list of 18 elements, six simulated quantities and 12 used parameters (arguments of the
function).

# generate a simulated 'HostSwitch' object using default values for the parameters
> sim1 <- simHostSwitch(n_sim= 3, seed = 2)

The simulated quantities are:

• pRes_sim: a vector of the optimum phenotypes (one for each generation) that Consumers should
have to be favored by the current Resource;

• pRes_new_sim: a vector of the optimum phenotypes (one for each generation) that Consumers
should have to be favored by the novel Resource;

• pInd_sim: list of vectors that includes the individual phenotype values of the Consumers in the
population of each generation;

• pInd_jump_sim: vector of number of migrating individuals at each generation. The vector
length is always equal to the ’n_generation’ parameter, if the simulation ends before the
’n_generation’ value then the vector will include a ’NA’ by default;

• pInd_whichjump_sim: list of vectors that extracts the individual phenotype values of the Con-
sumers who disperse in a novel Resource in each population and generation;

• pInd_whichsurv_sim: list of vectors that extracts the individual phenotype values of the Con-
sumers who successful colonize a novel Resource in each population and generation;

The function summaryHostSwitch creates a summary of basic statistics for phenotypes, dispersion and
host switch events. The argument warmup defines the number of generations to be excluded from
summary statistics. If warmup = 1 the generation at time 0 is excluded from summary, if warmup =
2 the generations at times 0 and 1 are excluded and so on. If warmup = NULL all generations are
considered for summary statistics. Possible values are NULL or positive integer (min=1, max=50),
default value = 1.
The example below provides the averages of the quantities of interest calculated for three simulations
(n_sim = 3)

# generate a summary for the simulated 'HostSwitch' object
> summaryHostSwitch(sim1)
An object of class summaryHostSwitch
Summary of HostSwitch simulations

General settings of individual based model:
K:100, b:10, mig:0.01, sd:0.2, sigma:1, pRes_min:1, pRes_max:10
n_generations:200, jump_back:no, seed:2, n_sim:3, warmup:1, nInitConsumer: 20

Summary of phenotypes:
Min. 1st Qu. Median Mean 3rd Qu. Max.

pRes 3.48 3.94 4.41 4.33 4.75 5.10
pRes_new 5.21 5.33 5.45 5.49 5.64 5.83
pInd 3.68 4.17 4.65 4.64 5.11 5.57

Summary of host switches by consumers:
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Mean Max
Total events of dispersion: 29.67000 43
Number of successful host switches: 12.33333 16

The testHostSwitch function measures if there is a significant difference between the
means of three simulated quantities of two HostSwitch objects (simulated_quantities1 and
simulated_quantities2). The argument parameter selects the quantity to compare, i.e. "j" (total number
of dispersing events), "s" (total number of successful host switch events), and "d" (distance between
the pRes_sim and pRes_new_sim for the generations where a successful host switch occurs, hereafter
phenotype distance). The argument test defines the inferential statistic to be used, "t" parametric (t-test)
or "w" nonparametric (wilcoxon rank test). The warmup is defined as above, and the argument plot
provides the box plot of the results based on the ggplot function. When comparing quantities, the user
needs to take into account all the arguments provided to the function simHostSwitch, including the
number of simulations (n_sim). A warning message will be produced if n_sim=1 for both HostSwitch
objects. The following code generates another HostSwitch object (sim2), with mig = 0.9 and default
values for the others arguments. We compare the quantities from the objects sim1 and sim2 using
testHostSwitch:

> sim2 <- simHostSwitch(mig = 0.9, n_sim= 3, seed = 3)

# compare the average values of the simulated quantities ("j", "s", "d") saved in the
# objects sim1 and sim2
> testHostSwitch(simulated_quantities1 = sim1, simulated_quantities2 = sim2,
parameter = "j", test = "t", warmup = NULL, plot = FALSE)
An object of class testHostSwitch
Test result comparing 2 HostSwitch simulations using Welch Two Sample t-test
t: 2.74044, df:2.278635, p.value:0.09663877

> testHostSwitch(simulated_quantities1 = sim1, simulated_quantities2 = sim2,
parameter = "s", test = "t", warmup = NULL, plot = FALSE)
An object of class testHostSwitch
Test result comparing 2 HostSwitch simulations using Welch Two Sample t-test
t: 2.505218, df:3.545114, p.value:0.0743971

> testHostSwitch(simulated_quantities1 = sim1, simulated_quantities2 = sim2,
parameter = "d", test = "t", warmup = NULL, plot = FALSE)
An object of class testHostSwitch
Test result comparing 2 HostSwitch simulations using Welch Two Sample t-test
t: 1.271303, df:12.32786, p.value:0.2270841

The function returns the results of the test and the plot (if plot = TRUE). In the example above there is
no significant difference between the two simulations, for all the simulated quantities ("j", "s", "d").

The plotHostSwitch and shinyHostSwitch functions both allow visualizing the results of a simu-
lation, the first in the static plot window of the R console and the second one in a dynamic interface.
The S3 method plotHostSwitch function graphically summarizes the simulated output. The following
code generates the plot for the third simulation of the object sim1:

> plotHostSwitch(HostSwitch_simulated_quantities = sim1, n_sim = 3)

The function shinyHostSwitch relies on the package shiny, and by running the code:

> shinyHostSwitch()

a popup window displays the plot for a simulation run with default values. The panel on the left
includes slider bars for each argument of simHostSwitch function. The plot reacts dynamically to user
input after pressing the Refresh simulation button.

4 Usage scenarios

In this section, we provide examples of how the functions described above can be applied to real
data. We conducted a literature review with the aim to select studies providing data about the life
cycle parameters of consumers interacting with their resources. The data were all gathered from
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experimental settings and are related to three biotic interaction models representing distinct fields
of research: wildlife ecology, agricultural pests, zoonotic pathogens. These data saved in the parli
list object are included in the HostSwitch package. The list contains three matrices: $Cephaloleia,
$Cacopsylla, and $SarsMers.

The complete code to reproduce results for the three biological scenarios presented is provided as
an R Markdown file in the supplementary material for this article. Each scenario has two chunks of
code: one to run the test and one to create plots. Using the Knit button in RStudio the results will be
embedded beneath the code chunk in a .pdf document (see supplementary material for an example).

Cephaloleia - Zingeriberales (wildlife ecology)

Beetle species in the genus Cephaloleia (Coleoptera, Chrysomelidae, Cassidinae) are herbivorous insects
feeding on monocots within the order Zingiberales and are known to be strictly co-evolved with
their host plants during the last 35-60 Million years in the Neotropical region. This herbivore-plant
association has been used earlier as a good model to test macroevolutionary hypotheses of host use
and to investigate drivers of the evolution of the biological interactions (García-Robledo and Horvitz,
2011; Schmitt and Frank, 2013). Previous studies revealed host switch events in at least 7 species of
Cephaloleia beetles in Costa Rica, and detailed information of life-cycle parameters have been reported
(García-Robledo and Horvitz, 2011; Garcia-Robledo et al., 2010).

To inform our model, we used data on net reproduction rate for two species of Cephaloleia (the
generalist C. belti and the specialist C. placida) provided by García-Robledo and Horvitz (2011). On
their native host plants, C. belti showed the highest net reproduction rate (b = 4.6) and C. placida the
lowest (b = 1.4) (see the lower value of the parameter for each species from Table 7 in García-Robledo
and Horvitz (2011)). Suppose we are interested in simulating the host switch events of the two closely
related taxa with different diet breadth, C. belti and C. placida. We may want to test the hypothesis
that a higher net reproduction rate significantly increases the number of dispersion events and the
successful colonization of new hosts (number of host switches). In this example, we simulated the
dispersion and host switch events of the generalist C. belti (known to be associated with different
families in Zingeriberales in Costa Rica) and the specialist C. placida (hosted by Renealmia alpinia).
For each species, the simulation was run for 200 generations, K=1000 (carrying capacity not being
a limiting factor), and 1000 runs. Because the other parameters, namely pRes_min, pRes_max, sd
(standard deviation of mutation), and sigma (standard deviation of survival), are not available in the
literature for the two species the default values of the simHostSwitch function were used. The effect of
the net reproduction rate on the simulated quantities (dispersion events j, successful host switches
s, and distance between current and novel Resource d) was tested, along with the assumption that
b does not vary switching from the current to the novel resource across generations. We also tested
the influence of the two parameters mig (migration probability) and jump_back (possibility to jump
back to the original host) with the assumption that they may rapidly vary under different ecological
conditions. We arbitrarily set the variation for mig as low = 0.01 or high = 0.1, and for jump_back as
"no" or "yes". All possible combinations between the species were compared (Table 2).

The difference between the average values of j, s, and d was evaluated with the paired t-test using
the function testHostSwitch. The null hypothesis is that the pairwise difference between the two
average values is equal. The code chunk "Scenario 1: Cephaloleia-Zingeriberales (wildlife ecology)"
(supplementary material) uses the data in parli$Cephaloleia object to generate a large list (simResult)
with eight simHostSwitch objects, 4 for C. belti (hereafter Cb) and 4 for C. placida (Cp). The objects
differ for the combinations of the parameters described above. The dataframe testResult.Cephaloleia
saves the p-values for all the 16 combinations and all simulation objects defined by the user using the
vector "simulations". All the objects are saved in the Global environment and a reshaped table with
p-values of the t-test is visualized on the console and in Table 2. The code chunk "Plot for Cephaloleia"
generates 3 plots for each of the tested quantities (j, s, and d); Figure 2 shows example box plots for
the first comparison.

The results in Table 2 and Figure 2 show that the differences in the average number of dispersion
and host switch events between C. belti and C. placida is significant, regardless of the values of
probability of migration and the possibility to jump back to the old host. Cephaloleia belti shows higher
values of j and s, this means that a four times higher net reproduction rate drives a higher probability
of migration and successful host switches over time. As far as the distance between current and novel
Resources is concerned, only seven out of 16 combinations showed a non-significant difference, all of
them including C. belti with high probability of migration.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=HostSwitch


CONTRIBUTED RESEARCH ARTICLE 186

Table 2: Difference between the average values of three estimated quantities (total number of dis-
persing events j, total number of successful host switches s, phenotype distance d) calculated from
200 simulations for each of the 16 independent combinations of two Cephaloleia species, (C. belti and
C. placida). Fixed parameter from real data: net reproduction rate, b = 4.6 C. placida and b = 1.4 for
C. placida. Arbitrary variation for two parameters: mig, probability of migration Low = 0.01 (default
value) or High = 0.1; jump_back, possibility to jump back to the original Resource No (default value)
or Yes. Not significant p-values are shown in gray. For significant differences, the combination of the
species with a higher value for the estimated quantities is shown in red.

C. belti
(mig x jump_back)

C. placida
(mig x jump_back) j s d

Low x No Low x No <0.001 <0.001 <0.001
Low x No High x No <0.001 <0.001 <0.001
Low x No Low x Yes <0.001 <0.001 <0.001
Low x No High x Yes <0.001 <0.001 <0.001
High x No Low x No <0.001 <0.001 >0.05
High x No High x No <0.001 <0.001 <0.05
High x No Low x Yes <0.001 <0.001 >0.05
High x No High x Yes <0.001 <0.001 >0.05
Low x Yes Low x No <0.001 <0.001 <0.001
Low x Yes High x No <0.001 <0.001 <0.001
Low x Yes Low x Yes <0.001 <0.001 <0.001
Low x Yes High x Yes <0.001 <0.001 <0.001
High x Yes Low x No <0.001 <0.001 >0.05
High x Yes High x No <0.001 <0.001 >0.05
High x Yes Low x Yes <0.001 <0.001 >0.05
High x Yes High x Yes <0.001 <0.001 >0.05

Figure 2: Comparisons between the three simulated quantities (A- total number of dispersing events j,
B- total number of successful host switches s, and C- phenotype distance d) calculated for populations
of Cephaloleia placida and C. belti. The populations are characterized by a low migration value and
no possibility to jump back to the original Resource. The simulated quantities are calculated using
the simHostSwitch function. The quantity d is defined as the difference between the phenotype of
current and new Resource for generations where a successful host switch occurs. Each box plot
depicts the distribution of the simulated quantities. For plot A and B, N represents the number of
simulations (200). For plot C, N represents the total number of successful host switches calculated for
200 simulations.
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Cacopsylla melanoneura - Rosaceae (agricultural pests)

The hemipteran insect Cacopsylla melanoneura (Hemiptera, Psyllidae) is one of the known vectors of
phytoplasmas, plant pathogenic bacteria in Class Mollicutes, and their association with host plants
in the family of Rosaceae is known to be restricted to Central Europe (Janik et al., 2020). This group
of pathogens is associated with severe diseases of orchards, including apple proliferation disease
associated with ’Candidatus (Ca.) Phytoplasma (P.) mali’, pear decline (’Ca. P. pyri’) and European
stone fruit yellows (’Ca. P. prunorum’). The epidemiology of this vector-borne pathogen closely
depends on the range of host plants that may serve as inoculum sources (reservoirs), and on the
specific relationship between insect vectors and plants. Although C. melanoneura has been reported
as a competent vector of ’Ca. P. mali’ in Italy (Tedeschi et al., 2002), the degree of preference for
natural host plants may vary across countries affecting its role in phytoplasma spread, which is still
largely unclear (Malagnini et al., 2010). Earlier investigations aimed to characterize aspects of its
autoecology, such as life cycle, cryptic genetic variation, and habitat preference that may influence
the associations with host plants (Malagnini et al., 2013). Cacopsylla melanoneura is known to be an
oligophagous insect on hawthorn (Crataegus spp.), apple (Malus spp.), medlar (Mespilus germanica) and
pear (Pyrus communis), and coniferous species are used as shelter plants during the winter (Jackson
et al., 1990; Lal, 1934; Ossiannilsson, 1992). Moreover, the existence of C. melanoneura host races which
show a morphological and genetic differentiation along with specific association with different host
plants (apple or hawthorn) is likely in populations from different geographical regions (Lazarev, 1972,
1974; Lauterer, 1999; Malagnini et al., 2013). Available evidence suggests that sympatric speciation via
host shift may be hypothesized. Even within the family Rosaceae only, the suite of host plants of C.
melanoneura may vary locally through host switches with important consequences for the ecology of
the insect vector and on the epidemiology of the phytoplasma disease in cultivated orchard trees.

We used the large amount of data available to inform our model and to compare two distinct
populations of C. melanoneura: one adapted to apple (hereafter CmA) and the other to hawthorn (CmH).
We used the experimental data provided by Malagnini et al. (2013) to calculate the net reproduction
rate of the populations of C. melanoneura using eqn 2 of García-Robledo and Horvitz (2011). The
calculated value b for CmA was about twice (2.196) that of CmH (1.022). To calculate the probability
of migration mig we used the results of a choice test carried out using a dynamic olfactometer and
provided in Figure 6 by Mayer et al. (2011). The values for mig for CmA were retrieved from the
experiment with a population collected on apple tree that had a probability of 0.38 to migrate on apple.
For CmH the probability was 0.49. The standard deviation of survival sigma for CmA was retrieved
by Malagnini et al. (2010) (see Results section) reporting a value of 3.68, and because no data was
available for CmH we hypothesized a higher value 7 because hawthorn was reported as the ancestral
host of C. melanoneura (Jackson et al., 1990).

Suppose we are interested in simulating the host switch events of two populations of C. melanoneura
to novel closely related hosts in family Rosaceae. We may want to test the hypothesis that twice a value
of the standard deviation of survival sigma for CmH is more important than a b two times higher for
CmA, driving a significant increase in the number of dispersion events and more successful coloniza-
tion of new hosts (number of host switches) for the population CmH than CmA. The parameter mig
(migration) was also provided from real data but only slightly different between the two populations.
Each simulation was run with 200 generations, K=1000 (carrying capacity not being a limiting factor),
and 1000 runs. The parameters pRes_min and pRes_max are not available in the literature and the
default values were used. The effect of combined sigma and b values on the simulated quantities
(dispersion events j, successful host switches s, and distance between current and novel Resource d)
was tested, along with the assumption that both do not vary from the current to the novel Resource
across generations. We arbitrarily set the variation for standard deviation of mutation sd as low = 0.2
or high = 9, and for the possibility to jump back to the original host jump_back as "no" or "yes". All
possible combinations between the populations were tested (Table 3).

We used the code chunk "Scenario 2: Cacopsylla melanoneura-Rosaceae (agricultural pests)"
(supplementary file) to test the difference between the average values of simulated quantities (vj, s,
and d) for each combination of the populations of C. melanoneura. The null hypothesis is that the
pairwise difference between the two average values is equal. The p-values of the t-test are reported in
(Table 3. The code chunk "Plot for Cacopsylla" generates three plots for each of the tested quantities
and in Figure 3 an example for the first combination is reported.

The results in Table 3 show that the difference in the average number of dispersion events is
significant for all combinations except the one where we allowed the population adapted to hawthorn
to come back to the original host and mutation is high for both populations. The comparisons of
host switch events were significant except for three comparisons where mutation was set as high.
When "j" and "s" are significantly different, the population of CmA shows higher values except for
5 combinations. These results suggest that a two times higher net reproduction rate drives a higher
probability of successful host switch for CmA over time, masking the contribution of a two times
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Table 3: Difference between the average values of three estimated quantities (total number of dispers-
ing events j, total number of successful host switches s, phenotype distance d) calculated from 200
simulations for each of the 16 independent combinations of two Cacopsylla melanoneura populations, C.
melanoneura on Apple and C. melanoneura on Hawthorn. Fixed parameters from real data were: net
reproduction rate, b = 2.196, probability of migration, mig = 0.37, and survival probability sigma = 3.68
for C. melanoneura from apple and b = 1.022; mig = 0.49 and sigma = 7 for C. melanoneura on hawthorn.
Arbitrary variation for two parameters: sd, standard deviation of mutation Low = 0.2 (default value)
or High = 9; jump_back, possibility to jump back to the old Resource No (default value) or Yes. Not
significant p-values are shown in gray. or significant differences, the combination of the species with a
higher value for the estimated quantities is shown in red.

C. melanoneura Apple
(sd x jump_back)

C. melanoneura Hawthorn
(sd x jump_back) j s d

Low x No Low x No <0.001 <0.001 >0.05
Low x No High x No <0.001 <0.001 >0.05
Low x No Low x Yes <0.001 <0.001 >0.05
Low x No High x Yes <0.001 <0.001 <0.01
High x No Low x No <0.01 <0.001 <0.01
High x No High x No <0.01 >0.05 >0.05
High x No Low x Yes <0.001 <0.001 <0.001
High x No High x Yes >0.05 <0.001 >0.05
Low x Yes Low x No <0.001 <0.001 >0.05
Low x Yes High x No <0.001 <0.001 >0.05
Low x Yes Low x Yes <0.001 <0.001 >0.05
Low x Yes High x Yes <0.001 <0.001 <0.01
High x Yes Low x No <0.001 <0.001 >0.05
High x Yes High x No <0.001 >0.05 >0.05
High x Yes Low x Yes <0.001 <0.001 <0.01
High x Yes High x Yes <0.001 >0.05 >0.05

Figure 3: Comparisons between the three simulated quantities (A- total number of dispersing events j,
B- total number of successful host switches s, and C- phenotype distance d) calculated for populations
of Cacopsylla melanoneura (C. melan.) colonizing apple trees and for populations of C. melanoneura
colonizing hawthorn. The populations are characterized by a low mutation value and no possibility to
jump back to the original Resource. The simulated quantities are calculated using the simHostSwitch
function. The quantity d is defined as the difference between the phenotype of current and new
Resource for generations where a successful host switch occurs. Each box plot depicts the distribution
of the simulated quantities. For plot A and B, N represents the number of simulations (200). For plot
C, N represents the total number of successful host switches calculated for 200 simulations.
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higher value of the standard deviation of survival. As far as the distance between current and novel
Resources is concerned, 11 out of 16 combinations showed a non-significant difference, but no specific
pattern has been revealed.

Sarbecovirus spp. and Merbacovirus sp. (SARS-MERS) - Mammals (zoonotic pathogens)

The Severe Acute Respiratory Syndrome - Corona Virus (SARS-CoV) is a virus in the family Coronaviri-
dae causing respiratory disease and was first identified in humans at the end of February 2003 in China.
The Middle East Respiratory Syndrome - Corona Virus (MERS- CoV) (Coronaviridae, Merbacovirus sp.)
was first isolated from humans in 2012 in Saudi Arabia. Lately, a SARS-like coronavirus (SARS-CoV-2,
Sarbecovirus spp.) causing severe acute respiratory infections was first identified in December 2019 in
Wuhan (China). The emergence of these viruses in humans appears to have been driven by stepping-
stone switches (Parrish et al., 2008; Rodriguez-Morales et al., 2020), from bats to camels to humans,
in the case of MERS-CoV and from bats to pangolins (among the others) to humans, in the case of
SARS-CoV-2. As for many other human pathogens, to anticipate the emergence of future outbreaks
is critical for appropriate measures to mitigate the consequences and costs associated with epidemic
events.

The usage scenario presented here offers an opportunity to apply our model to the biological
association between viruses and their mammalian hosts. For this specific example we used the data
provided by Kim et al. (2021) on viral dynamics of SARS-CoV-2, SARS-CoV, and MERS-CoV in humans.
In particular we selected the two coronaviruses SARS-CoV-2 (hereafter Sars) and MERS-CoV (Mers),
and two estimated population parameters: Maximum rate constant for viral replication and critical
inhibition level (see Table 1 in Kim et al. (2021)), in our model corresponding to net reproduction rate
(b, 4 for Sars and 1.46 for Mers) and standard deviation for survival (sigma, 0.77 for Sars and 0.38
for Mers), respectively. The parameter sigma was multiplied by 10 to be adjusted to the argument
requirement of the model. Suppose we are interested in simulating host switch events of Sars and Mers
among closely related mammalian hosts. We may test the hypothesis that higher net reproduction
rate in combination with higher standard deviation of survival (i.e. lower selection on the Resource)
significantly increases the number of dispersion events and successful colonization of new hosts
(number of host switches). For each virus, the simulation was run with 200 generations, K=1000
(carrying capacity not being a limiting factor), and 1000 runs. The parameter sd (standard deviation
for mutation) was set at 0.002 for both viruses and was derived by the values of the substitution rate
(per site per year) provided in Table 1 of van Dorp et al. (2020). The parameters pRes_min, pRes_max
and mig (migration) are not available in the literature and the default values were used. The combined
effect of the net reproduction rate and survival probability on the simulated quantities was tested,
along with the assumption that both parameters do not vary from the current to the novel Resource
across generations. In this example, we also tested the influence of low (0.01), medium (0.5) and high
(0.09) values of migration probability. The possibility to jump back to the original host (jump_back)
was set to "no" assuming that the virus is not able to come back from a new non-human mammal to
human within the same generation (Table 4).

The code chunk "Scenario 3: Sarbecovirus sp. and Merbacovirus sp. (SARS-MERS)-Mammals
(zoonotic pathogens)" (supplementary file) was used to test the difference between the average values
of simulated quantities (vj, s, and d) for each combination of the two viruses. The null hypothesis
is that the pairwise difference between the two average values is equal. The p-values for all the 9
combinations are reported in (Table 4). The code chunk "Plot for SarsMers" generates three plots for
each of the tested quantities and in Figure 4 an example for the first combination is reported.

The results in Table 4 and Figure 4 show that the differences in the average number of dispersion
and host switch events between Sars and Mers are significant for all the simulations. The population of
Sars shows higher values of the estimated quantities, except when Mers has high migration probability
and Sars has low migration probability. This means that a combination of higher net reproduction rate
and lower selection on the resource (both current and novel) drives to a higher probability of successful
host switches over time. As far as the distance between current and novel resources is concerned,
only 3 out of 9 combinations showed a non-significant difference, and for all these Mers has a high
migration. In comparing the data from these coronaviruses, our purpose was merely academic and
we did not mean to provide any evidence for the emergence of re-emergence of the present pandemic
SARS-CoV-2 virus. Nevertheless, modeling support may certainly be of value when informed with
detailed real data collected to address specific research questions.
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Table 4: Difference between the average values of three estimated quantities (total number of dispers-
ing events j, total number of successful host switches s, phenotype distance d) calculated from 200
simulations for each of the 16 independent combinations of the two coronaviruses, Sars (Sarbecovirus
sp.) and Mers (Merbacovirus sp.). Fixed parameters from real data were: net reproduction rate b = 4,
standard deviation of survival sigma = 7.7, and standard deviation of mutation sd = 0.002 for Sars and
b = 1.46; sigma = 0.38 and sd = 0.002 for Mers. Arbitrary variation for mig, probability of migration
was set, Low = 0.01 (default value), Medium = 0.5 or High = 0.9. Not significant p-values are shown in
gray. For significant differences, the combination of the species with a higher value for the estimated
quantities is shown in red.

Sars
(mig)

Mers
(mig) j s d

Low Low <0.001 <0.001 <0.001
Medium Low <0.001 <0.001 <0.001

High Low <0.001 <0.001 <0.001
Low Medium <0.001 <0.001 <0.001

Medium Medium <0.001 <0.001 <0.001
High Medium <0.001 <0.001 <0.001
Low High <0.001 <0.001 >0.005

Medium High <0.001 <0.001 >0.005
High High <0.001 <0.001 >0.005

Figure 4: Comparisons between the three simulated quantities (A- total number of dispersing events j,
B- total number of successful host switches s, and C- phenotype distance d) calculated for populations
of Sarbecovirus spp. and Merbacovirus sp. The populations are characterized by a low probability
of migration value. The simulated quantities are calculated using the simHostSwitch function. The
quantity d is defined as the difference between the phenotype of current and new Resource for
generations where a successful host switch occurs. Each box plot depicts the distribution of the
simulated quantities. For plot A and B, N represents the number of simulations (200). For plot C, N
represents the total number of successful host switches calculated for 200 simulations.
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5 Conclusion and future avenues

This paper introduces the R package HostSwitch that provides functions to simulate, plot and test the
number of dispersion and host switch events of a Consumer. It also measures phenotype distance
between a current and novel Resource in the case of a successful host switch. HostSwitch is based on
an earlier model published in FORTRAN (Araujo et al., 2015). The presented R-package offers several
additional functions which largely improve the previous mock-up model, and accommodates users
who want to simulate the ecological event of host-switching by using real parameters collected from
different types of symbiotic biological associations. For example, the HostSwitch package can be used
to test the hypothesis that host-switching happens more often than expected by chance.

The HostSwitch package was tested on real ecological Consumer-Resource interactions using
data from the literature. We are aware that the examples provided above have several limitations,
e.g., most of the arguments to inform the model were not available in the literature and the default
values have been used. The reliability of the simulation on empirical data depends on the quality
of the parameters used to inform the model and on their ecological significance. Users are therefore
encouraged to set up specific experiments to collect parameters from a "host-switch perspective".
The HostSwitch package will also continue to provide a theoretical foundation for understanding
the specific processes that drive host switch events. Lastly, it represents a valuable user-friendly
educational tool to facilitate deeper understanding of ecological and evolutionary dynamics. As a
future avenue, we plan to extend the package to allow for the modeling of microbe-mediated tritrophic
interactions such as occur in associations between pathogens, vectors and alternate hosts, e.g. in the
phytoplasma pathosystem consisting of an insect vector, crop plants, and a pathogen that is able to
manipulate its vector (Consumer) and host (Resource).

Albeit, the present package is intended for researchers in the broad field of biology who study
consumer-host associations, we encourage users from other research areas to evaluate if the flowchart
presented in Figure 1 may fit and be co-opted by other biological phenomena.
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OTrecod: An R Package for Data Fusion
using Optimal Transportation Theory
by Gregory Guernec, Valerie Gares, Jeremy Omer, Philippe Saint-Pierre, and Nicolas Savy

Abstract The advances of information technologies often confront users with a large amount of
data which is essential to integrate easily. In this context, creating a single database from multiple
separate data sources can appear as an attractive but complex issue when same information of interest
is stored in at least two distinct encodings. In this situation, merging the data sources consists in
finding a common recoding scale to fill the incomplete information in a synthetic database. The
OTrecod package provides R-users two functions dedicated to solve this recoding problem using
optimal transportation theory. Specific arguments of these functions enrich the algorithms by relaxing
distributional constraints or adding a regularization term to make the data fusion more flexible. The
OTrecod package also provides a set of support functions dedicated to the harmonization of separate
data sources, the handling of incomplete information and the selection of matching variables. This
paper gives all the keys to quickly understand and master the original algorithms implemented in the
OTrecod package, assisting step by step the user in its data fusion project.

1 Introduction

The large amount of data produced by information technology requires flexible tools to facilitate its
handling. Among them, the field of data fusion (Hall and Llinas 1997; Klein 2004; Castanedo 2013)
also known as statistical matching (Adamek 1994; D’Orazio, Di Zio, and Scanu 2006; Vantaggi 2008)
aims to integrate the overall information from multiple data sources for a better understanding of the
phenomena that interact in the population.

Assuming that two heterogeneous databases A and B share a set of common variables X while an
information of interest is encoded in two distinct scales respectively: Y in A and Z in B. If Y and Z are
never jointly observed, a basic data fusion objective consists in the recoding of Y in the same scale of Z
(or conversely), to allow the fusion between the databases as illustrated in Table 1.
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Table 1: This package provides algorithms for merging two databases A and B where two variables of
interest, Y and Z, are never jointly observed: the final result is a unique and synthetic database where
Y and Z are fully completed.

Providing a solution to this recoding problem is often very attractive because it aims at giving
access to more accurate and consistent information with no additional costs in a unique and bigger
database. Despite this, if we exclude all R data integration packages applied in the context of genetic
area like the MultiDataSet package (Hernandez-Ferrer et al. 2017), OMICsPCA package (Das and
Tripathy 2022), or the mixOmics package (F et al. 2017) which are often only effective for quantitative
data integration. To our knowledge, the StatMatch package (D’Orazio 2022) is actually the only one
that provide a concrete solution to the problem using hot deck imputation procedures. The main reason
for this relative deficiency is that this problem is, in fact, often assimilated and solved like a missing
data imputation problem. According to this idea, a very large amount of works and reference books
now exist about the handling of missing data (Zhu, Wang, and Samworth 2019; Little and Rubin 2019).
Moreover, we can enumerate several R packages that we can sort by types of imputation methods
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(Mayer et al. 2019): mice (van Buuren and Groothuis-Oudshoorn 2011) and missForest (Stekhoven and
Bühlmann 2012; Stekhoven 2022) which use conditional models, softImpute (Hastie and Mazumder
2021) and missMDA (Josse and Husson 2016) which apply low-rank based models. For all these
packages, imputation performances can sometimes fluctuate a lot according to the structure and the
proportion of non-response encountered. Regressions and non parametric imputation approaches
(like hot-deck methods from donor based family) seem to use partially, or not at all, the available
information of the two databases to provide the individual predictions. Contrary to our approach, all
these methods only use the set of shared variables X for the prediction of Z in A (or conversely Y in B)
without really taking into account Y and its interrelations with X in their process of predictions.

The purpose of this paper is to present a new package to the R community called OTrecod which
provides a simple and intuitive access to two original algorithms (Garès et al. 2020; Garès and Omer
2022) dedicated to solve these recoding problems in the data fusion context by considering them as
applications of Optimal Transportation theory (OT). In fact, this theory was already applied in many
areas: for example, the transport package (Schuhmacher et al. 2022) solves optimal transport problems
in the field of image processing. A specific package called POT: Python Optimal Transport (Flamary
et al. 2021) also exists in the Python software (Van Rossum and Drake Jr 1995) to solve optimization
problems using optimal transportation theory in the fields of signal theory, image processing and
domain adaptation. Nevertheless, all these available tools were still not really adapted to our recoding
problem and the performances established by OT-based approaches to predict missing information
compared to more standard processes (Garès et al. 2020; Garès and Omer 2022; Muzellec et al. 2020)
have finished to confirm our decision.

In OTrecod the first provided algorithm, called OUTCOME and integrated in the OT_outcome function
consists in finding a map that pushes the distribution of Y forward to the distribution of Z (Garès
et al. 2020) while the second one, called JOINT and integrated in the OT_joint function, pushes
the distribution of (Y,X) forward to the distribution of (Z,X). Consequently, by building, these two
algorithms take advantage of all the potential relationships between Y, Z, and X for the prediction of
the incomplete information of Y and/or Z in A and B. Enrichments related to these algorithms and
described in (Garès and Omer 2022; Cuturi 2013) are also available via the optional arguments of
these two functions. In its current version, these algorithms are accompanied by original preparation
(merge_dbs, select_pred) and validation (verif_OT) functions which are key steps of any standard
statistical matching project and can be used independently of the OUTCOME and JOINT algorithms.

2 Solving recoding problems using optimal transportation theory

The optimal transportation problem

The optimal transportation (OT) problem was originally stated by Monge (1781) and consists in
finding the cheapest way to transport a pile of sand to fill a hole. Formally the problem writes as
follows.

Consider two (Radon) spaces X and Y, µX a probability measure on X, and µY a probability
measure on Y and c a Borel-measurable function from X × Y to [0, ∞]. The Kantorovich’s formulation
of the optimal transportation problem (Kantorovich 1942) consists in finding a measure γ ∈ Γ(µX , µY)
that realizes the infimum:

inf
{ ∫

X×Y
c(x, y)dγ(x, y)

∣∣∣∣ γ ∈ Γ(µX , µY)

}
, (1)

where Γ(µX , µY) is the set of measures on X × Y with marginals µX on X and µY on Y.

This theory is applied here to solve a recoding problem of missing distributions in a data fusion
area. To do so, we make use of Kantovorich’s formulation adapted to the discrete case, known as
Hitchcock’s problem (Hitchcock 1941). Therefore, by construction, the proposed algorithms are usable
for specific target variables only: categorical variables, ordinal or nominal, and discrete variables with
finite number of values.

Optimal transportation of outcomes applied to data recoding

Let A and B be two databases corresponding to two independent sets of subjects. We assume
without loss of generality that the two databases have equal sizes, so that they can be written as
A = {i1, . . . , in} and B = {j1, . . . , jn}. Let

(
(Xi, Yi, Zi)

)
i∈A and

(
(Xj, Yj, Zj)

)
j∈B be two sequences of

i.i.d. discrete random variables with values in X × Y × Z , where X is a finite subset of RP, and
Y and Z are finite subsets of R. Variables (Xi, Yi, Zi), i ∈ A, are i.i.d copies of (XA, YA, ZA) and
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(Xj, Yj, Zj), j ∈ B, are i.i.d copies of (XB, YB, ZB). Moreover assume that
{
(Xi, Yi, Zi), i ∈ A

}
are

independent of
{
(Xj, Yj, Zj), j ∈ B

}
. The first version using the optimal transportation algorithm

approach, described in (Garès et al. 2020), assumes that:

Assumption 1. YA and ZA respectively follow the same distribution as YB and ZB.

Assumption 2. For all x ∈ X the probability distributions of YA and ZA given that XA = x are
respectively equal to those of YB and ZB given that XB = x.

In this setting, the aim is to solve the recoding problem given by equation (1) that pushes µYA

forward to µZA
. The variable γ of (1) is a discrete measure with marginals µYA

and µZA
, represented

by a |Y| × |Z| matrix. The cost function denoted as c is a |Y| × |Z| matrix, (cy,z)y∈Y ,z∈Z . The goal is
in the identification of:

γ∗ ∈ argmin
γ∈R

|Y|×|Z|
+

{
⟨γ , c⟩ : γ1|Z| = µYA

, γT1|Y| = µZA
}

, (2)

where ⟨· , ·⟩ is the dot product, 1 is a vector of ones with appropriate dimension and MT is the
transpose of matrix M. The cost function considered by Garès et al. (2020), cy,z, measures the average
distance between the profiles of shared variables of A satisfying Y = y and subjects of B satisfying
Z = z, that is:

cy,z = E
[
d(XA, XB) | YA = y, ZB = z

]
, (3)

where d is a given distance function to choose on X ×X .

In fact, the above situation cannot be solved in reality, since the distributions of XA, XB, YA and
ZA are never jointly observed. As a consequence, the following unbiased empirical estimators are
used: µ̂XA

n of µXA
and µ̂XB

n of µXB
. Because Y and Z are only available in A and B respectively, two

distinct empirical estimators have to be defined:

µ̂YA

n,y =
1
n ∑

i∈A
1{Yi=y}, ∀y ∈ Y ,

µ̂ZA

n,z =
1
n ∑

j∈B
1{Zj=z}, ∀z ∈ Z ,

(4)

where 1{Y=y} = 1 if Y = y and 0 otherwise. The assumption 1 gives: µZA
= µZB

from which we

can conclude that µ̂ZB

n,z = µ̂ZA

n,z . Finally, denoting:

κn,y,z ≡ ∑
i∈A

∑
j∈B

1{Yi=y,Zj=z},

the number of pairs (i, j) ∈ A × B such that Yi = y and Zj = z, the cost matrix c is estimated by:

ĉn,y,z =

{
1

κn,y,z
∑i∈A ∑j∈B 1{Yi=y,Zj=z} × d(Xi, Xj), ∀y ∈ Y , z ∈ Z : κn,y,z ̸= 0,

0, ∀y ∈ Y , z ∈ Z : κn,y,z = 0.
(5)

Plugging the values observed for these estimators in (2) yields to a linear programming model
denoted:

P̂0
n :



min < ĉn, γ >

s.t. ∑
z∈Z

γy,z = µYA

n,y, ∀y ∈ Y ,

∑
y∈Y

γy,z = µZA

n,z , ∀z ∈ Z ,

γy,z ≥ 0, ∀y ∈ Y , ∀z ∈ Z .

(6)

The solution γ̂n can then be interpreted as an estimator µ̂
(YA ,ZA)
n of the joint distribution of YA and

ZA, µ(YA ,ZA). If this estimate is necessary, it is nevertheless insufficient here to provide the individual
predictions on Z in A. These predictions are done in a second step using a nearest neighbor algorithm
from which we deduce an estimation of µZA |XA=x,YA=y (see Garès and Omer (2022) for details). In the
remainder, the overall algorithm described in this section is referred to as OUTCOME. To improve the few
drawbacks of this algorithm described in Garès et al. (2020), derived algorithms from OUTCOME have
been developed (Garès and Omer 2022) and described in the following part.
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Optimal transportation of outcomes and covariates

Using the same notations, Garès et al. (2020) propose to search for an optimal transportation map
between the two joint distributions of (XA, YA) and (XA, ZA) with marginals µ(XA ,YA) and µ(XA ,ZA)

respectively. Under Kantorovich’s formulation in a discrete setting, they search for:

γ∗ ∈ argminγ∈D < c, γ >,

where c is a given cost matrix and D is the set of joint distributions with marginals µ(XA ,YA) and
µ(XA ,ZA). It is natural to see any element γ ∈ D as the vector of joint probabilities P((XA = x, YA =
y), (XA = x′, ZA = z)) for any x, x′ ∈ X 2, y ∈ Y and z ∈ Z . Since this probability nullifies for all
x ̸= x′, γ ∈ D is defined as a vector of R|X|×|Y|×|Z|, where γx,y,z stands for an estimation of the joint
probability P(XA = x, YA = y, ZA = z). These notations lead to the more detailed model:

P :



min < c, γ >

s.t. ∑
z∈Z

γx,y,z = µ
(XA ,YA)
x,y , ∀x ∈ X , ∀y ∈ Y ,

∑
y∈Y

γx,y,z = µ
(XA ,ZA)
x,z , ∀x ∈ X , ∀z ∈ Z ,

γx,y,z ≥ 0, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z .

(7)

The above algorithm can be solved only if the marginals µ(XA ,YA) and µ(XA ,ZA) are known, but,
based on assumption 2, unbiased estimators µ̂XA ,YA

n and µ̂XA ,ZA

n can be built according to the previous
subsection. For the first one it gives:

µ̂XA ,YA

n =
1
n ∑

i∈A
1{Yi=y,Xi=x}, ∀x ∈ X , ∀y ∈ Y . (8)

The cost matrix introduced in the OUTCOME algorithm is used (3) and estimated by (5). Formally we
can write:

cx,y,z = cy,z, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z , (9)

which does not depend on the value of x.

Plugging the values observed for these estimators in (7) yield a linear programming model denoted
as P̂n. In contrast to OUTCOME, the algorithm that consists in solving P̂n to solve the recoding problem
is referred to as JOINT in what follows.

An estimation of the distribution of ZA given the values of XA and YA is then given by:

µ̃
ZA |XA=x,YA=y
n,z =


γ̂n,x,y,z

µ̂
(XA ,YA)
n,x,y

, ∀x ∈ X , y ∈ Y , z ∈ Z : µ̂
(XA ,YA)
n,x,y ̸= 0,

0, ∀x ∈ X , y ∈ Y , z ∈ Z : µ̂
(XA ,YA)
n,x,y = 0.

(10)

and an individual prediction of ZA is then deduced using the maximum a posterior rule:

ẑA
i = argmaxz∈Z µ̃

ZA |XA=xi ,YA=yi
n,z .

Due to potential errors in the estimations of P , the constraints of P̂n may derive from the true
values of the marginals of µ(XA ,YA ,ZA). To deal with this situation, small violations of the constraints of
P̂n are allowed by enriching the initial algorithm as described in Garès and Omer (2022).

The equality constraints of P̂n are then relaxed as follows:
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∑
z∈Z

γx,y,z = µ̂
(XA ,YA)
n,x,y + eX,Y

x,y , ∀x ∈ X , ∀y ∈ Y (11)

∑
y∈Y

γx,y,z = µ̃
(XA ,ZA)
n,x,z + eX,Z

x,z , ∀x ∈ X , ∀z ∈ Z (12)

∑
x∈X ,y∈Y

eX,Y
x,y = 0, ∑

x∈X ,z∈Z
eX,Z

x,z = 0 (13)

− eX,Y,+
x,y ≤ eX,Y

x,y ≤ eX,Y,+
x,y , ∀x ∈ X , ∀y ∈ Y (14)

− eX,Z,+
x,z ≤ eX,Z

x,z ≤ eX,Z,+
x,z , ∀x ∈ X , ∀z ∈ Z (15)

∑
x∈X ,y∈Y

eX,Y,+
x,y ≤ αn, ∑

x∈X ,z∈Z
eX,Z,+

x,z ≤ αn. (16)

This relaxation is possible by introducing extra-variables eX,Y,+ and eX,Z,+ as additional constraints
(14)–(15). Garès and Omer (2022) suggests to consider αn := α√

n from (16), with a parameter α to
calibrate numerically but proposes also a default value fixed to 0.4.

A regularization term λ given by (
πx,y,z

µ̂XA
n,x

)x∈X ,y∈Y ,z∈Z can also be added to improve regularity in the

variations of the conditional distribution µYA ,ZA |XA=x with respect to x. The corresponding regularized
algorithm is:

P̂R
n :



min < ĉn, γ > +λ ∑
(xi ,xj)∈EX

wi,j ∑
y∈Y ,z∈Z

r+i,j,y,z

s.t. constraints (11)–(16)
γxi ,y,z

µ̂XA
n,xi

−
γxj ,y,z

µ̂XA
n,xj

≤ r+i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y , z ∈ Z

γxi ,y,z

µ̂XA
n,xi

−
γxj ,y,z

µ̂XA
n,xj

≥ −r+i,j,y,z, ∀{xi, xj} ∈ EX , y ∈ Y , z ∈ Z

γx,y,z ≥ 0, ∀x ∈ X , ∀y ∈ Y , ∀z ∈ Z .

(17)

The constant λ ∈ R+ is a regularization parameter to be calibrated numerically (0.1 can be
considered as default value) and EX ⊂ X 2 includes the pairs of elements of X defined as neighbors:{

xi, xj

}
∈ EX if xj is among the k nearest neighbors of xi for some parameter k ≥ 1. The method that

computes a solution to the recoding problem with regularization and relaxation is called R-JOINT.

In a same way, a relaxation of the assumption 1 is also proposed and added to the OUTCOME
algorithm: this resulting method is denoted R-OUTCOME and is related to the following program:

P̂0−R
n :



min < ĉn, γ >

∑
z∈Z

γy,z = µ̂YA

n,y + eY
y , ∀y ∈ Y

∑
y∈Y

γy,z = µ̃ZA

n,z + eZ
z , ∀z ∈ Z

∑
y∈Y

eY
y = 0, ∑

z∈Z
eZ

z = 0

− eY,+
y ≤ eY

y ≤ eY,+
y , ∀y ∈ Y

− eZ,+
z ≤ eZ

z ≤ eZ,+
z , ∀z ∈ Z

∑
y∈Y

eY,+
y ≤ αn, ∑

z∈Z
eZ,+

z ≤ αn

γy,z ≥ 0, ∀y ∈ Y , ∀z ∈ Z .

(18)

Note that algorithms JOINT and R-JOINT do not require assumption 1. The relaxation in R-OUTCOME
alleviates its dependence to the satisfaction of this assumption. However, algorithms JOINT and
R-JOINT require that X is a set of discrete variables (factors ordered or not are obviously allowed)
while the absence of X in the linear algorithms OUTCOME and R-OUTCOME allow X to be a set of discrete
and/or continuous variables. In this case, the nature of the variables X need to be considered when
choosing the distance d.
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3 Package installation and description

Installation

The OTrecod package can be installed from the Comprehensive R Archive Network (CRAN) by using
the following template:

install.packages("OTrecod")

The development version of OTrecod is also available and can be directly installed from GitHub by
loading the devtools (Wickham et al. 2022) package (R> install_github("otrecoding/OTrecod")).

Main functions

The two types of optimal transportation algorithms previously introduced (OUTCOME and JOINT) and
their respective enrichments (R-OUTCOME and R-JOINT) are available in the OTrecod package via
two core functions denoted OT_outcome and OT_joint. Details about their implementations in R
are described in the following section. In this package, these algorithms of recoding are seen as
fundamental steps of data fusion projects that also require often adapted preparation and validation
functions. In this way, the Table 2 introduces the main functions proposed by OTrecod to handle a
data fusion project.

R Function Description
Pre-process functions
merge_dbs Harmonization of the data sources
select_pred Selection of matching variables
Functions of data fusion
OT_outcome Data fusion with OT theory using the OUTCOME or

R-OUTCOME algorithms.
OT_joint Data fusion with OT theory using the JOINT or

R-JOINT algorithms.
Post-process function
verif_OT Quality assessment of the data fusion

Table 2: A brief description of the main functions of OTrecod

All the intermediate functions integrated in the OT_outcome and OT_joint functions (proxim_dist,
avg_dist_closest, indiv_grp_closest, indiv_grp_optimal), and their related documentations, are
all included and usable separately in the package. They have been kept available for users to ensure a
great flexibility as other interesting functions like power_set that returns the power set of a set. This
function did not exist on R until now and could be of interest for specialists of algebra. These functions
are not described here but detailed in the related pdf manual of the package.

4 Functionalities overview

Expected structure of the input databases as arguments

The functions of recoding OT_outcome and OT_joint require a specific structure of data.frame as input
arguments. Described in Table 3, it must be the result of two overlayed databases made of at least four
variables:

• A first variable, discrete or categorical, corresponding to the database identifier, stored in factor
or not, but with only two classes or levels (for example: A and B, 1 and 2 or otherwise).

• The target variable of the first database (or top database) denoted Y for example, whose values
related to the second database are missing. This variable can be discrete or categorical stored in
factor, ordered factor or not.

• In the same way, the target variable of the second database (or below database) denoted Z for
example, whose values related to the first database are missing.

• At least one shared variable (defined as a variable with the same label and the same encoding in
the two distinct data sources). The type of shared variables can be continuous, categorical stored
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in factor or not, complete or not. Nevertheless, few constraints must be noticed related to this
question. First, in a critical situation where only one shared variable exists, this latter cannot be
incomplete. Second, continuous shared variables are actually not allowed in the current version
of the function OT_joint, therefore, these variables must be transformed beforehand.

DB Y Z X1 X2 X3
1 (600-800] <NA> M Yes 50
1 (600-800] <NA> M No 32
1 [200-600] <NA> W No 31
2 <NA> G1 M No 47
2 <NA> G3 W Yes 43
2 <NA> G2 W No 23
2 <NA> G4 M Yes 22
2 <NA> G2 W Yes 47

Table 3: Example of expected structure for two databases 1 and 2 with three shared variables X1, X2,
X3

As additional examples, users can also refer to the databases simu_data and tab_test provided in
the package with expected structures. Note that class objects are not expected here as input arguments
of these functions to allow users to freely work with or without the use of the pre-process functions
provided in the package.

Choice of solver

The package OTrecod uses the ROI optimization infrastructure (Theußl, Schwendinger, and Hornik
2017) to solve the optimization problems related to the OUTCOME and JOINT algorithms. The solver
GLPK (The GNU Linear Programming Kit (Makhorin 2011)) is the default solver actually integrated in
the OT_outcome and OT_joint functions for handling linear problems with linear constraints. The ROI
infrastructure makes easy for users to switch solvers for comparisons. In many situations, some of
them can noticeably reduce the running time of the functions.

For example, the solver Clp (Forrest, Nuez, and Lougee-Heimer 2004) for COINT-OR Lin-
ear Programming, known to be particularly convenient in linear and quadratic situations, can be
easily installed by users via the related plug-in available in ROI (searchable with the instruction
ROI_available_solvers()) and following the few instructions detailed in (Theußl, Schwendinger,
and Hornik 2020) or via the dedicated website.

An illustrative example

In California (United States), from 1999 to 2018, the Public Schools Accountability Act (PSAA) imposed
on its California Department of Education (CDE) to provide annually the results of an Academic
Performance Index (API) which established a ranking of the best public schools of the state.

This numeric score, indicator of school’s performance levels, could vary from 200 to 1000 and
the performance objective to reach for each school was 800. Information related to the 418 schools
(identified by cds) of Nevada (County 29) and to the 362 schools of San Benito (County 35), was
respectively collected in two databases, api29 and api35, available in the package. The distributions
of all the variables in the two databases are provided by following the R commands:

library(OTrecod)
data(api29); data(api35)
summary(api29) #--------------------------------------------------

#> cds apicl_2000 stype awards acs.core
#> Length:418 [200-600] : 93 E:300 No : 98 Min. :16.00
#> Class :character (600-800] :180 M: 68 Yes :303 1st Qu.:26.00
#> Mode :character (800-1000]:145 H: 50 NA's: 17 Median :30.00
#> Mean :31.97
#> 3rd Qu.:39.00
#> Max. :50.00
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#> api.stu acs.k3.20 grad.sch ell mobility
#> Min. : 108.0 <=20 :190 0 : 86 [0-10] :153 [0-20] :362
#> 1st Qu.: 336.2 >20 :108 1-10:180 (10-30] : 83 (20-100]: 56
#> Median : 447.5 unknown:120 >10 :152 (30-50] : 60
#> Mean : 577.8 (50-100]: 93
#> 3rd Qu.: 641.5 NA's : 29
#> Max. :2352.0
#> meals full
#> [0-25] :200 1: 85
#> (25-50] : 56 2:333
#> (50-75] :100
#> (75-100]: 62
#>
#>

summary(api35) #--------------------------------------------------

#> cds apicl_1999 stype awards acs.core
#> Length:362 G1:91 E:257 No :111 Min. :16.00
#> Class :character G2:90 M: 67 Yes :237 1st Qu.:25.00
#> Mode :character G3:90 H: 38 NA's: 14 Median :30.00
#> G4:91 Mean :31.81
#> 3rd Qu.:39.00
#> Max. :50.00
#> api.stu acs.k3.20 grad.sch ell mobility
#> Min. : 102.0 <=20 :227 0 : 50 [0-10] :164 1:213
#> 1st Qu.: 363.2 >20 : 30 1-10:241 (10-30] : 99 2:149
#> Median : 460.0 unknown:105 >10 : 71 (30-50] : 64
#> Mean : 577.2 (50-100]: 10
#> 3rd Qu.: 624.0 NA's : 25
#> Max. :2460.0
#> meals full
#> [0-25] : 77 1:244
#> (25-50] : 92 2:118
#> (50-75] :122
#> (75-100]: 71
#>
#>

The two databases seem to share a majority of variables (same labels, same encodings) of different
types, therefore inferential statistics could be ideally considered by combining all the information of
the two databases to study the effects of social factors on the results of the API score in 2000.

