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Editorial
by Simon Urbanek

On behalf of the editorial board, I am pleased to present Volume 15 Issue 1 of the R Journal.

Catherine Hurley has stepped down as Editor-in-Chief, but continues to serve on the
editorial board as an Executive Editor. Catherine has overseen the expansion of the journal as
EIC to accommodate four issues a year as a response to the growing number of publications.
Due to her relentless work she was able to maintain stability in challenging times when
personal and external circumstances have affected availabilty of our editorial teams. We
would like to welcome Vincent Arel-Bundock to our team of Associate Editors.

Behind the scenes, several people assist with the journal operations. Mitchell O’Hara-
Wild continues to work on infrastructure, H. Sherry Zhang continues to develop the rjtools
package under the direction of Professor Dianne Cook. In addition, articles in this issue
have been carefully copy edited by Adam Bartonicek and Chase Robertson.

In this issue

News from CRAN and the R Foundation and RForwards are included in this issue.

This issue features 19 contributed research articles the majority of which relate to R packages
on a diverse range of topics. All packages are available on CRAN. Supplementary material
with fully reproducible code is available for download from the Journal website. Topics
covered in this issue are

Spatial analysis

• A Clustering Algorithm to Organize Satellite Hotspot Data for the Purpose of Tracking
Bushfires Remotely

• asteRisk - Integration and Analysis of Satellite Positional Data in R
• Non-parametric analysis of spatial and spatio-temporal point patterns
• The segmetric Package: Metrics for Assessing Segmentation Accuracy for Geospatial

Data

Graphics and visualisation

• A Hexagon A Hexagon Tile Map Algorithm for Displaying Spatial Data
• nlmeVPC: Visual Model Diagnosis For The Nonlinear Mixed Effect Model

Bayesian inference

• GCPBayes: An R package for studying Cross-Phenotype Genetic Associations with
Group-level Bayesian Meta-Analysis

• Estimating Causal Effect using the Bayesian Method with the R Package BayesCACE

Robust statistical methods

• Resampling Fuzzy Numbers with Statistical Applications: FuzzyResampling Package
• onlineforecast: An R Package for Adaptive and Recursive Forecasting
• Robust functional linear regression models
• A Framework for Producing Small Area Estimates Based on Area-Level Models in R
• GPLSIM: An R Package for Penalized Spline Estimation for Generalized Partially

Linear Single-index Models
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Design and analysis of experiments

• rankFD: An R Software Package for Nonparametric Analysis of General Factorial
Designs

• combinIT: An R Package for Combining Interaction Tests for Testing Interaction in
Unreplicated Two-Way Tables

Model deployment

• Likelihood Ratio Test-Based Drug Safety Assessment Using R Package pvLRT
• markovMSM: An R package for checking the Markov Condition in Multi-state Survival

Data
• Fairness Audits And Debiasing Using mlr3fairness
• ClusROC: An R package for ROC analysis in three-class classification problems for

clustered data

Simon Urbanek
University of Auckland

https://journal.r-project.org
r-journal@r-project.org
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A Hexagon Tile Map Algorithm for
Displaying Spatial Data
by Stephanie Kobakian, Dianne Cook, and Earl Duncan

Abstract Spatial distributions have been presented on alternative representations of geography, such
as cartograms, for many years. In modern times, interactivity and animation have allowed alternative
displays to play a larger role. Alternative representations have been popularised by online news sites,
and digital atlases with a focus on public consumption. Applications are increasingly widespread,
especially in the areas of disease mapping, and election results. The algorithm presented here creates
a display that uses tessellated hexagons to represent a set of spatial polygons, and is implemented
in the R package called sugarbag. It allocates these hexagons in a manner that preserves the spatial
relationship of the geographic units, in light of their positions to points of interest. The display
showcases spatial distributions, by emphasising the small geographical regions that are often difficult
to locate on geographic maps.

Introduction

Many cancer atlases present geospatial cancer data on a choropleth map display. The Australian Cancer
Atlas (Cancer Council Queensland, Queensland University of Technology, and Cooperative Research
Centre for Spatial Information 2018) is a recent addition to the many cancer atlas maps worldwide.
The ground-breaking atlas for Australia presents a central map that shows the landmass overlaid
with administrative boundaries. This choropleth display can highlight the geographic patterns in
geospatially related cancer statistics (Moore and Carpenter 1999).

Over time, the population density in major cities has increased as residents have gathered to
live near urban areas (Dorling 2011). Populations tend to be distributed unevenly across geographic
regions. When comparing sets of administrative geographic units such as states or electorates, area
size is seldom proportional to the population size. In a choropleth map display, the geographic units
are coloured to represent the value of the statistic for each unit (Tufte 1990). This can cause some
values to be emphasised over others, and allows choropleth map displays to misrepresent the spatial
distributions of human related statistics due to area-size bias (Skowronnek 2016).

The Australian Cancer Atlas is an online, interactive display of Australian cancer statistics in each
of the Statistical Areas at Level 2 (SA2s), used by the Australian Bureau of Statistics (2011). The dataset
of estimated standardised incidence ratios (SIRs) of thyroid cancer for females was downloaded from
the publicly accessible Australian Cancer Atlas website and presented in Figure 1, a choropleth map
that uses colour to display the distribution. The Australian choropleth map display draws attention
to the expanse of dark and light blue areas across the rural communities in all states. The SA2s on
the east coast around Brisbane and in northern New South Wales stand out as more orange and red.
However, this display neglects the vast amount of Australian residents living in the densely populated
capital cities.

The solutions to this visualisation problem begin with the geography. Alternative maps can be
created to shift the focus from land area and shape to the value of the statistics (Dougenik, Chrisman,
and Niemeyer 1985) in a cartogram display. Cartogram methods apply different transformations to
the geographic areas, to highlight the values of the statistic of interest. Alternative maps can result
in a distortion of the map space to represent features of the distribution across the areas (Dougenik,
Chrisman, and Niemeyer 1985) as the statistic of interest is used to determine the cartogram layout.

Alternative mapping methods, like cartograms implemented in cartogram (Jeworutzki 2020) for R
(R Core Team 2012), promote better understanding of the spatial distribution of a variable across the
population, by representing the population in each administrative area fairly (Levison and Haddon Jr
1965). This acknowledges that the number of residents can be different and also recognises that each
area, or person within it is equally important.

This paper contains a discussion of existing mapping practices, followed by details of the algorithm.
The implementation section explains the algorithm available in the sugarbag package. How to utilise
animation with the hexagon map is described. The paper finishes with a summary and possible new
directions for the algorithm.

Existing mapping practices

Typically, chloropleth maps are used to orient the users within the geographic context. However,
the strong salience of the land mass can hide or downplay the features of the distribution in densely
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Figure 1: A choropleth map of thyroid incidence among females across the Statistical Areas of Australia
at Level 2. Blue indicates lower than average and red indicates higher than average incidence. A
cluster of high incidence is visible on the east coast.
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Figure 2: The three displays show alternative maps of the Australian state of Tasmania at SA2 level:
(a) contiguous cartogram, (b) non-contiguous cartogram and (c) Dorling cartogram of Tasmania. The
contiguous cartogram looks like the state has an hourglass figure, while the non-contiguous cartogram
shrinks areas into invisibility. The Dorling expands the metropolitan regions.

populated communities due to the small size on the display (Dorling 2011). The unique shapes of
boundaries can be helpful for orienting users but may not contribute to their understanding of the
spatial disease distribution as many of the communities are not visible in a choropleth display (Dorling
2012).

Administrative areas are often used to aggregate census data and used to understand demograph-
ics within communities of the Australian population. Each SA2 (Australian Bureau of Statistics 2011)
was designed to represent a community. This collection of communities presents an opportunity for
explicit map transformations to improve communication of spatial distributions (Kocmoud and House
1998). In Figure 2 the choropleth map can be seen underneath each alternative map display to allow
for comparisons to be made.

There are several established alternative visualisation methods. Rectangular cartograms (Kreveld
and Speckmann 2007) and Dorling cartograms (Dorling 2011) implemented in cartogram and tile maps
implemented in tilemaps (Rosenberg 2020), all use one simple shape to represent each geographic
unit. They all minimise the salience of the size or shape of geographic areas. These alternative map
displays highlight the relationship between neighbours, preserve connections, and discard the unique
shapes of the administrative boundaries. Figure 2 shows a collection of alternative map displays, this
includes a) a contiguous cartogram, b) a non-contiguous cartogram, and c) a Dorling cartogram.

When communicating information that is relevant to the population, each member of the popula-
tion can be given equal representation by transforming the map (Dorling 2012). The connectedness of
the units can be preserved by using transformations that maintain the connection between boundaries.
The contiguous cartogram displayed in Figure 2a draws attention to smaller geographic units when
they are rescaled according to the population (Walter 2001). These new shapes can now be coloured to
represent a second variable. The algorithm uses the geographic shape of the areas and iterates toward
sizing the areas to represent the population. This display can create twisted and unfamiliar shapes
from the geographic units as the algorithms must satisfy the topology conditions, especially when
there are communities located geographically far from their neighbours (Dorling 2012).

The non-contiguous cartogram in Figure 2b also uses the population to rescale the geographic
units. Unlike the contiguous cartogram, the SA2 areas maintain their geographic shape, but they may
not retain the connection with their neighbours. The population of the SA2 areas is used to scale the
geographic units in the non-contiguous cartogram (Olson 1976). The amount of background space can
be meaningful in non-contiguous cartograms (Keim et al. 2002). However, the relative size of units in
comparison to the reference unit can lead to scaling issues. The size disparity between rural areas and
urban areas result in reasonable display within the south eastern city of Hobart, but these units are not
visible in the context of the Tasmania state map. Depending on the difference between the population
and geographic land size, the amount of white space can also prevent meaningful understanding of
the distribution (Dorling 2012).

The Dorling cartogram presents each geographic unit as a circle, the size of the circle is scaled
according to the population value of each area (Dorling 2011). Figure 2c shows the Tasmania SA2
areas as an individual circle located as close as possible to the geographic centroid location. This map
draws attention to the collection of coastal cities in Tasmania that were not apparent in Figure 2 a or b.
This display also highlights the difference in the population of each unit, as there is some disparity in
the sizes of the circles.

Another common practice is to use equal-sized polygons and treat all geographic units as equal.
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The Dorling algorithm can be induced to do this, to make equallly sized circles. Cano et al. (2015)
describes a group of alternative maps called “mosaic cartograms” for tile displays. Similarly, the
geography of USA has been transformed into a square-binned tile map manually and made available
in the R package statebins (Rudis 2020).The algorithm described below generates an automatic layout
of hexagon tiles, where a continguity constraint is relaxed. This gives equal weight to each geographic
area even if the population differs.

The nature of Australian population boundaries means that there are many connecting neighbours
of population areas. This solution was designed to visualise Australian population analysis, inspired by
tile maps three sided triangles and four sided squares were considered, but this would not have allowed
sufficient neighbours to connect. Hexagon tile maps utilise the tessellating features of hexagons to
maximise the data ink and allow connectivity between six potential neighbours. Hexagons allow the
alignment of geographic borders, this aides in comparison of colour values.

Algorithm

The purpose of this algorithm is to create an alternative map display that highlights distributional
features across wide ranges of geographical area size and population density. There has been an
increasing need for displays that recognise the large number of people that live in dense urban
environments. The algorithm intends to maintain the spatial relationships of a group of geographic
units using the relationship between each unit and the closest focal point. The algorithm allocates
geographic units to a representative hexagon, in order of their proximity to the closest focal point.

The algorithm is implemented in the sugarbag package for R, named after the common name for
the Trigona carbonaria bee – a species which builds flat layers of hexagonal brood cells, spiralling out
from a central point (Vit, Pedro, and Roubik 2013). This unusual pattern also provided the inspiration
for the algorithm, where the maps are constructed by building out from multiple focal points on the
geographic map base in a spiral fashion.

The result of the algorithm applied to the same data represented in Figure 1 shows rates of thyroid
cancer for females in each of the SA2 areas of Australia as hexagons in Figure 3. The difference to
the choropleth map in Figure 1 are clear. Now the higher thyroid cancer incidence in the densely
populated areas in Sydney, Brisbane and Perth are visible. Interestingly, there is no clear divide
between rural and urban SA2 areas, as many rural areas and the cities of Melbourne, Darwin, Adelaide
and Hobart have low rates of thyroid incidence for females. The hexagon tile map display provides a
more accurate representation of the spatial distribution of thyroid cancer incidence across Australia.

Figure 3 highlights the density of Australian capital cities, as it draws attention to the many
communities in Sydney, Melbourne and Hobart. This display also highlights the disparity in the
burden of thyroid cancer for females in the communities of these cities. There are several collections of
red hexagons in Sydney that represent the communities with much higher rates of diagnosis than the
Australian average. Brisbane also experiences higher than average rates of diagnosis, but has more
orange than red. The females in the cities of Adelaide and Perth show much lower rates of diagnosis.

Compared to the choropleth map display in Figure 1, the low rates in the rural Australian commu-
nities no longer dominate the display. While the corresponding hexagons are still visible against the
black background, the lower rates in rural Australia are less prominent.

There are several key steps in the creation of the hexagon tile map as described in the flow chart in
Figure 4. First, derive the set of centroids from the polygons provided, then create the grid of hexagon
locations. These two processes are described in the blue left column of the flow chart in figure 4. Each
centroid can then be allocated to an available hexagon location. The steps for the allocation process
are detailed in the right column of Figure 4. There are several filter steps to speed up the process of
selecting an appropriate hexagon to represent each geographic unit. To make tessellated plots with the
hexagon allocations, the point locations are converted into hexagon shapes.

Implementation

Hexagon tile maps can be useful for visualising distributions across a collection of geographic areas.
However, these maps are not easy to create manually, especially as the number of areas increases. This
algorithm was developed to automate the process, and reduce the workload involved in creating and
implementing alternative displays. This allows map makers and data communicators to spend their
time choosing the most effective display.

The sugarbag package contains a set of functions that help R users to create a hexagon tile map.
The algorithm presented in the sugarbag package operates on a set of simple feature geometry objects
, known as sf objects (Pebesma 2018). This package allows R users to create sf objects by importing
polygons stored in various formats. Users should provide a set of polygons that define geographic
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Figure 3: A hexagon tile map of female thyroid cancer incidence in Australia, the same data as shown
in the choropleth map in Figure 1. The high incidence in several of the metropolitan regions (Brisbane,
Sydney and Perth) can now be seen, along with numerous isolated spots.

units by their administrative boundaries. The functions arrange the geographic units in order of
proximity to a set of locations provided, such as the centre of major cities. The centroid location of
each geographic unit is used to measure the proximity. It emphasises the major cities as population
hubs, rather than emphasizing the size of large, rural geographic units.

The user can tweak the parameters of the hexagon map using additional arguments to the
create_hexmap function, but these options may affect the speed of the algorithm. The hexagon
size may need adjustments depending on the density of the population; users can provide an appro-
priate hexagon size and re-run the algorithm. The buffer distance may need to be increased if the
coastal cities need to extend beyond the geographic land mass.

Algorithm steps

The package can be installed from CRAN and the development version can be installed from the
GitHub repository: https://github.com/srkobakian/sugarbag.

The following steps create the hexagon tile map for all the Statistical Areas at Level 2 in Tasmania.
These steps can be executed by the main function, create_hexmap, or can be run separately for more
flexibility.

If a user would like to perform steps of the algorithm themselves, additional user input will
be needed for the functions that perform each step. For example, if the user wishes to use a set of
centroids, rather than polygons, the allocate function can be used directly.

The set of SA2 polygons for Tasmania, using the 2011 definition of SA2s, was accessed from the
absmapsdata package (Mackey 2022). A single column of the data set is used to identify the unique
areas. In this case, the unique SA2 names for each SA2 have been used.

The Australian capital cities are used as focal points to allocate each geographic area around the
closest capital city. Hobart will be the focal point for this example because only the state of Tasmania
is being processed.

The buffer distance, hexagon size, hexagon amount to filter and width of angle are parameters
that will be determined within create_hexmap, if they are not provided. They are created as they are
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Figure 4: A flow diagram detailing the steps taken to create a hexagon tile map. There are two basic
processes, one to make the grid, and the other to allocate centroids to grid points.
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needed throughout the following example.

The results from various steps in the process are illustrated in Figure 5.

Derive the set of centroid points

The set of polygons should be provided as an sf object, this is a data frame containing a geometry
column. The read_shape function can assist in creating this object for use in R.

The centroids can be derived from an sf object using the create_centroids function:

Step 1: Create the hexagon grid points

A grid is created to allow tessellation of the hexagons that represent the geographic units. For a
hexagon tile map, the grid of possible hexagon locations is made using the create_grid function. It
uses the centroids, the hexagon size and the buffer distance. Figure 5 1a shows the initial locations of
grid points created for Tasmania.

centroids <- create_centroids(
shp_sf = sa2 %>% filter(state_name_2011 == "Tasmania"),
sf_id = "sa2_name_2011")

(a) Creating a tessellated grid A set of longitude columns, and latitude rows are created to define
the locations of the hexagons. The distance between each row and column is the size specified by
hex_size. Equally spaced columns are created from the minimum longitude minus the buffer distance,
up to the maximum longitude plus the buffer distance. Similarly, the rows are created from the latitude
values and the buffer distance. A unique hexagon location is created from all intersections of the
longitude columns and latitude rows. Figure 5 1a shows the hexagon grid after every second latitude
row on the grid is shifted right, by half of the hexagon size.

grid <- create_grid(centroids = centroids, hex_size = 0.2, buffer_dist = 2)

(b) Filtering the grid Not all of the grid points will be used, especially if islands result in a large grid
space. To filter the grid for appropriate hexagon locations for allocation, the create_grid function will
call the create_buffer function. It finds the grid points needed to best capture the set of centroids
on a hexagon tile map. Reducing the buffer size will decrease the amount of time that the algorithm
needs to run for, as there will be less points over the water to consider for each centroid allocation.

For each centroid location, the closest latitude row and longitude column are found. Then rows and
columns of centroids are divided into 20 groups. The number of rows in each latitude group and the
number of columns in each longitude group are used as the width of rolling windows. The first rolling
window step finds the minimum and maximum centroid values within each of the sliding window
groups of longitude columns, and the groups of latitude rows. The second rolling window step finds
the average of the rolling minimum and maximum centroid values, for the longitude columns and
latitude rows.

The hexagon grid points are kept only if they fall within the rolling average of the minimum and
maximum centroid values after accounting for the buffer distance, for each row and column of the
grid. Figure 5 1b displays remaining hexagon grid points after applying the buffer filter. The sparsely
populated South-West region of National Park has fewer points available in the water compared to the
South-East region near the city of Hobart.

Centroid to focal point distance The distance is calculated between each centroid in the set, and
each of the focal points provided. The order for allocation is determined by the distance between the
polygon centroid and it’s closest focal point. For this example, this distance is only calculated for the
capital city of Hobart, represented in Figure 5 2a and 2b as a white cross.

Step 2: Allocate each centroid to a hexagon grid point

To allocate all centroids the set of polygon centroids and the hexagon map grid are required. The
polygon centroids are ordered from the centroid closest to the focal point(s), to the furthest. This
preserves spatial relationships with the focal point, as the inner city areas are allocated first and placed
closest to the capital, the areas that are further will then be accommodated. The following example

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 13

considers the first of the Statistical Areas at Level 2. Within the algorithm, these steps are repeated for
each polygon.

hex_allocated <- allocate(centroids = centroids,
sf_id = "SA2_NAME16",
hex_grid = grid,
hex_size = 0.2, # same size used in create_grid
hex_filter = 10,
use_neighbours = tas_sa2,
focal_points = capital_cities,
# same column used in create_centroids
width = 30, verbose = TRUE)

(a) Filter the grid for unassigned hexagon points After each centroid is located, it is removed
from the set of grid points, and is no longer considered in the next step. Keeping only the available
hexagon points prevents multiple geographic units from being allocated to the same hexagon. This is
demonstrated in Figure 5 2a and 2b by the black hexagons that represent the seven closest polygons to
the capital city of Hobart. As the allocation process begins for the eighth closest centroid there are
seven unavailable hexagon locations.

(b) Filter the grid points for those closest to the centroid The algorithm creates a circle of points, by
only keeping points within a certain radial distance around the original centroid location. Only the
hexagons which are close to the centroid and have not been assigned are considered. The number of
possible hexagon locations to consider for a centroid is determined by the hexagon filter. This is the
maximum number of hexagons between the centroid and the furthest considered hexagon. It is used
to subset possible grid points to only those surrounding the polygon centroid within an appropriate
range. A smaller distance will increase speed, but can decrease accuracy when width of the angle
increases.

The width parameter is used to take a slice of the remaining points. The slice centres on the angle
from the focal point to centroid location. This uses the angle from the closest capital city, to the current
centroid as seen in Figure 5 2a. This allows the spatial relationship to be preserved, even when it is
allocated to a hexagon that is further from the focal point then the original centroid location.

If no available hexagon grid point is found within the original filter distance and angle, the distance
is expanded and only when a maximum distance is reached will the angle expand to accommodate
more possible grid points. By default the angle filter for the hexagon grid points create plus and minus
30 degree bounds of the angle from the focal point to the geographic centroid. This will increase if no
points can be found within the hex_filter distance. The default angle of 30 was chosen to allow the
algorithm to find hexagons that best maintained the spatial relationship between the focal point and
geographic centroid.

User choices

Only two inputs are necessary to begin the algorithm; the shapefile, and the ID variable. The ID
variable should uniquely identify each geographic unit in the shapefile.

The centroids are derived from the shapefile. The number of centroids within the geographic map
is used to determine an appropriate hexagon size if one is not provided. The centroids are used to
construct a grid. The grid initially covers the entire map, encompassing all the centroid locations
and extending in all directions up to the buffer distance. This buffer distance can help to account for
densely populated coastal areas, allowing the hexagon locations to spread beyond the coastline.

The centroid set and hexagon tile map grid are necessary for the allocation process. Additionally, a
set of reference locations can be provided as focal points, typically compact and/or densely populated
areas such as major cities. The algorithm will use the focal points to create the order of allocation,
prioritising the closest centroid locations to the focal points. The user can also specify the variable that
should be used to determine the order for the allocation.

When allocating representative hexagons, the width parameter can be used to determine the
flexibility of positioning. Using the relationship with the nearest focal point, a larger width parameter
will increase the amount of available hexagons nearer to the original centroid of the geographic unit.
A smaller width will maintain the orientation from the focal point to the centroid when selecting the
hexagon location. However, this could mean it is placed further away.
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Figure 5: Illustration of key steps of the algorithm: (1a) full hexagon grid is created first; (1b) buffer is
applied, shown as dark green circles, to accommodate irregularly shaped regions; (2a, 2b) allocation
process, relative the center of Hobart, showing the 8th centroid to be allocated. The relationship
between Hobart (the cross) and the centroid (the purple triangle) is used to filter the potential locations
from the grid within a wedge. Hexagons already allocated are shown in black, and the purple circle
indicates the hexagon to be assigned to the 8th centroid.
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Animation

Creating an animation connecting these two displays can allow users to grasp the meaning of the
connected hexagons. It will also highlight the density of the communities using the rapid expansion
of the inner-city areas, these hexagons will move the furthest and will move rapidly in the animation
from their geographic locations. The rapid decrease in size of the large rural areas can show the large
size of their collective landmass. The gganimate (Pedersen and Robinson 2019) package can be used
to make an animation. It connects the polygons for each area in the two displays using the sf_id
variable, the names of the statistical areas, and creates intermediate displays as they geographic areas
shrink or expand to the chosen hexagon size.

Discussion

The present work describes an algorithm called the hexagon tile map. It also shows how this algorithm
addresses the potential issues found with contiguous, non-contiguous and Dorling cartograms when
applied to the geography of Australia. It achieves a display that effectively presents the density of the
population in small geographic areas and de-emphasises the large rural geographic space between
the densely populated capital cities. The hexagon tile map display acknowledges that the amount of
residents can differ but each administrative area is equally important. This solution uses equally sized
areas, and maintain neighbourhood boundary connections.

The hexagon tile map display acknowledges that the amount of residents can differ but each
administrative area is equally important. This solution uses equally sized areas, and maintain neigh-
bourhood boundary connections. The sugarbag package for R automates the creation of tessellated
hexagon tile maps by providing an algorithm to design these displays. The Australian application
preserves spatial relationships, and emphasises capital cities. However, similar to the choropleth map
display, the tessellation does not allow the size of the hexagons to represent another variable. The
algorithm is heavily dependent on the location and number of focal points used, as this determines
the order of allocation. With careful consideration of the choropleth map, the small geographic inner
city areas may not have been noticed by viewers, but the hexagon tile map display emphasises them.
The communities in northern Tasmania and the Northern territory do not draw attention because of
their size as in the choropleth, but their colour is still noticeably below average when contrasted with
the hexagons in New South Wales.

Australia serves as a good use case for the algorithm as it represents an extremely sparse geography
and small dense population areas which cannot be satisfactorily represented by existing cartogram-like
algorithms. However, the algorithm is sufficiently general to apply to other geographic regions, and
indeed has been applied to make hexagon maps of the UK, USA and France.

There are many possible extensions to the algorithm that might prove valuable in the future. The
buffer allows extension beyond the furthest centroids, but there is no mechanism to protect borders by
forcing centroids to be located within the geographic borders of a set of regions (e.g. country or state).
The algorithm is also currently limited to representing each geographic area with one hexagon only. In
the filter step for final selection of a hexagon grid point for each centroid, a direct angle constraint is
currently implemented, but it may narrowly miss potentially better hexagon allocation. Some other
constraints, such as a logarithmic function may help to refine the final allocation to hexagons closer to
the original centroid location. In a country like Australia, the vast empty interior produces a hexagon
map with many small isolated hexagons, even when the city centres are hugely expanded. It could
be useful to allow variable sized hexagons, primarily to increase the size of the isolated hexagons to
improve their visibility.

This new algorithm provides an effective start point for automatically creating hexagon tile maps
for any spatial polygon data, and contributes to an extensive body of work that encourages the use of
alternative map displays for statistical displays of spatial data.
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A Clustering Algorithm to Organize
Satellite Hotspot Data for the Purpose of
Tracking Bushfires Remotely
by Weihao Li, Emily Dodwell, and Dianne Cook

Abstract This paper proposes a spatiotemporal clustering algorithm and its implementation in the R
package spotoroo. This work is motivated by the catastrophic bushfires in Australia throughout the
summer of 2019-2020 and made possible by the availability of satellite hotspot data. The algorithm
is inspired by two existing spatiotemporal clustering algorithms but makes enhancements to cluster
points spatially in conjunction with their movement across consecutive time periods. It also allows for
the adjustment of key parameters, if required, for different locations and satellite data sources. Bushfire
data from Victoria, Australia, is used to illustrate the algorithm and its use within the package.

Introduction

The 2019-2020 Australia bushfire season was catastrophic in the scale of damage caused to agricultural
resources, property, infrastructure, and ecological systems. By the end of 2020, the devastation
attributable to these Black Summer fires totalled 33 lives lost, almost 19 million hectares of land
burned, over 3,000 homes destroyed and AUD $1.7 billion in insurance losses, as well as an estimated
1 billion animals killed, including half of Kangaroo Island’s population of koalas (Filkov et al. 2020).
According to the Australian Government Bureau of Meteorology (2021), 2019 was the warmest year
on record in Australia, and the period from 2013-2020 represents eight of the ten warmest years in
recorded history. There is concern and expectation that impacts of climate change – including more
extreme temperatures, persistent drought, and changes in plant growth and landscape drying – will
worsen conditions for extreme bushfires (CSIRO and Australian Government Bureau of Meteorology
2020; Deb et al. 2020). Contributing to the problem is that dry lightning represents the main source of
natural ignition, and fires that start in remote areas deep in the temperate forests are difficult to access
and monitor (Abram et al. 2021). Therefore, opportunities to detect fire ignitions, monitor bushfire
spread, and understand movement patterns in remote areas are important for developing effective
strategies to mitigate bushfire impact.

Remote satellite data provides a potential solution to the challenge of active fire detection and
monitoring. Development of algorithms that process satellite imagery into hotspots – points that
represent likely fires – is an active area of research (see for example Giglio, Schroeder, and Justice (2016),
Xu and Zhong (2017), Wickramasinghe et al. (2016), Jang et al. (2019)). Throughout this paper and the
associated package, we make use of the Japan Aerospace Exploration Agency (JAXA) Himawari-8
satellite wildfire product (P-Tree System 2020) that identifies the location and fire radiative power
(FRP) of hotspots across East Asia and Australia according to an algorithm developed by Kurihara et al.
(2020). It contains records of 1,989,572 hotspots from October 2019 to March 2020 with a 0.02o (~2km)
spatial resolution and 10-minute temporal resolution. Detection of bushfire ignition and movement
requires the clustering of satellite hotspots into meaningful clusters, which may then be considered in
their entirety or summarized by a trajectory.

In this paper, we present a spatiotemporal clustering algorithm to organize hotspots into groups
in order to estimate bushfire ignition locations and track bushfire movements over space and time. In-
spired by two existing clustering algorithms, namely Density Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al. 1996) and Fire Spread Reconstruction (FSR) (Loboda and Csiszar
2007), our algorithm adopts the notion of noise from DBSCAN, while drawing upon the fire movement
dynamics presented in FSR. We generalize the latter’s specification of spatiotemporal parameters,
thereby providing an intuitive, straightforward, and extendable approach to the complex problem
of bushfire identification and monitoring that may be applied to any satellite wildfire product. In
clustering hotspots into bushfires of arbitrary shape and size, we aim to capture key fire behavior:

• fire evolution occurs only forwards in time,
• fires can smolder undetectably for some time and then flare up again,
• fires can merge with other bushfires, and
• solitary hotspots, which we classify as noise, may not represent true fires or are otherwise very

brief ignitions that do not spread.

This algorithm is implemented in the R package spotoroo, available on CRAN. By enabling the user to
cluster satellite hotspot data across space and time, this software provides the ability to relate findings
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to key factors in bushfire ignition (e.g. weather, proximity to roads and campsites, and fuel sources)
and patterns in their spread.

The core functionality of this spatiotemporal clustering algorithm determines whether a hotspot
represents a new ignition point or a continuation of an existing bushfire by comparing and combining
cluster membership information via incremental updates from one time window to the next. Our
algorithm first slices the hotspot data by its temporal dimension into fixed time intervals, according
to a user-defined time step. Doing so divides the overall spatiotemporal clustering task into many
smaller spatial clustering tasks that may be completed in parallel. Within each time window, which can
be considered a static snapshot of hotspots observed across a user-specified number of time intervals,
hotspots that fall within the threshold of a user-defined spatial metric of each other are joined into
a cluster. Then, proceeding sequentially, we identify whether or not a hotspot was observed in the
previous time window. If so, it retains its cluster membership from the previous time window; if not,
the hotspot adopts the membership of the nearest hotspot with which it has been clustered. If no such
neighbor exists, a hotspot represents the start of a new fire. It is important to note that each hotspot
does not necessarily represent an individual fire, so those clusters that do not pass the threshold of a
minimum number of hotspots or exist for a minimum amount of time are labelled noise.

As emphasized by Kisilevich et al. (2009), the selection of spatial resolution and time granularity
– and relevance of domain knowledge in their choice – are imperative to the understanding and
interpretation of resulting clusters. These choices can influence the shape and number of clusters
discovered. In the case of satellite hotspot data, these parameters depend on the spatial resolution
and temporal frequency at which images are captured. We suggest that parameter tuning can be
assessed using a visual heuristic, which also enables selection of appropriate values in a unit-free
manner, independent of a satellite’s spatial and temporal resolutions.

This paper is organized as follows. The next section provides an introduction to the literature
on spatiotemporal clustering and applications to bushfire modeling. Section Algorithm details the
steps of the clustering algorithm, and Section Package introduces its implementation in spotoroo on
CRAN, including demonstration of the package’s key functions and visualization capabilities. We
illustrate the clustering algorithm’s functionality to study bushfire ignition and spread in Victoria,
Australia throughout the 2020 bushfire season in Application, and describe a visual heuristic to inform
parameter selection. Finally, we give a brief conclusion of the paper and discuss potential opportunities
for use of the clustering algorithm.

Background

Han, Kamber, and Pei (2012) overviews clustering methods and groups algorithms into five types:
partitioning, hierarchical, density-based, grid-based, and model-based methods. Clustering of hotspot
data lends itself nicely to hierarchical and density-based methods because they allow for the identifica-
tion of clusters of various shapes and sizes without requiring that the user pre-specify the number
of clusters. Particularly, density-based methods have the notion of noise, which is convenient for
eliminating non-fire events from the clustering result. We therefore focus on a review of density-based
methods and refer the reader to Han, Kamber, and Pei (2012) for algorithms in other categories and
Kisilevich et al. (2009) for appropriate extensions to spatiotemporal data.

Spatiotemporal clustering based on DBSCAN

Density-based methods separate regions constituting a high density of points from low-density
regions by identifying pairwise distances between points, and then requiring that a threshold for their
grouping be satisfied (Han, Kamber, and Pei 2012). Density Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al. 1996) is an implementation of this methodology designed to address
three challenges of clustering algorithms: (1) requirements of domain knowledge to determine the
hyperparameters, (2) arbitrary shape of clusters and (3) computational efficiency. DBSCAN defines
a maximum radius to construct a neighborhood around each point. It distinguishes between a core
point, for which the number of points that fall in its neighborhood meets a minimum threshold, and a
boundary point, whose neighborhood does not meet this threshold, but can be reached via overlapping
neighborhoods extending from the core point. Intersecting neighborhoods are defined to be a cluster,
while points that cannot be assigned to a cluster are identified as noise. DBSCAN also provides a
heuristic to inform selection of threshold and cluster size.

What is often identified as a limitation of DBSCAN – its inability to differentiate between clusters
of different densities and those adjacent to each other (Birant and Kut 2007) – is of less concern for the
application to satellite data, which by nature is a set of points corresponding to the equidistant center
of pixels on grid of latitudes and longitudes. However, its application to spatiotemporal clustering
problems, which contain at least three components – spatial location (e.g. latitude and longitude) and
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time – requires specification of temporal granularity and treatment of temporal similarity (Kisilevich
et al. 2009). As such, several extensions to DBSCAN’s spatial clustering functionality have been
proposed for spatiotemporal clustering solutions.

ST-DBSCAN (Birant and Kut 2007) was developed as an extension of DBSCAN’s functionality to
cluster points according to their non-spatial, spatial, and temporal attributes, and it simultaneously
addresses DBSCAN’s limitations regarding identification of clusters of varying densities and differen-
tiation of adjacent clusters. ST-DBSCAN also introduces a second metric that considers similarity of
variables associated with temporal neighbors.

Another spatiotemporal extension of DBSCAN called MC1 was developed by Kalnis, Mamoulis,
and Bakiras (2005). The authors slice the data into snapshots along the time dimension and define
moving clusters using the percentage of common objects shared by clusters in two consecutive
snapshots. The clustering result is obtained by linking the outputs of DBSCAN applied on each
snapshot with the definition of moving clusters. This algorithm enables tracking of moving clusters
such as a convoy of cars moving in a city efficiently. However, the definition of moving clusters
assumes that data points are individual objects with unique IDs that can move throughout time, which
does not translate to hotspots.

Spatiotemporal clustering with FSR

Satellite hotspot data has been effectively clustered and visualized using DBSCAN, as demonstrated in
studies by Nisa, Andrianto, and Mardhiyyah (2014) and Hermawati and Sitanggang (2016). However,
it should be noted that DBSCAN does not enable the tracking of fire ignition and movement over time.

FSR (Loboda and Csiszar 2007) addresses this limitation with a focus on fire dynamics, which
aim to characterize the ignition location, spatial progression, and rate of movement of individual
fire events. It introduces what is effectively a hierarchical-based clustering algorithm to identify fire
spread in the Russian boreal forest based on active fire detection from MODIS (Moderate Resolution
Imaging Spectroradiometer), which has a temporal frequency of six hours. The algorithm proposed
by the authors constructs a tree based on three rules: (1) the earliest observed hotspot is the root of
the tree, (2) any node is within a 2.5km radius from its parent and (3) any node is observed no later
than four days from its parent. When the tree is closed and there are still unassigned hotspots, the
algorithm continues at the earliest unassigned hotspot to construct a new tree. Finally, each tree is a
cluster, and the earliest observed hotspot(s) is defined as the ignition point (i.e. a cluster may have
multiple ignition points).

The selection of parameters for FSR is tailored to the specific region and data product being utilized.
As a result, these parameter settings cannot be immediately generalized or applied to other sources of
satellite hotspot data.

Limitations of existing methods for the purposes of bushfire monitoring

When considered in the context of clustering hotspot data, the existing methods discussed in the
previous section are not ideal. Here we clarify these limitations that have led to different choices in
our algorithm, particularly in combining the clustering results of two consecutive time periods.

ST-DBSCAN’s consideration of the similarity of variables associated with consecutive time periods
adds an unnecessary complexity for the spatiotemporal clustering of hotspots, for which we focus
on three variables (latitude, longitude, time). It also does not guarantee that clusters are processed
temporally, which is required to determine bushfire ignition sites. For this reason, we have developed
a different handling of the temporal variable for our hotspot clustering.

MC1 applies DBSCAN to each snapshot of data, which has the potential to treat some fire ignitions
as noise. It is possible for a fire ignition to be initially identified by only a few hotspots, which may not
be enough to meet DBSCAN’s density constraint. While we believe it is important to introduce the
concept of noise to filter out non-fire events, their identification and removal should not occur at each
temporal snapshot for this reason. We have therefore implemented the noise filter differently.

We also consider how best to handle the spatial convergence of clusters, that is, when two or more
clusters from a previous time period merge together in the current time period. In such situations,
both MC1 and FSR assign only one membership to the cluster of hotspots in the current time period.
The consequence of such treatment is twofold: spatial coverage of one fire may increase dramatically
in a short amount of time, which may not accurately reflect the natural speed of a bushfire’s spread,
convergence or shifts in directions. This is not necessarily appropriate in light of our goal of identifying
bushfire ignition locations. For this reason, and in contrast to MC1 and FSR, our algorithm inherently
enables tracking of individual fires through their potential merging by keeping separate cluster ids in
the current time period. This is because cluster membership is informed by a hotspot’s appearance in
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previous time periods. In the event that multiple hotspots are observed in a cluster’s first appearance,
we calculate their centroid and record it as the ignition location.

Algorithm

Our spatiotemporal clustering algorithm consists of four steps: (1) divide hotspots into equal time
intervals, (2) cluster hotspots spatially across a series of time intervals, which we will refer to as a time
window, (3) combine cluster information between consecutive time windows, and (4) identify hotspots
that represent noise so they can be filtered out. These four steps are described in detail in this section.

1. Divide hotspots into intervals

Because fires progress through time and our aim is to determine the ignition point of any particular
bushfire, time is a critical component for determining a fire’s starting point and tracking its subsequent
progression. To manage this analysis, it is convenient to partition time into intervals to support the
spatial clustering of hotspots and eventual combination of results with those of future intervals.

Selection of an appropriate time interval for clustering hotspot data represents a balance between
maintaining the resolution of the original satellite data (which may record observations every five
minutes or every hour or every four hours, for example) and computational efficiency of the algorithm.
For example, a time interval of half an hour produces twice the number of iterations of the spatial
clustering algorithm than a time interval of an hour; computation time is approximately linear with
number of iterations. Himawari-8 hotspot data is recorded every 10 minutes; using this original
temporal granularity has the potential to introduce significant noise, and would represent many more
iterations of the clustering algorithm. For mitigation of this noise, we may choose an interval of 60
minutes = 1 hour. We then maintain an overall index of each hour across our entire data set, denoted
as t = 1, ..., T where T is the total number of hours in the data set.

A hotspot is a likely indication of a burning fire, although it is possible that a hotspot may disappear
between two consecutive intervals, perhaps due to cloud cover or moisture that dampens the fire such
that it becomes temporarily undetectable. The algorithm must take these considerations into account
when combining information across consecutive time intervals. We need a parameter to measure how
long a fire may burn undetected even if we don’t see a hotspot; that is, the amount of time a bushfire
is considered to be active but unaccounted for in the hotspot data.

For this reason, the parameter activeTime is defined to reflect in intervals the maximum amount of
time a fire may stay smoldering but undetectable by satellite before flaring up again. For example, if it
is reasonable to assume that a bushfire not observed for 24 hours has burned out, the implication on
activeTime is as follows: if time is divided into half hour intervals, the parameter activeTime will be 48,
whereas with hour intervals, activeTime is 24. The activeTime parameter is a unitless integer.

Let St be a series of time intervals defined by

St = [max(1, t − activeTime), t] t = 1, 2, ..., T,

where max(.) is the maximum function, t is an integer time index, and T is the integer length of the
time window.

Suppose the data set contains T hours of hotspot data, our time interval is one hour, and
activeTime = 24. This produces a sequence of time windows S1, S2, . . . , ST , where

S1 = [1, 1],

S2 = [1, 2],

...

S25 = [1, 25],

S26 = [2, 26],

...

S47 = [23, 47],

S48 = [24, 48],

...

ST = [T − 24, T].
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Figure 1: Illustration showing Step 2 of the clustering algorithm on a sample of 20 hotspots in one
time window St. Initially (a), a hotspot is selected randomly (P) in order to seed a cluster. The
circle indicates the maximum neighborhood distance (adjDist). Nearby hotspots as shown in red are
clustered with P (b) to initialize list L. The neighborhood is moved following every point in that
collected list L and new observations are added (c), until there no more points that can be grouped (d).
Then a new hotspot is selected external to the existing cluster, and the process is repeated (e). At the
end, all the hotspots will be clustered (f).

2. Cluster hotspots spatially within each time window

We next cluster the hotspots within each time window. Each time window represents a static unified
view of all hotspots observed across 25 consecutive time intervals (as of S25). The clustering within a
time window disregards the specific hourly time index associated with each observed hotspot to focus
exclusively on the spatial relationship between them. A hierarchical-based method with a maximum
distance stopping criterion adjDist is applied.

The parameter adjDist is used to represent the maximum distance between two adjacent hotspots,
which are connected to form a graph. For example, the Himawari-8 hotspot data collection has 0.02o

resolution, which corresponds to approximately 2000m. Thus, adjDist is set to 3000m to indicate
diagonal distance between observations. Every connected component of the graph is then considered
as an individual cluster.

Given adjDist > 0 m and a window St, the algorithm performs the following substeps:

(a) Append a randomly selected hotspot hi to a empty list L, where hi is the ith hotspot in the time
window St. Let point P be the first item of the list L.

(b) For every hi /∈ L, if geodesic(hi, P) ≤ adjDist, append hi to the list L.

(c) Let point P be the next item of the list L.

(d) Repeat (b) and (c) until the point P reaches the end of the list L.

(e) For all hotspots hi ∈ L, assign a new membership to them. Remove these hotspots from the
time window St. Repeat (a) to (e) until time window St is empty.

(f) Recover the time window St and record the memberships.

Figure 1 provides an example of this step.

3. Update memberships for next time window

Step 3 assigns membership to hotspots in the next time window (t = 2, ..., T ) based on memberships
in the previous window, as illustrated by Figure 2. The algorithm performs the following substeps:

(a) Collect the hotspots, hi, belonging to St, where some may have also been present in St−1, into
the set Ht = {h1, h2, ...}. Hotspots that were present in St−1 are labelled, and new hotspots are
unlabeled.

(b) Construct the connectivity graph, based on adjDist, measuring proximity between all hotspots
in Ht. There may be some hotspots from multiple St−1 clusters connected together here, due to
new hotspots appearing between previous hotspots. This is resolved at the next step.

(c) For all unlabeled hotspots, use the label of the closest labelled point, if it is connected in the
graph. Any unlabeled hotspots not connected to labelled hotspots are assigned a new label
(cluster 5 in Figure 2). Also, any connected graph where memberships from multiple St−1
clusters occur are effectively split into the same multiple clusters (clusters 2 and 4 in Figure 2).
This would correspond to two existing fires burning into each other, but they keep their original
label. These fires might die at this time, or they might progress in different directions.
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Figure 2: Illustration of clustering Step 3, which involves combining results from one time window to
the next. There are 33 hotspots at St, where 20 (green) of them have been previously clustered at St−1
(Figure 1 f) and 13 (orange) of them are new hotspots. The connected graph show the clustering in this
time window. Hotspots previously clustered at St−1 keep their cluster labels. The 13 new hotspots are
assigned labels of the nearest hotspot’s cluster label. This might mean that a big cluster St (indicated
by the graph) would be split back into two, if it corresponded to two clusters at St−1 (e.g. clusters 2, 4).
New clusters of hotspots are assigned a new label (e.g. cluster 5).

This consideration of cluster memberships in consecutive time windows enables us to capture
the long-term behavior of individual fires, namely whether they go undetected for 24 hours or more.
Intuitively, a fire is undetected for 24 hours if a cluster is represented in St−1 but not St; that is, all
hotspots in the cluster as of time window St−1 were from time index t − 25. By moving through the
temporal sequence of time windows this way, we gradually identify the ignition time and location of
new fires by considering hotspot activity in a region over the last 24 hours.

4. Handle noise in the clustering result

After performing step 3, all hotspots will have been assigned a membership label. However, there
may exist small clusters, where small refers to number of associated hotspots and/or length of time
for which a cluster is observed. These small clusters are less important for bushfire monitoring due to
their limited spread, and we may be less certain that they represent true fires. To address this issue,
we provide a noise filter as the last step.

Parameter minPts specifies the minimum number of hotspots a cluster can contain and parameter
minTime specifies the minimum amount of time for which a cluster can exist and still be considered a
bushfire. Any cluster that does not satisfy these two conditions will be reassigned membership label
−1 to indicate they represent noise.

Result

The result of the spatiotemporal clustering algorithm applied to the hotspot data is a vector of
memberships with length equal to the number of observations in the data.

Package

Our spatiotemporal clustering algorithm detailed in the previous section is implemented in the R
package spotoroo, which is available for download on CRAN:

install.packages("spotoroo")

The development version can be installed from Github:

devtools::install_github("TengMCing/spotoroo")

The following demonstration of the package’s functionality assumes spotoroo and dplyr have
been loaded. We also want to load the built-in data set hotspots.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=spotoroo
https://CRAN.R-project.org/package=spotoroo
https://CRAN.R-project.org/package=dplyr


CONTRIBUTED RESEARCH ARTICLE 23

library(spotoroo)
library(dplyr)
data(hotspots)

The hotspots data is a subset of the original Himawari-8 wildfire product and contains 1070
observations observed in the state of Victoria in Australia from December 2019 through February 2020.

To create this illustrative data set, records from the original October 2019-March 2020 data set were
filtered to include only those hotspots in the boundary of Victoria’s borders with an irradiance over
100 watts per square meter. This threshold of the hotspot’s intensity is proposed by landscape ecologist
and spatial scientist Dr. Grant Williamson (2020) to reduce the likelihood of including hotspots that do
not represent true fires in our analysis. These two processing steps capture 75,936 observations, for
which we preserve fields longitude, latitude, and observed date and time; we sample approximately
1% of these records for the package’s final hotspots data set.

Performing spatiotemporal cluster analysis

The main function of this package is hotspot_cluster(), which implements the spatiotemporal
clustering algorithm on satellite hotspot data input by the user.

This function accepts a data set of hotspots (hotspots) which must contain fields corresponding
to longitude (lon), latitude (lat), and observed time (obsTime). Arguments activeTime, adjDist,
minPts, and minTime were previously defined in the Algorithm section, and represent parameters for
the algorithm’s functionality. Arguments timeUnit and timestep represent the conversion from a
hotspot’s observed time to its corresponding integer time index.

We illustrate the use of function hotspot_cluster() below. Our hotspots data set has columns
with names that correspond to the first four arguments. Parameters timeUnit and timeStep define the
difference between two adjacent time indices as 1 hour, and activeTime is 24 time indexes, adjDist is
3000 meters, minPts is 4 hotspots, and minTime is 3 time indices. That is, we consider any cluster that
lasts longer than 3 hours and contains at least 4 hotspots to be a bushfire, although since the definition
of a bushfire may vary according to geography, these parameters may be adjusted accordingly by the
user.

result <- hotspot_cluster(hotspots = hotspots,
lon = "lon",
lat = "lat",
obsTime = "obsTime",
activeTime = 24,
adjDist = 3000,
minPts = 4,
minTime = 3,
timeUnit = "h",
timeStep = 1)

This function returns a spotoroo object, which is a three-object list containing two data.frames
– hotspots and ignition – and a list called setting. Printing this output tells us that of the 1070
original hotspots, 10 were identified as noise points, and the remaining 1060 were clustered into 6
clusters.

result

#> i spotoroo object: 6 clusters | 1070 hot spots (including noise points)

Within result, the first item is a hotspots data frame. This contains the three fields from our
original input data (namely, lon, lat, and obsTime), as well as each hotspot’s assigned time index
(timeID) and cluster membership. Each hotspot is also associated with the calculated distance from
and time since its associated fire’s ignition, distToIgnition and timeFromIgnition, respectively. Any
hotspot with a membership of −1 is identified as noise (noise == TRUE).

Our original hotspot data was recorded at 10-minute intervals, and we defined each time interval
to be one hour. A hotspot’s timeID is assigned starting from the first observed timestamp in the data.
For example, 2019-12-29 13:10:00 is the earliest obsTime in hotspots and begins the hour for which
timeID == 1; any hotspot observed from 2019-12-29 14:10:00 to 2019-12-29 15:00 is assigned
timeID == 2, and so on. This enumeration continues through the last hour for which we observe
hotspots in the data.
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result$hotspots %>% arrange(obsTime) %>% glimpse()

#> Rows: 1,070
#> Columns: 10
#> $ lon <dbl> 149.30, 149.30, 149.32, 149.30, 149.30, 149.32, 1~
#> $ lat <dbl> -37.75999, -37.78000, -37.78000, -37.75999, -37.7~
#> $ obsTime <dttm> 2019-12-29 13:10:00, 2019-12-29 13:10:00, 2019-1~
#> $ timeID <int> 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 5, 5, 7, 10, ~
#> $ membership <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
#> $ noise <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
#> $ distToIgnition <dbl> 1111.885, 1111.885, 2080.914, 1111.885, 1111.885,~
#> $ distToIgnitionUnit <chr> "m", "m", "m", "m", "m", "m", "m", "m", "m", "m",~
#> $ timeFromIgnition <drtn> 0.0000000 hours, 0.0000000 hours, 0.3333333 hour~
#> $ timeFromIgnitionUnit <chr> "h", "h", "h", "h", "h", "h", "h", "h", "h", "h",~

The second item within result is the ignition data set, which contains one row for each cluster
identified by the algorithm. Each cluster’s row captures information regarding its ignition location,
observed time of ignition, number of hotspots in the cluster, and for how long the cluster was observed.
The coordinates of each ignition point represent the earliest observed hotspot associated with the
cluster, or the calculated centroid if there are multiple hotspots observed in the first time index
associated with the cluster.

glimpse(result$ignition)

#> Rows: 6
#> Columns: 8
#> $ membership <int> 1, 2, 3, 4, 5, 6
#> $ lon <dbl> 149.3000, 146.7200, 149.0200, 149.1600, 146.7067, 1~
#> $ lat <dbl> -37.77000, -36.84000, -37.42000, -37.29000, -36.993~
#> $ obsTime <dttm> 2019-12-29 13:10:00, 2020-01-08 01:40:00, 2020-01-0~
#> $ timeID <int> 1, 229, 258, 280, 327, 859
#> $ obsInCluster <dbl> 146, 165, 126, 256, 111, 256
#> $ clusterTimeLen <drtn> 116.1667 hours, 148.3333 hours, 146.3333 hours, 12~
#> $ clusterTimeLenUnit <chr> "h", "h", "h", "h", "h", "h"

The final object contained in result is a list that records the user-input values for the algorithm’s
parameters.

result$setting

#> $activeTime
#> [1] 24
#>
#> $adjDist
#> [1] 3000
#>
#> $minPts
#> [1] 4
#>
#> $ignitionCenter
#> [1] "mean"
#>
#> $timeUnit
#> [1] "h"
#>
#> $timeStep
#> [1] 1

The user can run the function summary() to return key distributions that summarize the clustering
results. For clusters, it captures the distribution of the number of hotspots in a cluster and the duration
of the cluster (in hours). Similarly, for hotspots, it captures the distribution of their distance to ignition,
both spatially (in meters) and temporally (in hours). It also notes the number of noise observations
identified by the clustering algorithm.
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Extracting a subset of clusters

Some users may prefer to engage with a data frame of the results, rather than parsing the spotoroo
list object described above. For this purpose, the package provides a function extract_fire(), which
converts a spotoroo object to a data.frame by collapsing the hotspots and ignition objects. A new
field, type, records whether a row in this data frame represents a hotspot, ignition point, or noise
point. Cluster information is available for each hotspot that was not identified to be noise. Users can
include or disregard noise points by toggling the argument noise = TRUE.

all_fires <- extract_fire(result, noise = TRUE)
all_fires %>% arrange(obsTime) %>% glimpse()

#> Rows: 1,076
#> Columns: 14
#> $ lon <dbl> 149.30, 149.30, 149.30, 149.32, 149.30, 149.30, 1~
#> $ lat <dbl> -37.75999, -37.78000, -37.77000, -37.78000, -37.7~
#> $ obsTime <dttm> 2019-12-29 13:10:00, 2019-12-29 13:10:00, 2019-1~
#> $ timeID <int> 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 5, 5, 7, 1~
#> $ membership <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
#> $ noise <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
#> $ distToIgnition <dbl> 1111.885, 1111.885, 0.000, 2080.914, 1111.885, 11~
#> $ distToIgnitionUnit <chr> "m", "m", "m", "m", "m", "m", "m", "m", "m", "m",~
#> $ timeFromIgnition <drtn> 0.0000000 hours, 0.0000000 hours, 0.0000000 hour~
#> $ timeFromIgnitionUnit <chr> "h", "h", "h", "h", "h", "h", "h", "h", "h", "h",~
#> $ type <chr> "hotspot", "hotspot", "ignition", "hotspot", "hot~
#> $ obsInCluster <dbl> 146, 146, 146, 146, 146, 146, 146, 146, 146, 146,~
#> $ clusterTimeLen <drtn> 116.1667 hours, 116.1667 hours, 116.1667 hours, ~
#> $ clusterTimeLenUnit <chr> "h", "h", "h", "h", "h", "h", "h", "h", "h", "h",~

By providing a vector of indices to the argument cluster, the function will extract the correspond-
ing clusters from the clustering result.

fire_1_and_2 <- extract_fire(result, cluster = c(1, 2), noise = FALSE)

Visualizing the clustering result

The package provides three basic methods to visualize the clustering results, all of which can be
produced by the function plot(). Users can draw advanced graphics using the results provided by
the algorithm.

Default plot for visualizing the spatial distribution of clusters The default plot allows for visual-
ization of the spatial distribution of the fires. As shown in Figure 3, it presents the hotspots of each
cluster identified by the algorithm with a single color. The black dot on top of each colored set of
points is the ignition location of that fire. This graphical representation only provides a static view of
the hotspot data. To get a dynamic view, users can draw subplots grouped by time.

plot(result, bg = plot_vic_map())

Fire movement plot for visualizing the fire dynamics Figure 4 shows the path of each fire’s
movement, which is produced by setting the plot argument type = 'mov'. The fire movement is
computed by the get_fire_mov() function. Its argument step controls the number of time intervals
combined for calculation of the hotspots’ centroid for the purpose of this visualization. Using a small
value of step will produce a complex path; for example, step = 1 means that the centroid of hotspots
in each hour will be calculated to trace the fire’s path, while step = 12 combines intervals over the
course of half a day.

Note that centroids won’t adequately summarize unusual cluster shapes, and it may be necessary
to change the visualization to show a full shape with perhaps a convex hull. This would make for a
complicated visualization of temporal movement, though. Also if a fire spreads simultaneously in
different directions, the centroids would remain in approximately the same locations.

plot(result, type = "mov", step = 12)
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Figure 3: This is the default plot for visualizing the spatial distribution of clusters. In the results
shown there are six clusters, which correspond to six fires, shown using different colors. The black
dots indicate the ignition site for each fire.

Figure 4: This is the fire movement plot for visualizing the fire dynamics. Here there are six clusters,
corresponding to six different fires. The path between the ignition point and the end point is drawn
with black line, where the triangle is the ignition point and the circle is the end point. (Note that the
aspect ratio of the plot reflects the relative spatial ratio of latitude and longitude.)
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Figure 5: This is the timeline plot for providing an overview of the bushfire season. The x-axis is
the date and the y-axis is the cluster membership. The observed time of hotspots are shown as dot
plots (green). The density plot at the top display the temporal frequency of fire occurrence over
the timeframe. The dot plot at the bottom (orange) shows the observed time of hotspots that are
considered to be noise.

In this plot, hotspots are slightly jittered from their original recorded locations on the spatial
grid so repeat observations at a specific latitude and longitude are visible. The triangle identifies the
fire’s ignition point and the circle is the fire’s final location. This provides us with a view into the
distribution of hotspots over the course of the fire, as well as the bushfire’s overall movement. For
example, fire 1 ended southeast of its original ignition location.

Timeline plot for providing an overview of the bushfire season Figure 5 shows a timeline of fires
produced by setting plot argument type = 'timeline', which enables study of the intensity of the
bushfire season. Hotspots’ observed times are plotted along the horizontal line corresponding to their
assigned clusters. The green curve along the top captures the temporal density of all fires throughout
the season. Noise points are represented with orange dots. The plots demonstrates that the majority of
fires in our sample data set burned in mid-January.

plot(result, type = "timeline")

Application

We illustrate the use of the algorithm by applying it to the entirety of the 75,936 hotspots in Victoria.
The spatial distribution of these hotspots for October 2019-March 2020 is shown in Figure 6. This
example takes around 5 minutes to run on a 2020 Apple MacBook Pro.

Clustering the Victorian hotspot data

To perform the clustering algorithm on the Victorian hotspot data, we first convert the observed time
of each hotspot to its corresponding time index by setting the time difference between two successive
indices to be 1 hour via parameters timeStep and timeUnit. As initially discussed in Algorithm,
because the original Himawari-8 data is recorded at 10-minute intervals, reassigning each hotspot to
its corresponding hourly time index does not cause great loss of information, but serves to significantly
shorten the computation time. We then let activeTime be 24 time indices and adjDist be 3000 meters;
see Selecting parameter values for further discussion of and guidance regarding selection of these
choices. Finally, minPts is 3 hotspots and minTime is 3 time indices.

result <- hotspot_cluster(hotspots = vic_hotspots,
lon = "lon",
lat = "lat",
obsTime = "obsTime",
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activeTime = 24,
adjDist = 3000,
minPts = 4,
minTime = 3,
timeUnit = "h",
timeStep = 1)

The clustering result shows that 407 bushfires are identified among the 75,936 hotspots. This result
is reasonable, as historically the number of bushfires reported in Victoria in a year ranges from about
200 to 700 (Department of Environment, Land, Water & Planning 2019).

result

#> i spotoroo object: 407 clusters | 75936 hot spots (including noise points)

Determining the ignition point and time for individual fires

The clustering result provides the ignition location of the bushfire represented by each cluster, and
the plot() function now enables us to examine the spatial distribution of bushfire ignitions over the
course of the entire summer. The result is given in Figure 6. From this plot, we observe that the
large majority of fires burned in eastern Victoria, with a smattering in the south west. These areas
are primarily forests and mountains. Very few fires started in or around city of Melbourne, which is
located along the southern coast in the middle of the state.

Note that because there are now too many fires to color each of them uniquely (as done previously
in Figure 3, the default plot function colors each cluster of fires black with their respective ignition
points in red. This change in plot output occurs once the number of clusters is greater than nine.

plot(result, bg = plot_vic_map(), hotspot = TRUE)

The ignition time of individual fires and representation of how long they burned is produced with
the following code, the output of which is Figure 7. This plot shows that the majority of fires were
ignited from late December 2019 to early January 2020. We observe a significant number of hotspots
identified to be noise points in mid-December, which may imply there are some undetected fire events
that were short-lived.

plot(result, type = "timeline", mainBreak = "1 month", dateLabel = "%b %d, %y")`.

Tracking fire movement

We further study the movement of the four most intensive fires, as identified by the number of hotspots
clustered together. These fires burned in the eastern part of Victoria, and the output of the following
code is shown in Figure 8. These fires burned during the time period from December 18th through
January 4th. According to the plot, 3 out of the 4 fires moved over the course of their burning, while
the center of fire 163 does not appear to move much. This is because simultaneous spread in different
directions kept the centroid of the cluster in a similar location over time.

plot(result,
type = "mov",
cluster = order(result$ignition$obsInCluster,

decreasing = TRUE)[1:4],
step = 12,
bg = plot_vic_map())

Selecting parameter values

We previously introduced two key parameters, adjDist and activeTime, in our explanation of the
algorithm. While their optimal choice is unknown, a visualization tool enables their tuning such that
the user can select reasonable values.

Consider the relationships between adjDist, activeTime, and the percentage of hotspots observed
to be noise points. Increase of either adjDist or activeTime represents greater spatial and temporal
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Figure 6: The distribution of hotspots (black) and bushfire ignitions (red) in Victoria during 2019-2020
Australian bushfire season. The spatial distribution of the ignition locations suggest that most of the
fires were observed in the east of Victoria.

Figure 7: Timeline of fires observed in Victoria during the 2019-2020 Australian bushfire season.
Clustered hotspots are shown as dotplots (green). The density display of the timeline shows that
most fires started in late December and early January. Noise is shown at the bottom (orange), with
the dashed lines indicating the density. This plot shows there is a significant number of hotspots that
could be considered to be noise, especially in mid-December. It might also suggest that there are lots
of short-lived and spatially constrained fires.
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Figure 8: Examining the dynamics of the four most intensive fires in Victoria during the 2019-2020
Australian bushfire season. All of the fires covered similar spatial areas over their lifetimes, but the
trajectory was quite different. Fire 163 may have spread in many directions simultaneously over the
time period, as indicated by the near constant location of the centroid.

tolerance, respectively, either of which usually reduces the percentage of noise points. However, if
the noise points are spatially and temporally far from the meaningful clusters, increasing either of
these two parameters may not significantly reduce the number of clusters. Therefore, to identify what
are likely real noise points, we find the smallest values for each of adjDist and activeTime after which
the percentage of noise points no longer decreases significantly. Based on this logic, we develop a
visualization tool inspired by the scree plot (Cattell 1966) used in the principal component analysis
and the sorted k-dist plot used in DBSCAN (Ester et al. 1996). Similar to these two plots, users need to
determine the values of activeTime and adjDist for which the greatest decrease in the percentage of
noise points is captured. Figure 9 shows the parameter tuning process using this visualization tool.
To produce these plots, a grid of parameter values must be evaluated, which can be computationally
intensive. For this reason, we do not include this tool in the spotoroo, but leave it for the user to build.
The final choice of activeTime is 24 hours and adjDist is 3000 meters.

Conclusions

In this paper, we have proposed a spatiotemporal clustering algorithm to organize satellite hotspot
data for the purpose of determining points of bushfire ignition and tracking their movement remotely.
This algorithm can be used to cluster hotspots into bushfires of arbitrary shape and size, while
following some basic characteristics of bushfire dynamics. It is necessary to tune the parameters of the
algorithm. This can be done visually, as demonstrated in the previous section’s example application,
or determined by expert knowledge of fire dynamics for a geography of interest.

We have provided an implementation of the algorithm in the R package spotoroo, which supports
three types of visualizations for presenting different aspects of the bushfire data: the spatial distribution
of fires, the movement of individual bushfires, and the timeline of fire ignitions and length of burning.
In addition, we have illustrated the use of this package in studying the 2019-2020 Australian bushfire
season. The main benefit of this work is that information otherwise infeasible to collect about fires in
remote areas can be extracted from satellite hotspot data and processed with the use of this package.

We have previously discussed the ways in which existing algorithms for spatial clustering that
incorporate a temporal component are not suitable for our intended purpose. Furthermore, there are
no R packages on CRAN that provide implementations of ST-DBSCAN, FSR or MC1 in order to run a
direct comparison of computational efficiency or clustering performance. There is an implementation
of DBSCAN in R package dbscan that runs extremely fast (< 10 seconds) on hotspot data from our
example application with the proper choice of parameters. However, it clusters over 30% of the
hotspots into one fire, which is not very helpful for tracking fire ignition and spread.

There are possible modifications that could be made to our algorithm for the purpose of improving
quality of the clustering result or reduced computation time. We might consider alternative clustering
techniques – for example, grid-based clustering – at each time window. It may also be possible to use
an adaptable adjDist at different time windows. We leave these extensions for future research.

More complex analyses can be conducted when clustering results are merged with data such as
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Figure 9: Parameter tuning plots, where the best choice of parameter is at a large drop in the percentage
of noise points. Here, these are at AdjDist = 3000 and activeTime = 24.

recreation sites, fire stations, roads, weather and vegetation types. An analysis of this type to predict
the causes of bushfires in Victoria during the 2019-2020 bushfire season is described in Cook (2020),
which yields meaningful suggestions for future fire prevention. We hope others can build upon this
work to make use of satellite hotspot data for bushfire research, especially in the context of future
bushfire planning and prevention.
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asteRisk - Integration and Analysis of
Satellite Positional Data in R
by Rafael Ayala, Daniel Ayala, Lara Sellés Vidal, and David Ruiz

Abstract Over the past few years, the amount of artificial satellites orbiting Earth has grown fast,
with close to a thousand new launches per year. Reliable calculation of the evolution of the satellites’
position over time is required in order to efficiently plan the launch and operation of such satellites,
as well as to avoid collisions that could lead to considerable losses and generation of harmful space
debris. Here, we present asteRisk, the first R package for analysis of the trajectory of satellites. The
package provides native implementations of different methods to calculate the orbit of satellites, as
well as tools for importing standard file formats typically used to store satellite position data and to
convert satellite coordinates between different frames of reference. Such functionalities provide the
foundation for integrating orbital data and astrodynamics analysis in R.

1 Introduction

Since the launch of Sputnik 1 in 1957, the developments in space technology have enabled a fast
growth of the amount of satellites placed in orbit around Earth. Such growth has become especially
prominent in the last decade, as evidenced by the fact that over a third of the 11,697 satellite launches
performed until September 2021 occurred over the last 5 years (United Nations). The number of
organizations behind satellite launches has also considerably expanded, and currently includes not
only government and military agencies, but also private entities. This is largely due to technological
developments, such as miniaturized satellites, that have made the process of placing a satellite on
orbit around Earth increasingly accessible (Toorian et al. 2008; Bouwmeester and Guo 2010; Kirillin et
al. 2015).

Planning the launch, operation and orbital maneuvers of satellites requires predictions of the
trajectory that a satellite will follow along time from a known state vector (a set of parameters that
define the position, velocity and acceleration of the satellite at a given instant). Such methods are also
useful for studying the simultaneous evolution of multiple satellites, with the aim to predict and avoid
collisions. This is of special interest in the light of the increasing density of Earth-orbiting satellites,
since uncontrolled collisions could lead to the onset of Kessler syndrome (Kessler and Cour-Palais
1978; Kessler et al. 2010), a positive-feedback scenario where the generated space debris impacts on
other objects, producing further cascading collisions. This would eventually hinder space operations
in some orbits for very long periods of time. For these reasons, multiple models have been developed
to calculate the evolution (propagate) of the position of a satellite over time from a set of initial, known
conditions.

We introduce asteRisk, an R package that aims to provide a suite for astrodynamics analysis
in R. To that extent, implementations of some of the most frequently applied orbital propagators
are provided, including the SGP4 and SDP4 models (Dong and Chang-yin 2010), as well as a high-
precision numerical orbital propagator. Additionally, utilities for reading file formats commonly used
to distribute satellite positions (ephemeris) are provided. Satellite ephemerides are relatively scarce
compared to other types of positional data (such as that available for standard aviation) (Schäfer
et al. 2014), due to the much higher technical complexity of the equipment required to obtain
experimental observations that allow the calculation of the position of satellites, as well as to the
sensitivity level of such information. As a consequence, only limited sources of data are available
for most satellites, such as CelesTrak (Kelso) and Space-Track (SAIC), with the notable exception of
Global Navigation Satellite Systems (GNSS) and Planet Labs nanosatellites (Foster et al. 2015). In
spite of the scarcity of the data, the provided orbital propagators can extend its scope by calculating
future and past ephemeris from a given known state vector. The package also provides tools for
the calculation of orbital parameters from the coordinates and velocity of a satellite and vice versa,
as well as for the conversion of coordinates between different frames of reference. Some of the
functionalities provided with asteRisk require large data tables. These are provided in the accessory
data package asteRiskData, which is distributed through a drat repository and can be installed by
running install.packages('asteRiskData',repos='https://rafael-ayala.github.io/drat/').

In the following sections, we describe the features of the package and provide examples of
application to real data. Firstly, the supported file formats are described, together with examples
of data sources, in Section File formats and data sources. Next, we introduce the different orbital
propagators currently implemented in Section Orbital propagators. Finally, the different available
frames of reference are presented, and conversion between them is demonstrated in Section Frames of
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reference.

2 File formats and data sources

As previously mentioned, positional information for satellites is relatively scarce compared to non-
space aircraft. CelesTrak and Space-Track distribute data for nearly all well-known, non-classified,
Earth-orbiting satellites in TLE format. Additionally, NASA provides information about GNSS
satellites through the Crustal Dynamics Data Information System (CDDIS) (Noll 2010) in RINEX
format. asteRisk provides functionalities for reading-in both types of files, which consist of plain
text files structured according to the definitions provided by the organizations that implement each
standard.

TLE files

The TLE (Two/Three Line Element) format was originally implemented by the North American
Aerospace Deffense Command (NORAD), and has become the standard format for distributing
positional information about Earth-orbiting satellites.

The format consists of an initial optional line with up to 24 characters (title line) with the name
of the satellite corresponding to the TLE file, followed by two 69-character lines that include the
information required to calculate orbital elements (a set of parameters that describe the orbit of an
object at a given time point), as well as some additional metadata about the satellite (Kelso). It should
be noted that a TLE file can contain multiple TLE data structures, which are concatenated in the same
file with no additional separator.

TLE files can be read with the readTLE function, which receives the path to a file containing one or
more TLEs. Both TLEs with and without the additional title line are supported, but all the TLEs in
the file should be of the same type. Alternatively, the parseTLElines can be used to obtain the same
information from a character vector where each element is a string representing a TLE (including the
new-line characters).

It should be noted that TLE files were designed to be used in conjunction with the SGP4 or SDP4
orbital propagators (described in detail in Section The SGP4 model). This is because the values
provided in TLEs are not osculating/Keplerian orbital elements of a satellite, but instead mean
elements calculated to best fit multiple observations by the entity distributing the file. Therefore,
as a general rule it is not recommended to use the information obtained from a TLE file as input to
orbital propagators other than SGP4/SDP4. However, it is often the case that TLEs are the single
available source of information for a given satellite. In such circumstances, if the application of other
propagators is desired, it is advised to apply the SGP4/SDP4 model to propagate the orbit to the
same instant corresponding to the values of orbital elements distributed in the TLE. This will generate
position and velocity values in Cartesian coordinates that are better suited to be used as input for
other algorithms, although unpredictable errors are still likely to be present (Janson et al. 2020).

In the following example, we read a file containing TLEs retrieved from CelesTrak for the Interna-
tional Space Station (ISS) and a Molniya satellite (a satellite model for military and communications
purposes launched by the Soviet Union and later by the Russian Federation from 1965 to 2004):

## In this example, we read a test TLE file containing 2 TLEs, one for the
## Zarya module of the International Space Station and another one for a
## Molniya satellite

test_TLEs <- readTLE("./data/testTLEs.tle")

## We can now check the mean orbital elements contained in each TLE. For
## example, we can calculate the orbital period from the mean motion, provided
## in revolutions/day

meanMotion_ISS <- test_TLEs[[1]]$meanMotion
1/meanMotion_ISS * 24 * 60

## An orbital period of around 93 minutes is obtained for the ISS, in accordance
## with expectations

## Let us check some characteristic parameters of the Molniya satellite
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meanMotion_Molniya <- test_TLEs[[2]]$meanMotion
1/meanMotion_Molniya * 24 * 60
test_TLEs[[2]]$eccentricity

## The Molniya satellite has a period of around 715 minutes and an eccentricity
## of 0.74, in accordance with the elliptical Molniya orbits in which such
## satellites were placed

RINEX navigation files

RINEX (Receiver INdependent EXchange) (Gurtner and Estey 2007) is a standard defining multiple
formats to distribute satellite navigation systems data, including GNSS. The standard defines three
types of files for navigation, observation and meteorological data. Among these, navigation data files
provide positional information about satellites.

RINEX defines multiple navigation file formats for different constellations of satellites: GPS,
GLONASS, Galileo, BeiDou, IRNSS/NavIC and other regional satellite-based augmentation systems
(SBAS). The current version of asteRisk supports GPS and GLONASS navigation files, which can be
read respectively with functions readGPSNavigationRINEX and readGLONASSNavigationRINEX. Both
functions receive as an argument the path to a RINEX navigation file, and return a list with the values
for the elements contained in the file. In the case of GLONASS navigation files, these include directly
Cartesian coordinates values for the position, velocity and acceleration of the satellite in the ITRF
system of coordinates. On the other hand, GPS navigation files provide values for the osculating orbital
elements of the satellite in the GCRF system of coordinates, which can be converted to Cartesian
coordinates. Functions readGPSNavigationRINEX and readGLONASSNavigationRINEX automatically
perform corrections of satellite time to obtain the corresponding accurate UTC times following the
procedures described in the specifications of both GNSS (Flores; Space Device Engineering). In the
case of GPS RINEX navigation files, conversion of orbital elements to Cartesian coordinates in the
ITRF frame is also performed. Additionally, due to the small scale of some of the involved clock
corrections (below microseconds), the corrected ephemeris times in UTC are returned as objects of
class "nanotime" from the nanotime package.

In the following example, a RINEX navigation file for a GPS satellite obtained from the CDDIS is
read. A TLE file from CelesTrak for the same satellite at the same instant is also read, and the obtained
orbital elements are compared:

## Let us read a GPS RINEX navigation file containing a single message

GPS_RINEX <- readGPSNavigationRINEX("./data/RINEX_GPS_1.rxn")

## The resulting list comprises 2 elements: "header" (which is common for all
## navigation messages present in the file) and "messages" (which is a list of
## lists, with one element per message in the top-level list and each of these
## containing elements for the different pieces of information provided in the
## navigation messages). Since there is only one message in the read file,
## "messages" is a list of length 1. We can retrieve orbital parameters from it.
## Note that the values for angle quantities are in radians, which we convert
## to degrees here. The mean motion is in radians per second, which we convert
## to revolutions per day

length(GPS_RINEX$messages) # 1
GPS_RINEX$messages[[1]]$correctedMeanMotion * 86400/(2*pi) # 2.005735
GPS_RINEX$messages[[1]]$eccentricity # 0.002080154
GPS_RINEX$messages[[1]]$inclination * 180/pi # 55.58636
GPS_RINEX$messages[[1]]$meanAnomaly * 180/pi # -37.86007
GPS_RINEX$messages[[1]]$perigeeArgument * 180/pi # 175.6259
GPS_RINEX$messages[[1]]$ascension * 180/pi # -22.95967

## Let us now read a TLE for the same satellite at approximately the same time

GPS_TLE <- readTLE("./data/TLE_GPS.tle")

## We can verify that both the TLE and the RINEX file correspond to the same
## satellite by comparing the PRN codes, which is in both cases 18. A PRN code
## is an identifier unique to each satellite of the GPS constellation.
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GPS_RINEX$messages[[1]]$satellitePRNCode
GPS_TLE$objectName

## We can now check the mean orbital elements provided the TLE file

GPS_TLE$meanMotion # 2.005681
GPS_TLE$eccentricity # 0.0020743
GPS_TLE$inclination # 55.5757
GPS_TLE$meanAnomaly # -46.0714
GPS_TLE$perigeeArgument # 181.977
GPS_TLE$ascension # 37.1706

## As we can see, mean motion, eccentricity, inclination and argument of perigee
## are very similar between the two files. The value for mean anomaly, a
## measurement of where the satellite is along its orbital path, are also
## similar if we convert both of them to the [0, 2*pi) range. However, the
## values for the longitude of the ascending node differ significantly. This
## is due to the fact that the orbital elements provided in the TLE file are
## defined in the TEME frame of reference, while the values in the RINEX file
## are defined in the ITRF frame of reference.

3 Orbital propagators

An orbital propagator is a mathematical model for calculating the position of a satellite at future or past
time points given a known state vector at a certain time. Multiple propagators have been developed,
which differ in the underlying forces being considered and the extent to which assumptions are made
to simplify the model. The different propagators therefore offer varying degrees of accuracy and
computational costs, with the two often being inversely related.

Three main types of propagators exist: numerical, analytical and semi-analytical. Numerical
propagators implement a formulation of a set of forces that act on the satellite, which leads to an
expression for the acceleration of the satellite at a given instant (Flores et al. 2021). Numerical
integrators are then used to solve the Ordinary Differential Equation (ODE) that defines acceleration as
the second-order time derivative of position. While numerical propagators offer the highest accuracy
provided that the relevant forces acting on the satellite are correctly modeled, they also have the
highest computational costs (especially if implicit integration methods are applied).