Nevertheless, while this target variable called apicl_2000 is correctly stored in the database api29
and encoded as a three levels ordered factors clearly defined: [200-600], (600-800] and (800-1000],
the only information related to the API score in the database api35 is the variable apicl_1999 for the
API score collected in 1999, encoded in four unknown balanced classes (G1, G2, G3 and G4). As no
school is common to the two counties, we easily deduce that these two variables have never been
jointly observed.

By choosing these two variables as outcomes (called also target variables), the objective of the
following examples consists in creating a synthetic database where the missing information related
to the API score in 2000 is fully completed in api35 by illustrating the use of the main functions of
the package.

Harmonization of two datasources using merge_dbs

The function merge_dbs is an optional pre-process function dedicated to data fusion projects that
merges two raw databases by detecting possible discrepancies among the respective sets of variables
from one database to another. The current discrepancy situations detected by the function follow
specific rules described below:

• any variable (other than a target one) whose label (or name) is not common to the two data
sources is automatically excluded. By default, the remaining variables are denoted shared
variables.
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• among the subset of shared variables, any variable stored in a different format (or type) from
one datasource to another will be automatically discarded from the subset previously generated
and its label saved in an output object called REMOVE1.

• among the remaining subset of shared variables, a factor variable (ordered or not) stored with
different levels or number of levels from one data source to another will be automatically
discarded from the subset and its label saved in an output object called REMOVE2.

These situations sometimes require reconciliation actions which are not supported by the actual
version of the merge_dbs function. Therefore, when reconciliation actions are required by the user,
they will have to be treated a posteriori and outside the function.

Applied to our example and according to the introduced rules, the first step of our data fusion
project consists in studying the coherence between the variables of the databases api29 and api35 via
the following R code:

step1 = merge_dbs(DB1 = api29, DB2 = api35,
NAME_Y = "apicl_2000", NAME_Z = "apicl_1999",
row_ID1 = 1, row_ID2 = 1,
ordinal_DB1 = c(2:3, 8:12),
ordinal_DB2 = c(2:3, 8:12))

As entry, the raw databases must be declared separately in the DB1 and DB2 arguments and the
name of the related target variables of each database must be specified via the NAME_Y and NAME_Z for
DB1 and DB2 respectively. In presence of row identifiers, the respective column indexes of each database
must be set in the argument row_ID1 and row_ID2. The arguments ordinal_DB1 and ordinal_DB2 list
the related column indexes of all the variables defined as ordinal in the two databases (including
also the indexes of the target variables if necessary). Here, apicl_2000 is clearly an ordinal variable,
and, by default, we suppose that the unknown encoding related to apicl_1999 is also ordinal: the
corresponding indexes (2 and 3) are so added in these two arguments.

After running, the function informs users that no row was dropped from the databases during the
merging because each target variable is fully completed in the two databases. Nine potential predictors
are kept while only one variable is discarded because of discrepancies between the databases: its
identity is consequently stored in output and informs user about the nature of the problem: the
mobility factor has different levels from one database to the other.

summary(step1)

#> Length Class Mode
#> DB_READY 12 data.frame list
#> ID1_drop 0 -none- character
#> ID2_drop 0 -none- character
#> Y_LEVELS 3 -none- character
#> Z_LEVELS 4 -none- character
#> REMOVE1 0 -none- NULL
#> REMOVE2 1 -none- character
#> REMAINING_VAR 9 -none- character
#> IMPUTE_TYPE 1 -none- character
#> DB1_raw 12 data.frame list
#> DB2_raw 12 data.frame list
#> SEED 1 -none- numeric

step1$REMOVE1 # List of removed variables because of type's problem

#> NULL

step1$REMOVE2 # List of removed factors because of levels' problem

#> [1] "mobility"

levels(api29$mobility) # Verification

#> [1] "[0-20]" "(20-100]"

levels(api29$mobility); levels(api35$mobility)
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#> [1] "[0-20]" "(20-100]"

#> [1] "1" "2"

step1$REMAINING_VAR

#> [1] "acs.core" "acs.k3.20" "api.stu" "awards" "ell" "full"
#> [7] "grad.sch" "meals" "stype"

The function returns a list object and notably DB_READY, a data.frame whose structure corresponds
to the expected structure introduced in the previous subsection: a unique database, here result of the
superimposition of api29 on api35 where the first column (DB) corresponds to the database identifier
(1 for api29 and 2 for api35), the second and third columns (Y, Z respectively) corresponds to the
target variables of the two databases. Missing values are automatically assigned by the function to
the unknown part of each target variable: in Y when the identifier equals to 2, in Z when the identifier
equals to 1. The subset of shared variables whose information is homogeneous between the databases
are now stored from the fourth column to the last one. Their identities are available in the output
object called REMAINING_VAR.

The merge_dbs function can handle incomplete shared variables by using the impute argument.
This option allows to keep the missing information unchanged (the choice by default, and also the case
in this example), to work with complete cases only, to do fast multivariate imputations by chained
equations approach (the function integrates the main functionalities of the mice function of the mice
package), or to impute data using the dimensionality reduction method introduced in the missMDA
package (see the pdf manual for details).

Selection of matching variables using select_pred

In data fusion projects, a selection of shared variables (also called matching variables) appears as
an essential step for two main reasons. First, the proportion of shared variables X between the
two databases can be important (much higher than three variables) and keeping a pointless part of
variability between variables could strongly reduce the quality of the fusion. Second, this selection
greatly influences the quality of the predictions regardless of the matching technique which is chosen
a posteriori (Adamek 1994). The specific context of data fusion is subject to the following constraints:

1. Y, Z and X are never jointly observed in database A or B, so the relationships between Y and X,
and between Z and X must be investigated separately.

2. matching variables need to be good predictors of both target variables (outcomes) Y and Z
(Cohen 1991), in the sense that they explain relevant parts of variability of the targets.

These particularities suppose that the investigations have to be done separately but in the same
manner in both databases. In this way, a predictor which appears at the same time as highly correlated
to Y and Z will be automatically selected for the fusion. On the contrary, predictors whose effects on Y
and Z seem not obvious will be discarded. Additional recommended rules also emerge from literature:

• concerning the subset of variables that would predict only one of the two targets Y or Z,
D’Orazio, Di Zio, and Scanu (2006) suggests a moderate parsimonious selection remaining too
many predictors could complicate the fusion procedure.

• Cibella (2010) and Scanu (2010) suggest to select quality predictors with no error and just a
small amount of missing data.

The function of the package dedicated to this task is select_pred. From the DB_READY database
generated in the previous subsection, studying the outputs related to each database and produced by
the following R commands assist users in selecting the best predictors:

# For the dataset api29 --------------
step2a = select_pred(step1$DB_READY,

Y = "Y", Z = "Z", ID = 1, OUT = "Y",
quanti = c(4,6), nominal = c(1,5,7),
ordinal = c(2,3,8:12), thresh_cat = 0.50,
thresh_num = 0.70, RF_SEED = 3011)

# For the dataset api35 --------------
step2b = select_pred(step1$DB_READY,
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Y = "Y", Z = "Z", ID = 1, OUT = "Z",
quanti = c(4,6), nominal = c(1,5,7),
ordinal = c(2,3,8:12), thresh_cat = 0.50,
thresh_num = 0.70, RF_SEED = 3011)

The quanti, nominal, and ordinal arguments requires vectors of column indexes related to the
type of each variable of the input database. The ID argument specifies the column index of the database
identifier. Y and Z expected the respective names of the target variables while OUT provides the target
variable to predict (Y or Z).

To detect the subset of best predictors, select_pred studies the standard pairwise associations
between each shared variable and the outcomes Y and Z, taken separately (by only varying the
argument OUT), according to its type: for numeric and/or ordered factor variables, select_pred
calculates the associations using rank correlation coefficients (Spearman) while the Cramer’s V criterion
(Bergsma 2013) is used for categorical variables and not ordered factors. The related ranking tables of
top scoring predictors are available in two distinct output objects: cor_OUTC_num and cor_OUTC_cat.
In our example, the corresponding results, for each database, are:

### ASSOCIATIONS BETWEEN TARGET VARIABLES AND SHARED VARIABLES

## Results for the api29 dataset -----

step2a$cor_OUTC_num # Y versus numeric or ordinal predictors

#> name1 name2 RANK_COR pv_COR_test N
#> 7 Y meals -0.8030 0.0000 418
#> 4 Y ell -0.7514 0.0000 389
#> 5 Y full 0.3919 0.0000 418
#> 6 Y grad.sch 0.3346 0.0000 418
#> 3 Y api.stu -0.1520 0.0018 418
#> 8 Y stype -0.1520 0.0018 418
#> 2 Y acs.core -0.0556 0.2566 418

step2a$vcrm_OUTC_cat # Y versus nominal or ordinal predictors

#> name1 name2 V_Cramer CorrV_Cramer N
#> 7 Y meals 0.6871 0.6835 418
#> 4 Y ell 0.6015 0.5966 389
#> 5 Y full 0.4508 0.4459 418
#> 6 Y grad.sch 0.3869 0.3816 418
#> 3 Y awards 0.2188 0.2073 401
#> 2 Y acs.k3.20 0.1514 0.1349 418
#> 8 Y stype 0.1370 0.1185 418

## Results for the api35 dataset -----

step2b$cor_OUTC_num # Z versus numeric or ordinal predictors

#> name1 name2 RANK_COR pv_COR_test N
#> 4 Z ell -0.7511 0.0000 337
#> 7 Z meals -0.7291 0.0000 362
#> 6 Z grad.sch 0.6229 0.0000 362
#> 5 Z full 0.3997 0.0000 362
#> 3 Z api.stu -0.0563 0.2851 362
#> 8 Z stype 0.0359 0.4959 362
#> 2 Z acs.core 0.0119 0.8219 362

step2b$vcrm_OUTC_cat # Z versus nominal or ordinal predictors

#> name1 name2 V_Cramer CorrV_Cramer N
#> 7 Z meals 0.5181 0.5121 362
#> 6 Z grad.sch 0.5131 0.5063 362
#> 4 Z ell 0.4775 0.4701 337
#> 5 Z full 0.4033 0.3934 362
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#> 3 Z awards 0.2040 0.1818 348
#> 8 Z stype 0.1320 0.0957 362
#> 2 Z acs.k3.20 0.1223 0.0817 362

The two first tables related to api29 highlights the strong associations between Y and the variables
meals, ell, full and grad.sch in this order of importance, while the summary tables related to api35
highlights the strong associations between Z and the variables meals, grad.sch, ell and full.

It is often not unusual to observe that one or more predictors are in fact linear combinations of
others. In supervised learning areas, these risks of collinearity increase with the number of predictors,
and must be detected beforehand to keep only the most parsimonious subset of predictors for fusion.
To avoid collinearity situations, the result of a Farrar and Glauber (FG) test is provided (Farrar and
Glauber 1967). This test is based on the determinant of the rank correlation matrix of the shared
variables D (Spearman) and the corresponding test statistic is given by:

SFG = −
(

n − 1 − 1
6
(2k + 5)× ln(det(D))

)
where n is the number of rows and k is the number of covariates. The null hypothesis supposes that

SFG follows a chi square distribution with k(k − 1)/2 degrees of freedom, and its acceptation indicates
an absence of collinearity. In presence of a large number of numeric covariates and/or ordered factors,
the approximate Farrar-Glauber test, based on the normal approximation of the null distribution (Kotz,
Balakrishnan, and Johnson 2000) can be more adapted and the statistic test becomes:

√
2SFG −

√
2k − 1

Users will note that these two tests can often appear highly sensitive in the sense that they tend to
easily conclude in favor of multicollinearity. Thus, it is suggested to consider these results as indicators
of collinearity between predictors rather than an essential condition of acceptability. The results related
to this test are stored in the FG_test object of the select_pred output.

In presence of collinearity, select_pred tests the pairwise associations between all the potential
predictors according to their types (Spearman or Cramér’s V). The thres_num argument fixed the
threshold beyond which two ranked predictors are considered as redundant while thres_cat fixed the
threshold of acceptability for the Cramér’s V criterion in the subgroup of factors. In output, the results
stored in the collinear_PB object permit to identify the corresponding variables. In our example, we
observe:

### DETECTION OF REDUNDANT PREDICTORS

## Results for the api29 dataset -----

## Results of the Farrar-Glauber test
step2a$FG_test

#> DET_X pv_FG_test pv_FG_test_appr
#> 0.04913067 0.00000000 0.00000000

## Identity of the redundant predictors

step2a$collinear_PB

#> $VCRAM
#> name1 name2 V_Cramer CorrV_Cramer N
#> 71 acs.k3.20 stype 0.6988 0.6971 418
#> 43 ell meals 0.6696 0.6664 389
#> 34 full meals 0.5215 0.5152 418
#>
#> $SPEARM
#> name1 name2 RANK_COR pv_COR_test N
#> 43 ell meals 0.9047 0 389
#> 62 api.stu stype 0.7069 0 418

#### Results for the api35 dataset -----

step2b$FG_test # Significant result
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#> DET_X pv_FG_test pv_FG_test_appr
#> 0.1479339 0.0000000 0.0000000

step2b$collinear_PB

#> $VCRAM
#> name1 name2 V_Cramer CorrV_Cramer N
#> 71 acs.k3.20 stype 0.6977 0.6957 362
#>
#> $SPEARM
#> [1] name1 name2 RANK_COR pv_COR_test N
#> <0 rows> (or 0-length row.names)

The FG test warns the user against the risks of collinearity between predictors, and the function
notably detects strong collinearities between the variables meals, ell, full in the api29 (less strong
trends in api35): an information that have to be taken into account during the selection. The part
of predictors finally kept for the data fusion must be small to improve its quality. When the initial
number of shared variables is not too important as in this example, choosing the best candidates
between groups of redundant predictors can be made manually by selecting highest ranked predictors
in the summary tables previously described. In this way, the variable meals could be preferred to ell,
and full, while the variable stype could be dropped. Consequently, a possible final list of predictors
could be only composed of the variables meals and grad.sch.

When the number of predictors is important, or when users prefer that an automatic process
performs the variable selection, a random forest procedure can also be used via the select_pred
function. Random forest approaches (Leo Breiman 2001) are here particularly convenient (Grajski et al.
1986) for multiple reasons: it works fine when the number of variables exceeds the number of rows,
whatever the types of covariates, it allows to deal with non linearity, to consider correlated predictors,
ordered or not ordered outcomes and to rank good candidate predictors through an inbuilt criterion:
the variable importance measure.

In few words, random forest processes aggregates many CART models (L. Breiman et al. 1984)
with RF_ntree bootstrap samples from the raw data source and averaging accuracies from each
model permits to reduce the related variances and also the errors of prediction. A standard random
forest process provides two distinct measures of importance of each variable for the prediction of the
outcome, the Gini importance criterion and the permutation importance criterion, which depends
on the appearance frequency of the predictor but also on its place taken up in each tree. For more
details about random forest theory, user can consult Leo Breiman (2001) and/or the pdf manual of the
randomForest (Liaw and Wiener 2002) package.

Strobl, Hothorn, and Zeileis (2009) suggests that the permutation importance criterion, which
works with permuted samples (subsampling without replacements) instead of bootstrap ones, is
particularly convenient with uncorrelated predictors, but must be replaced by a conditional permu-
tation measurement in presence of strong correlations. select_pred provides these assessments by
integrating the main functionalities of the cforest and varimp functions of the package party(Hothorn,
Hornik, and Zeileis 2006; Zeileis and Hothorn 2008; Hothorn et al. 2005; Strobl et al. 2007, 2008).
However, these measurements must be used with caution, by accounting the following constraints:

• the Gini importance criterion can produce bias in favor of continuous variables and variables
with many categories. This criterion is thus not available in the function.

• the permutation importance criterion can overestimate the importance of highly correlated
predictors and therefore redundant predictors will be discarded beforehand using the first steps
of the process integrated in the function.

Possible scenarios Correlation
between

predictors

State of the
RF_condi
argument

Incomplete
information

Same type predictors NO FALSE Allowed
Same type predictors YES TRUE Not allowed

Different type predictors NO FALSE Allowed
Different type predictors YES TRUE Not Allowed

Table 4: Completing the RF_condi argument according to predictors

The select_pred function allows to proceed with different scenarios according to the type of
predictors (Table 4 can help users to choose). The first one consists in boiling down to a set of
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categorical variables (ordered or not) by categorizing all the continuous predictors using the dedicated
argument (convert_num and convert_clss) and to work with the conditional importance assessments
that directly provide unbiased estimations (by setting the RF_condi argument to TRUE). Users can
consult (Hothorn, Hornik, and Zeileis 2006) for more details about the approach and consult the pdf
manual of the package for details about the related arguments of the select_pred function. This
approach does not take into account incomplete information, so that the method will be applied to
complete data only (incomplete rows will be temporarily removed from the study). It is nevertheless
possible to impute missing data beforehand by using dedicated pre-existing R packages like mice (van
Buuren and Groothuis-Oudshoorn 2011) or by using the imput_cov function provided in the OTrecod
package.

The second possible scenario (always usable in presence of mixed type predictors), consists
in the execution of a standard random forest procedure after taking care to rule out collinearity
issues by first selecting unique candidates between potential redundant predictors (in this case, the
discarded predictors are stored in the drop_var output object). This is the default approach used by
select_pred as soon as the RF_condi argument is set to FALSE while RF is set to TRUE. This scenario
can work in presence of incomplete predictors. By constructing, note that results from random forest
procedures stay dependent on successive random draws carried out for the constitution of trees, and
it is so suggested to check this stability by testing different random seeds (RF_SEED argument) before
concluding.

The R command previously written provides automatically the results related to the second ap-
proach as additional results. The results from the two datasets show here the permutation importance
estimates of each variable ranked in order of importance and expressed as percentage, after resolving
collinearity problems:

step2a$RF_PRED # For the api29 dataset

#> meals stype grad.sch awards acs.core
#> 71.5529 11.6282 11.1181 5.4674 0.2334

step2b$RF_PRED # For the api35 dataset

#> meals ell grad.sch full stype api.stu acs.core awards
#> 35.9974 28.3051 22.2094 5.2143 4.0192 1.8965 1.5643 0.7937

The results confirm that the variable meals appeared as the best predictor of the target variables in
api29 and api35 respectively. The variable ell is not present in the first list (see RF_PRED from step2a)
because the variables meals and ell has been detected as strongly collinear (according to the initial
chosen threshold) and so select_pred keep the best choice between the two predictors: meals (the
reasoning is the same for full which disappeared from the list).

The ell variable has been kept in the second list (not found as collinear enough to be removed
here) and appears moreover as a good predictor of apicl_1999 in api35. Nevertheless its potential
collinearity problem with meals encourages us not to keep it for the rest of the study. According to this
discussion, we finally keep meals, stype and grad.sch which combines the advantages of being good
predictors for the two target variables while not presenting major problems of collinearity between
them.

The following synthetic database (called here bdd_ex) is now ready for the prediction of the missing
API scores in api29, api35 or both, using the function OT_outcome or OT_joint:

bdd_ex = step1$DB_READY[, c(1:3,10:12)]; head(bdd_ex,3)

#> DB Y Z grad.sch meals stype
#> 2850 1 (600-800] <NA> >10 [0-25] H
#> 2851 1 (600-800] <NA> >10 [0-25] H
#> 2852 1 [200-600] <NA> 1-10 (75-100] H

Data fusion using OT_outcome

The OT_outcome function provides individual predictions of Z in A (and/or Y in B) by considering the
recoding problem involving optimal transportation of outcomes. In a first step, the aim of the function
is so to determine γ from (2) while this estimate is used in a second step to provide the predictions.
The main input arguments of the function and the output values are respectively described in Tables 5
and 6.
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Argument OT_outcome OT_joint Description (default value)
datab ✓ ✓ Data.frame in the expected structure
index_DB_Y_Z ✓ ✓ Indexes of the ID, Y, and Z columns

(1,2,3)
nominal ✓ ✓ Column indexes of nominal variables

(*)
ordinal ✓ ✓ Col. indexes of ordinal variables (*)
logic ✓ ✓ Col. indexes of boolean variables (*)
quanti ✓ Col. indexes of quantitative variables

(*)
convert.num ✓ ✓ Col. indexes of the quantitative vari-

ables to convert (* or =quanti in
OT_joint)

convert.clss ✓ ✓ Corresponding numbers of desired
classes for conversion (*)

which.DB ✓ ✓ Specify the target variables to complete:
Both or only one (BOTH)

solvR ✓ ✓ Choice of the solver to solve the opti-
mization problem (glpk)

dist.choice ✓ ✓ Distance function (Euclidean). See Ta-
ble 7

percent.knn ✓ ✓ Ratio of closest neighbors involved int
the computations (1)

indiv.method ✓ Type of individual predictions (sequen-
tial) for OUTCOME and R-OUTCOME algo-
rithms

maxrelax ✓ ✓ Adding of a relaxation parameter (0)
lambda.reg ✓ Adding of regularization parameter (0)

Table 5: Main arguments of the OT_outcome and OT_joint functions. (*: NULL as default value)

The arguments datab, index_DB_Y_Z, quanti, nominal, ordinal, and logic are not optional and
must be carefully completed before each execution. A unique synthetic data.frame made of two
overlayed databases (called A and B for example) (see Table 3) is expected as datab argument. If this
data.frame corresponds to the output objects DB_USED or DB_READY of the select_pred or merge_dbs
functions respectively, then the expected object has the required structure. Otherwise users must
be sure that their data.frames are made up of two overlayed databases with at least 4 variables as
described in the subsection Optimal transportation of outcomes applied to data recoding. The order of
the variables have no importance in the raw database but will have to be specified a posteriori in the
index_DB_Y_Z argument if necessary.

The subset of remaining predictors used for fusion may requires prior transformations according
to the distance function chosen in input by the user. This process is fixed by setting the dist.choice
argument. The distances actually implemented in the function are: the standard Euclidean ("E") and
Manhattan ("M") distances, the Hamming distance ("H", for binary covariates), and the Gower distance
("G" sometimes preferred with mixed variables). Automatic transformations prior to the use of each
distance function are summarized in Table 7.

The first version of the OT algorithm described in Garès et al. (2020) was tested on numeric
coordinates extracted from a factor analysis of mixed data (FAMD) fitted on mixed raw covariates
(Pagès 2002). This transformation is here available by setting the FAMD.coord argument to "YES".
The minimal percentage of information explained by the FAMD is also fixable using the FAMD.perc
argument. The OT_outcome functions proposes four types of models for the prediction of Y in B
(and/or) Z in A, according to the values of the method and maxrelax arguments:

• When maxrelax = 0 and indiv.method = "sequential" (default options), the fitted model
corresponds to the OUTCOME algorithm described by P̂0

n in equation (6). Assuming that Y and
Z in A follow the same distribution as Y and Z in B respectively (assumption 1), this related
algorithm derives the joint distribution of Y and Z in A (respectively in B) in a first step, and
uses in a second step, a nearest neighbor procedure to predict missing values of Z in A (resp.
Y in B). This algorithm calculates averaged distances between each subject from A (resp. B)
and subgroups of subjects from B (resp. A) having same levels of Z in B (resp. Y in A). These
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Value OT_outcome OT_joint Description
time_exe ✓ ✓ Running time of the algorithm
gamma_A ✓ ✓ Estimation of the joint distribution of

(Y, Z) for the prediction of Z in A (*)
gamma_B ✓ ✓ Estimation of the joint distribution of

(Y, Z) for the prediction of Y in B (*)
profile ✓ ✓ The list of detected profiles of covari-

ates
res.prox ✓ ✓ A list that provides all the information

related to the estimated proximities be-
tween profiles and groups of profiles

estimator_ZA ✓ ✓ Estimates of the probability distribu-
tion of Z conditional to X and Y in
database A (*)

estimator_YB ✓ ✓ Estimates of the probability distribu-
tion of Y conditional to X and Z in
database B (*)

DATA1_OT ✓ ✓ The database A fully completed (if re-
quired in input by the which.DB argu-
ment)

DATA2_OT ✓ ✓ The database B fully completed (if re-
quired in input by the which.DB argu-
ment)

Table 6: Values of the OT_outcome and OT_joint functions. (*: NULL if not required)

Distance function Euclidean Manhattan Gower Hamming
Variable transformations
Continuous Standardized Standardized No Not allowed
Boolean Binary Binary No Binary
Nominal Disjunctive T Disjunctive T No Disjunctive T
Ordinal Discrete Discrete No Disjunctive T
Incomplete information Allowed* Allowed* Allowed* Allowed*
dist.choice argument “E” “M” “G” “H”

Table 7: Internal variable transformations related to the choice of each distance function in OT_outcome
and OT_joint. (*) If the number of covariates exceeds 1. T for table

calculations can be done using all subjects of each subgroups (by default, percent.knn = 1) or
only restricted parts of them (percent.knn < 1).

• When maxrelax > 0 and indiv.method = "sequential", assumption 1 is alleviated by relaxing
the constraints on marginal distributions and an R-OUTCOME algorithm (with relaxation) is fitted.
In this case, the maxrelax argument corresponds to the αn parameter in (18).

• When maxrelax = 0 and indiv.method = "optimal", the second step of the original algorithm
(nearest neighbor procedure) is replaced by a linear optimization problem: searching for the
individual predictions of Z in A (resp. Y in B) by minimizing the total of the distances between
each individual of A and individuals of each levels of Z in B.

• When maxrelax > 0 and indiv.method = "optimal", the constraints on marginal distributions of
the previous model are also relaxed and the function fits an R-OUTCOME algorithm with relaxation.
For these three last situations, the corresponding R-OUTCOME algorithm is so described by P̂0−R

n
(18).

When maxrelax > 0, it is recommended to calibrate the maxrelax parameter by testing different
values according to the stability of individual predictions. In output, the gamma_A and gamma_B}
matrices correspond to the estimates of the joint distributions γ of (YA, ZA) and (YB, ZB) respectively
(2). Moreover, a posteriori estimates of conditional distributions probabilities (ZA|YA, XA) and
(YB|ZB, XB) (10) are also provided in two lists called estimatorZA, and estimatorYB respectively and
the completed databases A and B are stored in the DATA1_OT and DATA2_OT objects. In particular, the
individual predictions are stored in the OTpred column of these data.frames. Moreover, the profile
object is a data.frame that stores the profile of covariates encountered in the two data sources while
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the res_prox object stored all the distance computations that will be used in the validation step (users
can consult details of the proxim_dist function of the pdf manual.

The computation of conditional probabilities implies to define the part of individuals considered as
neighbors of each encountered profile of covariates. The argument prox.dist fixes this threshold for
each profile, following the decision rule for A (and respectively for B): a subject i of A (or a statistical
unit corresponding to a row of A) will be considered as neighbor of a given profile of shared variables
C as soon as:

dist(subjecti, C) < prox.dist × maxk=1,...,nA dist(subjectk, C)

When the number of shared variables is small and all of them are categorical (optimal situation), it is
suggested to set the prox.dist argument to 0. Finally, using the which.DB argument, users can choose
to estimate the individual predictions of Y and Z in the two databases (which.DB = "BOTH") or only
one of the both (which.DB = "A" for the predictions of Z in A or which.DB = "B" for the predictions Y
in B).

From the data.frame bdd_ex built previously, we use the OT_outcome function to illustrate the
prediction of the target variable apicl_2000 in the api35 dataset via an OUTCOME algorithm and using
an Euclidean distance function:

outc1 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,
dist.choice = "E", indiv.method = "sequential",
which.DB = "B")

#---------------------------------------
# OT PROCEDURE in progress ...
#---------------------------------------
# Type = OUTCOME
# Distance = Euclidean
# Percent closest knn = 100%
# Relaxation parameter = NO
# Relaxation value = 0
# Individual pred process = Sequential
# DB imputed = B
#---------------------------------------

In bdd_ex, all variables except the first one (DB: the database identifier) are or can be considered as
ordinal factors, and the quanti and ordinal arguments are filled in accordingly. For the prediction of
apicl_2000 in the api35 dataset (the steps would be the same for the prediction of apicl_1999 in api29
by setting which.DB = "A" or "BOTH"), the optimal transportation theory determines a map γ that
pushes, in the distribution of apicl_1999 forward to the distribution of apicl_2000 in the database
api35. In this case, γB is an estimator of the joint distribution of apicl_2000 and apicl_1999 in api35.
The estimation of γB is available in the gamma_B output object while all the profiles of predictors met
in the two databases are listed in the profile object:

outc1$gamma_B

#> G1 G2 G3 G4
#> [200-600] 0.22248804 0.0000000 0.00000000 0.0000000
#> (600-800] 0.02889318 0.2486188 0.15311005 0.0000000
#> (800-1000] 0.00000000 0.0000000 0.09550874 0.2513812

outc1$profile[1,] # the first profile

#> ID grad.sch meals stype
#> 2850 P_1 3 1 3

The output object estimatorYB is a list that corresponds to the estimations of the conditional
probabilities of apicl_2000 in the api35 dataset for a given profile of predictors. For example, the
conditional probabilities related to the first profile of predictors are:

outc1$estimatorYB[1,,] # conditional probabilities (1st profile)

#> [,1] [,2] [,3]
#> G1 0.3333333 0.3333333 0.3333333
#> G2 0.3333333 0.3333333 0.3333333
#> G3 0.0000000 0.0000000 1.0000000
#> G4 0.0000000 0.0000000 1.0000000
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According to these results, we can conclude that: for a subject from api35 with a related profile of
predictors P_1 and whose levels of apicl_1999 is 'G1', the probability for apicl_2000 to be predicted
'[200,600]' is about 0.63. Finally, the individual predictions of apicl_2000 in api35 are available in
the DATA2_OT object corresponding to the OTpred column:

head(outc1$DATA2_OT,3) # The 1st 3 rows only

#> DB Y Z grad.sch meals stype OTpred
#> 3895 2 <NA> G1 2 4 1 [200-600]
#> 3896 2 <NA> G3 2 3 1 (600-800]
#> 3897 2 <NA> G2 2 3 2 (600-800]

The OUTCOME algorithm uses here a nearest neighbor procedure to assign the individual predictions
from the estimation of γ which can be a drawback as described in (Garès et al. 2020). The R-OUTCOME
algorithm proposes an enrichment that directly assigns the individual predictions of apicl_2000 from
the estimation of γ, without using the nearest neighbor approach. In this case, a linear optimization
problem is solved to determine the individual predictions that minimize the sum of the individual
distances in api35 having the modalities of the target apicl_2000 in api29. The corresponding R
command is:

### R-OUTCOME algorithm: optimal assignments + relaxation parameter = 0
R_outc3 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,

dist.choice = "E" , indiv.method = "optimal",
which.DB = "B")

Moreover, the OUTCOME algorithm assumes that the distribution of apicl_2000 is identically dis-
tributed in api29 and api35 (assumption 1 from the subsection Optimal transportation of outcomes
applied to data recoding) which can appear as a strong hypothesis to hold in many situations. To
overcome this constraint, the R-OUTCOME algorithm also allows to relax the assumption 1 by adding
a relaxation parameter (18) in the optimization system. This relaxation can be done by varying the
maxrelax argument of the function:

### R-OUTCOME algorithm: optimal assignments + relaxation parameter = 0.4
R_outc4 = OT_outcome(bdd_ex, quanti = 1, ordinal = 2:6,

dist.choice = "E",
indiv.method = "optimal",
maxrelax = 0.4, which.DB = "B")

The running times of these two models can take few minutes. The quality of these models will be
compared in Tables 8, 9 and 10 (subsection Validation of the data fusion using verif_OT).

Data fusion using OT_joint

The OT_joint function provides individual predictions of Z in A (and/or Y in B) by considering the
recoding problem as an optimal transportation problem of covariates and outcomes, that pushes
the conditional distribution of (YA|XA) forward to the conditional distribution of (ZA|XA) (and
conversely (ZB|XB) forward to the conditional distribution of (Y|X)). The aim is to determine γ
from (7). Because joint distributions of outcomes and covariates are now mapped together (it was not
the case with the OUTCOME family of algorithms), it is not required for target variables to be equally
distributed (assumption 1).

The call of OT_joint was thought to propose globally the same structure as those of the function
OT_outcome as described in Tables 5 and 6 with few differences described below. JOINT and R-JOINT
algorithms are usable via OT_joint for solving the recoding problem depending on the values related
to the maxrelax and lambda_reg arguments:

• When maxrelax = 0 and lambda.reg = 0 (default values), the fitted model corresponds to the
JOINT algorithm described by P̂n in equation (7).

• When at least one of these two arguments differs from 0, the R-JOINT algorithm is called.
Using R-JOINT, it is so possible to relax constraints on marginal distributions (maxrelax > 0)
and/or add an eventual more or less strong L1 regularisation term among the constraints of the
algorithm by filling the lambda_reg argument. maxrelax parameter correspond to parameter αn
in (16) and lambda.reg parameter correspond to parameter λ in (17).
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When maxrelax > 0 and/or lambda.reg > 0, it is recommended to calibrate these two parameters
by testing many different values and so studying the stability of the related individual predictions.
Nevertheless, by default or as a starting point, (Garès et al. 2020) suggests the use of default values
determined from simulated databases: 0.1 for the regularization parameter (lambda.reg) and 0.4 for
the relaxation one (maxrelax). Finally, the output objects are similar to those previously described in
the OT_outcome function.

The implementation of the function is very similar to that of OT_outcome, and applied to our
example, the R code related to a JOINT algorithm is:

outj1 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),
dist.choice = "E" , which.DB = "B")

#---------------------------------------
# OT JOINT PROCEDURE in progress ...
#---------------------------------------
# Type = JOINT
# Distance = Euclidean
# Percent closest = 100%
# Relaxation term = 0
# Regularization term = 0
# Aggregation tol cov = 0.3
# DB imputed = B
#---------------------------------------

### Extract individual predictions from the OTpred column
head(outj1$DATA2_OT,3) # The 1st 3 rows only

#> DB Y Z grad.sch meals stype OTpred
#> 3895 2 <NA> G1 2 4 1 [200-600]
#> 3896 2 <NA> G3 2 3 1 (600-800]
#> 3897 2 <NA> G2 2 3 2 (600-800]

For relaxing the constraints stated on marginal distributions, we use the maxrelax argument
that corresponds to varying the α parameter of a R-JOINT algorithm (see (17)) and a parameter of
regularization λ can be simply added to the previous model as follows:

### R-JOINT algorithm (relaxation parameter = 0.4)
R_outj1 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),

dist.choice = "E", maxrelax = 0.4,
which.DB = "B")

### R-JOINT algorithm (relaxation parameter = 0.4,
### & regularization parameter = 0.1)
R_outj4 = OT_joint(bdd_ex, nominal = 1, ordinal = c(2:6),

dist.choice = "E", maxrelax = 0.4,
lambda.reg = 0.1,
which.DB = "B")

These models are compared in the next subsection.

Validation of the data fusion using verif_OT

Assessing the quality of individual predictions obtained through statistical matching techniques can be
a complex task notably because it is legitimate to wonder about the true reliability of a joint distribution
estimated from two variables which are never jointly observed (Kadane 2001; Rodgers 1984). When
the study aims to identify estimators of interests that improve the understanding of the relationships
between variables in the different databases (called macro approach in D’Orazio, Di Zio, and Scanu
(2006)) without going until the creation of a complete and unique dataset, uncertainty analyses are
usually proposed to estimate the sensitivity of the assessments (Rässler 2002). On the contrary, if the
objective is to create a synthetic dataset where the information is available for every unit, the use of
auxiliary information or proxy variables must be privileged to assess the quality of the results (Paass
1986). In the absence of complementary information, Rubin (1986) suggests to study the preservation
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of the relationships at best between the distributions of the target variables. In this way, the verif_OT
function proposes tools to assess quality of the individual predictions provided by the algorithms
previously introduced.

The first expected input argument of verif_OT is an 'otres' object from the OT_outcome or
OT_joint functions. In our example, this function is firstly applied to the out_c1 model by following
the R command:

### Quality criteria for outc1 (OUTCOME model)
verif_outc1 = verif_OT(outc1, group.class = TRUE, ordinal = FALSE,

stab.prob = TRUE, min.neigb = 5)

### First results related to outc1:
verif_outc1$nb.profil

#> [1] 27

verif_outc1$res.prox

#> N V_cram rank_cor
#> 362.000 0.860 0.892

In output, the nb.profil value gives the number of profiles of predictors globally detected in the
two databases (nb = 27). In the example, a profile will be characterized by a combination of values
related to the three predictors kept: grad.sch, meals and stype.

The first step of the function is dedicated to the study of the proximity between the two target
variables. Therefore, standard criteria (Cramer’s V and Spearman’s rank correlation coefficient) are
used to evaluate the pairwise association between Y and Z, globally or in one of the two databases only,
according to the predictions provided by the output of OT_outcome or OT_joint. Only the database
api35 was completed in the example (because which.DB = "B" as argument of OT_outcome) and stored
in the DATA2_OT object, therefore, the criteria compare here the proximity distribution between the
predicted values of apicl_2000 (Y) and the observed value of apicl_1999 (Z) in the database api35 (B).
Regarding independence or a small correlation between YA and ZA (or YB and ZB) must question
about the reliability of the predictions especially when Y and Z are supposed to summarize a same
information. In the example, whatever the criteria used, we notice via the res.prox object, a strong
association between the two target variables in api35 which reassures about the consistency of the
predictions. The related confusion matrix between the predicted values of apicl_2000 (Y) and the
observed value of apicl_1999 (Z) is stored in the conf.mat object.

Second, the function proposes an optional tool (by setting group.clss= TRUE) which evaluates the
impact of grouping levels of one factor on the association of Y and Z. When users have initially no
information about one of the two encodings of interest, this approach can be particularly useful to
detect ordinal from nominal ones and its principle is as follow. Assuming that Y ∈ Y , and Z ∈ Z
(Y and Z are the respective levels) and that |Y| ≥ |Z|. From Y, successive new variables Y′ ∈ Y ′

are built, as soon as Y ′ is a partition of Y such as |Y ′| = |Z| (and inversely for Z if the levels of Z is
the greatest). The related associations between Z and Y′ (with now equal number of levels) are then
studied using: Cramer’s V, rank correlation, Kappa coefficient and confusion matrix and the results
are stored in a table called res.grp. The corresponding outputs of the example are:

verif_outc1$conf.mat

#> Z
#> predY G1 G2 G3 G4 Sum
#> [200-600] 81 1 1 1 84
#> (600-800] 10 89 55 1 155
#> (800-1000] 0 0 34 89 123
#> Sum 91 90 90 91 362

verif_outc1$res.grp

#> grp levels Z to Y error_rate Kappa Vcramer RankCor
#> 4 G1/G2 G3/G4 13.3 0.794 0.83 0.877
#> 6 G1/G2/G3 G4 19.1 0.714 0.78 0.839
#> 2 G1 G3/G2/G4 28.2 0.593 0.68 0.624
#> 1 G1 G2/G3/G4 37.6 0.457 0.64 0.813
#> 3 G1 G4/G2/G3 43.4 0.374 0.59 0.115
#> 5 G1/G2 G4/G3 43.4 0.326 0.64 0.574
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It appears from these results that grouping the levels G2 and G3 of apicl_1999 (Z) strongly improves
the association of this variable with apicl_2000 (Y) (the error rate of the confusion matrix varies from
43.4 to 13.3). Moreover the structure of conf.mat confirms that the encoding of apicl_1999 seems to
be ordinal.

The third step of the quality process integrated in the function corresponds to the study of the
Hellinger distance (Liese and Miescke 2008). This distance function is used as a measure of the
discrepancies between the observed and predicted distributions of Y (L(YA) versus L(ŶB)) and/or
(L(ẐA) versus L(ZB)). For Y and Z, the definition of the distance is respectively:

disthell(Y
A, ŶB) =

√√√√1
2 ∑

y∈Y

(√
µYA

n,y −
√

µŶB
n,y

)2
)

and

disthell(ZB, ẐA) =

√√√√1
2 ∑

z∈Z

(√
µZB

n,z −
√

µẐA
n,z

)2
),

where µŶB

n,y and µẐA

n,z correspond to the empirical estimators of µŶB
and µẐA

respectively.

The Hellinger distance varies between 0 (identical) and 1 (strong dissimilarities) while 0.05 can be
used as an acceptable threshold below which two distributions can be considered as similar. When
OUTCOME models are applied on datasets, this criterion shows that predictions respect assumption 1. It
can also be used to determine the best relaxation parameter of an R-OUTCOME model. On the contrary,
there is no need to interpret this criterion when an R-JOINT model is applied, because in this case, the
assumption 1 is not required. Results related to this criterion are stored in the hell object:

verif_outc1$hell

#> YA_YB ZA_ZB
#> Hellinger dist. 0.008 NA

With a p-value equals to 0.008, the assumption 1 hold here but it stays interesting to test other
algorithms to eventually improve the current one by notably adding relaxation and/or regularization
parameters.

Finally, the verif_OT function uses the mean and standard deviance of the conditional probabilities
P(Z = ẑi|Y = yi, X = xi) estimated by each model, as indicators of the stability of the individual
predictions (provided that stab.prob = TRUE). It is nevertheless possible that conditional probabilities
are computed from too few individuals (according to the frequency of each profile of shared variables
met), to be considered as a reliable estimate of the reality. To avoid this problem, trimmed means and
standard deviances are suggested by removing these specific probabilities from the computation, using
the min.neigb parameter. In output, the results related to this last study are stored in the res.stab
object:

verif_outc1$eff.neig

#> Nb.neighbor Nb.Prob
#> 1 1 14
#> 2 2 18
#> 3 3 18
#> 4 4 28
#> 5 5 20
#> 6 6 6
#> 7 7 14
#> 8 8 16
#> 9 9 27
#> 10 10 20

verif_outc1$res.stab

#> N min.N mean sd
#> 2nd DB 284 5 0.968 0.122
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The first result shows that 14 individual predictions among 362 (the total number of rows in
api35) have been assigned to subjects that exhibits a unique combination of predictors and outcome.
From these subjects, it would be obviously overkill to draw conclusions about the reliability of the
predictions provided by the model. We therefore decide to fix here a threshold of 5 below which it
is difficult to extract any information related to the prediction. From the remaining ones, we simply
perform the average (0.968) which could be interpreted as follows: when the fitted model is confronted
with a same profile of predictors and a same level of apicl_1999, more than 96 times of a hundred, it
will return the same individual prediction for apicl_2000.

We run a total of 11 models to determine the optimal one for the prediction of apicl_2000 in
api35. Every arguments from the syntax of the OT_outcome and OT_joint functions stay unchanged
with the exception of indiv.method, maxrelax, and lambda.reg which vary. The values linked to
each criterion of the verif_OT function are summarized in Tables 8, 9 and 10. The syntax related to
verif_OT stay unchanged for each model (notably same min.neigb arguments). Note that comparisons
of stability predictions between OUTCOME and JOINT models impose that the prox.dist argument of
the OT_outcome function is fixed to 0.

Model Type Method Relax Regul N V_cram rank_cor
outc1 OUTCOME SEQUENTIAL 0.0 - 362 0.86 0.892
R_outc1 R-OUTCOME SEQUENTIAL 0.4 - 362 0.94 0.923
R_outc2 R-OUTCOME SEQUENTIAL 0.6 - 362 0.91 0.917
R_outc3 R-OUTCOME OPTIMAL 0.0 - 362 0.87 0.911
R_outc4 R-OUTCOME OPTIMAL 0.4 - 362 0.95 0.939
R_outc5 R-OUTCOME OPTIMAL 0.6 - 362 0.92 0.932
outj1 JOINT - 0.0 0.0 362 0.74 0.834
R_outj1 R-JOINT - 0.4 0.0 362 0.95 0.935
R_outj2 R-JOINT - 0.6 0.0 362 0.91 0.927
R_outj3 R-JOINT - 0.8 0.0 362 0.91 0.927
R_outj4 R-JOINT - 0.4 0.1 362 0.95 0.931

Table 8: V Cramer criterion (V_cram) and rank correlation (rank_cor) between apicl_1999 (the ob-
served variable) and apicl_2000 (the predicted variable) in the api35 database (N = 362). Predictions
comes from 11 models with various algorithms, relaxation and regularization parameters. They are
very stable and reproductible here when the relaxation parameter differs from 0.

From these results, we can conclude that:

• whatever the algorithm used (OUTCOME or JOINT), adding a relaxation parameter improves here
the association between the target variables (see Table 8).

• according to the results of Table 9, the R_outc2 and R_outc5 models seem not optimal because
they are those for which the Hellinger criterion reflects the most clear violation of assumption 1
(see Table 9). Therefore, it is here suggested to keep a relaxation parameter less than 0.6 in the
final model.

• Table 8 confirms this trend because adding a too high relaxation parameter seems to potentially
affect the quality of the association (the V Cramer and rank correlation decrease when the
relaxation parameter increases from 0.4 to 0.6). Consequently, in this example, fixing 0.4 seems
to be an acceptable compromise for the relaxation parameter whatever the R-OUTCOME algorithm
used (0.3 could also have been tested here).

• among the remaining models (R_outc1, R_outc4, R_outj1, and R_outj4), R_outj1 and R_outj4
seem to be those with the most stable predictive potential (Table 10). Moreover, R_outc4 appears
here as the best model from the tested R-OUTCOME algorithms.

• adding a regularization parameter to the R_outj1 model caused a decrease in the stability of the
predictions (see the value of R_outj4 compared to R_outj1 in Table 10) and we thus conclude in
favor of R_outj1 as best model among those tested in the JOINT family of algorithms.

• Table 11 shows that the three remaining models (R_outc4, R_outj1 and R_outj4) counted
between 92 an 97% of common predictions and these last result also reassures the user about
the quality of the provided predictions.

The confusion matrices related to R_outc4 and R_outj1 are described in Table 12 and seems to
confirm that the encoding of apicl_2000 in three groups, could simply correspond to the grouping of
levels G2 and G3 of the api_cl1999 variable.

Finally, note that the running time of each model took less than 15 seconds with R version 4.0.3 for
Windows (10 Pro-64bits/ Process Intel 2.66 GHz).
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Model Type Method Relax Hell(YA_YB)
outc1 OUTCOME SEQUENTIAL 0.0 0.008
R_outc1 R-OUTCOME SEQUENTIAL 0.4 0.085
R_outc2 R-OUTCOME SEQUENTIAL 0.6 0.107
R_outc3 R-OUTCOME OPTIMAL 0.0 0.002
R_outc4 R-OUTCOME OPTIMAL 0.4 0.080
R_outc5 R-OUTCOME OPTIMAL 0.6 0.102

Table 9: Hellinger distances related to the 6 models that used OUTCOME and R-OUTCOME algorithms. The
values are relatively homogeneous from one model to another and do not indicate strong ditributional
divergences (all values are very far from 1). Nevertheless, choosing relaxation parameters higher than
0.4 can increase the risk of distributional dissimilarities (the criterion moves away from 0.05 when the
relaxation parameter increases).

Model Type Method Relax Regul N mean sd
outc1 OUTCOME SEQUENTIAL 0.0 - 284 0.968 0.122
R_outc1 R-OUTCOME SEQUENTIAL 0.4 - 284 0.950 0.151
R_outc2 R-OUTCOME SEQUENTIAL 0.6 - 284 0.954 0.145
R_outc3 R-OUTCOME OPTIMAL 0.0 - 284 0.979 0.100
R_outc4 R-OUTCOME OPTIMAL 0.4 - 284 0.987 0.080
R_outc5 R-OUTCOME OPTIMAL 0.6 - 284 0.983 0.091
outj1 JOINT - 0.0 0.0 284 0.911 0.116
R_outj1 R-JOINT - 0.4 0.0 284 0.942 0.128
R_outj2 R-JOINT - 0.6 0.0 284 0.953 0.171
R_outj3 R-JOINT - 0.8 0.0 284 0.934 0.199
R_outj4 R-JOINT - 0.4 0.1 284 0.926 0.097

Table 10: Stability of the predictions (min.neigb = 5). When the R_outj1 model will be confronted
with a same profile of predictors and a same level of apicl_1999, more than 94 times of a hundred
(mean = 0.942), it will be able to return the same individual prediction for apicl_2000. Among the
OUTCOME family of algorithms, R_outc4 provides here the best stability of prediction while R_outj2 is
the optimal one in the JOINT family of algorithms.

5 Conclusion and perspectives

To our knowledge, OTrecod is the first R package that takes advantage of the optimal transportation
theory (Monge 1781) in the context of data fusion and the comparative study of methods described in
(Garès and Omer 2022) underlines the promising performances of these approaches.

For more details and examples about the functions, users are invited to consult the ARTICLES
section of the dedicated website.

6 Drawbacks

The functions of OTrecod only apply to a specific data fusion context where there is no overlapping
part between the two raw data sources. This package does not deal with record linkage which is
already the focus of extensive works (Sariyar and Borg 2010). This package is not adapted when the
target variables (outcomes) of the two databases are continuous with an infinite number of values
(like weights in grams with decimals for example). Moreover, if the data fusion requires only one
shared variable to work, the quality of the fusion depends on the presence of a subset of good shared
predictors in the raw databases. Finally, if the function OT_outcome allows all types of predictors, the
current version of the function OT_joint imposes categorical matching variables only (scale variables
are allowed): this restriction should be relaxed in a next version.

7 Perspectives

A number of more advanced research still need further investigation:
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Model outc1 R_outc1 R_outc4 outj1 R_outj1
R_outc1 0.84 - - - -
R_outc4 0.83 0.95 - - -
outj1 0.72 0.81 0.83 - -
R_outj1 0.83 0.91 0.94 0.84 -
R_outj4 0.84 0.96 0.97 0.84 0.92

Table 11: Ratio of common predictions between two models

(a) apicl_1999 (b) apicl_1999
apicl_2000 G1 G2 G3 G4 apicl_2000 G1 G2 G3 G4

[200 − 600] 91 15 0 0 [200 − 600] 91 14 1 0
(600 − 800] 0 75 90 0 (600 − 800] 0 76 89 0
(800 − 1000] 0 0 0 91 (800 − 1000] 0 0 0 91

Table 12: Confusion matrices in the api35 dataset for the models (a) R_outc4 and (b) R_outj1

1. the possibility of extending the OT algorithm for recoding variables to multidimensional frame-
works.

2. the stability of the algorithm when the matching variables are incomplete and the non-response
processes are missing at random or not.