Conversely, analytical propagators rely on a set of assumptions and simplifications to obtain closed-
form solutions that can be directly evaluated at any given instant as a function of time, the initial
known state vector and a set of model parameters. These offer the advantage of having much lower
computational costs than numerical propagators, but at the expense of reduced accuracy, particularly
for long-term predictions (Deprit 1981; Meeus 1991; Lara et al. 2014).

Semi-analytical methods are an intermediate approach, whereby short-period motions are modeled
analytically, and long-term secular effects are solved with numerical integrators (Morand et al. 2013;
Lara et al. 2016; Lévy et al. 2021).

In its current version (1.2.0), asteRisk provides implementation of two of the most widely applied
analytical propagators, the SGP4 and SDP4 models, as well as a numerical high-precision orbital
propagator (HPOP).

The SGP4 model

The SGP4 (Simplified General Perturbation 4) model was developed by Ken Cranford in 1970 (Lane and
Hoots 1979), based on previous theoretical developments by Lane and Cranford (Lane 1965) whereby
the Earth gravitational field is modeled with spherical harmonics up to degree 4 and atmospheric drag
is modeled as being spherically symmetric, static, and with density following a power-law decay as
altitude increases. The model is mainly designed to be applied to near-Earth satellites with an orbital
period of 225 minutes or less, corresponding to an altitude of 5877.5 km if the orbit is assumed to be
circular.

The native R implementation available in asteRisk is based on the C++ implementation by Vallado
(Vallado), which includes minor corrections over the original FORTRAN implementation (Hoots et
al. 1988). The validity of the implementation has been verified by comparing the results obtained
with previous implementations for a set of test cases (Appendix: Test cases for SGP4/SDP4). The
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propagator can be applied through the sgp4 function. The function receives as input the following
mean orbital elements of the satellite, typically obtained from TLE files: mean motion (in radians/min),
mean eccentricity (dimensionless; ranging from 0, a perfectly circular orbit, to 1, a parabolic trajectory),
mean orbital inclination (in radians), mean anomaly (in radians), mean argument of the perigee (in
radians) and mean longitude of the ascending node (in radians).

Table 1: Description of the arguments taken as input by the SGP4 propagator.

Argument of sgp4
function

Orbital parameter Units Description

n0 Mean motion radians/min Angular speed of the satellite
e0 Eccentricity Dimensionless Value between 0 and 1 measuring how much the

orbit deviates from a circular shape, with 0
indicating a perfectly circular orbit and 1 an
extreme case of parabolic trajectory

i0 Inclination radians Angle between the orbital plane of the satellite and
the equatorial plane

M0 Mean anomaly radians Angle between the direction of the perigee and the
hypothetical point where the object would be if it
was moving in a circular orbit with the same period
as its true orbit after the same amount of time since
it last crossed the perigee had ellapsed. Therefore, 0
denotes that the object is at the perigee

omega0 Argument of perigee radians Angle between the direction of the ascending node
and the direction of the perigee

OMEGA0 Longitude of the
ascending node

radians Angle between the direction of the ascending node
(the point where the satellite crosses the equatorial
plane moving north) and the direction of the First
Point of Aries (which indicates the location of the
vernal equinox)

Bstar – Earth radii−1 Drag coefficient of the satellite, which indicates
how susceptible it is to atmospheric drag

initialDateTime – UTC date-time string Time corresponding to the provided state vector of
the satellite

targetTime – minutes or UTC
date-time string

Time at which propagation should be performed,
as a date-time string or in minutes from the initial
time

keplerAccuracy – Dimensionless Accuracy to consider Kepler’s equation solved. If
two consecutive solutions differ by a value lower
than this accuracy, integration is considered to have
converged

maxKeplerIterations – Dimensionless Maximum number of iterations after which
fixed-point integration of Kepler’s equation will
stop

The function also receives as an argument B∗ in units of inverse Earth radii, a modified ballistic
coefficient for the satellite which indicates how susceptible it is to atmospheric drag. The target times
at which the position of the satellite should be calculated can be specified either as absolute date-time
strings in UTC time, or as minutes from the time corresponding to the known state vector. The function
outputs the position and velocity of the satellite at the target times in Cartesian coordinates in the
TEME (True Equator, Mean Equinox) frame of reference (Section TEME).

In the following example, we demonstrate the application of the SGP4 model to propagate the
orbit of the ISS from the previously read TLE:

## We can use the mean orbital elements of the TLE of the ISS to propagate its
## position. It should be kept in mind that the mean motion must be input in
## radians per minute, and the mean inclination, anomaly, argument of perigee
## and longitude of the ascending node must be provided in radians.
## Let us propagate the orbit of the ISS for 465 minutes, equivalent to 5
## orbital periods

ISS_TLE <- test_TLEs[[1]]

target_times_ISS <- seq(0, 465, by=5)

results_position_matrix_ISS <- matrix(nrow=length(target_times_ISS), ncol=3)
results_velocity_matrix_ISS <- matrix(nrow=length(target_times_ISS), ncol=3)

for(i in 1:length(target_times_ISS)) {
new_result <- sgp4(n0=revDay2radMin(ISS_TLE$meanMotion),
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e0=ISS_TLE$eccentricity,
i0=deg2rad(ISS_TLE$inclination),
M0=deg2rad(ISS_TLE$meanAnomaly),
omega0=deg2rad(ISS_TLE$perigeeArgument),
OMEGA0=deg2rad(ISS_TLE$ascension),
Bstar=ISS_TLE$Bstar,
initialDateTime=ISS_TLE$dateTime,
targetTime = target_times_ISS[i])

results_position_matrix_ISS[i,] <- new_result[[1]]
results_velocity_matrix_ISS[i,] <- new_result[[2]]

}

results_position_matrix_ISS = cbind(results_position_matrix_ISS, target_times_ISS)
colnames(results_position_matrix_ISS) <- c("x", "y", "z", "time")

## We can now visualize the resulting trajectory using a plotly animation
## In order to create the animation, we must first define a function to create
## the accumulated dataframe required for the animation, which indicates the
## trajectory up to each frame. Frames are defined by propagation time

accumulate_by <- function(dat, var) {
var <- f_eval(var, dat)
lvls <- plotly:::getLevels(var)
dats <- lapply(seq_along(lvls), function(x) {

cbind(dat[var %in% lvls[seq(1, x)], ], frame = lvls[[x]])
})
bind_rows(dats)

}

accumulated_df_ISS <- accumulate_by(as.data.frame(results_position_matrix_ISS), ~time)

## We can then create a plotly animation

orbit_animation_ISS <- plot_ly(accumulated_df_ISS, x = ~x, y=~y, z=~z, type = "scatter3d",
mode="lines+marker", opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

orbit_animation_ISS <- layout(orbit_animation_ISS, scene = list(
xaxis=list(range=c(-7000, 7000)),
yaxis=list(range=c(-7000, 7000)),
zaxis=list(range=c(-7000, 7000))))

## We can also create an animation of a static spheric mesh to represent the
## Earth, and add it to the orbit animation
## First we generate Cartesian coordinates for a sphere of radius equal to
## the radius of Earth. Coordinates are generated along meridians and parallels
## that can be plotted as lines

sphere_theta <- seq(0, 2*pi, length.out=20)
sphere_phi <- seq(0, pi, length.out=20)
sphere_radius <- 6371
sphere_x <- sphere_y <- sphere_z <- numeric(0)

for(theta in sphere_theta) {
for(phi in sphere_phi) {

sphere_x <- c(sphere_x, sphere_radius * cos(theta) * sin(phi))
sphere_y <- c(sphere_y, sphere_radius * sin(theta) * sin(phi))
sphere_z <- c(sphere_z, sphere_radius * cos(phi))

}
sphere_x <- c(sphere_x, NULL)
sphere_y <- c(sphere_y, NULL)
sphere_z <- c(sphere_z, NULL)
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}

for(phi in sphere_phi) {
for(theta in sphere_theta) {

sphere_x <- c(sphere_x, sphere_radius * cos(theta) * sin(phi))
sphere_y <- c(sphere_y, sphere_radius * sin(theta) * sin(phi))
sphere_z <- c(sphere_z, sphere_radius * cos(phi))

}
sphere_x <- c(sphere_x, NULL)
sphere_y <- c(sphere_y, NULL)
sphere_z <- c(sphere_z, NULL)

}

## Then, we generate an extended dataframe with repetitions of the coordinates
## for a number of times equal to the number of frames in the orbit animation.
## We include a frame column to specify the frame corresponding to each sphere,
## matching the frame numbers

sphere_df <- data.frame(x = sphere_x, y = sphere_y, z = sphere_z)
sphere_df_ext_ISS <- sphere_df[rep(seq_len(nrow(sphere_df)),

length(target_times_ISS)), ]
sphere_df_ext_ISS <- cbind(sphere_df_ext_ISS,

rep(target_times_ISS, each=nrow(sphere_df)))
colnames(sphere_df_ext_ISS) <- c("x", "y", "z", "frame")

## We can then use the extended dataframe to create an animation of a static
## sphere

sphere_animated_ISS <- plot_ly(sphere_df_ext_ISS, x=~x, y=~y, z=~z, frame=~frame,
type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'), hoverinfo="skip",
showlegend=FALSE)

sphere_animated_ISS <- layout(sphere_animated_ISS, scene = list(
xaxis = list(showspikes=FALSE),
yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

## The two animations can then be combined and used to visualize the orbit,
## which as we can see is relatively close to the surface of Earth. This is in
## accordance with the ISS being on a LEO (Low Earth Orbit)

combined_animation_ISS <- suppressWarnings(subplot(orbit_animation_ISS,
sphere_animated_ISS))

combined_animation_ISS <- animation_opts(combined_animation_ISS, frame=50)
combined_animation_ISS <- layout(combined_animation_ISS, scene = list(

aspectmode = "cube"))
combined_animation_ISS
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frame: 0
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Play

Figure 1: Trajectory of the International Space Station (ISS) calculated with the SGP4 propagator. The
ISS is in a low Earth orbit, around 400 km above Earth’s surface.

The SDP4 model

The SDP4 (Simplified Deep-space Perturbation 4) model (Hujsak 1979) is an extension of the SGP4
model designed to be applied to deep-space satellites, which are considered to be those with an orbital
period over 225 minutes. The model introduces corrections to account for the gravitational effects
exerted by the Sun and the Moon, as well as Earth gravitational resonance effects for orbits with
periods of 12 h or 24 h. However, it employs a simplified atmospheric drag model, and therefore SGP4
should still be the preferred choice for near-Earth satellites.

The SDP4 implementation provided with asteRisk is also based on the revised C++ implementation
by Vallado (Vallado). It can be accessed through the function sdp4, which takes the same arguments as
input and returns an output in the same format as function sgp4. Alternatively, the function sgdp4 can
be used to automatically determine and apply the most appropriate model based on the orbital period
of the satellite (SGP4 for orbital periods below 225 minutes, and SDP4 for larger ones). The validity of
our implementation has also been verified with previously published test cases (Appendix: Test cases
for SGP4/SDP4).

In the following example, we demonstrate the application of the SDP4 model to propagate the
orbit of the Molniya satellite, which follows a highly elliptical orbit with a period of approximately 12
h:

## Let us now propagate the position of a Molniya satellite, which should follow
## a highly elliptical orbit and go to distances much farther from Earth than
## the ISS. We will propagate the orbit for 715 minutes, one orbital period. In
## this case, we use the SDP4 propagator

molniya_TLE <- test_TLEs[[2]]
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target_times_Molniya <- seq(0, 715, by=5)

results_position_matrix_Molniya <- matrix(nrow=length(target_times_Molniya), ncol=3)
results_velocity_matrix_Molniya <- matrix(nrow=length(target_times_Molniya), ncol=3)

for(i in 1:length(target_times_Molniya)) {
new_result <- sdp4(n0=revDay2radMin(molniya_TLE$meanMotion),

e0=molniya_TLE$eccentricity,
i0=deg2rad(molniya_TLE$inclination),
M0=deg2rad(molniya_TLE$meanAnomaly),
omega0=deg2rad(molniya_TLE$perigeeArgument),
OMEGA0=deg2rad(molniya_TLE$ascension),
Bstar=molniya_TLE$Bstar,
initialDateTime=molniya_TLE$dateTime,
targetTime = target_times_Molniya[i])

results_position_matrix_Molniya[i,] <- new_result[[1]]
results_velocity_matrix_Molniya[i,] <- new_result[[2]]

}

results_position_matrix_Molniya = cbind(results_position_matrix_Molniya,
target_times_Molniya)

colnames(results_position_matrix_Molniya) <- c("x", "y", "z", "time")

## We can follow a similar procedure as for the ISS to generate an animation
## of the trajectory of the Molniya satellite

accumulated_df_Molniya <- accumulate_by(
as.data.frame(results_position_matrix_Molniya), ~time)

## We can then create a plotly animation

orbit_animation_Molniya <- plot_ly(accumulated_df_Molniya, x = ~x, y=~y, z=~z,
type = "scatter3d", mode="lines+marker",
opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

sphere_df_ext_Molniya <- sphere_df[rep(seq_len(nrow(sphere_df)),
length(target_times_Molniya)), ]

sphere_df_ext_Molniya <- cbind(sphere_df_ext_Molniya,
rep(target_times_Molniya, each=nrow(sphere_df)))

colnames(sphere_df_ext_Molniya) <- c("x", "y", "z", "frame")

sphere_animated_Molniya <- plot_ly(sphere_df_ext_Molniya, x=~x, y=~y, z=~z,
frame=~frame, type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'),
hoverinfo="skip", showlegend=FALSE)

sphere_animated_Molniya <- layout(sphere_animated_Molniya,
scene = list(xaxis = list(showspikes=FALSE),

yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

combined_animation_Molniya <- suppressWarnings(subplot(sphere_animated_Molniya,
orbit_animation_Molniya))

combined_animation_Molniya <- animation_opts(combined_animation_Molniya, frame=15)
combined_animation_Molniya <- layout(combined_animation_Molniya, scene = list(

aspectmode = "manual",
aspectratio = list(x=1, y=(7000+24500)/(15000+21000),

z=(41000 + 7000)/(15000+21000)),
xaxis=list(range=c(-21000, 15000)),
yaxis=list(range=c(-24500, 7000)),
zaxis=list(range=c(-7000, 41000))))
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## We can now verify that the satellite follows a highly elliptical orbit. It can
## also be seen that, as expected, the satellite moves faster at the perigee
## (when it is closest to Earth) and slower at the apogee (when it is the
## farthest from Earth)

combined_animation_Molniya

frame: 0

0 60 120 180 240 300 360 420 480 540 600 660

Play

Figure 2: Trajectory of a Molniya satellite calculated with the SDP4 propagator. The satellite follows a
highly elliptical orbit.

Numerical high-precision orbital propagator

asteRisk also provides a numerical orbital propagator. The implemented high-precision orbital
propagator relies on the following fundamental motion equation:

a =
∂2p
∂t2

Where a denotes the acceleration, p the position, and t time. It can be simplified to a set of 6 first-
order differential equations, where px, py, pz, vx, vy, vz and ax, ay, az denote, respectively, orthogonal
components of the position, velocity and acceleration:

vx =
∂px

∂t
, vy =

∂py

∂t
, vz =

∂pz

∂t

ax =
∂vx

∂t
, ay =

∂vy

∂t
, az =

∂vz

∂t

In the current implementation, acceleration is calculated by considering the following forces
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known to play a significant role in orbital mechanics (Montenbruck and Gill 2012), comparable to the
force field found in other HPOP implementations (Maisonobe et al. 2010; AGI; Mahooti):

• Earth gravitational attraction. The gravity field generated by Earth is calculated according to
the GGM03S model (Tapley et al. 2007), using zonal, tesseral and sectoral spherical harmonics
up to a degree and order of 180. The effects of ocean and solid Earth tides on the gravity field
are also taken into account.

• Third-body gravitational attractions. The gravitational attractions exerted by the Sun, the
Moon, the other 7 main planets of the Solar System (Mercury, Venus, Mars, Jupiter, Saturn,
Uranus and Neptune) and Pluto are considered. All of them are modelled as point masses,
and their positions are calculated using Jet Propulsion Laboratory Development Ephemeris 436
(Folkner et al. 2014).

• Solar radiation pressure. This is the force generated by the impact of photons from solar
radiation on the satellite. A double conical shadow model to account for the reduction in the
apparent solar disk seen by a satellite due to the Earth and the Moon (both of which are assumed
to be spherical) eclipses is implemented (Li et al. 2019).

• Atmospheric drag. The drag effect caused by the atmosphere of Earth is calculated using the
NRLMSISE-00 (Picone et al. 2002) atmospheric model.

Additionally, a correction to the acceleration generated by the described forces to account for
relativistic effects caused by the mass of the Earth is included (Montenbruck and Gill 2012). In
the current implementation, only the Schwarzschild effect (Roh et al. 2016; Sośnica et al. 2021) is
considered.

The HPOP can be accessed through the hpop function, which receives as inputs the initial position
and velocity of the satellite, the time to which these correspond, a set of target times at which the
position and velocity of the satellite should be calculated, the mass of the satellite, the effective
area of the surface of the satellite subjected to drag and radiation pressure, and drag and reflectivity
coefficients, that describe respectively how much the satellite is affected by drag and radiation pressure
forces (Knocke et al. 1988).

The system of differential equations is solved with the deSolve package. By default, hpop uses the
RADAU5 integrator, an implicit Runge-Kutta method of order 5 with adaptive step size (Wanner and
Hairer 1996). However, additional arguments accepted by the ode function of the deSolve package
can be directly provided to hpop to modify the values of the parameters for the integrator or to specify
a different integrator that will be used to solve the motion equations.

In the following example, we apply the HPOP to the GPS satellite for which we previously read
a RINEX navigation file, and compare the results with the real final position obtained by reading
another RINEX file:

## We will use the ephemeris broadcasted in the previously read RINEX file
## for GPS satellite with PRN code 18 to obtain initial conditions for
## propagation. It should be noted that the HPOP requires Earth orientation
## parameters and other space data, which are provided through the companion
## asteRiskData package. Therefore, we must first install it if it is not
## already available:

if (!requireNamespace("asteRiskData", quietly = TRUE)) {
install.packages('asteRiskData', repos='https://rafael-ayala.github.io/drat/')

}

## The initial position and velocity obtained from the RINEX file are in the
## ITRF frame, and must first be converted to the GCRF frame (more details
## about each frame are given in the following section). In order to perform
## such corrections, the latest Earth Orientation Parameters (which contain
## information about the precise location of the Earth rotation axis for every
## day) are required. These can be retrieved by running getLatestSpaceData(),
## after which they will be automatically used by all the functions that require
## them

GPS_RINEX_initialMessage <- GPS_RINEX$messages[[1]]

getLatestSpaceData()
initialEphemerisDateTime <- format(GPS_RINEX_initialMessage$ephemerisUTCTime,

"%Y-%m-%d %H:%M:%EXS")
initialStateGCRF <- ITRFtoGCRF(GPS_RINEX_initialMessage$position_ITRF,
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GPS_RINEX_initialMessage$velocity_ITRF,
initialEphemerisDateTime)

## Additionally, we also require some parameters describing the physical
## properties of the satellite. By November 2021, GPS satellite with PRN code
## 18 is USA-293, launched in August 2019 and belonging to GPS block III.
## Such satellites have an on-orbit mass of around 2600 kg. As an approximation,
## we can model GPS block III satellites as a central body with dimensions of
## 2.2 m x 1.8 m x 4.2 m with solar arrays of a total surface of 28.2 m2, as
## described by Steigenberger et al., 2020. The central body therefore has
## faces with areas of 9.24 m2, 7.56 m2 and 3.96 m2. Without considering a more
## complex attitude model, the mean cross-sectional area of the satellite can
## be calculated as the sum of all these 4 areas divided by 2. We will use this
## value as the effective area for drag (which will anyway be negligible at the
## altitude of a GPS orbit). For the effective area for radiation pressure, we
## will use the mean cross-sectional area of the central body plus the full
## area of the solar arrays, since GPS block III satellites are equipped with
## systems to maintain them oriented towards the Sun. Finally, we will use the
## commonly employed values of 2.2 and 1.2 for drag and radiation coefficients.
## We will propagate the orbit for 12 hours at every minute.

propagationTimes <- seq(0, 43200, by=60)

## It should be noted that the following can take a few minutes to run

hpop_results_GPS <- hpop(position=initialStateGCRF$position,
velocity=initialStateGCRF$velocity,
dateTime=initialEphemerisDateTime,
times=propagationTimes,
satelliteMass=2600,
dragArea=(9.24 + 7.56 + 3.96 + 28.2)/2,
radiationArea=(9.24 + 7.56 + 3.96)/2 + 28.2,
dragCoefficient=2.2,
radiationCoefficient=1.2)

## We can now read another RINEX navigation file for the same satellite with
## the position 12 hours later, and compare it with the calculated one

GPS_RINEX_2 <- readGPSNavigationRINEX("./data/RINEX_GPS_2.rxn")

GPS_RINEX_endMessage <- GPS_RINEX_2$messages[[1]]
endEphemerisDateTime <- format(GPS_RINEX_endMessage$ephemerisUTCTime,

"%Y-%m-%d %H:%M:%EXS")
endStateGCRF <- ITRFtoGCRF(GPS_RINEX_endMessage$position_ITRF,

GPS_RINEX_endMessage$velocity_ITRF,
endEphemerisDateTime)

distance <- sqrt(
sum(

(endStateGCRF$position - hpop_results_GPS[nrow(hpop_results_GPS), 2:4])^2))
print(distance) # 19.7806

## The calculated position is less than 20 m away from the real position, thanks
## To the high precision of the propagator. We can also visualize the trajectory
## as previously with a plotly animation. To keep consistency, we first convert
## the distance units to km and propagation times to minutes

propagated_positions_GPS <- cbind(hpop_results_GPS[, 2:4]/1000,
hpop_results_GPS[, 1]/60)

colnames(propagated_positions_GPS) <- c("x", "y", "z", "time")

## We will sample the trajectory once every 10 minutes

propagated_positions_GPS <- propagated_positions_GPS[
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seq(1, nrow(propagated_positions_GPS), by=10), ]
accumulated_df_GPS <- accumulate_by(as.data.frame(propagated_positions_GPS), ~time)

orbit_animation_GPS <- plot_ly(accumulated_df_GPS, x = ~x, y=~y, z=~z,
type = "scatter3d", mode="lines+marker",
opacity=0.8, line=list(width = 6,

color = ~time,
reverscale = FALSE),

frame= ~frame, showlegend=FALSE)

orbit_animation_GPS <- layout(orbit_animation_GPS, scene = list(
xaxis=list(range=c(-27500, 27500)),
yaxis=list(range=c(-27500, 27500)),
zaxis=list(range=c(-27500, 27500))))

sphere_df_ext_GPS <- sphere_df[rep(seq_len(nrow(sphere_df)),
length(propagated_positions_GPS[, "time"])), ]

sphere_df_ext_GPS <- cbind(sphere_df_ext_GPS,
rep(propagated_positions_GPS[, "time"],

each=nrow(sphere_df)))
colnames(sphere_df_ext_GPS) <- c("x", "y", "z", "frame")

sphere_animated_GPS <- plot_ly(sphere_df_ext_GPS, x=~x, y=~y, z=~z, frame=~frame,
type="scatter3d", mode="lines",
line=list(color='rgb(0,0,255)'), hoverinfo="skip",
showlegend=FALSE)

sphere_animated_GPS <- layout(sphere_animated_GPS,
scene = list(xaxis = list(showspikes=FALSE),

yaxis = list(showspikes=FALSE),
zaxis = list(showspikes=FALSE)))

combined_animation_GPS <- suppressWarnings(subplot(sphere_animated_GPS,
orbit_animation_GPS))

combined_animation_GPS <- animation_opts(combined_animation_GPS, frame=15)
combined_animation_GPS <- layout(combined_animation_GPS, scene = list(

aspectmode = "cube"))
combined_animation_GPS

frame: 0
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Play
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Figure 3: Trajectory of a GPS satellite calculated with the high-precision numerical propagator. It
follows an almost circular orbit at an altitude of approximately 20200 km, which allows it to cover a
larger portion of Earth at any given time.

4 Frames of reference

There are multiple frames of reference available to describe the position of objects in space. These
differ in the location of the origin of coordinates, the presence or absence of acceleration for the
reference frame itself and the orientation of the planes defining the main axes. Inertial frames are those
that do not experience any acceleration, while non-inertial frames exhibit some sort of acceleration,
such as rotation. The different available frames offer advantages and disadvantages for different
applications. For example, a non-inertial frame that rotates with Earth is useful when analyzing the
ground-track projected by a satellite onto the surface of Earth along its orbit, while inertial frames
make the description of the forces acting on a satellite simpler.

asteRisk provides functions to convert between the frames of reference most relevant for the
determination of Earth-orbiting satellites: ITRF (International Terrestrial Reference Frame), GCRF
(Geocentric Celestial Reference Frame), TEME (True Equator Mean Equinox) and geodetic coordinates
(latitude, longitude and altitude). Additionally, functions to obtain the orbital parameters of a satellite
with known position and velocity in these frames are provided.

ITRF

The International Terrestrial Reference Frame (ITRF) (Cartography and Geodesy) is an Earth-Centered,
Earth-Fixed (ECEF) frame of reference, i.e. a non-inertial Cartesian coordinate system that rotates with
Earth. The origin of coordinates is placed at the center of mass of Earth, with the Z-axis extending
along the true North as defined by the IERS reference pole (which differs slightly from the axis of
rotation of Earth at a given instant due to its slight wobbling known as polar motion (Sandoval-Romero
and Argueta-Diaz 2010)). The X-axis extends towards the intersection between the equator and the
Greenwich meridian at any time (the point with 0º latitude and 0º longitude), and the Y-axis is set such
that a right-handed orthogonal coordinate system is completed. As a consequence of these features,
the position of an object fixed with respect to the surface of the Earth does not change with time.

GCRF

The Geocentric Celestial Reference Frame (GCRF) (Petit and Luzum 2010) is an inertial Cartesian
coordinate system where the origin of coordinates is placed at the center of mass of the Earth and
the axes are aligned with those of the International Celestial Reference System, which are defined
based on the measurement of the position of extragalactic radio sources through very-long baseline
interferometry. As a consequence, the axes are non-rotating, unlike in the ITRF frame. Even though
GCRF, like any other body-centered frame of reference, is not a truly inertial frame of reference (given,
for example, the fact that Earth itself is constantly orbiting around the Sun), it can be considered as
such for Earth-orbiting satellites.

TEME

The True Equator Mean Equinox (TEME) frame is another Earth-centered inertial frame of reference
used mainly by the SGP4/SDP4 orbital propagators to output coordinates. The origin of coordinates
is also placed at the center of mass of the Earth, and the Z-axis extends towards the position of the
Celestial Ephemeris Pole (CEP). The location of the CEP matches the mean instantaneous axis of
rotation averaged over a period of 2 days (which makes the CEP ignore the diurnal and quasi-diurnal
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polar motions) (Capitaine et al. 1985). The X-axis extends towards the so-called uniform equinox,
which is calculated by finding the intersection between the ecliptic (the plane defined by the orbit
of the Earth around the Sun) and the mean equator (the plane containing Earth’s equatorial line at
a given time calculated by taking into consideration only precession, i.e., averaging over nutation
effects), and then projecting this intersection (the mean equinox) over the true equator (the plane
perpendicular to the previously defined Z-axis, which is therefore the equatorial plane at the same
time calculated taking into consideration both precession and nutation) (Seago and Vallado 2000).
Due to the complexity of its definition, the TEME frame is not currently widely used, except in the
context of the results of propagating TLE elements with the SGP4/SDP4 models. It can also be inferred
from its definition that the axes of the frame will slightly rotate over time as a consequence of the
precession and nutation of Earth, and therefore it is important to know which time is taken as the
reference when setting up the frame. While an explicit definition has not been given by NORAD, it is
generally accepted that the reference elements (CEP, true equator and mean equinox) for the TEME
frame are taken to be those at the time for which orbital propagation is performed (Seago and Vallado
2000; Vallado et al. 2006).

Orbital elements

Keplerian orbital elements are a set of six parameters used to describe the orbits of celestial objects,
including satellites. While satellites do not follow a perfectly Keplerian orbit (i.e., a conic section that
would be followed if only the point-like gravitational attraction between the satellite and the central
body was considered), their state at any point can be defined by the orbital parameters that they would
have if they were located at the same position with the same velocity following a perfectly Keplerian
orbit (i.e., if perturbations caused by other forces were absent). These are called osculating orbital
elements. Different parametrizations exist, with one of the most frequent sets of parameters being
analogous to the mean orbital elements used by TLE previously described (it should be kept in mind
that mean motion, semi major axis and orbital period provide the same information). Additional,
alternative parameters exist for edge cases where some of the conventional ones are not well defined
or meaningful. These are:

• True anomaly: unlike mean anomaly, true anomaly is the angle between the direction of the
perigee and the actual position of the satellite.

• Argument of latitude: the angle between the equator and the position of the satellite. It is useful
to define the position of satellites in circular orbits, where the argument of perigee and true
anomaly are not well defined.

• Longitude of perigee: the angle between the vernal equinox and the perigee. It is useful for
cases of orbits with 0 inclination, where the longitude of the ascending node and the argument
of perigee are not well defined.

• True longitude: the angle between the vernal equinox and the position of the satellite. It is
useful for cases of circular orbits with 0 inclination, where the longitude of the ascending node,
the argument of perigee and true anomaly are not well defined.

It should also be noted that orbital elements are defined with respect to a set of elements of
reference, such as the equatorial plane, which are usually chosen to define an Earth-centered inertial
frame of reference. Although the specific choice of these must be taken into account when interpreting
the meaning of a given set of orbital parameters, a complete set of six Keplerian orbital elements
defines unequivocally the position and velocity of the satellite at a given time in a frame of reference
with elements of reference equivalent to those used for the orbital elements. Therefore, osculating
orbital elements can be used to calculate a corresponding set of Cartesian coordinates.

Conversion between different coordinate systems

The following table summarizes the functions available in asteRisk to convert coordinates between
the different frames of reference previously described:

It should be noted that, while a velocity value is not strictly required to perform conversions
between systems of Cartesian coordinates, it is required to convert to or from orbital elements.

In the following example, we apply multiple coordinate transformations to obtain a projection of
the trajectory of the Molniya satellite previously analyzed over the surface of Earth:

## We previously calculated the trajectory of a Molniya satellite using the SDP4
## propagator. The output coordinates are given in the TEME frame. Let us first
## convert the final position to the standard GCRF frame of reference. Note that
## we need to add the propagation time to the original epoch specified in the
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Table 2: Available functions for conversions between different systems of coordinates.

Origin system Target system Function
ITRF GCRF ITRFtoGCRF
ITRF Geodetic ITRFtoLATLON
GCRF ITRF GCRFtoITRF
GCRF Geodetic GCRFtoLATLON
GCRF Orbital elements ECItoKOE
TEME GCRF TEMEtoGCRF
TEME ITRF TEMEtoITRF
TEME Geodetic TEMEtoLATLON
TEME Orbital elements ECItoKOE
Geodetic GCRF LATLONtoGCRF
Geodetic ITRF LATLONtoITRF
Orbital elements GCRF KOEtoECI
Orbital elements TEME KOEtoECI

## TLE to obtain the correct date and time for conversion of reference frame

endState_Molniya_GCRF <- TEMEtoGCRF(results_position_matrix_Molniya[144, 1:3]*1000,
results_velocity_matrix_Molniya[144, 1:3]*1000,
as.character(as.POSIXct(

molniya_TLE$dateTime, tz="UTC") +
60*results_position_matrix_Molniya[144,4]))

print(endState_Molniya_GCRF$position)

#> [1] -14390694.30 -4572069.28 -95636.31

print(results_position_matrix_Molniya[144, 1:3]*1000)

#> x y z
#> -14384056.0 -4592709.2 -104890.6

## The coordinates values are not wildly different, since differences are due to
## the precession and nutation of Earth's rotation axis.
## Let us know convert the coordinates to geodetic latitude and longitude to
## visualize a projection of the trajectory over the surface of Earth

geodetic_matrix_Molniya <- matrix(nrow=nrow(results_position_matrix_Molniya), ncol=4)

for(i in 1:nrow(geodetic_matrix_Molniya)) {
new_dateTime <- as.character(as.POSIXct(molniya_TLE$dateTime, tz="UTC") +

60*target_times_Molniya[i])
new_geodetic <- TEMEtoLATLON(results_position_matrix_Molniya[i, 1:3]*1000,

new_dateTime)
geodetic_matrix_Molniya[i, 1:3] <- new_geodetic
geodetic_matrix_Molniya[i, 4] <- target_times_Molniya[i]

}

colnames(geodetic_matrix_Molniya) <- c("latitude", "longitude", "altitude", "time")

## We can now visualize the ground track of the satellite with ggmap

groundTrack_Molniya <- ggmap(get_map(c(left=-180, right=180, bottom=-80, top=80),
source = "stamen")) +

geom_segment(data=as.data.frame(geodetic_matrix_Molniya),
aes(x=longitude, y=latitude,

xend=c(tail(longitude, n=-1), NA),
yend=c(tail(latitude, n=-1), NA)),

na.rm=TRUE) +
geom_point(data=as.data.frame(geodetic_matrix_Molniya), aes(x=longitude, y=latitude),

color="blue", size=0.3, alpha=0.8)

## As we can see, Molniya satellites spend most of the time over high latitudes,
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## thanks to the fact that the apogee of their elliptical orbit is above such
## regions. This property made them useful for the Soviet Union.

groundTrack_Molniya
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Figure 4: Ground track of a Molniya satellite. The satellite spent most of the time over regions of high
latitude.

5 Future work

While the described functionalities provide a solid core for astrodynamics analysis in R, additional
features are expected to be frequently added to asteRisk. Some of these will include:

• Expansion of the force model used by the HPOP to increase its accuracy. For example, by
including albedo radiation pressure or considering the additional Lens-Thirring and De Sitter
relativistic effects.

• Addition of functionalities to model and calculate orbital maneuvers.
• Support for more complex models for satellite orientation during propagation with the HPOP.
• Adding support for the Orbit Data Messages standard formats (Space Data Systems).
• Addition of more reference frames, including non-Earth centered frames.

6 Summary

Accurate calculation of the position of satellites at a given time is a key part of the design of successful
space missions and continued operation and maintenance of satellites already in orbit. asteRisk
provides tools to perform such astrodynamics analyses in R. These include well-documented orbital
propagators and functions to parse the file formats most commonly used to distribute satellite po-
sitional data, as well as to convert coordinates between different coordinate frames. The provided
toolbox should be specially useful in combination with the publicly available orbital data sources
and the multiple statistical analysis and machine-learning functionalities already available in the R
ecosystem, facilitating the development of novel orbital propagators with higher accuracy and lower
computational costs.
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7 Appendix: Test cases for SGP4/SDP4

The following code will run SGP4/SDP4 propagators on a series of standard test frequently used to
test the validity of implementations of these models (Vallado et al. 2006). The results demonstrate
that the implementation provided in asteRisk is in agreement up to at least tenths of millimeters with
previous implementations.

## First, we create a list with the target propagation times for each test case,
## in the same order as the TLEs are given

target_times_verification <- list(
"5"=seq(0, 4320, by=360),
"4632"=c(0, -5184, -5064, -4944, -4896),
"6251"=seq(0, 2880, by=120),
"8195"=seq(0, 2880, by=120),
"9880"=seq(0, 2880, by=120),
"9998"=c(0, seq(-1440, -720, by=60)),
"11801"=seq(0, 1440, by=720),
"14128"=seq(0, 2880, by=120),
"16925"=seq(0, 1440, by=120),
"20413"=c(0, seq(1440, 4320, by=120)),
"21897"=seq(0, 2880, by=120),
"22312"=c(0, seq(54.2028672, 474.2028672, by=20)),
"22674"=seq(0, 2880, by=120),
"23177"=seq(0, 1440, by=120),
"23333"=c(seq(0, 1560, by=120), 1600),
"23599"=seq(0, 720, by=20),
"24208"=seq(0, 1440, by=120),
"25954"=c(0, seq(-1440, 1440, by=120)),
"26900"=c(0, 9300, 9360, 9400),
"26975"=seq(0, 2880, by=120),
"28057"=seq(0, 2880, by=120),
"28129"=seq(0, 1440, by=120),
"28350"=seq(0, 1440, by=120),
"28623"=seq(0, 1440, by=120),
"28626"=seq(0, 1440, by=120),
"28872"=seq(0, 50, by=5),
"29141"=seq(0, 420, by=20),
"29238"=seq(0, 1440, by=120),
"88888"=seq(0, 1440, by=120),
"33333"=seq(0, 20, by=5),
"33334"=0,
"33335"=seq(0, 1440, by=20),
"20413"=c(0, seq(1844000, 1844340, by=5))

)

## We can now read the TLE file with the TLEs for all verification cases and
## propagate them at the target times. We can store the results for each case
## as a matrix of 7 columns where each row corresponds to a propagation time,
## column 1 stores propagation times, columns 2 to 4 the propagated positions
## and columns 5 to 7 the propagated velocities

verification_TLEs <- readTLE("data/verificationTLEs.tle")
verification_results <- vector(mode="list", length=length(verification_TLEs))
names(verification_results) <- names(target_times_verification)

for(i in 1:length(verification_TLEs)) {
verification_results[[i]] <- matrix(nrow=length(target_times_verification[[i]]),

ncol=7)
for(j in 1:length(target_times_verification[[i]])) {

propagation <- sgdp4(n0=revDay2radMin(verification_TLEs[[i]]$meanMotion),
e0=verification_TLEs[[i]]$eccentricity,
i0=deg2rad(verification_TLEs[[i]]$inclination),
M0=deg2rad(verification_TLEs[[i]]$meanAnomaly),
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omega0=deg2rad(verification_TLEs[[i]]$perigeeArgument),
OMEGA0=deg2rad(verification_TLEs[[i]]$ascension),
Bstar=verification_TLEs[[i]]$Bstar,
initialDateTime=verification_TLEs[[i]]$dateTime,
targetTime=target_times_verification[[i]][j])

verification_results[[i]][j, 1] <- target_times_verification[[i]][j]
verification_results[[i]][j, 2:4] <- propagation$position
verification_results[[i]][j, 5:7] <- propagation$velocity

}
}
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K. Sośnica, G. Bury, R. Zajdel, K. Kazmierski, J. Ventura-Traveset, R. Prieto-Cerdeira and L. Mendes.
General relativistic effects acting on the orbits of galileo satellites. Celestial Mechanics and Dynamical
Astronomy, 133(4): 1–31, 2021.

C. C. for Space Data Systems. Orbit data messages - recommended standard.,URL https://public.
ccsds.org/Pubs/502x0b2c1e2.pdf. (accessed: 26.11.2021).

R. I. of Space Device Engineering. Global navigation satellite system - interface control document.,URL
https://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf. (ac-
cessed: 26.11.2021).

B. Tapley, J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi and S. Poole. The GGM03 mean earth
gravity model from GRACE. In AGU fall meeting abstracts, pages. G42A–03 2007.

A. Toorian, K. Diaz and S. Lee. The CubeSat approach to space access. In 2008 IEEE aerospace conference,
pages. 1–14 2008. IEEE.

United Nations. Register of Objects Launched into Outer Space.,URL https://www.unoosa.org/oosa/
en/spaceobjectregister/index.html. (accessed: 15.09.2021).

D. Vallado. Astrodynamics software.,URL https://celestrak.com/software/vallado-sw.php. (ac-
cessed: 07.10.2021).

D. A. Vallado, P. Crawford, R. Hujsak and T. Kelso. Revisiting spacetrack report# 3: Rev 1. In

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://jp.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://jp.mathworks.com/matlabcentral/fileexchange/55167-high-precision-orbit-propagator
https://www.space-track.org/
https://doi.org/10.1109/IPSN.2014.6846743
https://doi.org/10.1109/IPSN.2014.6846743
https://public.ccsds.org/Pubs/502x0b2c1e2.pdf
https://public.ccsds.org/Pubs/502x0b2c1e2.pdf
https://russianspacesystems.ru/wp-content/uploads/2016/08/ICD_GLONASS_eng_v5.1.pdf
https://www.unoosa.org/oosa/en/spaceobjectregister/index.html
https://www.unoosa.org/oosa/en/spaceobjectregister/index.html
https://celestrak.com/software/vallado-sw.php


CONTRIBUTED RESEARCH ARTICLE 54

AIAA/AAS astrodynamics specialist conference and exhibit, 2006.
G. Wanner and E. Hairer. Solving ordinary differential equations II. Springer Berlin Heidelberg, 1996.

Rafael Ayala
Okinawa Institute of Science and Technology Graduate University
7542 Onna, Onna-son, Kunigami, Okinawa 904-0411
Japan
ORCiD: 0000-0002-9332-4623
rafael.ayala@oist.jp

Daniel Ayala
University of Seville
ETSI Informática, Avda. de la Reina Mercedes, s/n, Sevilla E-41012
Spain
ORCiD: 0000-0003-2095-1009
dayala1@us.es

Lara Sellés Vidal
Okinawa Institute of Science and Technology Graduate University
7542 Onna, Onna-son, Kunigami, Okinawa 904-0411
Japan
ORCiD: 0000-0003-2537-6824
lara.sellesvidal@oist.jp

David Ruiz
University of Seville
ETSI Informática, Avda. de la Reina Mercedes, s/n, Sevilla E-41012
Spain
ORCiD: 0000-0003-4460-5493
druiz@us.es

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://orcid.org/0000-0002-9332-4623
mailto:rafael.ayala@oist.jp
https://orcid.org/0000-0003-2095-1009
mailto:dayala1@us.es
https://orcid.org/0000-0003-2537-6824
mailto:lara.sellesvidal@oist.jp
https://orcid.org/0000-0003-4460-5493
mailto:druiz@us.es


CONTRIBUTED RESEARCH ARTICLE 55

gplsim: An R Package for Generalized
Partially Linear Single-index Models
by Tianhai Zu and Yan Yu

Abstract Generalized partially linear single-index models (GPLSIMs) are important tools in non-
parametric regression. They extend popular generalized linear models to allow flexible nonlinear
dependence on some predictors while overcoming the “curse of dimensionality.” We develop an R
package gplsim that implements efficient spline estimation of GPLSIMs, proposed by Yu and Ruppert
(2002) and Yu et al. (2017), for a response variable from a general exponential family. The package
builds upon the popular mgcv package for generalized additive models (GAMs) and provides func-
tions that allow users to fit GPLSIMs with various link functions, select smoothing tuning parameter
λ against generalized cross-validation or alternative choices, and visualize the estimated unknown
univariate function of single-index term. In this paper, we discuss the implementation of gplsim in
detail, and illustrate the use case through a sine-bump simulation study with various links and a
real-data application to air pollution data.

1 Introduction

A popular approach to analyzing the relationship between a response variable and a set of predictors is
generalized linear models or GLMs McCullagh and Nelder (1989), where the conditional mean of the
response variable is linked to a linear combination of predictors via a link function. Although GLMs
are simple and easy to interpret, in many complex real data applications the underlying assumption of
linearity is often violated. Generalized partially linear single-index models (GPLSIMs) (e.g. Carroll
et al., 1997; Yu and Ruppert, 2002; Yu et al., 2017) are flexible semiparametric models that allow for a
non-linear relationship while retaining ease of interpretation. In particular, GPLSIMs include a partial
linear component zγ, and importantly a nonparametric single-index component, effectively reducing
the dimensionality of p-dimensional predictors x to a univariate single index xTθ with a flexible
univariate function ϕ(xTθ), avoiding the “curse of dimensionality" in multivariate nonparametric
regression. GPLSIMs reduce to popular single-index models (Ichimura, 1993; Härdle et al., 1993; Xia
and Härdle, 2006) when there are no partial linear terms. Another popular special case is partially
linear models Härdle et al. (2012) when there is only one predictor in the nonparametric component.

GPLSIMs and the reduced models have been studied extensively in the literature. Applications
lie in various fields, for example, discrete choice analysis, dose-response models, credit scoring,
Framingham heart study (Yu et al., 2017, and references therein). Yu and Ruppert (2002), Xia and
Härdle (2006), and Liang et al. (2010) studied partially linear single-index models for continuous
responses. For responses from a general exponential family, Carroll et al. (1997) proposed local linear
approach via quasi-likelihood for GPLSIMs estimation. However, as noted in Yu and Ruppert (2002),
the algorithm using local linear methods in Carroll et al. (1997) may suffer from some computational
issues and can become unstable. Yu and Ruppert (2002) proposed a stable and computationally
expedient approach using penalized splines (P-splines) with non-linear least square minimization. Yu
et al. (2017) further proposed an efficient profile likelihood algorithm for the P-splines approach to
GPLSIMs.

We develop a package gplsim1 in R (R Core Team, 2021) using splines for efficient estimation of the
unknown univariate function in GPLSIMs following Yu and Ruppert (2002) and Yu et al. (2017). The
gplsim R package mainly implements the profile likelihood estimation method described in Yu et al.
(2017), utilizing the function gam (Wood, 2011) from the state-of-the-art R package mgcv (Wood, 2001).
The model class gplsim extends on the gam for straightforward computation and implementation. A
side benefit is that our gplsim package enjoys improvements and features as those made to the mgcv
package. For example, mgcv 1.5 added smoothness selection method “REML” and “ML” in addition
to “GCV” to its core function “gam()”, and gplsim can enjoy those new features naturally. Similarly,
any spline basis adopted in mgcv package, such as the thin plate regression spline basis, is also
available in our gplsim package. In addition, our gplsim package also implements the simultaneous
non-linear least square minimization methods for continuous responses from Yu and Ruppert (2002)
as an alternative option.

The mgcv package for generalized additive models (GAMs) is indeed a fundamental building block
for our gplsim package. GAMs (Hastie and Tibshirani, 1986; Wood, 2011) are popular semiparametric
models, which replaces the single-index components by summation of individual smooth functions.

1The package has been published at CRAN, and it is hosted at the package maintainer’s public GitHub repository
github.com/zzz1990771/gplsim.
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As noted in Carroll et al. (1997) and Yu and Ruppert (2002), GPLSIMs are more parsimonious and can
model some interactions. However, GPLSIMs are nonlinear and more difficult to estimate, especially
given the widely available software for GAMs. One may view GAMs as a special case of GPLSIMs
when the single-index coefficients are known. Alternatively, one may view GPLSIMs as special GAMs
models with a nonlinear single-index effect. Single-index models can also be viewed as the base of
more complex models, such as multi-index models (Xia, 2008), projection pursuit regression (Hall,
1989) and deep neural networks (Yang et al., 2017).

The rest of the paper is organized as follows. In the next section, we review the GPLSIMs and the
penalized spline estimation for GPLSIMs. Next, we discuss the estimation algorithm implemented in
this package. The following section describes the main features of the functions provided. The section
“real data and simulation examples” illustrates the use of gplsim in R via an air pollution example and
a sine-bump simulation study. The last section summarizes the method and presents directions for
future research and application.

2 An overview of generalized partially linear single-index models

The GPLSIMs

For given predictor vectors of p-dimensional X = x and q-dimensional Z = z, and under the
assumption that the conditional density of the response variable Y arises from a general exponential
family, the conditional mean E(Y|x, z) can be modeled by

E(Y|x, z) := µ(x, z) = g−1{ϕ
(

xTθ
)
+ zγ}, (1)

where the single-index parameter θ maps the p-dimensional predictors x to a univariate single index
xTθ by a linear projection, and ϕ(·) is a univariate unknown function, while g{·} is a known link
function. The parameter vector is constrained such that ∥θ∥ = 1 with first element θ1 positive for
identifiability (Yu and Ruppert, 2002).

One of the main challenges to estimate model (1) is that the p-dimensional single-index parameter
θ is nested within the unknown univariate function ϕ(·), and hence a highly nonlinear problem.

Review of penalized spline estimation for GPLSIMs

When the single-index parameter θ or the single-index u = xTθ is given, we can estimate the unknown
univariate function ϕ(·) with penalized splines (Ruppert et al., 2003) such that ϕ(u) ≈ H(u)β. The
systematic component of GPLSIMs can then be approximated by

g{µ(x, z)} = H(xTθ)β + zγ, (2)

where H(·) is the spline basis, and β is the spline coefficient vector. We denote ω = (θ, β, γ) as the
column parameter vector.

There are many choices of the spline basis functions H(·), such as B-spline, truncated power basis,
thin-plate spline, and their variations. For simplicity, we first illustrate using a truncated power basis
of degree d:

H(u)β = β0 + β1u + · · ·+ βdud +
K

∑
k=1

βd+k (u − vk)
d
+ ,

where H(u) =
{

1, u, . . . , ud, (u − v1)
d
+ , . . . , (u − vK)

d
+

}
are spline bases with K interior knots placed

at (v1, . . . , vK). Quadratic or cubic splines are commonly used. The interior knots are usually placed
at equally-spaced quantiles within the domain.

Another popular choice of spline basis is the B-spline basis. Any B-spline basis functions H(·) of
degree higher than 0, can be defined by the following Cox-de Boor recursion formula (Boor, 2001):

Hk,d(u) =
u − uk

uk+d−1 − uk
Hk,d−1(u) +

uk+d − u
uk+d − uk+1

Hk+1,d−1(u),

where

Hk,0(u) =
{

1, uk ≤ u ≤ uk+1
0, otherwise.

One of the appealing features of the B-spline is that, unlike truncated power basis, B-spline basis
functions have local supports that can result in high numerical stability.
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To avoid overfitting, a roughness penalty controlled by a smoothing parameter λ is applied to the
log-likelihood. Specifically, we can obtain the penalized log-likelihood estimator of ω by maximizing
the following penalized log-likelihood function:

Qn,λ(ω) =
1
n

Ln(ω)− 1
2

λβ⊤Dβ

=
1
n

n

∑
i=1

[yiξ (xi, zi; ω)− b {ξ (xi, zi; ω)}]− 1
2

λβ⊤Dβ,
(3)

where ξ is the natural parameter in generalized linear models, µ(xi, zi) = b′ {ξ (xi, zi; ω)}, for obser-
vations i = 1, · · · , n, and D is a positive semidefinite symmetric penalty matrix. Common penalty
matrices include the usual quadratic integral penalty on second derivatives of ϕ(·) or alternatively
the diagonal penalty matrix with its last K diagonal elements constrained to equal to one and the rest
equal to zero (see e.g. Ruppert and Carroll, 2000; Yu and Ruppert, 2002), which in effect penalizes the
coefficients of the truncated power basis at the jump of d-th derivatives.

Maximizing the penalized log-likelihood function (3) can be achieved in several ways. We mainly
focus on implementing an efficient profile log-likelihood method in Yu et al. (2017). We also present an
option to implement a simultaneous nonlinear least square method in Yu and Ruppert (2002).

The selection of smoothing parameter λ is important as it controls the tradeoff between over-
smoothing (possible underfitting) and under-smoothing (possible overfitting). We use an outer
iteration to select λ against some selection criterion, as recommended by Wood (2011). For the default
choice, we adopt generalized cross validation (GCV) to select the smoothing parameter λ. Alternatively,
we can consider maximum likelihood (ML) (Anderssen and Bloomfield, 1974) or restricted maximum
likelihood (REML) (Wahba, 1985) based approaches. A nice feature is that we can directly adopt
criteria that have been provided by the “gam()” function arguments from R package mgcv, which is
one of the main components in the implementation of our gplsim estimation algorithm.

Algorithm

We present the main algorithm for fitting the generalized partially linear single-index models (GPLSIMs)
with penalized splines estimation with profile likelihood in detail as follows:

Input: Non-linear predictor vector of p-dimensional X = x, partially linear predictor vector of
q-dimensional Z = z, and a response vector Y = y of family=family.

Output: The estimated single-index parameter θ̂, spline coefficient β̂, partially linear
coefficient γ̂, and fitted response ŷ.

1 Obtain an initial estimate θ̂
(0) of the single-index parameter θ from a generalized linear model

(default), or a user-provided initial list.
2 With an estimate of θ (equivalently, the single index

{
ui = xT

i θ : i = 1, . . . , n
}

), the spline
coefficient β and partially linear coefficient γ can be written as implicit functions of θ to
maximize penalized log-likelihood:

Q (β, γ, λ; u1, . . . , un)
= 1

n ∑n
i=1 [yiξ (ui, zi; β, γ)− b {ξ (ui, zi; β, γ)}]

− 1
2 λβ⊤Dβ.

The roughness penalty parameter λ is selected using generalized cross-validation score
(default) or alternative options.

3 Given the spline coefficient vector β̂λ(θ) and partially linear coefficient vector γ̂λ(θ) as
implicit functions of θ, obtain the profile log-likelihood estimator of the single-index
parameter θ by maximizing:

Q(θ) =
1
n

n

∑
i=1

[
yiξ

(
xT

i θ, zi; β̂λ(θ), γ̂λ(θ)
)

−b
{

ξ
(

xT
i θ, zi; β̂λ(θ), γ̂λ(θ)

)}]
.

4 With the estimated profile log-likelihood estimator θ̂ of the single-index parameter, obtain the
final estimator β̂ of spline coefficient and γ̂ of partially linear coefficient via step 2.

5 Obtain the final fitted response vector ŷ from model (1).

Alternatively, for continuous responses under the default assumption of f amily = gaussian,
maximizing the penalized log-likelihood estimator equation (3) is equivalent to minimizing the
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penalized sum of squared errors:

1
n

n

∑
i=1

{
yi − H(xT

i θ)β − ziγ
}2

+
1
2

λβ⊤Dβ.

For the simultaneous non-linear least square minimization methods in Yu and Ruppert (2002), we can
directly apply a standard nonlinear least square (NLS) optimization algorithm on minimization of the
above penalized sum of squared errors with respect to the full parameter ω = (θ, β, γ). This is useful
to facilitate joint inferences as described in Yu and Ruppert (2002). This algorithm as presented in Yu
and Ruppert (2002) is also implemented in our gplsim package.

Remark. In Step 2 of the profile-likelihood algorithm implementing Yu et al. (2017) as well as the
simultaneous non-linear least square minimization methods implementing Yu and Ruppert (2002),
the spline knots used for the basis functions depend on θ because they are sample quantiles or
equally-spaced placed on the single index {xT

i θ, i = 1, ..., n}. That is, the spline coefficient β, along
with the spline knots implicitly, depends on the single index coefficient θ. We refer to the original
methodological papers Yu and Ruppert (2002), Yu et al. (2017), and references therein for more details.

3 The gplsim package

The R package gplsim consists of one core estimation function gplsim and some supporting functions
such as visualization of the estimated curve for the unknown univariate function. The R package
gplsim depends on the R package mgcv (Wood, 2001) and package minpack.lm (Elzhov et al., 2022).
Unit tests using testthat are in place to ensure continued robustness of the package.

Main fitting function

The main estimation function gplsim implements the profile likelihood algorithm of Yu et al. (2017)
as well as the non-linear least square method of Yu and Ruppert (2002) described in the previous
section. The default method is the profile likelihood for responses from a general exponential family
and non-linear least square method for others.

The usage and input arguments of the main fitting function gplsim are summarized as follows:

gplsim(Y, X, Z, family = gaussian, penalty = TRUE, profile = TRUE, user.init = NULL,
bs= "ps", ...)

This function takes three required arguments: the response variable Y in vector format, the single-
index nonlinear predictors X in the matrix or vector format, and the linear predictors Z in the matrix
or vector format. Please note that all the input covariates are required to be numeric variables.

This function also takes several optional arguments for finer controls. The optional argument
family is a family object for models from the built-in R package stats. This object is a list of functions
and expressions for defining link and variance functions. Supported link functions include identity;
logit, probit, cloglog; log; and inverse for the family distributions of Gaussian, Binomial, Poisson,
and Gamma, respectively. Other families supported by glm and mgcv::gam are also supported. The
optional argument penalty is a logical variable to specify whether to use penalized splines or un-
penalized splines to fit the model. The default value is TRUE to implement penalized splines. The
optional argument profile is a logical variable that indicates whether the algorithm with profile
likelihood or the algorithm with NLS procedure is used. The default algorithm is set to the profile
likelihood algorithm. The optional argument user.init is a numeric vector of the same length as the
dimensionality of single-index predictors. The users can use this argument to pass in any appropriate
user-defined initial single-index coefficients based on prior information or domain knowledge. The
default value is NULL, which instructs the function to estimate initial single-index coefficients by a
generalized linear model.

As we utilize mgcv::gam and mgcv::s as the underlying algorithms for the estimation of the
unknown univariate function of the single index, there are several arguments that can be passed
into mgcv::gam and mgcv::s for finer control. For example, the optional argument bs is a character
variable that specifies the spline basis in the estimation of the single index function, and it will be
passed into mgcv::s. The default has been set to “ps” (P-splines with B-spline basis) while other
choices are “tr” (truncated power basis), “tp” (thin plate regression splines), and others (see the help
page of mgcv::smooth.terms). Other mgcv::gam arguments can be passed to mgcv::s in ... includes
the optional numeric arguments k, which is the dimension of the basis of the smooth terms and the
arguments m, which is the order of the penalty for the smooth terms. Additionally, users can also pass
arguments scale into gam in .... It is a numeric indicator with a default value set to -1. Any negative
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value including -1 indicates that the scale of response distribution is unknown and thus needs to
be estimated. Another option is 0, indicating a scale of 1 for Poisson and binomial distribution and
unknown for others. Any positive value will be taken as the known scale parameter. The optional
argument smoothing_selection is a character variable that specifies the criterion used in the selection
of the smoothing parameter λ. This argument corresponds to the argument method in mgcv::gam, but it
is renamed in this package to avoid confusion. The supported criteria include “GCV.Cp”,“GACV.Cp”,
“ML”,“P-ML”, “P-REML” and “REML”, while the default criterion is “GCV.Cp”. For more details
regarding arguments in mgcv::gam and mgcv::s, users may refer to the help page of mgcv::gam and
mgcv::s.

The function gplsim returns an object class of gplsim, which extends the gam object and glm object.

Other functions

plot_si(gplsim.object,reference = NULL)

This function plots the estimated curve for the unknown univariate function ϕ from a gplsim-fitted
model object. If the reference object is provided, this function will add a reference line accordingly.

summary.gplsim(gplsim.object)
print.summary.gplsim(gplsim.object)

The functions summary.gplsim and print.summary.gplsim provide detailed information related
to the fitted model and summarize the results as illustrated in the next section. These two functions
can be called directly by applying functions print and summary to gplsim.object.

simulation_data <- generate_data(n,true.beta=c(1, 1, 1)/sqrt(3),family="gaussian")

The function generate_data generates data from a sine-bump model with user-defined single
index coefficients θ via the argument true.beta. If single-index coefficients θ are not provided, this
function will generate data against the default coefficients θ = (1, 1, 1)/

√
3. The default response is

Gaussian distributed, while Binomial, Poisson, and Gamma distributions are also supported.

4 Real data and simulation examples

In this section, we demonstrate the use of the R package gplsim via a real data analysis and a sine-bump
simulation study.

Air Pollution Data

We consider an environmental study on how meteorological variables X affect the concentration of
the air pollutant ozone y. Meteorological variables X contain wind speed, temperature, and radiation
with n = 111 daily measurements. As the response variable y is a continuous variable, we adopt an
identity link for Gaussian distribution. Note that we use the same sequence of predictor variables to
keep the results directly comparable to Yu and Ruppert (2002).

library(gplsim)
data(air)
y=air$ozone # response
X=as.matrix(air[,c(3,4,2)]) # single-index term
colnames(X)=colnames(air[,c(3,4,2)])
Z=NULL

We allow all three predictor variables, temperature, wind speed, and radiation, to enter the single-
index term to capture the non-linear dependency as in Yu and Ruppert (2002). This model collapses to
the single-index model as there is no partially linear term in the model.

air.fit <- gplsim(y,X,Z=NULL,family = gaussian,bs="ps")
summary(air.fit)

#>
#> Family: gaussian
#> Link function: identity
#>
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#> Formula:
#> y ~ s(a, bs = bs, fx = fx, m = 2, k = k)
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 3.247784 0.043024 75.488 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> temperature 0.5442
#> wind_speed -0.8386
#> radiation 0.0223
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 8.1431 9.173 34.867 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.741 Deviance explained = 76%
#> GCV = 0.22391 Scale est. = 0.20546 n = 111

The estimated normalized single-index coefficients with the profile likelihood algorithm are
comparable to the results in Yu and Ruppert (2002). As shown in the figure below, the estimated
unknown function is quite monotonic and exhibits clear curvature. The estimated coefficient is positive
for temperature, negative for wind speed, and positive for radiation but in a smaller magnitude per
the reported summary.

plot_si(air.fit,yscale=c(1,6),plot_data = TRUE)
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3
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5
6

single index

m
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n

Figure 1: Single-index curve estimate of the air pollution data, an output of function plot_si. The
data are represented by dots.

The above figure shows the single-index curve estimate of the air pollution data. The presence
of curvature with multiple turning points is observed. This non-linear dependency is unlikely to be
captured by a linear model. The single index that contains information from temperature, wind speed,
and radiation contributes to the ozone concentration differently in different segments.
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We also implemented the simultaneous non-linear least square minimization algorithm described
in Yu and Ruppert (2002), where the original code was written in Matlab.

air.fit <- gplsim(y,X,Z=Z,family = gaussian,profile = FALSE,bs="ps")
summary(air.fit)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(a, bs = bs, fx = !penalty, m = 2, k = 13)
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 3.247784 0.043056 75.431 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> temperature 0.5340
#> wind_speed -0.8451
#> radiation 0.0235
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 8.0012 9.0533 35.22 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.74 Deviance explained = 75.9%
#> GCV = 0.22394 Scale est. = 0.20578 n = 111

Note that here outputs are directly from mgcv package for GAM model summary. The p-value and
confidence intervals here do not take into account the uncertainty in the estimation of the single-index
coefficients. If required, valid inference using bootstrap or asymptotic results from Yu and Ruppert
(2002) and Yu et al. (2017) is available.

Simulations

We present a popular sine-bump simulation study that adopts the design as in (Carroll et al., 1997;
Yu et al., 2017; Yu and Ruppert, 2002). The package can accommodate responses from a general
exponential family, where the conditional mean is generated from the following model

g−1{sin
{

π
(

xTθ− c1

)
/ (c2 − c1)

}
+ zγ},

where g{·} is a link function; θ = (1, 1, 1)/
√

3 with each predictor x from independent uniform in [0, 1];
γ = 0.3; z is a binary predictor with 1 for even observations and 0 otherwise; c1 =

√
3/2 − 1.645/

√
12

and c2 =
√

3/2 + 1.645/
√

12 are two constants.

For demonstration, we first show simulation codes and outputs on one random replication. We
use the supporting function generate_data to generate simulation data.

set.seed(2020)
# Gaussian family
# parameter settings
n=1000
M=200
true.theta = c(1, 1, 1)/sqrt(3)
# This function generates a sine-bump simulation data
data <- generate_data(n,true.theta=true.theta,family="gaussian",ncopy=M)
y=(data$Y)[[1]] # Gaussian error with standard deviation 0.1
X=data$X # single-index predictors
Z=data$Z # partially linear predictors
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We use default settings of the main estimation function gplsim on the simulated data, assuming
no prior information. The codes and summary results are provided as follows.

result <- gplsim(y,X,Z,user.init=NULL,family = gaussian)
summary(result)

#>
#> Family: gaussian
#> Link function: identity
#>
#> Formula:
#> y ~ s(a, bs = bs, fx = fx, m = 2, k = k) + z
#>
#> partial linear coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> Intercept 0.6439549 0.0046579 138.251 < 2.2e-16 ***
#> Z.1 0.3057685 0.0065963 46.354 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#>
#> single index coefficients:
#> Estimate
#> X.1 0.5786
#> X.2 0.5798
#> X.3 0.5736
#>
#> Approximate significance of smooth terms:
#> edf Ref.df F p-value
#> s(a) 6.3561 7.4656 2129.9 < 2.2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> R-sq.(adj) = 0.947 Deviance explained = 94.7%
#> GCV = 0.010909 Scale est. = 0.010818 n = 1000

From the above summary results of the fitted model, we see that the estimated single-index
coefficients θ̂ and partial-linear coefficients γ̂ are quite close to the true parameters.

We also plot the average estimated curve for the unknown univariate function over 200 replications.
The dashed lines are the corresponding 2.5 and 97.5 quantiles bound. We observe that the average
curve estimate virtually overlays the true curve.

#plot the estimated univariate function curve
plot_si(result,plot_data = FALSE)
par(new=T)
sort_index = order(X%*%true.theta)
lines((X%*%true.theta)[sort_index],data$single_index_values[sort_index],lty=1,
xaxt="n", yaxt="n",col="red")
legend("topright",legend=c("GPLSIM fit", "True"),lty=c(1,1),col = c("black","red"))
add_sim_bound(data)

Table 1 reports the mean, standard error (se) and bias for each parameter estimate with sample
size n = 1000 over M = 200 replications. We use canonical link functions, that is, identity link for
Gaussian family, logit link for Binomial family, and log link for Poisson family. One can see that the
algorithm for our R package gplsim is effective in estimation of various GPLSIMs.

5 Summary

In this paper, we have presented an R package gplsim that implements generalized partial linear
single-index models described in Yu et al. (2017) and Yu and Ruppert (2002). The functions and
algorithms used in the package are able to accurately estimate the single-index coefficients, partial-
linear coefficients, as well as the unknown univariate function with expedient computation. We
believe this package will be useful to practitioners in diverse fields such as finance, econometrics, and
medicine, where a flexible and interpretable models are desirable.
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Figure 2: Curve estimates and confidence bands for the unknown univariate function. The red solid
curve is the true curve. The blue solid curve is the average fitted curve over 200 replications. The
dashed curves are the corresponding 2.5% and 97.5% quantiles.

Gaussian Binomial Poisson
Mean(se) Bias Mean(se) Bias Mean(se) Bias

θ̂1 0.5771(0.0048) -0.0002 0.5545(0.1040) -0.0228 0.5808(0.0305) 0.0035
θ̂2 0.5774(0.0048) 0.0005 0.5744(0.1111) -0.0029 0.5738(0.0349) -0.0035
θ̂3 0.5765(0.0047) -0.0004 0.5717(0.1126) -0.0056 0.5745(0.0340) -0.0028
γ̂ 0.2995(0.0065) -0.0004 0.3094(0.1312) 0.0094 0.2978(0.0430) -0.0022

Table 1: Summary of parameter estimates for various responses of sample size n = 1000. True
θ = (1, 1, 1)/

√
3, γ = 0.3. The sample mean (mean), standard error (se, in parenthesis), and bias of the

parameter estimates from generalized partially linear single-index models (GPLSIMs) by penalized
splines from 200 replications.
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Non-Parametric Analysis of Spatial and
Spatio-Temporal Point Patterns
by Jonatan A. González and Paula Moraga

Abstract The analysis of spatial and spatio-temporal point patterns is becoming increasingly necessary,
given the rapid emergence of geographically and temporally indexed data in a wide range of fields.
Non-parametric point pattern methods are a highly adaptable approach to answering questions
about the real-world using complex data in the form of collections of points. Several methodological
advances have been introduced in the last few years. This paper examines the current methodology,
including the most recent developments in estimation and computation, and shows how various
R packages can be combined to run a set of non-parametric point pattern analyses in a guided and
intuitive way. An example of non-specific gastrointestinal disease reports in Hampshire, UK, from
2001 to 2003 is used to illustrate the methods, procedures and interpretations.

1 Introduction

A spatial point pattern X = {ui}n
i=1 is a random collection of points observed within a bounded

region of the plane, W ⊂ R2. Spatial point patterns arise in a broad range of applied disciplines
such as climatology, ecology, epidemiology, and seismology. A spatial point pattern can represent
the locations of forest fires (Turner 2009), the occurrence of species (Moraga 2021) or the residence
locations of people with a certain disease (Moraga and Montes 2011). When the points evolve in space
and time, we call them spatio-temporal point patterns. In this case, we treat the data as being generated as
a snapshot in space-time, and they may be viewed as a spatial point process with a further (temporal)
dimension (González et al. 2016). Similarly to the spatial case, we consider a spatio-temporal point
pattern as a countable set of random points {(ui, vi)}n

i=1 (non-overlapping), where ui represents the
spatial location of the ith event and all of them belong to a bounded planar region W ⊂ R2. Here, vi is
associated with time and it belongs to a compact positive interval T ⊂ R+. W × T is usually called
the spatio-temporal observation window. Examples of spatio-temporal point patterns include the
locations of individuals with an infectious disease in which the time of infection is known (P. J. Diggle
2013), the starting (or ending) locations of tornadoes with their registered times (González, Hahn, and
Mateu 2019) or the location and time at which some crime was committed (Rodrigues and Diggle
2012). Point pattern analyses may also be performed in smaller dimensions, such as straight segments
(Daley and Vere-Jones 2003). For example, we can consider a time segment as a straight segment and
record the exact time the heartbeat of a patient with arrhythmia occurs during an electrocardiogram.
In addition, we can also have marked point patterns in which each of the points has some additional
characteristics. For example, a marked point pattern may represent a pattern of beta-type ganglion
cells in a cat’s retina that can be classified anatomically as the marks “on” or “off” (Wässle, Boycott,
and Illing 1981).

When dealing with point patterns, it is desirable to learn as much as possible about the probability
distribution that governs the occurrence of points in a given point pattern. This is a difficult task
since, in general, there is only a single set of points or realisation of the point process. However, many
methods have been developed that serve to estimate specific characteristics of the distribution, such
as the intensity, which describes the expected number of points per unit area; or the clustering or
aggregation behaviour, that is, whether the points have a particular attraction or repulsion mechanism.
Statistical models for point processes can also be formulated, and these may consider previous
knowledge to describe trends, variability, and different factors that may impact them. Point patterns
are usually considered a random sample of a stochastic mechanism called point process. The most
typical families of point processes are Poisson processes. There are two classes of Poisson processes;
the homogeneous, whose realisations in any subset of the observation window are uniform random
samples with a constant mean λ, and the inhomogeneous, obtained by replacing the intensity λ by a
spatial, temporal or spatio-temporal varying one (Illian et al. 2008; P. J. Diggle 2013). Homogeneous
Poisson processes are benchmark models for spatial and spatio-temporal point pattern data, often
called complete spatial random (CSR) or complete spatio-temporal random (CSTR) point processes; i.e., point
processes whereby point events appear in a completely random fashion.

A large body of literature has been developed in recent years to study point patterns and many
statistical software packages have been developed for their estimation and analysis. For instance,
packages such as spatial (Venables and Ripley 2002) or splancs (Rowlingson and Diggle 1993) initially
developed for S-PLUS but available on CRAN are classics for displaying and analysing spatial point
pattern data. Packages as sp (E. J. Pebesma and B. 2005; Bivand, Pebesma, and Gómez-Rubio 2013),
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or more recently, sf (E. Pebesma 2018), were created to provide a uniform interface for handling 2D
and 3D data. spatstat (A. Baddeley and Turner 2005; Adrian Baddeley, Rubak, and Turner 2015) is
one of the most popular and improved packages for analysing spatial point patterns It is divided into
several subpackages: spatstat.utils, spatstat.sparse, spatstat.data, spatstat.geom, spatstat.random,
spatstat.explore, spatstat.model and spatstat.linnet. Some extra specialised packages such as smacpod
or sparr (T. M. Davies, Marshall, and Hazelton 2018) have methods for analysing case-control point
patterns; or spatgraphs for graphs-related analyses of locations in 1D, 2D, 3D.

Even though authors have considered the combination of space and time in theory, and nowadays,
spatial data often includes a time component, only a few examples show this in practice. This problem
may be due to the complexity of the computations, added to the fact that the authors tend to delve
into particular contexts. There are some tools available for dealing with spatio-temporal point pattern
data. The stpp package (Gabriel, Rowlingson, and Diggle 2013) covers many models and functional
descriptors related to point process methods to study spatio-temporal phenomena. The PtProcess
package (Harte 2010) was designed to fit time-indexed point process models in the same simplified
fashion as generalised linear models software. The lgcp (B. M. Taylor et al. 2013), as well as the inla
(Rue, Martino, and Chopin 2009; Moraga 2019); http://www.r-inla.org and inlabru (Bachl et al.
2019) packages, are suitable options for statistical inference in space and time.

In this paper, we demonstrate how R (R Core Team 2023) can be used to study spatial and spatio-
temporal point process data using a dataset of geographic locations and times of individuals with
non-specific gastrointestinal infections in Hampshire, UK, from 2001 to 2003 (P. Diggle et al. 2003).
We consider the data as realisations of spatial and spatio-temporal point processes that lack spatial
and temporal homogeneity; i.e., the expected number of points in each area unit of the study region
depends on their location and time. Consequently, the first problem we solve is the intensity estimation.
We then investigate the nature of the stochastic interactions between the process points after adjusting
for spatial and spatio-temporal inhomogeneity. We use second-order descriptors to describe these
interactions.

Along with this paper, we employ several R packages to successfully analyse the complex point
patterns seen in both the spatial and the spatio-temporal settings. For dealing with spatial point
patterns, we mainly use the spatstat package. In addition, we use the sparr package for analysing
the relative risk and the GET package (Myllymäki and Mrkvička 2020) for testing hypotheses with
envelopes. For the spatio-temporal analysis, we use the stpp package. We also make use of other
R packages such as parallel, foreach (Microsoft and Weston 2022b) and doParallel (Microsoft and
Weston 2022a) to optimise the computing time by dividing the burden by several processors. An R
script containing all the necessary code for reading the data and running the analyses shown in this
paper is provided as supplementary material.

Spatio-temporal point pattern data

We use the geographic locations and time information of individuals who had non-specific gastroin-
testinal infections in Hampshire, UK, between 2001 and 2003 (P. Diggle et al. 2003). These data come
from the Ascertainment and Enhancement of Gastrointestinal Infection Surveillance and Statistics (AEGISS)
project (P. Diggle et al. 2003), which, using the Hampshire area as a test, seeks to identify irregularities,
i.e., high or low intensity spots in the spatio-temporal distribution of non-specific gastrointestinal
infections in the UK.

The data consist of a collection of points {(ui, vi)}n
i=1, where ui is a spatial coordinate with two

components, i.e., ui = (ai, bi), ai, bi ∈ R, and vi ∈ R+ is a temporal coordinate. These points represent
the locations and times of daily healthcare providers reports of non-specific gastrointestinal disease
in Hampshire from 2001 to 2003. After cleaning the data to remove non-Hampshire residents (out of
the Hampshire region) and multiple (coincident) points, there were n = 10443 cases of non-specific
gastrointestinal disease by a phone-in triage service operating within the UK’s National Health Service.
The command sequence

library(spatstat)
library(viridis)
load("AegissData.RData")

loads the data in the local environment of R. Each location corresponds to the centroid of the unit
post-code of the residential address of the caller. The unit of distance is one kilometre. The unit of
time is one day, with day 1 corresponding to 1 January 2001. We can inspect the first spatio-temporal
coordinates of our dataset by writing

head(as.data.frame(Aegiss))
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Figure 1: Left: Locations of 10443 reports of non-specific gastrointestinal disease in Hampshire from
January 2001 to July 2003. The time is treated as a quantitative mark where darker dots correspond to
the older events, and lighter dots match the most recent reports. Right: Hampshire population density
averaged over the years 2001-2003. The colour map is evenly-spaced on a logarithmic scale.

#> x y marks
#> 1 478.55 134.85 1
#> 2 458.15 107.35 1
#> 3 449.05 128.95 1
#> 4 450.75 106.95 1
#> 5 461.05 99.55 1
#> 6 446.35 109.15 1

Notice that x and y are the coordinates. Times are not labelled as dates, but they are integers, and
their column is named as ‘marks’. Finally, the planar region that encloses the points corresponds
to a 120-sided polygon representing the boundary of the study region of Hampshire. To visualise
the spatio-temporal point pattern, we can depict a spatial map using the symbolmap() function of
the spatstat.geom package setting the times as colours. The colours are selected by using the viridis
(Garnier et al. 2023) (Figure 1).