3. the contribution of calibration techniques in the quality process assessment (Deming and
Stephan 1940)

4. the creation of a tuning function which defines a grid search to find the optimal combination of
parameters related to the OT algorithms, could be added in the future versions of the package.
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9 Supplementary R code

### BASIC R CODE FOR SUMMARY TABLES 8, 9, 10, and 11 ---------

## Validation of each model: Repeat the following R command for each model by
## changing outc1:
verif_outc1 = verif_OT(outc1, group.class = TRUE, ordinal = FALSE,

stab.prob = TRUE, min.neigb = 5)

## Association between Y and Z: Summary Table 8
res.prx = rbind(

outc1 = verif_outc1$res.prox , R_outc1 = verif_R_outc1$res.prox,
R_outc2 = verif_R_outc2$res.prox , R_outc3 = verif_R_outc3$res.prox,
R_outc4 = verif_R_outc4$res.prox , R_outc5 = verif_R_outc5$res.prox,
outj1 = verif_outj1$res.prox , R_outj1 = verif_R_outj1$res.prox,
R_outj2 = verif_R_outj2$res.prox , R_outj3 = verif_R_outj3$res.prox,
R_outj4 = verif_R_outj4$res.prox )

res.prx = data.frame(Model = c("outc1","R_outc2","R_outc3","R_outc4",
"R_outc5","R_outc6","outj1", "R_outj1",
"R_outj2","R_outj3","R_outj4"),

Type = c("OUTCOME",rep("R-OUTCOME",5),"JOINT",
rep("R-JOINT",4)),

Relax = c(0,0.4,0.6,0,0.4,0.6,0,0.4,0.6,0.8,0.4),
Regul = c(rep(0,10),0.1), res.prx)

row.names(res.prx) = NULL; head(res.prx,3)

# Name Type Relax Regul N V_cram rank_cor
# outc1 OUTCOME 0.0 0.0 362 0.86 0.892
# R_outc1 R-OUTCOME 0.0 0.0 362 0.87 0.911
# R_outc2 R_OUTCOME 0.4 0.0 362 0.93 0.933
#-----

## Hellinger distance: Summary Table 9
res.helld = rbind(

outc1 = verif_outc1$hell , R_outc1 = verif_R_outc1$hell,
R_outc2 = verif_R_outc2$hell, R_outc3 = verif_R_outc3$hell,
R_outc4 = verif_R_outc4$hell, R_outc5 = verif_R_outc5$hell,
outj1 = verif_outj1$hell , R_outj1 = verif_R_outj1$hell,
R_outj2 = verif_R_outj2$hell, R_outj3 = verif_R_outj3$hell,
R_outj4 = verif_R_outj4$hell )

res.helld = data.frame(res.prx[,1:4], res.helld)
row.names(res.helld) = NULL; res.helld
#-----

## Stability of the prediction: Summary Table 10
# same R code as for Summary Table 8, changing res.prox by res.stab
#----

## Ratio of common predictions: Table 11

stoc = list(outc1$DATA2_OT$OTpred , R_outc1$DATA2_OT$OTpred,
R_outc4$DATA2_OT$OTpred, outj1$DATA2_OT$OTpred ,
R_outj1$DATA2_OT$OTpred, R_outj4$DATA2_OT$OTpred)

corpred = matrix(ncol = 6, nrow = 6)
for (i in 1:6){

for (j in 1:6){
corpred[i,j] = round(sum(diag(table(stoc[[i]],stoc[[j]])))/362,2)

}
}; corpred
#-----
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populR: a Package for Population
Downscaling in R
by Marios Batsaris and Dimitris Kavroudakis

Abstract Population data provision is usually framed by regulations and restrictions and hence
spatially aggregated in predefined enumeration units such as city blocks and census tracts. Many
applications require population data at finer scale, and therefore, one may use downscaling methods to
transform population counts from coarse spatial units into smaller ones. Although numerous methods
for downscaling of population data have been reported in the scientific literature, only a limited
number of implementation tools exist. In this study, we introduce populR, an R package that responds
to this need. populR provides two downscaling methods, namely Areal Weighted Interpolation and
Volume Weighted Interpolation, which are illustrated and compared to alternative implementations in
the sf and areal packages using a case study from Mytilini, Greece. The results provide evidence that
the vwi approach outperforms the others, and thus, we believe R users may gain significant advantage
by using populR for population downscaling.

1 Introduction

Information about the spatial distribution of the population is crucial in addressing a wide range of
geographical information science problems (Dobson et al. 2000; Ahola et al. 2007; Freire and Aubrecht
2012; Bian and Wilmot 2015; Calka, Nowak Da Costa, and Bielecka 2017; Batsaris et al. 2019; Bahadori,
Gonçalves, and Moura 2021; Wang et al. 2021; Han, Hu, and Wang 2020). One of the most common
sources of population data is the Census of Population (Tenerelli, Gallego, and Ehrlich 2015; Liu,
Kyriakidis, and Goodchild 2008). In the EU, censuses are carried out every ten years and are regulated
by the EU 763/2008 law (European Union 2009). During the census, detailed information about the
population is collected with a high level of granularity. This information is confidential, and due to
personal data laws and privacy concerns, census data are de-identified via spatial aggregation into
coarse administrative units.

Aggregated representations of census data may not reflect the spatial heterogeneity of the pop-
ulation within the reported administrative units, and therefore, one may need to use downscaling
methods to transform population counts from the predefined coarse boundaries (source) into finer-
scale sub-units (target). Areal interpolation is broadly used in population downscaling (Tenerelli,
Gallego, and Ehrlich 2015).

Areal interpolation methods can be categorized according to usage of additional information such
as land use data and night lights to guide the interpolation process. Ancillary information independent
methods are further distinguished in: a) point-based and b) area-based (Wu, Qiu, and Wang 2005;
Comber and Zeng 2019). Areal Weighted Interpolation (AWI) is one of the most common methods
of areal interpolation of population without exploiting ancillary information [Comber and Zeng
(2019); Kim and Yao (2010);] in a Geographic Information System (GIS). AWI guides the interpolation
process on the basis of areal weights calculated by the area of intersection between the source and
target features (Goodchild and Lam 1980). This method has four main advantages: a) It is easy and
straightforward to implement; b) it does not require ancillary information; c) it preserves the initial
volume (i.e., the total population within the source zone); and d) it may be implemented in both vector
and raster environments (Comber and Zeng 2019; Fisher and Langford 1995; Kim and Yao 2010; Lam
1983; Qiu, Zhang, and Zhou 2012). On the other hand, one of the main disadvantages of AWI is its
assumption of homogeneity within source zone features (Comber and Zeng 2019; Qiu, Zhang, and
Zhou 2012).

sf (Pebesma 2018) and areal (Prener and Revord 2019) provide AWI functionality in R. sf comes up
with a formula either for extensive (population) or intensive (population density) interpolation that
calculates the areal weights based on the total area of the source features (total weights), which makes it
suitable for completely overlapping data. areal extends sf functionality by providing an additional
formula for weight calculation for data without complete overlap. In this case, areal weights are
calculated using the sum of the remaining source areas after the intersection (sum weights) (Prener and
Revord 2019).

When the case involves downscaling of urban population data (small scale applications) where
the source features (such as city blocks or census tracts) are somehow larger than target features (such
as buildings) in terms of footprint area, the sf functionality is unable to calculate the areal weights
correctly. Additionally, areal may be confusing for novice R (or GIS) users as it is not obvious that the
weight option should be set to sum to calculate areal weights properly.
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To overcome such limitations, we introduce populR (Batsaris 2022), a package for downscaling of
population data using areal interpolation methods. populR provides an AWI approach that matches
areal functionality using sum weights and a VWI (Volume Weighted Interpolation) approach that uses
the area of intersection between source and target features multiplied by the building height or number
of floors (volume) to guide the interpolation process.

The remainder of the paper is structured as follows. The next section lists the methods included in
the populR package, further explains and demonstrates using examples. The numerical experiments
section illustrates and discusses the results obtained by populR and compares the results to other
alternatives in R. Finally, the paper concludes with a summary, along with future improvements, in
the conclusions section.

2 The populR package

populR is available to R users through the CRAN and Github repositories and may be installed as
shown in the code block below.

# CRAN installation
install.packages("populR")

# Github installation
devtools::install_github("mbatsaris/populR")

The populR functionality focuses on three main pillars, namely downscaling, rounding, and
comparing. Additionally, sample data (objects of class sf (Pebesma 2018)) representing city blocks,
including population counts (src) and individual buildings attributed by the number of floors (trg)
from a small part of the city of Mytilini, Greece, are also available for further experimentation with the
package’s functionality.

Downscaling

Population downscaling is carried out by the primary pp_estimate function.

Suppose a set of j = 1, ..., J city block polygons (source) accompanied by population counts and
an incongruent yet superimposed set of i = 1, ..., Bj individual building polygons (target), along
with their characteristics such as footprint area and/or number of floors (or height), the pp_estimate,
aims to transform population counts from the source to the target using AWI and VWI approaches.
The mathematics behind both approaches is presented in the next two subsections and graphically
illustrated in figure 1.

AWI

AWI proportionately interpolates the population value of the source features based on areal weights
calculated by the area of intersection between the source and target zones and algebraically explained
by equations (1) and (2) (Goodchild and Lam 1980). In equation (1), areal weights wa

ij are calculated
by standardizing the measured footprint area of individual building i in block j (aij) over the sum
of building footprint areas in the j − th city block. Finally, building population values for building
i in block j (pij) may be calculated by multiplying the areal weights of building i in block j with the
population value of j − th block (Pj).

wa
ij =

aij

∑
Bj

i=1 aij

, (1)

pa
ij = wa

ij × Pj . (2)

A demonstration of the AWI approach is presented in the code block below. In the first line of
code, populR is attached to the script. The next two lines load the package’s built-in data, and the last
line demonstrates the usage of the pp_estimate function. As a result, pp_estimate returns an object of
class sf including individual buildings (target) with population estimates.

# attach package
library(populR)
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Figure 1: Illustration of the populR package’s functionality. populR uses two areal interpolation
methods to convert population values from city block polygons (left) to a set of individual building
polygons (center). AWI (top) solely relies on the area of intersection between blocks and buildings
(top-right). VWI (bottom) uses the area of intersection between blocks and buildings multiplied by the
height or number of floors to aid the transformation process (bottom-right).

# load data
data('src')
data('trg')

# downscaling using awi
awi <- pp_estimate(target = trg, source = src, spop = pop, sid = sid,
method = awi)

Where:

1. target: An object of class sf that is used to interpolate data to. Usually, target may include
polygon features representing building units

2. source: An object of class sf including data to be interpolated. Source may be a set of coarse
polygon features, such as city blocks or census tracts

3. sid: Source identification number
4. spop: Source population values to be interpolated
5. method: Two methods provided: AWI (Areal Weighted Interpolation) and VWI (Volume Weighted

Interpolation). AWI proportionately interpolates the population values based on areal weights
calculated by the area of intersection between the source and target zones. VWI proportionately
interpolates the population values based on volume weights calculated by the area of inter-
section between the source and target zones multiplied by the volume information (height or
number of floors)

VWI

Given the number of floors (or height) of individual buildings, VWI applies the same logic as AWI.
Instead of areal weights, VWI proportionately dis-aggregates source population counts using volume
weights measured by the area of intersection multiplied either by individual building height (if
available) or number of floors. VWI may be mathematically expressed by equations (3) to (5). First, the
volume of building i in block j (vij) is measured by multiplying the footprint area (aij) of building i in
block j with the number of floors or height (nij) as shown in equation (3). Next, volume weights (wv

ij)
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are calculated by standardizing the volume of building i in block j (vij) by the sum of the total volume
of buildings in the j − th block (4). Then, building population values for building i in block j (pv

ij) may
be calculated by multiplying the volume weights (wv

ij) of building i in block j with the population
value of block j (PJ) as shown in (5).

vij = aij × nij , (3)

wv
ij =

vij

∑
Bj

i=1 vij

, (4)

pv
ij = wv

ij × Pj . (5)

The code block below provides an example of the VWI approach.

# downscaling using vwi
vwi <- pp_estimate(target = trg, source = src, spop = pop, sid = sid,
volume = floors, method = vwi)

Where:

1. volume: Target feature volume information (height or number of floors). Required when method
is set to vwi

It is important to mention that when volume information (number of floors or building height)
is not available for the entire target dataset, users may replace missing values with 1 if they want to
include them as buildings with 1 floor; otherwise, users may replace missing values with 0 if they
want to exclude them from the downscaling process.

Rounding

AWI is volume-preserving (Comber and Zeng 2019) (as VWI) and returns an object of class sf with
decimal population counts for each target feature. To increase the readability of the results as well
as to maintain the initial source population values, it is essential for many applications to provide
integer values by rounding off to the closest integer. This transformation may result in a shortage or
surplus in comparison to the initial values (source values), and therefore, to cope with this problem,
the pp_round function is proposed.

First, estimated population values are converted into integer numbers. Next, the pp_round function
calculates the differences between the initial population counts and the sum of the integer values for
each city block; it is activated only if the quantified difference is either positive or negative. In either
case, during this process, target-based differences are also calculated and used to refine the integer
counts by adding or removing one population unit in order to preserve the initial source counts when
summed up.

An example of the pp_round function is provided below.

# downscaling using awi
awi <- pp_round(x = awi, tpop = pp_est, spop = pop, sid = sid)

# downscaling using awi
vwi <- pp_round(x = vwi, tpop = pp_est, spop = pop, sid = sid)

Where:

1. x: An object of class sf obtained by the pp_estimate function
2. tpop: Target population estimates obtained by the pp_estimate function
3. spop: Initial source population values (included after the implementation of the pp_estimate

function)
4. sid: Source identification number

As a result, pp_round returns an object of class sf with integer estimates of population values with
respect to the initial source population values.
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Table 1: Data used for numerical experiments

Title Format Source Year
City block population counts Tabular Hellenic Statistical Authority 2011
City blocks Spatial Hellenic Statistical Authority 2011
Buildings Spatial Hellenic Statistical Authority 2011

Comparing

Volume-preserving means that estimated values should sum up to the initial population counts for
each source unit, and therefore, one may need to compare target estimates to the initial source values.
For this purpose, a function is introduced under the alias pp_compare. The pp_compare function
measures the root mean squared error (RMSE), the mean absolute error (MAE), and finally, the
statistical relationship between the initial source values and the estimated ones, which is calculated
and depicted on a 2D scatter diagram along with the value of the correlation coefficient R2.

A short example of the pp_compare function is presented in the code block below, where src_awi
(and src_vwi) is a data.frame created by grouping the sum of the estimated values along with the initial
population values for each source feature.

# attach library
library(dplyr)

# group estimated and actual values by source identification number - awi
src_awi <- awi %>%
group_by(sid) %>%
summarise(est = sum(pp_est), act = unique(pop))

# awi approach compare to source values
pp_compare(x = src_awi, estimated = est, actual = act, title = "awi vs source")

# group estimated and actual values by source identification number - vwi
src_vwi <- vwi %>%
group_by(sid) %>%
summarise(est = sum(pp_est), act = unique(pop))

# vwi approach compare to source values
pp_compare(x = src_vwi, estimated = est, actual = act, title = "vwi vs source")

Where:

1. x: An object of class sf or a data.frame including estimated and actual values
2. estimated: Target population estimates obtained by the pp_estimate function
3. actual: Actual population values
4. title: Scatterplot title (quoted)

pp_compare returns a list of elements with RMSE, MAE, linear regression, and R2 coefficient
information.

3 Numerical Experimentation

In this section, the results of the populR package are illustrated and further compared to sf and areal.
The analysis focus on implementation, comparison to a reference data set, and performance.

Case study

To examine the efficacy and efficiency of the populR extension based on actual data, a small part of
the city of Mytilini was chosen as the subject for a case study (Figure 2). The study area consists of 9
city blocks (src), 179 buildings (trg), and 911 residents.

Table 1 presents the data used in this case study. City block population counts were retrieved in
tabular format while city blocks (source - src) and buildings (target - trg) were provided in spatial
format. City block population counts and city blocks and buildings correspond to the 2011 Census of
Housing and Population (Hellenic Statistical Authority 2014).
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Figure 2: Part of the city of Mytilini used as the case study for numerical experiments. The study area
is represented by 9 city blocks and 179 buildings (in orange). The study area counts 911 residents.

Implementation

In this section, a demonstration of the sf, areal and populR packages takes place. First, the pack-
ages are attached to the script and next, populR built-in data are loaded. Then, areal interpolation
implementation follows for each one of the aforementioned packages.

For the reader’s convenience, names were shortened as follows: a) awi: populR AWI approach, b)
VWI: populR vwi approach, c) aws: areal using extensive interpolation and sum weights, d) awt: areal
using extensive interpolation and total weights, and e) sf : sf using extensive interpolation and total
weights.

# attach libraries
library(populR)
library(areal)
library(sf)

# load data
data("trg", package = "populR")
data("src", package = "populR")

# populR - awi
awi <- pp_estimate(target = trg, source = src, spop = pop, sid = sid,
method = awi)

# populR - vwi
vwi <- pp_estimate(target = trg, source = src, spop = pop, sid = sid,
volume = floors, method = vwi)

# areal - sum weights
aws <- aw_interpolate(trg, tid = tid, source = src, sid = 'sid',
weight = 'sum', output = 'sf', extensive = 'pop')

# areal - total weights
awt <- aw_interpolate(trg, tid = tid, source = src, sid = 'sid',
weight = 'total', output = 'sf', extensive = 'pop')
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Table 2: Implementation results obtained by awi, vwi, awt, aws and sf for 10 buildings of the study
area.

nr awi vwi aws awt sf
1 1.36 0.37 1.36 0.58 0.58
2 1.42 0.39 1.42 0.60 0.60
3 16.12 15.47 16.12 5.99 5.99
4 7.47 4.30 7.47 2.77 2.77
5 2.22 0.61 2.22 0.94 0.94
6 21.08 28.32 21.08 7.83 7.83
7 1.34 0.44 1.34 0.62 0.62
8 2.57 1.45 2.57 1.36 1.36
9 6.54 5.03 6.54 2.75 2.75

10 6.68 3.84 6.68 2.48 2.48

# sf - total weights
sf <- st_interpolate_aw(src['pop'], trg, extensive = TRUE)

Evidently, sf requires less arguments than populR and areal, which makes it very easy to imple-
ment. populR requires at least 5 arguments, and areal at least 7, which may increase the implementa-
tion complexity.

The study area counts 911 residents, as already mentioned in previous section. awi, vwi and aws
correctly estimated population values as they sum to 911, while awt and sf underestimated values.
This is expected as both methods use the total area of the source features during the interpolation
process and are useful when source and target features completely overlap.

Moreover, identical results were obtained by the awi and aws approaches, but somehow different
results were obtained by the vwi, as shown in Table 2.

Finally, visual representations of the results are shown in Figure 3.

Comparison to reference data

Due to confidentiality concerns, population data at the granularity of building are not publicly
available in Greece. Therefore, an alternate population distribution previously published in Batsaris et
al. (2019) was used as reference data (rf ). rf population values are also included in the build-in trg
data set.

Using the pp_compare function as shown in the example below, we investigated the statistical
relationship between rf and the results obtained by populR, areal, and sf packages.

# compare awi to rf
pp_compare(data, estimated = awi, actual = rf, title = "awi vs rf")

# compare vwi to rf
pp_compare(data, estimated = vwi, actual = rf, title = "vwi vs rf")

# compare sf to rf
pp_compare(data, estimated = sf, actual = rf, title = "sf vs rf")

# compare awt to rf
pp_compare(data, estimated = awt, actual = rf, title = "awt vs rf")

# compare aws to rf
pp_compare(data, estimated = aws, actual = rf, title = "aws vs rf")

Table 3 presents the results obtained for the first 10 individual buildings for each implementation
in comparison to rf values. Additionally, RMSE, MAE, and R2 values are measured and depicted in
Table 4 and finally, scatter diagrams provided in Figure ??.

Generally the scatter diagrams (Figure 4)) suggest strong and positive relationships in all cases.
However, the vwi approach obtained the best results and achieved the smallest RMSE (1.44824) and
MAE (0.9358159) values and the largest R2 (0.9878) value as shown in Table and Figure. Moreover,
aws and awi provided the same error and R2 measurements (RMSE: 5.325914, MAE: 2.748126 and
R2: 0.8215). sf and awt provided the same results and performed poorly in comparison to vwi by
obtaining the largest error measurements and the smallest R2 (RMSE: 7.416329, MAE: 3.664695, and
R2: 0.80367).
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Figure 3: Cartographic representation of the downscaling results acquired by a) awt (top-left), b) sf
(top-right), c) awi (center-left), d) aws (center-right), and e) vwi (bottom). awt and sf use the same
formula therefore, they provide similar results. Additionally, the same results obtained by aws and
awi as they are based on the same formula. vwi provide somehow different distribution because of
the influence of the volume weights during the interpolation process.

Table 3: Implementation results obtained by awi, vwi, awt, aws and sf for 10 buildings of the study
area in comparison to reference data (rf).

nr rf awi vwi aws awt sf
1 0.46 1.36 0.37 1.36 0.58 0.58
2 0.49 1.42 0.39 1.42 0.60 0.60
3 16.20 16.12 15.47 16.12 5.99 5.99
4 5.63 7.47 4.30 7.47 2.77 2.77
5 0.76 2.22 0.61 2.22 0.94 0.94
6 31.77 21.08 28.32 21.08 7.83 7.83
7 0.49 1.34 0.44 1.34 0.62 0.62
8 1.57 2.57 1.45 2.57 1.36 1.36
9 3.75 6.54 5.03 6.54 2.75 2.75

10 5.03 6.68 3.84 6.68 2.48 2.48

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 231

Table 4: RMSE, MAE and R2 values were calculated to assess the estimation accuracy using rf as the
control variable. vwi provide the best measurements.

Title RMSE MAE R2

rf vs vwi 1.45 0.94 0.988
rf vs awi 5.33 2.75 0.822
rf vs aws 5.33 2.75 0.822
rf vs sf 7.42 3.66 0.804
rf vs awt 7.42 3.66 0.804

Figure 4: Investigation of the relationship of the outcomes and reference data (rf) as the control
variable. a) rf vs awt, R2 = 0.804 (top-left), b) rf vs sf, R2 = 0.804 (top-right), c) rf vs aws, R2 = 0.822
(center-left), d) rf vs awi, R2 = 0.822 (center-right) and e) rf vs vwi, R2 = 0.988.
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Table 5: Execution time measurement comparisons (in milliseconds) using microbenchmark and
sample data

Name Min Mean Max
vwi 74.06 76.23 84.39
awi 74.31 75.91 99.70
aws 128.48 132.56 143.97
awt 172.08 176.27 185.86
sf 136.48 142.33 289.38

Table 6: Execution time measurement comparisons (in seconds) using microbenchmark and external
data

Name Min Mean Max
vwi 1.55 1.67 1.94
awi 1.55 1.68 1.95
aws 2.26 2.39 2.64
awt 2.27 2.42 2.62
sf 2.63 2.79 3.17

Performance

In this section, a performance comparison (execution times) takes place using the microbenchmark
package. Performance tests are carried out using the sample data provided by populR as well as
external data sets from a significantly larger study area (Chios, Greece) with 845 city blocks and 15,946
buildings.

Execution time measurements for both cases are shown in Tables 5 and 6 accordingly. In both
cases, execution time measurements suggest that populR performs faster than areal and sf. Using the
built-in data, awi and vwi scored the best mean execution time (about 76 milliseconds), which is about
54 millisecond faster than aws, 61 milliseconds faster than sf, and almost 70 milliseconds faster than
awt.

4 Conclusions

This study is an attempt to contribute to the continuously growing scientific literature of population
downscaling using areal interpolation methods. Despite the fact that there are so many downscaling
methods developed, only a few implementation tools are available to the GIS and R community, and
therefore, it may be challenging for non-expert GIS users to take advantage of these methods (Mennis
2009; Langford 2007). Due to this lack of implementation tools, this study attempts to fill this gap by
introducing populR, an R package for population downscaling using areal interpolation methods.

This package implements two areal interpolation methods, namely awi and vwi. The awi approach
guides the interpolation process using the area of intersection between source and target zones while
vwi uses the number of floors as additional information to influence the downscaling process. The
package is available to the R community though the CRAN and Github repositories.

In order to show the efficacy and efficiency of the introduced package on actual data, a subset
area of the city of Mytilini, Greece, was used in the case study. Moreover, a comparative analysis
between populR, areal, and sf was carried out, and the results showed that vwi outperformed others
by achieving the smallest error measurements, easy implementation and faster execution times. Thus,
we strongly believe that R users will gain significant advantage by using populR for population
downscaling.

The evaluation of the results indicates the potential of populR in providing better and faster results
in comparison to existing R packages. However, we believe that the results may be further improved
by incorporating new forms of data, such as Volunteered Geographic Information (VGI), acquired
from either social media or open spatial databases such as Open Street Map (Bakillah et al. 2014; Guo,
Cao, and Wang 2017; Yang et al. 2019; Comber and Zeng 2019). By incorporating VGI as ancillary
information, we can identify different types of buildings and therefore adjust the weight calculation
accordingly. This will be an important improvement that would be helpful for R users interested in
population downscaling.
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dycdtools: an R Package for Assisting
Calibration and Visualising Outputs of an
Aquatic Ecosystem Model
by Songyan Yu, Christopher G. McBride, Marieke A. Frassl, Matthew R. Hipsey and David P.
Hamilton

Abstract The high complexity of aquatic ecosystem models (AEMs) necessitates a large number of
parameters that need calibration, and visualisation of their multifaceted and multi-layered simulation
results is necessary for effective communication. Here we present an R package “dycdtools” that
contains calibration and post-processing tools for a widely applied aquatic ecosystem model (DYRESM-
CAEDYM). The calibration assistant function within the package automatically tests a large number
of combinations of parameter values and returns corresponding values for goodness-of-fit, allowing
users to narrow parameter ranges or optimise parameter values. The post-processing functions enable
users to visualise modelling outputs in four ways: as contours, profiles, time series, and scatterplots.
The “dycdtools” package is the first open-source calibration and post-processing tool for DYRESM-
CAEDYM, and can also be adjusted for other AEMs with a similar structure. This package is useful to
reduce the calibration burden for users and to effectively communicate model results with a broader
community.

1 Introduction

Aquatic ecosystem models are important tools to understand the structure and function of aquatic
ecosystems, fill observation gaps, and support scientific management of water quality of inland
waters (Jakeman et al., 2006). Processed-based aquatic ecosystem models represent the major physical,
chemical and biological processes as a series of mathematical equations, offering opportunities for
exploratory or predictive management applications (Frassl et al., 2019; Özkundakci et al., 2011). These
models are increasingly used to simulate observed data and forecast changes that may occur under
scenarios in a changing climate (Elliott, 2012; Nielsen et al., 2017; Rousso et al., 2020). A typical example
of such models is DYRESM-CAEDYM (DYnamic REservoir Simulation Model – Computational
Aquatic Ecosystem Dynamics Model), which has been developed from a one-dimensional coupled
hydrodynamic-ecological lake model (Hamilton and Schladow, 1997) and has been widely used to
simulate water quality and ecosystem processes for a large number of lakes and reservoirs (Cui et al.,
2016; Lewis et al., 2004; Takkouk and Casamitjana, 2016).

Aquatic ecosystem models, particularly those with a large number of physical and biogeochemical
parameters, need calibration before they can be used for reliable simulation outputs (Luo et al., 2018).
For example, water quality simulations with DYRESM-CAEDYM usually involve calibration of 20-30
parameters (e.g. 18 parameters in Luo et al. (2018); 28 parameters in Schladow and Hamilton (1997)).
Parameter values are usually chosen via trial and error (Takkouk and Casamitjana, 2016), parameter
ranges in the literature and modeller experience (Lehmann and Hamilton, 2018; Robson and Hamilton,
2004), laboratory experimental data (Robson and Hamilton, 2003), or small-scale field measurements
(Burger et al., 2008). The calibration process of stepwise iterative manual adjustment of parameters
is labour intensive and time consuming, partly due to the interdependent nature by which state
variables respond to individual parameter adjustments (Lehmann and Hamilton, 2018). The success of
calibration (i.e., ability to accurately reproduce a set of observed data) relies strongly on the skill and
experience of the modeller, and the calibration process is often considered to be complete when the
difference between observations and simulations is within an acceptable level of statistical compliance
(Hipsey et al., 2020).

Numerous development efforts are underway to provide assistance in the calibration process.
A promising approach is to take advantage of increasing computational power to overcome some
shortcomings of traditional manual calibration methods and to automatically trial a large number of
possible combinations of parameters in silico. For example, a model independent parameter estimator
tool, PEST (Parameter ESTimation), is able to carry out nonlinear parameter estimation for most
environmental simulation models (Doherty et al., 1994; Doherty, 2018). PEST has been widely used for
parameter calibration and to quantify errors in surface water and groundwater models (Christensen
and Doherty, 2008; Gallagher and Doherty, 2007; White et al., 2014), but has rarely been applied
in numerical lake models. In addition, multiple calibration assistant tools have been developed
for specific lake models, but many are not open-source or freely accessible to model users, limiting
their potential application to a broad community. Developing tools in a more open way to facilitate
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aquatic ecosystem model calibration and output processing can facilitate accessibility and create
user-friendly tools, as evidenced in the lake modelling community (Frassl et al., 2019). Such tools have
been developed for a range of lake models, including the Freshwater Lake Model (FLake), General
Lake Model (GLM), General Ocean Turbulence Model (GOTM) and Simstrat in the LakeEnsembleR
package (https://github.com/aemon-j/LakeEnsemblR). However, currently no such open-source
tools have been developed to assist calibration for the widely applied lake model, DYRESM-CAEDYM.

Visualisation is fundamental to studying complex subject matter and supporting the whole in-
formation pipeline, from acquiring and exploring data and analysing models, to visual analytics,
through to storytelling to communicate background information, results, and conclusions (McInerny
et al., 2014). Simulation results from lake models are often multi-layered across different depths,
multifaceted across different modelling variables, and dynamic over a simulation period, posing
difficulties in effective presentation for many end users. Although some lake models have a default
Graphical User Interface (GUI) to visualise modelling results for different layers and variables, the
built-in plotting functions in these GUIs are often limited and inflexible. For example, users are not
able to compare observations and simulations in the same figure using the current GUI in DYRESM,
undermining the ability of visual checks to assess goodness-of-fit to inform parameter calibration.

To bridge this gap, we demonstrate in this study the development and application of an R package
dycdtools for assisting calibration of DYRESM-CAEDYM and post-processing of simulation outputs.
A calibration assistant tool has previously been developed for DYRESM-CAEDYM (Luo et al., 2018),
but was coded in Fortran language and was not stored on an open platform, such as GitHub, to support
further development. By contrast, the dycdtools package designed to support additional development
can be freely downloaded and used by DYRESM-CAEDYM users. The package also includes advanced
tools to support visual assessments and enable effective communication of modelling outcomes. This
package not only works with DYRESM-CAEDYM but can be adjusted for other aquatic ecological
models with a similar structure, such as the General Lake Model (Hipsey et al., 2019).

In the following, we first describe briefly the structure of DYRESM-CAEDYM and the shortcomings
in its application that were the primary driver for development of dycdtools. We also present in detail
the structure of the R package, including a demonstration of the package through application to a
monomictic lake. We conclude with the development and application of calibration assistant and
visualisation tools for aquatic ecosystem models.

2 DYRESM-CAEDYM

DYRESM-CAEDYM consists of a hydrodynamic model DYRESM coupled with an ecological model
CAEDYM. DYRESM is one-dimensional and resolves vertical distributions of temperature, salinity and
density in lakes and reservoirs based on a dynamic Lagrangian layer structure, which simulates the
lake as horizontally uniform layers that expand and contract in response to heat, mass and momentum
exchanges (Gal et al., 2003). CAEDYM is an aquatic ecological model designed to simulate processes
affecting carbon, nitrogen, phosphorus, silicon and dissolved oxygen cycles, including several size
classes of inorganic suspended solids, and phytoplankton dynamics.

DYRESM-CAEDYM takes a wide variety of forcing and morphometry data and configuration files
as input to represent the major aquatic physical and biogeochemical processes. The required forcing
and morphometry data include meteorology, morphometry, inflows and outflows. Configuration files
allow users to adjust sensitive parameter values for a model simulation. It is the configuration files
that the auto-calibration function in dycdtools deals with, assuming that the forcing (e.g., meteorology,
inflows and outflows) and fixed data (morphometry) have been obtained from external sources
(Figure 1). The scientific foundations of DYRESM-CAEDYM and information on data input preparation
can be found in its scientific manual (Imerito, 2007) and in Robson and Hamilton (2004), Romero et al.
(2004), Luo et al. (2018).

DYRESM-CAEDYM is supported by a proprietary GUI, but the GUI provides limited means
to visualise simulation results. So far, only time series and contour plots are built in the GUI, and
they require users to take complex steps to plot the observation and simulation in the same figure.
The dycdtools package provides four different types of visualisation plots that could be used to
complement the default GUI and to examine model simulation results in more detail (Figure 1).

3 Structure of the dycdtools package

There are two main function categories in the dycdtools package: calibration assistant and post-
processing (Table 1). After the forcing and morphometry input data to DYRESM-CAEDYM have been
prepared, the calibration assistant function can be used to 1) choose the optimal set of parameter
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Figure 1: DYRESM-CAEDYM simulation process. The calibration assistant function in the dycdtools
package deals with the model configuration files (the top shading rectangle), while the post-processing
functions can be used to visualise model outputs (the bottom shading rectangle). *The calibration
assistant function works only on the Windows platform, as it needs to call the Windows executable of
DYRESM-CAEDYM to run model simulations, while the post-processing functions are cross-platform.

values for a model simulation application to a lake, or 2) conduct sensitivity analysis of parameters of
interest including using a Monte-Carlo parameter perturbation function. Post-processing includes
a suite of R functions to visualise DYRESM-CAEDYM output in multiple ways, such as contours,
profiles, time series, and scatterplots, for different simulation and observation depths (Table 1).

Calibration assistant function

The calibration assistant function carries out simulations with a large number of possible combinations
of parameter values that users regard as potentially suitable for their model calibration, and calculates
the values of nominated objective functions (i.e. statistical measures of goodness-of-fit) for each
combination. Based on the calculated objective function values, users can determine the optimal set(s)
of parameter values or narrow the ranges of possible parameter values. Note that the calibration
assistant function does not have the source codes of DYRESM-CAEDYM, but calls the Windows
executable of the lake model to run separate simulations with various combinations of parameter
values. For this reason, the calibration assistant function can only work on the Windows platform.

The calibration assistant function first requires that users prepare a list of sensitive parameters for
their simulation (Figure 2). The selection of sensitive parameters can be made by referring to previous
literature (Bruce et al., 2006; Robson and Hamilton, 2004; Schladow and Hamilton, 1997) or through
expert opinion (Lehmann and Hamilton, 2018) as well as by using a parameter sensitivity analysis,
which is a part of the calibration assistant function (Ofir et al., 2017). The list of selected sensitive
parameters should be prepared as comma-separated values (.csv) in a file input to the function. The
potential value range and the preferred number of values within the range for each parameter also
need to be defined by users in the csv file. To facilitate this process, an example csv file of many
common parameters has been included in the package data set, so that users can follow the given
format and adjust values to their specific case study.

Based on the user-defined potential value range and the preferred number of values, the calibration
assistant function forms all possible combinations of parameter values (Figure 2). For example, for
three parameters that have three different values, there are 33=27 possible combinations. Users can
choose to make the function try every possible combination for model calibration or only a subset
of randomly selected combinations. To help users deal with complicated situations where much
more parameter combinations are involved, the calibration assistant function is able to parallelise
DYRESM-CAEDYM simulations with multiple cores, which could substantially reduce model running
time.
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Table 1: List of functions in the dycdtools package for calibration assistant and post-processing and
their descriptions.

Function name Description Categories

calib.assist Apply different combinations of selected pa-
rameter values and output corresponding val-
ues of goodness-of-fit by calculating objective
functions. Users can choose the optimal set of
parameter values or refine potential parameter
value ranges based on the calculated values of
goodness-of-fit.

calibration assistant

plot_cont Contour plot (heat map) showing a depth- and
time-resolved matrix of biogeochemical vari-
ables.

post-processing

plot_prof Profile graph of simulations over time (only
for dates when observations are available),
with variable values shown in the x axis and
depth in the y axis.

post-processing

plot_ts Time series plot of simulations for one or mul-
tiple specific depths, with time as the x axis
and variable values as the y axis.

post-processing

plot_scatter Scatter plot with observations as the x axis and
simulations as the y axis. Points in the scatter
plot are colour coded by depth.

post-processing

For each of the combinations, the calibration assistant function makes changes to configuration files
and then calls the DYRESM-CAEDYM model to run simulations (Figure 2). After each model run, the
function extracts model outputs to compare against the observations and calculates objective function
values. Five commonly used objective functions are currently available in the package: Nash-Sutcliffe
Efficiency (NSE) coefficient, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Relative
Absolute Error (RAE), and Pearson’s r (Pearson), with more to be added in an update of the package
by referring to the inventory of different statistical measures in Bennett et al. (2013). The output of the
calibration assistant function is a table that outlines all combinations of parameters that were used and
the corresponding objective function values. Based on the output, users can determine the optimal
set(s) of parameter values (e.g., the set that gives the highest NSE value or highest weighted average
values for NSE and RMSE) or narrow the range of suitable parameter values.

Figure 2: Structure of the calibration assistant function. Three key inputs to the calibration assistant
function include a list of sensitive parameters and their assigned value ranges, objective functions,
and observation data. The function forms scenarios, runs DYRESM-CAEDYM model on each of the
scenarios, and outputs objective function values.

The calibration assistant function can also be used for parameter sensitivity analysis by automati-
cally modifying parameter values. Two commonly used methods for sensitivity analysis, One At a
Time (OAT) and All At a Time (AAT), can be carried out through this function by setting the “com-
bination” argument as “all” and preparing specifically designed parameter combinations. An OAT
analysis changes a single parameter at a time and is suitable for local sensitivity analysis, while ATT
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modifies multiple parameters simultaneously and is suitable for global sensitivity analysis, notably
when there are nonlinear relationships between parameter and model outputs. Increasing numbers
of environmental modelling studies report model uncertainty for a variety of purposes, including
assessment of model errors, model calibration communication and diagnostic evaluation (Couture
et al., 2018; Dietzel and Reichert, 2014; Pianosi et al., 2016). This function is also flexible, allowing
users to try a subset of randomly selected parameter combinations (e.g. Monte-Carlo parameter
perturbation) or a carefully selected combination by setting the “combination” argument as “random”.

Post-processing functions

Post-processing functions provide multiple ways to visualise DYRESM-CAEDYM outputs, as follows:

• Function “plot_cont” displays a heat map of variable values with depth within the water column
and over time. This visualisation is particularly suitable for displaying temporal and depth
dynamics of a variable at one lake site.

• Function “plot_prof” shows vertical profiles of the simulation and corresponding observations,
for all dates where observations are available.

• Function “plot_ts” plots simulated values and observations for a specified variable and depth
over time. It can be used to compare temporal changes of a variable for simulations and
observations at specific depths.

• Function “plot_scatter” shows observations against simulated values for corresponding time
and depth, with a colour scale representing measured depth. It can be used to demonstrate
visually the goodness of fit for a variable across the water column.

All four types of graphs can be used to compare simulations and observations in the same figure.
Examples of each type of graph are shown in the following section.

4 Minimal case study example

Lake Okareka is a medium size lake in the Bay of Plenty region of North Island, New Zealand. It has a
surface area of 3.46 km2, a land catchment area of 16.7 km2 and a maximum depth of 33.5 meters. Water
drains from the lake via an outlet canal towards a large downstream lake, Tarawera. The dycdtools
package was used to calibrate three parameters for the lake temperature simulation and visualise
the temperature simulation against observed data with the four aforementioned plotting functions.
The three calibrated parameters were wind stirring efficiency, vertical mixing coefficient, and light
extinction coefficient, as they have been found to be most sensitive in temperature simulations in other
lake systems (Weinberger and Vetter, 2012).

The simulations were conducted with forcing inputs (e.g., meteorology, inflows and outflow) at a
daily time step over the period of 2002-01-23 to 2016-12-31. The meteorology and outflow data were
respectively collected from the New Zealand National Climate Database (https://cliflo.niwa.co.
nz) and an environmental monitoring website (https://www.boprc.govt.nz/environment/maps-and-
data/environmental-data). Discharge output from a SWAT model application (unpublished) was
used as catchment surface inflow to the lake. All example data are provided in a public data repository
(https://doi.org/10.5281/zenodo.7431128) for users to familiarise themselves with model runs,
calibration and visualisation.

The calibration assistant function deals with the configuration files. In this simulation, both the
wind stirring efficiency and vertical mixing coefficient are in the parameter (.par) file, while the light
extinction coefficient is in the configuration (.cfg) file. We assigned a range and a preferred number of
values to try for each of the three parameters to form a sequence of possible values (Table 2).

Table 2: Three parameters that were calibrated with assigned value ranges and preferred number of
values to try (N_values). The columns of “Input file” and “Line No.” describe the line of the input file
where the parameter is located.

Parameter Unit Min Max N_values Input file Line No.

Wind stirring efficiency - 0.2 0.8 4 Okareka.par 12
Vertical mixing coefficient - 100 700 4 Okareka.par 15
Light extinction coefficient m-1 0.1 0.25 4 Okareka.cfg 7
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The calibration assistant function tried all combinations of the three parameter values and calcu-
lated the objective function NSE for each model run. We chose the combination of parameter values
that gave the highest NSE values as the optimal set and then used the post-processing tools to plot
simulations against observations in four different ways. The R code for using the calibration assistant
function in this example is as follows:

# Assisting calibration of DYRESM-CAEDYM using the dycdtools package
library(dycdtools)
calib.assist(cal.para = "calibration_data/Calibration_parameters.csv",

combination = "all",
model.var = "TEMP",
obs.data = "calibration_data/Obs_data_template.csv",
objective.function = "NSE",
start.date = "2002-01-23",
end.date = "2016-12-31",
dycd.wd = "calibration_data/DYRESM_CAEDYM_Lake-Okareka/",
dycd.output = "calibration_data/DYRESM_CAEDYM_Lake-Okareka/DYsim.nc",
file.name = "calibration_data/Calibration_outputs.csv",
write.out = TRUE,
parallel = TRUE,
verbose = TRUE)

Given each parameter had four assigned values, the calibration assistant function called DYRESM-
CAEDYM to run a total of 43 = 64 combinations for the three parameters. For each model run, the
objective function NSE was calculated for temperature simulations. A heat map is a good way to
visualise the variations in these NSE values under different combinations of parameter values. An
example of R code for producing a heat map of the auto-calibration outcome is as follows:

# Read in model calibration results
calibration <- read.csv("calibration_data/Calibration_outputs.csv")

# Heat map
library(ggplot2)
ggplot(calibration, aes(x = wse,y = vmc,fill = NSE.TEMP)) +

geom_tile() +
scale_fill_distiller(palette = "PuBu", direction = 1) +
facet_grid(~lec, scales = "free") +
xlab("Wind stirring efficiency") +
ylab("Vertical mixing coefficient") +
labs(title = "Light extinction coefficient", fill = "NSE") +
theme_bw() +
theme(plot.title = element_text(size = 11, hjust = 0.5))

ggsave(filename = "Figure_03.png", width = 8, height = 4)

The calculated NSE values varied significantly among the combinations, ranging from 0.03 to 0.95.
The combination of wind stirring efficiency = 0.6, vertical mixing coefficient = 500, and light extinction
coefficient = 0.25 m-1 achieved the highest NSE value of 0.95 (i.e., considered to be the optimal set of
parameter values) (Figure 3).

A few other combinations could also achieve similar outcomes. For example, when the light
extinction coefficient = 0.25 m-1, the NSE values ranged between 0.90 and 0.95, regardless of the wind
stirring efficiency and vertical mixing coefficient values shown in Table 2. Figure 3 also revealed that
temperature simulations were generally poor when light extinction coefficient = 0.1 and 0.15 m-1,
suggesting that these values of light extinction coefficient are too low to achieve a suitably accurate
temperature simulation for Lake Okareka.

Under the optimal set of parameter values identified from the calibration assistant function
(Figure 3), we re-ran the DYRESM-CAEDYM model and visualised the temperature simulations with
the four post-processing functions. An example R code for visualisation functions is shown preceding
the corresponding figure.

The temperature simulations in Lake Okareka displayed a clear and consistent seasonal pattern.
Temperature was up to 24 °C in the summer season and was below 10 °C in the winter (Figure 4).
The simulation contour plot showed that the thermocline of Lake Okareka (the layer of most rapid
temperature change) was around 15 m in summer, but the lake always mixed in winter (Figure 4),
corresponding to isothermal conditions over the water depth, suggesting a monomictic lake mixing
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Figure 3: Heat map of Nash-Sutcliffe Efficiency (NSE) coefficient values for temperature simulations
in Lake Okareka estimated for the combinations of three parameters given in Table 2 (wind stirring
efficiency, vertical mixing coefficient, and light extinction coefficient [m-1]). The darker the colour, the
better the model performance (measured as NSE).

regime. Observations are shown as dots in Figure 4 and match well with simulations both spatially
(i.e., vertically) and temporally (i.e., horizontally).

# Extract temperature simulations
var.values <- ext_output(dycd.output = "DYCD_Okareka/DYsim.nc",

var.extract = c("TEMP"))

# Interpolation of temperature across water column at an interval of 0.5 m
temp.interpolated < -interpol(layerHeights = var.values$dyresmLAYER_HTS_Var,

var = var.values$dyresmTEMPTURE_Var,
min.dept = 0, max.dept = 33, by.value = 0.5)

# Read in observed water quality data
obs.okareka <- read.csv("plotting_data/Obs_data_template.csv")
obs.okareka$Date <- as.Date(obs.okareka$Date,format="%d/%m/%Y")
# subset observed data to remain temperature observations
obs.temp <- obs.okareka[, c('Date','Depth','TEMP')]

# Contour plot
png(filename = 'Figure_04.png', width = 1200, height = 700)
plot_cont_com(sim = temp.interpolated,

obs = obs.temp,
plot.start = "2002-01-23",
plot.end = "2006-12-31",
sim.start = "2002-01-23",
sim.end = "2016-12-31"
legend.title = "T\n(\u00B0C)",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
nlevels = 20)

dev.off()
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Figure 4: Example contour plot of temperature simulations and observations for Lake Okareka from
2002-01-23 to 2006-12-31. Each dot represents an observation at a specific depth on a specific date.
Dots are colour coded on the same scale (right-hand side) as the simulation.

Simulations and observations of temperature with depth are shown in Figure 5 for the dates when
observations were available. The vertical profiles provide a more discerning view of details such as the
thermocline depth in Lake Okareka. The simulated temperature profile mostly aligned well with the
observed profile but had a tendency to overestimate the depth of the thermocline in the first summer
(early 2002), whilst capturing the timing of mixing (little or no temperature gradient) in winter.

# Profile plot
plot_prof(sim = temp.interpolated,

obs = obs.temp,
sim.start = "2002-01-23",
sim.end = "2016-12-31",
plot.start = "2002-01-23",
plot.end = "2002-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
xlabel = "Temperature \u00B0C")

ggsave(filename = "Figrue_05.png", height = 4, width = 7)
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Figure 5: Example profile plots of temperature simulations (black line) and observations (brown dots)
for Lake Okareka from 2002-01-23 to 2002-12-19, available for each observation occasion. The profile
plots shows a seasonable pattern of stratification and mixing in the lake over the 12 months time, and
the model was able to repeat the pattern.

The time series figure displays temperature simulations as a continuous line for a specific depth
over the entire simulation period, with observations shown as dots (Figure 6). The temperature in the
surface of the lake (1 m deep) varied strongly over the years, with a clear seasonal pattern, while at
mid-depth (14 m deep) it varied to a lesser degree but showed a similar pattern, and in the near-bottom
(30 m deep) layer it remained relatively unchanged.

# Time series plot
p <- plot_ts(sim = temp.interpolated,

obs = obs.temp,
target.depth = c(1, 14, 30),
sim.start = "2002-01-23",
sim.end = "2016-12-31",
plot.start = "2002-01-23",
plot.end = "2012-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5,
ylabel = "Temperature \u00B0C")

rmse_dpt01 <- objective_fun(sim = temp.interpolated[2:4,],
obs = obs.temp[obs.temp$Depth == 1, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 0.5,
max.depth = 1.5,
by.value = 0.5)

rmse_dpt14 <- objective_fun(sim = temp.interpolated[28:30,],
obs = obs.temp[obs.temp$Depth == 14, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 13.5,
max.depth = 14.5,
by.value = 0.5)
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rmse_dpt30 <- objective_fun(sim = temp.interpolated[60:62,],
obs = obs.temp[obs.temp$Depth == 30, ],
fun = c('RMSE'),
start.date = '2002-01-23',
end.date = '2016-12-31',
min.depth = 29.5,
max.depth = 30.5,
by.value = 0.5)

rmse_text <- data.frame(x = as.Date('2007-06-01'),
y = 25,
Depth = c(1, 14, 30),
label = c(paste0('RMSE = ', round(rmse_dpt01$RMSE,2), ' \u00B0C'),

paste0('RMSE = ', round(rmse_dpt14$RMSE,2), ' \u00B0C'),
paste0('RMSE = ', round(rmse_dpt30$RMSE,2), ' \u00B0C')))

p + ylim(8,26) +
geom_text(data = rmse_text,

mapping = aes(x = x, y = y, label = label))

ggsave(filename = 'Figure_06.png', height = 4, width = 7)

Figure 6: Example time series plot of temperature simulations (black line) and measurements (brown
dots) for three depths (upper row box; 1 m – near-surface layer, 14 m – middle layer close to the
thermocline, and 30 m – near-bottom layer) of Lake Okareka from 2002-01-23 to 2012-12-31. The RMSE
values calculated from the ’objective_fun’ function in the package are also shown for each depth
profile.

The scatter plot compares all temperature simulation values against observations denoted as dots
in a Cartesian coordinate system, with a reference line of y=x to indicate the ideal fit (1:1) of simulations
to observations. Each point is colour coded by depth. The majority of dots were close to the reference
line, indicating good performance of DYRESM-CAEDYM in the temperature simulation (Figure 7).
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# Scatter plot
plot_scatter(sim=temp.interpolated,

obs=obs.temp,
sim.start="2002-01-23",
sim.end="2016-12-31",
plot.start = "2002-01-23",
plot.end="2012-12-31",
min.depth = 0,
max.depth = 33,
by.value = 0.5)

ggsave(filename = 'Figure_07.png', height = 4, width = 7)

Figure 7: Example scatterplot of temperature simulations and observations for Lake Okareka from
2002-01-23 to 2012-12-31. Note that the dots are colour coded by depth. The red line is a 1:1 slope, i.e.,
simulated temperature = observed temperature. The plot indicates a good model performance as the
majority of the dots are located around the black line.

5 Discussion

Aquatic ecosystem models have increasingly been used to shed light on lake ecosystem function
(Scheffer et al., 2001) and inform policy and management decisions to improve water quality and
control eutrophication (Wang et al., 2012). With progressive increases in the number and complexity of
processes represented, and increasing computational power, these models have increased in complexity
and have a large number of parameters. These types of models generally require extensive calibration
to be suitable for lake-specific simulations, which is quite challenging, despite the development of
parameter priors libraries (Robson et al., 2018) that can help with understanding possible ranges of
parameters and synthesise values used in other studies. In addition, multifaceted and multi-layered
modelling results need to be visualised in various ways to express model uncertainty and communicate
effectively with a broader community that may be engaged in understanding and interpreting the
implications of model scenarios. Here, we have presented an open-source R package dycdtools to help
address these challenges in calibrating a widely used aquatic ecosystem model DYRESM-CAEDYM
and visualising its simulation results. Importantly, this package has the potential to be adjusted for
other aquatic ecological models with a similar structure.

Calibration assistant function

The output of the calibration assistant function in the dycdtools package is a list of combinations of
parameter values with their objective function values, rather than a single optimal set of parameter
values provided by many auto-calibration algorithms, such as the auto-calibration module in the
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RAPID model developed in David et al. (2011), the auto-calibration algorithm proposed in Luo et al.
(2018), and the Genetic Algorithm developed in Goldberg and Holland (1988). We chose not to
provide a single parameter set partly due to the potential for parameter equifinality (Beven and
Binley, 1992), a classical problem of optimisation where different sets of parameter values may provide
similar simulation fit to observations. This problem is particularly pertinent for complex aquatic
ecosystem models (e.g., DYRESM-CAEDYM) that include a large number of parameters. Many studies
illustrated the difficulties of finding a single optimal set of parameter values in the high-dimensional
parameter space, due to inter-correlation between parameters and autocorrelation of the residuals
(Fernández Slezak et al., 2010; Gupta et al., 2006). Therefore, instead of using an auto-calibration
algorithm to decide the optimal set of parameter values, we suggest users compare those combinations
of parameter values that result in high objective values and manually choose the combination that
they believe is the most physically meaningful. Such a process aligns with the concept of development
of user expertise and knowledge that are critical for successful model applications (Hipsey et al., 2015).