Times <- Aegiss$marks
timelabels <- as.Date(Times - 1, origin = "2001-01-01")
colmap <- viridis(length(Times))
sy <- symbolmap(pch = 21, col = "black", bg = colmap, range = range(timelabels))

We use the locations and times of the point pattern and the population density of Hampshire
to study the point process that generates these data. We obtain the mean population density of
Hampshire from WorldPop (University of Southampton). The population information detailed for
each squared kilometre is available in a yearly basis. Figure 1 shows the point pattern of the cases
and the population density. First, we save only the spatial locations with no marks by writing X <-
unmark(Aegiss). Then, we attach the date labels to the points using the operator %mark%. Note that
symap = sy sets the colour and point shapes previously defined and that the six dates in the legend
are a sample to represent the colour variation. To summarise the population density, given in a set of
three images, 2001, 2002 and 2003, we use the function im.apply() of the package spatstat.geom to
average them.

par(mfrow = c(1, 2), mar = c(0,0,2,0.5))
X <- unmark(Aegiss)
PopDens <- im.apply(Population, mean)
plot(X %mark% timelabels, symap = sy,

main = "Gastrointestinal disease reports")
plot(PopDens, col = viridis(prod(PopDens$dim)), log = T, box = F,

main = "Population intensity")
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2 Spatial analysis

Spatial intensity and relative risk

The first-order intensity function or the intensity of a point process can be defined as the expected number
of events per unit space, or mathematically (P. J. Diggle 2013),

λ(u) = lim
|du|→0

EN(du)
|du| ,

where N() denotes the number of points of a region. In the inhomogeneous case, we can compute a
kernel smoothed intensity function from a point pattern {ui}n

i=1 without the temporal coordinates.
The estimator is given by

λ̂(u) =
1

e2(u)

n

∑
i=1

κ2
ϵ(u − ui), and e2(u) =

∫
W

κ2
ϵ(s − u)ds, (1)

where u ∈ W and κ2
ϵ is a two-dimensional Gaussian kernel. e() is known as uniform edge correction and

is intended to correct the bias of the estimation at the edges of the region (Adrian Baddeley, Rubak,
and Turner 2015). One of the most challenging considerations is selecting the bandwidth ϵ; there
is no single best procedure for doing that, but the estimation can be improved by using a spatially
varying bandwidth despite its computational complexity (Tilman M. Davies and Baddeley 2018). For
computing the adaptive estimate of the intensity function, we use the adaptative.density() function
of the spatstat.explore package,

# This takes roughly 12 seconds to be executed in an
# iMAC 2019, 3GHz intel core i5 processor with 16GB of RAM (hereinafter)
SpatialDens <- adaptive.density(X, method = "kernel", edge = T)

The estimated intensity is shown in Figure 2 (left). We can see a high concentration of cases (more
than two per square kilometre) in Southampton and its coastal environs. More to the north, there are
also local foci in Winchester (the centre of the study region) and the primary urban centres located in
the north and northeast of the study region.

The kernel log relative risk or density ratio function is a descriptor aimed to compare two estimated
densities on the study region W. In epidemiology, it is handy to examine disease risk fluctuations
based on case and control samples. In recent years, many improvements have been developed to the
estimation methodology, including spatially adaptive smoothers and inference based on asymptotic
theory (T. M. Davies, Marshall, and Hazelton 2018). The related techniques are implemented in the
sparr package. Given two spatial point patterns, X, with intensity λ̂(u|X) (that can be thought of as
cases) and Y, with intensity λ̂(u|Y) (that can be thought of as controls); the estimated log relative risk
is defined as

r̂(u) = log

{
λ̂(u|X)

λ̂(u|Y)
· nY

nX

}
, u ∈ W, (2)

where nX and nY are the number of points of X and Y, respectively. When r̂(u) ≈ 0, the densities are
roughly the same; peaks greater than zero mean a higher local ratio of cases to controls, and r̂(u) < 0
indicates lack of concentration of cases than controls.

Here, we compute the relative risk by comparing the point pattern of gastrointestinal infections
and a point pattern with controls derived from a random sample of the underlying population. We
first generate a set of random controls by simulating n = 1443 locations with intensity proportional
to the population density using the rpoispp() function of package spatstat.random. In order to
do that, we calculate the population density as the population intensity normalised by its mass (its
integral over the observation window) calculated by using the function integral.im() of the package
spatstat.geom in each region of Hampshire. Then we can evaluate expressions involving one or more
pixel images through the eval.im() function of package spatstat.geom,

N <- integral.im(PopDens)
n <- X$n
ControlDens <- eval.im((PopDens / N) * n)
Controls <- rpoispp(ControlDens)

Then we assign Hampshire’s window to the new point pattern by using the Window() function of
package spatstat.geom,
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Figure 2: Left: Adaptive bandwidth kernel estimate of intensity for the gastrointestinal data. The
intensity is expressed as number of reports per squared kilometre. Right: Adaptive spatial log-relative
risk of non-specific gastrointestinal disease, with asymptotic tolerance contours for elevated risk.

Window(Controls) <- X$window

For estimating the relative risk, we use the sparr package to perform an adaptive smoothing
adequately designed to deal with the reduced smoothing in densely populated areas. The code

# This takes roughly 22 seconds to be executed
library(sparr)
RelativeRisk <- risk(f = X, g = Controls, adapt = T,

pilot.symmetry = "pooled", tolerate = T)

takes both point patterns (cases f and controls g), computes an adaptive smoothing for estimating
the risk, and computes asymptotic tolerance contours as per Hazelton and Davies (2009). Maps
displayed in Figure 2 showing the intensity and relative risk estimates are produced by executing

par(mfrow = c(1, 2), mar = c(0,0,2,0.5))
plot(SpatialDens, col = viridis(1200), auto.axes = F,

main = "Adaptative kernel intensity estimate", box = F)
plot(RelativeRisk, auto.axes = F, tol.type = "upper",

main = "Relative risk estimate")

Figure 2 (right) provides pointwise areas of significant high relative risk. The null hypothesis
is H0 : r(u) = 0, against an alternative of increased local risk H1 : r(u) > 0 for a point u ∈ W. We
superimpose the contours corresponding to significant values on the log relative risk surface. They
are known as tolerance contours and allow us to identify areas of high risk (Kelsall and Diggle 1995).
The relative abundance of gastrointestinal disease reports appears to be significantly higher in some
areas where the intensity is not necessarily higher. Nor does the relative risk appear to increase in
Southampton (located on the southern coast), the region’s most urbanised area.

Second-order descriptors

Pair correlation and K-functions

The second-order intensity function (λ(2)(u1, u2), u1, u2 ∈ W) is, in point processes, analogous to
the covariance function in classical statistics (Adrian Baddeley, Rubak, and Turner 2015). Also
known as product density function, the second-order intensity function represents the infinitesimal two-
dimensional joint distribution of the points. A more friendly summary statistic is the pair correlation
function, which is the standardised probability density that an event occurs in each of two small spatial
volumes du1 and du2. For CSR (Complete Spatial Random) point processes, the covariance is zero,
and the pair correlation function takes the value of one (P. J. Diggle 2013). Different values than these
benchmarks indicate how likely a pair of events will occur at the specified locations than in a CSR
process with the same intensity; i.e., larger values indicate clustering, and smaller values indicate
regularity. The pair correlation is defined as

g(u1, u2) =
λ(2)(u1, u2)

λ(u1)λ(u2)
, u1, u2 ∈ W. (3)
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Whenever the intensity function of a point process is bounded away from zero and its pair correlation
function depends only on the difference vector r = ||u1 − u2||, the point process is called second-
order intensity reweighted stationary (SOIRS) and isotropic. For estimating the pair correlation function,
consider a point pattern X = {ui}n

i=1 with n points, then

ĝ(r) =
1

2π

n

∑
i=1

∑
j ̸=i

κϵ(||ui − uj|| − r)

λ̂(ui)λ̂(uj)||ui − uj||wij
. (4)

Several parameters must be set before the estimation: a suitable interval for the spatial distances r, a
bandwidth ϵ, a one-dimensional kernel κϵ(·) (Epanechnikov’s kernel is usually recommended), a type
of divisor (factor ||ui − uj|| in the denominator of Eq. (4) can be replaced by r, this option brings a
pole, i.e., an indetermination, in r = 0 (Wong and Stoyan 2021)); and an edge correction wij correcting
for the loss of information of outsider points close to the edges. spatstat usually has smart defaults for
these parameters based on the knowledge of the descriptors, which many authors have contributed.
For this part, we use a fixed-bandwidth kernel estimate, with bandwidth set by Scott’s rule of thumb
(Scott 2015), through the function bw.scott() of the package spatstat.explore, as we need simulations
where the intensity has to be estimated time after time. We employ the function density.ppp() of
package spatstat.explore that provides a fixed bandwidth kernel smoothed intensity function from a
point pattern according to Eq. (1).

sigmaD <- bw.scott(X)
MD <- density.ppp(X, diggle = T, positive = T, sigma = sigmaD)
MP <- density.ppp(X, diggle = T, sigma = sigmaD, at = "points")

In the above implementation, diggle = T sets the Jones-Diggle edge correction (P. J. Diggle
1985), at = 'points' means that the intensity is computed only at the points of X, and sigma is the
bandwidth, which in this case is 3.5km for the horizontal axis and 4.19km for the vertical axis. In the
case of the bandwidth for the pair correlation function, we employ a composite likelihood approach
(Jalilian and Waagepetersen 2018) by using the function bw.pcf() of library spatstat.explore with the
parameter cv.method = 'compLik'; the parameter divisor = 'd' refers to the term ||ui − uj|| in Eq.
(4), which can be replaced by r (Jalilian and Waagepetersen 2018), and lambda is the estimate of the
intensity. We then write

# Time consuming: This takes roughly 24 minutes to be executed
bwG <- bw.pcf(X, cv.method = "compLik", divisor = "d", lambda = MP)

and obtain a bandwidth value of 2.7km. Note that this function can warn of undetermined
contributions to the pair correlation. These caveats come from the divisor, which, when too small, can
conflict with the numerical tolerance of R and eventually lead to indeterminacy. The spatstat package
fixes this by simply removing the problematic values.

Before going further with the estimation of the pair correlation function, let us take a look into
another classical second-order descriptor, the inhomogeneous K-function, which in the SOIRS case, can
be defined as

K(r) = 2π
∫ r

0
sg(s)ds.

For spatial Poisson point processes K(r) = πr2. spatstat chooses a suitable range for r values based
on some rules of thumb depending on geometric attributes of the process or the average intensity
in the region. We decide to choose a proportion of 70% of the maximum value for r proposed by
spatstat.explore through the rmax.rule() function, and set of 70 (71 including zero) different values
for r,

r0 <- 0.7 * rmax.rule("K", X$window, intensity(X))
rr <- seq(0, r0, length.out = 71)

The classical estimator of the spatial K-function is given by

K̂(r) =
n

∑
i=1

∑
j ̸=i

1
[
||ui − uj|| ≤ r

]
λ̂(ui)λ̂(uj)wij

.

Where 1[·] is the indicator function. An alternative descriptor defined as L(r)− r =
√

K(r)/π − r,
and its straightforward estimator L̂(r)− r are intended for stabilising the variance (Besag 1977).

In addition to the estimation of the second-order descriptors, their standard deviation and con-
fidence intervals are desirable for the analysis; this is not always simple, not even in the Poisson
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case, as there is dependence between the contributions of different points to the descriptor. However,
we can use Monte Carlo simulation for computing envelopes through computational efforts. We
use command envelope() of the spatstat.explore for getting the observed descriptor as well as its
simulated counterparts.

We note that although Monte Carlo testing is generally used in point process contexts, it becomes
invalid when the null hypothesis is composite, i.e., when parameters, such as the intensity function,
must be estimated prior to the computing of the envelopes, which is our case for inference about the
second-order descriptors. For dealing with such composite hypotheses, an extra set of simulations is
needed to perform a balanced two-stage test (Adrian Baddeley et al. 2017). The GET package performs
global envelope tests (where the significance level is controlled simultaneously for all the functions)
for the second-order descriptors and provides a graphical interpretation (see, e.g., Myllymäki et al.
2017). We perform a global rank envelope test with the extreme rank length measure and retrieve
the p-value. We warn the reader that this procedure of computing envelopes and two-stage Monte
Carlo testing is computationally demanding. We calculate the first set of 39 envelopes for the centred
L-function. This selection gives 39 (simulated) + 1 (observed) independent samples; it comes from
classical settings of point process simulation (Ripley 1977; Adrian Baddeley, Rubak, and Turner 2015;
Adrian Baddeley et al. 2017). We use the envelope.ppp() function of the spatstat.explore package;
this function computes simulation envelopes of a summary function,

# Time consuming: This takes roughly 3 minutes to be executed
L1 <- envelope(X, nsim = 39, savefuns = TRUE, fun = "Linhom", diggle = T,

transform = expression(.-r), sigma = sigmaD, r = rr,
simulate = expression(rpoispp(lambda = MD)), verbose = F)

Then we generate another set of inhomogeneous Poisson point patterns with the estimated
intensity,

Simpatterns <- rpoispp(lambda = MD, nsim = 39)

We design a function to calculate the intensity for each point pattern and to compute envelopes
with point patterns simulated from the new intensity,

simL <- function(rep) {
sim_fit <- density.ppp(Simpatterns[[rep]], diggle = T,

sigma = sigmaD, positive = T)
envelope(Simpatterns[[rep]], nsim = 39, savefuns = T, fun = "Linhom",

transform = expression(.-r), r = rr, diggle = T, sigma = sigmaD,
simulate = expression(rpoispp(lambda = sim_fit)))

}

Now we apply the function for every point pattern of the list to get a list of envelope objects.
This process is very slow as 39 L-functions have to be computed for each point pattern. We employ
the package foreach to use multiple processors to accelerate this procedure in combination with the
parallel and doParallel packages. The function detectCores() of the package parallel automatically
detects the computer’s CPU cores and the function registerDoParallel() of the doParallel package
is used to register a parallel backend in the computer. The foreach() %dopar% function returns a list
with the result of applying a function over every element of the main argument by using the registered
cores of the computer processor,

# Time consuming: This takes roughly 21 minutes to be executed
library(foreach)
library(doParallel)
c0 <- parallel::makeCluster(detectCores() - 1)
doParallel::registerDoParallel(c0)
L.ls <- foreach(i = 1:39, .packages = c("spatstat")) %dopar% {simL(i)}
parallel::stopCluster(c0)

Finally, we perform the adjusted test using the function GET.composite() of the GET package and
plot the envelopes. In this case, we are interested in establishing a possible positive departure of the
observed centred L-function and its simulated counterparts. Thus, we set alternative = "greater",
type = 'erl', which performs a rank envelope test based on extreme rank lengths (Myllymäki et al.
2017) based on several minimal pointwise ranks; and use the ggplot2 (Wickham 2016) package for the
plots,

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLE 72

−1.0

−0.5

0.0

0.5

1.0

0 2 4 6

L
in

h
o

m
(r

)−
r

Adjusted global test: p = 0.025
Alternative = "greater"

Figure 3: Graphical clustering tests of Hampshire data based on the L-functions. The gray bands
represent the 95% global envelope. Red dots stand for the second-order descriptors outside the
envelopes.

library(GET)
library(ggplot2)
resL <- GET.composite(X = L1, X.ls = L.ls, type = "erl",

alternative = "greater", savefuns = T)

Figure 3 shows the output of the rank envelope test. The rejection is explained by the attractive
behaviour of gastrointestinal disease cases at short distances. The red-dot line indicates this clustering
behaviour up to 5km, which shows a departure from the narrow grey band that represents the 95%
adjusted rank envelope, i.e., the rank envelope that considers the composite hypothesis. Note that
the more simulations, the better results for the test (Myllymäki et al. 2017). The dashed black line
represents the central function (the mean) of only the first set of simulations; note that this function is
not the mean value of the grey ribbon as it comes from envelopes under the composite null hypothesis.
We find a significant positive departure from the envelopes up to approximately 5km; this means that
observed data are more clustered in distances below 5km than might be expected in Poisson point
patterns with the same intensity, and this clustering is statistically significant.

3 Spatio-temporal analysis

Spatio-temporal intensity and relative risk

First-order separability

Spatio-temporal point processes analyses can be carried out when every data point has associated geo-
graphic and time information. In these cases, estimating the first-order intensity function constitutes a
primary interest. The intensity function provides information about the joint distribution of the spatial
and temporal locations. Usually, this distribution is simplified by assuming, for example, separability.
A point process is referred to as separable when its spatio-temporal intensity function can be factorised
as

λ(u, v) = λ1(u)λ2(v), u ∈ W, v ∈ T,

where λ1(·) and λ2(·) are non-negative functions of space and time, respectively. Authors often take
separability for granted as it is a very pragmatic working assumption, but it should be tested before
choosing an estimator. There are some specialised separability tests available in the literature. We
use the package kernstadapt (González and Moraga 2022b) to test separability in our example by
considering a division of the temporal interval T = [1, 1095] into 16 disjoint equally-spaced sub-
intervals. We split the spatial window W into 20 disjoint rectangular subsets with roughly the same
area. As the separability of the intensity might be thought of as the independence of two random
variables, it can be tested by a simple χ2-test as proposed by Ghorbani et al. (2021), where the null
hypothesis is separability. The test bases on the counts of points in disjoint spatial and temporal
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sub-regions; when there are expected counts of individual cells below 5, the authors recommend
a Fisher’s test. We employ Fisher’s test calculating the p-value by Monte Carlo simulation (5000
replicates):

# This takes roughly 20 seconds to be executed
SepTest <- separability.test(Aegiss, nx = 5, ny = 4, nt = 16, nperm = 50000)

SepTest

#>
#> Separability test based on Fisher's for counting data
#>
#> data: Point pattern Aegiss
#> p-value = 0.00392
#> alternative hypothesis: The point pattern Aegiss is not spatio-temporal separable

As the p-value is significant, we opt for estimating the spatio-temporal intensity in a non-separable
fashion. We estimate the intensity by employing the following estimator, which uses a Gaussian kernel
for all coordinates (Choi and Hall 1999; González, Hahn, and Mateu 2019; Ghorbani et al. 2021)

λ̂(u, v) =
n

∑
i=1

κ2
ϵ(u − ui)κ

1
δ(v − vi)

e2(ui)e1(vi)
, (5)

where
e2(ui) =

∫
W

κ2
ϵ(ui − s)ds, and e1(vi) =

∫
T

κ1
δ(vi − w)dw;

and where κ2
ϵ and κ1

δ are the two- and one-dimensional Gaussian kernels with bandwidths ϵ and δ.

In this case, we use a fixed spatial bandwidth calculated by a rule of thumb that depends on
the short size of the window and a temporal one calculated through the function bw.nrd(). Notice
that the spatio-temporal estimator given in Eq.(5) resembles the spatial one given in Eq.(1), with an
extra kernel weight for the temporal component. On the other hand, as the spatial edge correction,
due to P. J. Diggle (1985), is already implemented in the function density.ppp() of spatstat.explore,
we must calculate the temporal one. We employ the generic function bw.nrd0() of package stats
for the temporal bandwidth, which uses Silverman’s rule-of-thumb (Silverman 1986) for choosing
the bandwidth of a Gaussian kernel density estimator. For computing the edge correction, we take
advantage of the properties of the normal distribution noticing that e1(vi) = P(Yi ∈ T) where
Yi ∼ N(vi, δ2), indeed,

Times <- Aegiss$marks
bwt <- bw.nrd0(Times)
edgewt.t <- pnorm((max(Times) - Times) / bwt) - pnorm((min(Times)- Times) / bwt)

Then we proceed to calculate the non-separable estimator. To quicken the computation, for each
fixed time t0, we take temporal bins t ∈ [t0 − 3δ, t0 + 3δ], as the normal distribution practically
vanishes at larger or smaller values, then we compute the temporal kernel values and attach them to
the spatial kernel as weights,

# This takes roughly 44 seconds to be executed
nonseparable <- function(time){

contrib <- (Times >= time - 3 * bwt) & (Times <= time + 3 * bwt)
Wh <- dnorm(x = Times[contrib], mean = time, sd = bwt) / edgewt.t[contrib]
density.ppp(X[contrib], weights = Wh, diggle = TRUE)

}
nonsep <- lapply(unique(Times), nonseparable)

We have 1047 intensity estimates corresponding to each of the 1047 different times; note that 1047 is
the size of the temporal coordinates set and not the maximum temporal value (1095). We decide to plot
a subset of them, namely the estimates corresponding to times 01/01/2001, 01/01/2002, 01/01/2003
and 12/31/2003.

n.slices <- which(unique(timelabels) %in% as.Date(c("2001-01-01", "2002-01-01",
"2003-01-01", "2003-12-31")))

Snap <- list(nonsep[[n.slices[1]]], nonsep[[n.slices[2]]],
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Figure 4: Temporal snapshots of the intensity λ̂(u, v), of non-specific gastrointestinal reports in
Hampshire, estimated in a non-separable way through Gaussian kernels. The units are rescaled by
100.

nonsep[[n.slices[3]]], nonsep[[n.slices[4]]])
plot.imlist(Snap, equal.ribbon = T, ncols = 4, box = F, main = "", log = F,

main.panel = unique(timelabels)[n.slices], col = viridis(1200),
ribscale = 100, mar.panel=c(0, 0, 1, 1), panel.end = X$window)

In the spatio-temporal case (Figure 4), we can see a behaviour in the intensity of cases much lower
than in the spatial case (Figure 2 (left)) due to the temporal granularity. This scale difference is due to
the number of events per unit of time, which is not considered in the only spatial estimation. When
considering the temporal dimension, the total points must be divided by the number of bins in the
temporal grid where the estimation is made. Therefore, there are fewer points per unit area at each
time than only when spatial coordinates are considered.

The intensity maintains some urban centres as foci over time, especially those in the south, for
example, in Portsmouth, where there is a high concentration of cases between 2002 and 2003.

In the next section, we show how to compute spatio-temporal descriptors. To do that, we need to
know the intensity values at every point of the point pattern. We can extract the intensity values by
using the safelookup() of spatstat.geom. Then, we attach those values, and the dates, as a mark to
each point by using the operator %mark%,

lambda <- NULL
for (i in 1:length(nonsep)) {

lambda <- c(lambda, safelookup(nonsep[[i]],
Aegiss[marks(Aegiss) == unique(Times)[i]]))

}
PP <- X %mark% data.frame(time = Aegiss$marks, Lambda = lambda)

Spatio-temporal relative risk

The concept of relative risk straightforwardly extends to the spatio-temporal domain. In this regard,
we must make additional considerations; for example, the spatial relative risk can be conditioned to a
specific time (T. M. Davies, Marshall, and Hazelton 2018). Analogous to the classic probability, in the
spatio-temporal context, the idea of conditioning on a specific time v = t0 comes naturally. This means
that for a fixed instant t0, we consider the spatial density function given that time. Mathematically, it
is calculated by normalising the spatio-temporal density by the density of the temporal coordinates
evaluated at the fixed time t0. On the other hand, if it is not conditioned to a particular time, the risk
function is a function of three variables (two spatial coordinates and one temporal), which can be
drawn through snapshots. Thus, we have two possible risk functions, r(u, v) (if plotted at a fixed time,
it represents an unnormalised slice of the three-dimensional function) and r(u|v = t0) (a spatial-only
snapshot of relative risk).

Given that we have population information for 2001, 2002 and 2003, we generate controls from
these three population densities considering uniform times within each year. Then, we superimpose
the three control point patterns into one using the superimpose() function of the spatstat.geom
package. We obtain a spatio-temporal point pattern of controls that will serve as input to calculate the
denominator of the relative risk.

Ni <- lapply(Population, integral.im)
ni <- lapply(split(Aegiss, cut(Aegiss$marks, breaks = c(0, 365, 730, 1095))),

npoints)
ControlDensi <- mapply(function(D, N, n) {eval.im((D / N) * n)},
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D = Population, N = Ni, n = ni, SIMPLIFY = F)
Controlsi <- mapply(function(L, Breaks){
PP <- rpoispp(lambda = L)
marks(PP) <- sample(x = (Breaks[1] + 1):Breaks[2],

size = npoints(PP), replace = T)
return(PP)},
L = ControlDensi, Breaks = list(c(0, 365), c(365, 730), c(730, 1095)),
SIMPLIFY = F)

Controlsi <- superimpose(as.solist(Controlsi))
Controlsi <- unmark(Controlsi) %mark% Controlsi$marks$origMarks
Window(Controlsi) <- Window(Aegiss)

For the spatio-temporal risk estimation exercise, we return to the sparr package. We follow the
recommendations of (T. M. Davies, Marshall, and Hazelton 2018) and set oversmoothing bandwidths (a
rule based on an optimal bandwidth upper bound for the asymptotic mean integrated squared error
of the density estimate, this may be done using the command OS.spattemp()). The spatio-temporal
densities can analysed through the command spattemp.density() of the sparr package.

# This takes roughly 4.87 minutes to be executed
Br <- OS.spattemp(Aegiss)
f.num <- spattemp.density(Aegiss, h = Br[1], lambda = Br[2])
d.den <- spattemp.density(Controlsi, h = Br[1], lambda = Br[2])

In this case, interest may rise about the anomalous regions of spatio-temporal risk considering
joint and conditional risks (given a time t); i.e., we are interested in testing the null hypotheses
H0 : r(u, v) = 0 or H0 : r(u, |v = t) = 0 against the alternatives of high risks. We employ the
spattemp.risk() function of sparr to obtain a spatiotemporal relative risk surface based on the ratio
of the two kernel estimates. In addition, since doing Monte Carlo simulations to obtain p-values is
very complicated from the computational point of view, asymptotic approximations are implemented
in sparr by setting tolerate = T,

# This takes roughly 5.47 minutes to be executed
st.risk <- spattemp.risk(f = f.num, g = d.den, tolerate = T)

We proceed to extract the unconditional and conditional risk slices,

risk.slices <- spattemp.slice(st.risk, tt = n.slices)

The variable risk.slices contains a list of lists of images, each of which corresponds to the
requested times in n.slices and has the unconditional and conditional risk estimates and the p-values
surfaces. We can plot the image estimates as follows:

plot.imlist(c(risk.slices$rr, risk.slices$rr.cond), equal.ribbon = T, ncols = 4,
box = F, main = "", main.panel = c(timelabels[n.slices], rep("", 4)),
mar.panel = c(0, 0, 1, 1), col = rocket(1200), ribmar = c(1, 3, 1, 2),
ribwid = 0.4, panel.end = function(i,...){
contour(c(risk.slices$P, risk.slices$P.cond)[[i]],

levels = 0.05, drawlabels = TRUE, ...)
plot(X$window, add = T)})

In Figure 5, we can see how the high significant risk remains in the central Hampshire region.
Although the two panels (top and bottom) look similar, there are differences. For example, in February
2001, we see how the conditional risk shows a larger statistically high area than its unconditional
counterpart. We also see that the greatest risk is not present in the most densely populated areas (in
this case, the south-central part of the region, where the capital is located).

Second-order descriptors

Pair correlation and K-functions

Let ξ1 = (u1, v1), ξ2 = (u2, v2) be two points of W × T. The second-order intensity function
(λ(2)(ξ1, ξ2), ξ1, ξ2 ∈ W × T) and the pair correlation function are defined in the spatio-temporal
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Figure 5: Temporal snapshots of the unconditional risk r̂(u, v) (top) and conditional risk r̂(u|v = t)
(where t is 01/01/2001, 01/01/2002, 01/01/2003 and 12/31/2003) (bottom) of non-specific gastroin-
testinal disease in Hampshire. Solid lines delineate a statistical significant elevated risk at the 5%
level.

context, in the very same way as the spatial ones. For CSTR point processes, the pair correlation
function takes the value of one. Values other than these benchmarks indicate how likely a pair of
“extra” points will appear in a CSTR process with the same intensity at the specified locations; i.e.,
larger values indicate clustering, and smaller values indicate regularity. The pair correlation (Gabriel
and Diggle 2009; Møller 2012; González et al. 2016) is defined as

g(ξ1, ξ2) =
λ(2)(ξ1, ξ2)

λ(ξ1)λ(ξ2)
, ξ1, ξ2 ∈ W × T. (6)

Second-order intensity reweighted stationarity (SOIRS) and isotropy are defined in the same vein
as the spatial counterparts. For the estimation of the pair correlation function, consider a point
pattern X = {(ui, vi)}n

i=1 with n points, the spatio-temporal pair correlation function (Eq. (6)) may be
estimated by

ĝ(r, t) =
1

4πr

n

∑
i=1

∑
j ̸=i

κϵ(∥ui − uj∥ − r)κ′δ(|vi − vj| − t)

λ̂ (ui, vi) λ̂
(

uj, vj

)
wij

, r ∈ [ϵ, r0], t ∈ [δ, t0],

where κϵ and κ′δ are one-dimensional kernel functions with spatial and temporal bandwidths ϵ and δ,
respectively; wij represent edge-correction weights (González et al. 2016). Selecting the bandwidths is
often complicated because the estimation depends on those parameters, which means a wrong decision
could be disastrous. As the second-order descriptors are distance-based, we can take advantage of
some techniques for bandwidth selection. For example, for the temporal kernel, we use the dpik()
function from the KernSmooth package (González and Moraga 2022b), which uses the method
proposed by (Sheather and Jones 1991) to estimate a suitable bandwidth,

library(KernSmooth)
dt <- dist(unique(Times))
ht <- dpik(dt, kernel = "epanech", gridsize = 50, scalest = "iqr")
ht <- 2 * ht

Note that we set Epanechnikov’s kernel as a default because the kernel selection is not as important
as the bandwidth. We get a temporal bandwidth of 13.5 days (the output of the dpik() function). For
the spatial bandwidth and upper bound r0, we use the same as obtained for the spatial summary
functions. For the temporal upper bound t0, we set the 15% of the maximum temporal distances,

t0 <- 0.15 * max(dt)

We use the stpp package to estimate the descriptor. We first create data in spatio-temporal
point format using the command as.3dpoints(); then, we create a two-column matrix to specify the
polygonal region containing the points and set the spatial and temporal domains for the descriptor.
Finally, we use the PCFhat() function to compute the estimate of the pair correlation function,
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Figure 6: Spatio-temporal pair correlation function estimate of non-specific gastrointestinal disease
data.

library(stpp)
FMD <- as.3dpoints(PP$x, PP$y, PP$marks$time)
s.region <- as.matrix(data.frame(x = PP$window$bdry[[1]]$x,

y = PP$window$bdry[[1]]$y))
hs <- bwG
u1 <- seq(hs, r0, length.out = 71)[-1]
v1 <- seq(ht, t0, length.out = 71)[-1]

# Time consuming: This takes roughly 3.87 hours to be executed
g <- PCFhat(xyt = FMD, s.region = s.region, t.region = range(Times),

lambda = lambda, dist = u1, times = v1, ks = "epanech",
kt = "epanech", hs = hs, ht = ht)

To visualise the descriptor, we use the persp3D() function of the plot3D package,

library(plot3D)
par(mar = c(0,0,0,0))
persp3D(x = u1, y = v1, z = g$pcf, facets = NA, curtain = F, col = viridis(200),

colkey = F, bty = "g", pch = 20, cex = 1.5, theta = 40, phi = 5,
border = NA, ticktype = "detailed", cex.axis = 0.5, zlab = "",
xlab = "spatial distances", ylab = "temporal distances")

The ĝ(r, t) surface, shown in Figure 6, describes the spatio-temporal interaction structure of the
disease; it shows clustering (ĝ(r, t) ≥ 1) for all the distances at all times with the appearance of high
clustering at small distances (up to 5km) that moves towards complete spatio-temporal randomness
(CSTR) for more considerable distances. We then can suspect from this behaviour that the point
pattern is only clustered in the spatial dimension, i.e., the interaction between gastrointestinal reports
increases as long as they are close in space, but the clustering in time seems uniform along with the
selected periods. We can also conclude that while the first-order intensity is not separable, perhaps
the second-order one is. Note that the bandwidth selection explains the waves of the pair correlation
function in the temporal dimension; narrow bandwidths produce spurious bumps in the estimate.

One of the most used second-order descriptor is the inhomogeneous spatio-temporal K-function
Møller (2012). Under the SOIRS assumption, if g(r, t) is the pair correlation function, then the K-
function is defined as

K(r, t) =
∫

R2

∫
R

1[||u|| ≤ r, |s| ≤ t]g(||u||, |s|)duds, for r > 0, t > 0.
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Figure 7: Spatio-temporal pair correlation function estimate of non-specific gastrointestinal disease
data.

In the homogeneous case, K(r, t) is simply the expected number of additional points within distance r
and time lag t from the origin, given that the point pattern has a point at the origin. For a CSTR point
processes K(r, t) = πr2t. Considering a spatio-temporal point pattern X again, an estimator of K(r, t)
is

K̂(r, t) =
1

|W × T|
n

∑
i=1

∑
j ̸=i

1
[∥∥∥ui − uj

∥∥∥ ≤ r
]

1
[∣∣∣vi − vj

∣∣∣ ≤ t
]

λ̂ (ui, vi) λ̂
(

uj, vj

)
wij

.

There is an alternative estimator K̂∗(r, t) matching the original definition of (Gabriel 2014) that into
account the past of the process. To compute the K-function we employ the STIKhat() function from
the stpp package,

u <- seq(0, r0, length.out = 71)
v <- seq(0, t0, length.out = 71)

# Time consuming: This takes roughly 55 minutes to be executed
stik <- STIKhat(xyt = FMD, s.region = s.region, t.region = range(Times),

lambda = lambda, dist = u, times = v, infectious = F)

The parameter infectious controls the type of estimator, when it is set FALSE, past and future
events are considered for the estimation. In this equation, the points ξi = (ui, vi) are ordered so
that vi < vi+1 (ties are broken by random unrounding whenever necessary). To deal with temporal
edge-effects, for each t ∈ T = [T0, T1], nt is the number of events for which vi ≤ T1 − t. For spatial
edge effects, the STIKhat() function employs Ripley’s method (Gabriel and Diggle 2009). For plotting
the spatio-temporal K-function we write,

KS <- stik$Khat - stik$Ktheo
par(mar = c(0,0,0,0))
persp3D(x = u[-1], y = v[-1], z = KS, facets = NA, zlab = "",

curtain = F, col = viridis(100), colkey = F, bty = "g", pch = 20,
cex = 1.5, theta = 40, phi = 5, border = NA, ticktype = "detailed",
cex.axis = 0.5, xlab = "spatial distances", ylab = "temporal distances")

Figure 7 shows the estimated K-function. Since the K-function is centred on its theoretical value
(2πr2t), we can easily interpret it; positive deviations suggest clustering, while negative deviations
represent regularity or inhibition. In our case, we can see positive deviations that become larger as
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the spatial and temporal distances grow together. Therefore, as time passes and spatial distances
become larger, the level of clustering also increases in our point pattern, at least in the range we have
considered, that is, up to 7km in space and up to 5 months in time.

4 Discussion

Throughout this paper, we have shown how to analyse complex spatial and spatio-temporal point
patterns through various techniques that aim to capture their first and second-order characteristics
using several R packages. Specifically, we have toured very recent techniques such as variable
bandwidths, relative risk inference, and composite hypotheses. The spatial methods presented
are well-investigated and documented and can be easily applied using R. We have seen that some
procedures, such as estimating p-values in composite hypotheses, require severe computational
resources. The approximate computing time, including all the routines and set parameters suggested
throughout the paper, is approximately six hours in a 3 GHz 6-Core Intel Core i5 iMac computer.
This time depends on several factors, such as the number of simulations and the precision of desired
outputs. It is mainly due to the number of points in the point pattern; the more data points, the
more computational complexity, especially in the case of second-order descriptors, where pairwise
calculations are required. Some R packages such as foreach can help accelerate the computations,
even though these methods may quickly become unfeasible when the datasets have many points.

We have presented the most straightforward methods and the most widely known in the literature;
we have done this, above all, because we intended to provide a solid and approachable learning
resource. However, there are also alternative methods to deal with some of the descriptors we analyse
in this document; for example, González and Moraga (2022a) presents a methodology to accurately
and adaptively estimate the spatio-temporal intensity functions; this methodology can be applied
using the kernstadapt package.

The analyses presented here can benefit future researchers who have initial questions about spatio-
temporal point process data; these results can serve, for instance, as input for possible statistical models.
We have not delved into statistical modelling and inference since many models exist in the spatio-
temporal point processes literature. These statistical models can incorporate current knowledge of the
phenomenon and many scientific considerations. Different models can be proposed and compared
to decide which variables significantly influence the summary descriptors, making the results more
informative (Adrian Baddeley, Rubak, and Turner 2015). For example, one of the most flexible families
of models with the most methodological advantages is the family of log-Gaussian point processes.
Log-Gaussian Cox processes are models for point patterns that intend to capture the environmental
variability (Peter J. Diggle et al. 2013). They are spatio-temporal Poisson processes conditional on
the realisation λ(u, v) of a stochastic intensity function Λ(u, v), (u, v) ∈ R2 × R. In the SOIRS case, a
convenient representation of the intensity is

log {Λ(u, v)} = λ(u, v)S(u, v),

where S(u, v) is a Gaussian stationary process with expectation 1 and covariance function γ(r, t) =
σ2s(r, t), where σ2 is the variance of S(u, v) and s(·, ·) is a spatio-temporal correlation function, where
r and t are spatial and temporal distances. Inference uses a discretised version of S(u, v), namely S ,
defined on a regular grid, where observations X are the cell counts, and the intensity of the process
is assumed constant within each cell (B. Taylor and Diggle 2014). S is a finite collection of Gaussian
random variables, so its properties imply a multivariate Gaussian density. The covariance matrix
elements are calculated by evaluating γ(r, t) at the centroids of the cells. Predictive inference about S
requires samples from the conditional distribution of the latent field given the observations, namely
[S|X]. For estimating the parameters of a space-time log-Gaussian Cox process, one can choose
between computationally feasible methods, such as those based on moments or more demanding
methods based on likelihood (Peter J. Diggle et al. 2013). Inference can be achieved for example, by
using Markov chain Monte Carlo (MCMC) for which the lgcp package can be used, and by using
integrated nested Laplace approximation (INLA) with the inla and inlabru packages.

To conclude, the methods presented here are primarily concerned with understanding the proba-
bility distribution that generate points observed in space or time. The study of such a distribution
involves many routines, concepts and contexts that can help answer scientific questions and make
decisions based on the data or inferences about them. The inclusion of technological advancements
in R has led to improved efficiency and speed in calculations. Additionally, R offers a versatile and
reliable environment for implementing statistical procedures and creating graphical visualisations.
Also, modern developments in spatial statistics related to point patterns have been made possible
thanks to the widespread availability of reproducible R scripts for analyses. In this paper, we have
made extensive use of the ability to apply, extend and modify procedures in R to analyse spatial and
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spatio-temporal point patterns in the context of epidemiology. These approaches are also helpful for
analysing point pattern data that arise in various fields such as climatology, ecology or seismology.
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nlmeVPC: Visual Model Diagnosis for the
Nonlinear Mixed Effect Model
by Eun-Hwa Kang, Myungji Ko, and Eun-Kyung Lee

Abstract A nonlinear mixed effects model is useful when the data are repeatedly measured within the
same unit or correlated between units. Such models are widely used in medicine, disease mechanics,
pharmacology, ecology, social science, psychology, etc. After fitting the nonlinear mixed effect model,
model diagnostics are essential for verifying that the results are reliable. The visual predictive check
(VPC) has recently been highlighted as a visual diagnostic tool for pharmacometric models. This
method can also be applied to general nonlinear mixed effects models. However, functions for VPCs
in existing R packages are specialized for pharmacometric model diagnosis, and are not suitable for
general nonlinear mixed effect models. In this paper, we propose nlmeVPC, an R package for the
visual diagnosis of various nonlinear mixed effect models. The nlmeVPC package allows for more
diverse model diagnostics, including visual diagnostic tools that extend the concept of VPCs along
with the capabilities of existing R packages.

1 Introduction

After fitting a model, diagnosing the fitted model is essential for verifying that the results are reliable
(Nguyen et al. 2017). For linear models, the residuals are usually used to determine the goodness of
fit of the fitted model. However, due to random effects and nonlinearity, residuals are less useful for
diagnosing fit in nonlinear mixed effects models. Therefore, various diagnostic tools for this type of
model have been developed. The nonlinear mixed effect model is useful when the data are repeatedly
measured within the same unit, or the relationship between the dependent and independent variables
is nonlinear. It is widely used in various fields, including medicine, disease mechanics, pharmacology,
ecology, pharmacometrics, social science, and psychology (J. C. Pinheiro and Bates 2000; Davidian
2017). Recently, among the various diagnostic tools applicable to nonlinear mixed models, simulation-
based diagnostic methods have been developed in the field of pharmacology (M. Karlsson and Savic
2007). The visual predictive check (VPC; M. O. Karlsson and Holford (2008)) is a critical diagnostic tool
that visually tests for the adequacy of the fitted model. It allows for the diagnosis of fixed and random
effects in mixed models (M. O. Karlsson and Holford 2008) in the original data space. Currently, it is
a widely used method for diagnosing population pharmacometric models: Heus et al. (2022) used
the VPC method to evaluate their population pharmacokinetic models of vancomycin, Mudde et al.
(2022) checked their final population PK model for each regimen of antituberculosis drug using the
VPC method, and Otto et al. (2021) compares the predictive performance of parent-metabolite models
of (S)-ketamine with the VPC method. This VPC method can be used for general nonlinear mixed
effect models, including hierarchical models.

The psn (Lindbom, Ribbing, and Jonsson 2004) and xpose4 (R. J. Keizer, Karlsson, and Hooker
2013) packages provide various diagnostic methods for pharmacometric models in R (R Core Team
2023), including the VPC plot. These packages were developed only for the pharmacometricians, and
the users needed to use the NONMEM software (Bauer 2011) for generating inputs of functions in
these two packages. However, NONMEM is licensed software, and it is mainly designed towards the
analysis of population pharmacometric models. Therefore, it is not easy for nonpharmacometrician to
use NONMEM and to draw the VPC plot through psn and xpose4. Recently, the vpc (R. Keizer 2021)
package and nlmixr2 (Fidler et al. 2019) package have been developed to draw VPC plots in R without
results from NONMEM. However, vpc package provides the function for drawing the original VPC
plot only. nlmixr2 was developed initially for fitting general dynamic models. To check the fitted
model, nlmixr2 provides a function to use graphical diagnostics in xpose4 with the nlmixr2 model
object. Also, nlmixr2 uses the VPC plot in the vpc package with the nlmixr2 model object. Therefore,
both packages only provide a function to draw the basic VPC plot, and the other newly developed
simulation-based methods, including extensions of VPC, are not provided.

We have developed a new R package, nlmeVPC, to provide a suite for various visual checking
methods for the nonlinear mixed models. This package includes various state-of-the-art model
diagnostic methods based on the visual comparison between the original and simulated data. Most
methods compare the statistics calculated from the observed data to the statistics from the simulated
data. Percentiles, for example, the 10th, 50th, and 90th percentiles, are widely used to summarize
relevant statistics from the observed and simulated data. We compare the similarities between the
statistics from the observed data and those from the simulated data in two different spaces: the data
space and the model space (Hadley Wickham, Cook, and Hofmann 2015). The original data comprise
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the data space. Usually, the data space is represented by the independent and dependent variables,
such as time and blood concentration, in the pharmacokinetic data. On the other hand, the model
space is composed of quantities obtained from the fitted model, for example, residuals and summary
values from the fitted model. From this viewpoint, we categorize the well-known visual diagnostic
tools into two categories. One method compares the observed and simulated data in the original
data space, and the other in the model space. In the method with the data space, we developed
functions for the original VPC (VPCgraph), the additive quantile regression VPC (aqrVPC), and the
bootstrap VPC (bootVPC). In addition, we proposed a new VPC method: the average shifted VPC
(asVPC). In the method with the model space, the coverage plot (coverageplot) and the quantified
VPC (quantVPC) are included. For a more detailed diagnosis, we developed a coverage detailed plot
(coverageDetailplot). In nlmeVPC, the ggplot2 package (H. Wickham 2016) is used to create all
plots.

2 Nonlinear mixed effect model

The general nonlinear mixed effect model is defined as follow:

yij = f (xij, θ, ηi, ϵij)ηi ∼ N(0, Ω)ϵij ∼ N(0, Σ)

where yij is the dependent variable of the jth observation of the ith individual, xij is the independent
variable, f is the nonlinear function of xij, θ is the population parameter, ηi represents the variability
of the individual i, and ϵij represents the random error. From the data, θ , Ω, and Σ are estimated. For
the simulated data, the fitted model yij = f (xij, θ̂, ηi, ϵij), ηi ∼ N(0, Ω̂), ϵij ∼ N(0, Σ̂) are used.

3 Validation in the data space

The VPC is the most popular model validation method in the pharmacometrics area. It was developed
to diagnose population pharmacokinetic/pharmacodynamic models visually. The main idea of the
VPC is to compare the distribution of observations and the distribution of predicted values, where
the distribution of predicted values is obtained from simulated data drawn from the fitted model.
If the fitted model explains the observed data well, these two distributions should be similar. Both
distributions can be represented in the original data space that consists X axis as the independent
variable and Y axis as the dependent variable. It allows us to compare the observed data with the
fitted model in the original data space. In nlmeVPC, we include an original VPC plot, an additive
quantile regression VPC (Jamsen et al. 2018), and a bootstrap VPC (Post et al. 2008). We also proposed
a new approach to draw the VPC: the average shifted VPC.

Visual Predictive Check

The visual predictive check (VPC; M. O. Karlsson and Holford (2008)) is based on the principle that if
the fitted model adequately describes the observed data, the distribution of the simulated data from
the fitted model should be similar to the distribution of the observed data. There are several ways
to compare the similarities between the distributions. In the VPC approach, profiles of quantiles are
used. Two profiles are mainly used to compare the distributions of observations and predictions. One
profile is from the upper bound of the prediction intervals, and the other is from the lower bound.
These prediction intervals are calculated from the simulated data. 90% prediction intervals are usually
used. For small and sparse samples, 80% prediction interval is also used. The lower and upper bounds
of 80% prediction interval are the 10th and 90th percentiles of the simulated data. Figure 1(A) shows
the “scatter” type of the VPC plot. Dots indicate the observed data. Two dashed blue lines represent
profiles of the 10th and 90th percentiles of the simulated data, and the solid blue line represents the
50th percentile. If the fitted model represents the observed data well, most observed data should lie
between profiles of 10th and 90th percentiles.

Figure 1(B) is the “percentile” type of the VPC plot. In this plot, profiles of percentiles from the
observed data are compared to profiles of percentiles from the simulated data. Two dashed red lines
represent profiles of the 10th and 90th percentiles of the observed data, and the solid red line represents
profiles of the 50th percentile of the observed data. If the fitted model represents the observed data
well, two profiles in each percentile - one from the original data and the other from the simulated data
- are similar.

Figure 1(C) is the “CI” type of the VPC plot. The solid red line represents the 50th percentile of
the observed data, and dashed red lines represent the 10th and 90th percentiles of the observed data.
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Light blue areas represent the 95% confidence areas of the 10th and 90th percentiles, and pink areas
represent the 95% confidence areas of the 50th percentile. These confidence areas were calculated
from the simulated data. After calculating percentiles in each simulated data, we find 95% confidence
intervals for each percentile and use this to draw the areas. In this plot, it is necessary to verify that
the profiles of the original data are in confidence areas of each profile from the simulated data in
each percentile. If each percentile line of the observed data is in the corresponding confidence area,
this can be evidence that the fitted model represents the observed data quite well. Otherwise, the
fitted model needs to be improved. The “CI” type of the VPC plot is the most widely used type in
pharmacometrics.

The percentiles of the dependent variable are calculated in each bin. To estimate the percentiles
accurately, enough data points need to lie within each bin. No binning means that the number of bins
is equal to the number of different independent variable values. In this case, the VPC plot shows all
details of the relationship between the independent and dependent variables. However, the resulting
lines become too irregular to show meaningful trends or patterns.

As the number of bins decreases, the lines become smoother and more regular, however this can
come at the loss of information if too much smoothing is used. Therefore, the selection of the best
number of bins is crucial. The way of determining cutoffs for bin also plays an important role. Lavielle
and Bleakley (2011) proposed a procedure for finding the optimal bin configuration automatically,
including the optimal number of bins and the optimal bin cutoffs. VPCgraph provides the automatic
binning with optK and makeCOVbin; here, optK finds the optimal number of bins, and makeCOVbin finds
the optimal cutoffs of bins using Lavielle and Bleakley’s method.

Additive quantile regression VPC

To overcome the difficulties of making bins as well as determining the number of bins, Jamsen et al.
(2018) used additive quantile regression to calculate the quantiles of the observed and simulated data.
This regression method makes it possible to estimate quantiles without discrete binning, which is
especially useful when the data are insufficient, irregular, or inappropriate to configure the bins. To fit
the additive quantile regression, we used the rqss function in the quantreg (Koenker 2023) package
and developed the aqrVPC function to draw the VPC type plot with additive quantile regression.
Figure 2 shows the additive quantile regression VPC plot. The solid and dashed lines represent the
10th, 50th, and 90th additive quantile regression lines of the observed data, and the pink and light blue
areas represent the confidence areas of the additive quantile regression lines of the simulated data.
Lines and areas in the additive quantile regression VPC plot are much smoother than those in the
original VPC plot.

Bootstrap VPC

The bootstrap VPC (Post et al. 2008) compares the distribution of the simulated data to the distribution
of the bootstrap samples drawn from the observed data. This plot reflects the uncertainty of the
observed data and allows for more objective comparisons with the predicted median.

Figure 3 shows the bootstrap VPC plot using bootVPC. The solid and dashed blue lines represent
the 10th, 50th, and 90th percentiles of the simulated data. The solid red line represents the 50th percentile
line, and the pink areas represent the 95% confidence areas of the 50th percentile line, calculated from
the bootstrap samples of the observed data. If the solid blue line and the solid red line are similar, the
solid blue line is in the pink area, and the pink area is located between two dashed blue lines, then this
is evidence that the fitted model fit the observed data well.

Average shifted VPC

Even though binning mitigates the problem with highly irregular data, the VPC plot still has a precision
problem with sparse data. In this paper, we propose a new approach to draw the adapted VPC plot
from the average shifted histograms (Scott 1985). A histogram is a widely used method for displaying
the density of a single continuous variable. However, histograms can look quite different based on
different choice of bin width and anchor. This requires computing an optimal bin width. To overcome
the problem with the choice of bin width and to obtain smoother estimates, Scott (1985) proposed
the averaged shifted histogram (ASH). The idea behind ASH is to make K different histograms with
different anchors and to combine them via a weighted average. For each histogram, the starting point
is shifted by d/K, where d is the width of the bin. We extend this idea to the VPC graph and propose
the average shifted visual predictive check (asVPC) plot.
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Figure 1: The visual predictive check plot. The solid red line represents the 50th percentile of the
observed data, and dashed red lines represent the 10th and 90th percentiles of the observed data. The
solid blue line represents the 50th percentile of the simularted data, and dashed blue lines represent the
10th and 90th percentiles of the simulated data. Light blue and pink areas represent the 95% confidence
areas of the 10th, 50th and 90th percentile lines.
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Figure 2: The additive equantile VPC plot. Dots indicate the observed data. The solid and dashed blue
lines represent the 10th, 50th, and 90th percentiles of the simulated data. The solid red line represents
the 50th percentile line. Light blue and pink areas represent the 95% confidence areas of the 10th, 50th

and 90th percentile lines.
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Figure 3: The bootstrap VPC plot. Dots indicate the observed data. The solid and dashed blue lines
represent the 10th, 50th, and 90th percentiles of the simulated data. The solid red line represents the
50th percentile line, and the pink areas represent the 95% confidence areas of the 50th percentile line,
calculated from the bootstrap samples of the observed data.
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The binning of the VPC varies from the traditional binning in a histogram. The width of the bins
is determined such that each bins contains the same, fixed number of observations, and as such the
width of each bin is different. To apply the ASH idea to the VPC, we divide our data into K ∗ B bins
along with the independent variable, where each bin has a different width but the same number of
observations. Here, B is the number of the original bins in the VPC plot, and K is the number of the
histograms averaged in the asVPC plot.

To draw the VPC plots, the following information is needed from each bin:

(A) the median of the independent variable and percentiles of the dependent variable of the observed
data.

(B) the median of the independent variable and percentiles of the dependent variable of the simu-
lated data.

(C) 95% confidence interval of percentiles (usually 10th, 50th, and 90th percentiles) of the dependent
variable, calculated from the simulated data.

These values are also needed to produce confidence areas and percentile lines in the asVPC plot.
Furthermore, additional steps are needed for asVPC. To find the median of the independent variable
and percentiles of the dependent variable using the ASH algorithm, the following procedures are
needed:

1. Divide the independent variable into N = K ∗ B bins.

2. For i = 1, · · · , N,

a) If i < K, combine bin1, · · · , bini+K−1\ else if K ≤ i ≤ N −K , combine bini−K+1, · · · , bini+K−1\
else if N − K < i , combine bini−K+1, · · · , binN

b) Calculate the median of the independent variable and the weighted percentiles of the
dependent variable in the combined bin

3. Collect the medians of the independent variable and the weighted percentiles of the dependent
variable from 2, and connect them to the lines.

We can implement (A) and (B) by applying these procedures separately to the observed and
simulated data. Additionally, (C) can be implemented using these procedures for each simulated
dataset. First, we find the weighted percentiles, combine the results from each simulated dataset, and
then calculate the 95% confidence intervals of each percentile. Using these three quantities (A), (B),
and (C), we can draw the VPC type plot with the ASH approach, producing the asVPC plot.

Determining the weights

In the asVPC plot, the observations in each bin are combined using weights. Typically, the data near
the center of the integrated bin have higher weights, and the data far from the center have smaller
weights. This idea is used in the ASH algorithm as well as the density estimation literature. We
suggest two different ways to apply weights for the asVPC calculation.

• Bin-related weight: For each bin in the combined bin, K-1 bins in both directions have weights
and the other bins have no weight. Use 1

K , · · ·, i−1
K , · · ·, K−1

K , 1, K−1
K , · · ·, i−1

K , · · ·, 1
K as weights

for 2K-1 bins. This approach is the same as the original ASH approach.

• Distance-related weight: Use the reciprocal of the distance from the center of the independent
variable in each combined bin so that the points near the center have higher weights and the
points far from the center have lower weights.

Figure 4 shows the results from the asVPC function using bin-related weights and distance-related
weights. The solid and dashed lines represent the average shifted quantile lines of the observed data,
and the pink and light blue areas represent the confidence areas of the simulated data. The lines in the
asVPC plot are smoother than those in the original VPC plot, and the confidence areas in the asVPC
plot are thinner than those in the original VPC plot.

4 Validation in the model space

To validate the fitted model in the model space, we need to choose appropriate statistics to visualize
and describe them in the model space. In nlmeVPC, we use the same statistics, that is quantiles, as the
VPC plot in the data space, and compare them in two ways - numerically and visually. The numerical
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observed data. Light blue and pink areas represent the 95% confidence areas of the 10th, 50th, and 90th

percentiles.
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predictive check and the coverage plot are two commonly used methods in pharmacometrics. However,
there is a limitation to detecting the illness of the fitted model. These methods combine the results of
all ranges of the independent variable, and it is helpful to see the overall fitness. However, it is not
easy to detect the detailed discrepancy between the fitted model and the observed data. To overcome
this limitation, we developed a new plot, the coverage detailed plot, to compensate for the shortness
of the coverage plot.

Numerical predictive check

The VPC plot visually compares the observed data to the simulated percentiles in the data space. On
the other hand, the numerical predictive check (NPC; Wang and Zhang (2012); M. Karlsson and Savic
(2007)) numerically compares the observed data to the simulated data. For a given level of prediction
(for example, 90%), the predicted interval is calculated using the simulated data, and the number of
the observed data points outside of the prediction interval is counted, both below the lower bound
and above the upper bound. The expected number of points below the lower bound of the predicted
interval (for example, 5% of observations) is also calculated and compared to the observed number. If
these two numbers are similar, the suggested model is suitable (Maharaj et al. 2019).

NumericalCheck provides information summarizing the results of the NPC for various prediction
levels. PI is the prediction level × 100 and n is the number of observations. "Expected points
below PI" and "Expected points above PI" are respectively the expected numbers below and above
the PI; "points below PI" and "points above PI" respectively represent the numbers of points
below and above the PI; "95%CIBelowFrom(%)" and "95%CIBelowTo(%)" represent the 95% confidence
interval of "points below PI(%)"; and "95%CIAboveFrom(%)" and "95%CIAboveTo(%)" represent the
95% confidence interval of "points above PI(%)". If "points below PI(%)" is in the 95% confidence
intervals of "points below PI(%)" and is similar to "Expected points below PI", and if "points
above PI(%)" is in the 95% confidence intervals of "points above PI(%)" and is similar to "Expected
points above PI", this is the evidence that the fitted model explains the data well.

NumericalCheck(origdata,simdata,pred.level=c(0,0.2,0.4,0.6,0.8,0.9),N_xbin=8)$NPC

#> PI n Expected points below PI points below PI points below PI(%)
#> 1 0 132 66.0 57 43.18182
#> 2 20 132 52.8 46 34.84848
#> 3 40 132 39.6 37 28.03030
#> 4 60 132 26.4 27 20.45455
#> 5 80 132 13.2 17 12.87879
#> 6 90 132 6.6 7 5.30303
#> 95%CIBelowFrom(%) 95%CIBelowTo(%) Expected points above PI points above PI
#> 1 35.6060606 56.81818 66.0 63
#> 2 26.8750000 48.88258 52.8 49
#> 3 20.4545455 36.76136 39.6 35
#> 4 11.3636364 26.15530 26.4 28
#> 5 3.7878788 16.66667 13.2 12
#> 6 0.3598485 10.64394 6.6 5
#> points above PI(%) 95%CIAboveFrom(%) 95%CIAboveTo(%)
#> 1 47.727273 34.090909 55.303030
#> 2 37.121212 25.359848 46.609848
#> 3 26.515152 16.666667 36.003788
#> 4 21.212121 10.965909 25.000000
#> 5 9.090909 2.632576 15.549242
#> 6 3.787879 1.117424 8.333333

Coverage plot

The result of the NPC is a table with many values, which, while useful, can be difficult to parse visually.
The coverage plot (M. O. Karlsson and Holford 2008) was developed to help visually check the fitted
model with the NPC result. In each level of the predicted interval, the ratios between the expected
number of data points (Exp) outside the prediction interval and the observed number of data points
(Obs) outside the prediction interval are calculated. These ratios are calculated separately for the
upper and lower bound of the prediction interval. For example, when the prediction level is 90, a 90%
prediction interval is used, and 10% of the observations are expected to locate outside this prediction
interval. To be more precise, 5% of observations are expected to be above the upper limit, and 5% of
observations are expected to be below the lower limit.
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The coverage plot with the NPC result can diagnose a model using multiple prediction intervals.
The X-axis represents the prediction level, and the Y-axis represents Obs/Exp. The closer Obs/Exp is
to 1, the more appropriate the model is. Furthermore, the confidence intervals of Obs/Exp values are
obtained using simulated data and then expressed together in the plot for a more objective comparison.
This plot can provide more information than the VPC plot, which interprets only a couple of quantiles
- usually the 10%, 50%, and 90% percentiles.

The xpose4 package (R. J. Keizer, Karlsson, and Hooker 2013) provides a coverage plot. However,
to draw the coverage plot using xpose4, PsN (Lindbom, Ribbing, and Jonsson 2004) software is needed
to calculate the NPC result. Therefore, we developed coverageplot to draw the coverage plot using
the results from NumericalCheck.

Figure 5(A) shows the coverage plot. The X-axis shows the level of the prediction interval. The
Y-axis show the ratio between the observed number of data and the expected number of data of the
lower and upper parts in each level of the prediction interval. The white line is the reference line, and
the gray area represents the confidence areas of the ratios in each prediction level. If the solid lines are
near the white line or in the gray area, we can conclude that the suggested model is suitable.

Coverage detailed plot

Unlike the VPC plot, which represents the data space, the information in the observed data space
does not come together in the coverage plot, which makes it difficult to determine whether the model
is overestimated, underestimated, or adequate in the specific region of the data space. To overcome
this limitation of the coverage plot, we propose a new method called the coverage detailed plot. The
percentages of observations above the prediction interval are calculated in each bin of the independent
variable. Additionally, the percentages of observations below the prediction interval are calculated.
The white dots in the plot represent the expected percentages. If the percentages of upper and lower
observations are near the white dots, we can conclude that the suggested model is suitable for the
specific prediction interval.

Figure 5(B) is the result of coverageDetailplot when the prediction level is 80%. The white dots
represent the expected percentages of the lower and upper the prediction intervals, 10%, and 90%,
respectively. The upper and lower percentages of observation in each time bin are shown in darker
gray. The left bin(before 0.045 hours) shows all light gray in the coverage detailed plot, and it is
quite different patterns from the expected one. However, it is mainly due to the characteristics of this
example data. All observations in this bin are 0. It makes the lower and upper bound of the prediction
interval all 0, and the lower and upper percentages become 0.

Quantified VPC

Post et al. (2008) proposed the quantified VPC (QVPC). It expanded the existing VPC, including infor-
mation about missing data. The QVPC plot visually represents actual and unavailable observations
around the predicted medians through the form of percent, regardless of the observed data’s density
or shape. Here, “unavailable observations” refer to all kinds of missing values and unobserved data
that occur for various reasons, including deviations and unexpected omissions.

If the model is appropriate, observations at each time bin are allocated randomly around the
predicted median of the model. In the QVPC plot, white dots represent the model’s predicted median
in each bin. If the borderlines above and below are close to the white dots, we can conclude that the
fitted model describes the observed data well.

Figure 6 shows the result of quantVPC. The darker gray areas represent the percentages below the
median. The lighter gray areas represent the percentage above. The brightest gray areas represent the
percent unavailable in each time bin. The white dots represent the ideal location where the above and
the below percentages meet. In this example, there is no missing value.

5 The nlmeVPC package: structure and functionality

Table ?? shows the list of functions and Table ?? shows the list of arguments used in the functions of
nlmeVPC. The following codes are for Figure 1 to Figure 6.

library(nlmeVPC)
data(origdata)
data(simdata)
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Figure 5: The coverage plot and the coverage detailed plot for the 80% prediction interval. In the
coverage plot, the X-axis is the level of the prediction interval. The Y-axis is the ratio between the
number of observed data and the number of expected data of the lower and upper parts in each level of
the prediction interval. The white line is the reference line, and the gray area represents the confidence
area of the ratios. If the solid lines are near the white line, we can conclude that the suggested model is
suitable. In the coverage detailed plot, the white dots represent the expected percentages of lower
and upper prediction intervals of, 10%, and 90%, respectively. The upper and lower percentages of
observation in each time bin are darker gray.
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Figure 6: The quantified VPC plot. The darker gray areas represent the percentages below the median,
the lighter gray areas represent the percentage above, and the brightest gray areas represent the
percent unavailable in each time bin. The white dots represent the ideal location where the above and
the below percentages meet.
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optK(origdata$TIME)$K

#> [1] 8

# Figure 1

VPCgraph(origdata,simdata,N_xbin=8,type="scatter")+
labs(title="(A) Visual Predictive Check : scatter",caption="")

VPCgraph(origdata,simdata,N_xbin=8,type="percentile")+
labs(title="(B) Visual Predictive Check : percentile",caption="")

VPCgraph(origdata,simdata,N_xbin=8,type="CI")+
labs(title="(C) Visual Predictive Check : CI",caption="")

# Figure 2

aqrVPC(origdata,simdata) +labs(caption="")

# Figure 3

bootVPC(origdata,simdata,N_xbin=8)+labs(caption="")

# Figure 4

asVPC(origdata,simdata,type="CI",N_xbin=8,N_hist=3,weight_method="bin")+labs(caption="")
asVPC(origdata,simdata,type="CI",N_xbin=8,N_hist=3,weight_method="distance")+labs(caption="")

# Numerical Predictive Check

NumericalCheck(origdata,simdata,N_xbin=8,pred.level=c(0,0.2,0.4,0.6,0.8,0.9))$NPC

# Figure 5

coverageplot(origdata,simdata,N_xbin=8) +ggtitle("(A) Coverage Plot")
coverageDetailplot(origdata,simdata,N_xbin=8,predL=0.8) +
ggtitle("(B) Coverage Detailed plot: PI = 80")

# Figure 6

quantVPC(origdata,simdata)

We use an example to show how to use functions in nlmeVPC and how they work.

Example

The origdata in nlmeVPC is from an experiment on the pharmacokinetics of theophylline. Twelve
patients were given oral doses of theophylline, and blood concentrations were measured at 11 time
points over the next 25 hours. Each patient had different time points. We consider the following
first-order absorption one-compartment model:

yij =
Amti ∗ Kei ∗ Kai

Cli

(
exp(−Kei ∗ TIMEij)− exp(−Kai ∗ TIMEij)

)
+ εij.

In this model, yij is the theophylline concentration at TIMEij after an initial dose of Amti. The
pharmacokinetic parameters are the absorption rate constant Ka, the elimination rate constant Ke, and
the clearance Cl. In this example, two different models are fitted and diagnosed using functions in
the nlmeVPC package. In Model 1, Ka and Cl are considered as random effects. In Model 2, Ke is
considered as random effect, and Ka and Cl are considered only as a fixed effect. The nlme (J. Pinheiro
et al. 2022) and nlraa (Miguez 2022) packages are used to fit the nonlinear mixed models and to
generate the simulated data from the fitted model.

library(nlme)
library(nlraa)
library(nlmeVPC)
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data(origdata)
origdataT <- groupedData(DV~TIME|ID,origdata)

# Model 1 (True)
T.nlme <- nlme(DV ~ exp(lKe+lKa-lCl)*AMT*

(exp(-exp(lKe)*TIME) - exp(-exp(lKa)*TIME))/
(exp(lKa)-exp(lKe)), data=origdataT,

fixed=lKa+lKe+lCl~1,
random=lKa+lCl~1,
start=c(lKe=-2,lKa=1.5,lCl=-3))

set.seed(123456)
sim.T <- simulate_nlme(object=T.nlme,nsim=100,psim=3,level=1,value="data.frame",data = NULL)
simdata.T <- matrix(sim.T$sim.y,ncol=100)

# Model 2 (Wrong)
F.nlme <- nlme(DV ~ exp(lKe+lKa-lCl)*AMT*

(exp(-exp(lKe)*TIME) - exp(-exp(lKa)*TIME))/
(exp(lKa)-exp(lKe)), data=origdataT,

fixed=lKa+lKe+lCl~1,
random=lKe~1,
start=c(lKe=-2,lKa=1.5,lCl=-3))

sim.F <- simulate_nlme(object=F.nlme,nsim=100,psim=3,level=1,value="data.frame",data = NULL)
simdata.F <- matrix(sim.F$sim.y,ncol=100)

# Figure 7

VPCgraph(origdata,simdata.T,type="CI",N_xbin=8)+labs(title="Model 1",caption="")
VPCgraph(origdata,simdata.F,type="CI",N_xbin=8)+labs(title="Model 2",caption="")

# Figure 8

aqrVPC(origdata,simdata.T)+labs(title="Model 1",caption="")
aqrVPC(origdata,simdata.F)+labs(title="Model 2",caption="")

# Figure 9

asVPC(origdata,simdata.T,type="CI",weight_method="distance",N_xbin=8)+labs(title="Model 1",caption="")
asVPC(origdata,simdata.F,type="CI",weight_method="distance",N_xbin=8)+labs(title="Model 2",caption="")

# Figure 10

bootVPC(origdata,simdata.T,N_xbin=8)+labs(title="Model 1",caption="")
bootVPC(origdata,simdata.F,N_xbin=8)+labs(title="Model 2",caption="")

# Figure 11

coverageplot(origdata,simdata.T,conf.level=0.9,N_xbin=8)+labs(title="Model 1")
coverageplot(origdata,simdata.F,conf.level=0.9,N_xbin=8)+labs(title="Model 2")

# Figure 12

coverageDetailplot(origdata,simdata.T,predL=0.5,N_xbin=8)+labs(title="Model 1")
coverageDetailplot(origdata,simdata.F,predL=0.5,N_xbin=8)+labs(title="Model 2")

# Figure 13

coverageDetailplot(origdata,simdata.T,predL=0.8,N_xbin=8)+labs(title="Model 1")
coverageDetailplot(origdata,simdata.F,predL=0.8,N_xbin=8)+labs(title="Model 2")

# Figure 14

quantVPC(origdata,simdata.T,N_xbin=8)+labs(title="Model 1")
quantVPC(origdata,simdata.F,N_xbin=8)+labs(title="Model 2")
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Figure 7: The VPC plots of Model 1 and Model 2.
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Figure 8: The additive quantile regression VPC plots for Model 1 and Model 2.

Figure 7 shows the VPCgraph for Model 1 and Model 2. The solid line represents the 50th percentile
of the observed data, and the dashed lines represent the 10th and 90th percentiles of the observed data.
In Model 1, all quantile lines (the solid and dashed lines) are in the confidence area. However, the 10th

and 90th percentiles in Model 2 are mostly outside the confidence area, especially at 0 to 5 hours.

Figure 8 shows the results of aqrVPC, and Figure 9 shows the results of asVPC for Model 1 and
Model 2. The additive quantile regression VPCs and the average shifted VPCs show similar patterns
to the original VPCs. Model 1 shows all quantile lines in the confidence area, and the 10th and 90th

percentiles in Model 2 are mostly outside the confidence area.

Figure 10 shows the results of bootVPC for Model 1 and Model 2. The solid and dashed blue lines
show the 10th, 50th, and 90th percentiles of the simulated data. The solid red line represents the 50th

percentile line of the observed data, and the pink areas represent the 95% confidence areas of the 50th

percentile line, calculated from the bootstrap samples of the observed data. The solid blue line is in the
pink area, and the two solid red and blue lines are almost identical in both models. The dashed blue
lines in Model 1 cover most of the observed data. However, the dashed blue lines in Model 2 do not
cover the observed data. Many observed data points lie outside these dashed blue lines in Model 2,
especially in 0 to 10 hours.

Figure 11 shows the coverageplot results for Model 1 and Model 2. The lines are in the gray area
and close to the white line in Model 1. However, the lines in Model 2 are not in the gray area, especially
when the PI value is large. Figures 12 and 13 show the results of coverageDetailplot for Model 1 and
Model 2 when PIs are 50% and 80%. The upper and lower percentages in both figures are close to the
white points in Model 1. On the other hand, the upper percentages of the most time bins are far from
the white points in Model 2, especially the time bin (3.54,5.28] when PI = 50%. When PI = 80%, most
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Figure 12: The coverage detailed plots for Model 1 and Model 2 when PI=50%.
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Figure 13: The coverage detailed plots for Model 1 and Model 2 when PI=80%.

upper and lower percentages are far from the white points.

Figure 14 shows the results of quantVPC for Model 1 and Model 2. In Model 2, the right tail area
(after 11 hours) looks quite different from the expected pattern. The above percentages are much larger
than the below percentages.

The results from Figure 7 through Figure 14 show that Model 1 explains the origdata quite well.
However, Model 2 shows different patterns than Model 1 in most figures. We can conclude that Model
1 is better than Model 2, and treating Ka and Cl as random effects is better.

6 Summary

This paper introduces the nlmeVPC package. The VPC and its extensions are useful for validating the
nonlinear mixed effect model. The nlmeVPC package provides various visual diagnostic tools for the
nonlinear mixed effect model in two different approaches: validation in data space and model space.
Both approaches are valuable. Validation in data space can compare the fitted model with the original
data, and validation in model space provides detailed comparisons in various ways. In the nlmeVPC
package, we also provide new approaches - asVPC and coverageDetailplot. Here, asVPC provides a
more precise VPC plot, and coverageDetailplot provides the detailed feature of the fitted model that
is not captured in the coverage plot. Even though the coverage plot does not show any problem with
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Figure 14: The quantified VPC plots for Model 1 and Model 2.

the fitted model, the coverage detailed plot can reveal the problem in a specific region (Figures 10, 11,
and 12).
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Likelihood Ratio Test-Based Drug Safety
Assessment using R Package pvLRT
by Saptarshi Chakraborty, Marianthi Markatou, and Robert Ball

Abstract Medical product safety continues to be a key concern of the twenty-first century. Several
spontaneous adverse events reporting databases established across the world continuously collect
and archive adverse events data on various medical products. Determining signals of disproportional
reporting (SDR) of product/adverse event pairs from these large-scale databases require the use
of principled statistical techniques. Likelihood ratio test (LRT)-based approaches are particularly
noteworthy in this context as they permit objective SDR detection without requiring ad hoc thresholds.
However, their implementation is non-trivial due to analytical complexities, which necessitate the use
of computation-heavy methods. Here we introduce R package pvLRT which implements a suite of
LRT approaches, along with various post-processing and graphical summary functions, to facilitate
simplified use of the methodologies. Detailed examples are provided to illustrate the package through
analyses of three real product safety datasets obtained from publicly available FDA FAERS and VAERS
databases.

1 Introduction

Adverse events of medical products are a major concern worldwide, with serious global health
implications particularly in the post-pandemic world. While clinical trials conducted pre-licensure
remain the primary source of safety information about medical products, and other data sources
such as claims and electronic health records are increasingly being used post-licensure, they exhibit
several limitations. First, detecting extremely rare adverse events in clinical trials is difficult due to
their strict inclusion/exclusion criteria and their relatively small counts compared to the population
which will eventually receive the product. Second, randomized clinical trials for detecting multiple
adverse events may be logistically and ethically infeasible. Despite having known issues such as
self-selection, confounding, and missing data, etc., large-scale observational studies have been used in
surveillance and post-licensure epidemiological studies to supplement traditional clinical trial-based
approaches (Markatou and Ball 2014). Thanks to the proliferation of electronic health record systems
worldwide, a vast trove of such data are now available and can collectively provide critical first alerts
for emerging medical product safety concerns. Curated large-scale databases such as US Food and
Drug Administration (FDA)’s Adverse Event Reporting System (FAERS) and Vaccine Adverse Event
Reporting System (VAERS), the European Medicines Agency’s Eudravigilance, and the World Health
Organization’s VigiBase provide collective lists of drugs/vaccines and adverse events from large
number of reports, and thus are invaluable resources for product safety assessment.

Mining these databases to assess medical product safety is however challenging due to limitations
of the data (e.g., biases in reporting, presence of duplicate reports, and missing/incomplete informa-
tion) and the lack of a universally accepted statistical methodology. Several approaches to detecting
signals of disproportionate reporting (SDR) as an indicator of a possible safety concern from adverse
event data exist; these constitute a part of the pharmacovigilance process for assessing whether a
medical product is the cause of an adverse event. Of the existing approaches, Proportional Relative
Reporting Proportion (PRR), Reporting Odds Ratio (ROR), Multi-item Gamma Poisson Shrinker
(MGPS), Bayesian Confidence Propagation Neural Network (BCPNN) and their false discovery rate
(FDR)-adjusted variants are notable. Many of these approaches require one or both types of thresh-
olding: (a) on the number of reports needed for the method to operate, and (b) on the underlying
statistic to identify important/severe adverse events. However, determining appropriate thresholds
remains a key challenge for these approaches, and in practice ad hoc thresholds are often used. This is
problematic because both too low and too high thresholds lead to drastically different detection rates,
and no separate measure is usually available to assess correctness of the detected signals. A principled
approach permitting data-driven threshold determination with optimal guarantees on the detected
signals is therefore essential to ensure statistical validity of results.

The LRT-based approaches to signal detection in the medical product safety datasets (Ding,
Markatou, and Ball 2020; Huang, Zalkikar, and Tiwari 2011; Huang et al. 2017; Zhao, Yi, and Tiwari
2018; Chakraborty et al. 2022) provide a highly rigorous suite of statistical methods to address these
problems. To provide a high-level summary, these methods assume a Poisson/zero-inflated Poisson
model to parametrize associations between drugs and their adverse events. Then conditional on
the total reported number of cases for each adverse event and each medical product, these methods
quantify signal strength in the observed number of reports per adverse event/medical product pair

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 102

Table 1: Existing R packages on CRAN with functionalities for pharmacovigilance.

Package Method Notes

PhViD: Pharmacovigilance
Signal Detection

PRR, ROR, BCPNN, GPS

openEBGM: EBGM Dispro-
portionality Scores for Ad-
verse Event Data Mining

MGPS Aimed towards drug safety.

sglr: An R package for
power and boundary calcu-
lations in pre-licensure vac-
cine trials using a sequen-
tial generalized likelihood
ratio test

Sequential Generalized
Likelihood Ratio decision
boundaries

Sequential: Exact sequen-
tial analysis for Binomial
and Poisson data

Max SPRT statistic

AEenrich: Vaccine adverse
event enrichment tests

a) Modified Fisher’s exact
test (for pre-selected signifi-
cant AEs); b) Modified Kol-
mogorov Smirnov statistic

Aimed towards sequential
testing-based vaccine safety

as used by the FDA

mds: Medical Devices
Surveillance

Data preprocessing Provides functions for han-
dling messy/unstructured
medical devices data.

pvLRT: A suite of likeli-
hood ratio test based meth-
ods to use in pharmacovigi-
lance

(Pseudo) LRT approaches
based on log-linear models

Our package.

through a (likelihood ratio) test statistic. Finally, significance of the pair is determined by comparing
the observed test statistic to its null (independence) sampling distribution. There are several key
advantages of these formal hypothesis test-based approaches which make them ideal for practical
use. First, they aid coherent frequetist sampling distribution-based quantification of signal strengths,
ensuring strong statistical and probabilistic rigor of the results. Second, they do not require the
use of ad hoc thresholds for the observed report counts; instead, they quantify significance through
probabilistic measures of uncertainty, e.g., p-values. This ensures that the identified signals are valid
up to a pre-specified level of tolerance (usually 0.05). Third, because they are based on the highly
formal likelihood ratio test theory for null hypothesis significance testing, they can rigorously control
the type I error and the false discovery rate, while ensuring high power and sensitivity for signal
detection. Moreover, by appropriately defining a maximum likelihood ratio test statistic, the method
achieves automated FDR adjustment without requiring any separate p-value adjustment step.