It is worth noting that an objective function is a means to characterise the performance of environ-
mental models, and is useful and often necessary (Bennett et al., 2013). A substantial body of work has
been done to propose methods and criteria to judge the performance of environmental models, often
for hydrological models (Jakeman et al., 2006; Krause et al., 2005) and less frequently for ecological
models (Risbey et al., 1996). Many of the proposed objective functions have been summarised in
Bennett et al. (2013) and can be applied to characterise performance of lake models. Five of the
most commonly used objective functions have been included in the current package, and we plan to
add functions to give users more choices of characterising model performance and to better inform
parameter calibration.

Given that it is not realistic to expect any one set of parameter values to be truly representative of
the actual parameter set (Beven and Binley, 1992), it is also important to convey the accuracy of the
simulations and the associated uncertainties. In lake modelling, multi-parameter perturbation has
been conducted using Monte-Carlo techniques to inform parameter uncertainty effects (Luo et al.,
2018; Muraoka, 2019). The calibration assistant function developed here can be used to carry out such a
sensitivity analysis by perturbing multiple parameters within a certain range when the “combination”
argument is set to “random”. User expert knowledge (Lehmann and Hamilton, 2018) and parameter
priors libraries (Robson et al., 2018) are also valuable in narrowing parameter ranges which can be
important in reducing computation times of calibration and sensitivity analysis, as well as reducing
the incidence of common issues such as equifinality.

Suggestions on the use of calibration assistant function

The calibration assistant function developed in this study is not intended to replace manual calibration,
rather, it is aimed to save time assigned to calibration and sensitivity analysis by automatically trialling
a number of parameter values so as to bring a focus to the range of sensitive parameter values. We
recommend manual calibration as a means to develop expert knowledge about model parameter
values, in an iterative procedure that includes assistant calibration and sensitivity analysis, as well
as literature review of parameters. We also recommend a combination of OAT and AAT calibration,
with the former used to better understand individual responses of parameters and the latter used with
care because exponentially large numbers of possible parameter value combinations are possible and
computational times could become untenable even with parallel processing enabled. For example, in
the case of 10 parameters where each parameter has three possible values, the total number of possible
combinations is 310 = 59,049. If each model run takes 2 minutes, then it would take 59,049 × 2 = 118,098
minutes (> 32 days) to run these combinations.

Manual calibration has also been used as a way to work around the difficulties with weighting
and prioritising state variables using an auto-calibration procedure (Lehmann and Hamilton, 2018).
Therefore, while acknowledging the benefits of assistant calibration in trialling a number of parameter
values without the heavy time burden of manual adjustment, we encourage users to actively engage
in the calibration process. More specifically, users may first define suitable value ranges of various
parameters from the literature (including other modelling studies) and lab or field experiments (Robson
et al., 2018), and then conduct both manual and automated sensitivity analysis to understand which
parameters are sensitive and should be more strategically evaluated. Finally, users can apply both the
calibration assistant function and manual calibration to optimise parameter values. This process can
be repeated multiple times until users are satisfied with accuracy of the simulations, assessed using
quantitative output statistics and qualitative comparisons with observed data.
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Visualisation of model outputs

Visualisation of model outputs is an important tool for effectively engaging academic, the public
and environmental managers in expressing model uncertainty, and as a prerequisite for improving
confidence in scenario simulations. This is particularly true for multidimensional model outputs that
are intangible, and visualisation has a fundamental role in exploring information and generating
understanding (McInerny et al., 2014). The dycdtools package expands on existing lake model
visualisation tools, such as contours, profiles and time series used by the glmtools and LakeEnsemblR
packages, by providing additional functionality including scatterplots. Each of the plotting functions
is designed to best suit different presentation purposes, as outlines in the "Post-processing functions"
Section. We anticipate that the developed visualisation tools in dycdtools package can not only
complement the existing associated GUI by providing more flexible ways of visualising DYRESM-
CAEDYM model outputs, but can also be adapted for other lake ecosystem models, such as the
General Lake Model (Hipsey et al., 2019) and the Fresh-water Lake Model for LM (Mironov et al.,
2010).

In summary, dycdtools is a modular, flexible, and open-source tool that is designed to make
the calibration process of the DYRESM-CAEDYM model substantially less time-consuming and to
visualise complex modelling results in multiple ways for effective communication. It is suitable for
users with various levels of expertise. This study places great emphasis on tools to evaluate the quality
of model calibration as many of these models need to provide robust simulations that form the basis
of scenario simulations, often designed to evaluate different management and environmental (e.g.,
climate change, land use change) scenarios.
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SurvMetrics: An R package for Predictive
Evaluation Metrics in Survival Analysis
by Hanpu Zhou, Hong Wang, Sizheng Wang and Yi Zou

Abstract Recently, survival models have found vast applications in biostatistics, bioinformatics,
reliability engineering, finance and related fields. But there are few R packages focusing on evalu-
ating the predictive power of survival models. This lack of handy software on evaluating survival
predictions hinders further applications of survival analysis for practitioners. In this research, we
want to fill this gap by providing an "all-in-one" R package which implements most predictive
evaluation metrics in survival analysis. In the proposed SurvMetrics R package, we implement
concordance index for both untied and tied survival data; we give a new calculation process of
Brier score and integrated Brier score; we also extend the applicability of integrated absolute error
and integrated square error for real data. For models that can output survival time predictions, a
simplified metric called mean absolute error is also implemented. In addition, we test the effectiveness
of all these metrics on simulated and real survival data sets. The newly developed SurvMetrics R
package is available on CRAN at https://CRAN.R-project.org/package=SurvMetrics and GitHub
at https://github.com/skyee1/SurvMetrics.

1 Introduction

Survival analysis is an important part of biostatistics. It is frequently used to define prognostic indices
for mortality or recurrence of a disease, and to study the outcome of treatment (Wang et al., 2019;
Wijethilake et al., 2021; Fan et al., 2016; Wiens et al., 2016). Recent decades have witnessed many other
applications of survival analysis in various disciplines such as finance, engineering and social sciences
(Steyerberg et al., 2010; Bender et al., 2021; Wang et al., 2019). Evaluating the ability to predict future
data is one of the most important considerations in the development of these survival models (Wang
et al., 2019).
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Figure 1: Frequency of survival model evaluation metrics appearing in journals such as "Annals of
Statistics", "Biometrika", "Journal of the American Statistical Association", "Journal of the Royal Statistical
Society, Series B", "Statistics in Medicine", "Artificial Intelligence in Medicine", "Lifetime Data Analysis" from
2010 to 2021.

When evaluating a prediction model, the predictive performance of the survival model is com-
monly addressed by appropriate measures which quantify the ’distance’ or the agreement between
the observed and predicted outcomes (Uno et al., 2011; Bylinskii et al., 2018). By investigating the
predictive measures frequently used in the statistical literature (top or specialized statistical journals)
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in the past decade (from 2010 to 2021) in Figure 1 and Figure 2, we have found that among these 136
research papers, the popular predictive metrics for survival models mainly include: concordance index
(C-index), Brier score (BS), integrated Brier score (IBS), integrated absolute error (IAE), integrated
square error (ISE) and mean absolute error (MAE) (Harrell et al., 1982; Brier, 1950; Graf et al., 1999;
HooraMoradian et al., 2017; Schemper, 1992).
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Figure 2: This graphic shows the percentage of metrics appearing from 2010 to 2021 in journals such
as "Annals of Statistics", "Biometrika", "Journal of the American Statistical Association", "Journal of the Royal
Statistical Society, Series B", "Statistics in Medicine", "Artificial Intelligence in Medicine", "Lifetime Data
Analysis". It indicates that the use of C-index is steadily increasing and it has become a dominant
predictive measure recently. Meanwhile, other metrics do not have an adequate seat in survival
prediction practices.

From Figure 1, we can see that the two most frequently used metrics are C-index and IBS, while
the other metrics are less used. This may be partly due to the fact that the available predictive metrics
are scattered across several R packages, and differences in input data of these tools make it difficult
for non-specialists to use or compare the survival models (Schröder et al., 2011; Peters and Hothorn,
2021). Hence, software which provides easy input data formats and includes most popular metrics is
desirable (Schröder et al., 2011; Wang et al., 2019).

Figure 2 indicates that the use of C-index is steadily increasing and it has become a dominant
predictive measure recently (Jing et al., 2019; Amico et al., 2021). On the one hand, this implies that
the lack of handy evaluation metrics tools since other measures are also very important in survival
analysis but do not have an adequate seat in survival prediction practices (Nemati et al., 2021; Li et al.,
2021; Ensor et al., 2021). On the other hand, it reminds us that providing an accurate C-index measure
which can take various situations into account is extremely important (H Ea Gerty and Zheng, 2005;
Kang et al., 2015; Zadeh and Schmid, 2020; Zhang et al., 2021).

Different from common classification or regression problems where tools to evaluate predictive
performance are abundant, there are few R packages focusing on evaluating the predictive power of
survival models (Harrell Jr, 2021; Peters and Hothorn, 2021). To make things worse, most of these
available packages have implemented only one or two evaluation metrics and/or some of them often
throw errors in real survival problems (Peters and Hothorn, 2021). Take the C-index for an example,
if the user wants to compare two samples with the same survival time, this scenario returns NA in
Hmisc, survivals, and survcomp packages. However, as described by Ishwaran et al. (2008), "for
sample pairs, where observed time Xi = Xj and both are deaths, count 1 if predicted outcomes are
tied." This error is mainly due to the fact that the above packages ignore this possible scenario in
practice. Omitting such scenarios can result in the loss of information from survival data, especially
when the sample size is small with high data collection costs. In SurvMetrics, we have implemented
the method described by Ishwaran et al. (2008) to cover all tied scenarios. There are also functions
available in the ipred package to calculate BS and IBS values, but a list of survfit objects is required
in the calculation process (Peters and Hothorn, 2021). However, for most survival models, only a
survival probability vector or matrix is provided, making calculations of such values a challenging
problem (Ishwaran et al., 2008). It is not easy for non-specialists to get IBS using the ipred package
directly on the survival model results.

We argue that an appealing survival evaluation metric tool should satisfy the following two
properties. First, the evaluation metrics should not depend on any specific model and they can be
applied to evaluating survival models without specifying a specific model form (Schröder et al., 2011).
Second, the metrics should be computationally tractable and user has the choice to input only the
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fitted model without any additional processing, especially for the non-specialist (Harrell et al., 1982;
Graf et al., 1999; HooraMoradian et al., 2017; Ishwaran et al., 2008).

In this research, we are trying to develop a comprehensive and effective R package with the above
two properties. In the proposed SurvMetrics package, the calculation process of most metrics does
not depend on the specific model form and only predicted survival probability vector (or matrix)
is needed. This feature is particularly desirable for non-statistical researchers such as clinical and
financial practitioners (Ali et al., 2021). To illustrate the effectiveness of our tool, we choose two popular
survival models, namely, a semi-parametric Cox model and a non-parametric random survival forest
model (RSF) to check and test the provided functionalities (Cox, 1972; Ishwaran et al., 2008).

2 Predictive evaluation metrics in survival analysis

In this section, we will present the survival model evaluation metrics and some implementing details.
The following Table 1 presents some popular R packages and the metrics they provide.

Packages C-index BS IBS IAE ISE MAE
survival ! % % % % %

Hmisc ! % % % % %

survcomp ! ! ! % % %

ipred % ! ! % % %

mlr % % % % % !

SurvMetrics ! ! ! ! ! !

Table 1: R packages that are commonly used to evaluate survival predictions.

As can be seen in Table 1, the proposed SurvMetrics package implements all popular evaluation
metrics, while other packages mostly implement just one or two. With our SurvMetrics package, one
can compare and evaluate different survival models in a convenient and comprehensive way.

C-index

The most popular evaluation metric in survival predictions is C-index (Harrell et al., 1982; Li et al.,
2016; Lee et al., 2018; Devlin and Heller, 2021; Subramanian et al., 2020; Hsu and Lin, 2020; Zadeh and
Schmid, 2020; Zhang et al., 2021; Wang and Zhou, 2017; Wang and Li, 2019), which is a generalization
of the ROC curve (H Ea Gerty and Zheng, 2005; Obuchowski, 2006; Kang et al., 2015; Li et al., 2016).
C-index intends to measure the proportion of predictions of the binary survival status that agree with
the true survival status. If the study is concerned with the comparison of survival probability between
different samples, for example, which component in the device shows damage earlier, the C-index can
be used.

To calculate the values of C-index from different models, Hmisc, survcomp and survival R
packages are frequently used in practice (Harrell et al., 1996; Schröder et al., 2011; Therneau, 2021;
Harrell Jr, 2021). All the above-mentioned packages in their current versions do not consider the cases
of tied survival data, i.e., samples with the same survival time. As shown in Table 3, they return 0
or NA for all cases of survival data tied. However, in practice, cancer patients are usually surveyed
annually or monthly after surgery for survival status and with the advent of big data, tied samples are
becoming commonplace. Simply ignoring the presence of tie data in calculating C-index will result in
evaluation bias among survival models.

Meanwhile, in the calculation of the C-index, not all sample pairs are comparable, e.g., for those
pairs whose shorter survival time is censored. So it is necessary to filter the sample pairs (i, j) that
can be compared in the calculation, i and j denote any two samples in the data set, respectively. By
defining the comparable sample pair in the following way, when npij = 1, all comparable sample
pairs described by Ishwaran et al. (2008) can be covered.

In the proposed R package, we will take a similar strategy adopted in Ishwaran et al. (2008). δi
denotes the survival status of sample i (0 means censoring, 1 means event), Yi and Xi represent the
predicted survival time and the observed survival time, respectively. By defining csign and sign, we
can easily distinguish which sample pairs meet the concordance and which are not.

(a) The comparable sample pair is defined as:

npij

(
Xi, δi, Xj, δj

)
= max(I

(
Xi ⩾ Xj

)
δj, I

(
Xi ⩽ Xj

)
δi). (1)
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(b) The complete concordance (CC) is defined as:

CC = ∑
i,j

I(sign(Yi, Yj) = csign(Xi, Xj)|npij = 1), (2)

where
sign(Yi, Yj) = I

(
Yi ⩾ Yj

)
− I

(
Yi ⩽ Yj

)
(3)

and
csign(Xi, δi, Xj, δj) = I(Xi ⩾ Xj)δj − I

(
Xi ⩽ Xj

)
δi. (4)

(c) We derive the partial concordance (PC):

PC = ∑
i,j

I
(

Yi = Yj | npij = 1, Xi ̸= Xj

)
+ I

(
Yi ̸= Yj | npij = 1, Xi = Xj, δi = δj = 1

)
+ I

(
Yi ≥ Yj | npij = 1, Xi = Xj, δi = 1, δj = 0

)
.

(5)

(d) The C-index value can be given by:

C-index =
concordance
permissible

=
CC + 0.5 × PC

∑i,j npij(Xi, δi, Xj, δj)
, (6)

From the above, we know C-index lies between 0 and 1 and usually the larger the C-index, the
more accurate prediction the model can get.

To further illustrate the proposed Cindex() function in SurvMetrics with other packages, we first
give a toy example in Table 2.

sample S1 S2 S3 S4 S5 S6 S7 S8
time 1 1 2 2 2 2 2 2
status 0 1 1 0 1 1 0 1
predicted 0.2 0.3 0.3 0.3 0.4 0.2 0.4 0.3

Table 2: A simulation data set which can include all the possible sample pairs, where time and status
are the observed survival time and survival status of samples S1...S8, respectively, and predicted is the
survival probability predicted by survival models.

Based on the above information, different R packages will take different ways to deal with these
predictions. We summarize these calculation differences behind these R packages in Table 3.

sample pair (S1, S2) (S3, S5) (S3, S6) (S3, S8) (S4, S5) (S5, S6) (S5, S8) (S6, S8)
Hmisc 0 NA NA NA 0 NA NA NA
survival 0 NA NA NA 0 NA NA NA
survcomp NA NA NA NA NA NA NA NA
SurvMetrics 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5

Table 3: Differences of C-index calculated by the Hmisc package, the survival package, the survcomp
package and the SurvMetrics package.

From the above, we can find that when ignoring part or all of the information from tied sample
pairs, the C-index values obtained from Hmisc and other two packages cannot reflect the predictive
powers of survival models in a true manner. In this case, one can turn to the Cindex() function in
SurvMetrics package for help.

BS

BS is another commonly used metric in survival analysis (Steyerberg et al., 2010; Chicco et al., 2021;
Imani et al., 2019; Pakbin et al., 2018), which measures the mean squared error between the observed
progression status and the predicted survival probability at time t∗. Thus, a lower BS usually indicates
a better prediction model. BS focuses on the residuals between the predicted survival probability and
the survival status at a fixed time point. If the study is concerned with the prediction probability of a
model at a fixed time point, BS can be chosen as the metric. For example, the 10-year average survival
probability of cancer patients.
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In the SurvMetrics R package we will take the most classical method to calculate the BS by
weighting the prediction residuals with inverse probability censoring weights (IPCW) proposed by
Graf et al. (1999):

BS(t∗) =
1
N

N

∑
i=1

[
(Ŝ(t∗|zi))

2

Ĝ(Xi)
· I(Xi < t∗, δi = 1) +

(1 − Ŝ(t∗|zi))
2

Ĝ(t∗)
· I(Xi ≥ t∗)

]
, (7)

where t∗ is the time point at which BS is to be calculated, N is the sample size, zi is the covariates
of instance i, Ŝ(·) is the survival function predicted by the model, Ĝ(·) denotes the weight for the
instance which is estimated by the KM(Kaplan–Meier) estimator of the censoring distribution.

According to the definition of BS, its value depends on the selection of t∗ provided by the user and
different choices of t∗ will always lead to different BS values (Chew et al., 2001; Li et al., 2021; Zhu
and Kosorok, 2012; Ji et al., 2020). In the Brier() function of our SurvMetrics R package, t∗ is set to
median survival time as default.

IBS

As we can see above, BS depends partly on the choices of a user-specified time point. It makes
the comparison between models somewhat difficult when we want to know an average prediction
performance over all prediction times. In practice, the integral of BS or IBS, which does not depend on
the selection of one time point, is more widely used when we are interested in the entire time interval
(Zhu and Kosorok, 2012; Periáñez et al., 2016; Bertens et al., 2017). IBS is more concerned with the
residuals at all observed time points. When the time of interest is no longer a specific time point, IBS
can provide more information than BS. For example, the probability of survival of a cancer patient for
each year after the disease.

The definition of IBS is straightforward:

IBS =
1

max
i

(Xi)

∫ max
i

(Xi)

0
BS(t)dt. (8)

But the calculation of IBS using sbrier() function from the ipred package does not always go
smoothly (Peters and Hothorn, 2021) . If a list of survfit objects is incorrectly specified, then the
package currently returns a particular error:

‘Error in switch(ptype,survfit = { : EXPR must be a length 1 vector} ’

In our experience, this kind of error is common, especially for the non-specialists (Peters and
Hothorn, 2021).

In the SurvMetrics package, we will make life easier for non-specialists. Users only need to input
survival time, survival status, the predicted survival probability matrix and the range of integration
to the IBS() function, and our program will take care of all the rest work and give a correct output.
Similar to BS, a smaller IBS value usually implies a more accurate survival model.

IAE and ISE

Another two evaluation metrics, namely, IAE and ISE are also occasionally used to compare the
difference between the estimated survival function Ŝ(·) and the true survival function S(·) in terms of
L1 and L2 paradigms, respectively. When the purpose of the model is to approximate the theoretical
distribution function, IAE and ISE can be selected as the metrics. HooraMoradian et al. (2017); Zou
et al. (2021). The IAE and ISE can be defined as:

IAE =
∫

t
|S(t)− Ŝ(t|X)|dt (9)

and
ISE =

∫
t
(S(t)− Ŝ(t|X))2dt, (10)

where X is the covariate of the training set.

Since the true survival functions are usually unknown beforehand, traditional IAE and ISE methods
are only applicable to simulation scenarios. Here, we propose to approximate S(t) using the non-
parametric KM estimator in the IAEISE() function and this makes IAE and ISE also suitable for real
data study. Similar to IBS, a smaller IAE and ISE values lead to a more accurate model.
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MAE

The last evaluation metric presented here is MAE (Schemper, 1992), which can be used to measure the
residuals of observed survival time versus predicted survival time, for example, to predict the time to
damage of the device. MAE is a better choice than BS if predicted survival time is a model’s output.
The definition of MAE is shown below:

MAE =
1
n

N

∑
i=1

(δi |Yi − Xi|) , (11)

where n is the event sample size.

MAE only estimates the average absolute error between the predicted survival time and the true
survival time in the uncensored samples and is rarely used in practice. For consistence, we also
provide this metric in the MAE() function. Similar to MSE, the lower the MAE, the higher the accuracy
of prediction.

3 Simulations and examples

In this section, we will use some simulated and real survival data sets to illustrate the effectiveness of
the metrics provided in the SurvMetrics package.

The performance of SurvMetrics on simulation data sets

First, Cox proportional hazard models will be fitted on three simulated scenarios which are very
similar to Settings 1–4 by Steingrimsson et al. (2019). Scenario1 satisfies the proportional hazards
assumption and others violate it.

Scenario1: This data set is created using N independent observations, where the covariate vector
(W1, ..., Wp) is multivariate normal with mean zero and a covariance matrix having elements (i, j) equal

to 0.9|i−j|. Survival times are simulated from an exponential distribution with mean µ = e0.1 ∑
p
i=[p/2]+1 Wi

(i.e., a proportional hazards model) and the censoring distribution is exponential with mean cmean
which is chosen to control the censoring rate. Here, [x] denotes the largest integer no more than x.

Scenario2: This data set is created using N independent observations where the covariates (W1, ..., Wp)
are multivariate normal with mean zero and a covariance matrix having elements (i, j) equal to

0.75|i−j|. Survival times are gamma distributed with shape parameter µ = 0.5 + 0.3|∑[3p/5]
i=[2p/5] Wi|

and scale parameter 2. Censoring times are uniform on [0, umax], and umax is chosen to control the
censoring rate. Here, the proportional hazards assumption is violated.

Scenario3: This data set is created using N independent observations where the covariates (W1, ..., Wp)

are multivariate normal with mean zero and a covariance matrix having elements (i, j) equal to 0.75|i−j|.

Survival times are simulated according to a log-normal distribution with mean µ = 0.1|∑[p/5]
i=1 Wi|+

0.1|∑p
i=[4p/5] Wi|. Censoring times are log-normal with mean µ + cstep and scale parameter one, where

cstep is chosen to control the censoring rate. Here, the underlying censoring distribution depends on
covariates and the proportional hazards assumption is also violated.

From Figure 3, one may see that the prediction performance of the Cox model keeps decreasing in
three scenarios as expected. However, the difference in terms of C-index and BS are not significant for
Scenario2 and Scenario3 while in terms of IBS, IAE and ISE, a sharp difference and a clear trend can be
observed.

As we know, C-index evaluates the model from a ranking perspective in a rough matter and BS
only considers a fixed time point. Both metrics may not distinguish models described above or in
other complex settings. In this case, evaluation metrics which consider model performance in a global
way, such as IBS, IAE, and ISE, may be useful alternatives. This also justifies why a package such
as SurvMetrics that can evaluate survival models from multiple perspectives is strongly needed in
practice.

An example of SurvMetrics

In this section, a kidney dataset from the survival R package is used to illustrate the usage of the
SurvMetrics package using popular survival models widely used in biostatics and biomedical study.
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Figure 3: This graphic shows the Cox model prediction accuracy based on three different scenarios via
5 evaluation metrics by the SurvMetrics package. The sample size is 300, the dimension is 25, and
control the censoring rate about 30%. The prediction performance of the Cox model keeps decreasing
in three scenarios, which satisfies the data generated methods. However, in some complex situations
where C-index and BS cannot distinguish models, IBS, IAE, and ISE, may be useful alternatives.

In the following, we first cut the kidney dataset into a training set and a testing set. Then, two
popular models, namely, Cox model and random survival forest model are constructed based on the
training set to show how different functions are used in SurvMetrics. Finally, we will show how
to evaluate the predictive performance of these two models on the testing set using the proposed
SurvMetrics R package. In the latest version of SurvMetrics, user has the choice to input only the
standard survival models and testing sets. Meanwhile, it is still useful to deal with predicted survival
probabilities from non-standard models. The following example will contain these two input forms.

The corresponding R code is provided here:

#1. data preparation
library(survival) # to fit a Cox model
library(randomForestSRC) # to fit an RSF model
library(SurvMetrics) # to get all the metrics
library(pec) # to make predictions based on Cox model
set.seed(1)
mydata <- kidney[, -1]
train_index <- sample(1:nrow(mydata), 0.7 * nrow(mydata))
train_data <- mydata[train_index, ]
test_data <- mydata[-train_index, ]

#2. fit the RSF model and Cox model to predict the testing set
#2.1 RSF model
fit_rsf <- rfsrc(Surv(time,status)~., data = train_data) #fit the RSF model
distime <- fit_rsf$time.interest #get the survival time of events
med_index <- median(1:length(distime)) #the index of median survival time of events
mat_rsf <- predict(fit_rsf, test_data)$survival #get the survival probability matrix
vec_rsf <- mat_rsf[ ,med_index] #median survival probability of all samples
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#2.2 Cox model
fit_cox <- coxph(Surv(time,status)~., data = train_data, x = TRUE) #fit the Cox model
mat_cox <- predictSurvProb(fit_cox, test_data, distime) #get the survival probability matrix
vec_cox <- mat_cox[ ,med_index]

#3. get all the metrics by SurvMetrics
#3.1 CI BS IBS IAE ISE based on RSF model: standard model input methods
Cindex_rsf <- Cindex(fit_rsf, test_data)
BS_rsf <- Brier(fit_rsf, test_data, distime[med_index])
IBS_rsf <- IBS(fit_rsf, test_data)
IAE_rsf <- IAEISE(fit_rsf, test_data)[1]
ISE_rsf <- IAEISE(fit_rsf, test_data)[2]

#CI BS IBS IAE ISE based on Cox model: standard model input methods
Cindex_cox <- Cindex(fit_cox, test_data)
BS_cox <- Brier(fit_cox, test_data, distime[med_index])
IBS_cox <- IBS(fit_cox, test_data)
IAE_cox <- IAEISE(fit_cox, test_data)[1]
ISE_cox <- IAEISE(fit_cox, test_data)[2]

#3.2 CI BS IBS IAE ISE based on RSF model: Non-standard model input methods
times <- test_data$time
status <- test_data$status
Cindex_rsf <- Cindex(Surv(times, status), vec_rsf)
BS_rsf <- Brier(Surv(times, status), vec_rsf, distime[med_index])
IBS_rsf <- IBS(Surv(times, status), mat_rsf, distime) # distime can be replaced by range(distime)
IAE_rsf <- IAEISE(Surv(times, status), mat_rsf, distime)[1]
ISE_rsf <- IAEISE(Surv(times, status), mat_rsf, distime)[2]

#CI BS IBS IAE ISE based on Cox model: Non-standard model input methods
Cindex_cox <- Cindex(Surv(times, status), vec_cox)
BS_cox <- Brier(Surv(times, status), vec_cox, distime[med_index])
IBS_cox <- IBS(Surv(times, status), mat_cox, distime)
IAE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[1]
ISE_cox <- IAEISE(Surv(times, status), mat_cox, distime)[2]

models C-index BS IBS IAE ISE
Cox 0.751185 0.18133 0.08842 77.90947 19.65131
RSF 0.729858 0.221523 0.10920 105.6936 28.80941

Table 4: This table shows the prediction accuracy by using SurvMetrics package to compare the Cox
and RSF models based on the kidney data set from survival R package. In this case, the values of
C-index are close, and the values of IAE and ISE are far different. When using C-index alone is hard to
differentiate the predictive power of the two models, alternative measures provided in SurvMetrics
may help give a more accurate result.

The results presented in Table 4 and Figure 4 show that using C-index alone is hard to differentiate
the predictive power of the two models. In this case, alternative measures provided in the proposed
package may help if further evaluation is needed. This result is also consistent with the simulated
scenario mentioned above.

4 Summary

Assessing the predictive performance of survival models is complex due to the lack of standards
regarding the best criterion to use in survival analysis. The available metrics are scatter across different
R packages that use heterogeneous interfaces, which makes it difficult for the non-specialist to use or
compare the performance of various survival models.

In this paper, we try to fill the gap by providing an "all-in-one" R package called SurvMetrics
which provides a uniform interface to an extensive set of performance assessment and statistical
comparison methods. Practitioners can easily implement comparative studies and identify the best
model(s) using this package. In the current version of the SurvMetrics package, six evaluation metrics
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Figure 4: This graphic shows the prediction accuracy by using SurvMetrics package to compare the
Cox and RSF models based on the kidney data set from survival R package. In this case, using IBS,
IAE and ISE can give a more clear conclusion that Cox model performs better.

are present. Evaluation metrics used in more complicated settings such as time-dependent AUC for
joint modelling of longitudinal and survival data, and concordance index for competitive risks are
still being developed and will be added to the SurvMetrics package in the future. Meanwhile, we are
also working to provide a more user-friendly interface to facilitate both statistical and non-statistical
clinical research workers in evaluating survival models.
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Limitations in Detecting Multicollinearity
due to Scaling Issues in the mcvis Package
by Roman Salmeron Gomez, Catalina B. Garcia Garcia, Ainara Rodriguez Sanchez, and Claudia
Garcia Garcia

Abstract Transformation of the observed data is a very common practice when a troubling degree of
near multicollinearity is detected in a linear regression model. However, it is important to take into
account that these transformations may affect the detection of this problem, so they should not be
performed systematically. In this paper we analyze the transformation of the data when applying
the R package mcvis, showing that it only detects essential near multicollinearity when the studentise
transformation is performed.

1 Introduction

Given the model Y = X · β + u for n observations and p independent variables where Y is a vector
that contains the observations of the dependent variables, X = [1 X2 . . . Xp] is a matrix whose columns
contain the observations of the independent variables (where the first column is a vector of ones
representing the intercept) and u represents the spherical random disturbance, the existence of linear
relationships between the independent variables of a model is known as multicollinearity. It is well-
known that a high degree of multicollinearity can affect the analysis of a linear regression model. In
this case, it is said that the multicollinearity is troubling (Novales 1988; Ramanathan 2002; Wooldridge
2008; Gujarati 2010). It is also interesting to note the distinction made, for example, by Marquardt
(1980) or Snee and Marquardt (1984), between essential (near-linear relationship between at least
two independent variables excluding the intercept) and non-essential multicollinearity (near-linear
relationship between the intercept and at least one of the remaining independent variables).

Note that the detection process is key to determining which tool is best suited to mitigation of the
problem: for example, ridge regression of Hoerl and Kennard (1970) and Hoerl and Kennard (1970);
LASSO of Tibshirani (1996) or elastic net of Zou and Hastie (2005), among others.

The most commonly applied measures to detect whether the degree of multicollinearity is troubling
are the following:

• The Variation Inflation Factor (VIF) that is obtained with the following expression VIF(j) =
1

1−R2
j
, j = 2, . . . , p, where R2

j is the coefficient of determination of the auxiliary regression

Xj = X−j · α + w with X−j being the matrix obtained when the independent variable Xj is
eliminated from matrix X. It is considered that values of VIF higher than 10 indicate that the
degree of multicollinearity is troubling (see, for example, Marquardt (1970) or O’Brien (2007)). R.
Salmerón, García, and García (2018) and Román Salmerón, Rodríguez, and García (2020) showed
that the VIF is not an appropriate measure to detect linear relations between the intercept and
other explanatory variables (non-essential collinearity).

• The Condition Number (CN) that is obtained with the following expression CN(X) =
√

µmax
µmin

where µmax and µmin are the maximum and minimum eigenvalue of matrix XtX. To obtain
the eigenvalues, the matrix X has to be previously transformed in order to ensure that all its
columns present unit length (see R. Salmerón, García, and García (2018) for more details about
this transformation). Values lower than 20 imply light collinearity, between 20 and 30 moderate
collinearity, while values higher than 30 imply strong collinearity (see, for example, D. A. Belsley,
Kuh, and Welsch (1980) and D. Belsley (1991)). Another alternative is to calculate the CN with
and without the intercept with the goal of analyzing the contribution of the intercept.

Another set of measures to detect the existence of troubling multicollinearity are the matrix
of simple linear correlations between the independent variables, R = (cor(Xl , Xm))l,m=2,...,p and
its determinant, |R|. C. García, Salmerón, and García (2019) show that values for the coefficient
of simple correlation between the independent variables higher than

√
0.9 and determinant lower

than 0.1013 + 0.00008626 · n − 0.01384 · p indicate a troubling degree of multicollinearity (see Román
Salmerón, García, and García (2021a) or Román Salmerón, García, and García (2021b) for more details).
The first value differs strongly from the threshold normally proposed equal to 0.7 to indicate a problem
of near collinearity (see, for example, Halkos and Tsilika (2018)).

Also useful to use the coefficient of variation (CV), values less than 0.1002506 indicate the existence
of troubling multicollinearity (see Román Salmerón, Rodríguez, and García (2020) for more details).
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J. García et al. (2016) and R. Salmerón, García, and García (2020) showed that the VIF is invariant
to origin and scale changes, which is the same as saying that model Y = X · β + u and the model
Y = x · β + u present the same VIF, where x = [x1 x2 . . . xp] with xi = Xi−ai

bi
for ai ∈ R, bi > 0

and i = 1, . . . , p. Note that if ai = Xi, x1 is a vector of zeros, i.e. the intercept disappears from the
model. Instead, R. Salmerón et al. (2018) showed that the CN is not invariant to origin and scale
changes, meaning that the two previous models present different CNs. This fact implies that models
Y = X · β + u and Y = x · β + u present different eigenvalues.

Consequently, transforming the data in a linear regression model may affect the detection of the
multicollinearity problem depending on the diagnostic measure. Furthermore, note that this sensitivity
to scaling is due to the fact that there are certain transformations (such as data centering) that mitigate
the multicollinearity problem, so that the dependence or otherwise on scaling simply highlights the
capacity/incapacity of each measure to detect this reduction of the degree of near multicollinearity.

Therefore, when transforming the data in a linear regression model and analyzing whether the
degree of multicollinearity is of concern or not, it is necessary to be clear whether the measure used
to detect it is affected by the transformation and whether it is capable of detecting the two types of
near multicollinearity mentioned (essential and non-essential). Thus, in this paper we analyze the MC
index recently presented in Lin, Wang, and Mueller (2020).

First, this paper will briefly review the MC index. In order to show that the MC index depends on
the transformation of the data and its inability to detect non-essential multicollinearity, we present two
simulations with a troubling degree of essential and non-essential multicollinearity, respectively, and a
third simulation where the degree of multicollinearity is not troubling. For all these cases, we calculate
the different measures to detect multicollinearity commented on the introduction together with the MC
index. Two empirical applications recently applied in the scientific literature are also presented. After
a discussion of the results we propose a scatter plot between the VIF and CV to detect which variables
are the cause of the troubling degree of multicollinearity and the kind of multicollinearity (essential or
non-essential) existing in the model. Finally, the main conclusions of the paper are summarized.

2 Background: MC index

The MC index presented in Lin, Wang, and Mueller (2020) is based on the existing relation between
the VIFs ant the inverse of the eigenvalues of the matrix ZtZ where Z represents the standardized
matrix of X. This is to say, is the matrix x mentioned in the introduction when for all i it is obtained
that ai = Xi and bi =

√
n · var (Xi) where var (Xi) represents the variance of Xi. More precisely, taking

into account the fact that in the main diagonal of
(
ZtZ

)−1 we find the VIFs (for standardized data), it
is possible to establish the following relation:

 VIF(2)
...

VIF(p)

 = A ·


1

µ2

...
1

µp

 , (1)

where A is a matrix that depends on the eigenvalues of ZtZ and µp is the maximum eigenvalue of
this matrix.

From this relationship, resampling and obtaining the regression of 1/µp as a function of the
VIFs, Lin, Wang, and Mueller (2020) proposed the use of the t-statistics to conclude which variable
contributes the most to this relationship, thus identifying which variables are responsible for the
degree of approximate multicollinearity in the model. These authors defined the MC index as an index
from zero to one, larger values indicating greater contribution of the variable i in explaining the observed severity
of multicollinearity.

Taking into account that the calculation of the MC index is based on the relation established
between the VIFs and the inverse of the smallest eigenvalue, it seems logical to consider that the
transformation of the data may affect the calculation of this measure. Thus, it is possible to conclude:

• If the MC index is calculated with a transformation of the data that leads to the elimination of
the intercept, the non-essential multicollinearity will be ignored.

• Due to the fact that MC index is based on the VIF, it should inherit its inability to detect the
non-essential multicollinearity.

In conclusion, regardless of whether the data is transformed or not, the MC index is not capable of
detecting non-essential multicollinearity. It is expected that it will show its usefulness in the case of
essential multicollinearity.
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Therefore, when Lin, Wang, and Mueller (2020) commented that there are different views on what
centering technique is most appropriate in regression [. . . ] To facilitate this diversity of opinion, in the software
implementation of mcvis, we allow the option of passing matrices with different centering techniques as input.
The role of scaling is not the focus of our work as our framework does not rely on any specific scaling method,
far from facilitating the use of their proposal, they consider scenarios for which the MC index is
not designed, since in their theoretical development and step 2 of their method, the standardization
of the data is performed. However, as shown in this paper, the MC index is capable of detecting
multicollinearity of the essential type only when used with its default option studentise.

3 Simulations

In this section, different versions of the matrix X = [1 X2 X3 X4] will be simulated. The results on the
correlation matrix, its determinant, condition number (with and without intercept), variance inflation
factor and coefficient of variation are obtained using the multiColl package (see Román Salmerón,
García, and García (2021a) and Román Salmerón, García, and García (2021b) for more details).

In all cases, are calculated the values for the MC index for each set of simulated data considering
the two alternative transformation for the data: Euclidean (centered by mean and divided by Euclidean
length) and studentise (centered by mean and divided by standard deviation). In each case (simulation
and kind of transformation), the calculation of the MC index was performed 100 times.

Simulation 1

In this case, 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, and X4 = X3 − p
where p ∼ N(1, 0.5). The goal of this simulation is to ensure that the variables X3 and X4 will be
highly correlated (essential multicollinearity). This fact is confirmed when taking into account the
following results in relation to the correlation matrix, correlation matrix’s determinant, the CN with
and without the intercept (with its corresponding increasing), the VIFs and the coefficient of variation
of the different variables.

RdetR(X_S1)

#> $`Correlation matrix`
#> X2_S1 X3_S1 X4_S1
#> X2_S1 1.00000000 -0.0875466 -0.09110579
#> X3_S1 -0.08754660 1.0000000 0.99881845
#> X4_S1 -0.09110579 0.9988184 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.002330192

CNs(X_S1)

#> $`Condition Number without intercept`
#> [1] 38.67204
#>
#> $`Condition Number with intercept`
#> [1] 66.94135
#>
#> $`Increase (in percentage)`
#> [1] 42.22997

VIF(X_S1)

#> X2_S1 X3_S1 X4_S1
#> 1.013525 425.587184 425.860062

CVs(X_S1)

#> [1] 1.239795 1.052896 1.166335
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Table 1: MC index for the independent variables in Simulation 1. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
relationship between the second and third variables is detected when studentise transformation is
performed.

X2 X3 X4
Euclidean - Random 1 0.2846628 0.3670736 0.3482636
Euclidean - Random 2 0.1466484 0.4444270 0.4089246
Euclidean - Random 3 0.4026253 0.3140131 0.2833616
Euclidean - Average 0.2505292 0.3899482 0.3595226
Euclidean - Standard Deviation 0.1075164 0.0550333 0.0526817
Studentise - Random 1 0.0000338 0.4942761 0.5056901
Studentise - Random 2 0.0001294 0.4901233 0.5097473
Studentise - Random 3 0.0000307 0.4950536 0.5049157
Studentise - Average 0.0000519 0.4944290 0.5055191
Studentise - Standard Deviation 0.0000264 0.0023510 0.0023528

Table 1 shows three random iterations, the average value of the 100 times and the standard
deviation. As expected in the case of essential multicollinearity, from the average values of Simulation
1 it is noted that (specially with the transformation studentise) the MC index correctly identified that
the variables X3 and X4 are causing the troubling degree of essential multicollinearity. However, it is
noted that in some cases the intercept or the variable X2 are identified as relevant in the existing linear
relations when the Euclidean transformation is performed. This behavior is not observed when the
studentise transformation is performed. This fact seems to indicate that the MC index depends on the
transformation with the studentise transformation being the most appropriate.

Simulation 2

In this case, 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, and X4 ∼
N(10, 0.0001). The goal of this simulation is to ensure that the variable X4 will be highly corre-
lated to the intercept (non-essential multicollinearity). This fact is confirmed from the following results
taking into account that Román Salmerón, Rodríguez, and García (2020) showed that a value of the
CV lower than 0.1002506 indicates a troubling degree of non-essential multicollinearity.

RdetR(X_S2)

#> $`Correlation matrix`
#> X2_S2 X3_S2 X4_S2
#> X2_S2 1.0000000 -0.08754660 0.06676070
#> X3_S2 -0.0875466 1.00000000 0.09445547
#> X4_S2 0.0667607 0.09445547 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.9778526

CNs(X_S2)

#> $`Condition Number without intercept`
#> [1] 2.999836
#>
#> $`Condition Number with intercept`
#> [1] 2430.189
#>
#> $`Increase (in percentage)`
#> [1] 99.87656

VIF(X_S2)

#> X2_S2 X3_S2 X4_S2
#> 1.013525 1.018091 1.014811
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Table 2: MC index for the independent variables in Simulation 2. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
relationship between the four variable and the intercept is not detected.

X2 X3 X4
Euclidean - Random 1 0.2671991 0.2097102 0.5230907
Euclidean - Random 2 0.1649092 0.5119198 0.3231711
Euclidean - Random 3 0.2126011 0.2678652 0.5195337
Euclidean - Average 0.1678676 0.3335266 0.4986058
Euclidean - Standard Deviation 0.0725673 0.0845660 0.1029678
Studentise - Random 1 0.3307490 0.3342851 0.3349658
Studentise - Random 2 0.3646487 0.2995420 0.3358093
Studentise - Random 3 0.3107573 0.3481032 0.3411395
Studentise - Average 0.3541923 0.3150319 0.3307758
Studentise - Standard Deviation 0.0201173 0.0203717 0.0187872

CVs(X_S2)

#> [1] 1.239794695 1.052896496 0.001022819

Table 2 presents three random iterations, the average value of the 100 times and the standard
deviation for Simulation 2 for Euclidean and studentise transformations. Before commenting the results
of Simulation 2, it is important to take into account the fact that with transformations that imply the
elimination of the intercept it will not be possible to detect the non-essential multicollinearity. Note
that in some occasions, when Euclidean transformation is performed, it is concluded that X3 and X4
are the most relevant while, when studentise transformation is performed, all variables seem to present
the same relevance. In the first case, a higher stability is observed by considering the average values,
although the conclusion is that there is a relation between X3 and X4 when the relationship is between
the intercept and X4.

Simulation 3

Finally, in this case 100 observations are generated according to Xi ∼ N(10, 100), i = 2, 3, 4. The goal
of this simulation is to ensure that the degree of multicollinearity (essential and non-essential) will be
not troubling. This fact is confirmed when taking into account the following results.

RdetR(X_S3)

#> $`Correlation matrix`
#> X2_S3 X3_S3 X4_S3
#> X2_S3 1.0000000 -0.08754660 0.06676070
#> X3_S3 -0.0875466 1.00000000 0.09445547
#> X4_S3 0.0667607 0.09445547 1.00000000
#>
#> $`Correlation matrix's determinant`
#> [1] 0.9778526

CNs(X_S3)

#> $`Condition Number without intercept`
#> [1] 2.07584
#>
#> $`Condition Number with intercept`
#> [1] 3.60862
#>
#> $`Increase (in percentage)`
#> [1] 42.47552

VIF(X_S3)

#> X2_S3 X3_S3 X4_S3
#> 1.013525 1.018091 1.014811
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Table 3: MC index for the independent variables in Simulation 3. Three random iterations, the average
value of the 100 times and the standard deviation for Euclidean and studentise transformations. The
not troubling relationship between the variables is not detected.

X2 X3 X4
Euclidean - Random 1 0.1318422 0.3832372 0.4849206
Euclidean - Random 2 0.1679453 0.4315253 0.4005294
Euclidean - Random 3 0.0728076 0.5693939 0.3577986
Euclidean - Average 0.1083812 0.4107279 0.4808910
Euclidean - Standard Deviation 0.0410296 0.0661189 0.0628212
Studentise - Random 1 0.3586837 0.3154482 0.3258681
Studentise - Random 2 0.3805084 0.3205751 0.2989166
Studentise - Random 3 0.3651891 0.3069920 0.3278189
Studentise - Average 0.3541923 0.3150319 0.3307758
Studentise - Standard Deviation 0.0201173 0.0203717 0.0187872

CVs(X_S3)

#> [1] 1.239795 1.052896 1.019006

Table 3 presents three random iterations, the average value of the 100 times and the standard
deviation for Simulation 3 for Euclidean and studentise transformations. Simulation 3 shows different
situations depending on the transformation: when the Euclidean transformation is performed, the
variable X3 is also identified apart from variable X4; with the studentise transformation, all the variables
seem to be relevant.

Interpretation of the obtained results

From the above results, it is concluded that the MC index applied individually is not able to detect if
the degree of multicollinearity is troubling. This conclusion is in line with the comment presented
by Lin, Wang, and Mueller (2020) where it is stated that those classical collinearity measures are used
together with mcvis for the better learning of how one or more variables display dominant behavior in explaining
multicollinearity. That is to say, it is recommended to use measures such as the VIF and the CN to
detect whether the degree of multicollinearity is troubling and, if it is, then use the MC index to detect
which variables are more relevant.

We should reiterate the fact that the results of the MC index depend on the transformation
performed with the data.

Finally, it is worthy of note that the lowest dispersion is obtained when the studentise transformation
is performed, which indicate that with this transformation a higher stability exists in the results
obtained with the 100 iterations performed.

4 Examples

In this section we will analyze two examples applied recently to illustrate the multicollinearity problem.
The first one focuses on the existence of non-essential approximate multicollinearity while the second
one is focused on essential multicollinearity.

Example 1

Román Salmerón, Rodríguez, and García (2020) analyzed the Euribor as a function of the harmonized
index of consumer prices (HICP), the balance of payments to net current account (BC) and the
government deficit to net non-financial accounts (GD).

The following determinant of the matrix of correlations of the independent variables, the VIFs,
condition number without intercept and with intercept and the coefficients of variation indicate that
the degree of essential near multicollinearity is not troubling while the non-essential type (due to the
variable HIPC) is.

Figure 1 shows a tour displayed with a scatterplot by using the tourr package. This package
allows tours of multivariate data, see Wickham et al. (2011) for more details. From the tour on all
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Figure 1: Representation of example 1 using the R tourr package. No linear relationship is observed
between the explanatory variables in any of the four plots. See html version for an interactive 2-D tour.

the explanatory variables (it runs for 3.47 minutes in the html version), no linear relation is observed
between the explanatory variables. Note that this package does not allow us to work with the intercept.

In relation to the application of the mcvis package in this example, it can be observed that if the
Euclidean transformation is performed the method concludes that all the variables seem to be relevant:

#> HIPC BC GD
#> tau3 0.29 0.39 0.32

For studentise transformation it concludes the establishing of a relationship between HIPC and
GD:

#> HIPC BC GD
#> tau3 0.49 0.13 0.38

Clearly, these conclusions are not consistent. Moreover, by eliminating the intercept when trans-
forming the data, it is not feasible to detect the non-essential multicollinearity.

Example 2

James et al. (2013) illustrated multicollinearity with a data set which contains information about the
dependent variable balance (average credit card debt for a number of individuals) and, among others,
the following quantitative independent variables: income, limit (credit limit), rating (credit rating),
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Figure 2: Representation of example 2 using the R tourr package. From the 3.47 minutes tour on all
the explanatory variables, a certain linear relationship between independent variables is observed
specially in plots one (top and left) and four (bottom and right). See html version for an interactive
2-D tour.

cards (number of credit cards), age, education (years of education). Data is available in the ISLR
package (see James et al. (2021) for more details).

The following determinant of the matrix of correlations of the independent variables, the simple
correlation between limit and rating (0.99687974), the VIFs, condition number without intercept and
with intercept and CVs indicate that the degree of approximate multicollinearity of the non-essential
type is not troubling while that of the essential type (due to the relationship between variables limit
and rating) is troubling.

Figure 2 displays its tour by using again tourr package. Multicollinearity was checked using a
tour on all the explanatory variables (it runs for 3.47 minutes in html version). In this case a certain
linear relationship is observed, although it is difficult to determine which variables are related.

In relation to the application of the mcvis package in this example, it can be observed that if the
Euclidean transformation is performed the variable with the highest value is income, with the variable
rating being the second-lowest in value.

#> Income Limit Rating Cards Age Education
#> tau6 0.62 0.14 0.05 0.05 0.11 0.03

Finally, when the studentise transformation is applied, the method clearly indicates that variables
limit and rating are the ones responsible for the multicollinearity problem.

#> Income Limit Rating Cards Age Education
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#> tau6 0 0.49 0.51 0 0 0

5 Discussion

The results shown in the previous sections indicate that, on the one hand, the calculation of the MC
index depends on the transformation performed and, on the other hand, that to apply this index with
guarantees, the studentise transformation is the most appropriate.

It was also showed that the MC index “inherits’ ’ the same limitations indicated by Lin, Wang, and
Mueller (2020) when they state that collinearity indices such as the variance inflation factor and the condition
number have limitations and may not be effective in some applications. In the case of VIF, these limitations
are well summarized by Lin, Wang, and Mueller (2020): The VIF can show how variables are correlated to
each other, but as shown, low correlation does not guarantee low level of collinearity. Note that the example
applied by the authors in Section 1 (similar to the one presented in R. Salmerón, García, and García
(2018) and a reduced version of the one presented by David A. Belsley (1984)) is a clear case in which
the multicollinearity is non-essential. As was commented earlier, the VIF ((R. Salmerón, García, and
García 2018) and (Román Salmerón, Rodríguez, and García 2020)) and the MC index are not able to
detect this kind of multicollinearity, for this reason they are only recommended for detecting essential
multicollinearity.

Another limitation of the VIF (and also of the MC index) worthy of note is that it is not adequate
for calculating with dummy variables. Using these kinds of variables, the VIF is obtained from a
coefficient of determination of an auxiliary regression whose dependent variable is a dummy variable.
Although it is possible to apply ordinary least squares in this kind of regression, it is well known that it
can present some problems: for example, the coefficient of determination is not representative since it
measures the linear relation but the relation between the dummy variable and the rest of independent
variables is not linear. For this reason, these kinds of regressions are estimated with non-linear models
such as the logit/probit. Thus, we consider that if it is not adequate for calculating the VIF associated
to a dummy variable, these kinds of variables should be avoided in the calculation of the MC index.

Finally, Simulation 3 shows that MC index is not able to detect whether the degree of essential
multicollinearity is troubling. For this reason, it should only be used once this situation is determined
by other measures (as set out in the introduction) and in order to determine which variables cause it.

6 Solution

The distinction between essential and non-essential multicollinearity and the limitations of each
measure for detecting the different kinds of multicollinearity, can be very useful for detecting whether
there is a troubling degree of multicollinearity, what kind of multicollinearity it is and which variables
are causing the multicollinearity. Thus, taking into account the fact that the VIF is useful for detecting
essential multicollinearity and the CV is useful for detecting non-essential multicollinearity, the scatter
plot of both measures can provide interesting information in a joint way.