There currently exist a few R packages in CRAN with functionalities relevant for medical product
safety. This includes the packages PhViD (Ahmed and Poncet 2016), openEBGM (Canida and Ihrie
2017), AEenrich (Li et al. 2021), Sequential (Silva and Kulldorff 2021), sglr (Narasimhan and Shih
2012), and mds (Chung 2020). Among these PhViD and openEBGM provide functionalities for
spontaneous adverse event data-driven pharmacovigilance: PhViD implements methods such as
PRR, ROR, and BCPNN, and openEBGM implements the method of MGPS. By contrast, the other
packages provide sequential testing-based approaches to vaccine safety. Table 1 lists these packages
and their functionalities together with some high-level notes on their targeted uses. We note however
that none of these packages implement LRT-based approaches to drug safety based on spontaneous
adverse event data as considered in pvLRT. Indeed the development of pvLRT was motivated by
the lack of easily accessible and comprehensive open source computational solutions to the LRT-
based pharmacovigilance approaches. An important common ingredient of these LRT-based methods
is a computation-intensive Monte Carlo simulation step required to facilitate (exact/non-asymptotic)
inference from the analytically intractable null sampling distributions of the relevant test statistics.
However, this requirement precludes immediate applications of the methods by pharmacovigilance
practitioners in the absence of easily accessible software implementations. This is particularly relevant
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for zero-inflation based models where, in addition to the computation-heavy Monte Carlo step
additional numerical optimization steps are necessary for the estimation of the zero-inflation parameter.
We have developed pvLRT (Chakraborty and Markatou 2022) to cater to these needs while ensuring
proper statistical rigor in the implementations.

The following are the major contributions of the pvLRT package. First, the package serves as
a comprehensive software implementation of several LRT-based methods proposed over the past
decade, including some recently developed methods. Both Poisson and Zero-inflated Poisson (ZIP)
based models are implemented, and tests of both single and multiple simultaneous drugs (or medical
products) are provided. Formal model comparison methods, such as Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC), can be used on the model fits to aid data-driven
selection of Poisson vs. ZIP models on individual datasets. Second, three visual summary plots for
the test results , namely bubble plot, barplot, and heatmap, are provided for immediate visualization.
These plots provide information on sample size and test statistic and p-values for all AE/drug pairs
tested, and hence permit quick exploration of signals in a (possibly large) dataset. These visualizations
use ggplot2 (Wickham 2016) as the plotting engine, and hence its attributes (color, text size, etc.)
can be easily modified post hoc by changing some of the ggplot2 graphical sttributes. In addition,
leveraging the modern R ecosystem, the resultant plots can be easily made interactive via additional
functions from other packages, such as ggplotly() from the package plotly (Sievert 2020). Third,
aside from implementations of likelihood ratio tests, simple functions for random contingency table
data generation from the Poisson and zero-inflated Poisson models are provided. This is particularly
helpful in simulation experiments where different statistical methods for pharmacovigilance are
compared. Finally, we have included processed contingency tables of AE/drug reports for two specific
drug groups, viz. statins and Gadolinium-based Contrast Agents (GBCA; Zhao, Yi, and Tiwari (2018)),
raw AE/drug incidence data, and a vaccine/AE dataset on rotavirus vaccines as R datasets. The drug
data were obtained from the publicly available FDA FAERS database for the quarters 2014 Q1 – 2020
Q3 (for the processed contingency tables) and 2022 Q3 (raw incidence data), and the vaccine data
were obtained from the FDA VAERS database for the year 1999; the package provides a convenient
approach to accessing these processed data, particularly beneficial in methodological studies.

We note here that pvLRT is primarily an analysis package providing functions implementing
statistical methodologies and subsequent post-processing and visualizations of results. The input
data for the main analysis functions in pvLRT are always assumed to be pre-processed contingency
tables (matrix-like objects) enumerating adverse event report counts with AEs along the rows and
Drugs (or other medical products) along the columns. The package provides a convenience function
to convert raw AE/drug incidence data (e.g., those downloaded from the FDA FAERS database)
into analysis-ready processed contingency tables; however, no other functions for input raw data
exploration and pre-processing, e.g. for filtering specific AEs or Drugs of interest or grouping specific
AEs or drugs together are provided. We have deliberately made this design choice to (a) make the
scope of the package well-defined, and (b) encourage the user to explore the raw adverse event data
well before analyzing them. The modern R ecosystem contains several excellent general-purpose
packages/package-collections, including data.table (Dowle and Srinivasan 2021) and tidyverse (Wick-
ham et al. 2019) that provide a suite of principled and easy to use data pre-processing, munging, and
visualization functions. We highly recommend leveraging these packages/functions to understand
and preprocess the data well, before likelihood ratio tests are performed using pvLRT.

The purpose of the current article is to provide a high-level overview of the pvLRT package with
detailed notes on its use, and guided examples with real world adverse event data exemplifying the
use of LRT-based methodologies for pharmacovigilance. We note however that this article is not
meant to serve as a comprehensive manual for pvLRT; all functions/objects provided in pvLRT come
with detailed documentation, and this documentation serves as the definitive resource for pvLRT. It
is also important to note that the LRT-based disproportionality analysis exemplified herein is only
one part of the collective medical product/adverse event relationship assessment process. Current
pharmacovigilance practice for medical product safety assessment includes review of summary
statistics, disproportionality scores, cases summaries, and other sources of information about the
medical products and the adverse events. The remainder of the article is organized as follows. We
begin with a brief review of the LRT-based approaches to pharmacovigilance implemented in pvLRT.
We then exemplify pvLRT by analyzing three sets of real pharmacovigilance datasets, two concerning
drug safety and one concerning vaccine safety. We conclude the article with a brief discussion and
some potential future directions.
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2 A brief review of the Likelihood Ratio test-based approaches to phar-
macovigilance

This section reviews the underlying theories behind the likelihood ratio test (LRT)-based methods for
drug safety assessment. We begin by fixing our notation. Consider a drug safety database cataloging I
AEs detected among J medical products. Hereinafter we describe the methodologies in terms of ‘drugs’
as the medical products of concern; however, the methodologies trivially extend to other medical
products including vaccines and medical devices. Let nij denote the number of reported cases for the

i-th AE in the j-th drug. For the I × J contingency table (nij), let ni• = ∑J
j=1 nij and n•j = ∑I

i=1 nij
denote the i-th row total and j-th column total respectively, i = 1, . . . , I; j = 1, . . . , J; and let n•• denote
the grand total. Interest lies in determining whether the observed report count nij for (i, j)-th AE/drug
pair is substantially larger than what is expected had there been no association between the i-th AE
and the j-th drug. Within the null hypothesis significance testing framework this is achieved by testing
a hypothesis of absence of a “signal” against that of its presence at the corresponding AE/drug pair.
We formally define these hypotheses and the underlying parametric models below.

Model and Parametrization for LRT-based pharmacovigilance. A Poisson log-linear model for
LRT-based SDR detection has been proposed in the literature to parametrize AE/drug associations
based on the observed report counts {nij}. At the outset we note that these AE/drug associations can
also be studied through a series of logistic regression models each with binary occurrences of each
individual AE as the response and the presence/absence of various drugs (or other medical products)
as predictors. When a Poisson model is assumed for the report counts {nij}, the resulting log-linear
model and the collective logistic regression models lead to identical maximum likelihood-based
inferences (Agresti 2013). However, the log linear model is more flexible than the logistic models
in that, by relaxing the underlying Poisson assumption for the report counts, it can handle a richer
set of data. Two different parametrizations, namely the reporting proportion (Huang, Zalkikar, and
Tiwari 2011) and the relative reporting proportion (Dumouchel 1999), have been considered within
the log-linear modeling framework for pharmacovigilance. These parametrizations differ by how
they define and handle “signals”. In the reporting proportion parametrization a signal is determined
at a specific AE for a given drug if its reporting proportion is substantially larger than the overall
reporting proportions of all other AEs combined. In contrast, in the relative reporting proportion
parametrization one focuses on the relative reporting proportion of a specific AE for a given drug and
tests whether it is substantially larger than 1. The latter parametrization does not require consideration
of the category of “all other AEs combined” explicitly in each comparison, and hence has a simpler
interpretation. In applications the two parametrizations incur similar computational expenses, and
produce virtually identical results when the true data generating process is Poisson. However, the
results may vary substantially when there is a model misspecification, including the presence of
zero-inflation, i.e., excess zero-report counts that are inherently different from the sampling zero counts
governed by the Poisson law and are produced by an exogenous process. A note on different types
of zero-inflation possibly occurring in adverse event datasets is provided in the next paragraph.
Our recent methodological study (Chakraborty et al. 2022) has shown that the relative reporting
proportion-based Poisson LRT is more robust against zero-inflated data than its reporting proportion
based counterpart. Extensions of the Poisson LRTs have been proposed to explicitly handle excess
zeros under a zero-inflated Poisson (ZIP) model. The relative reporting proportion parametrization,
within a pseudo likelihood ratio testing framework, aids a straightforward extension to the ZIP model
that adds only a small overhead (one single additional optimization of a smooth univariate function)
to the overall computational burden, and produces a test statistic whose functional form is identical
to the ordinary (non-zero inflated) Poisson LRT. This computational simplicity makes the approach
highly scalable for large data sizes, similar to the Poisson LRT. Collectively, these simplifications
aid the construction of a unified LRT framework based on the relative reporting proportion-based
parametrization that can simultaneously handle a Poisson model and a ZIP model, with near identical
computational burden. By contrast, the reporting proportion-based LRT under a ZIP model suffers
from a substantially increased computation burden (Huang et al. 2017) which hinders its scalability.
For these reasons, both in this article and in the pvLRT package we primarily focus on the relative
reporting proportion parametrization; we do note however that the pvLRT package does provide an
implementation of the reporting proportion parametrization under an ordinary Poisson model setup.

A brief note on excess zeros or zero-inflation in medical product safety data. We now briefly note
how zero-inflation occurs in pharmacovigilance. In adverse event reporting datasets, an important
source of excess zero report counts is structural zeros associated with AE/drug pairs that are physically
impossible to occur. If structural zeros are present, then the corresponding cells in a contingency table
enumerating the number of reported cases of various AE/drug pairs will always be zero, regardless
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of the total number of reported counts. Moreover, inference on these structural zero positions can
be made from the observed data: intuitively, a cell with a positive report count in any observed
table cannot be a structural zero, and only an observed zero cell can be a structural zero. This is in
contrast with another source of zero-inflation, namely data corruption, that may also occur in adverse
events data. Here, due to noise in data recording process some real report counts in the AE/drug
contingency tables are randomly recorded as zero. Under this setting, there is no population level
true zero positions, and the zero inflated positions vary from one sample to another. In this article we
primarily focus on the structural zero-type zero-inflation, as it is the primary type of zero-inflation
that the FAERS datasets stored in pvLRT feature. Indeed, the FAERS data undergo several rounds of
rigorous reviews and checks to safeguard against data corruption. However, we note that pvLRT does
provide functions for handling corruption-type zero-inflation; interested readers are referred to the
the documentation of the pvlrt() function.

Parametric hypothesis testing for signals in pharmacovigilance based on a Zero-inflated Poisson
(ZIP) model. To facilitate a unified treatment we consider a zero-inflated Poisson model to describe
the test procedure. A discrete random variable X is said to follow a ZIP(θ, ω) distribution where
ω ∈ [0, 1) and θ > 0 if the probability mass function of X is given by

P(X = x) =

{
ω + (1 − ω) exp(−θ), x = 0
(1 − ω) exp(−θ) θx

x! , x = 1, 2, 3, . . .
,

i.e., if the distribution of X is a (1 − ω) and ω mixture of a Poisson(θ) distribution and a point mass
at zero. The model reduces to an ordinary Poisson model when the zero-inflation probability ω = 0.
For adverse event data report counts we consider the following zero-inflated Poisson model for the
observed count nij for the i-th AE of a specific drug j: nij ∼ ZIP(λij × Eij, ωj), where Eij = ni•n•j/n••
is the expected number of reports for the (i, j)-th pair when there is no association between the
pair, and λij is the relative reporting proportion. Under this set up, null hypothesis significance
tests are performed to determine signals at specific pairs. Suppose we are interested in determining
significant adverse events among K out of the J drugs, labeled 1, . . . , K. The global null hypothesis
is H1:K

0 : {λij = 1 for all i = 1, . . . , I and j = 1, . . . , J} and is tested against the global alternative
H1:K

a = {λij > 1 for at least one (i, j) : i = 1, . . . , I; j = 1, . . . , K} which represents the hypothesis of “at
least one signal’ ’. If the global null hypothesis is rejected in favor of the global alternative, our focus
then shifts on identifying the individual AE/drug pairs with strong associations. This is achieved by
post hoc test of the global null hypothesis against the individual alternative hypotheses Ha,ij : λij > 1.

Pseudo Likelihood Ratio Test. A pseudo likelihood ratio test of the above hypotheses involves
computation of the individual pseudo likelihood ratios

LRij =

{
1 nij = 0
exp(−(λ̂ij − 1)Eij)λ̂

nij

ij nij > 0
,

where λ̂ij = max{nij/Eij, 1} is the maximum likelihood estimator of λij under H1:K
0 ∪ H1:K

a , and
subsequently, the maximum likelihood ratio statistic MLR1:K = maxi=1,...,I;j=1,...,K LRij. The global
null is rejected in favor of the global alternative hypothesis if MLR1:K is large, in which case subsequent
post hoc tests of individual alternatives Ha,ij can be performed based on the observed values of LRij.
Computation of the global and post hoc p-values are described in the following paragraph. Note that
the computed or “observed” values of LRij aid rigorous statistical quantification of the signal strength
in a pair (i, j). Thus, we can use these quantities to rank the individual AE/drug pairs in terms
of their signal strengths detected in the dataset under consideration. This is particularly useful for
determining, the “most prominent” adverse events for a specific drug or a groups of drugs as detected
in a dataset. Note also that the functional form of LRij and hence that of MLR1:K does not contain the
zero-inflation parameters ωj. However, the null sampling distributions necessary for performing the
hypothesis tests do involve them. Computational approximations of these null sampling distributions
are described next.

Bootstrapped null sampling distribution of the pseudo likelihood ratio test statistic, and computing
p-values. The null sampling distributions of the individual likelihood ratio statistics {LRij} and the
maximum likelihood ratio statistic {MLR1:K} are analytically intractable, and they must be approxi-
mated using computational techniques to facilitate inference. In pvLRT we use a parametric bootstrap
resampling scheme for this purpose (Davison and Hinkley 1997). To this end, zero-inflated Poisson
models are fitted to the observed data under the global null hypothesis H1:K

0,ij , and null resampled
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counts {ñij} are subsequently generated from the fitted model. Fitting zero-inflated Poisson models
requires estimation of the zero-inflation parameters {ωj} from the observed data. In pvLRT the
maximum likelihood estimates of {ωj} are used for this purpose, which are obtained by maximizing
the profile likelihood for ωj:

lj(ω) = (I − I0j) log(1 − ω) + ∑
{i:nij=0}

log
(

ω + (1 − ω) exp(−Eij)
)

,

for j = 1, . . . , J. Here I0j denotes the number of zero nij values for each drug j. The conditional
(posterior) probability of encountering a zero-inflation at the (i, j) pair, given the corresponding
observed count nij is subsequently estimated and computed as:

η̂obs
ij =

0, nij > 0
ω̂obs

j

ω̂obs
j +(1−ω̂obs

j ) exp(−Eij)
nij = 0

,

for all i = 1, . . . , I and j = 1, . . . , J. Then, using these estimated conditional zero-inflation probabilities,
null parametric bootstrap resamples are generated from ñij ∼ ZIP(Eij, η̂ij). Under an ordinary Poisson
model, the parameters ωj and ηij do not arise (they are equal to zero from a ZIP model perspective),
and the null bootstrap resamples are simply generated from ñij ∼ Poisson(Eij); hence, the bootstrap
null resamples become exact null resamples. In either case, these null resamples ñij produce null
resampled values of the test statistic MLR1:K , and they collectively approximate the corresponding
sampling distributions. The p-value for the global null against the global alternative hypothesis is
P1:K = P(MLR1:K ≥ MLR1:K,obs | H1:K

0 ), and can be approximated by the proportion of the null
resampled MLR1:K values that exceed the observed value of MLR1:K,obs:

P1:K,computed =

1 + ∑M
h=1 1

(
M̃LR

1:K,(h)
≥ MLR1:K,obs

)
M + 1

,

where {M̃LR
1:K,(h)

: h = 1, . . . , M} are bootstrapped resampled null values of MLR1:K . The global
null can be rejected at level α in favor of the global alternative hypothesis if P1:K,computed < α. The
post hoc p-values {Pij = P(MLR1:K ≥ LRobs

ij | H1:K
0 )} for the individual alternative hypotheses {Ha,ij}

are also approximated using the same null resampled values of MLR1:K :

Pcomputed
ij =

1 + ∑M
h=1 1

(
M̃LR

1:K,(h)
≥ LRobs

ij

)
M + 1

.

Note that these post hoc p-values are based on the null sampling distribution of the same random
test statistic MLR1:K ; only the thresholds where the tail probabilities are evaluated are different (the
individual observed LRobs

ij values). Consequently, no inflation in the overall type I error occurs due
to multiplicity of hypothesis tests with independent test statistics. This also ensures that the false
discovery rate of the entire procedure is controlled at the same level as the overall type I error.

Model selection: determining whether to use a Poisson model or a ZIP model on a given dataset.
As noted before, the ZIP model above assumes that the report counts for a specific drug j are zero-
inflated with probability ωj. If ωj is small, then the ZIP model effectively reduces to an ordinary
Poisson model; however in general, the ZIP model produces probabilities that are different from the
Poisson probabilities. A natural question of particular practical importance is therefore which of these
two models should be used on a given dataset. Clearly, if there is knowledge about the existence (or
non-existence) of structural zero pairs in a given dataset (the exact positions of the structural zeros
may possibly be unknown), then one should use a ZIP (ordinary Poisson) model. However, in practice
no such knowledge may be available, and the optimal model must be determined entirely on the basis
of the observed data. In other words, one must address what is known as a model selection problem.
Because we are in a parametric likelihood framework, a convenient and canonical approach would
involve the use of some penalized likelihood model selection criterion, such as the AIC or the BIC
(Sakamoto, Ishiguro, and Kitagawa 1986) defined as:

AIC(k) = −2 log(L̂) + kp,

where L̂ denotes the maximized value of the likelihood function for a given model, k is a penalty
parameter, and p is the total number of parameters in the model. The choice k = 2 produces the
classical AIC, and k = log N where N denotes the total number of data points, produces the BIC. The
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model with the minimum AIC (or BIC) is regarded as optimal. Note that in the current context for
both the Poisson and the ZIP models, log(L̂) is obtained from the unrestricted model with each {λij}
assuming values in [1, ∞); the total number of parameters are p = I × J in the Poisson model and
(I + 1)J in the ZIP model, and the total sample size N is the grand total n•• of the contingency table.

Testing for zero-inflation among individual drugs. The above model selection procedure addresses
the question of whether to use the ZIP model or an ordinary Poisson model for a given dataset.
When a ZIP model is determined to be optimal, interest may then lie in determining the statistical
strength/significance of individual zero-inflation parameters {ωj} specific to the individual drugs.
In a null hypothesis significance testing framework, this can be translated as a test of Hω

0,j∗ : ωj∗ = 0
against Hω

a,j∗ : ωj∗ > 0, for each drug j∗. The likelihood ratio test statistic for this problem is LRω
j∗ =

exp
[
lj(ω̂j∗ )− lj(0)

]
, where lj∗ (ω) is the profile log likelihood function for ωj∗ as described before, and

ω̂j∗ is the corresponding maximum likelihood estimator obtained by maximizing lj∗ (ω). Similar to
the LRT for λij described before, the null sampling distribution of LRω

j∗ is analytically intractable, but
can be approximated using a parametric bootstrap. To this end, null resamples {ñij∗} are generated
from the ZIP(λ̂ij∗ Eij∗ , ωj∗ = 0) ≡ Poisson(λ̂ij∗ Eij∗ ) distribution, where λ̂ij∗ = max{nij∗/Eij∗ , 1}
is the maximum likelihood estimator of λij∗ . From these null resamples {ñij}, null values of the

likelihood ratio test statistics {L̃R
ω
j∗} are computed. The p-value of the test of Hω

0,j∗ against Hω
a,j∗ is

subsequently computed using Monte Carlo estimated probability (proportion) of null {L̃R
ω
j∗} values

that are bigger than or equal to the “observed” value LRω, obs
j∗ . If zero-inflation in several drugs j∗ are

tested simultaneously, then the overall p-value needs to be adjusted for multiplicity; in pvLRT the
Benjamini-Hochberg adjusted p-values (q-values; Benjamini and Hochberg (1995)) are used by default
for this purpose.

3 Adverse Event Data Analysis with pvLRT

In this section we provide data analysis examples based on four real datasets contained in the
pvLRT package. These datasets are stored as pre-processed contingency tables (in matrix-like forms)
cataloging the aggregated report count for each AE/drug pair. To produce such contingency tables
from raw adverse event data the pvLRT function convert_raw_to_contin_table() may be used. We
note, however, that care must be taken before summarizing raw data into such contingency tables.
First, a decision needs to be made regarding which reports to include in the analysis, e.g., only
consider primary and/or secondary suspect drugs or also include concomitant and interacting drugs
as cataloged in the FAERS database. The processed data stored in pvLRT only considers reports for
the primary and secondary suspect drugs. Second, one needs to identify which drugs to include in
the “Other Drug” category which plays the key role of “baseline” drugs. Appropriate specification of
this baseline category is required because of its contribution to the total report counts for each AE,
even though the AE/baseline drug category associations are not of primary importance. Typically, one
identifies a handful of drugs of particular interest (e.g., the statins as discussed in the examples below)
and combines all remaining drugs as baseline (Ding, Markatou, and Ball 2020). Finally, one needs
to determine which AEs to include in the testing. The proposed LRT-based methods permit strong
control over the global type I error and false discovery rates while ensuring high power (Chakraborty
et al. 2022), regardless of the total number of AEs. However, computation of the bootstrap p-values
become increasingly more expensive with a growing number of AEs, and thus in practice one may
encounter certain upper bounds to the total number of AEs that can be tested at a given time. We refer
to Ding, Markatou, and Ball (2020) for a detailed discussion on these considerations. The analyses
provided below (divided into subsections) showcase examples with both small (I = 46) and large
(I ≈ 6000) number of AEs. We start by loading the pvLRT package into in R using library().

library(pvLRT)

Analysis of the statin dataset with 47 adverse events

We begin with an analysis of the statin dataset labeled statin46, previously identified as being
associated with the statin drugs. There are 47 rows in the data, corresponding to these 46 adverse
events, and a collapsed category labeled “other” that consists of all other adverse events tabulated
in the FAERS database during this time span. An older version of the data with the same 46 adverse
events have been previously considered in (Ding, Markatou, and Ball 2020); our analysis that follows
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corroborates findings from that study. To begin the analysis, we first load the data into an R session
and view the first few rows and columns with the following codes:

data("statin46")
head(statin46)[, 1:3]

#> Atorvastatin Fluvastatin Lovastatin
#> Acute Kidney Injury 1353 42 7
#> Anuria 71 0 0
#> Blood Calcium Decreased 14 2 0
#> Blood Creatine Phosphokinase Abnormal 34 0 0
#> Blood Creatine Phosphokinase Increased 1175 125 32
#> Blood Creatine Phosphokinase Mm Increased 2 0 0

Our interest lies in finding the most important adverse events of these 6 statin drugs. We note at
the outset that the adverse events potentially caused by these drugs cannot be considered in isolation
due to similarity among functions of statins, and thus we must consider all 6 drugs simultaneously
while determining their important adverse events. This is achieved by performing a simultaneous test
for all drugs of interest collectively within an extended LRT framework, which ensures that the overall
type-I error of the process is preserved and the false discovery rate is controlled. See the previous
section for a note on the statistical properties of the extended LRT test.

Analysis based on an ordinary Poisson model. We first perform an LRT analysis based on the
ordinary Poisson model on this dataset. The R codes for performing this task are as follows.

set.seed(100)
test_statin46_poisson <- pvlrt(
statin46,
zi_prob = 0,
test_drug_idx = 1:6

)

The first argument specifies the contingency table on which the LRT is to be performed, which is
statin46 in the current analysis. The argument zi_prob = 0 pre-specifies the zero-inflation probability
in the model for each drug to be 0, thus reducing the model to an ordinary Poisson model. Note that the
ordinary Poisson model-based test can also be invoked through the wrapper function lrt_poisson().
Under the hood, lrt_poisson() sets zi_prob = 0 and then calls pvlrt() itself. Next, the argument
test_drug_idx = 1:6 indicates that hypothesis tests are to be performed only on the first 6 columns,
i.e., excluding the last column for “other” drugs. By default, all drugs supplied in test_drug_idx are
tested simultaneously as a single group/class in an extended LRT framework; if other class/group
structures exist among the drugs or if the drugs are to be tested separately (i.e., each tested drug forms
its own class) those can be passed through drug_class_idx.

Running the code above creates a pvlrt S3 object. A pvlrt object is simply a reclassified matrix of
computed (log) LRTs; it has the same dimensions as the input contin_table, with each cell containing
the computed test statistic value for the corresponding AE/Drug pair. However, in addition to the
usual dimnames attributes, a pvlrt object has several other attributes including the p-values associated
with these log LRTs and estimates for zero-inflation parameters, and some meta-data including the
type of test performed, the input data, etc. The printing method for pvlrt objects provides a high-level
textual summary of the test. To glance at the overall results from the above LR tests, we simply print
test_statin46_poisson on the R console:

test_statin46_poisson

#> Relative reporting rate (lambda)-based ordinary-LRT on 47 AE & 7 drugs.
#> Hypothesis tests performed on 6 drugs using parametric bootstrap.
#>
#> Running time of the original pvlrt call: 1.59371 secs
#>
#> No zi considered in the model.
#> Total 110 AE-drug pairs are significant at level = 0.05.
#>
#> Extract all LR statistics and p-values using `summary()`.
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The above output shows that there are 110 significant AE/drug pairs at level α = 0.05. The
likelihood ratio test statistics and p-values for all AE/drug pairs can be extracted using summary().
This will produce a data table, with each row providing the sample size, likelihood ratio, and p-value
for each AE/drug pair present in the data1:

# summary(test_statin46_poisson)

The output is omitted for brevity. Note that for pairs that are not tested (here, all entries in the 7-th
column of the statin46 table) the test results will be missing (denoted by NA in R). pvLRT currently has
implementations for three visual summary methods for the test results, namely bubble-plot, barplot,
and heatmap. These can either be accessed explicitly through the functions bubbleplot_pvrlt, barplot
(which is an S3 method for pvlrt objects), and heatmap_pvlrt, or directly through the plot method
for pvlrt objects with the specifications of type = "bubbleplot" or type = "barplot", or type =
"barplot" respectively. As noted before in the Introduction, these plots are constructed using the
ggplot2 package (Wickham 2016). As a result, several aspects of the produced plots can be updated
post hoc, as facilitated by the principles of grammar of graphics that ggplot2 implements. Examples of
resizing axes label text sizes for pvlrt plots are provided below.

In the following we first create a bubble-plot top 15 AE/drug pairs across all 6 statin drugs, with
pairs being ranked by the magnitudes of their likelihood ratio test statistic values. The figure is stored
in pl_bubble_statin46_poisson, which is visualized upon printing.

pl_bubble_statin46_poisson <- plot(
test_statin46_poisson,
type = "bubbleplot",
x_axis_measure = "lrstat",
size_measure = "n",
fill_measure = "p_value",
AE = 15

)

The arguments used in plot() above are described as follows. The first two arguments specify
the pvlrt object under consideration and the type of plot to be made. All three visualizations
implemented (bubbleplot, barplot and heatmap) display the test results by plotting AEs across the
rows and Drugs across the columns, in their respective plots. The arguments x_axis_measure =
"lrstat", size_measure = "n", and fill_measure = "p_value" indicate that the log LRT values
will be displayed along the x-axis, the circle sizes in the bubbleplot will represent the corresponding
sample size of an AE/drug pair, and that the circles will be color coded according to the p-values of
the corresponding test statistics, respectively. Note that the three dimensions (lrstat, n and p_value)
displayed through these three arguments can be interchanged. The argument AE = 15 indicates that
the top 15 adverse events with the largest log likelihood ratio test statistic values are to be plotted.
Here these “largest” values are obtained by comparing across all drugs tested during the original
pvlrt run. Instead of looking at “all” drugs while determining the top AEs, one can also focus on a
specific subset of drugs by supplying the appropriate subset through the argument Drug. Moreover,
instead of looking at the top adverse events, one can also explicitly specify which adverse events to
display by directly passing their names through the same AE argument. When passing names through
AE and Drug, partial string patterns can be supplied and then matched against their full names via
regular expressions; this is achieved by setting grep = TRUE. For example, specifying AE = "muscle"
and setting grep = TRUE will show all adverse events that have the character "muscle" in its name.
We refer to the package documentation for further details on these two arguments. To visualize
the plot produced, we can simply print pl_bubble_statin46_poisson on the R console or save it to
a graphic device via ggsave. As noted before, post hoc editing of various graphical parameters in
pl_heat_statin46_poisson can be made using ggplot2 functions. Note that to use ggplot2 functions,
we need to load the ggplot2 package. Below we show how the axes label sizes and legend text sizes
can be modified. (Changing the default labels etc. may cause ggplot2 to throw some warnings). We
refer to the ggplot2 package documentations and vignettes for further details on modifications of
ggplot2 objects and saving ggplot2 objects to graphic devices.

library(ggplot2)

1The default printing specifications for a data.table object applies to the resulting summary, which ab-
breviates the output to show results for the top 5 and bottom 5 AE/drug pairs (arranged with respect
to the computed LRT values) on the console for large summary tables. To print more pairs, use e.g.,
summary(test_statin46_poisson) %>% print(n) with a larger n. Storing the summary output to an object,
e.g., summary_test <- summary(test_statin46_poisson) allows access to results from all pairs.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=pvLRT
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2


CONTRIBUTED RESEARCH ARTICLE 110

pl_bubble_statin46_poisson +
theme(
axis.text.y = element_text(size = 13, face = "bold"),
axis.text.x = element_text(size = 9, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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The above bubbleplot visualizes three simultaneous dimensions, viz., lrstat, n and p_value along
the x-axis, circle size, and circle color respectively. An alternative mode of visualization is made by
paneled barplots which can visualize two simultaneous dimensions, e.g., the x-axis showing the log
likelihood ratio statistic, and the colors representing p-values as in the bubbleplot. The sample sizes
can be displayed on the bar as text, by specifying show_n = TRUE. The following R codes create the
barplot.

pl_bar_statin46_poisson <- plot(
test_statin46_poisson,
type = "barplot",
fill_measure = "p_value",
x_axis_measure = "lrstat",
AE = 15,
show_n = TRUE,
border_color = "black"

)
pl_bar_statin46_poisson +
theme(
axis.text.y = element_text(size = 13, face = "bold"),
axis.text.x = element_text(size = 13, face = "bold"),
axis.title.x = element_text(size = 14, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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Finally, we can visualize only one dimension, say p_value as cell-colors in a heatmap, and inscribe
as texts the other two dimensions, i.e., lrstat and n (by specifying show_n = TRUE and show_lrstat
= TRUE). The following R codes perform this task.

pl_heat_statin46_poisson <- plot(
test_statin46_poisson,
type = "heatmap",
fill_measure = "p_value",
AE = 15,
show_n = TRUE,
show_lrstat = TRUE,
border_color = "black"

)
pl_heat_statin46_poisson +
theme(
axis.text = element_text(size = 13, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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Note that all three plots above can be made interactive using external R packages; consider, e.g.,
plotly::ggplotly(pl_bubble_statin46_poisson). Such interactive plots can be particularly useful
in exploratory analyses performed on large adverse event datasets. We refer to the plotly (Sievert
2020) package documentation for further details on plotly::ggplotly and other interactive plotting
functions. The html version of this article displays an interactive variant of the above figure.

The following observations are made from the above plots. First, Myalgia appears to be the AE
with the largest computed log likelihood ratio (LR) statistic across all 6 statin drugs combined. It
has the largest LR in Atorvastatin, followed by Simvastatin, Rosuvastatin, Pravastatin, Fluvastatin,
and Lovastatin. Next is Rhabdomyolysis, which displays a near similar pattern as Myalgia in terms
of computed signal/association strength among the six drugs, except here Lovastatin has a slightly
larger computed LR value than Fluvastatin. Second, not all of the 15 adverse events are statistically
significant across all six statin drugs. For example, Necrotising Myositis is a statistically significant
adverse event of Atorvastatin, Simvastatin, and Rosuvastatin, but not for Pravastatin, Fluvastatin, and
Lovastatin. Third, the sample size nij of a specific AE/drug pair (i, j) alone does not provide much
information about its strength of association; for example, the pairs (Muscle Necrosis, Rosuvastatin),
(Myositis, Lovastatin), (Chromaturia, Fluvastatin), and (Necrotising Myositis, Rosuvastatin) all have
sample sizes nij = 10, but their computed likelihood ratio statistics, and hence the strengths of their
associations vary. Moreover, a pair with a smaller sample size may harbor a stronger signal than one
with a larger sample size; for example for Fluvastatin, Chromaturia has a sample size of nij = 10 and
Myoglobin Blood Increased has a sample size of nij = 4; yet the former AE has a smaller LRT statistic
value than the latter.
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Analysis based on a zero-inflated Poisson model. We now consider zero-inflated Poisson model-
based LRTs to identify signals in the statin46 data. To this end, the same pvlrt function can be used,
with two changes in the parameters: (a) the argument zi_prob is now set to NULL, which ensures that
the zero-inflation parameters are estimated from the data, and (b) the logical argument test_zi is now
set to TRUE, which specifies that a separate (pseudo) likelihood ratio test for the significance of each
drug-specific zero inflation parameter will be performed. The following are the R codes used:

set.seed(100)
test_statin46_zip <- pvlrt(
statin46,
test_drug_idx = 1:6,
zi_prob = NULL,
test_zi = TRUE

)

A textual summary of the analysis can be obtained by printing the output of test_statin46_zip on
the R console:

test_statin46_zip

#> Relative reporting rate (lambda)-based pseudo-LRT on 47 AE & 7 drugs.
#> Hypothesis tests performed on 6 drugs using parametric bootstrap.
#>
#> Running time of the original pvlrt call: 6.675102 secs
#>
#> Drug-specific estimated zi probabilities: 0 (Atorvastatin), 0.07
#> (Fluvastatin), 0.16 (Lovastatin), 0.06 (Pravastatin), 0 (Rosuvastatin),
#> 0 (Simvastatin), 0 (Other)
#>
#> LR test of significance for zi probabilities: LRstat= 0.00, q>0.90
#> (Atorvastatin), LRstat= 5.28, q<0.001 (Fluvastatin), LRstat= 3.81,
#> q<0.001 (Lovastatin), LRstat=32.49, q<0.001 (Pravastatin), LRstat=
#> 0.00, q>0.90 (Rosuvastatin), LRstat= 0.00, q>0.90 (Simvastatin),
#> LRstat= 0.00, q=<NA> (Other)
#> Total 110 AE-drug pairs are significant at level = 0.05.
#>
#> Extract all LR statistics and p-values using `summary()`.

It follows from the output that the estimated drug-specific zero-inflation probabilities are signifi-
cantly different from zero (q-value or FDR adjusted p-value < 0.05) only for Fluvastatin and Lovastatin,
where the point estimates of the zero-inflation parameters are ω = 0.07 and ω = 0.16 respectively. The
total number of significant AE/drug is 110, which is the same as the number of significant pairs de-
tected from the Poisson model. To see which 110 pairs detected to be significant in the two models, we
can use the function extract_significant_pairs to extract a data.table containing the test results
of significant AE/drug pairs and at a given level α = 0.05 from the two models, and subsequently
compare these results.

# extract_significant_pairs(test_statin46_poisson)
# extract_significant_pairs(test_statin46_zip)
all.equal(
extract_significant_pairs(test_statin46_poisson),
extract_significant_pairs(test_statin46_zip)

)

#> [1] "Column 'p_value': Mean relative difference: 0.06278027"

As it appears the above two pvlrt objects differ only in the computed p-values, but not in any other
fields/statistics. That the computed LR statistics are identical is not surprising, since the functional
form of the test statistic is exactly the same for the two models. The p-values, on the other hand,
depend on the null sampling distributions of LR statistics, which are different for the two models.
Moreover, here the p-values are numerically computed using Monte Carlo methods based on bootstrap
resampling, which means that even for the same null sampling distributions, the computed p-values
may show random variations between two instances of the computation. However, that there is no
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difference between the identified significant (computed p-value < 0.05) AE/drug pairs for the two
models essentially indicates concordance of the signals identified.

While the two models identify the same AE/drug pairs to be significant at the 0.05 level, they
may differ in terms of predictive accuracy/goodness of fit, which can be compared through model
selection criteria such as BIC. The logLik methods for pvlrt objects implemented in the package (see
the documentation for logLik.pvlrt) allow automated computations of the BIC and AIC of the fitted
models, using the stats S3 functions BIC and AIC. Below we use these two functions to compare the
predictive accuracies of the fitted Poisson and ZIP models.

cbind(BIC(test_statin46_poisson, test_statin46_zip),
AIC(test_statin46_poisson, test_statin46_zip))[, -3] # remove duplicated df col

#> df BIC AIC
#> test_statin46_poisson 329 15962.47 10707.02
#> test_statin46_zip 336 16005.13 10637.85

It follows that the Poisson model has smaller BIC but larger AIC than the ZIP model for the current
dataset. This essentially implies that the Poisson model and the ZIP model both perform equally well
in modeling the statin46 dataset.