We present the scatter plot for the values of the VIF and the CV for the three simulations previously
performed. Note that the figures include the lines corresponding to the established thresholds for each
measure: red dashed vertical line for 0.1002506 (CV) and red dotted horizontal line for 10 (VIF). These
lines determine four regions that can be interpreted as follows: A, existence of troubling non-essential
and non-troubling essential multicollinearity; B, existence of troubling essential and non-essential
multicollinearity; C, existence of non-troubling non-essential and troubling essential multicollinearity;
D: non-troubling degree of existing multicollinearity (essential and non-essential).

Considering this classification, in Simulation 1 (Figure 3) it is noted that there is a troubling degree
of essential multicollinearity due to the variables X3 and X4, while in Simulation 2 (Figure 4) it is
noted that there is a troubling degree of non-essential multicollinearity due to the variable X4 and in
Simulation 3 (Figure 5) it is noted that the degree of multicollinearity is not troubling.

Analogously, we present Figures 6 and 7 for Examples 1 and 2, respectively. For Example 1,
it is concluded that the only type of troubling multicollinearity is non-essential due to the second
variable (HIPC). On the other hand, for Example 2 it is concluded that the only type of troubling
multicollinearity is that essentially due to the relationship existing between the third and fourth
variables (limit and rating).
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Figure 3: Representation of the VIFs and CVs of explanatory variables in Simulation 1. A troubling de-
gree of essential multicollinearity due to variables third and four is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that VIFs of variables three and four
are greater than 10 and the CV of variable 2 is lower than 0.1002506.
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Figure 4: Representation of the VIFs and CVs of explanatory variables in Simulation 2. A troubling
degree of non-essential multicollinearity due to variable four is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs of variables three and
four are less than 10 and the CV greater than 0.1002506; while the CV of second variable is less than
0.1002506.
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Figure 5: Representation of the VIFs and CVs of explanatory variables in Simulation 3. The degree of
multicollinearity is not troubling by considering thresholds of 0.1002506 (CV) and 10 (VIF) highlighted
with red lines. Note that the VIFs of all variables are lower than 10 and the CVs greater than 0.1002506.
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Figure 6: Representation of the VIFs and CVs of the variables of example 1. A troubling degree of
non-essential multicollinearity generated by variable 2 (HIPC) is detected by considering thresholds
of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs of variables three and
four are less than 10 and the CV greater than 0.1002506; while the CV of second variable is less than
0.1002506.
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Figure 7: Representation of the VIFs and CVs of the variables of example 2. A troubling degree of
essential multicollinearity generated by variables three and four (limit and rating) is detected by
considering thresholds of 0.1002506 (CV) and 10 (VIF) highlighted with red lines. Note that the VIFs
of variables three and four are greater than 10 while the VIFs and CVs of the rest of variables are,
respectively, lower than 10 and greater than 0.1002506.
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7 Summary

This paper analyses the limitations that may arise in detecting the problem of troubling multicollinear-
ity in a linear regression model due to transformations performed on the data. The discussion is used
to illustrate that the MC index presented by Lin, Wang, and Mueller (2020) depends on the way that
the data are transformed.

It was shown that when the studentise transformation is performed, the measure is stable for
measuring what variable contributes the most to the linear relationship, and thus identifying what variables best
explain the collinearity in the original data (Lin, Wang, and Mueller 2020), as long as the multicollinearity
is essential. This kind of transformation was taken as default by the authors and this paper contributes
with a formal justification. Note that the MC index only provides interesting information if the
troubling multicollinearity is previously detected using other measures (such as the VIF or the CN).

Summarizing, the achievement of the goal intended by the mcvis package is conditioned by the
following limitations:

• It is not able to detect non-essential multicollinearity.
• Other measures (as the VIF or CN) should be applied previously to determine whether the

degree of essential multicollinearity is troubling.
• The studentise transformation should be applied.
• It is not applicable for dummy variables.

Finally, it is proposed to use a scatter plot between the VIFs and the CVs, on the one hand, to
detect whether the degree of multicollinearity (essential or not essential) is troubling and, on the other
hand, to detect which variables are causing the multicollinearity. This would overcome the limitations
of the mcvis package discussed above while achieving its overall purpose.

8 Acknowledgments

This work has been supported by project PP2019-EI-02 of the University of Granada (Spain), by
project A-SEJ-496-UGR20 of the Andalusian Government’s Counseling of Economic Transformation,
Industry, Knowledge and Universities (Spain) and by project I+D+i PID2019-107767GA-I0 financed by
MCIN/AEI/10.13039/501100011033.

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential data and
sources of collinearity. New York: John Wiley & Sons.

Belsley, David. 1991. “A Guide to Using the Collinearity Diagnostics.” Computational Science in
Economics and Manegement 4: 33–50.

Belsley, David A. 1984. “Demeaning Conditioning Diagnostics Through Centering.” The American
Statistician 38 (2): 73–77.

García, C., R. Salmerón, and C. B. García. 2019. “Choice of the Ridge Factor from the Correlation
Matrix Determinant.” Journal of Statistical Computation and Simulation 89 (2): 211–31.

García, J., R. Salmerón, C. García, and M. López. 2016. “Standardization of Variables and Collinearity
Diagnostic in Ridge Regression.” International Statistical Review 84: 245–66.

Gujarati, D. 2010. Basic Econometrics. 8th ed. McGraw Hill.
Halkos, G., and K. Tsilika. 2018. “Programming Correlation Criteria with Free Cas Software.” Compu-

tational Economics 52 (1): 299–311.
Hoerl, A. E., and R. W. Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal

Problems.” Technometrics 12 (1): 55–67.
James, Gareth, Daniela Witten, Trevor Hastie, and Rob Tibshirani. 2021. ISLR: Data for an Introduction

to Statistical Learning with Applications in r. https://CRAN.R-project.org/package=ISLR.
James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An Introduction to Statistical

Learning with Application in r. Springer.
Lin, C., K. Wang, and S. Mueller. 2020. “MCVIS: A New Framework for Collinearity Discovery,

Diagnostic and Visualization.” Journal of Computational and Graphical Statistics. https://doi.org/
10.1080/10618600.2020.1779729.

Marquardt, D. W. 1970. “Generalized inverses, ridge regression, biased linear estimation and nonlinear
estimation.” Technometrics 12 (3): 591–612.

———. 1980. “You Should Standardize the Predictor Variables in Your Regression Models.” J. Amer.
Statist. Assoc. 75 (369): 87–91.

Novales, A. 1988. Econometría. Madrid: McGraw-Hill.

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://CRAN.R-project.org/package=mcvis
https://CRAN.R-project.org/package=mcvis
https://CRAN.R-project.org/package=ISLR
https://doi.org/10.1080/10618600.2020.1779729
https://doi.org/10.1080/10618600.2020.1779729


CONTRIBUTED RESEARCH ARTICLE 279

O’Brien, R. M. 2007. “A caution regarding rules of thumb for variance inflation factors.” Quality &
Quantity 41: 673–90.

Ramanathan, Ramu. 2002. “Introductory Econometrics with Applications.”
Salmerón, R., C. García, and J. García. 2018. “Variance Inflation Factor and Condition Number in

Multiple Linear Regression.” Journal of Statistical Computation and Simulation 88: 2365–84.
———. 2020. “Comment on ‘a Note on Collinearity Diagnostics and Centering’ by Velilla (2018).” The

American Statistician 74 (1): 68–71.
Salmerón, R., J. García, C. García, and M. López. 2018. “Transformation of Variables and the Condition

Number in Ridge Estimation.” Computational Statistics 33: 1497–1524.
Salmerón, Román, Catalina García, and José García. 2021a. “A Guide to Using the r Package multiColl

for Detecting Multicollinearity.” Computational Economics 57: 529–36. https://doi.org/10.1007/
s10614-019-09967-y.

———. 2021b. “The multiColl Package Versus Other Existing Packages in r to Detect Multicollinearity.”
Computational Economics. https://doi.org/10.1007/s10614-021-10154-1.

Salmerón, Román, Ainara Rodríguez, and Catalina García. 2020. “Diagnosis and Quantification of the
Non-Essential Collinearity.” Computational Statistics 35: 647–66.

Snee, R. D., and D. W. Marquardt. 1984. “Comment: Collinearity diagnostics depend on the domain of
prediction, the model, and the data.” The American Statistician 38 (2): 83–87.

Tibshirani, Robert. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal
Statistical Society. Series B (Methodological), 267–88.

Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2011. “Tourr: A r Package
for Exploring Multivariate Data with Projections.” Journal of Statistical Software 40 (2): 1–18.
https://doi.org/10.18637/jss.v040.i02.

Wooldridge, J. M. 2008. Introducción a la econometría. Un enfoque moderno. Second. Madrid: Thomson
Paraninfo.

Zou, H., and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 67: 301–20.

Roman Salmeron Gomez
University of Granada
Department of Quantitative Methods for Economics and Busines
Poligono La Cartuja sn, 18071, Granada, Spain.
http://metodoscuantitativos.ugr.es/pages/web/romansg
ORCiD: 0000-0003-2589-4058
romansg@ugr.es

Catalina B. Garcia Garcia
University of Granada
Department of Quantitative Methods for Economics and Busines
Poligono La Cartuja sn, 18071, Granada, Spain.
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
ORCiD: 0000-0003-1622-3877
cbgarcia@ugr.es

Ainara Rodriguez Sanchez
U.N.E.D.
Department of Applied Economics and Economic History
Madrid, Spain.
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
ORCiD: 0000-0003-1622-3877
arsanchez@cee.uned.es

Claudia Garcia Garcia
Complutense University of Madrid
Department of Applied Economics, Structure and History
Madrid, Spain.
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
ORCiD: 0000-0003-1622-3877
clgarc13@ucm.es

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://doi.org/10.1007/s10614-019-09967-y
https://doi.org/10.1007/s10614-019-09967-y
https://doi.org/10.1007/s10614-021-10154-1
https://doi.org/10.18637/jss.v040.i02
http://metodoscuantitativos.ugr.es/pages/web/romansg
https://orcid.org/0000-0003-2589-4058
mailto:romansg@ugr.es
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
https://orcid.org/0000-0003-1622-3877
mailto:cbgarcia@ugr.es
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
https://orcid.org/0000-0003-1622-3877
mailto:arsanchez@cee.uned.es
http://metodoscuantitativos.ugr.es/pages/web/cbgarcia
https://orcid.org/0000-0003-1622-3877
mailto:clgarc13@ucm.es


CONTRIBUTED RESEARCH ARTICLE 280

ppseq: An R Package for Sequential
Predictive Probability Monitoring
by Emily C. Zabor, Brian P. Hobbs, and Michael J. Kane

Abstract Advances in drug discovery have produced numerous biomarker-guided therapeutic strate-
gies for treating cancer. Yet the promise of precision medicine comes with the cost of increased
complexity. Recent trials of targeted treatments have included expansion cohorts with sample sizes far
exceeding those in traditional early phase trials of chemotherapeutic agents. The enlarged sample sizes
raise ethical concerns for patients who enroll in clinical trials, and emphasize the need for rigorous
statistical designs to ensure that trials can stop early for futility while maintaining traditional control
of type I error and power. The R package ppseq provides a framework for designing early phase
clinical trials of binary endpoints using sequential futility monitoring based on Bayesian predictive
probability. Trial designs can be compared using interactive plots and selected based on measures of
efficiency or accuracy.

1 Introduction

Statistical methods for early phase oncology trials were developed in the context of cytotoxic treatments.
Most cytotoxic treatments exhibit increases in both efficacy and toxicity with increasing dose. As a
result, phase I trials were centered on identifying the maximum tolerated dose (MTD), defined as the
highest dose that did not exceed a pre-specified toxicity threshold. But advances in drug discovery
have produced numerous biomarker-guided non-cytotoxic therapies such as small molecule inhibitors,
antibody drug conjugates, immune checkpoint inhibitors, and monoclonal antibodies. These therapies
typically do not exhibit the same pattern of increases in both efficacy and toxicity with increasing dose,
so the MTD as traditionally defined may not exist. Instead, lower doses may have equivalent efficacy
but lower toxicity as compared to higher doses. As a result, these therapies can be difficult to study
with traditional dose-escalation designs such as the rule-based 3+3 and the model-based continual
reassessment method, among others (Pestana et al. 2020). To address this issue, recent phase I trials
have included large dose-expansion cohorts, in which additional patients are enrolled in phase I after
the dose-escalation phase is complete. In this setup, the dose-escalation phase is considered phase Ia
and used to assess the initial safety of multiple doses, then the dose-expansion phase is considered
phase Ib and can have a variety of aims including to further refine the safety of one or more doses, to
assess preliminary efficacy, to explore the treatment in various disease-specific subtypes, or to further
characterize the pharmacokinetics and/or pharmacodynamics. The use of dose-expansion cohorts
increased from 12% in 2006 to 38% in 2011 (Manji et al. 2013) and trials with dose-expansion cohorts
led to higher response rates and more frequent success in phase II trials (Bugano et al. 2017).

But despite these successes, recent dose-expansion cohorts have not always been planned in
advance, leading to uncertain statistical properties, and have at times included samples sizes that
far exceed those typically seen in early phase trials. For example, the KEYNOTE-001 trial of pem-
brolizumab, initially designed as a 3+3 dose-escalation trial, included multiple protocol amendments
and ultimately enrolled a total of 655 patients across five melanoma expansion cohorts and 550 pa-
tients across four non-small-cell lung cancer expansion cohorts (Khoja et al. 2015). In a basket trial of
atezolizumab, an anti-PD-L1 treatment in patients with a variety of cancers and both with and without
PD-L1 expression, an expansion cohort in metastatic urothelial carcinoma ultimately evaluated 95
patients, despite the fact that no expansion cohort in this disease subtype was originally planned in the
trial protocol. The expansion cohort in metastatic urothelial carcinoma was added through a protocol
amendment, and the sample size later was increased from what was initially planned (Petrylak et al.
2018; Powles et al. 2014). These enlarged sample sizes raise ethical concerns for patients who enroll
in clinical trials, and emphasize the need for rigorous statistical designs to ensure that trials can stop
early for futility while maintaining traditional control of type I error and power.

Bayesian predictive probability has been proposed as an approach for sequential monitoring
in early phase oncology trials (Dmitrienko and Wang 2006; Lee and Liu 2008; Hobbs, Chen, and
Lee 2018; Saville et al. 2014). However, in order to be useful to investigators designing such trials,
software must be made available to calibrate the design for the desired statistical properties. To our
knowledge no such software currently exists in the R programming language. This paper introduces
the ppseq package for the R software language, which provides functions to design early phase
clinical trials of binary endpoints using sequential predictive probability monitoring for futility. Static
plots produced using the ggplot2 package (Wickham 2016) and interactive plots produced using the
plotly package (Sievert 2020) compare design options based on frequentist type I error and power.
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Moreover, the ppseq package implements two criteria for selecting an ideal predictive probability
monitoring design from among the options formed by combinations of posterior and predictive
decision thresholds. While the ppseq package was developed with early phase oncology clinical
trials in mind, the methodology is general and can be applied to any application of sequential futility
monitoring in clinical trial design.

2 Predictive probability monitoring

Consider the setting of an expansion cohort with a binary outcome, such as tumor response as
measured by the RECIST (Response Evaluation Criteria in Solid Tumors) criteria. Here we will focus
on the one-sample setting, in which all patients in the trial are enrolled onto a single arm and given
the experimental treatment of interest. Functionality is also available for the two-sample setting, in
which patients are enrolled onto two different treatment arms, or a treatment and a control arm, for
comparative purposes. Each patient, denoted by i, enrolled in the trial either has a response such that
xi = 1 or does not have a response such that xi = 0. Then X = ∑n

i=1 xi is the number of responses
out of n currently observed patients up to a maximum of N total patients. Let p represent the true
probability of response. Fix p0 as the threshold for unacceptable response rate and p1 as the threshold
for acceptable response rate. Most dose-expansion studies with an efficacy aim will wish to test the
null hypothesis H0 : p ≤ p0 versus the alternative hypothesis H1 : p ≥ p1.

The Bayesian paradigm of statistics is founded on Bayes’ theorem, which is a mathematical theory
that specifies how to combine the prior distributions that define prior beliefs about parameters, such
as the true response rate p, with the observed data, such as the total number of responses X, yielding a
posterior distribution. Here the prior distribution of the response rate π(p) has a beta distribution
Beta(a0, b0) and our data X have a binomial distribution Bin(n, p). Combining the likelihood function
for the observed data Lx(p) ∝ px(1 − p)n−x with the prior, we obtain the posterior distribution of
the response rate, which follows the beta distribution p|x ∼ Beta(a0 + x, b0 + n − x). A posterior
probability threshold θ would be pre-specified during the trial design stage. At the end of the trial, if
the posterior probability exceeded the pre-specified threshold, i.e. if Pr(p > p0|X) > θ, the trial would
be declared a success.

The posterior predictive distribution of the number of future responses X∗ in the remaining
n∗ = N − n future patients follows a beta-binomial distribution Beta-binomial(n∗, a0 + x, b0 + n − x).
Then the posterior predictive probability (PPP), is calculated as PPP = ∑n∗

x∗=0 Pr(X∗ = x∗|x) ×
I(Pr(p > p0|X, X∗ = x∗) > θ). The posterior predictive probability represents the probability that,
at any given interim monitoring point, the treatment will be declared efficacious at the end of the
trial when full enrollment is reached, conditional on the currently observed data and the specified
priors. We would stop the trial early for futility if the posterior predictive probability dropped below
a pre-specified threshold θ∗, i.e. PPP < θ∗. Predictive probability thresholds closer to 0 lead to less
frequent stopping for futility whereas thresholds near 1 lead to frequent stopping unless there is
almost certain probability of success. Predictive probability provides an intuitive interim monitoring
strategy for clinical trials that tells the investigator what the chances are of declaring the treatment
efficacious at the end of the trial if we were to continue enrolling to the maximum planned sample
size, based on the data observed in the trial to date.

3 Package overview

The ppseq package facilitates the design of clinical trials utilizing sequential predictive probability
monitoring for futility. The goal is to establish a set of decision rules at the trial planning phase that
would be used for interim monitoring during the course of the trial. The main computational challenge
in designing such a trial is joint calibration of the posterior probability and posterior predictive
probability thresholds to be used in the trial in order to achieve the desired levels of frequentist type I
error and power. The main function for achieving this aim is the calibrate_thresholds() function,
which will evaluate a grid of posterior thresholds θ and predictive thresholds θ∗ provided by the user
as vector inputs specified with the arguments pp_threshold and ppp_threshold, respectively. Other
required arguments include the unacceptable response rate p0 specified by p_null, the acceptable
response rate p1 specified by p_alt, a vector of sample sizes at which interim analyses are to be
performed n, and the maximum total sample size N. The direction of the alternative hypothesis is
specified with the argument direction and defaults to "greater", which corresponds to the alternative
hypothesis H1 : p ≥ p1. The hyperparameters of the prior beta distribution are specified with the
argument prior and default to c(0.5, 0.5), which denotes a Beta(0.5, 0.5) distribution. The number
of posterior samples is specified with the argument S, which defaults to 5000 samples, and the number
of simulated trial datasets is specified with the argument nsim, which defaults to 1000. The additional
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argument delta, which defaults to NULL for the one-sample setting, can specify a clinically meaningful
difference between groups δ = p1 − p0 in the case of a two-sample trial design.

The calibrate_thresholds() function conducts the following algorithm, given the default argu-
ments:

1. Generate nsim datasets, denoted by j, containing the cumulative number of responses x at each
interim sample size n from a binomial distribution under the unacceptable (i.e. null) response
rate p0, specified by p_null, and under the acceptable (i.e. alternative) response rate p1, specified
by p_alt, for each interim look, denoted by l.

2. For dataset j and posterior threshold θk, draw S samples, denoted by s, from the posterior
distribution p|xls ∼ Beta(a0 + xl , b0 + nl − xl) where xl is the number of responses at interim
look l and nl is the number of enrolled patients at interim look l. Use each p|xls as the response
probability in a binomial distribution to generate the number of future responses X∗

ls in the
remaining n∗

l = N − nl future patients at interim look l.

a. Then for each X∗
ls, generate S posterior probabilities, denoted by s′, at the end of the trial:

PP∗
lss′ ∼ Beta(a0 + X∗

ls + xl , b0 + n∗
l − (X∗

ls + xl)) and calculate PP∗
ls = Pr(p > p0|X∗

ls) =

∑S′
1 PP∗

lss′>p0

S′ .

b. Estimate the predictive probability at posterior threshold k as PPPlk = ∑S
1 PP∗

ls>θk
S .

c. Stop the trial for dataset j at interim look l and predictive threshold m if PPPlk < θ∗m.
Otherwise continue enrolling.

3. Repeat (2) over all combinations of datasets j, posterior thresholds k, and predictive thresholds
m.

4. If dataset j was stopped early for futility then we do not reject the null hypothesis. If dataset
j reached full enrollment, we reject the null hypothesis H0 : p ≤ p0 at posterior threshold k if
PPPlk > θk.

The function returns a list, the first element of which is a tibble containing the posterior threshold
θ, the predictive threshold θ∗, the mean sample size under the null and the alternative, the proportion
of positive trials under the null and alternative, and the proportion of trials stopped early under the
null and alternative. The proportion of trials simulated under the null hypothesis for which the null
hypothesis was rejected is an estimate of the type I error, and the proportion of trials simulated under
the alternative hypothesis for which the null hypothesis was rejected is an estimate of the power.
The print() option will print the results summary for each combination of thresholds, filtered by
an acceptable range of frequentist type I error and minimum power, if desired. Note that the results
will be sensitive to the choice of nsim and S. We have set what we believe are reasonable defaults and
would caution users against reducing these values without careful consideration.

Design selection

After obtaining results for all combinations of evaluated posterior and predictive thresholds, the next
step is to select the ideal design from among the various options. The ppseq package introduces two
criteria to assist users in making a selection. The first, called the “optimal accuracy” design, identifies
the design that minimizes the Euclidean distance to 0 type I error probability and a power of 1. To
accomplish this, the accuracy Euclidean distance (AED) for the design with posterior threshold k and
predictive threshold m is calculated as AEDkm = wα ∗ (αkm − 0)2 + w(1−β) ∗ ((1 − β)km − 1)2, where
wα and w(1−β) are optional weights on the type I error and power, respectively, and αkm denotes the
estimated type I error and (1 − β)km denotes the estimated power. The design with the smallest value
of AEDkm is selected as optimal. The second criteria, called the “optimal efficiency” design, identifies
the design that minimizes the Euclidean distance to minimal average sample size under the null
and maximal average sample size under the alternative. To accomplish this, the efficiency Euclidean
distant (EED) for the design with posterior threshold k and predictive threshold m is calculated as
EEDkm = wN̄H0

∗ (N̄H0km − min(N̄H0 ))
2 + wN̄H1

∗ (N̄H1km − max(N̄H1 ))
2, where wN̄H0

and wN̄H1
are

optional weights on the average sample size under the null and alternative, respectively, N̄H0km and
N̄H1km denote the average sample sizes under the null and alternative, respectively, and min(N̄H0 ) and
max(N̄H1 ) denote the minimum average sample size under the null and the maximum average sample
size under the alternative alternative, respectively, across all combinations of k and m. The design with
the smallest value of EEDkm is selected as optimal. The optimize_design() function returns a list that
contains the details of each of the two optimal designs.
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Decision rules

To ease the implementation of clinical trials designed with sequential predictive probability monitoring,
once a design has been selected, a table of decision rules can be produced using the calc_decision_rules()
function. The function takes the sample sizes n at which interim analyses are to be performed as well
as the maximum total sample size N, the null value to compare to in the one-sample case p0 (set to
NULL in the two-sample case), the posterior threshold of the selected design theta, and the predictive
threshold of the selected design ppp. Arguments direction, prior, S, delta are as described in the
Package Overview section, with the same defaults. The function results in a tibble. The trial would
stop at a given look if the number of observed responses is less than or equal to r, otherwise the
trial would continue enrolling if the number of observed responses is greater than r. At the end of
the trial when the maximum planned sample size is reached, the treatment would be considered
promising if the number of observed responses is greater than r. In the one-sample case, the resulting
tibble includes a column for the sample size n at each interim look, r at each look, and a column
for the associated posterior predictive probability ppp. In the two-sample case, the tibble includes
columns for n0 and n1, the sample size at each interim analysis in the control and experimental arms,
respectively. There are also columns for r0 and r1, the number of responses in the control arm and
experimental arm, respectively, leading to the decision to stop or continue. Finally, there is a column
for the posterior predictive probability associated with that decision ppp.

Visualizations

Finally, to assist users in comparing the results of the various design options, a plot() option is
available for the results of calibrate_thresholds that allows creation of static plots using the ggplot2
package (Wickham 2016) or interactive plots using the plotly package (Sievert 2020). Two plots are
produced, one plotting type I error by power and indicating the optimal accuracy design, and one
plotting the average sample size under the null by the average sample size under the alternative
and indicating the optimal efficiency design. The motivation for including an interactive graphics
option was the utility of the additional information available when hovering over each point. Instead
of simply eyeballing where points fall along the axes, users can see the specific type I error, power,
average sample size under the null, average sample size under the alternative, the posterior and
predictive thresholds associated with the design, as well as the distance to the upper left point on the
plot. A plot() option is also available for the results of calc_decision_rules. In the one-sample case
it produces a single plot showing the sample size at each interim analysis on the x-axis and the possible
number of responses at each interim analysis on the y-axis. In the two-sample case a grid of plots is
produced, with one plot for each interim analysis. The x-axis shows the number of possible responses
in the control group and the y-axis shows the number of possible responses in the experimental group.
In both cases, the boxes are colored green for a “proceed” decision and red for a “stop” decision for
each combination and the hover box produced by plotly provides the details.

4 Package demonstration

In this section I will present a basic example to demonstrate the functionality included in the ppseq.
The following section will present a more realistic case study.

First we install and load the ppseq package.

install.packages("ppseq")

library(ppseq)

Consider the case where we are interested in designing a trial to investigate how a new treatment
impacts tumor response measured as a binary outcome of response versus no response. We know the
current standard of care treatment results in a tumor response rate of 10%, and we wish to improve
this by 30%. So we wish to test H0 : p ≤ 0.1 versus H1 : p ≥ 0.4, so we set p_null = 0.1 and p_alt =
0.4. This is a rare disease so our maximum sample size is 15, so we set N = 15, and we will do interim
analyses after every 5 patients, so we set n = seq(5, 15, 5). We wish to examine designs based on
combinations of posterior thresholds θ = 0.85, 0.90 and predictive thresholds θ∗ = 0.1, 0.2, so we set
pp_threshold = c(0.85, 0.9) and ppp_threshold = c(0.1, 0.2). Finally, for computational speed
in this basic example, we set S=50 and nsim=50, but in practice we would want to use much larger
values, in the thousands.

set.seed(123)
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cal_thresh <-
calibrate_thresholds(
p_null = 0.1,
p_alt = 0.4,
n = seq(5, 15, 5),
N = 15,
pp_threshold = c(0.85, 0.9),
ppp_threshold = c(0.1, 0.2),
S = 50,
nsim = 50
)

Since there are only four design options in this toy example, we print the entire results table using a
call to print(). Each row represents a different combination of the considered posterior and predictive
thresholds, denotes pp_threshold and ppp_threshold, respectively.

print(cal_thresh)

#> # A tibble: 4 x 8
#> pp_threshold ppp_threshold mean_n1_n~1 prop_~2 prop_~3 mean_~4 prop_~5 prop_~6
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.85 0.1 12.1 0.1 0.42 14.8 0.92 0.02
#> 2 0.85 0.2 9.5 0.06 0.64 14.8 0.92 0.02
#> 3 0.9 0.1 10.8 0.04 0.5 14.8 0.9 0.02
#> 4 0.9 0.2 8.9 0.04 0.74 14.7 0.88 0.04
#> # ... with abbreviated variable names 1: mean_n1_null, 2: prop_pos_null,
#> # 3: prop_stopped_null, 4: mean_n1_alt, 5: prop_pos_alt, 6: prop_stopped_alt

We use the optimize_design() function to identify the optimal accuracy and optimal efficiency
designs. We constrain consideration to designs with type I error between 0.025 and 0.1, specified by
type1_range = c(0.025, 0.1), and power of at least 0.75, specified by minimum_power = 0.75.

optimize_design(cal_thresh, type1_range = c(0.025, 0.1), minimum_power = 0.75)

#> $`Optimal accuracy design:`
#> # A tibble: 1 x 6
#> pp_threshold ppp_threshold `Type I error` Power `Average N under the null`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.85 0.2 0.06 0.92 9.5
#> `Average N under the alternative`
#> <dbl>
#> 1 14.8
#>
#> $`Optimal efficiency design:`
#> # A tibble: 1 x 6
#> pp_threshold ppp_threshold `Type I error` Power `Average N under the null`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.9 0.2 0.04 0.88 8.9
#> `Average N under the alternative`
#> <dbl>
#> 1 14.7

To ease interim analysis during the course of the trial, we obtain the decision table using the
calc_decision_rules() function, with the thresholds of our selected optimal efficiency design passed
as theta = 0.9 and ppp_threshold = 0.2. For computational speed in this basic example, we set
S=50, but in practice we would want to draw many more posterior samples, and values of 5000 or
more should be considered. If any NA value was returned in this table, it would indicate that at that
interim look you would never stop, regardless of the number of responses.

calc_decision_rules(
n = seq(5, 15, 5),
N = 15,
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theta = 0.9,
ppp = 0.2,
p0 = 0.1,
S = 50

)

#> # A tibble: 3 x 3
#> n r ppp
#> <dbl> <int> <dbl>
#> 1 5 0 0.06
#> 2 10 1 0.1
#> 3 15 2 0

This table tells us that at the first interim analysis after we have observed n = 5 patients for
response, we would stop the trial if ≤ r = 0 responses had been observed, and would continue
enrolling if > r = 0 responses had been observed. At the second interim analysis after we have
observed n = 10 patients for response, we would stop the trial if ≤ r = 1 responses had been observed,
and would continue enrolling if > r = 1 responses had been observed. At the end of the trial after all
n = N = 15 patients have been observed for response, we would declare the new treatment promising
if > r = 2 responses had been observed.

5 Case study

The case study focuses on a re-design of a phase II study of atezolizumab in metastatic urothelial
carcinoma patients (mUC) using sequential predictive probability monitoring. Atezolizumab is
a programmed death-ligand 1 (PD-L1) blocking monoclonal antibody that was given accelerated
approval by the U.S. Food and Drug Administration in May 2016 for the treatment of patients with
locally advanced or metastatic urothelial carcinoma who had disease progression following platinum-
containing chemotherapy. The approval was based on the results of a single-arm phase II study in
310 patients (Rosenberg et al. 2016). The phase II study used a hierarchical fixed-sequence testing
procedure to test increasingly broad subgroups of patients based on PD-L1 status, and found overall
response rates of 26% (95% CI: 18-36), 18% (95% CI: 13-24), and 15% (95% CI 11-19) in patients with ≥
5% PD-L1-positive immune cells (IC2/3 subgroup), in patients with ≥ 1% PD-L1-positive immune cells
(IC1/2/3 subgroup), and in all patients, respectively (Rosenberg et al. 2016). All three rates exceeded
the historical control rate of 10%. Then, in March 2021, the approval in this indication was voluntarily
withdrawn by the sponsor following negative results from a randomized phase III study (Powles
et al. 2018). In the phase III study, 931 patients were randomly assigned to receive atezolizumab or
chemotherapy in a 1:1 ratio, and the same hierarchical fixed-sequence testing procedure as in the phase
II study was used. The phase III study found that overall survival did not differ significantly between
the atezolizumab and chemotherapy groups of the IC2/3 subgroup (median survival 11.1 months
[95% CI: 8.6-15.5] versus 10.6 months [95% CI: 8.4-12.2]), so no further testing was conducted for the
primary endpoint (Powles et al. 2018). Further analyses revealed that while the response rates to
atezolizumab were comparable to those seen in the phase II study, the response rates to chemotherapy
were much higher than the historical control rate of 10%. The overall response rates to chemotherapy
were 21.6% (95% CI: 14.5-30.2), 14.7% (95% CI: 10.9-19.2), and 13.4% (95% CI: 10.5-16.9) for the IC2/3
subgroup, IC1/2/3 subgroup, and all patients, respectively. The overall response rates to atezolizumab
were 23% (95% CI: 15.6-31.9), 14.1% (95% CI: 10.4-18.5), and 13.4% (95% CI: 10.5-16.9) for the IC2/3
subgroup, IC1/2/3 subgroup, and all patients, respectively. These results indicate that PD-L1 status is
a prognostic biomarker for both standard of care chemotherapies that comprised the control arm as
well as atezolizumab in this patient population.

We wish to re-design the phase II trial of atezolizumab using a two-arm randomized design
with sequential predictive probability monitoring. We will use the calibrate_thresholds() function
to obtain the operating characteristics of designs based on on each combination of posterior and
predictive thresholds. We focus here on the main biomarker subgroup of interest, the IC2/3 subgroup.
We design the study with a null response rate of 0.1 in both arms, and an alternative response rate
of 0.25 in the atezolizumab arm. So we set p_null = c(0.1, 0.1) and p_alt = c(0.1, 0.25). We
plan the study with 100 participants, assuming that the total sample size available is similar to the
310 used in the actual single-arm phase II trial, and that a third of that patient population fall into
our desired biomarker subgroup. So we set N = c(50, 50) to indicate equal allocation of the 100
patients to each of the two arms. We will check for futility after every 10 patients are enrolled on
each arm, so we set n = cbind(seq(10, 50, 10), seq(10, 50, 10)), a matrix showing the interim
analysis sample sizes in each of the two arms. To design the study, we need to calibrate the design
over a range of posterior probability thresholds and predictive probability thresholds. In this example
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we will consider posterior thresholds of 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, and 0.99, and
predictive thresholds of 0.05, 0.1, 0.15, and 0.2. So we set pp_threshold = seq(0.9, 0.99, 0.01)
and ppp_threshold = seq(0.05, 0.2, 0.05). We selected these posterior thresholds because we
want to have a posterior probability of at least 0.9 that our response rate exceeds the null. And we
selected these predictive thresholds because we would not want to stop the trial early for futility if
there was more than a 20% chance of success when full enrollment was reached. We use the defaults
for all remaining arguments, including the defaults of S=5000 and nsim=1000, which we believe are
sufficient to obtain stable results. Because of the inherent computational intensity in these calculations,
this function relies on the future (Bengtsson 2021) and furrr (Vaughan and Dancho 2021) packages to
parallelize computations. The user will be responsible for setting up a call to future::plan() that is
appropriate to their operating environment and simulation setting. Because the code takes some time
to run, the results of the below example code are available as a dataset called two_sample_cal_tbl
included in the ppseq package.

library(future)

set.seed(123)

future::plan(future::multicore(workers = 40))

two_sample_cal_tbl <-
calibrate_thresholds(
p_null = c(0.1, 0.1),
p_alt = c(0.1, 0.25),
n = cbind(seq(10, 50, 10), seq(10, 50, 10)),
N = c(50, 50),
pp_threshold = seq(0.9, 0.99, 0.01),
ppp_threshold = seq(0.05, 0.2, 0.05),
direction = "greater",
delta = 0,
prior = c(0.5, 0.5),
S = 5000,
nsim = 1000

)

We can compare the design options that meet our desired range of type I error and minimum power
by passing the results of our call to the calibrate_thresholds() function to the plot() function. The
plotly = TRUE option produces interactive visualizations or the plotly = FALSE option produces
static visualizations.

plot(
two_sample_cal_tbl,
type1_range = c(0.05, 0.1),
minimum_power = 0.7,
plotly = TRUE

)

We see that the optimal efficiency design is the one with posterior threshold 0.92 and predictive
threshold 0.05. It has a type I error of 0.07, power of 0.7, average sample size under the null of 29
per arm, and average sample size under the alternative of 46 per arm. This design would allow
us to stop early if the treatment were inefficacious, thus preserving valuable financial resources for
use in studying more promising treatments and preventing our human subjects from continuing an
ineffective treatment.

optimize_design(
two_sample_cal_tbl,
type1_range = c(0.05, 0.1),
minimum_power = 0.7

)

#> $`Optimal accuracy design:`
#> # A tibble: 1 x 6
#> pp_threshold ppp_threshold `Type I error` Power `Average N under the null`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
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Figure 1: Plot of design options made with the ggplot2 package. The accuracy designs are on the
left, with type I error on the x-axis and power on the y-axis, and the efficiency designs are on the
right, with the average sample size under the null on the x-axis and the average sample size under the
alternative on the y-axis. Each point represents one potential design based on a specific combination
of posterior and predictive thresholds. The color represents the Euclidean distance to the top left point.
The optimal design is indicated by a diamond. The optimal accuracy design is the one with posterior
threshold 0.86 and predictive threshold 0.1. The optimal efficiency design is the one with posterior
threshold 0.92 and predictive threshold 0.05.

#> 1 0.86 0.1 0.1 0.751 28.6
#> `Average N under the alternative`
#> <dbl>
#> 1 45.1
#>
#> $`Optimal efficiency design:`
#> # A tibble: 1 x 6
#> pp_threshold ppp_threshold `Type I error` Power `Average N under the null`
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.92 0.05 0.07 0.701 28.6
#> `Average N under the alternative`
#> <dbl>
#> 1 45.5

Finally, we generate the decision table associated with the selected design for use in mak-
ing decisions at each interim analysis during the conduct of the trial. Because of the compu-
tational time involved, the results of the below example code are available as a dataset called
two_sample_decision_tbl included in the ppseq package. In the results table, we see that at the
first interim futility look after just 5 patients, we would not stop the trial. After the first 10 patients we
would stop the trial if there were 0 responses, and so on. At the end of the trial when all 95 patients
have accrued, we would declare the treatment promising of further study if there were greater than or
equal to 14 responses.

set.seed(123)

two_sample_decision_tbl <-
calc_decision_rules(
n = cbind(seq(10, 50, 10), seq(10, 50, 10)),
N = c(50, 50),
theta = 0.92,
ppp = 0.05,
p0 = NULL,
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direction = "greater",
delta = 0,
prior = c(0.5, 0.5),
S = 5000
)

The resulting table contains all possible combinations of responses in the two arms, so is quite long.
We can visualize the resulting decision rules by passing the results of the call to the calc_decision_rules()
function to the plot() function, which returns a faceted plot according to the interim look. The color
denotes whether the trial should proceed (green) or stop (red) for a given combination of number of
responses in the control arm (x-axis) and number of responses on the experimental arm (y-axis). For
example, we see that at the second interim look when there are 20 patients enrolled on each arm, if
there were 10 responses in the control arm, we would stop the trial if there were 8 or fewer responses
on the experimental arm; otherwise we would proceed with enrollment.

dtp <- plot(two_sample_decision_tbl, plotly = FALSE)

dtp +
theme(legend.position="bottom") +
scale_fill_viridis_d()

6 Summary

With the focus of early stage clinical trial research in oncology shifting away from the study of cytotoxic
treatments and toward immunotherapies and other non-cytotoxic treatments, new approaches to
clinical trial design are needed that move beyond the traditional search for the maximum tolerated
dose (Hobbs et al. 2019). Bayesian sequential predictive probability monitoring provides a natural
and flexible way to expand the number of patients studied in phase 1 or to design phase 2 trials that
allow for efficient early stopping for futility while maintaining control of type I error and power. The
ppseq package implements functionality to evaluate a range of posterior and predictive thresholds for
a given study design and identify the optimal design based on accuracy (i.e. type I error and power) or
efficiency (i.e. average sample sizes under the null and alternative). Interactive visualization options
are provided to ease comparison of the resulting design options. Once an ideal design is selected, a
table of decision rules can be obtained to make trial conduct simple and straightforward.
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Figure 2: Plot of decision rules made with {ggplot2}. Each facet is for the total sample size at a
pre-specified interim analysis. The number of responses in the control arm is on the x-axis and the
number of responses in the experimental arm is on the y-axis. The fill color indicates whether the trial
should stop (purple) or proceed (yellow) for a given combination of number of responses in the two
arms at each interim analysis. At a given interim analysis, one can look up the number of observed
responses to make a decision about whether the trial should stop or proceed enrollment.
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pCODE: Estimating Parameters of ODE
Models
by Haixu Wang and Jiguo Cao

Abstract The ordinary differential equation (ODE) models are prominent to characterize the
mechanism of dynamical systems with various applications in biology, engineering, and many other
areas. While the form of ODE models is often proposed based on the understanding or assumption
of the dynamical systems, the values of ODE model parameters are often unknown. Hence, it
is of great interest to estimate the ODE parameters once the observations of dynamic systems
become available. The parameter cascade method initially proposed by Ramsay et al. (2007) is
shown to provide an accurate estimation of ODE parameters from the noisy observations at a low
computational cost. This method is further promoted with the implementation in the R package
CollocInfer by Hooker et al. (2016). However, one bottleneck in using CollocInfer to implement
the parameter cascade method is the tedious derivations and coding of the Jacobian and Hessian
matrices required by the objective functions for doing estimation. We develop an R package pCODE
to implement the parameter cascade method, which has the advantage that the users are not required
to provide any Jacobian or Hessian matrices. Functions in the pCODE package accommodate users
for estimating ODE parameters along with their variances and tuning the smoothing parameters.
The package is demonstrated and assessed with four simulation examples with various settings.
We show that pCODE offers a derivative-free procedure to estimate any ODE models where its
functions are easy to understand and apply. Furthermore, the package has an online Shiny app at
https://pcode.shinyapps.io/pcode/.

1 Introduction

The evolution of a dynamic system in time can be represented by ordinary differential equations
(ODE) models consisting of a set of state variables and their derivatives. For example, the state
variables can be the population of multiple species in an ecological system, the velocities, and
locations of particles in a physics system, the concentration of chemicals in a reactor, or the energy
of objects in a heating process. Usually, an ODE model is defined as a set of differential equations
in the following form

ẋ(t) = f (x, u, t|θ), (1)
where x(t) denotes the fully or partially observed states of the system at time t. The ODE model
links the first derivative, the temporal change, of the states with x itself and other influential
components u through some function f defined by the parameter vector θ.

Conventionally, parameter estimation of an ODE model combines numerically solving the system
and updating the ODE parameters given the solution. The updating step complies with the nonlinear
regression framework as suggested in Bard (1974) and Biegler et al. (1986). That is, the optimal θ
minimizes the sum of squared errors between the observations and the solutions of ODE models.
It is not very typical for an ODE model to have analytical solutions unless the dynamic system
is simple and linear. In more realistic situations where analytical solutions are not available, the
ODE solutions must be numerically obtained prior to any estimations of the ODE parameters.
The initial condition, which are values of state variables at the initial time, dictates the unique
solution obtained by the numeric solver. However, the initial condition is often unavailable in real
practices and must be estimated before obtaining the ODE solutions. If the initial conditions are
unknown, then they are augmented to the parameter vector and estimated simultaneously with the
ODE parameters. As a result, the complexity of optimization dramatically increases due to the fact
that the solution is sensitive to ODE parameters and initial conditions. Also, the augmentation
increases the dimension and complexity of the optimization surface hence hindering the convergence
of optimization algorithms.

Being an improvement in the stability of estimation, the multiple shooting methods, presented
in Bock (1981), Peifer and Timmer (2007), and Voss et al. (2004), expands the dimension of
optimization surface by introducing additional initial conditions. The extra initial conditions are a
result of partitioning the original time interval into multiple subintervals, and numeric solutions are
obtained within each subinterval. Ideally, the introduction of these initial conditions will facilitate
the optimization process for θ to avoid local minima in the optimization surface and provide a faster
convergence rate. Additionally, Huang et al. (2006) and Gelman et al. (1996) present Bayesian
frameworks of estimating ODE parameters with a hierarchical model.

The aforementioned strategies depend on the numeric solutions of ODE models and can be
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burdened with significant computational challenges given complex dynamic systems. That is, the
system has to be numerically solved given each update or candidate of ODE parameters. To overcome
these challenges, Varah (1982) proposes a two-step procedure to use nonparametric techniques for
interpolating the time derivatives of state variables. Subsequently, the parameters are estimated
through a nonlinear regression framework by treating the time derivatives as the response. This
methodology is further developed in Chen and Wu (2008), Ramsay and Silverman (2005) , and
Brunel (2008). Replacing numeric solutions with nonparametric estimations drastically reduces the
computational cost, but estimation errors are introduced in the process of interpolating the time
derivatives. The errors are due to the fact that there are no direct observations of the derivatives.
Furthermore, Cao et al. (2012) shows that the estimation errors of derivatives will lead to bias in
the estimation of ODE parameters.

As contrary to the two-step procedure, Ramsay et al. (2007) presents a new approximation
strategy, called the parameter cascade method, in the family of collocation methods. The parameter
cascade method integrates data smoothing and estimation of ODE parameters into a single estimation
scheme. The parameter cascades method provides a much more efficient way of approximating
the ODE solution without numerically solving the system. Additionally, it ensures that the ODE
parameters are more accurately estimated than the two-step approach (Cao et al., 2012). Various
well-known ODE models are examined in Ramsay et al. (2007). Qi and Zhao (2010) has discussed
the asymptotic properties of the parameter cascades estimates for both ODE parameters and basis
coefficients. The methodology has also been validated with many applications. Zhang et al. (2015)
investigates the model selection problem in ODE models based on parameters estimated from the
cascading procedure. When the system is measured with replications, mixed effects need to be
incorporated into the model. This mixed-effect ODE model is explored in Wang et al. (2014).

The cascading estimation strategy is further promoted as in the R package CollocInfer by Hooker
et al. (2016). CollocInfer offers a variety of functions regarding the estimation of ODE models. It has
included the implementation of the parameter cascade method, the tuning criterion of smoothing
parameter, and the sample variance of parameter estimates through the Newey-West method in
Newey and West (1987). However, one bottleneck of using CollocInfer is the requirement of manually
providing all the partial derivatives for constructing the Jacobian and Hessian matrices in the
optimization process. For complex ODE models, the calculation and coding of those derivatives
can be tedious and easy to make mistakes. As an improvement to the CollocInfer package, we
propose a new package, named pCODE, which offers more user-friendly functions for estimating
ODE models without specifying any derivatives. That is, an analytic Jacobian and Hessian matrix
is required for the optimization routine in CollocInfer, whereas pCODE automatically calculates the
numeric approximations to both matrices. Furthermore, pCODE also adds a bootstrap variance
estimator besides the variance estimator obtained by the Delta method in Ramsay et al. (2007) and
CollocInfer. pCODE uses the k-fold cross-validation for finding the optimal smoothing parameter
while CollocInfer selects the smoothing parameters based on the forward prediction errors. We have
also developed an online Shiny app at https://pcode.shinyapps.io/pcode/.

The remainder of this paper is organized as follows. Next section will introduce the parameter
cascade methodology for simultaneous estimation of both ODE solutions x(t) and parameters θ.
The third section explains the core functions of the package pCODE along with their usages and
syntaxes. Subsequently, The fourth section illustrates the application of pCODE on several datasets
with simulations for assessing the performance. At last, The fifth section gives a conclusion of the
paper.

2 The parameter cascade method

An ODE model is build upon a set of differential equations ẋi(t) = fi(x, t|θ) for i = 1, ..., I,
corresponding to the index of state variables. Each differential equation represents how the time
derivative of one state variable depends on x = (x1, ..., xI ). Furthermore, fi(x, t|θ)’s are assumed to
be parametrized by a vector of parameters θ. Let yij = xi(tij) + eij be the j-th noisy observation
of i-th state variable at time tij , where eij is the measurement error or noise, j = 1, ..., ni. We
assume the vector of random errors ei = (ei1, ..., eini

) has a distribution function g(ei) with the
distribution parameter σi. Our goal is to estimate θ from the noisy observations from the system.

The lower stream estimation of the parameter cascade method is to provide smooth interpolations
of the observations. As suggested in Ramsay et al. (2007), the data interpolation part is done by the
smoothing splines. The goal of smoothing is to diminish the random errors in the observations of
all dimensions, hence the underlying solutions xi(t)’s can be recovered from the noisy observations.
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That is, each xi(t) is expressed as a linear combination of B-spline basis functions

xi(t) =

Ki∑
i

cikϕik(t) = c′
iϕi(t),

where Ki is the number of basis functions, and ϕi(t) is the vector of basis functions evaluated at a
time point t. Data smoothing is then equivalent to the estimation of these basis coefficients ci’s.

To comply the lower level estimation, a simple objective function J(c), following the smoothing
spline routine, is considered for obtaining basis coefficients c = (c′

1, . . . , c′
I )

′. That is, the negative
log-likelihood function is chosen for non-normal errors, whereas the least square criterion is naturally
suitable for i.i.d. normal errors eij ∼ N(0, σi). The summation J(c|σ) =

∑
i J(ci|σi) of individual

fitting criterion over i defines a composite objective function for all I dimensions. The data
interpolation will use a saturated number of basis functions which requires a penalty term in
the objective function to prevent overfitting problems. Ramsay and Silverman (2005) suggests to
use a linear differential operator for introducing a smoothness penalty in the objective functions.
Subsequently, Poyton et al. (2006) utilizes the smoothness penalty in estimating parameters and
solutions of ODE models. Following the same technique, the smoothness penalty is defined based on
the discrepancy between the time derivatives and the ODE model, i.e.,∫

(ẋi(t) − fi(x, t|θ))2dt, (2)

for each state variable xi. Multiplying the penalty with a smoothing parameter λi and combining
the penalties over all dimensions, the complete objective function is defined to be

J(c|θ) =
I∑

i=1

[
− ln g(ei) + λi

∫
(ẋi(t) − f(x, t|θ))2dt

]
. (3)

For each given set of ODE parameters θ, the basis coefficients c is estimated by minimizing J(c|θ).
Hence, the estimate for the basis coefficients c become an implicit function of the ODE parameters θ
as c(θ). The objective function (3), referred to as the inner objective function, needs to be optimized
for estimating c whenever θ is updated.

To clearly distinguish two sets of parameters c and θ, c will be referred to as the nuisance
parameters since they are not essential for estimating the ODE model rather interpolate the
observations. On the other hand, θ is responsible for defining the structure of the ODE model and
will be denoted as structural parameters. Often, θ will be the primary concern given any ODE
models.

The upper stream estimation of the parameter cascade method focuses on the structural parameter
θ. To comply this estimation, the objective function H(θ), referred to as the outer objective function,
is optimized with respect only to the structural parameters θ. It is usually defined to be the negative
log-likelihood function or the sum of squared errors given the distributions of random errors, that is,

H(θ) = −
I∑

i=1
ln g(êi|θ), (4)

where
êi = yi − x̂i(ti|θ).

Here x̂i(ti|θ) = ĉ′
i(θ)ϕi(ti), where ĉ′

i(θ) is the optimizer of J(c|θ) given current θ.
The parameter cascade method nests the estimation of basis coefficients in that of the structural

parameters, where both estimations depend on the choice of smoothing parameters λ. As a result,
the interpolation of data points is not separated from estimating ODE parameters. The stream of
dependencies defined a parameter cascade which offers great accuracy and efficiency in estimating
ODE models. To take full advantage of the parameter cascade method, the pCODE package provides
several R functions that are able to apply the aforementioned methodology for estimating ODE
models.
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3 Main functions in the pCODE package

Parameter estimation: pcode

The main function to perform the parameter cascade method is pcode in the package. This is a
generic wrapper function for handling several scenarios given different objective functions, normal or
non-normal errors, and missing state variables.

First, we focus on the situation when we have the normal random errors for all dimensions
where eij ∼ N(0, σ2

i ). In fact, both the inner optimization function (3) and the outer optimization
function (4) are calculated based on a vector of residuals. The first part of (3) is easily recognized
as the residuals from fitting the observation with basic functions. If the second part, the integral, is
approximated by the composite Simpson’s rule, then the approximation can be written in a quadratic
form based on a vector of residual-like quantities. Stringing the aforementioned two vectors into one,
and the concatenation of these vectors from all dimensions will produce a single vector of residuals.
Hence, the optimization of the inner objective function adheres to the non-linear least square (NLS)
framework. As a result, we can use the popular Levenberg-Marquart (LM) algorithm to obtain an
estimate ĉ′

i(θ). Our package pcode employs the function lsqnonlin from the package PRACMA
(Borchers, 2019) for applying the LM algorithm.

The optimization of the outer objective function appears to be exactly an NLS problem. However,
the parameter cascade strategy appends an extra layer of optimization to each update of the outer
estimation, which characterizes a nested optimization problem. It is applicable to apply the
Levenberg-Marquart algorithm again to the outer objective, however, the computational effort is
much greater than that of inner optimization. The reason is that a Jacobian matrix needs to be
calculated for each iteration of the update on the structural parameters, and each entry of the
Jacobian for the outer objective involves a complete optimization of the inner one. This occurs to
be the major delay in computation time.

Most commonly, the random errors eij ’s are i.i.d from the normal distribution. However, some
dynamic systems may produce non-normal errors which make the NLS approach not applicable.
One solution is to perform a transformation on the observations and state variables, which forces
the errors of transformed variables to have a normal distribution. As an alternative, pcode allows
one to input a likelihood (or log-likelihood) function as a fitting criterion for both inner and outer
objectives. In such a case, optim will be used for both levels of objective functions.

The following demonstrates the syntax of pcode with its argument list:

pcode(
data, time, ode.model, par.names, state.names, likelihood.fun,
par.initial, basis.list, lambda, controls

)

where data, a matrix, contains the observations of state variables as columns. The names of state
variables are stored in state.names as a vector. time includes the observation time points in a
vector. The ODE model to be estimated is provided to pcode as ode.model and defined in a similar
way as that in package deSolve (Soetaert et al., 2010):

ode.model <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {

dV <- c * (V - (V^3) / 3 + R)
dR <- -(1 / c) * (V - a + b * R)
return(list(c(dV, dR)))

})
}

For this example, the state names are passed to the function PCODE as a vector c('V','R'), and
the structural parameter names c('a','b','c') are given to par.names argument of the function.
Optimization for the structural parameters requires a initial value input as par.initial, and there
is no need for an input of likelihood.fun when the error distributions are Normal. basis.list
contains the list of basis objects defined by the package fda, and the default basis has 9 interior
knots with B-spline basis functions of order of 4. lambda corresponds to the penalty parameter
λ which controls the fitness of estimated state variables to the differential equations. A scalar
input of lambda means that all dimensions will subject to the same penalty, or a vector input
differentiates the penalty calculated for each dimension. controls contains addition parameters to
adjust optimizations for both inner and outer objective functions and obtain initial value for basis
coefficients c. Two scenarios are discussed depending on the different distribution of errors. All the
mentioned scenarios will be demonstrated in the fourth section with examples.
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The bootstrap variance estimator: bootsvar

All the functions of this package are derivative-free, hence the variance of structural parameters is
numerically approximated. The first option is to use the bootstrap variance estimator. Given the
estimation of both parameters θ and c, we are able to solve the ODE directly with estimated initial
value x̂(t0). Hence, we can simulate bootstrap samples of the ODE model based on the estimated
distributions of errors ei for all I dimensions. The detailed algorithm for obtaining a bootstrap
variance estimate of θ is as follows

Algorithm 1 Bootstrap variance estimator
Initialization:

• θ0: initial value for structural parameters
• B: the number of bootstrap samples
• y: observations

function Bootsvar(θ0, B, y...)
θ⋆, c⋆ ← results from pcode(θ0, y...) ▷ Estimation from the original data
σ2

i ← var(yi −xi) ▷ Estimate the variance of observation errors
x⋆ ← Solution to the ODE given θ⋆ and x⋆(t0)
for b← 1 to B do

Obtain z
(b)
i = xi,⋆ + ϵ

(b)
i . ▷ ϵ

(b)
i ∼ N(0, σ2

i )

(θ(b)
⋆ , c

(b)
⋆ ) ← results from pcode(θ⋆, z

(b)
i ...)

end for
return V ar(θ

(b)
⋆ ), V ar(c

(b)
⋆ )

end function

The syntax of bootsvar is illustrated as the following

bootsvar(
data, time, ode.model, par.names, state.names, par.initial,
lambda, basis.list, bootsrep, controls

)

Most of the arguments are the same as the function pcode with only one addition of argument
bootsrep which indicates the number of bootstrap samples to be taken for obtaining the variance
estimator.

The Delta variance estimator: deltavar

As an alternative to the bootstrap variance estimator, the package PCODE also offers another
numeric estimator for the variance of structural parameters. Ramsay et al. (2007) has developed the
approximation to V ar(θ̂(y)) via the delta-method. The resulting approximation is of the form

V ar(θ̂(y)) ≈
[

dθ̂

dy

]
Σ

[
dθ̂

dy

]′

where dθ̂
dy is obtained as

dθ̂

dy
= −

[
∂2H

∂θ2

∣∣∣∣
θ̂(y)

]−1[
∂2H

∂θ∂y

∣∣∣∣
θ̂(y)

]
(5)

and Σ is a N × N variance-covariance matrix for observations put into a vector. N is the total
number of observation summing over all dimensions of y . Then the estimation of variance relies on
the computation of (5). The partial derivatives are approximated by the finite difference method,
i.e., [

∂2H

∂θ2
u

∣∣∣∣
θ̂(y)

]
≈ H(θ̂u+(y)|λ) − 2H(θ̂(y)|λ) + H(θ̂u−(y)|λ)

∆2 ,
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where θ̂u+(y) and θ̂u−(y) indicate the addition and subtraction of stepsize ∆ to the u-th structural
parameter estimate θ̂(y). The mixed partial derivatives are approximated as the following[

∂2H

∂θu∂θv

∣∣∣∣
θ̂(y)

]
≈

H(θ̂u+,v+(y)) − H(θ̂u−,v+(y)) − H(θ̂u+,v−(y)) + H(θ̂u−,v−(y))

4∆2 .

Given any fixed argument θ for the outer objective function H(θ, σ|λ), its evaluation involves the
profiled estimation of c(θ, σ; |λ) and returns solely the likelihood or the sum of squared errors. Hence,
individual evaluations of H(θ, σ|λ) used in numeric approximation is obtained in the following steps:

• Step 1: Optimize J(c|θ, λ) given θ.
• Step 2: Obtain x̂(t) based on the estimated ĉ.
• Step 3: Return

∑
i∈I ||yi − x̂i(ti)||2 or −

∑
i∈I g(yi − x̂i(ti)|θ, λ).

Approximation to the second term ∂2H
∂θ∂y

∣∣∣∣
θ̂(y)

utilizes the finite difference method as well. After

evaluating H(θ, σ|λ) given θ, the mixed partial derivative is calculated by moving the particular
observation up or down by some stepsize ∆y. That is,[

∂2H

∂θu∂yv

∣∣∣∣
θ̂(y)

]
≈ H(θ̂u+, yv+) − H(θ̂u+, yv−) − H(θ̂u−, yv+) + H(θ̂u−, yv−)

4∆∆y
,

where yv+ and yv− represent moving up and down v-th observation by stepsize ∆y in the last step
of evaluating H(θ, σ|λ). The syntax of numericvar is based on that of pcode

numericvar(
data, time, ode.model, par.names, state.names,
par.initial, lambda, basis.list, stepsize, y_stepsize, controls

)

with addition of stepsize and y_stepsize. stepsize can be specified by a single number for
which finite difference method will use it for all parameters or a vector where derivative of each
parameter is estimated based on its own stepsize. y_stepsize allows an input of a vector where
each element indicates the stepsize for each dimension of the ODE model.

4 Illustrations

A simple ODE model

A simple illustration uses an one-dimensional ODE model

Ẋ = θX(1 − X

10 ). (6)

The following code defines the aforementioned model that will be provided for pcode for estimating
parameters:

model <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {

dX <- theta * X * (1 - X / 10)
return(list(dX))

})
}

Given an observation period of [0, 100], random noise errors are added to the ODE solution with a
Normal distribution N(0, 0.52). Observations of the system are generated as follows:

times <- seq(0, 100, length.out = 101)
mod <- ode(y = state, times = times, func = ode.model, parms = model.par)
nobs <- length(times)
scale <- 0.5
noise <- scale * rnorm(n = nobs, mean = 0, sd = 1)
observ <- mod[, 2] + noise
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Subsequently, we can visualize the observations along the true solution of this simple ODE model
in Figure 1.

Figure 1: This plot demonstrates the solution of an ODE system. The black solid line represents
the true ODE solution given a known initial value. The estimation of the solution and parameters of
the ODE system usually depends on some noisy observations of the system. The noisy observations,
the blue points, are used for estimation.

First, a basis object needs to be defined by create.bspline.basis from fda package

knots <- seq(0, 100, length.out = 21)
norder <- 4
nbasis <- length(knots) + norder - 2
basis <- create.bspline.basis(c(0, 100), nbasis, norder, breaks = knots)

A B-spline basis is created given 21 konts including both interior and boundary knots acorss
observation interval (0, 100). The order of basis functions is 4, so there is a total of 23 basis functions.
To perform the parameter cascade method for estimating both structural and nuisance parameters,
one can use pcode in the following way

pcode.result <- pcode(
data = observ, time = times, ode.model = model,
par.initial = 0.3, par.names = "theta", state.names = "X",
basis.list = basis, lambda = 1e2

)
pcode.result["structural.par"]
theta
0.09995229

To validate the methodology of this function, data simulation and parameter estimation are repeated
for 100 times.
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(a) The violin and boxplot of the estimated θ over 100
replications.

(b) Solution of the ODE model with θ̂ and X̂(0).

Figure 2: The violin plot demonstrates the reliability of the estimation procedure. It summarizes
the estimates of parameters over 100 replications. Each replication generates a entirely new set of
noisy observations and gives a parameter estimate of the simple ODE model (6). The true parameter
is indicated by the redline as θ = 0.1. The right plot shows the estimation of the solution from the
simple ODE model over 100 replications. Each grey line is obtained from solving the ODE system
after obtaining the parameter estimate from one replication. The black curve is the ODE solution
with the true value of θ.

Given that θ = 0.1 is used for generating data, the parameter cascade method performs
impressively well. The violin plot in Figure 2 shows that the distribution of estimates of θ covers 0.1
(indicated by the red horizontal line) and does not fall far away from the true value. Also, the state
variable X (the bold black curve of the plot on the right) is well predicted by solving the ODE model
with estimated initial value x̂(0) and structural parameters θ̂.

The true variance for data generating parameter θ is 1.003 × 10−5. We can compare the
performance of two functions bootsvar and deltavar for estimating var(θ).

bootsvar(
data = observation, time = times, ode.model = ode.model,
par.initial = 0.3, par.names = "theta", state.names = "X",
basis.list = basis, lambda = 1e2, bootsrep = 20

)
theta
1.042763e-05

deltavar(
data = observation, time = times, ode.model = ode.model,
par.initial = 0.3, par.names = "theta", state.names = "X",
basis.list = basis, lambda = 1e2,
stepsize = 1e-5, y_stepsize = 1e-5

)
theta
9.923318e-06

Both variance estimator give excellent estimates of the true variance of structural parameter.
Subsequently, the consistency and reliability of those estimator can be inspected by simulation. In
100 simulation replicates, the results of two variance estimators are summarized in Figure 3.
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Figure 3: This plot demonstrates the estimation of variance of parameters over 100 replications.
Two violin plots are results from two methods, the bootstrap and Delta method, introduced in the
article. The red line segment indicates the true variance. Green plot includes the estimates from the
bootstrap method, whereas the origin plot includes those from the Delta method.

The bootstrap variance estimator has a smaller variation but at the cost of higher computational
effort in comparison with the Delta variance estimator. On the other hand, the Delta variance
estimator is faster but sensitive to the choice of the step size in estimating all the derivatives and
the subsequent var(θ).

The FitzHugh-Nagumo ODE model

The FitzHugh-Nagumo ODE model is well known for capturing the dynamic system of neuronal
firings based on the membrane potential V and recovery variable R. This two-dimensional ODE
contains 3 positive parameters θ = (a, b, c), and it can be defined as

V̇ = c(V − V 3

3 + R),

Ṙ = −1
c
(V − a + bR).

The parameters are assigned with values (a, b, c) = (0.2, 0.2, 3) the same as in Ramsay et al. (2007).
The state variables V and R should behave as the black solid line plotted in Figure 4. Following
the routine of specifying an ODE model, the FitzHugh-Nagumo model is defined in the following
function with simulated observations

ode.model <- function(t, state, parameters) {
with(as.list(c(state, parameters)), {

dV <- c * (V - (V^3) / 3 + R)
dR <- -(1 / c) * (V - a + b * R)
return(list(c(dV, dR)))

})
}
model.par <- c(a = 0.2, b = 0.2, c = 3)
desolve.mod <- ode(y = state, times = times, func = ode.model, parms = c(0.2, 0.2, 3))
nobs <- length(times)
scale <- 0.1
noise_v <- scale * rnorm(n = nobs, mean = 0, sd = 1)
noise_r <- scale * rnorm(n = nobs, mean = 0, sd = 1)
observ <- matrix(NA, nrow = length(times), ncol = 3)
observ[, 1] <- times
observ[, 2] <- desolve.mod[, 2] + noise_v
observ[, 3] <- desolve.mod[, 3] + noise_r

The data generating functions and simulated data are illustrated in Figure 4.
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Figure 4: Given the known FitzHugh-Nagumo model, we are able to generate the true solutions.
In this case, we set the parameters to be (a, b, c) = (0.2, 0.2, 3) and are able to generate the true
solution of the system, V (t) and R(t). The top graph demonstrates the solution V (t), the black
line, whereas the bottom graph shows the solution R(t). For parameter estimations, we have added
random noises to the true solution and use observations as the blue points in both graphs.

First step of estimating parameters is to declare basis object for each state variable. For
observation period from time 0 to time 20, the basis is defined on 101 knots with B-spline basis
function of order of 4. The total number of nuisance parameters is 103. For this example, the same
basis will be used for both dimensions V and R:

knots <- seq(0, 20, length.out = 101)
norder <- 4
nbasis <- length(knots) + norder - 2
basis <- create.bspline.basis(c(0, 20), nbasis, norder, breaks = knots)
basis.list <- list(basis, basis)

Then, pcode can be executed as follows:

pcode.result <- pcode(
data = observ[, 2:3], time = times, ode.model = Dmodel,
par.names = c("a", "b", "c"), state.names = c("V", "R"),
par.initial = rnorm(3), lambda = 1e2,
basis.list = basis.list

)

pcode.result['structural.par']
0.1953324 0.2203495 2.9269980

In addition, we can also compare the estimation performance of the proposed package pCODE
with the existing package CollocInfer. Figure 5 summarizes the comparison between two packages
on the parameter estimation of the Fitz-Hugh Nagumo model.
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Figure 5: We have repeated the data generation and parameter estimation for 100 times given
the FitzHugh-Nagumo model. The parameter estimates of (a, b, c) are summarized in the violin
plots ordered from left to right. Within each replication, we also use the CollocInfer package for
parameters estimation. In each plot, the blue violion plot contains estimates from pCODE whereas
the red one contains those from CollocInfer. The black horizontal lines correspond to the true
model parameters used for simulating data sets.

Package CollocInfer requires the Jacobian and Hessian matrices for estimating the parameters of
the ODE models, whereas the proposed pCODE package is a derivative-free method. Both packages
are estimating parameters a and b with satisfaction, and the estimates from both methods cover the
true values. However, we can see that pCODE produced better estimations for the third parameter
c in the model. Our package does not depend on users to provide tedious details but still performs
equally well in parameter estimations.

As a part of the estimation routine, we can use two methods for estimating the variance of
structural parameters. First, the usage of bootstrap variance estimator is

bootsvar.res <- bootsvar(
data = data, time = observ[, 1], ode.model = ode.model,
par.names = c("a", "b", "c"), state.names = c("V", "R"),
par.initial = c(0.15, 0.25, 5), lambda = 1e2, basis.list = basis.list,
controls = list(smooth.lambda = 10, verbal = 1, maxeval = 20), bootsrep = 20

)

based on a bootstrap sample with size of 20. Delta variance estimator is much faster in approximating
the variance through the following execution

deltavar.res <- deltavar(
data = observ[, 2:3], time = observ[, 1], ode.model = Dmodel,
par.names = c("a", "b", "c"), state.names = c("V", "R"), par.initial = c(0.1, 0.3, 4),
lambda = 1e2, basis.list = basis.list,
stepsize = 0.001, y_stepsize = 0.001

)

Non-normal errors

The previous examples assume that the random errors are following Normal distributions, hence the
optimization utilizes the routines of NLS problems. In some cases, if the state variables are bounded
or the errors have a non-normal distribution, a likelihood (or log-likelihood) function can be passed
to the function pcode in order to evaluate the objective functions. Subsequently, the function pcode
will be using optim for optimizations of both inner and outter objective functions.

The first example would reuse the simple ODE model, i.e.,

Ẋ = θX(1 − X

10 ).
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In this case, the observations are simulated where log-normal errors are added to the solution of the
ODE model in the following way:

log(yi) = log(xi) + ϵi

where ϵi ∼ N(0, σ2). One simulated data is illustrated in the following Figure 6:

Figure 6: This plots illustrates that observations from ODE systems can follow a non-normal
distribution. Given the previous simple ODE model, we generate random noises from a log-normal
distribution and add them to the true solution of the system. Black line represents the solution of
the simple ODE system, and simulated observations are indicated by blue points.

While keeping all the original settings for pcode, a log-likelihood function, as g(ei|·) in both 3
and 4, is additionally specified as follows

likfun <- function(x) {
res <- lapply(x, function(t)

dnorm(t,
mean = 0,
sd = 0.1, log = TRUE

)
)
return(sum(unlist(res)))

}

Instead of defining the likelihood only as a function of residuals, pcode allows full flexibility in
constructing a likelihood as long as it returns the evaluation. Then, the likelihood function can
be passed to pcode through the argument likelihood.fun with specification of a basis object for
interpolation

knots <- seq(0, 100, length.out = 21)
norder <- 4
nbasis <- length(knots) + norder - 2
basis <- create.bspline.basis(c(0, 100), nbasis, norder, breaks = knots)
lkh.result <- pcode(

data = observ, time = times, likelihood.fun = likfun,
par.initial = 0.1, ode.model = ode.model,
basis.list = basis, par.names = "theta", state.names = "X", lambda = 1e2

)
lkh.result["structural.par"]
0.105

5 Summary

In this article, we have reviewed the parameter cascade method for estimating ordinary differential
equations and introduced the new package pCODE for implementing this method. pCODE offers a
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derivative-free procedure to estimate any ODE models where its functions are easily understood
and to apply. Several examples of ODE models are considered for assessing the performance of
functions from pCODE involving estimating parameters, producing variability measures, and tuning
hyper-parameters. Subsequently, we can observe that the implemented functions provide satisfactory
results presented with details in the fourth section. Type of examples differs in both model complexity
and error distribution. Furthermore, a special case of predator-prey model is studied when some
state variables are completely missing from observations. The package is able to simplifies the
application procedure and reproduce the estimation results as in Cao et al. (2008).

One of the future works is to expand the flexibility of this package. Even though pCODE can
provide satisfactory parameter estimates, current functions do not allow users to input the Jacobian
and Hessian matrices to speed up the optimization process. In future package developments, we will
implement the functionality to allow the input of these matrices. One limitation of the package is the
time performance of procedures, especially for the calculation of the bootstrap variance estimator.
For that matter, we are implementing this function with parallel computation ability to speed up
the calculation. Moreover, we plan to expand the functionalities of the package to include data
visualizations and generations of diagnostic plots and summaries.
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TreeSearch: Morphological Phylogenetic
Analysis in R
by Martin R. Smith

Abstract TreeSearch is an R package for phylogenetic analysis, optimized for discrete character
data. Tree search may be conducted using equal or implied step weights with an explicit (albeit
inexact) allowance for inapplicable character entries, avoiding some of the pitfalls inherent in standard
parsimony methods. Profile parsimony and user-specified optimality criteria are supported. A
graphical interface, which requires no familiarity with R, is designed to help a user to improve the
quality of datasets through critical review of underpinning character codings; and to obtain additional
information from results by identifying and summarizing clusters of similar trees, mapping the
distribution of trees, and removing ‘rogue’ taxa that obscure underlying relationships. Taken together,
the package aims to support methodological rigour at each step of data collection, analysis, and the
exploration of phylogenetic results.

1 Introduction

Even in the phylogenomic era, morphological data make an important contribution to phylogenetic
questions. Discrete phenotypic data improve the accuracy and resolution of phylogenetic reconstruc-
tion even when outnumbered by molecular characters, and are the only way to incorporate the unique
perspective on historical events that fossil taxa provide (Wiens 2004; Wortley and Scotland 2006; Koch
and Parry 2020; Asher and Smith 2022).

One challenge with morphological analysis is the treatment of inapplicable character states: for
example, ‘tail colour’ cannot logically be ascribed either of the states ‘red’ or ‘blue’ in a taxon that
lacks a tail (W. P. Maddison 1993). This situation can profoundly mislead phylogenetic analysis, and is
not handled appropriately by any standard Markov model or parsimony method.

Solutions to this issue have recently been proposed (De Laet 2005; Brazeau, Guillerme, and Smith
2019; Tarasov 2019, 2022; Goloboff et al. 2021; Hopkins and St. John 2021). Where a single ‘principal’
character (e.g. ‘tail’) exhibits n ‘contingent’ characters (e.g. ‘tail colour’, ‘tail covering’), ‘exact’ solutions
(Tarasov 2019, 2022; Goloboff et al. 2021) require the construction of multi-state hierarchies containing
O(2n) entries, meaning that analysis is only computationally tractable for simple hierarchies with
few contingent characters. Moreover, these approaches cannot accommodate characters that are
contingent on more than one principal character: for example, characters describing appendages
on a differentiated head may be contingent on the presence of the two characters ‘appendages’ and
‘differentiated head’.

Such situations can be approached using the flexible parsimony approximation proposed by
Brazeau, Guillerme, and Smith (2019). TreeSearch scores trees using the “Morphy” C implementation
of this algorithm (Brazeau, Smith, and Guillerme 2017). Morphy implements tree search under equal
step weights. TreeSearch additionally implements implied step weighting (Goloboff 1993), a method
which consistently finds more accurate and precise trees than equal weights parsimony (Goloboff et al.
2008; Goloboff, Torres, and Arias 2018; M. R. Smith 2019a).

There has been lively discussion as to whether, with the rise of probabilistic approaches, parsimony
remains a useful tool for morphological phylogenetics (e.g. O’Reilly et al. 2016; Puttick et al. 2017; San-
som et al. 2018; Goloboff, Torres Galvis, and Arias 2018; Brown et al. 2017). Notwithstanding scenarios
that go beyond the limits of parsimony, such as the simultaneous incorporation of stratigraphic data
and other prior knowledge (e.g. Guenser et al. 2021), neither parsimony nor probabilistic methods
consistently recover ‘better’ trees when gains in accuracy are balanced against losses in precision (M.
R. Smith 2019a). Even if probabilistic methods may eventually be improved through the creation
of more sophisticated models that better reflect the nature of morphological data (Goloboff, Torres,
and Arias 2018; Tarasov 2019, 2022), parsimony analysis remains a useful tool – not only because
treatments of inapplicable character states are presently available, but also because it facilitates a
deeper understanding of the underpinning data by emphasizing the reciprocal relationship between a
tree and the synapomorphies that it implies.

Whatever method is used to find phylogenetic trees, a single consensus tree may fail to convey all
the signal in a set of phylogenetic results (Wilkinson 1994, 1996, 2003). A set of optimal trees can be
better interpreted by examining consensus trees generated from clusters of similar trees (Stockham,
Wang, and Warnow 2002); by exploring tree space (Wright and Lloyd 2020; M. R. Smith 2022a) and by
automatically identifying, annotating and removing ‘wildcard’ taxa (M. R. Smith 2022b) whose ‘rogue’
behaviour may reflect underlying character conflict or ambiguity (Kearney 2002). These methods are
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Figure 1: Flow charts summarizing key functions available in TreeSearch.

not always easy to integrate into phylogenetic workflows, so are not routinely included in empirical
studies.

TreeSearch provides functions that allow researchers to engage with the three main aspects of mor-
phological phylogenetic analysis: dataset construction and validation; phylogenetic search (including
with inapplicable data); and the interrogation of optimal tree sets (Fig. 1). These functions can be ac-
cessed via the R command-line, as documented within the package and at ms609.github.io/TreeSearch,
or through a graphical user interface (GUI). The GUI includes options to export a log of executed
commands as a fully reproducible R script, and to save outputs in graphical, Nexus or Newick formats.

2 Implementation

Tree scoring

TreeSearch can score trees using equal weights, implied weighting (Goloboff 1993), or profile parsi-
mony (Faith and Trueman 2001). The function TreeLength() calculates tree score using the “Morphy”
phylogenetic library (Brazeau, Smith, and Guillerme 2017), which implements the Fitch (1971) and
Brazeau, Guillerme, and Smith (2019) algorithms. Morphy returns the equal weights parsimony score

The R Journal Vol. 14/4, December 2022 ISSN 2073-4859

https://ms609.github.io/TreeSearch/


CONTRIBUTED RESEARCH ARTICLE 307

of a tree against a given dataset. Implied weights and profile parsimony scores are computed by first
making a separate call to Morphy for each character in turn, passed as a single-character dataset;
then passing this value to the appropriate weighting formula and summing the total score over all
characters.

Implied weighting (Goloboff 1993) is an approximate method that treats each additional step
(i.e. transition between tokens) in a character as less surprising – and thus requiring less penalty – than
the previous step. Each additional step demonstrates that a character is less reliable for phylogenetic
inference, and thus more likely to contain additional homoplasy. The score of a tree under implied
weighting is ∑ ei

ei+k , where ei denotes the number of extra steps observed in character i, and is derived
by subtracting the minimum score that the character can obtain on any tree from the score observed
on the tree in question (Goloboff 1993). The minimum length of a tree is one less than the number of
unique tokens (excluding the inapplicable token ‘-’) that must be present.

Profile parsimony (Faith and Trueman 2001) represents an alternative formulation of how surpris-
ing each additional step in a character is (Arias and Miranda-Esquivel 2004): the penalty associated
with each additional step in a character is a function of the probability that a character will fit at least
as well as is observed on a uniformly selected tree. On this view, an additional step is less surprising if
observed in a character where there are more opportunities to observe homoplasy, whether because a
character contains fewer ambiguous codings (a motivation for the ‘extended’ implied weighting of
Goloboff (2014)) or because states are distributed more evenly in a character, whose higher phyloge-
netic information content (Thorley, Wilkinson, and Charleston 1998) corresponds to a lower proportion
of trees in which no additional steps are observed.

TreeSearch calculates the profile parsimony score by computing the logarithm of the number of
trees onto which a character can be mapped using m steps, using theorem 1 of Carter et al. (1990). As
computation for higher numbers of states (W. P. Maddison and Slatkin 1991) is more computationally
complex, the present implementation is restricted to characters that contain two informative applicable
states, and uses the Fitch (1971) algorithm.

Tree search

The TreeSearch GUI uses the routine MaximizeParsimony() to search for optimal trees using tree
bisection and reconnection (TBR) searches and the parsimony ratchet (Nixon 1999). This goes beyond
the heuristic tree search implementation in the R package phangorn (Schliep 2011) by using compiled
C++ code to rearrange trees, dramatically accelerating computation, and thus increasing the scale of
dataset that can be analysed in reasonable time; and in supporting TBR rearrangements, which explore
larger neighbourhoods of tree space: TBR evaluates more trees than nearest-neighbour interchanges
or subtree pruning and regrafting, leading to additional computational expense that is offset by a
decreased likelihood that search will become trapped in a local optimum (Goeffon, Richer, and Jin-Kao
Hao 2008; Whelan and Money 2010).

By default, search begins from a greedy addition tree generated by function AdditionTree(),
which queues taxa in a random order, then attaches each taxon in turn to the growing tree at the most
parsimonious location. Search may also be started from neighbour-joining trees, or the results of a
previous search.

Search commences by conducting TBR rearrangements – a hill-climbing approach that locates a
locally optimal tree from which no tree accessible by a single TBR rearrangement has a better score.
A TBR iteration breaks a randomly selected edge in the focal tree, and reconnects each possible pair
of edges in the resultant sub-trees to produce a list of candidate trees. Entries that are inconsistent
with user-specified topological constraints are removed; remaining trees are inserted into a queue
and scored in a random sequence. If the score of a candidate tree is at least as good as the best yet
encountered (within the bounds of an optional tolerance parameter ϵ, which allows the retention of
almost-optimal trees in order to improve accuracy – see e.g. M. R. Smith (2019a)), this tree is used
as the starting point for a new TBR iteration. Otherwise, the next tree in the list is considered. TBR
search continues until the best score is found a specified number of times; a specified number of TBR
break points have been evaluated without any improvement to tree score; or a set amount of time has
passed.

When TBR search is complete, iterations of the parsimony ratchet (Nixon 1999) are conducted in
order to search areas of tree space that are separated from the best tree yet found by ‘valleys’ that
cannot be traversed by TBR rearrangements without passing through trees whose optimality score is
below the threshold for acceptance. Each ratchet iteration begins by resampling the original matrix. A
round of TBR search is conducted using this resampled matrix, and the tree thus produced is used as
a starting point for a new round of TBR search using the original data. After a specified number of
ratchet iterations, an optional final round of TBR search allows a denser sampling of optimal trees
from the final region of tree space.
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A simple example search can be conducted using a morphological dataset included in the package,
taken from Vinther, Van Roy, and Briggs (2008):

library("TreeSearch")
vinther <- inapplicable.phyData[["Vinther2008"]]
trees <- MaximizeParsimony(vinther, concavity = 10, tolerance = 0.05)

The MaximizeParsimony() command performs tree search under implied weights with a concavity
value of 10 (concavity = Inf would select equal weights), retaining any tree whose score is within
0.05 of the best score.

The resulting trees can be summarised according to their scores (optionally, against a different
dataset or under a different weighting strategy, as specified by concavity) and the iteration in which
they were first hit:

TreeLength(trees, dataset = vinther, concavity = 10) |>
signif() |> # truncate non-significant digits
table() # tabulate by score

#>
#> 1.52814 1.54329 1.5641
#> 3 45 4

attr(trees, "firstHit")

#> seed start ratch1 ratch2 ratch3 ratch4 ratch5 ratch6 ratch7 final
#> 0 29 4 0 10 7 2 0 0 0

More flexible, if less computationally efficient, tree searches can be conducted at the command
line using the TreeSearch(), Ratchet() and Bootstrap() commands, which support custom tree
optimality criteria (e.g. Hopkins and St. John 2021).

Visualization

The distribution of optimal trees, however obtained, can be visualized through interactive mappings
of tree space (Hillis, Heath, and St. John 2005; M. R. Smith 2022a). The TreeSearch GUI supports the
use of information theoretic distances (M. R. Smith 2020a); the quartet distance (Estabrook, McMorris,
and Meacham 1985); or the Robinson–Foulds distance (Robinson and Foulds 1981) to construct tree
spaces, which are mapped into 2–12 dimensions using principal coordinates analysis (Gower 1966).
The degree to which a mapping faithfully depicts original tree-to-tree distances is measured using the
product of the trustworthiness and continuity metrics (Venna and Kaski 2001; Kaski et al. 2003; M. R.
Smith 2022a), a composite score denoting the degree to which points that are nearby when mapped
are truly close neighbours (trustworthiness), and the degree to which nearby points remain nearby
when mapped (continuity). Plotting the minimum spanning tree – the shortest path that connects
all trees (Gower and Ross 1969) – can highlight stress in a mapping (grey lines in Fig. 2): the spatial
relationships of trees are distorted in regions where the minimum spanning tree takes a circuitous
route to connect trees that are mapped close to one another (see fig. 1a–b in M. R. Smith 2022a).

To relate the geometry of tree space to the underlying trees, each point in tree space may be
annotated according to the optimality score of its corresponding tree under a selected step weighting
scheme; by the relationships between chosen taxa that are inferred by that tree; and by the search
iteration in which the tree was first found by tree search (Fig. 2).

Annotating trees by the iteration in which they were first found allows a user to evaluate whether
a continuation of tree search is likely to yield more optimal trees. For example, if the retained trees
were only recently found, the search may not yet have located a global optimum. Alternatively, if
certain regions of tree space are visited only by a single ratchet iteration, it is possible that further
isolated ‘islands’ (Bastert et al. 2002) remain to be found; continuing tree search until subsequent
ratchet iterations no longer locate new clusters of trees will reduce the chance that optimal regions of
tree space remain unvisited.

As the identification of clusters from mappings of tree space can be misleading (M. R. Smith
2022a), TreeSearch identifies clusters of trees from tree-to-tree distances using K-means++ clustering,
partitioning around medoids and hierarchical clustering with minimax linkage (Hartigan and Wong
1979; Arthur and Vassilvitskii 2007; Murtagh 1983; Bien and Tibshirani 2011; Maechler et al. 2019).
Clusterings are evaluated using the silhouette coefficient, a measure of the extent of overlap between
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Figure 2: Three-dimensional map visualizing progress in a tree search in the TreeSearch GUI. Optimal
trees belong to three statistically distinct clusters with good support (silhouette coefficient > 0.5), char-
acterized by different relationships between certain taxa (plotting symbols). Although multiple ratchet
iterations have visited each cluster, limited overlap between ratchet iterations suggests that a continua-
tion of tree search may sample novel optimal trees. High trustworthiness and continuity values and a
simple minimum spanning tree (grey) indicate that the mapping does not exhibit severe distortion.
This figure depicts the tree space GUI display after loading the Wills et al. (2012) dataset; clearing
previous trees from memory (sample n trees = 0); and starting a new search (Search�Configure) with
equal step weighting and 101.5 max hits. 93 trees were sampled, coloured by “When first found”, with
plotting symbols depicting “Relationships” between the specified taxa.
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clusters (Kaufman and Rousseeuw 1990). The clustering with the highest silhouette coefficient is
depicted if the silhouette coefficient exceeds a user-specified threshold; the interpretation of the chosen
threshold according to Kaufman and Rousseeuw (1990) is displayed to the user. Plotting a separate
consensus tree for each cluster often reveals phylogenetic information that is concealed by polytomies
in the single ‘plenary’ consensus of all optimal trees (Stockham, Wang, and Warnow 2002).

Plenary consensus trees can also lack resolution because of wildcard or ‘rogue’ taxa, in which
conflict or ambiguity in their character codings leads to an unsettled phylogenetic position (Wilkinson
1994, 2003; Kearney 2002). TreeSearch detects rogue taxa using a heuristic approach (M. R. Smith
2022b) that seeks to maximize the phylogenetic information content (sensu Thorley, Wilkinson, and
Charleston 1998) of a consensus tree created after removing rogue taxa from input trees. The position of
an excluded taxon is portrayed by shading each edge or node of the consensus according to the number
of times the specified taxon occurs at that position on an underlying tree [Fig. 3; after Klopfstein and
Spasojevic (2019)], equivalent to the ‘branch attachment frequency’ of Phyutility (S. A. Smith and
Dunn 2008).

Identifying taxa with an unstable position, and splits with low support, can help an investigator
to critically re-examine character codings; to this end, each edge of the resulting consensus can be
annotated with the frequency of the split amongst the tree set, or with a concordance factor (Minh,
Hahn, and Lanfear 2020) denoting the strength of support from the underlying dataset.

Dataset review

Ultimately, the quality of a dataset plays a central role in determining the reliability of phylogenetic
results, with changes to a relatively small number of character codings potentially exhibiting an
outsized impact on reconstructed topologies (Goloboff and Sereno 2021). Nevertheless, dataset quality
does not always receive commensurate attention (Simões et al. 2017). One step towards improving the
rigour of morphological datasets is to annotate each cell in a dataset with an explicit justification for
each taxon’s coding (Sereno 2009), which can be accomplished in Nexus-formatted data files (D. R.
Maddison, Swofford, and Maddison 1997) using software such as MorphoBank (O’Leary and Kaufman
2011).

TreeSearch presents such annotations alongside a reconstruction of each character’s states on a
specified tree, with inapplicable states mapped according to the algorithm of Brazeau, Guillerme,
and Smith (2019). Neomorphic (presence/absence) and transformational characters (Sereno 2007) are
distinguished by reserving the token 0 to solely denote the absence of a neomorphic character, with
tokens 1 . . . n used to denote the n states of a transformational character (Brazeau, Guillerme, and
Smith 2019). In order to identify character codings that contribute to taxon instability, each leaf is
coloured according to its mean contribution to tree length for the visualized character (Pol and Escapa
2009).

This visualization of reconstructed character transitions can help to identify cases where the formu-
lation of characters has unintended consequences (Wilkinson 1995; Brazeau 2011); where inapplicable
states have been inconsistently applied (Brazeau, Guillerme, and Smith 2019); where taphonomic
absence is wrongly coded as biological absence (Donoghue and Purnell 2009); where previous datasets
are uncritically recycled (Jenner 2001); or where taxa are coded with more confidence than a critical
evaluation of available evidence can truly support. Insofar as the optimal tree and the underlying
characters are reciprocally illuminating (Mooi and Gill 2016), successive cycles of phylogenetic analysis
and character re-formulation can improve the integrity of morphological datasets, and thus increase
their capacity to yield meaningful phylogenetic results (Hennig 1966).

3 Availability

TreeSearch can be installed through the Comprehensive R Archive Network (CRAN) using
install.packages("TreeSearch"); the graphical user interface is launched with the command
TreeSearch::EasyTrees(). The package has been tested on Windows 10, Mac OS X 10 and Ubuntu
20, and requires only packages available from the CRAN repository. Source code is available at
https://github.com/ms609/TreeSearch/, and is permanently archived at Zenodo (https://dx.doi.
org/10.5281/zenodo.1042590). Online documentation is available at https://ms609.github.io/
TreeSearch/.
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Figure 3: Reduced consensus of 48 cladograms generated by analysis of data from Wills et al. (2012)
under different parsimony methods by Brazeau, Guillerme, and Smith (2019), as displayed in the
TreeSearch graphical user interface. Removal of taxa reveals strong support for relationships that
would otherwise be masked by rogues such as Palaeoscolex, whose position in optimal trees is marked
by the highlighted edges. The GUI state can be reproduced by selecting the options displayed in the
figure.
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The openVA Toolkit for Verbal Autopsies
by Zehang Richard Li, Jason Thomas, Eungang Choi, Tyler H. McCormick, and Samuel J Clark

Abstract Verbal autopsy (VA) is a survey-based tool widely used to infer cause of death (COD) in
regions without complete-coverage civil registration and vital statistics systems. In such settings,
many deaths happen outside of medical facilities and are not officially documented by a medical
professional. VA surveys, consisting of signs and symptoms reported by a person close to the decedent,
are used to infer the COD for an individual, and to estimate and monitor the COD distribution in
the population. Several classification algorithms have been developed and widely used to assign
causes of death using VA data. However, the incompatibility between different idiosyncratic model
implementations and required data structure makes it difficult to systematically apply and compare
different methods. The openVA package provides the first standardized framework for analyzing
VA data that is compatible with all openly available methods and data structure. It provides an
open-source, R implementation of several most widely used VA methods. It supports different data
input and output formats, and customizable information about the associations between causes
and symptoms. The paper discusses the relevant algorithms, their implementations in R packages
under the openVA suite, and demonstrates the pipeline of model fitting, summary, comparison, and
visualization in the R environment.

1 Introduction

Verbal autopsy (VA) is a well-established approach to ascertaining the cause of death (COD) when
medical certification and full autopsies are not feasible or practical (Garenne, 2014; Taylor et al.,
1983). After a death is identified, a specially-trained fieldworker interviews the caregivers (usually
family members) of the decedent. A typical VA interview includes a set of structured questions with
categorical or quantitative responses and a narrative section that records the “story” of the death
from the respondent’s point of view (World Health Organization, 2012). Currently, there are multiple
commonly used questionnaires with overlapping, but not identical questions. VAs are routinely used
both by researchers in health and demographic surveillance systems (Sankoh and Byass, 2012; Maher
et al., 2010) and multi-country research projects (Nkengasong et al., 2020; Breiman et al., 2021), and in
national-scale surveys in many low- and middle-income countries (LMICs). For a more comprehensive
overview of the current use of VA, we refer readers to Chandramohan et al. (2021).

The process of inferring a cause from VA data consists of two components. First, there must
be some external information about the relationship between causes and symptoms. In supervised
learning problems, the external information is typically derived from training datasets with known
labels. In the context of VA, a common practice is to obtain training data using clinically trained,
experienced physicians who read a fraction of the interviews and determine causes. To address the
fact that physicians frequently do not agree on causes, VA interviews are often read by two physicians,
and sometimes three, and the final causes are determined through a consensus mechanism (e.g., Kahn
et al., 2012). This process can be extremely time- and resource-intensive. Another means of obtaining
this information is directly through expert opinion. For example, one can ask groups of physicians to
rate the likelihood of a symptoms occurring, given a particular COD, which can be converted into a
set of probabilities of observing a symptom given a particular cause. Such expert knowledge can be
highly useful in analyzing VA data when training datasets do not exist.

Secondly, an algorithmic or statistical model is needed to assign the causes of death by extrapo-
lating the relationship between symptoms and causes to the target population. The cause-of-death
assignment model is conceptually a separate construct from the symptom-cause information. The
current state of the VA literature, however, often does not distinguish between the two. This is in part
due to popular VA software that combines a source of symptom-cause information (e.g., a certain
training data or a database of expert knowledge) with a specific algorithm, and requires a specific type
of survey instrument to be used. This restriction prevents robust comparison between methods and
contexts. A health agency in one region may, for example, want to analyze VA data using the same VA
algorithm as a neighboring region to ensure estimates are comparable. Unless the agencies used the
same survey format, however, this is not possible with existing tools.

The openVA package (Li et al., 2022b) addresses this issue through an open-source toolkit. The
openVA suite comprises a collection of R packages for the analysis of verbal autopsy data. The goal
of this package is to provide researchers with an open-source tool that supports flexible data input
formats and allows easier data manipulation and model fitting. The openVA suite consists of four core
packages that are on CRAN, InterVA4 (Li et al., 2019), InterVA5 (Thomas et al., 2021b), InSilicoVA
(Li et al., 2022a), and Tariff (Li et al., 2018), and an optional package nbc4va (Wen et al., 2022). Each of
these packages implements one coding algorithm. For three of these algorithms – namely, InterVA-4,
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InterVA-5 and Tariff – there are also compiled software programs distributed by the original authors.

The main focus of this paper is to provide a general introduction to the implementation details of
the included algorithms both in terms of the underlying methodology, and through case studies. The
openVA package has four major contributions:

1. It provides a standardized and user-friendly interface for analysts to fit and evaluate each
method on different types of data input using standard syntax. Previously, most of the methods
were designed to be used specifically with their own input formats and are usually incompatible
with others. The openVA package closes this gap by allowing easier and fair model comparison
of multiple algorithms on the same data. This significantly facilitates further research on VA
algorithms.

2. It provides a series of functionalities to summarize and visualize results from multiple algo-
rithms, which is helpful for analysts not familiar with data manipulation and visualization in
R.

3. It does not directly implement any algorithms for coding VA data, so that it is possible for a
research group to maintain their own algorithm implementations callable from the openVA
package, while also making it available to general users as a standalone piece of software. For
example, the nbc4va was developed and maintained independently by researchers at the Center
for Global Health Research in Toronto, but is designed so that it can be seamlessly integrated
into the openVA package.

4. It is fully open source, and can be run on multiple platforms. The open-source nature of
openVA significantly expands its potential for methodological research and its suitability for
integration within a larger data analysis pipeline. Compared to the alternative implementations,
the InterVA-4 and InterVA-5 software are distributed as compiled software that can only be
run on Windows system. They provide the source codes as an additional code script, which
are difficult to modify and re-compile. Tariff, as implemented through the SmartVA-Analyze
application (Serina et al., 2015), was also primarily distributed as a compiled application that can
only be run on Windows system (Institute for Health Metrics and Evaluation, 2021b). However,
their source codes were recently made available under the open source MIT License on GitHub
(Institute for Health Metrics and Evaluation, 2021a).

The rest of this paper is organized as follows: We first briefly introduce the main component
packages and the underlying algorithms. We then demonstrate standard data structures and model
fitting steps with the openVA package and functionalities to summarize results. We then discuss
how additional information can be incorporated into modeling VA data, and we briefly survey
additional packages and software developments built around the openVA package. We end with a
discussion of remaining issues and limitations of the existing automated VA algorithms and propose
new functionalities to be included in openVA package.

2 Structure of the openVA package

The openVA suite of packages currently consists of four standalone packages that are available on
CRAN and one optional package hosted on GitHub. In this section, we first provide a brief introduction
to these five packages, and we discuss the mathematical details behind each algorithm in the next
subsection.

• InterVA4 (Li et al., 2014, 2019) is an R package that implements the InterVA-4 model (Byass
et al., 2012). It provides replication of the widely used InterVA software (Byass, 2015). The
standard input of InterVA4 is in the form of a pre-defined set of indicators, based on the 2012
World Health Organization (WHO) VA instrument (World Health Organization, 2012). The
default InterVA-4 algorithm cannot be applied to other data input formats because its internal
built-in prior information is specific to a fixed set of indicators and causes. The same restriction
is also maintained in the InterVA4 package. However, the mathematical formulation of the
InterVA-4 model is completely generalizable to other binary input formats, as described in later
sections, and is also implemented in the openVA package.

• InterVA5 (Thomas et al., 2021b) is an R package that implements the InterVA-5 model (Byass
et al., 2019). The InterVA-5 model updates the previous version in several ways. First, the
input data must adhere to the format of the 2016 WHO VA instrument (D’Ambruoso et al.,
2017). Second, changes have been made to the data processing steps. It is also worth noting
that the model outputs have been expanded by the inclusion of the most likely Circumstances
Of Mortality CATegory, or COMCAT, among the results – the categories include: culture,
emergency, health systems, inevitable, knowledge, resources, or an indeterminant combination
of multiple factors (for more details, see D’Ambruoso et al., 2017). Despite these changes, the
mathematical formulation of InterVA-5 is identical to that of InterVA-4.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=nbc4va
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=InterVA4
https://CRAN.R-project.org/package=InterVA4
https://CRAN.R-project.org/package=InterVA4
https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=InterVA5


CONTRIBUTED RESEARCH ARTICLE 3

• InSilicoVA (Li et al., 2022a) is an R package that implements the InSilicoVA algorithm, a
Bayesian hierarchical framework for cause-of-death assignment and cause-specific mortality
fraction estimation proposed in McCormick et al. (2016). It is originally designed to work with
the WHO VA instrument, i.e., the same input data used by the InterVA software, but is also
generalizable to other data input formats. It is a fully probabilistic algorithm and can incorporate
multiple sources of information, such as known sub-populations in the dataset, and physician
coding when such data are available. The Markov Chain Monte Carlo (MCMC) sampler is
implemented in Java for improved speed.

• Tariff (Li et al., 2018) is an R package that implements the Tariff algorithm (James et al., 2011).
It most closely reflects the description of the Tariff 2.0 method (Serina et al., 2015). The Tariff
algorithm is developed by the Institute for Health Metrics and Evaluation (IHME) and is
officially implemented in the SmartVA-Analyze software (Institute for Health Metrics and
Evaluation, 2021b). However, as the developers of this R package are not affiliated with the
authors of the original algorithm, there are some discrepancies in implementation. The source
code of the two versions of Tariff was not publicly available at the time when the Tariff package
was created, so the package was developed based solely on the descriptions in the published
work. Despite the difference in implementation, Tariff is able to achieve comparable results as
the published work as demonstrated in McCormick et al. (2016). More detailed descriptions
of the Tariff implementations are also discussed in the supplement of McCormick et al. (2016).
The later released Python source codes of SmartVA-Analyze have been incorporated in the web
application extension of the openVA package.

• nbc4va (Wen et al., 2022) is an R package that implements the Naive Bayes Classifier for VA
encoding (Miasnikof et al., 2015). It calculates the conditional probabilities of symptoms given
causes of death from a training dataset, instead of using physician-provided values. nbc4va is
developed and maintained by researchers at the Center for Global Health Research in Toronto,
but is designed so that it can be seamlessly integrated into openVA. It is an optional package
that users can choose to load separately.

We note that there are additional methods and implementations to assign causes of death using
VA data that are not included in the openVA implementation (e.g., Flaxman et al., 2011; Jeblee et al.,
2019). These methods are not widely adopted by VA practitioners and most of these implementations
are either not publicly available or require data processing steps that are specific to certain datasets,
making them impractical for routine use in general. In addition, while the cause-of-death assignment
process is closely related to the generic multi-class classification problem, naive application of off-the-
shelf classification algorithms has been shown to perform poorly in the context of VA (Murray et al.,
2014). Therefore, we focus on the methods that are currently adopted by practitioners. We briefly
survey some more recent developments and their implementations at the end of this paper.

The openVA package is hosted on CRAN and can be installed with the following commands.
Since posterior inference is carried out using MCMC in the InSilicoVA algorithm, we set the seed for
the random number generator to make the paper reproducible. For the analysis in this paper, we also
install the nbc4va package separately from GitHub. The versions of the supporting packages can be
checked in R using the openVA_status() function.

set.seed(12345)
library(openVA)
openVA_status()

Overview of VA cause-of-death assignment methods

The common modeling framework for VA data consists of first converting the survey responses into a
series of binary variables, and then assigning a COD to each death based on the binary input variables.
Typically, the target of inference consists of two parts: the individual cause-of-death assignment, and
the population-level cause-specific mortality fractions (CSMF), i.e., the fraction of deaths due to each
cause. In this section, we formally compare the modeling approaches utilized by each algorithm for
these two targets. We adopt the following notations. Consider N deaths, each with S binary indicators
of symptoms. Let sij denote the indicator for the presence of j-th symptom in the i-th death, which can
take values 0, 1, or NA (for missing data). We consider a pre-defined set of causes of size C. For the
i-th death, denote the COD by yi ∈ {1, ..., C} and the probability of dying from cause k is denoted by
Pik. For the population, the CSMF of cause k is denoted as πk, with ∑C

k=1 πk = 1.

• InterVA4 (Byass et al., 2012) and InterVA5 (Byass et al., 2019) algorithms calculate the probabil-
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ity of each COD given the observed symptoms using the following formula,

Pik =
π
(0)
k ∏S

j=1 P(sij = 1|yi = k)1sij=1

∑C
k′=1 π

(0)
k′ ∏S

j=1 P(sij = 1|yi = k′)1sij=1

,

where both the prior distribution of each of the causes, π
(0)
k and the conditional probabilities

P(sij = 1|yi = k) are fixed values provided in the InterVA software. It is worth noting that the
formula does not follow the standard Bayes’ rule as it omits the probability that any symptom
is absent. A detailed discussion of this modeling choice can be found in McCormick et al. (2016).
The conditional probabilities, P(sij = 1|yi = k), used in InterVA algorithms are represented
as rankings with letter grades instead of numerical values (Byass et al., 2012). For example,
P(sij = 1|yi = k) = A+ is translated into P(sij = 1|yi = k) = 0.8, etc. The standard InterVA
software only supports the fixed set of symptoms and causes where such prior information
is provided. For a different data input format, this formulation can be easily generalized if
training data are available. We include in the openVA package an extension of the algorithm
that calculates P̂(sij = 1|yi = k) from the empirical distribution in the training data and then
maps to letter grades with different truncation rules. Details of the extended InterVA algorithm
can be found in McCormick et al. (2016).
After the individual COD distributions are calculated, InterVA-4 utilizes a series of pre-defined
rules to identify up to the top three most likely COD assignments, and truncates the probabilities
for the rest of the CODs to 0 and adds an ‘undetermined’ category so that the probabilities sum
up to 1 (See the user guide of Byass (2015)). Then the population-level CSMFs are calculated as
the aggregation of individual COD distributions, such that

πk =
N

∑
i=1

P∗ik,

where P∗ik denotes the individual COD distribution after introducing the undetermined category.

• Naive Bayes Classifier (Miasnikof et al., 2015) is very similar to the InterVA algorithm with two
major differences. First, instead of considering only symptoms that present, the NBC algorithm
also considers symptoms that are absent. Second, the conditional probabilities of symptoms
given causes are calculated from training data instead of given by physicians, which is similar to
our extension of InterVA discussed above. Similar to InterVA, the NBC method can be written
as

Pik =
π
(0)
k ∏S

j=1(P(sij = 1|yi = k)1sij=1 + P(sij 6= 1|yi = k)1sij 6=1)

∑C
k′=1 π

(0)
k′ ∏S

j=1(P(sij = 1|yi = k′)1sij=1 + P(sij 6= 1|yi = k′)1sij 6=1)
,

and the CSMFs are calculated by πk = ∑N
i=1 Pik.

• InSilicoVA algorithm (McCormick et al., 2016) assumes a generative model that characterizes
both the CSMF at the population level, and the COD distributions at the individual level. In
short, the core generative process assumes

sij|yi = k ∝ Bernoulli(P(sij|yi = k)), (1)

yi|π1, ..., πC ∝ Categorical(π1, ..., πC), (2)

πk = exp θk/
C

∑
k=1

exp θk, (3)

θk ∝ Normal(µ, σ2). (4)

Hyperpriors are also placed on P(sij|yi = k), µ, and σ2. The priors for P(sij|yi = k) are set by
the rankings used in InterVA-4 if the data are prepared into InterVA format, otherwise they
are learned from training data. The priors on µ and σ2 are diffuse uniform priors. Parameter
estimation is performed using MCMC, so that a sample of posterior distributions of πk can be
obtained after the sampler converges.

• Tariff algorithm (James et al., 2011) differs from the other three methods in that it does not
calculate an explicit probability distribution of the COD for each death. Instead, for each death
i, a Tariff score is calculated for each COD k so that

Scoreik =
S

∑
j=1

Tariffkj1sij=1,
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where the symptom-specific Tariff score Tariffkj is defined as

Tariffkj =
nkj −median(n1j, n2j, ..., nCj)

IQR(n1j, n2j, ..., nCj)
,

where nkj is the count of how many deaths from cause k contain symptom j in the training data.
The Tariff scores are then turned into rankings by comparing them to a reference distribution of
scores calculated from re-sampling the training dataset to obtain a uniform COD distribution. It
is worth noting that the Tariff algorithm produces the COD distribution for each death in terms
of their rankings instead of the probability distributions. And thus the CSMF for each cause k is
calculated by the fraction of deaths with cause k being the highest ranked cause, i.e.,

πk =
∑N

i=1 1yi=k

N
.

In addition to the different model specifications underlying each algorithm, there is also a major
conceptual difference in handling missing symptoms across the algorithms. Missing symptoms could
arise from different stages of the data collection process. For example, the respondent may not know
whether certain symptoms existed or may refuse to answer a question. From a statistical point of view,
knowing that a symptom does not exist provides some information to the possible cause assignment,
while a missing symptom does not. Although in theory, most of the VA algorithms could benefit from
distinguishing ‘missing’ from ‘absence’, InSilicoVA is the only algorithm that has been implemented
to acknowledge missing data. Missing indicators are assumed to be equivalent to ‘absence’ in InterVA,
NBC, and Tariff.

3 Data preparation

In the openVA package, we consider two main types of standardized questionnaire: the WHO
instrument and the IHME questionnaire. In this section, we focus on describing these two data formats
and tools to clean and convert data. Pre-processing the raw data collected from the survey instrument
(usually with Open Data Toolkit) is usually performed with additional packages and software outside
of the analysis pipeline in R. We briefly mention software for data pre-processing towards the end of
this paper.

The WHO standard format

For users familiar with InterVA software and the associated data processing steps, the standard input
format from the WHO 2012 and 2016 instruments is usually well understood. For the 2012 instrument,
the data expected by the InterVA-4 software are organized into a data frame where each row represents
one death and the corresponding VA information is contained in 246 fields, starting from the first
item being the ID of the death. The 245 items following the ID each represent one binary variable of
symptom/indicator, where ‘presence’ is coded by ‘Y’, and ‘absence’ is coded by an empty cell.

To accommodate updates for the WHO 2016 instrument (D’Ambruoso et al., 2017), the InterVA-5
software accepts a data frame with 354 columns that include 353 columns of symptom/indicators
followed by an additional column for the record ID. It should be noted that the R package InterVA5
retains the format with the record ID residing in the first column. Another important update with
InterVA-5 is that it acknowledges the difference between “Yes” and “No” (or “Y/y” and “N/n”, which
is different from the coding scheme in InterVA-4), both of which are processed as relevant responses,
while all other responses are treated as missing values and ignored. With respect to the list of causes
of death, InterVA-5 utilizes the WHO 2016 COD categories, which is nearly identical to the WHO 2012
COD categories (used by InterVA-4) except that hemorrhagic fever and dengue fever are two separate
categories in the 2016 COD categories.

The same input format is inherited by the openVA package, except for one modification. We
further distinguish ‘missing’ and ‘absence’ in the input data frame explicitly. We highly recommend
that users pre-process all the raw data so that a ‘missing’ value in the data spreadsheet is coded as a ‘.’
(following the Stata practice familiar to many VA practitioners), and an ‘absence’ value is indicated by
an empty cell, as in the standard InterVA-4 software. For WHO 2016 data, both ‘.’ and ‘-’ (following
the default coding scheme of InterVA-5 software) are interpreted as missing values. For methods
other than InSilicoVA, ‘missing’ and ‘absence’ will be considered the same internally and thus will not
introduce a compatibility problem.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

https://CRAN.R-project.org/package=openVA
https://CRAN.R-project.org/package=InterVA5
https://CRAN.R-project.org/package=openVA


CONTRIBUTED RESEARCH ARTICLE 6

The PHMRC format

The Population Health Metrics Research Consortium (PHMRC) gold standard VA data (Murray et al.,
2011) consist of three datasets corresponding to adult, child, and neonatal deaths, respectively. All
deaths occurred in health facilities and gold-standard causes are determined based on laboratory,
pathology and medical imaging findings. These datasets can be downloaded directly using the link
returned by the function getPHMRC_url(). For example, we can read the adult VA dataset using the
following command.

PHMRC_adult <- read.csv(getPHMRC_url("adult"))

Although the data are publicly accessible, a major practical challenge for studies involving the
PHMRC gold standard dataset is that the pre-processing steps described from the relevant publications
are not clear enough nor easy to implement. The openVA package internally cleans up the PHMRC
gold standard data when calling the codeVA() function on the PHMRC data. The procedure follows
the steps described in the supplement material of McCormick et al. (2016). Notice that the original
PHMRC data are useful for comparing and validating new methods, as well as for using as training
data, but the cleaning functions only require that the columns are exactly the same as the PHMRC
gold standard datasets, so they could also be used for new data that are pre-processed into the same
format.

Customized format

In addition to the two standard questionnaires discussed previously, researchers might also be in-
terested in including customized dichotomous symptoms in their analysis. The openVA package
also supports customized inputs as long as they are dichotomous. In such case, neither the built-in
conditional probability matrix of InterVA nor the PHMRC gold standard dataset could be used to learn
the relationship between training and testing data, thus different training data with known causes of
death are necessary for all three algorithms. The ConvertData() function can be used to convert data
with customized coding schemes into the format recognized by the openVA package.

Finally, we note that the openVA package currently does not reformat data from one standardized
questionnaire to another. This is because mapping the symptoms collected from one questionnaire
to those collected by another questionnaire inevitably creates loss of information. Such mapping
tasks can be useful for some applications. For example, a full mapping of a PHMRC dataset into the
WHO format enables the use of physician provided conditional probabilities included in the InterVA
software on data collected by PHMRC questionnaires. This remains as an important feature to be
added to the package in the future.

4 Fitting VA cause-of-death assignment models

In this section, we demonstrate the model fitting process in the openVA package using two datasets:
(1) a random sample of 1, 000 deaths from the ALPHA network without cause-of-death labels collected
with the WHO 2012 instrument, and (2) the adult VA records in the PHMRC gold standard data, with
the 1, 554 records from Andhra Pradesh, India used as a testing set and the rest used as a training
dataset. In the first case without gold standard training data, only InterVA and InSilicoVA can be fitted.
All four methods can be fitted in the second case.

Modeling data collected with WHO 2012 questionnaire

The randomly sampled VA records from the ALPHA network sites are already included in the openVA
package as a dataset RandomVA1 and can be loaded directly.

data(RandomVA1)
dim(RandomVA1)

#> [1] 1000 246

head(RandomVA1[, 1:10])

#> ID elder midage adult child under5 infant neonate male female
#> 1 d1 Y Y
#> 2 d2 Y Y
#> 3 d3 Y Y
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#> 4 d4 Y Y
#> 5 d5 Y Y
#> 6 d6 Y Y

The codeVA() function provides a standardized syntax to fit different VA models. Internally,
the codeVA() function organizes the input data according to the specified data type, checks for
incompatibility of the data and specified model, and calls the corresponding model fitting functions. It
returns a classed object of the specified model class. In this example, we use version 4.03 of the InterVA
software, which is the latest release of the original software compatible with the WHO 2012 instrument.
Any additional model-specific parameters can be passed through the arguments of codeVA(). Here we
specify the HIV and malaria prevalence levels required by the InterVA model to be ‘high’. Guidelines
on how to set these parameters can be found in Byass et al. (2012).

fit_inter_who <- codeVA(data = RandomVA1, data.type = "WHO2012",
model = "InterVA", version = "4.03",
HIV = "h", Malaria = "h")

summary(fit_inter_who)

#> InterVA-4 fitted on 1000 deaths
#> CSMF calculated using reported causes by InterVA-4 only
#> The remaining probabilities are assigned to 'Undetermined'
#>
#> Top 5 CSMFs:
#> cause likelihood
#> Undetermined 0.154
#> HIV/AIDS related death 0.122
#> Stroke 0.072
#> Reproductive neoplasms MF 0.058
#> Pulmonary tuberculosis 0.055

We can implement InSilicoVA method with similar syntax. We use the default parameters and
run the MCMC for 10, 000 iterations. Setting the auto.length argument to FALSE specifies that the
algorithm does not automatically increase the length of the chain when convergence failed. In practice,
we recommend setting this argument to TRUE if the algorithm displays warnings concerning MCMC
convergence. The InSilicoVA algorithm is implemented using a Metropolis-Hastings within Gibbs
sampler. The acceptance rate is printed as part of the message as the model samples from the posterior
distribution.

fit_ins_who <- codeVA(RandomVA1, data.type = "WHO2012", model = "InSilicoVA",
Nsim = 10000, auto.length = FALSE)

summary(fit_ins_who)

#> InSilicoVA Call:
#> 1000 death processed
#> 10000 iterations performed, with first 5000 iterations discarded
#> 250 iterations saved after thinning
#> Fitted with re-estimated conditional probability level table
#> Data consistency check performed as in InterVA4
#>
#> Top 10 CSMFs:
#> Mean Std.Error Lower Median Upper
#> Other and unspecified infect dis 0.266 0.0168 0.235 0.265 0.301
#> HIV/AIDS related death 0.102 0.0091 0.085 0.102 0.119
#> Renal failure 0.101 0.0108 0.084 0.101 0.123
#> Other and unspecified neoplasms 0.062 0.0089 0.046 0.061 0.080
#> Other and unspecified cardiac dis 0.058 0.0076 0.044 0.058 0.075
#> Digestive neoplasms 0.050 0.0077 0.033 0.050 0.065
#> Acute resp infect incl pneumonia 0.048 0.0073 0.034 0.049 0.063
#> Pulmonary tuberculosis 0.039 0.0068 0.025 0.039 0.054
#> Stroke 0.038 0.0061 0.027 0.038 0.052
#> Other and unspecified NCD 0.034 0.0089 0.018 0.034 0.052
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Modeling the PHMRC data

In the second example, we consider a prediction task using the PHMRC adult dataset. We first load
the complete PHMRC adult dataset from its on-line repository, and organize it into training and test
datasets. We treat all deaths from Andhra Pradesh, India as the test dataset.

PHMRC_adult <- read.csv(getPHMRC_url("adult"))
is.test <- which(PHMRC_adult$site == "AP")
test <- PHMRC_adult[is.test, ]
train <- PHMRC_adult[-is.test, ]
dim(test)

#> [1] 1554 946

dim(train)

#> [1] 6287 946

In order to fit the models on the PHMRC data, we specify data.type = "PHMRC" and phmrc.type =
"adult" to indicate the data input is collected using the PHMRC adult questionnaire. We also specify
the column of the causes-of-death label in the training data. The rest of the syntax is similar to the
previous example.

When the input consists of both training and testing data, the InterVA and InSilicoVA algorithms
estimate the conditional probabilities of symptoms using the training data, instead of using the built-in
values. In such case, the version argument for the InterVA algorithm is suppressed. There are several
ways to map the conditional probabilities of symptoms given causes in the training dataset to a letter
grade system, specified by the convert.type argument. The convert.type = "quantile" performs
the mapping so that the percentile of each rank stays the same as the original Ps|c matrix in InterVA
software. Alternatively we can also use the original fixed values of translation, and assign letter grades
closest to each entry in P̂s|c. This conversion is specified by convert.type = "fixed", and is more
closely aligned to the original InterVA and InSilicoVA setting. Finally, we can also directly use the
values in the P̂s|c without converting them to ranks and re-estimating the values associated with each
rank. This can be specified by convert.type = "empirical". In this demonstration, we assume the
fixed value conversion.

fit_inter <- codeVA(data = test, data.type = "PHMRC", model = "InterVA",
data.train = train, causes.train = "gs_text34",
phmrc.type = "adult", convert.type = "fixed")

fit_ins <- codeVA(data = test, data.type = "PHMRC", model = "InSilicoVA",
data.train = train, causes.train = "gs_text34",
phmrc.type = "adult", convert.type = "fixed",
Nsim=10000, auto.length = FALSE)

The NBC and Tariff method can be fit using similar syntax.

fit_nbc <- codeVA(data = test, data.type = "PHMRC", model = "NBC",
data.train = train, causes.train = "gs_text34",
phmrc.type = "adult")

fit_tariff <- codeVA(data = test, data.type = "PHMRC", model = "Tariff",
data.train = train, causes.train = "gs_text34",
phmrc.type = "adult")

Notice that we do not need to transform the PHMRC data manually. Data transformations are
performed automatically within the codeVA() function.

5 Summarizing results

In this section we demonstrate how to summarize results, extract output, and visualize and compare
fitted results. All the fitted object returned by codeVA() are S3 objects, for which a readable summary
of model results can be obtained with the summary() function as shown in the previous section. In
addition, several other metrics are commonly used to evaluate and compare VA algorithms at either
the population or individual levels. In the rest of this section, we show how to easily calculate and
visualize some of these metrics with the openVA package.
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CSMF accuracy

We can extract the CSMFs directly using the getCSMF() function. The function returns a vector of
the point estimates of the CSMFs, or a matrix of posterior summaries of the CSMF for the InSilicoVA
algorithm.

csmf_inter <- getCSMF(fit_inter)
csmf_ins <- getCSMF(fit_ins)
csmf_nbc <- getCSMF(fit_nbc)
csmf_tariff <- getCSMF(fit_tariff)

One commonly used metric to evaluate the CSMF estimates is the so-called CSMF accuracy, defined
as

CSMFacc = 1−
∑C

j CSMFi − CSMF(true)
j

2(1−min CSMF(true))

The CSMF accuracy can be readily computed using functions in openVA as the codes below shows.

csmf_true <- table(c(test$gs_text34, unique(PHMRC_adult$gs_text34))) - 1
csmf_true <- csmf_true / sum(csmf_true)
c(getCSMF_accuracy(csmf_inter, csmf_true, undet = "Undetermined"),
getCSMF_accuracy(csmf_ins[, "Mean"], csmf_true),
getCSMF_accuracy(csmf_nbc, csmf_true),
getCSMF_accuracy(csmf_tariff, csmf_true))

#> [1] 0.53 0.74 0.77 0.68

We use the empirical distribution in the test data to calculate the true CSMF distribution, i.e.,

CSMF(true)
j = 1

n ∑n
i=1 1yi=j. Then we evaluate the CSMF accuracy using the getCSMF_accuracy()

function. As discussed previously, the default CSMF calculation is slightly different for diCfferent
methods. For example, the InterVA algorithm creates the additional category of Undetermined by
default, which is not in the true CSMF categories and needs to be specified. The creation of the
undetermined category can also be suppressed by interVA.rule = FALSE in the getCSMF() function
call. For the InSilicoVA algorithm, we use the posterior mean to calculate the point estimates of the
CSMF accuracy.

Individual COD summary

At the individual level, we can extract the most likely cause-of-death assignment from the fitted object
using the getTopCOD() function.

cod_inter <- getTopCOD(fit_inter)
cod_ins <- getTopCOD(fit_ins)
cod_nbc <- getTopCOD(fit_nbc)
cod_tariff <- getTopCOD(fit_tariff)

With the most likely COD assignment, other types of metrics based on individual COD assignment
accuracy can be similarly constructed by users. The summary methods can also be called for each
death ID. For example, using the Tariff method, we can extract the fitted rankings of causes for the
death with ID 6288 by

summary(fit_inter, id = "6288")

#> InterVA-4 fitted top 5 causes for death ID: 6288
#>
#> Cause Likelihood
#> Stroke 0.509
#> Pneumonia 0.318
#> COPD 0.081
#> Other Infectious Diseases 0.064
#> Renal Failure 0.013

The summary() function for InSilcoVA does not provide uncertainty estimates for individual COD
assignments by default. This is because, in practice, the calculation of individual posterior probabilities
of COD distribution can be memory-intensive when the dataset is large. To obtain individual-level
uncertainty measurements, we can either run the MCMC chain with the additional argument indiv.CI
= 0.95 when calling codeVA(), or update the fitted object directly with the saved posterior draws.
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fit_ins <- updateIndiv(fit_ins, CI = 0.95)
summary(fit_ins, id = "6288")

#> InSilicoVA fitted top causes for death ID: 6288
#> Credible intervals shown: 95%
#> Mean Lower Median Upper
#> Stroke 0.5043 0.3485 0.5083 0.6361
#> Pneumonia 0.4116 0.2615 0.4083 0.5834
#> Other Infectious Diseases 0.0660 0.0411 0.0642 0.0966
#> Epilepsy 0.0099 0.0064 0.0097 0.0142
#> COPD 0.0053 0.0031 0.0052 0.0079
#> Malaria 0.0007 0.0005 0.0007 0.0011
#> Diabetes 0.0005 0.0003 0.0005 0.0009
#> Acute Myocardial Infarction 0.0004 0.0003 0.0004 0.0006
#> Falls 0.0004 0.0001 0.0004 0.0013
#> Renal Failure 0.0004 0.0002 0.0003 0.0005

For N deaths, C causes, the posterior mean of individual COD distributions returned by the
InSilicoVA model, along with median and with credible intervals can be represented by a (N × C× 4)-
dimensional array. The function getIndivProb() extracts this summary in the form of a list of 4
matrices of dimension N by C, which can then be saved to other formats to facilitate further analysis.
For other methods, the point estimates of individual COD distribution are returned as the N by C
matrix.

fit_prob <- getIndivProb(fit_inter)
dim(fit_prob)

#> [1] 1554 34

Visualization

The previous sections discuss how results could be extracted and examined in R. In this subsection,
we show some visualization tools provided in the openVA package for presenting these results. The
fitted CSMFs for the top causes can be easily visualized by the plotVA() function. The default graph
components are specific to each algorithm and individual package implementations, with options for
further customization. For example, Figure1 shows the estimated CSMF from the InterVA algorithm
in the PHMRC data example.

plotVA(fit_inter, title = "InterVA")

Figure 1: Bar plot of the top CSMFs estimated by InterVA. The five causes of death with the highes esti-
mated mortality fraction predicted by InterVA are plotted. Colors of the bar indicate the corresponding
fractions.

The CSMFs can also be aggregated for easier visualization of groups of causes. For the InterVA-4
cause list, we included an example grouping built into the package, so the aggregated CSMFs can be
compared directly. In practice, the grouping of causes of deaths often needs to be determined according
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to context and the research question of interest. Changing the grouping can be easily achieved by
modifying the grouping argument in the stackplotVA() function. For example, to facilitate the new
category of Undetermined returned by InterVA, we first modify the grouping matrix to include it as a
new cause and visualize the aggregated CSMF estimates in Figure 2.

data(SampleCategory)
grouping <- SampleCategory
grouping[,1] <- as.character(grouping[,1])
grouping <- rbind(grouping, c("Undetermined", "Undetermined"))
compare <- list(InterVA4 = fit_inter_who,

InSilicoVA = fit_ins_who)
stackplotVA(compare, xlab = "", angle = 0, grouping = grouping)

Figure 2: Estimated aggregated CSMFs for InterVA-4 and InSilicoVA, adding undetermined category.
The causes of death are aggregated to seven broad categories. Color indicate the category and the
height of bar indicate the fraction of deaths due to the cause category. Overall, InterVA-4 and InSili-
coVA estimate similar aggregated CSMFs, except in the communicable disease (excluding TA/AIDS)
category, InSilicoVA estimates a larger fraction.

The ordering of the stacked bars can also be changed to reflect the structures within the aggregated
causes, as demonstrated in Figure 3.

group_order <- c("TB/AIDS", "Communicable", "NCD", "External", "Maternal",
"causes specific to infancy", "Undetermined")

stackplotVA(compare, xlab = "", angle = 0, grouping = grouping,
group_order = group_order)

6 Incorporating additional information

Among the VA methods discussed in this paper, the InSilicoVA algorithm (McCormick et al., 2016)
allows for more flexible modifications to the Bayesian hierarchical model structure when additional
information is available. In this section, we illustrate two features unique to the InSilicoVA method:
jointly estimating CSMFs from multiple populations, and incorporating partial and potentially noisy
physician coding into the algorithm.

Sub-population specific CSMFs

In practice researchers may want to estimate and compare CSMFs for different regions, time periods, or
demographic groups in the population. Running separate models on subsets of data can be inefficient
and does not allow parameter estimation to borrow information across different groups. The generative
framework adopted by InSilicoVA allows the specification of sub-populations in analyzing VA data.
Consider an input dataset with G different sub-populations. We can estimate different CSMFs π(g) for
g = 1, ..., G for each sub-population, while assuming the same conditional probability matrix, Ps|c and
other hyperpriors. As an example, we show how to estimate different CSMFs for sub-populations
specified by sex and age groups, using a randomly sampled ALPHA dataset with additional columns
specifying the sub-population each death belongs to.
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Figure 3: Estimated aggregated CSMFs for InterVA-4 and InSilicoVA, with the causes reordered. The
causes of death are aggregated to seven broad categories. Color indicate the category and the height
of bar indicate the fraction of deaths due to the cause category. The order of the bars are arranged
according to user input.

data(RandomVA2)
head(RandomVA2[, 244:248])

#> stradm smobph scosts sex age
#> 1 . . . Men 60+
#> 2 . . . Women 60-
#> 3 . . . Women 60-
#> 4 . . . Women 60+
#> 5 . . . Women 60-
#> 6 . . . Women 60-

Then we can fit the model with one or multiple additional columns specifying sub-population
membership for each observation.

fit_sub <- codeVA(RandomVA2, model = "InSilicoVA",
subpop = list("sex", "age"), indiv.CI = 0.95,
Nsim = 10000, auto.length = FALSE)

Functions discussed in the previous sections work in the same way for the fitted object with
multiple sub-populations. Additional visualization tools are also available. Figure 4 plots the CSMFs
for two sub-populations on the same plot by specify type = "compare".

plotVA(fit_sub, type = "compare", title = "Comparing CSMFs", top = 3)

By default, the comparison plots will select all the CODs that are included in the top causes
(specified by the top argument) for each of the sub-populations. We can also plot only subsets of them
by specifying the causes of interest, as shown in Figure 5.

plotVA(fit_sub, type = "compare", title = "Comparing CSMFs",
causelist = c("HIV/AIDS related death",

"Pulmonary tuberculosis",
"Other and unspecified infect dis",
"Other and unspecified NCD"))

Figure 6 shows the visualization of the top CSMFs for a chosen sub-population using the which.sub
argument.

plotVA(fit_sub, which.sub = "Women 60-", title = "Women 60-")

Similar to before, the stackplotVA() function can also be used to compare different sub-populations
in aggregated cause groups, as shown in Figure 7.

stackplotVA(fit_sub)
stackplotVA(fit_sub, type = "dodge")
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Figure 4: Estimated CSMFs for different sub-populations. The points indicate posterior means of the
CSMF and the error bars indicate 95% credible intervals of the CSMF.

Figure 5: Estimated fraction of deaths due to selected CODs for different sub-populations. The points
indicate posterior means of the CSMF and the error bars indicate 95% credible intervals of the CSMF.

Figure 6: Top 10 CSMFs for a specified sub-population (women under 60 years old).

Physician coding

When physician-coded causes of death are available for all or a subset of the deaths, we can incorporate
such information in the InSilicoVA model. The physician-coded causes can be either the same as the
CODs used for the final algorithm, or consist of causes at a higher level of aggregation. When there is
more than one physician code for each death and the physician identity is known, we can first de-bias
the multiple codes provided from different physicians using the process described in McCormick et al.
(2016). For the purpose of implementation, we only need to specify which columns are physician IDs,
and which are their coded causes, respectively.
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Figure 7: Aggregated CSMFs for four different sub-populations. Left: comparison using the stacked
bar chart. Right: comparison using the bar chart arranged side to side. The height of the bars indicate
posterior means of the CSMF and the error bars indicate 95% credible intervals of the CSMF. Sub-
populations corresponding to 60+ age groups are estimated to have a larger fraction of deaths due to
NCD compared to 60- age groups.

data(SampleCategory)
data(RandomPhysician)
head(RandomPhysician[, 245:250])

#> smobph scosts code1 rev1 code2 rev2
#> 1 . . NCD doc9 NCD doc6
#> 2 . . NCD doc4 NCD doc3
#> 3 . . NCD doc1 NCD doc5
#> 4 . . TB/AIDS doc4 TB/AIDS doc7
#> 5 . . TB/AIDS doc5 TB/AIDS doc9
#> 6 . . Communicable doc9 Communicable <NA>

doctors <- paste0("doc", c(1:15))
causelist <- c("Communicable", "TB/AIDS", "Maternal",

"NCD", "External", "Unknown")
phydebias <- physician_debias(RandomPhysician,

phy.id = c("rev1", "rev2"), phy.code = c("code1", "code2"),
phylist = doctors, causelist = causelist, tol = 0.0001, max.itr = 100)

The de-biased step essentially creates a prior probability distribution for each death over the
broader categories of causes. Then to run InSilicoVA with the de-biased physician coding, we can
simply pass the fitted object from the previous step to the model. Additional arguments are needed
to specify both the external cause category, since external causes are handled by separate heuristics,
and the unknown category, which is equivalent to a uniform probability distribution over all other
categories, i.e., the same as the case where no physician coding exists.

fit_ins_phy <- codeVA(RandomVA1, model = "InSilicoVA",
phy.debias = phydebias, phy.cat = SampleCategory,
phy.external = "External", phy.unknown = "Unknown",
Nsim = 10000, auto.length = FALSE)

Figure 8 compares the previous results without including physicians codes.

plotVA(fit_ins_who, title = "Without physician coding")
plotVA(fit_ins_phy, title = "With physician coding")

Removal of physically impossible causes

The originally proposed InSilicoVA assumes all causes of death are possible for each observation. The
impact from such an assumption is mild when data are abundant, but could be problematic when
either the sample size is small or the proportion of missing data is high. In both cases, physically
impossible causes might get assigned with non-ignorable posterior mass. Since version 1.1.5 of
InSilicoVA, when the input is in the WHO format, the algorithm automatically checks and removes
impossible causes before fitting the model. The k-th cause is defined as physically impossible for the
i-th death if P(sij = 1|yi = k) = 0 where sij is an indicator that the decedent belongs to a particular sex
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Figure 8: Comparing fitted CSMF with and without physicians. Top: top 10 CSMFs and the 95%
credible intervals estimated by InSilicoVA without using physician coding. Bottom: top 10 CSMFs
and the 95% credible intervals estimated by InSilicoVA taking physician coding into account. More
deaths were assigned from ’Other and unspecified infectious disease’ to ’HIV/AIDS related death’
after accounting for physician coding.

or age group. We then consider a cause to be physically impossible for the underlying population if it
is impossible for all the observations in the input data. For example, with the new implementation,
CSMF for pregnancy-related causes will not be estimated if the input data consist of only male deaths.

7 Other related software packages

Since the release of the openVA package on CRAN, there have been several new developments in
both methodology and software that build on the openVA suite of packages and further extend its
functionalities. Here we briefly survey some of the related methods, software packages, and ongoing
work in the VA community that are related to openVA.

First, the ability to easily fit and compare existing methods using the openVA package facilitated
the development of several new VA methods in the last several years. Most of the development
focuses on building statistical models to relax the conditional independence assumption of symptoms
given a cause of death (e.g., Li et al., 2020; Kunihama et al., 2020; Moran et al., 2021; Li et al., 2021; Wu
et al., 2021). These methods tend to be computationally more demanding compared to the algorithms
currently included in the openVA package, but usually provide improved inference. It is future
work to include some of these latest developments in the openVA package for routine use. Most of
these methods have publicly available implementations, such as the farva package (Moran, 2020) on
GitHub. In another direction of research, a class of transfer learning methods focuses on building
models to correct for bias in existing methods when predicting out of domain. These methods take the
predicted cause of death assignments and distributions obtained with the openVA package and learn
an ensemble of the predictions calibrated to the target population (Datta et al., 2020; Fiksel et al., 2021).
The calibratedVA package (Fiksel and Datta, 2018) is available to implement these models.

Outside of research community that develops new VA algorithms, openVA has also been used
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extensively by governments and health care organizations, particularly in locations that lack a strong
vital registration system and use VA data to identify the leading causes of death. To facilitate the work
of these users, openVA has been wrapped into a web application, the openVA App (Thomas, 2021),
using the shiny package (Chang et al., 2021). The open source openVA App is available on GitHub
and provides an intuitive interface to openVA that does not require one to learn R, but provides visual
and tabular output produced by the different VA algorithms. It also runs the official Tariff algorithm
by calling the Python source code of SmartVA-Analyze (Institute for Health Metrics and Evaluation,
2021a) and processing the output to be consistent with the other algorithms. The openVA R package
has also been a key component in a larger data analysis pipeline that pulls VA data from an Open
Data Kit (ODK) Collect server and deposits the assigned causes of death to another server running the
District Health Information Software 2 (DHIS2), which is a common information management system
used in low and middle-income countries. This open-source software is implemented as a Python
package, openva-pipeline, and is available on GitHub and the Python Package Index (Thomas et al.,
2021a). Finally, the R package CrossVA (Thomas et al., 2020) and the Python package pyCrossVA
(Choi et al., 2021) provide additional toolkits to convert raw VA data from its original format from
the ODK server to the standardized formats discussed before. Both packages are open source and
available on GitHub. The pyCrossVA package is also available on the Python Package Index.

8 Conclusion

In this paper, we introduce the openVA package. This is the first open-source software that implements
and compares the major VA methods. The openVA package allows researchers to easily access the
most recent tools that were previously difficult to work with or unavailable. It also enables the
compatibility of multiple data input formats and significantly reduces the tedious work to pre-process
different data formats specific to each algorithm. The software framework of the openVA package
allows for the integration of new methods developed in the future. The openVA package makes all
the steps involved in analyzing VA data – i.e., data processing, model tuning and fitting, summarizing
results, and evaluation metrics – transparent and reproducible. This contributes significantly to the
public health community using VA.

Finally, we make note of several features that will be helpful for future development. First, many
users of the openVA package may not be familiar with the command line tools or do not have access to
R on their local machines. A well designed graphical user interface can be very useful in such settings.
The work on the shiny web application, openVA app, is a first step towards making the package
more accessible. The authors intend to extend it to a better front end hosted on secure centralized
servers. Second, although we aim to provide users with all the available methods for assigning causes
of death, there is a lack of tools for comparing the accuracy and robustness between algorithms. Thus,
much future work is needed to systematically assess, compare, and combine these methods in a better
analytic framework. Finally, the development of VA algorithms is still an active area of research and it
would be possible to extend the openVA suite to incorporate better VA algorithms and new types of
data such as free-text narratives.
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BayesPPD: An R Package for Bayesian
Sample Size Determination Using the
Power and Normalized Power Prior for
Generalized Linear Models
by Yueqi Shen, Matthew A. Psioda and Joseph G. Ibrahim

Abstract The R package BayesPPD (Bayesian Power Prior Design) supports Bayesian power and
type I error calculation and model fitting after incorporating historical data with the power prior
and the normalized power prior for generalized linear models (GLM). The package accommodates
summary level data or subject level data with covariate information. It supports use of multiple
historical datasets as well as design without historical data. Supported distributions for responses
include normal, binary (Bernoulli/binomial), Poisson and exponential. The power parameter can
be fixed or modeled as random using a normalized power prior for each of these distributions.
In addition, the package supports the use of arbitrary sampling priors for computing Bayesian
power and type I error rates. In addition to describing the statistical methodology and functions
implemented in the package to enable sample size determination (SSD), we also demonstrate the
use of BayesPPD in two comprehensive case studies.

Introduction: BayesPPD

There has been increasing interest over the past few decades in incorporating historical data in
clinical trials, particularly on controls (Pocock, 1976; Neuenschwander et al., 2010; Viele et al.,
2014). Use of historical data can increase effective sample size, potentially leading to more accurate
point estimates and increased power (Neuenschwander et al., 2010; Viele et al., 2014). Bayesian
methods provide a natural mechanism for information borrowing through the use of informative
priors. Some popular informative priors for Bayesian clinical trial design include the power prior
(Chen and Ibrahim, 2000), the normalized power prior (Duan et al., 2006), the commensurate power
prior (Hobbs et al., 2011), and the robust meta-analytic-predictive prior (Schmidli et al., 2014).

Some advantages of the power prior include its easy construction, its natural way of incorporating
historical data, its intuitive interpretation, and its desirable theoretical properties (Ibrahim et al.,
2015). For example, Ibrahim et al. (2003) show that the power prior is an optimal class of informative
priors in the sense that it minimizes a convex sum of the Kullback–Leibler (KL) divergences between
two posterior densities, in which one density is based on no incorporation of historical data, and
the other density is based on pooling the historical and current data. Duan et al. (2006) propose
a modification of the power prior, the normalized power prior, which adds a normalizing constant
component when the power parameter is modeled as random. The normalizing constant poses
computational challenges in the presence of covariates, because it is analytically intractable except
in the case of the normal linear model (Carvalho and Ibrahim, 2021). We address this challenge by
utilizing the PWK estimator (Wang et al., 2018) to approximate the normalizing constant for use
with generalized linear models. We also develop a novel way of incorporating the approximation of
the normalizing constant into the Markov chain Monte Carlo (MCMC) algorithm.

There is a growing literature on Bayesian sample size determination, including the works of
Rahme and Joseph (1998), Simon (1999), Wang and Gelfand (2002), De Santis (2007), M’Lan et al.
(2006) and Joseph et al. (2008). We consider the simulation-based method developed in Chen et al.
(2011) and Psioda and Ibrahim (2019), which extends the the fitting and sampling priors of Wang
and Gelfand (2002) with a focus on controlling the type I error rate and calculating power. In
addition, our package supports the use of arbitrary sampling priors for computing Bayesian power
and type I error rates, and has specific features for GLMs that semi-automatically generate sampling
priors from historical data.

The R package BayesPPD (Bayesian Power Prior Design) (Shen et al., 2022) supports Bayesian
clinical trial design after incorporating historical data with the power prior and the normalized
power prior. BayesPPD has two categories of functions: functions for model fitting and functions for
Bayesian power and type I error rate estimation. The package accommodates summary level data
or subject level data with covariate information for normal, binary (Bernoulli/binomial), Poisson
and exponential models. It supports use of multiple historical datasets and design without historical
data.
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Several Bayesian clinical trial design packages are available on the Comprehensive R Archive
Network (CRAN), such as BDP2, ph2bayes and gsbDesign (Kopp-Schneider et al., 2018; Nagashima,
2018; Gerber and Gsponer, 2016). However, these packages do not accommodate the incorporation
of historical data and are limited to normal and binary endpoints. The RBesT package (Weber,
2021) accounts for historical data using the meta-analytic-predictive prior. Commercial software for
clinical trial design such as FACTS, East and ADDPLAN (LLC Consultants, 2014; Cytel Software
Corporation, 2014; Wassmer and Eisebitt, 2005) do not implement the power prior, to our knowledge.
The BayesCTDesign (Eggleston et al., 2019) package supports two-arm randomized Bayesian trial
design using historical control data with the power prior, but it does not allow covariates, nor does it
allow the power parameter to be treated as random. The NPP (Han et al., 2021) package implements
the normalized power prior for two group cases for Bernoulli, normal, multinomial and Poisson
models, as well as for the normal linear model. It does not support generalized linear models, nor
does it include functions for sample size determination. The bayesDP (Balcome et al., 2021) package
implements the power prior where the power parameter is determined by a discounting function
estimated based on a measure of prior-data conflict. Thus, this approach is not fully Bayesian, and
the package must be used in conjunction with the package bayesCT (Chandereng et al., 2020) for
trial design. While bayesDP supports two-arm trials for binomial, normal and survival models as well
as linear and logistic regression models, BayesPPD allows covariates for Bernoulli/binomial, normal,
Poisson and exponential models with several choices of link functions. The BayesPPD package is
a comprehensive resource that supports Bayesian analysis and design using the power prior and
normalized power prior.

Another advantage of BayesPPD is its computational speed. BayesPPD implements MCMC
algorithms with Rcpp (Eddelbuettel and Francois, 2011) without recourse to asymptotics. For most
sample sizes, functions for analysis take only a few seconds to run. Functions for design for two
group cases run in seconds for fixed a0, and generally run in less an hour for random a0, depending
on the desired level of precision (e.g., number of simulated datasets). In the presence of covariates,
functions for design are more computation-intensive; an approximation method based on asymptotic
theory has been implemented to help users obtain a rough estimate of the desired sample size before
fine-tuning using the MCMC-based method.

This article is organized as follows. We first describe the methods implemented by the package.
We then provide details on how to use BayesPPD for different data scenarios and model needs. We
also present two case studies with example code, one with covariates and one without. The article is
concluded with a brief discussion.

Theoretical framework

Basic formulation of the power prior

Let D denote data from the current study and D0 denote data from a historical study. Let θ denote
model parameters and L(θ|D) denote a general likelihood function associated with a given outcome
model, such as a linear model, generalized linear model (GLM), survival model, or random effects
model. Following Chen and Ibrahim (2000), the power prior is formulated as

π(θ|D0, a0) ∝ L(θ|D0)
a0π0(θ).

where 0 ≤ a0 ≤ 1 is a discounting parameter for the historical data likelihood, and π0(θ) is the
initial prior for θ. The parameter a0 allows researchers to control the influence of the historical data
on the posterior distribution. When a0 = 0, historical information is discarded and the power prior
becomes equivalent to the initial prior π0(θ). When a0 = 1, the power prior corresponds to the
posterior distribution of θ given the historical data and the initial prior. When a0 is treated as fixed,
sensitivity analysis can be performed to determine an appropriate a0 value. When a0 is treated as
random, priors such as the beta distribution can be specified. The choice of a0 is discussed in, for
example, Ibrahim et al. (2015) and Psioda and Ibrahim (2018).

The power prior can easily accommodate multiple historical datasets. Suppose there are K
historical datasets denoted by D0k for k = 1, · · · ,K and let D0 = (D01, · · · ,D0K ). The power
prior becomes

π(θ|D0, a0) ∝
K∏

k=1

L(θ|D0k)
a0kπ0(θ),

where a0 = (a01, · · · , a0K )′ and 0 ≤ a0k ≤ 1 for k = 1, · · · ,K.
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The normalized power prior

Modeling a0 as random allows one to represent uncertainty in how much the historical data should
be discounted. The simplest power prior that allows this is the joint power prior (Chen and Ibrahim,
2000) which is given by

π(θ, a0|D0) ∝ L(θ|D0)
a0π0(θ)π0(a0).

Neuenschwander et al. (2009) point out that this formulation is not ideal because the normalizing
constant,

c(a0) =

∫
L(θ|D0)

a0π0(θ)dθ,

for L(θ|D0)
a0π0(θ) is not incorporated and thus π0(a0) is not actually the marginal prior for a0.

In fact, Duan et al. (2006) point out that this formulation of the power prior does not obey the
likelihood principle. Duan et al. (2006) proposed a modification of the power prior, the normalized
power prior, which is given by

π(θ, a0|D0) = π(θ|D0, a0)π(a0) =
L(θ|D0)

a0π0(θ)

c(a0)
π0(a0),

where π0(a0) is the initial prior for a0. The normalized power prior specifies a conditional prior for
θ given a0 and a marginal prior for a0. The normalizing constant,

c(a0) =

∫
L(θ|D0)

a0π0(θ)dθ,

is often analytically intractable and requires Monte Carlo methods for estimation. When a0 is
modeled as random, the normalized power prior is implemented in BayesPPD using a beta initial
prior on a0, for which the user must specify values of the two shape parameters that define the beta
density. The package supports the inclusion of multiple historical datasets when a0 is modeled as
random.

The power prior for generalized linear models

The power prior can easily accommodate covariates. Let yi denote the response variable and xi

denote a p-dimensional vector of covariates for subject i = 1, · · · ,n. Denote β̃ = (β0,β), where β0 is
the intercept and β = (β1, · · · ,βp)

′ is a p-dimensional vector of regression coefficients. We assume
the GLM of yi|xi is given by

f(yi|xi, β̃, τ ) = exp{α−1
i (τ )(yig(β0 + x′

iβ) −ψ(g(β0 + x′
iβ))) + ϕ(yi, τ )},

where τ is a scale parameter and g is a monotone differentiable link function. In particular, BayesPPD
allows the distribution of yi|xi to be normal, Bernoulli, binomial, Poisson or exponential. Note that
for Bernoulli, binomial, Poisson and exponential regression models, τ is equal to 1.

Let D0k = {(y0ki,x0ki), i = 1, · · · ,n0k} denote the k-th historical dataset, where y0ki is the
response variable for historical subject i and x0ki is the p-dimensional vector of covariates for
historical subject i. By default, BayesPPD assumes the historical data consists of control group
subjects only. Therefore, the historical covariate matrix does not have the treatment indicator
variable, while the current covariate matrix does. The package also allows the historical data to be
used to inform the treatment effect parameter; then the historical and current covariate matrices
will both have the treatment indicator.

The GLM for y0ki|x0ki is

f(y0ki|x0ki, β̃, τ0k) = exp{α−1
0i (τ0k)(y0kig(β0 + x′

0kiβ) −ψ(g(β0 + x′
0kiβ))) + ϕ(y0ki, τ0k)},

where τ0k is the scale parameter for the k-th historical dataset. Note that the precision pa-
rameter is assumed to be unshared. The historical data likelihood for K historical datasets is
L(β̃, τ01, · · · , τ0K |D0) ∝

∏K
k=1

∏n0k

i=1 f(y0ki|x0ki, β̃, τ0k). The power prior for GLMs with fixed
a0 = (a01, · · · , a0K )′ is

π(β̃, τ01, · · · , τ0K |D0, a0) ∝
K∏

k=1

{
L(β̃, τ0k|D0k)

a0kπ0(τ0k)
}
π0(β̃).

When a0 is modeled as random, we assume τ01, · · · , τ0K = τ for computational simplicity. The
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normalized power prior for GLMs with a random a0 vector is given by

π(β̃, τ , a0|D0) =

∏K
k=1 L(β̃, τ |D0k)

a0kπ0(β̃)π0(τ )∫ ∞
0

∫
Rp

∏K
k=1 L(β̃, τ |D0k)a0kπ0(β̃)π0(τ )dβ̃dτ

π0(a0).

Estimating the normalizing constant for GLMs

The normalizing constant c(a0) in the normalized power prior for GLMs is analytically intractable
except for normal linear regression models. For other types of regression models, we approximate the
normalizing constant with the partition weighted kernel (PWK) estimator proposed by Wang et al.
(2018). The PWK estimator requires MCMC samples from the posterior distribution (based on a
discounted historical data likelihood with fixed a0 value), which we obtain using the slice sampler
(Neal, 2003), and the known kernel function for computing the normalizing constant. The authors
first impose a working parameter space, defined as the space where the kernel value is bounded away
from zero. As stated in Wang et al. (2018), the PWK estimator is constructed by first partitioning
the working parameter space and then estimating the marginal likelihood by a weighted average of
the kernel values evaluated at a MCMC sample for each partition, where the weights are assigned
locally using a representative kernel value in each partitioned subset. The PWK estimator has been
shown to have desirable properties, including being consistent and having finite variance (Wang
et al., 2018).

The function normalizing.constant in our package computes a vector of coefficients that defines
a function f(a0) that approximates the normalizing constant for GLMs with random a0. Suppose
there are K historical datasets. Basic usage of the normalizing.constant function entails the
following steps:

1. The user inputs a grid of M rows and K columns of potential values for a0.
2. For each row of a0 values in the grid, the function obtains M samples for β from the power

prior associated with the current values of a0 using the slice sampler. Note that τ is not
applicable here because the models implemented using the PWK estimator do not have scale
parameters.

3. For each of the M sets of posterior samples, the PWK algorithm (Wang et al., 2018) is used
to estimate the log of the normalizing constant d1, · · · , dM for the normalized power prior.

4. At this point, one has a dataset with outcomes d1, · · · , dM and predictors corresponding to
the rows of the a0 grid matrix. A polynomial regression is employed to estimate a function
d = f(a0) based on these quantities. The degree of the polynomial regression is determined
by the algorithm to ensure R2 > 0.99.

5. The normalizing.constant function returns the vector of coefficients from the polynomial
regression model, which the user must input into the analysis or design function for GLMs
with a0 modeled as random (glm.random.a0 and power.glm.random.a0).

In the Examples section below, we demonstrate computing the normalizing constant for one historical
dataset with three covariates. Due to computational intensity, the normalizing.constant function
has not been evaluated for accuracy for high dimensional β (e.g., dimension > 10) or high dimensional
a0 (e.g., dimension > 5).

Sample size determination

Hypotheses for two group models

Following Chen et al. (2011), for two group models (i.e., treatment and control group with no
covariates), denote the parameter for the treatment group by µt and the parameter for the control
group by µc. For example, for binomial models, µt and µc are the probability of having some
outcome (e.g., tumor response) for the treatment and control group, respectively. Let τc denote
the nuisance parameters for the control group in the model. For normal models, τc is a vector of
precision parameters. For K historical datasets D0 = (D01, · · · ,D0K )′ with fixed a0, we assume
each historical dataset D0k has a precision parameter τc0k. When a0 is modeled as random, the
historical and current datasets are assumed to have the same precision parameter, in which case τc

reduces to a scalar. The precision parameter of the treatment group is denoted by τt.
We consider the following power prior for (µc, τc) given multiple historical datasets D0

π(µc, τc|D0, a0) ∝
K∏

k=1

[L(µc|D0k, τc)
a0k ] π0(µc)π0(τc),
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where a0 = (a01, · · · , a0K )′, 0 ≤ a0k ≤ 1 for k = 1, · · · ,K, L(µc|D0k, τc) is the historical data
likelihood, and π0(µc) and π0(τc) are the initial priors. To model a0 as random, we consider the
normalized power prior

π(µc, τc, a0|D0) ∝
∏K

k=1 [L(µc|D0k, τc)
a0k ] π0(µc)π0(τc)

c(a0)
π0(a0),

where

c(a0) =

∫ ∞

0

∫ ∞

−∞

K∏
k=1

[L(µc|D0k, τc)
a0k ]π0(µc)π0(τc)dµcdτc.

For models other than the exponential model, the power / type I error calculation algorithm
assumes the null and alternative hypotheses are given by

H0 : µt − µc ≥ δ

and
H1 : µt − µc < δ,

where δ is a prespecified constant. To test hypotheses of the opposite direction, i.e., H0 : µt −µc ≤ δ
and H1 : µt − µc > δ, one can set the parameter nullspace.ineq to "<".

For positive continuous data assumed to follow exponential distribution, the hypotheses are
given by

H0 : µt/µc ≥ δ

and
H1 : µt/µc < δ,

where µt and µc are the hazards for the treatment and the control group, respectively.

Definition of Bayesian type I error rate and power

Let Θ0 and Θ1 denote the parameter spaces corresponding to H0 and H1. Let y(n) denote the
simulated current data associated with a sample size of n and let θ = (µt,µc, τc) denote the model
parameters. Let π(s)(θ) denote the sampling prior and let π(f )(θ) denote the fitting prior. The
sampling prior is used to generate the hypothetical data while the fitting prior is used to fit the
model after the data is generated. Let π(s)0 (θ) denote a sampling prior that only puts mass in the
null region, i.e., θ ⊂ Θ0. Let π(s)1 (θ) denote a sampling prior that only puts mass in the alternative
region, i.e., θ ⊂ Θ1. To determine Bayesian sample size, we estimate the quantity

β
(n)
sj = Es[I{P (µt − µc < δ|y(n),π(f )) ≥ γ}], (1)

where j = 0 or 1, corresponding to the expectation taken with respect to π(s)0 (θ) or π(s)1 (θ). The
constant γ > 0 is a prespecified posterior probability threshold for rejecting the null hypothesis
(e.g., 0.975). The probability is computed with respect to the posterior distribution given the
simulated data y(n) and the fitting prior π(f )(θ), and the expectation is taken with respect to the
marginal distribution of y(n) defined based on the sampling prior π(s)(θ). Then β(n)s0 corresponding
to π(s)(θ) = π

(s)
0 (θ) is the Bayesian type I error rate, while β(n)s1 corresponding to π(s)(θ) = π

(s)
1 (θ)

is the Bayesian power. Note that Bayesian type I error rate and power can be equivalently defined
as weighted averages of the quantities based on fixed values of θ with weights determined by the
sampling priors (Psioda and Ibrahim, 2018). For given α0 > 0 and α1 > 0, we can compute
nα0 = min{n : β(n)s0 ≤ α0} and nα1 = min{n : β(n)s1 ≥ 1 − α1}. Then, the sample size is taken to
be max{nα0 ,nα1 }. Common choices of α0 and α1 include α0 = 0.05 and α1 = 0.2. These choices
guarantee that the Bayesian type I error rate is at most 0.05 and the Bayesian power is at least 0.8.

Estimation of Bayesian type I error rate and power

In this section, we discuss the simulation-based procedure used to estimate the Bayesian type I
error rate and power. Let N denote the number of simulated trials. To compute β(n)sj , the following
algorithm is used for each simulated trial b:

• Step 1: Generate θ(b) ∼ π
(s)
j (θ).

• Step 2: Generate y(b) ∼ f(y(b)|θ(b)).
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• Step 3: Estimate the posterior distribution π(θ|y(b),D0, a0) and the posterior probability
P (µt − µc < δ|y(b),π(f ),D0, a0).

• Step 4: Compute the indicator r(b) = I{P (µt − µc < δ|y(b),π(f ),D0, a0) ≥ γ}.

Then the estimate of β(n)sj is 1
N

∑N
b=1 r

(b).

Specification for regression models

For regression models, we assume the first column of the covariate matrix is the treatment indicator,
and the corresponding parameter is β1, which, for example, corresponds to a difference in means
for the linear regression model and a log hazard ratio for the exponential regression model. The
hypotheses are given by

H0 : β1 ≥ δ

and
H1 : β1 < δ.

The definition of β(n)sj and the algorithm change accordingly.

Prior distributions

Two group cases

For two group models, continuous responses of the control group are assumed to follow N(µc, τ−1
c ).

Each historical dataset D0k is assumed to have a different precision parameter τc0k. The initial
prior for the µc is the uniform improper prior. The initial prior for τc is the Jeffery’s prior, τ−1

c , and
the initial prior for τc0k is τ−1

c0k. Posterior samples of µc, τc and τc0k’s (if historical data is given)
are obtained through Gibbs sampling. When a0 is modeled as random, the historical datasets are
assumed to have the same precision parameter τc as the current dataset for computational simplicity.
The initial prior for τc is the Jeffery’s prior, τ−1

c . Posterior samples of a0 are obtained through slice
sampling.

For binary, count or positive continuous data, a single response from the control group is assumed
to follow Bernoulli(µc), Poisson(µc) or exponential(rate=µc), respectively. A beta initial prior is
used for µc for Bernoulli data, and a gamma prior is used for Poisson and exponential data. The
user can specify the hyperparameters. When a0 is modeled as random, posterior samples of a0 are
obtained through slice sampling. The conditional posterior distributions of µc given a0 have closed
form solutions.

When computing the power or the type I error rate, treatment group data are simulated and
posterior samples of µt (and τt for normal data) are obtained using basic Bayesian models. The
priors used for µt are the same as the initial priors used for µc. For normal data, the prior for τt is
the Jeffery’s prior, τ−1

t .

GLM cases

For GLMs, a continuous response yi is assumed to follow N(β0 + x′
iβ, τ−1). Each historical dataset

D0k is assumed to have a different precision parameter τk. The initial prior for τ is the Jeffery’s
prior, τ−1, and the initial prior for τk is τ−1

k . Posterior samples of β0 and β are obtained through
Gibbs sampling. For all other types of data, a link function must be applied. Posterior samples of
β0 and β are obtained through slice sampling. When a0 is fixed, the initial prior for β0 and β is the
uniform improper prior. When a0 is modeled as random, the historical datasets are assumed to have
the same precision parameter τ as the current dataset. The initial prior for τ is the Jeffery’s prior,
τ−1. Independent normal priors with mean zero and a user-specified variance are used for β. Here
we use a proper initial prior for β to ensure the propriety of the normalized power prior. Posterior
samples of a0 are obtained through slice sampling. The normalizing constant of the normalized
power prior is estimated using the PWK estimator.
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Two groups,
fixed a0

Two groups,
random a0

GLM,
fixed a0*

GLM,
random a0

Bernoulli/
Binomial

Numerical
integration Slice Slice Slice & PWK

Normal Gibbs Gibbs & Slice Gibbs Gibbs & Slice

Poisson Numerical
integration Slice Slice Slice & PWK

Exponential Numerical
integration Slice Slice Slice & PWK

Table 1: Estimation method used for each model and data type. Each column contains a type
of model, and each row contains an outcome distribution. Gibbs sampling is used for normally
distributed outcomes. Slice sampling is used when a0 is modeled as random.
∗Approximation method is available for sample size determination for fast implementation.

Using BayesPPD

Package overview

The BayesPPD package accommodates summary level data or subject level data with covariate
information. It supports SSD for design applications with multiple historical datasets as well as
with no historical data. Functions with names containing "two.grp" assume that the input data are
sufficient statistics (e.g., sample mean) for independent and identically distributed treatment and
control group data. Simulated control group data are analyzed using the power or normalized power
prior and posterior samples of µc are returned. By default, functions with names containing "glm"
assume that the historical control data include a covariate matrix X0 and the current data include
the same set of covariates with an additional column (the first column) of treatment indicator. The
package assumes the historical data is composed of control group subjects only by default. If the
user wants to use the historical data to inform the treatment effect, one can set borrow.treat=TRUE
and include the treatment indicator in the historical covariate matrix. Simulated data are analyzed
using the power or normalized power prior and posterior samples of the regression coefficients
are returned. For each of two cases, the power parameter a0 can be fixed or modeled as random,
resulting in four model fitting functions, two.grp.fixed.a0, two.grp,random.a0, glm.fixed.a0
and glm.random.a0. For each of the four model fitting functions, a companion function prefixed
with "power" calculates power or type I error rate, given historical data and current data sample
size. Supported distributions of responses include normal, binary (Bernoulli/binomial), Poisson and
exponential. Since functions for sample size determination for GLMs are computationally intensive,
an approximation method based on asymptotic theory has been implemented for the model with
fixed a0.

Table 1 shows the sampling methods used for each model and data distribution. Gibbs sampling is
used for normally distributed data. Slice sampling (Neal, 2003) is used for all other data distributions,
and for obtaining posterior samples of a0 when a0 is considered random. For two group models with
fixed a0, numerical integration is performed using the RcppNumerical package (Qiu et al., 2019). For
GLMs with random a0, the PWK estimator (Wang et al., 2018) is used to estimate the normalizing
constant. The functions return S3 objects with summary methods implemented.

Two group cases

If one has current and/or historical control data for an application with no covariates and would like
to obtain posterior samples of µc (and τc for normal data), one uses the function two.grp.fixed.a0
or two.grp.random.a0. The user must specify the data.type ("Normal", "Bernoulli", "Poisson"
or "Exponential"), the sum of responses y.c, the sample size n.c and the sample variance v.c
(for normal data only) of the current control data. The optional historical argument is a matrix
where the columns contain the sufficient statistics and each row represents a historical dataset. For
two.grp.fixed.a0, historical must contain a column of a0 values, one a0 value for each historical
dataset. For non-normal data, the user can specify prior.mu.c.shape1 and prior.mu.c.shape2,
the hyperparameters of the initial prior for µc.

When a0 = (a01, · · · , a0K )′ is modeled as random, a beta prior is specified for a0 with hyper-
parameters prior.a0.shape1 and prior.a0.shape2. Posterior samples of a0 are obtained through
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slice sampling. The optional tuning parameters for the slice sampler include lower.limits and
upper.limits which control the upper and lower limits of the parameters being sampled, as well as
slice.widths which controls the width of each slice. The length of lower.limits, upper.limits
and slice.widths should be at least equal to the number of parameters, i.e., the dimension of a0.
Their default values are 0, 1 and 0.1, respectively, for each a0k.

For sample size determination, power.two.grp.fixed.a0 and power.two.grp.random.a0 com-
pute the power or the type I error rate given the sample sizes of the treatment and control groups
for the new study and other inputs. If a sampling prior with support in the null space is used,
the value returned is a Bayesian type I error rate. If a sampling prior with support in the alterna-
tive space is used, the value returned is a Bayesian power. The arguments samp.prior.mu.t and
samp.prior.mu.c contain vectors of samples for µt and µc, which are discrete approximations of
the sampling priors. For normal data, arguments samp.prior.var.t and samp.prior.var.c, which
contain samples for τ−1

t and τ−1
c , must also be provided. The argument delta specifies the constant

that defines the boundary of the null hypothesis. The default value is zero. The argument gamma
specifies the posterior probability threshold for rejecting the null hypothesis. The default value is
0.95.

GLM cases

If one has current and historical data for an application with covariates and would like to obtain
posterior samples of β (and τ for normal data), one uses the function glm.fixed.a0 or glm.random.a0.
It is recommended that the covariates be transformed or standardized so that the estimation of β
will be stable. The user must specify the data.type, the data.link (except for normal data), the
vector of responses y and the matrix of covariates x where the first column should be the treatment
indicator. Supported link functions include logit, probit, log, identity-positive, identity-probability
and complementary log-log. If the data is binary and all covariates are discrete, the user can collapse
the Bernoulli data into a binomial structure, which may result in a much faster slice sampler. In this
case, the user needs to provide n, a vector of integers specifying the number of subjects who have a
particular value of the covariate vector. The optional historical argument is a list of lists where
each list contains information about a historical dataset with named elements y0, x0 and a0 (only
for glm.fixed.a0). If borrow.treat=FALSE (the default), the historical covariate matrix x0 should
not have the treatment indicator. Apart from missing the treatment indicator, x0 should have the
same set of covariates in the same order as x. If borrow.treat=TRUE, x0 should have the same set of
covariates in the same order as x, where the first column of x0 must be the treatment indicator. For
non-normal data, slice sampling is used to obtain posterior samples of β, and the user can specify
the lower.limits, upper.limits and slice.widths of the sampler. The length of lower.limits,
upper.limits and slice.widths should be at least equal to the number of parameters, i.e., the
dimension of β. A matrix of posterior samples of β is returned, where the first column contains
posterior samples of the intercept and the second column contains posterior samples of β1, the
parameter for the treatment indicator.

When a0 is modeled as random for non-normal data, the user must first use the function
normalizing.constant to obtain the value of a0.coefficients, a vector of coefficients for a0 neces-
sary for estimating the normalizing constant for the normalized power prior. For the grid argument
of normalizing.constant, the user inputs a grid of M rows and K columns of potential values for
a0 for K historical datasets. For example, one can choose the vector v = c(0.1,0.25,0.5,0.75,1)
and use expand.grid(a0_1=v,a0_2=v,a0_3=v) when K = 3 to get a grid with M = 53 = 125 rows
and three columns. If there are more than three historical datasets, the dimension of v can be
reduced to limit the size of the grid. A large grid will increase runtime. If some of the coefficients
are not estimable in the polynomial regression, the algorithm will product the error message, "some
coefficients not defined because of singularities." To resolve the issue, the user can try increasing or
decreasing the number of rows in the grid. Other possible causes include insufficient sample size of
the historical data, insufficient number of iterations for the slice sampler, and near-zero grid values.

When a0 is modeled as random, slice sampling is used for a0 only for normal data, and the
length of lower.limits, upper.limits and slice.widths should be equal to the dimension of a0.
For all other data types, slice sampling is used for β and a0, and the length of those vectors should
be equal to the dimension of β plus the dimension of a0.

For sample size determination, power.glm.fixed.a0 and power.glm.random.a0 compute the
power or the type I error given the total sample size (data.size) for the new study and other
inputs. If historical datasets are provided, the algorithm samples with replacement from the
historical covariates to construct the simulated datasets. Otherwise, the algorithm samples with
replacement from x.samples. One of the arguments historical and x.samples must be provided.
The argument samp.prior.beta contains a matrix of samples for β, which is a discrete approximation
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of the sampling prior. For normal data, the argument samp.prior.var containing samples for τ−1

must also be provided. The average posterior means of the parameters are also returned.

Sampling priors

Our implementation in BayesPPD does not assume any particular distribution for the sampling
priors. The user specifies discrete approximations of the sampling priors by providing a vector or a
matrix of sample values and the algorithm samples with replacement from the vector or the matrix
as the first step of data generation. For two group cases, the user simply specifies samp.prior.mu.t
and samp.prior.mu.c which are vectors of samples for µt and µc. For normal data, arguments
samp.prior.var.t and samp.prior.var.c, which contain samples for τ−1

t and τ−1
c , must also be

provided. The second application example below demonstrates the use of point mass sampling priors
for binary data.

For GLM cases, the user specifies samp.prior.beta, a matrix of samples for β. For normal data,
the argument samp.prior.var containing samples for τ−1 must also be provided. For example,
suppose one wants to compute the power for the hypotheses

H0 : β1 ≥ 0

and
H1 : β1 < 0.

To approximate the sampling prior for β1, one can simply sample from a truncated normal distribution
with negative mean, so that the mass of the prior falls in the alternative space. Conversely, to
compute the type I error rate, one can sample from a truncated normal distribution with positive
mean, so that the mass of the prior falls in the null space. Next, to generate the sampling prior
for the other parameters (β0,β2, · · · ,βp), one can use the posterior samples given the historical
data as the discrete approximation to the sampling prior. The function glm.fixed.a0 generates
such posterior samples if the current argument is set to FALSE and a0k = 1 for k = 1, · · · ,K. The
second application example in this article illustrates this method for binary data with covariates.
Psioda and Ibrahim (2018) discusses sampling prior elicitation in detail.

Approximation for GLMs

Because running power.glm.fixed.a0 and power.glm.random.a0 is potentially time-consuming, an
approximation method based on asymptotic theory (Ibrahim et al., 2015) has been implemented for
the model with fixed a0. In order to attain the exact sample size needed for the desired power, the
user can start with the approximation to get a rough estimate of the sample size required, using
power.glm.fixed.a0 with approximate=TRUE. The second application example below illustrates the
use of the approximation method. For normal data, the closed form of the distribution of the MLE
of β is derived and used to compute power. For other types of data, the Newton-Raphson algorithm
is used. Only canonical links are allowed.

Examples

Design of a non-inferiority trial for medical devices

We first consider the non-inferiority design application of Chen et al. (2011) considering a model for
binary outcomes for treatment and control groups with no covariates. The goal of that application
was to design a trial to evaluate a new generation of drug-eluting stent (DES) (“test device”)
with the first generation of DES (“control device”). The primary endpoint is the 12-month Target
Lesion Failure (TLF), defined as any of ischemia-driven revascularization of the target lesion (TLR),
myocardial infarction (MI) (Q-wave and non-Q-wave) related to the target vessel, or (cardiac) death
related to the target vessel. Historical information can be borrowed from two previously conducted
trials involving the first generation of DES. Table 2 summarizes the historical data.

We will illustrate Bayesian SSD incorporating historical data using the power prior with fixed
a0 and the normalized power for a0 modeled as random. Let y(nt)

t = (yt1, · · · , ytnt ) and y(nc)
c =

(yc1, · · · , ycnc ) denote the responses from the current trial for the test device and the control device,
respectively. The total sample size is n = nt + nc. We assume the i-th observation from the test
group yti follows Bern(µt), and the i-th observation from the control group yci follows Bern(µc).
Note that the notation used in our package is different from the notation used in Chen et al. (2011),
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12-Month TLF
% TLF (# of failure/n0k)

Historical Trial 1 8.2% (44/535)
Historical Trial 2 10.9% (33/304)

Table 2: Summary of two historical trials involving the first generation of DES. The primary
endpoint is the 12-month Target Lesion Failure (TLF). The pooled proportion for the two historical
control datasets is 9.2%.

which assumes yti follows Bern(pt) and µt = log
(

pt

1−pt

)
. The hypotheses for non-inferiority testing

are
H0 : µt − µc ≥ δ

and
H1 : µt − µc < δ,

where δ is a prespecified non-inferiority margin. We set δ = 4.1%. We choose beta(10−4, 10−4) for
the initial prior for µc, which performs similarly to the uniform improper initial prior for log

(
µc

1−µc

)
used in Chen et al. (2011) in terms of operating characteristics. We compute the Bayesian power and
type I error defined in (1). Power is computed under the assumption that µt = µc and type I error
rate is computed under the assumption that µt = µc + δ. For sampling priors, a point mass prior at
µc = 9.2% is used for π(s)(µc) where 9.2% is the pooled proportion for the two historical control
datasets, and a point mass prior at µt = µc is used for π(s)(µt). For all computations, we use nt

nc
= 3,

N = 10, 000, and γ = 0.95, where N is the number of simulated trials and γ is a prespecified posterior
probability threshold for rejecting the null hypothesis. For this example, we consider nt = 750
and a01 = a02 = 0.3. Power can be calculated with following code in BayesPPD. The historical
matrix is defined where each row represents a historical dataset, and the three columns represent the
sum of responses, sample size and a0, respectively, of the historical control data. Since point mass
sampling priors are used for µt and µc, samp.prior.mu.t and samp.prior.mu.c are both scalars.
For Bernoulli outcomes, beta initial priors are used for µt and µc, with hyperparameters specified
by prior.mu.t.shape1, prior.mu.t.shape2, prior.mu.c.shape1 and prior.mu.c.shape2.

historical <- matrix(0, ncol=3, nrow=2)
historical[1,] <- c(44, 535, 0.3)
historical[2,] <- c(33, 304, 0.3)

set.seed(1)
power <- power.two.grp.fixed.a0(data.type="Bernoulli",

n.t=750, n.c=round(750/3), historical=historical,
samp.prior.mu.t=0.092, samp.prior.mu.c=0.092,
prior.mu.t.shape1=0.0001, prior.mu.t.shape2=0.0001,
prior.mu.c.shape1=0.0001,prior.mu.c.shape2=0.0001,
delta=0.041, N=10000)

power$power/type I error
[1] 0.8428

When a0 is random, the normalized power prior is used and the priors for a01 and a02 are
beta(1,1), as in Chen et al. (2011). We use the default settings for the upper limits, lower limits and
slice widths for a01 and a02. We run 20,000 iterations of the slice sampler. The same initial priors
and sampling priors are used as in the fixed a0 case. The code is shown below for nt = 750.

historical <- matrix(0, ncol=2, nrow=2)
historical[1,] <- c(44, 535)
historical[2,] <- c(33, 304)

set.seed(1)
power <- power.two.grp.random.a0(data.type="Bernoulli",

n.t=750, n.c=round(750/3),historical=historical,
samp.prior.mu.t=0.092, samp.prior.mu.c=0.092,
prior.mu.t.shape1=0.0001, prior.mu.t.shape2=0.0001,
prior.mu.c.shape1=0.0001,prior.mu.c.shape2=0.0001,
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Total sample size 1000 1080 1200 1280 1480
nt 750 810 900 960 1110
nc 250 270 300 320 370

Power
a0 = (0.3, 0.3) BayesPPD 0.843 0.858 0.889 0.898 0.924

Chen et al. (2011) 0.840 0.856 0.884 0.892 0.923
Random a0 BayesPPD 0.864 0.885 0.909 0.921 0.937

Chen et al. (2011) 0.843 0.878 0.897 0.902 0.914

Type I Error Rate
a0 = (0.3, 0.3) BayesPPD 0.030 0.027 0.032 0.030 0.032

Chen et al. (2011) 0.030 0.027 0.028 0.030 0.032
Random a0 BayesPPD 0.032 0.027 0.031 0.031 0.031

Chen et al. (2011) 0.038 0.031 0.029 0.036 0.039

Table 3: Power and type I error rate comparisons for Chen et al. (2011) and BayesPPD for a few
different sample sizes. We use N = 10, 000 simulated trials. Two models are considered, a power
prior with a0 fixed at 0.3 for both historical trials and the normalized power prior. We observe that
the results provided by BayesPPD closely match the results provided in Chen et al. (2011).

prior.a0.shape1=1,prior.a0.shape2=1,
delta=0.041, gamma=0.95,
nMC=20000, nBI=250, N=10000)

power$`power/type I error`
[1] 0.864

Table 3 compares power calculations from Chen et al. (2011) and BayesPPD for a few different
sample sizes. We observe that the results provided by BayesPPD closely match the results provided
in Chen et al. (2011).

Study of acquired immunodeficiency syndrome (AIDS)

Using data from two trials that study the effect of Zidovudine on AIDS, ACTG019 and ACTG036,
we will demonstrate how BayesPPD can be used for coefficient estimation as well as power and type
I error rate calculation for generalized linear models in designs that incorporate historical data.

Zidovudine (AZT) is an inhibitor of the replication of the human immunodeficiency virus (HIV).
The ACTG019 study was a double-blind placebo-controlled clinical trial comparing AZT with a
placebo in adults with asymptomatic HIV who had CD4 cell counts of fewer than 500 per cubic
millimeter. The results were published in Volberding et al. (1990). For this example, we use only
the control group data from ACTG019. The binary primary endpoint is death or development of
AIDS or AIDS-related complex (ARC). We consider four of the measured covariates used, CD4 cell
count (x01) (cell count per cubic millimetre of serum), age (x02), treatment (x03) and race (x04).
The covariates CD4 cell count and age are continuous, while the others are binary. The ACTG036
study was also a placebo-controlled clinical trial comparing AZT with a placebo in asymptomatic
patients with hereditary coagulation disorders and HIV infection. The results were published in
Merigen et al (1991). The endpoint and covariates used are the same as those in the ACTG019 trial.
Table 4 summarizes the endpoint and covariates for the two studies.

First, we standardize age for ease of interpretation and take the log of CD4 cell count count.

data(actg019)
data(actg036)
Y0 <- actg019$outcome
X0 <- actg019[,-1]
X0$age_std <- scale(X0$age)
X0$T4_log <- log(X0$T4count)
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ACTG019 ACTG036
(control group)

No. of patients 404 183
AZT treatment, n (%) NA 89 (48.6)
CD4 cell count, mean (SD) 332.5 (109.3) 297.7 (130.5)
Age, y; mean (SD) 34.5 (7.7) 30.4(11.2)
White race, n (%) 377 (93.3) 166 (90.7)
Death or ARC, n (%) 36 (8.9) 11 (6.0)

Table 4: Summary of the ACTG019 trial (control group) and the ACTG036 trial data. The binary
primary endpoint is death or development of ARC. The sample size of the ACTG019 trial is much
larger than the ACTG036 trial. The covariate and endpoint summaries are comparable for the two
datasets.

a0 = 0 a0 = 0.5 a0 = 1 a0 ∼ beta(1,1)

Intercept 9.14 [3.83; 16.34] 4.89 [1.24; 8.27] 3.95 [0.94; 6.98] 4.39 [1.41; 7.54]
AZT −0.15 [−1.80; 1.42] −0.95 [−2.16; 0.25] −1.00 [−2.12; 0.14] −0.96 [−2.14; 0.08]
Age (standardized) 0.32 [−0.42; 1.04] 0.36 [−0.01; 0.74] 0.38 [0.11; 0.68] 0.38 [0.06; 0.67]
Race 0.36 [−2.35; 3.23] 0.72 [−1.10; 2.75] 0.93 [−0.83; 3.05] 0.73 [−0.86; 2.44]
log(CD4) −2.42 [−3.61; −1.35] −1.48 [−2.04; −0.89] −1.32 [−1.78; −0.84] −1.37 [−1.91; −0.86]

Table 5: Posterior mean and 95% credible interval for β incorporating historical data for the four
priors, a0 fixed at 0, 0.5, and 1 and a0 modeled as random with a beta(1, 1) prior. There is evidence
suggesting a negative association between AZT and death but the evidence is not substantial by
common criteria (e.g., posterior probability > 0.95).

X0 <- as.matrix(X0[,c("age_std","race","T4_log")])

Y <- actg036$outcome
X <- actg036[,-1]
X$age_std <- scale(X$age)
X$T4_log <- log(X$T4count)
X <- as.matrix(X[,c("treat","age_std","race","T4_log")])

Suppose we are interested in analyzing the relationship between the outcome and the covariates
after incorporating historical information. The code below demonstrates the analysis based on a
power prior with a0 fixed at 0.5 and using only the ACTG019 study data as prior information.

set.seed(1)
historical <- list(list(y0=Y0, x0=X0, a0=0.5))
result <- glm.fixed.a0(data.type="Bernoulli", data.link="Logistic", y=Y, x=X,
+ historical=historical, nMC=10000, nBI=250)
colMeans(result$posterior.samples)
[1] 4.8931870 -0.9459501 0.3645510 0.7201122 -1.4784046

Table 5 displays the posterior mean and 95% credible interval for β for four different priors,
a0 fixed at 0, 0.5, and 1 and a0 modeled as random with a beta(1, 1) prior. There is evidence
suggesting a negative association between AZT and death but the evidence is not substantial by
common criteria (e.g., posterior probability > 0.95).

For this example we consider designing a new clinical trial that is similar to the historical trial,
ACTG019. We hope to acquire a range of sample sizes that can achieve powers around 0.8 to test
the hypotheses

H0 : β1 ≥ 0
and

H1 : β1 < 0
based on the chosen sampling priors. Here, β1 represents the treatment effect of AZT. First,
we generate the input for samp.prior.beta, a matrix of samples for β representing a discrete
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approximation of the sampling prior. For β1, we sample from a truncated normal distribution
with mean −0.5, which is our guess of the effect size of AZT. The distribution is truncated to
avoid extreme, implausible values for β1. For the other parameters, the sampling prior is fixed
at the posterior mean of the parameter given the historical data, which can be easily obtained
using glm.fixed.a0 with current=FALSE. We then combine the sampling prior for β1 and the other
parameters into a matrix, as follows:

library(truncnorm)
set.seed(1)
historical.sp <- list(list(y0=Y0, x0=X0, a0=1))
result <- glm.fixed.a0(data.type="Bernoulli", data.link="Logistic",

historical=historical.sp,
nMC=10000, nBI=250, current.data = FALSE)

beta.sp <- result$posterior.samples
nSP <- 10000
mat.sp <- matrix(rep(colMeans(beta.sp), each=nSP), nrow=nSP)
beta1.sp <- rtruncnorm(nSP, a=-2, b=-0.1, mean=-0.5)
samp.prior.beta <- cbind(mat.sp[,1], beta1.sp, mat.sp[,2:4])

Next, we use power.glm.fixed.a0 with approximate=TRUE to obtain a rough estimate of the
sample size required to achieve a power of 0.8. The code below experiments with sample sizes 800,
1000 and 1200. We observe that to reach a power of 0.8, the sample size should be approximately
800 when a0 is fixed at 0.5.

set.seed(1)
sample.sizes <- c(800,1000,1200)
historical <- list(list(y0=Y0, x0=X0, a0=0.5))
results <- NULL
for(i in 1:length(sample.sizes)){

result <- power.glm.fixed.a0(data.type="Bernoulli", data.size=sample.sizes[i],
historical=historical,
samp.prior.beta=samp.prior.beta,
delta=0, gamma=0.95, approximate=TRUE, N=10000)

results <- c(results, result$`power/type I error`)
}
results
[1] 0.8037 0.8177 0.8391

Finally, we calculate the exact power using the normalized power prior with a0 modeled
as random. The normalizing.constant function provides the value for a0.coefficients of
power.glm.random.a0. Since there is only one historical dataset, the grid is simply a matrix
with one column. The code below demonstrates the usage when sample size is 800. We run 25, 000
iterations of the slice sampler for each of the 10, 000 simulated datasets. The corresponding power
is 0.7936. Power curves for the four different priors for sample sizes ranging from 750 to 1200 are
plotted in Figure 1. The underlying estimated power values are displayed in Table 6 in the Appendix.

grid <- matrix(seq(0.05,1,by=0.1))
historical <- list(list(y0=Y0, x0=X0))
a0_coef <- normalizing.constant(grid=grid, historical=historical,

data.type="Bernoulli",data.link="Logistic")
result <- power.glm.random.a0(data.type="Bernoulli",data.link="Logistic",

data.size=800, historical=historical,
samp.prior.beta=samp.prior.beta,
a0.coefficients = a0_coef,
delta=0, nMC=25000, nBI=250, N=10000)

result$`power/type I error`
[1] 0.7936

Discussion

BayesPPD facilitates Bayesian sample size determination by providing a robust suite of functions for
power calculation and analysis using the power and normalized power priors for generalized linear
models. A major contribution of this package is the ability to handle covariates for Bernoulli, normal,
Poisson and exponential outcomes. Despite the use of MCMC algorithms for analysis and design
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Figure 1: Power curves for a range of sample sizes for the four priors with a0 fixed at 0 (blue line),
0.5 (green line), 1 (yellow line) and a0 modeled as random (pink line). The dots represent the power
for a particular sample size. LOESS curves have been fitted to the point estimates. We observe that
for fixed a0, the power is higher for higher values of a0, as more historical information is borrowed.
When a0 is modeled as random, the power curve is higher than the curve with a0 = 0.5 but lower
than the curve with a0 = 1.

simulations, BayesPPD is computationally efficient, with functions producing results in seconds for
many application settings.

A possible extension of the package is the accommodation for longitudinal and time-to-event
outcomes. Another potential feature is computing optimal hyperparameters for the beta prior on
a0 to ensure certain characteristics are met, such as the ability to adapt to prior-data conflict or
prior-data agreement. The method will be based on ongoing theoretical work by the authors.
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1 Additional tables

Sample size a0 = 0 a0 = 0.5 a0 = 1 Random a0
750 0.732 0.779 0.788 0.791
800 0.746 0.793 0.805 0.794
850 0.751 0.788 0.804 0.794
900 0.759 0.800 0.816 0.802
950 0.778 0.808 0.817 0.814
1000 0.786 0.807 0.823 0.826
1050 0.794 0.820 0.835 0.822
1100 0.799 0.821 0.834 0.833
1150 0.792 0.829 0.842 0.832
1200 0.800 0.831 0.850 0.841

Table 6: Power for the four priors of the AIDS study.
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Bioconductor Notes
by Maria Doyle and Bioconductor Core Developer Team

Introduction

Bioconductor provides tools for the analysis and comprehension of high-throughput ge-
nomic data. The project has entered its twentieth year, with funding for core development
and infrastructure maintenance secured through 2025 (NIH NHGRI 2U24HG004059). Ad-
ditional support is provided by NIH NCI, Chan-Zuckerberg Initiative, National Science
Foundation, Microsoft, and Amazon. In this news report, we give some updates on core
team and project activities.

Software

The current Bioconductor release is 3.16. It is compatible with R 4.2 and consists of 2183
software packages, 416 experiment data packages, 909 up-to-date annotation packages,
28 workflows, and 3 books. Books are built regularly from source and therefore fully
reproducible; an example is the community-developed Orchestrating Single-Cell Analysis
with Bioconductor.

Bioconductor in Python!

We’re excited to introduce BiocPy, a project aimed at enabling Bioconductor workflows
in Python. Analysts today use a variety of languages in their workflows, including
R/Bioconductor for statistical analysis and Python for imaging or machine learning tasks.
BiocPy aims to facilitate interoperability between R and Python by providing standardized
data structures based on existing Bioconductor data structures. These include genomic
ranges for interval based operations, summarized experiments and other derivatives for
analyzing genomic experiments. To learn more, visit the BiocPy GitHub organization.

Core team updates

Default Branch Renaming

The default branch (that corresponds to Bioconductor devel version) will be renamed
to devel on git.bioconductor.org for all packages to move forward with diversity and
inclusiveness. The core has been doing extensive testing and is ready to move forward
within the next 2-3 weeks.

Maintainers will temporarily still be able to push to either devel or master to allow
time for adaptation, with the goal of eventually making it an error in maybe 2-3 release
cycles (1-1.5 years) We will be making announcements on bioc-devel mailing list, Twitter,
Mastodon, Slack, etc with an upcoming/heads up and an announcement when it is live.

Partnering with Outreachy

Bioconductor participated as a mentoring community in Outreachy’s December 2022 -
March 2023 internship round. Outreachy provides open source and open science internships
to individuals impacted by systemic bias and underrepresentation in tech. Bioconductor
received funding for two interns through Outreachy’s general fund for two projects. Kirabo
Atuhurira, a software engineering student from Kampala, Uganda, was chosen to work on
the BSgenomeForge, which attempts to simplify making Bsgenome data packages. Beryl
Kanali, a masters student from Nairobi, Kenya, was chosen to work on Sweave2Rmd, which
attempts to modernize Sweave vignettes by converting them into R Markdown. You can
read more about their experience at Our experience as Outreachy interns with Bioconductor.
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Bioconductor will also participate in Outreachy’s May 2023 - August 2023 internship
round to offer internships with Bioconductor community projects.

Conferences

The BioC2023 and EuroBioC2023 conferences have both been announced, and abstract
submissions are open. BioC Asia 2023 will be announced later this year.

BioC2023 will be held in Boston, USA from Aug 2-4. Abstracts can be submitted until
March 19.

EuroBioC2023 will be held in Ghent, Belgium from Sep 20-22. Abstracts can be submitted
until April 14.

Blog

The Bioconductor blog is used for articles of interest by and for the community. Recent
articles include:

• Bioconductor Carpentries instructors Year 1
An update on the Bioconductor Carpentries global training program - applicants
selected for Year 1

• Introducing CuratedAtlasQueryR package
CuratedAtlasQueryR is a new package that enables easy programmatic exploration of
CELLxGENE single-cell human cell atlas data.

• Our experience as Outreachy interns with Bioconductor
Bioconductor participated in the Outreachy Internship program for the December
2022 cohort. Our interns share their experience working on their various projects and
Bioconductor in general.

• Bioconductor Hacktoberfest 2022 review and looking ahead to 2023
Last October, Bioconductor joined Hacktoberfest and got great community contri-
butions there. Here, we describe its success and notify the community we plan to
participate in 2023.

Boards updates

Community Advisory Board

• The Community Advisory Board (CAB) are voting in new members. Outgoing mem-
bers are Susan Holmes, Leonardo Collado-Torres, Yagoub A. I. Adam, Matt Ritchie,
Benilton Carvalho, we gratefully thank them for their service.

• There is a Call for Bioconductor Community-Led events supported by the CAB. Apply
in this form

Committees and Working groups updates

If you are interested in becoming involved with one of these groups please contact the group
leader(s).

• Cloud Methods held their first meeting Feb 2023. The working group will meet
monthly to develop standards and tools for the Bioconductor community related to
the cloud.

• Social media working group. A new group, started in Feb 2023, have set up Biocon-
ductor Mastodon acccount.
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• Teaching Committee

– Are planning a hackathon for the Bioconductor Carpentries RNA-seq lesson.
– Will be participating in Galaxy Training Smorgasbord 2023, a free online global

event, May 22-26.

• Website working group are planning the redesign of bioconductor.org.

Other

• Summer school “Statistical Data Analysis for Genome-Scale Biology” CSAMA 2023 in
Bressanone-Brixen, Italy, June 11-16 2023. Application deadline March 15.

• Course “Statistical Analysis of Genome Scale Data” at CSHL in New York, USA, June 30 -
July 13 2023. Application deadline March 15.

• Workshop “Opportunities for Bioconductor and ELIXIR communities to co-develop training
infrastructure” accepted for the ELIXIR All Hands meeting in Dublin, Ireland, June 5-8
2023.

• Workshop “Orchestrating Large-Scale Single-Cell Analysis with Bioconductor” accepted
for ISMB/ECCB 2023 in Lyon, France, July 23 2023.

Using Bioconductor

Start using Bioconductor by installing the most recent version of R and evaluating the
commands

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager::install()

Install additional packages and dependencies, e.g., SingleCellExperiment, with

BiocManager::install("SingleCellExperiment")

Docker images provides a very effective on-ramp for power users to rapidly obtain
access to standardized and scalable computing environments. Key resources include:

• bioconductor.org to install, learn, use, and develop Bioconductor packages.
• A list of available software linking to pages describing each package.
• A question-and-answer style user support site and developer-oriented mailing list.
• A community slack workspace (sign up) for extended technical discussion.
• The F1000Research Bioconductor gateway for peer-reviewed Bioconductor workflows

as well as conference contributions.
• The Bioconductor YouTube channel includes recordings of keynote and talks from

recent conferences including BioC2022, EuroBioC2022, and BiocAsia2021, in addition
to video recordings of training courses.

• Our package submission repository for open technical review of new packages.

Upcoming and recently completed events are browsable at our events page.

The Technical and and Community Advisory Boards provide guidance to ensure that the
project addresses leading-edge biological problems with advanced technical approaches, and
adopts practices (such as a project-wide Code of Conduct that encourages all to participate.
We look forward to welcoming you!
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Changes on CRAN
by Kurt Hornik, Uwe Ligges, and Achim Zeileis

In the past 3 months, 462 new packages were added to the CRAN package repository. 219
packages were unarchived, 330 were archived and 1 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2023-01-31, the number of active packages was around 19135.

CRAN package submissions

From November 2022 to January 2023 CRAN received 6904 package submissions. For these,
12365 actions took place of which 8114 (66%) were auto processed actions and 4251 (34%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 1786 1594 1140 0 0 2164 724 706
manual 1523 81 365 209 54 1422 515 82

These include the final decisions for the submissions which were

archive publish

auto 1665 (24.7%) 1733 (25.7%)
manual 1506 (22.3%) 1844 (27.3%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.
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CRAN mirror security

Currently, there are 96 official CRAN mirrors, 80 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

Currently there are 42 task views (see https://cran.r-project.org/web/views/), with
median and mean numbers of CRAN packages covered 103 and 116, respectively. Overall,
these task views cover 4050 CRAN packages, which is about 21% of all active CRAN
packages.
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News from the Forwards Taskforce
by Heather Turner

Forwards is an R Foundation taskforce working to widen the participation of under-
represented groups in the R project and in related activities, such as the useR! conference.
This report rounds up activities of the taskforce during the second half of 2022.

Accessibility

Liz Hare gave a workshop on Writing Meaningful Alt-Texts for Data Visualizations in R for
R-Ladies New York and contributed a chapter on the same topic to the Urban Institute’s Do
No Harm Guide: Centering Accessibility in Data Visualization. Liz also participated in a
Book Dash for the Turing Way, a handbook for reproducible, ethical and collaborative data
science, discussing technical accessibility, e.g., bandwidth and hardware requirements, as
well as disability-related issues.

s gwynn sturdevant contributed to an article for the Justice, Equity, Diversity, and
Inclusion (JEDI) Corner of Amstat News, on the topic From Visualization to ‘Sensification’,
considering how senses other than sight might be used for statistical communication.

Yanina Bellini Saibene and Andrea Sánchez-Tapia contributed to a CarpentryCon 2022
panel on Translation at The Carpentries, sharing their experience of translating technical and
educational materials into Spanish. The panel was part of a wider effort by The Carpentries
to make their materials available in languages other than English, which will help more
people to teach or learn data science skills, including R programming.

Community engagement

RainbowR continued to build on its relaunch, led by Ella Kaye and Zane Dax. Inspired by a
post on the RainbowR Twitter, community member Laura Bakala developed the gglgbtq
package, which provides ggplot2 palettes and themes based on various pride flags. Zane
led the development of the tidyrainbow GitHub repository that collates several datasets
pertaining to the LGBTQ+ community, where LGBTQ+ folk are explicitly represented and
where it is not assumed that gender is binary. These data sets provide great opportunities
for data analysis and visualisation in R and other languages.

RainbowR are meeting bimonthly online, giving people an opportunity to present, in an
informal and safe space, anything R related they had been working on. Ella recently set up
a Mastodon account @rainbowr@tech.lgbt, which has helped to grow the community, with
several new folk joining the RainbowR Slack as a result.

Conferences

Yanina Bellini Saibene was co-chair of the LatinR 2022 conference. Now in its 5th year, 900
people attended the online conference, with keynotes, regular talks and tutorials in each of
the conference languages: English, Spanish and Portuguese. A charge was introduced for
tutorials reducing no-shows and enabling tutors to be paid, but scholarships were offered
thanks to donations. Yanina was a keynote speaker at CarpentryCon 2022, where she spoke
about Achieving the change we want one conference at a time (in Spanish). In the talk she
shared actions that can be taken to make events more diverse and inclusive, based on 20
years of experience organizing face-to-face, virtual and hybrid events. Many of these actions
are summarized in the article “Ten simple rules to host an inclusive conference” (Joo et al.
2022), which distils learnings from organizing useR! 2021.
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Teaching

Paola Corrales and Yanina Bellini Saibene gave a tutorial From spreadsheets to R at the
Software Sustainability Institute’s Research Software Camp: Next Steps in Coding. The
tutorial was presented in Spanish - one of two events during the research camp in a language
other than English.

For anyone wanting to teach package development, we would like to highlight the
Forwards materials which are organized into four 1-hour hands-on modules: Packages in
a Nutshell, Setting up your system, Your first package, and Package documentation. The
material is released under a CC BY-NC-SA license.

R Contribution

Saranjeet Kaur Bhogal continued work on the R Development Guide, as part of the R
project’s Google Summer of Docs project, alongside the second technical writer, Lluís Revilla.
The case study summarises the progress made during the official project period. There is
some funding remaining from the grant, so there are plans to continue work in 2023.

Michael Chirico and others supported R Contribution Working Group (RCWG) initiatives
to encourage more people to contribute translations to base R. RCWG member Gergely
Daróczi set up a Weblate server to provide a user-friendly web interface for adding/editing
translations. This was used during the R translatón/Hackaton de tradução do R that was
organized by RCWG/LatinR as a satellite to LatinR 2022, led by Beatriz Milz, Ángela Sanzo,
Macarena Quiroga, and Caio Lente. Use of the Weblate server has gradually increased and
Michael Lawrence made a recent commit to R-devel, which bundled over 3000 translations
from the platform across 8 languages and 17 translators.

Heather Turner and Ella Kaye joined RCWG members Elin Waring and Gabriel Becker in
running monthly Office Hours for R contributors. These sessions provide an opportunity to
discuss how to get started contributing to R and to look at open bugs or work on translations
together. This has led to some bugs being closed such as Bug 16158: Error in predict.lm
for rank-deficient cases and Bug 17853: stats::factanal print method drops labels when
sort=TRUE. The Office Hours are held at two times on the same day to cater for different
time zones, see the R Contributors Events page or Meetup for upcoming events.

We also started planning for the R Project Developer Sprint 2023, to be hosted at the
University of Warwick, Coventry, UK, from August 30 to September 1. This sprint will
bring together novice and experienced contributors, to work alongside members of the R
Core Team on contributions to base R. Thanks to the event sponsors, full board on-campus
accommodation will be provided during the sprint and funding is available for travel if
required. Anyone interested to attend is encouraged to self-nominate via the application
form by Friday 10 March. Additional sponsors are also welcome.

Social Media

RCWG and Forwards have also set up Mastodon accounts, follow them at @R_Contributors@hachyderm.io
and @R_Forwards@hachyderm.io, respectively.

Changes in Membership

New members

We welcome the following members to the taskforce:

• On-ramps team: Allison Vuong
• Surveys team: Daniela Cialfi
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Changes in R
by Tomas Kalibera, Sebastian Meyer, and Kurt Hornik

Abstract We present important changes in the development version of R (referred to as R-devel, to
become R 4.3). Some statistics on bug tracking activities in 2022 are also provided.

1 R-devel selected changes

R 4.3.0 is due to be released around April 2023. The following gives a selection of the most important
changes in R-devel, which are likely to appear in the new release.

Dates and times

There are a number of (robustness) improvements in the handling of dates and times. These include
warnings about extrapolation for datetimes before 1902/1900, finer control for padding when printing
years, improved detection of offset with strftime() (%z), inclusion of system time zone and informa-
tion on timezone support implementation in sessionInfo(), more robust handling of hand-crafted
POSIXlt objects, optional support for using system timezone support on recent macOS, improved
detection of the system time zone on Windows and improved default tick locations and default formats
in axis.Date() and axis.POSIXct().

Encoding support

• Performance of regular expression operations in R has been improved by reducing the costs of
encoding conversions. With perl=FALSE, all inputs have to be converted to UTF-16 or UTF-32,
and the conversion is now faster. With perl=TRUE, performance has been improved by opting
out from duplicate checks for UTF-8 validity in PCRE2. With fixed=TRUE, performance has
been improved by taking advantage of the properties of UTF-8. One of the motivations for
the speedups was to reduce the incentive for using useBytes=TRUE with regular expression
operations, which often leads to incorrect results or errors due to producing invalid strings.
See Speedups in operations with regular expressions for more information.

• The support for encoding-agnostic string operations in R using the “bytes” encoding has been
improved. It is now possible to read a text file directly as bytes. Regexp operations, when
creating new strings by splitting or substituting, now also flag them as “bytes” when any of
the input has been flagged as such. This simplifies encoding-agnostic parsing of files such as
DESCRIPTION. iconv(,from="") now respects the encoding flag of the input string, making it
easier to recover from type-instability in return values of regular expression operations. Improv-
ing the support for encoding-agnostic operations using the “bytes” encoding comes together
with stricter checking of validity of real strings in a character encoding, e.g. “unknown/native”,
which has been helpful in revealing user errors. In the long term, it should also help to simplify
encoding support in R.
See Improvements in handling bytes encoding for more information. The blog includes a
detailed introduction to string and encoding support in R.
See Why to avoid \x in regular expressions for related information on the danger of using \x
escapes in regular expressions, which leads to errors, that are now more likely to be detected by
R. This is closely related as \x is a common way to create invalid strings.

Graphics

• The grDevices and grid packages have new functions for rendering typeset glyphs, primarily:
grDevices::glyphInfo() and grid::grid.glyph().

• The behaviour of compositing operators in grid::grid.group() has been tweaked to allow
consistency across graphics devices.

• The grDevices::quartz() device will support gradient fills, pattern fills, clipping paths, masks,
compositing operators, affine transformations, stroked/filled paths, and glyphs. To be soon
merged to R-devel.
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Accessibility on Windows

• Rgui console on Windows now works better with the open-source NVDA screen reader when
the “full” blinking cursor is selected. This is due to improved implementation of the console
cursor (when it is displayed and hidden with respect to application startup and window focus)
on which makes it easier for the screen reader to detect where the cursor is. Previously, NVDA
was not able to read out the character under the cursor moved by the arrow keys.

• The drop-field GraphApp control, which is used in the Rgui configuration editor, has been
extended so that it can be left by pressing the TAB key, so without using the mouse.

• GraphApp has been extended to allow reverse-order navigation through the controls using
Shift+TAB key, which can now be done also in the Rgui configuration editor.

Other selected changes

• Using vectors of more than one element with the logical operators && and || will give an error
in R 4.3.0 (a warning in R 4.2.x, a check error since R 3.6.0).

• Support for working with concordances has been extended from Sweave to help files. A
concordance is a mapping between lines in an intermediate file (e.g., .tex or .html) and lines in
the corresponding input file (e.g., .Rnw or .Rd), which, for example, allows relating problems in
the intermediate file to the source file from which it was generated.
See Concordances for more information.

• The implementation of the sampling profiler, Rprof(), has been improved. On macOS, the
profiler is now more robust against high load on the system by using low-level Mach API to
avoid a race condition between initialization of pthread data and arrival of a profiler signal.
This race condition could lead to a live-lock when the system has been overloaded due to a
too short profiling interval. As an additional measure, Rprof() now refuses to use a too short
profiling interval, which in the first place would lead to incorrect profiling results. To prevent a
deadlock seen on Windows, the profiler has been rewritten to avoid using C runtime functions
while the main thread is suspended.

• Package installation now uses C++17 as the default C++ standard (and there is initial support
for C++23). Also, there now is support for a package to indicate the version of the C standard
which should be used to compile it, and for the installing user to specify this. In most cases, C17
(a “bug-fix” of C11) is used by default.

• Producing PDF manuals (R CMD Rd2pdf) now loads standard AMS-LaTeX packages for greater
coverage of math commands in Rd equations (e.g., \lVert and \text), and for consistency with
the enhanced HTML math rendering introduced in R 4.2.0. This change has been backported to
the R 4.2 release branch.

• The "repos" option is now initialized from the repositories file, see ?R_REPOSITORIES, allow-
ing the default CRAN mirror to be set therein.

2 Bug statistics for 2022

Summaries of bug-related activities over the past year were derived from the database underlying R’s
Bugzilla system. Overall, 180 new bugs or requests for enhancements were reported, 171 reports were
closed, and 869 comments (on any report) were added by a total of 123 contributors. This amounts
to one report/closure every other day, and 2–3 comments per day. The numbers of reports, closures
and comments are about 20% lower than in 2021, whereas the number of contributors stayed the
same. High bug activity in 2021 had largely been driven by dedicated efforts of several contributors in
reviewing old reports.

Figures 1 and 2 show statistics for the numbers of new reports, closures and comments by calendar
month and weekday, respectively, in 2022. The frequency of new reports was relatively stable over
the year with minor peaks in January and June. There tended to be more new reports than closures,
except for July and especially March with a revived effort to deal with old reports, including 9 related
to the nlme package, which is also maintained by the R Core Team.

The top 5 components reporters have chosen for their reports were “Misc”, “Language”, “Low-
level”, “Documentation”, and “Wishlist”, which is the same set as in 2021. Many reports are sug-
gestions for enhancements and placed either in the “Wishlist” or in a specific component but with
severity level set to “enhancement”. Bug discussions led to an average of 72 comments per month,
with a minimum of 42 in August and a maximum of 111 in January. From the numbers in Figure 2 we
see that the R community is also active during weekends, though at a lower frequency.
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Figure 1: Bug tracking activity by month in 2022
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Figure 2: Bug tracking activity by weekday in 2022
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2022-09-05 and 2023-02-19.

Donations

Bharat R Adhikary (Nepal) b-data GmbH (Switzerland) RV Detailing Pros of San Diego
(United States) Shalese Fitzgerald (United States) Roger Koenker (United Kingdom) Rudolph
Martin (United States) Kem Phillips (United States) Panagiotis Togias (Greece) Jason Wyse
(Ireland) Statistik Aargau, Aarau (Switzerland)

Supporting institutions

Ef-prime, Inc., Chuo-ku (Japan) Institute of Botany of the Czech Academy of Sciences,
Pruhonice (Czechia) oikostat GmbH, Ettiswil (Switzerland) Putnam Data Sciences, LLC,
Cambridge (United States)

Supporting members

Douglas Adamoski (Brazil) Tim Appelhans (Germany) Luis Biedma (Luxembourg) Michael
Blanks (United States) Gordon Blunt (United Kingdom) Tamara Bozovic (New Zealand)
Susan M Carlson (United States) Cédric Chambru (Switzerland) John Chandler (United
States) Michael Chirico (United States) Tom Clarke (United Kingdom) Gerard Conaghan
(United Kingdom) Terry Cox (United States) Robin Crockett (United Kingdom) Brandon
Dahl (United States) Robert Daly (Australia) Gergely Daroczi (Hungary) Dereck de Mezquita
(United States) Anna Doizy (Réunion) Fraser Edwards (United Kingdom) Anthony Alan
Egerton (Malaysia) MAEL ELEGOET (France) Faisel Eskander (United Kingdom) Dane
Evans (United States) Isaac Florence (United Kingdom) Neil Frazer (United States) David
Freedman (United States) Keita Fukasawa (Japan) Sven Garbade (Germany) Jan Marvin
Garbuszus (Germany) Gabriel Gersztein (Brazil) Anne Catherine Gieshoff (Switzerland)
Pavel Goriacko (United States) Brian Gramberg (Netherlands) Spencer Graves (United
States) Krushi Gurudu (United States) Hlynur Hallgrímsson (Iceland) Joe Harwood (United
Kingdom) Bela Hausmann (Austria) Kieran Healy (United States) Philippe Heymans Smith
(Costa Rica) Adam Hill (United States) Alexander Huelle (Germany) Lorenzo Isella (Belgium)
Sebastian Jeworutzki (Germany) Nigokhos Kanaryan (Bulgaria) Curtis Kephart (United
States) JUNE KEE KIM (Korea, Republic of) Miha Kosmac (United Kingdom) Jan Herman
Kuiper (United Kingdom) Flavio L (Switzerland) Bernardo Lares (Venezuela) Thierry Lecerf
(Switzerland) Mauro Lepore (United States) Thomas Levine (United States) Chin Soon Lim
(Singapore) Joseph Luchman (United States) Mehrad Mahmoudian (Finland) Gilles Marodon
(France) Daniel McNichol (United States) Amanuel Medhanie (United States) Orlando
Monsalve (Switzerland) Keon-Woong Moon (Korea, Republic of) Guido Möser (Germany)
yoshinobu nakahashi (Japan) Dan Orsholits (Switzerland) George Ostrouchov (United States)
Antonio Paez (Canada) Elgin Perry (United States) VASILEIOS PLESSAS (United Kingdom)
PierGianLuca Porta Mana (Norway) Bianca Prandi (Austria) Fergus Reig Gracia (Spain)
Peter Ruckdeschel (Germany) Ingo Ruczinski (United States) Choonghyun Ryu (Korea,
Republic of) Nico Schäfer (Germany) Raoul Schorer (Switzerland) Dejan Schuster (Germany)
Jagat Sheth (United States) David Sides (United States) Pedro Silva (Brazil) Rachel Smith-
Hunter (United States) Murray Sondergard (Canada) Matteo Starri (Italy) Tobias Strapatsas
(Germany) Kai Streicher (Switzerland) ROBERT Szabo (Sweden) Fred Viole (United States)
Marcus Vollmer (Germany) Dr. Alfred Wagner (Germany) Petr Waldauf (Czechia) Jaap
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