Analysis of the full statin data with 6039 adverse events

We next analyze the full statin dataset with all 6039 adverse events. This dataset differs from the
smaller statin46 dataset in that it explicitly catalogs report-counts of many adverse events that are
grouped together as “Other AE” in statin46. The first few rows of the bigger statin dataset can be
displayed using head(statin); we omit the output for brevity.

data("statin")
# head(statin)

In the following we first run a Poisson LRT, followed by a ZIP LRT, and then compare the two
models. The model that fits the data better (assessed through BIC/AIC) will subsequently be used
for inference. The following commands run a Poisson LRT on the statin dataset, with the default
10,000 resamples for computation of p-values. The remaining arguments are analogous to the case of
analysis of statin46. Once created, the pvlrt objects will output brief textual summary of the results;
the outputs are omitted for brevity.

set.seed(100)
test_statin_poisson <- pvlrt(
statin,
zi_prob = 0,
test_drug_idx = 1:6

)
# test_statin_poisson # print the results

Next we run the zero-inflated Poisson model. Codes are as follows.

set.seed(100)
test_statin_zip <- pvlrt(
statin,
test_drug_idx = 1:6,
zi_prob = NULL,
test_zi = TRUE

)
# test_statin_zip # print the results

As it appears, in this bigger dataset all drugs (except the “other” group) have > 10% zero inflation
probabilities with statistically significant FDR adjusted p-values (q-values). This indicates that the
zero-inflated Poisson model based test would likely be more appropriate here. We formally check this
via model comparison using AIC and BIC as follows:

cbind(BIC(test_statin_poisson, test_statin_zip),
AIC(test_statin_poisson, test_statin_zip))[, -3] #remove duplicated df col
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#> df BIC AIC
#> test_statin_poisson 42273 1063654 388384.2
#> test_statin_zip 42280 1043314 367931.7

It follows that here the zero-inflated Poisson model has both smaller AIC and BIC than the Poisson
model, thus confirming our suspicion that the former model is a better fit for the data. We shall
therefore conduct the subsequent analysis based on the zero-inflated Poisson model-based tests.

To get a visual understanding of the results we plot a heatmap of the p-values with LR test statistics
and samples sizes inscribed as texts:

pl_heat_statin_zip <- heatmap_pvlrt(
test_statin_zip,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

)
pl_heat_statin_zip +
theme(
axis.text = element_text(face = "bold"),
legend.title = element_text(face = "bold"),
strip.text = element_text(face = "bold"),
legend.position = "top"

)
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The following observations are made. First, (Type 2 Diabetes Mellitus, Atorvastatin) appears to be
the most prominent association in terms of LR statistic (log LR = 8.0632317 × 104) across all AE/drug
pairs. The next four prominent signals are observed in (Myalgia, Atorvastatin), (Myalgia, Simvastatin),
(Rhabdomyolysis, Atorvastatin), and (Myalgia, Rosuvastatin) respectively.

Analysis of the full gbca data with 1707 adverse events

We next analyze the full gbca dataset with all 1707 adverse events and 9 drugs. This example arises in
the context of an FDA evaluation of Gadolinium-based contrast agents (GBCA) from which FDA con-
cluded there were no adverse events from GBCA retention (https://www.fda.gov/drugs/postmarket-
drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents).
Several disproportionality methods were compared in the FAERS database (Zhao, Yi, and Tiwari 2018)
using the GBCAs as an example. We use this example to further illustrate the LRT methods, and assess
their computational efficiency in datasets with many zero-report counts. The observed proportions of
zero counts are noticeably large in most drugs:

data("gbca")
# head(gbca) # show the first few rows

obs_prop_0 <- apply(gbca, 2, function(x) mean(x == 0))
round(obs_prop_0, 2)

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents
https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/information-gadolinium-based-contrast-agents


CONTRIBUTED RESEARCH ARTICLE 115

#> Gadobenate Gadobutrol Gadodiamide Gadofosveset Gadopentetate
#> 0.60 0.42 0.71 0.99 0.61
#> Gadoterate Gadoteridol Gadoversetamide Gadoxetate Other
#> 0.51 0.70 0.87 0.82 0.00

These large proportions of zero counts provide a heuristic justification for using a ZIP-model based
LRT in this example: because the total zero counts comprise both true/structural zero counts (zero-
inflation) and sampling zero counts, some substantial parts of these observed zeros may be attributable
to zero inflation. To formalize this intuition, in the following we first run a Poisson LRT, followed by a
ZIP LRT, and then compare goodness of fits for the two models in the dataset. The model that fits the
data better (assessed through BIC/AIC) will be subsequently used for inference. We begin with the
Poisson LRT, with the default 10,000 resamples for computation of p-values. The codes are as follows.
The resulting output, when printed on console will display textual summary of test results which we
omit for brevity.

set.seed(100)
test_gbca_poisson <- pvlrt(
gbca,
zi_prob = 0,
test_drug_idx = 1:9

)
# test_gbca_poisson ## print results

Next we run the zero-inflated Poisson model. Codes are as follows.

set.seed(100)
test_gbca_zip <- pvlrt(
gbca,
test_drug_idx = 1:9,
zi_prob = NULL,
test_zi = TRUE

)

It follows that several drug groups have substantially large (> 40%) zero inflation probabilities with
statistically significant FDR adjusted p-values (q-values). This agrees with the earlier exploratory
observation of large proportions of observed zeros. Similar to the full statin data analysis, it therefore
seems that the zero-inflated Poisson model would be more appropriate here. We use AIC and BIC to
formally check this:

cbind(BIC(test_gbca_poisson, test_gbca_zip),
AIC(test_gbca_poisson, test_gbca_zip))[, -3] # remove

#> df BIC AIC
#> test_gbca_poisson 17070 416208.7 147441.5
#> test_gbca_zip 17080 384316.9 115392.2

Indeed, both AIC and BIC are smaller for the zero-inflated Poisson model than the Poisson model. We
therefore use the former model for subsequent analysis.

To get a visual understanding of the results we plot a heatmap of the p-values with LR test statistics
and samples sizes inscribed as texts:

pl_heat_gbca_zip <- heatmap_pvlrt(
test_gbca_zip,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

)
pl_heat_gbca_zip +
theme(
axis.text = element_text(size = 13, face = "bold"),
legend.title = element_text(size = 12, face = "bold"),
strip.text = element_text(size = 14, face = "bold"),
legend.position = "top"

)
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The following observations are made. First, (Contrast Media Deposition, Gadopentetate) appears to
be the most prominent AE/drug pair in terms of LR statistic (log LR = 2084.09) across all AE/drug pairs.
The next four prominent signals are observed in (Gadolinium Deposition Disease, Gadopentetate),
(Gadolinium Deposition Disease, Gadodiamide), (Gadolinium Deposition Disease, Gadoversetamide),
and (Gadolinium Deposition Disease, Gadobenate) respectively.

Analysis of the rotavirus vaccine datasets rv, rvold, and rvyoung

Finally, to exemplify the use of pvLRT in analyzing vaccine safety we consider rotavirus vaccine
datasets. These vaccines are an important example for vaccine safety assessment. Intussusception, a
telescoping of the intestines that can cause serious illness, had led to the withdrawal of the first ro-
tavirus vaccines from the market. Several AEs have since been identified in analyses of the FDA/CDC
VAERS data (Niu, Erwin, and Braun 2001; Haber et al. 2004) as being associated with intusscusception.
Below in our analysis we consider several of these vaccine/AE combinations; these combinations
are well-known and well-studied and hence they aid informative assessment of the performance
of the disproportionality methods. In pvLRT, the rotavirus vaccine datasets are obtained from the
FDA VAERS database for the year of 1999, and they summarize adverse event report counts for two
vaccine groups, namely the rotavirus vaccine (“Rv”) and “Other” vaccines (37 different vaccines
combined). pvLRT contains three such datasets namely rvold, rvyoung, and rv tabulating the number
of occurrences of 727, 346, and 794 AEs among individuals of “old” (age ≥ 1 year), “young” (age
< 1 year), and “combined” (collective old and young) age groups respectively, with most counts
in the combined dataset arising from the young age group. Our interest here lies in identifying the
most prominent AEs of the rotavirus vaccine and then comparing them across the three datasets/age
groups. The rotavirus data has been previously analyzed in the literature using other approaches
such as the EBGM (Niu, Erwin, and Braun 2001) and proportional morbidity analysis for vaccine
safety (Haber et al. 2004). Here we will utilize the LRT method as implemented in pvLRT: first, in
each dataset we will perform an LRT with an optimally selected model (Poisson or ZIP); subsequently,
based on the LRT results we will determine a few prominent AEs with the largest LR statistics in each
dataset and compare these AEs across datasets.

We first fit Poisson and ZIP models to the three datasets:

set.seed(100)
test_rv_poisson_list <- lapply(
list(old = rvold, young = rvyoung, combined = rv),
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function(this_data) {
pvlrt(
this_data,
zi_prob = 0,
test_drug_idx = 1

)
}

)

set.seed(100)
test_rv_zip_list <- lapply(
list(old = rvold, young = rvyoung, combined = rv),
function(this_data) {
pvlrt(
this_data,
test_drug_idx = 1,
zi_prob = NULL

)
}

)

The objects test_rv_poisson_list and test_rv_zip_list list the Poisson and ZIP LRT results for
the three datasets respectively. The estimated zero-inflation probabilities for the “Rv” vaccine can be
extracted from the latter list as follows. In the code chunks below we use the magrittr (Bache and
Wickham 2020) forward pipe %>% infix operator for better readability of chained computations. The
operator is automatically loaded with pvLRT; see the magrittr package manual for further details on
the pipe operator.

rv_zi_prob <- test_rv_zip_list %>%
sapply(function(test) extract_zi_probability(test)["Rv"]) %>%
round(3)

rv_zi_prob

#> old.Rv young.Rv combined.Rv
#> 0.248 0.000 0.215

It follows from the above estimated zero inflation probabilities that a ZIP model could be appro-
priate for the combined and the old age groups whereas an ordinary Poisson model is likely adequate
for the young age groups. We formalize the model selection via AIC and BIC, and find the optimal
models for the three datasets. Codes are as follows.

compare_models_rv <- mapply(
function(test_poisson, test_zip, data_name) {
AIC_both <- AIC(test_poisson, test_zip)$AIC
BIC_both <- BIC(test_poisson, test_zip)$BIC
data.frame(
name = data_name,
AIC_poisson = AIC_both[1],
BIC_poisson = BIC_both[1],
AIC_zip = AIC_both[2],
BIC_zip = BIC_both[2],
optimal_AIC = c("poisson", "zip")[which.min(AIC_both)],
optimal_BIC = c("poisson", "zip")[which.min(AIC_both)]

)
},
test_rv_poisson_list,
test_rv_zip_list,
names(test_rv_poisson_list),
SIMPLIFY = FALSE

) %>%
unname() %>%
do.call(rbind, .)

compare_models_rv

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=pvLRT
https://CRAN.R-project.org/package=magrittr


CONTRIBUTED RESEARCH ARTICLE 118

#> name AIC_poisson BIC_poisson AIC_zip BIC_zip optimal_AIC optimal_BIC
#> 1 old 5749.153 18631.535 5751.783 18651.88 poisson poisson
#> 2 young 3829.600 9000.445 3833.600 9019.39 poisson poisson
#> 3 combined 8308.330 22800.414 8051.049 22561.38 zip zip

It follows from the above AIC and BIC values that while the ZIP model is a clear winner for the
combined age group dataset, the Poisson model displays slightly smaller AIC and BIC values in the
other two datasets. We therefore first create a list of optimal tests from these two models fitted to
the three datasets, and use these optimal models for subsequent determination of prominent AEs as
follows:

test_rv_optimal_list <- list(
old = test_rv_poisson_list$old,
young = test_rv_poisson_list$young,
combined = test_rv_zip_list$combined

)

We may extract the statistically significant AE/vaccine pairs (p-value < 0.05) from these tests as follows.

signif_pairs_rv <- lapply(test_rv_zip_list, extract_significant_pairs)

For visualization, we consider heatmaps for top 15 AEs (in terms of LRT statistics) in the three
datasets, and place them side by side. Because pvLRT uses ggplot2 as its plotting engine, these
individual heatmaps can be easily combined via external ggplot2 post-processing packages such as
patchwork (Pedersen 2020). Codes are as follows:

pl_heatmap_rv_list <- mapply(
function(this_test, this_name) {
heatmap_pvlrt(
this_test,
AE = 15,
show_n = TRUE,
show_lrstat = TRUE

) +
ggtitle(paste("age group:\n", this_name)) +
theme(plot.title = element_text(hjust = 0.5))

},
test_rv_optimal_list,
names(test_rv_optimal_list),
SIMPLIFY = FALSE

)
## install patchwork if not installed
# if (!requireNamespace("patchwork")) install.packages("pacthwork")
library(patchwork)
pl_heatmap_rv_comb <- pl_heatmap_rv_list$old +
pl_heatmap_rv_list$young +
pl_heatmap_rv_list$combined +
# combine the legends
plot_layout(guides = "collect") &
# unified coloring scheme,
# see the 'fill_gradient_range' argument for heatmap_pvlrt
scale_fill_gradientn(
colors = c("darkred", "white"),
limits = c(0, 1)

) &
theme(
axis.text = element_text(size = 16, face = "bold"),
legend.title = element_text(size = 16, face = "bold"),
legend.text = element_text(size = 14),
title = element_text(size = 16, face = "bold")

)

pl_heatmap_rv_comb
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The following observations are made from the above heatmaps and associated test results (stored
in signif_pairs_rv). First, in terms of LR statistics and p-values, the “old” age group has only 4
statistically significant (p-value < 0.05) AEs, viz., Gastrointestinal Haemorrhage, Diarrhoea, Intestinal
Obstruction, and Secondary Transmission. Note, however, the extremely small sample sizes for these
AEs within the dataset; care must therefore be taken while interpreting these results. By contrast,
the young and the combined age group data sets contain sufficient sample sizes. There are 8 and 21
significant AEs in the young and the combined age group datasets respectively. These prominent AEs
for the combined and the young age groups agree, which is expected as the most reported cases in the
combined dataset correspond to the young age group. Several of these prominent AEs detected in our
analysis associate with Intussusception, which has been determined to be of particular concern in the
literature (Niu, Erwin, and Braun 2001; Haber et al. 2004). However, unlike the approaches used in
those studies, our LRT-based approach for signal detection does not require ad hoc thresholding, and
provides rigorous statistical guarantees on the results obtained.

4 Discussion and Future Directions

Likelihood ratio test (LRT)-based approaches to pharmacovigilance constitute a class of rigorous
statistical methods that permit objective signal determination without the need for specifying ad hoc
thresholds. The lack of comprehensive software implementing the LRT methods (in R or otherwise)
however has hindered their applicability in practice – especially in cases where the adverse event
count data are zero-inflated.

The package pvLRT is our contribution to this area, providing a platform that implements a
suite of formal statistical tools and post-processing functions for analyzing medical product safety
datasets, and is readily accessible to practitioners. There are various directions in which the software
can be extended in future releases. Some possible features/updates under consideration include the
following.

1. Parallelize bootstrap resampling. This may permit substantial computational gains in sizable
datasets. Care must however be taken while generating random draws in the parallel workers
to ensure reproducibility and validity (see the discussion of page 5, Section 6 of the R package
parallel (R Core Team 2022)).

2. Include additional processed datasets, and expand the current documentations with examples
on these additional datasets.

3. Create visualizations for the estimated zero inflation probabilities along with the LRT results.
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GCPBayes: An R package for studying
Cross-Phenotype Genetic Associations
with Group-level Bayesian Meta-Analysis
by Taban Baghfalaki, Pierre-Emmanuel Sugier, Yazdan Asgari, Thérèse Truong, and Benoit Liquet

Abstract Several R packages have been developed to study cross-phenotypes associations (or pleiotropy)
at the SNP-level, based on summary statistics data from genome-wide association studies (GWAS).
However, none of them allow for consideration of the underlying group structure of the data. We
developed an R package, entitled GCPBayes (Group level Bayesian Meta-Analysis for Studying Cross-
Phenotype Genetic Associations), introduced by Baghfalaki et al. (2021), that implements continuous
and Dirac spike priors for group selection, and also a Bayesian sparse group selection approach
with hierarchical spike and slab priors, to select important variables at the group level and within
the groups. The methods use summary statistics data from association studies or individual level
data as inputs, and perform Bayesian meta-analysis approaches across multiple phenotypes to detect
pleiotropy at both group-level (e.g., at the gene or pathway level) and within group (e.g., at the SNP
level).

1 Introduction

Many cross-phenotype associations have been identified in genome-wide association studies (GWAS),
providing evidence that pleiotropy (the idea that a single genetic variant, usually a Single-Nucleotide
Polymorphism (SNP), is affecting multiple traits) is a common phenomenon in human complex traits
(Watanabe et al. 2019). As a result, pleiotropy has attracted a great deal of attention among genetic
epidemiologists (see, Solovieff et al. 2013; Verma et al. 2016; Hackinger and Zeggini 2017; Liu and
Lin 2018; Majumdar et al. 2018; Krapohl et al. 2018; Lu et al. 2017; Trochet et al. 2019; Ray and
Chatterjee 2020; Baghfalaki et al. 2021; Broc, Truong, and Liquet 2021), and several R packages have
been developed to perform meta-analysis methods adapted for cross-phenotype association detection
based on summary statistics data from GWAS as input (i.e., estimated effect size, standard error, and
p-value of the association between each SNP and a trait, Ray and Chatterjee 2020). It should be noted
that pleiotropy is only one possible explanation of cross-phenotype association, but for simplicity,
we will use the term pleiotropy for cross-phenotype association to describe any cross-phenotype
association in this paper. Below is a list of the most common methods for detecting pleiotropy between
multiple traits.

ASSET (Bhattacharjee et al. 2012) is a frequentist method, which is an extension of standard
fixed effects meta-analysis that considers the effects of a variable (such as a SNP) in each study
(representing a phenotype) to be in either the same direction or opposite directions, allowing for
detection of antagonistic pleiotropic effects. This approach uses summary statistics and does not take
into account group structure. In the case of GWAS, the outputs of this approach are a p-value of the
global association of each SNP with all studies (or phenotypes), and an optimal subset of non-null
studies or phenotypes that are associated with each SNP.

GPA (Chung et al. 2014) implements a flexible statistical framework for the joint analysis of
multiple GWAS and its integration with various genetic and genomic data. It implements a flexible
parametric mixture modeling approach for such integrative analysis and also provides hypothesis
testing procedures for pleiotropy and annotation enrichment. PLACO is a recently created R package
using GWAS summary statistics data to identify pleiotropic signals between two traits (Ray and
Chatterjee 2020). The computed method derives a composite null hypothesis that ‘at most one trait
is associated with the genetic variant’ vs. the alternative that ‘both traits are associated’, based on
the product of the Z-statistics of the genetic variants across two studies. CPBayes (Majumdar et al.
2018) is a Bayesian meta-analysis approach that uses univariate spike and slab prior and performs the
MCMC technique via a Gibbs sampler. CPBayes uses the summary statistics data for a SNP across
multiple traits. Two different measures are estimated for evaluating the overall pleiotropic association:
the local false discovery rate and the Bayes factor. The optimal subset of associated traits underlying a
pleiotropic signal is defined as the maximum a posteriori (MAP) estimate. The marginal trait-specific
posterior probability of association (PPA), the direction of associations, and the credible interval of
true genetic effects, are some examples of additional insights into pleiotropic signals that are provided
by CPBayes.

All packages developed for these summary statistics-based methods are only designed to test
pleiotropy at the variable-level (SNP-level). Though the structure of the common mechanisms shared
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by multiple phenotypes can be more complex, for example, different variants in the same locus can
be associated with multiple traits and affect the same gene, and therefore can have an impact on the
same trait. Thus, extending CPBayes to the gene or pathway level, which takes into account the group
structure of the data, could provide additional power to detect pleiotropic signals between multiple
diseases. By incorporating prior biological information in GWAS, such as group structure information
(gene or pathway), our approaches could uncover new pleiotropic signals (Li et al. 2020; Baghfalaki et
al. 2021).

In this paper, we present the GCPBayes R package (Bayesian meta-analysis of pleiotropic effects
using group structure) for studying pleiotropy between multiple phenotypes using GWAS data by
considering group structure information from prior biological knowledge. This package is able to
consider and detect pleiotropy at both the variable-level and group-level. The inputs to the developed
functions are SNP-level summary statistics data derived from GWAS by considering all the estimated
regression coefficients of the variables (SNPs) in a group (a gene or a pathway) and its covariance
matrix.

The methods that can be performed by the package offer a Bayesian paradigm using multivariate
spike and slab priors for group-level pleiotropy using either continuous spike (CS, George and
McCulloch 1993) or Dirac spike (DS, Mitchell and Beauchamp 1988) formulations. Also, a hierarchical
sparsity prior (HS, Xu, Ghosh, et al. 2015) using two levels of Dirac spike and slab components to
achieve group and within-group selection can be applied. Both tests for the global null hypothesis of
no association and for detecting pleiotropy are included in the package. group-level and variable-level
are considered. The free RStudio interface is advised to be used with GCPBayes. The GCPBayes
package can be installed by typing:

install.packages("GCPBayes")

To be used, the GCPBayes package has to be loaded each time R or RStudio are opened, via the
following code:

library(GCPBayes)

The paper is organized as follows: The next section (“Data structure”) describes how a data
should look in order to be used by functions of the GCPBayes package. The section “Usage” presents
the different functions of GCPBayes. Some details for using different case studies and a practical
guideline for the detection of pleiotropic effects are provided. The “Guidelines” section includes a
statistical inference pipeline and recommendations for carrying out the various stages of a pleiotropy
analysis with CRANpkg and Bayes. The computational time of the functions of the GCPBayes
package is explored using real data in the “Computational time for GCPBayes” section. Finally, in the
“Concluding remarks” section, we discuss some remarks about and limitations of GCPBayes. Besides,
future works for a newer version of the package are discussed at the end of the section. In addition, the
paper includes two appendices. The first is “Material and method”, where notations and models are
described briefly. The second one describes the design of the simulated data and their corresponding
R codes, which are also embedded in the package.

2 Data structure

GCPBayes is intended to work with summary statistics data. Though summary statistics can be
derived from individual-level data when available, this allows for taking into account correlations
between variables to improve the accuracy of the method.

It should be noted that GCPBayes is not restricted to a specific type of outcome. Summary
statistics data can be estimated through various kinds of models (linear, logistic, Cox, etc.) and based
on different types of phenotypes (categorical or continuous traits). Therefore, it is possible to use the
GCPBayes package for genetic studies, gene expression analyses, and other omics of studies.

In this paper, we will illustrate the use of our method in genetic studies of breast and thyroid
cancers. We will explore the cross-phenotype association between these two traits and SNPs located in
one gene in particular, PARP2. So, this section includes two different scenarios. The first part first part
deals with summary statistics on the association between breast cancer risk or thyroid cancer risk and
SNPs located in the PARP2 gene (Example 1). The second part considers the individual level data from
which the summary statistics of Example 1 were derived as input and then explores multicollinearity
through the data (Example 2), and computes summary statistics and the covariance matrix from the
individual-level data for PARP2 gene (Example 3).
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We will consider the estimated regression coefficients and their covariance matrices from all
studies:

β̂k, Σ̂k = cov(β̂k), k = 1, · · · , K.

where β̂k is an m−dimensional vector containing the regression coefficients from the kth study for
a given gene (or pathway) and Σ̂k is the corresponding covariance matrix. If only summary statistics
are available, the covariance matrix is replaced by a diagonal matrix with an estimated variance of the
regression coefficients.

Summary statistics level data

GWAS summary statistics data are available through various public databases such as GWAS Catalog.
In most cases, summary statistics include effect size estimate (beta), standard error, and p-value
for each SNP. The GCPBayes package accepts inputs related to betas and standard errors as lists:
specifically, a list of regression coefficients (betas) and a list of the matrices of the computed estimates
of the variance of the regression coefficients.

Example 1: Inputs of GCPBayes using summary statistics from two case-control studies (on breast
and thyroid cancers) for PARP2 gene GWAS summary statistics are available through various
public databases, such as the GWAS Catalog. In most cases, a summary of the statistical data includes
the effect size estimate (beta), standard error, and p-value for each SNP:

library(GCPBayes)
data(PARP2_summary)
Breast <- PARP2_summary$Breast
Thyroid <- PARP2_summary$Thyroid
genename <- "PARP2"
snpnames <- rownames(Breast)
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
print(Betah,digits=2)

#> [[1]]
#> [1] -0.081 0.073 -0.346 -0.222 0.095 0.166
#>
#> [[2]]
#> [1] -0.033 -0.470 0.398 0.276 0.160 0.040

print(Sigmah,digits=2)

#> [[1]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.029 0.000 0.000 0.000 0.0000 0.000
#> [2,] 0.000 0.056 0.000 0.000 0.0000 0.000
#> [3,] 0.000 0.000 0.061 0.000 0.0000 0.000
#> [4,] 0.000 0.000 0.000 0.031 0.0000 0.000
#> [5,] 0.000 0.000 0.000 0.000 0.0064 0.000
#> [6,] 0.000 0.000 0.000 0.000 0.0000 0.051
#>
#> [[2]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.031 0.00 0.000 0.00 0.0000 0.000
#> [2,] 0.000 0.16 0.000 0.00 0.0000 0.000
#> [3,] 0.000 0.00 0.068 0.00 0.0000 0.000
#> [4,] 0.000 0.00 0.000 0.04 0.0000 0.000
#> [5,] 0.000 0.00 0.000 0.00 0.0063 0.000
#> [6,] 0.000 0.00 0.000 0.00 0.0000 0.043

This gene included six SNPs (rs3093872, rs3093921, rs1713411, rs3093926, rs3093930, and rs878156).
So, the Betah list must include summary statistics for six elements for every study, and Sigmah list
must contain a diagonal matrix of [6 × 6] for each study. A user can check the data using the “print”
method.
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Individual level data

When individual level data are available, summary statistics should be computed using external
packages. Here, we explore the available approaches and R packages for computing the summary
statistics. Let Y1, · · · , YK be the response variables of K studies, and Yk = (Yk1, · · · , Yknk

)′ represent
the nk phenotype observations, k = 1, cdots, YK . For study k, let the genetic information be organized
into G groups for research purposes. For example, this can be a set of SNPs belonging to a gene or a set
of SNPs belonging to a set of genes acting together in the same biological pathway. We denote Zkg as a
nk × mg− matrix of the mg covariates for group g, g = 1, 2, · · · , G. As all inferences are performed
gene by gene, we remove the index g and consider m as the number of variables in each specific
group for simplicity. Considering one of the groups, we assume that a generalized linear model (GLM,
McCullagh 2019) is fitted separately for each study as follows:

η (E (Yk)) = αk1nk + Zkβk, k = 1, · · · , K, (1)

where η(·) is a link function, αk is the intercept of the model and 1nk is a vector of nk ones. Here
βk = (βk1, · · · , βkm)

′ denotes the m-dimensional regression coefficients for the group and the kth

study.

The “glm” function from R can be applied to fit generalized linear models and so get the summary
statistics or parameter estimation of model 1 (Dunn and Smyth 2018). If the phenotype is binary, then 1
is the usual logistic or probit model (Agresti 2018). If the phenotype is continuous, model 1 is reduced
to multiple linear regression and can also be fitted by the “lm” function from R which will provide the
same results as the “glm” function. The “vcov” function can be applied to get the estimated covariance
matrix of the regression coefficients, whereas the “glm” and “lm” functions calculate standard errors,
which yield only the diagonal elements.

Another strategy should be considered in the case of multicollinearity. Multicollinearity is the
presence of near-linear relationships among variables (Malo, Libiger, and Schork 2008). This phe-
nomenon is widespread in genetic data, where non-random association of alleles at different loci in a
given population is frequent, introducing large structures of correlation between SNPs. It is known
as linkage disequilibrium (LD). LD can lead to inaccurate estimates of the regression coefficients,
and also inflate the standard errors of the regression coefficients (Saleh, Arashi, and Kibria 2019).
Multicollinearity can be visualized by drawing pairwise scatter plots of variables or by inspection
of the correlation matrix. The variance inflation factor (VIF) can be used to assess the presence of
multicollinearity (Fox and Weisberg 2018). It can be computed by the “vif” function from the car
package (Fox et al. 2012). Most research papers consider a VIF > 10 as an indicator of multicollinearity
(Menard 2002; Johnston, Jones, and Manley 2018; Gareth et al. 2013; Vittinghoff et al. 2011), but some
choose a more conservative threshold of 5 (Gareth et al. 2013) or even 2.5 (Johnston, Jones, and Manley
2018).

Example 2: Exploring multicollinearity/linkage disequilibrium in PARP2 gene using individual
level data In this example, we show the existence of multicollinearity in the data. Here, we consider
the individual-level data from which the summary statistics of Example 1 were derived. The summary
statistics and the corresponding VIFs for both studies could be obtained using the usual “glm” function
as follows:

library(GCPBayes)
library(car)

#> Loading required package: carData

data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
Fit1 <- glm(y1~ ., family=binomial(link="logit"),data=Breast)
print(vif(Fit1))

#> rs3093872 rs3093921 rs1713411 rs3093926 rs3093930 rs878156
#> 1.696966 1.584775 3.095049 2.700594 1.347861 4.438011

Fit2 <- glm(y2~ ., family=binomial(link="logit"),data=Thyroid)
print(vif(Fit2))

#> rs3093872 rs3093921 rs1713411 rs3093926 rs3093930 rs878156
#> 1.565507 1.478632 3.552804 3.465883 1.397995 5.490866
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A high VIF value (>5) for one SNP indicates multicollinearity in the data. Hence, the user should
not use the “glm” function to obtain correct estimates of regression coefficients and their standard
errors. Instead, the user could perform Ridge regression (Hilt and Seegrist 1977). Although many
R packages are available to perform Ridge regression, only lrmest, ridge and lmridge can estimate
the standard errors of the regression coefficients. Only lmridge, and only for the linear model, can
compute their covariance matrix using the “vcov” or “vcov.lmridge” functions.

Since a usual approach for obtaining the covariance matrix is to apply a very time-consuming
Bootstrap method (Efron 1992), we recommend performing a Bayesian hierarchical GLM by using
Gaussian priors to get summary statistics of each group (gene/pathway). Thus, a user could apply the
bayesreg package (Makalic and Schmidt 2016) or the BhGLM package (Yi et al. 2019) that provides
fast and stable algorithms to estimate parameters for high-dimensional clinical and genomic data as
well as highly correlated variables.

Example 3: Inputs of GCPBayes using individual level data from two case-control studies (on
breast and thyroid cancers) for PARP2 gene We propose to estimate the regression coefficients and
their covariance matrices using a Bayesian hierarchical logistic model, which would lead to more
powerful inputs for GCPBayes (as we mentioned earlier) than the inputs used in Example 1:

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)
#print(Betah,digits=1)
#print(Sigmah,digits=1)

By running the code above, we can estimate the regression coefficients and their covariance
matrices, using the individual-level data from the two studies. The results can be checked using the
last two “print” commands.

As a final note in this section, we demonstrated in a previous study (Baghfalaki et al. 2021) that
running GCPBayes on summary statistics data could result in a loss of power because it requires
consideration of a diagonal covariance matrix of the effects (without information on off-diagonal
components). So, statistically speaking, when individual-level data are available, we recommend
computing the covariance matrix of the effects and using it as inputs to GCPBayes in order to increase
the power of the method.

3 Usage

In this section, we describe how to use the GCPBayes package that includes four functions: DS,
CS, HS, and MCMCplot. First, Examples 4-7 show the outputs of each of the four functions while
applying GCPBayes to the summary statistics described in Example 1 to test whether the gene PARP2
is associated with both thyroid cancer and breast cancer risk. Then, in Example 8, we compared results
obtained with the DS function applied to summary statistics of PARP2 gene with those obtained with
individual-level data (as described in Examples 2-3) as input. Finally, in Example 9, we show an
example of output for the gene DNAJC1 which was significantly associated with breast and thyroid
cancers using the DS function. The inputs are summary statistics from two larger studies than those
used in Example 1 and will be detailed below. In addition to the real datasets described in Examples
1-3 and Example 9, three more simulated data are provided in Appendix B and are embedded in the
GCPBayes package, including summary statistics level data for K = 5 studies with binary outcome,
individual level data for K = 3 studies with continuous outcome and individual level data for
K = 2 studies for survival outcomes and gene expression data. All commands used for the examples
considered in this section are available through the R documentation of the GCPBayes package.
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DS function

DS runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with a Dirac spike
prior for the detection of pleiotropic effects on the traits. As we mentioned in the previous section,
the DS function is designed to use estimated regression coefficients and their estimated covariance
matrices from K studies. The statistical details of the DS approach are given in Appendix A. Besides,
more details can be found at (Baghfalaki et al. 2021). The DS function and its parameters have the
following format:

DS(Betah, Sigmah, kappa0, sigma20, m, K, niter = 2000, burnin = 1000, nthin = 2,
nchains = 2, a1 = 0.1, a2 = 0.1, d1 = 0.1, d2 = 0.1, snpnames, genename)

where

• Betah: A list containing m-dimensional vectors of the regression coefficients for K studies.
• Sigmah: A list containing the m × m-dimensional positive definite covariance matrices which

are the estimated covariance matrices of K studies. If individual-level data are not available, it
corresponds to the diagonal matrices with the estimated variance of the regression coefficients
for the K studies.

• kappa0: Initial value for kappa such that its dimension is equal to the number of Markov
chains (nchains). Although, the best strategy for choosing the initial values are previous studies,
however, the domain for choosing any value is equal to the domain of the priors which is given
in the hierarchical setup A.2 in Appendix A. Kappa0 can be in range from 0 to 1.

• sigma20: Initial value for sigma2 such that its dimension is equal to nchains. The domain for
initial values of sigma2 is ℜ+.

• m: Number of variables in the group.
• K: Number of traits.
• niter: Number of iterations for the Gibbs sampler.
• burnin: Number of burn-in iterations. The burnin=1000 value is the default.
• nthin: The lag of the iterations used for the posterior analysis (or thinning rate). nthin=2 is the

default value.
• nchains: Number of Markov chains. When nchains > 1, the function calculates the Gelman-

Rubin convergence statistic (Brooks and Gelman 1998; Gelman, Rubin, et al. 1992). Default
value is nchains=2.

• a1, a2: Hyperparameters of kappa. Default values are a1=0.1 and a2=0.1.
• d1, d2: Hyperparameters of sigma2. d1 = 0.1 and d2 = 0.1 are the default values.
• snpnames: Variable names for the group.
• genename: The group’s name.

Example 4: Usage of the DS function to analyse pleiotropy between breast and thyroid cancers at
PARP2 gene Here we consider the individual data for the PARP2 gene from the two case-control
studies on breast and thyroid cancer (Examples 2-3) as input. As we explained earlier, first we
estimated the effect size of the six SNPs in PARP2 and the corresponding covariance matrix for both
studies. Then, we applied the DS function to the results.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

To detect pleiotropic effects for this gene, two chains with 2,000 iterations and a burn-in period of
1,000 iterations were used.
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set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

The result of the DS function was saved in the “RES1” list, which includes four lists (MCMCChain,
Summary, Criteria, and Indicator). The “MCMCChain” list contains posterior samples for the unknown
parameters, while the “Summary” list includes summary statistics of the posterior samples for the
unknown parameters including the name of the SNP, the posterior mean, the posterior standard
deviation, the quantile 2.5%, median, the quantile 97.5% and the Gelman-Rubin convergence statistic
(BGR, Brooks and Gelman 1998; Gelman, Rubin, et al. 1992).

Using a “print” command for the “Summary” list would result in two lists showing Bayesian
estimation for all analyzed SNPs in both studies.

print(RES1$Summary,digits=2)

In order to check if the chains converged to a stationary distribution or not, a user could look at
the BGR column. In our example, as the values of BGR are not close to one for some of the variables,
the chains do not converge to a stationary distribution. To check this criteria, we also repeat the DS
function with niter = 20000 and burnin = 10000.

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,1.5),

m=6, K=2, niter=20000, burnin=10000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

print(RES1$Summary,digits=2)

As it is clear, after running the DS function with new parameters, the values of the BGR column
now confirm convergence to the stationary distribution. Note that in the case of nchain = 1, the BGR
column can never be computed.

The two other output lists of the “RES1” (“Criteria” and “Indicator”) contain information for
checking group and variable pleiotropy, respectively. For each SNP, the ‘Criteria’ list contains the
name of the gene, name of the SNP, the posterior probability of association (PPA), the logarithm (to
base 10) of the Bayes factor (BF), the local false discovery rate (locFDR) and θ of equation (4) of the
Guidelines section. A user could check it with the following command:

print(RES1$Criteria,digits=2)

#> $`Name of Gene`
#> [1] "PARP2"
#>
#> $`Name of SNPs`
#> [1] "rs3093872" "rs3093921" "rs1713411" "rs3093926" "rs3093930" "rs878156"
#>
#> $PPA
#> $PPA[[1]]
#> [1] 0
#>
#> $PPA[[2]]
#> [1] 0.022
#>
#>
#> $log10BF
#> [1] -2.1
#>
#> $lBFDR
#> [1] 0.98
#>
#> $theta
#> [1] 1.8e-05

Based on the PPA1 and PPA2 values, the gene PARP2 isnot significantly associated with the traits
in the study. This is also confirmed by the values of lBFDR and BF. One can conclude that the global
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null hypothesis of no association at the group level cannot be rejected. Now, we can check the results of
the pleiotropic effect at the group level by considering the value of theta. By considering the threshold
of 0.5, it shows that there is no group-level pleiotropic effect for textit{PARP2} gene.

Also, an “Indicator” list is given for checking variable pleiotropy using two different statistics:
(95% credible interval and the median threshold. Each row of the lists includes the name of the SNP,
a binary indicator for the significant regression coefficient of each study (0=no,1=yes) and the total
number of significant regression coefficients in the studies. Finally, the last column indicates whether
the test for pleiotropy at the variable level is significant or not.

print(RES1$Indicator,digits=2)

In addition, summaryDS is a generic function that generates DS function result summaries:

summaryDS(RES1)

#> $`Name of Gene`
#> [1] "PARP2"
#>
#> $`Number of SNPs`
#> [1] 6
#>
#> $`Name of SNPs`
#> [1] "rs3093872" "rs3093921" "rs1713411" "rs3093926" "rs3093930" "rs878156"
#>
#> $log10BF
#> [1] -2.124921
#>
#> $lBFDR
#> [1] 0.9779942
#>
#> $theta
#> [1] 1.830575e-05
#>
#> $`Significance based on CI`
#> Study 1 Study 2 Total Pleiotropic effect
#> rs3093872 0 0 0 No
#> rs3093921 0 0 0 No
#> rs1713411 0 0 0 No
#> rs3093926 0 0 0 No
#> rs3093930 0 0 0 No
#> rs878156 0 0 0 No
#>
#> $`Significance based on median thresholding`
#> Study 1 Study 2 Total Pleiotropic effect
#> rs3093872 0 0 0 No
#> rs3093921 0 0 0 No
#> rs1713411 0 0 0 No
#> rs3093926 0 0 0 No
#> rs3093930 0 0 0 No
#> rs878156 0 0 0 No

As can be seen, there is no variable-level pleiotropic effect for this gene, which means that none of
its SNPs were significant in both studies.

CS function

The CS runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with a continu-
ous spike prior for the detection of pleiotropic effects on K traits. CS uses the same inputs as the DS
function. The details of the approach are given in the material and methods section (Appendix A).
More information can be found at (Baghfalaki et al. 2021). The CS function has the following format in
general:

CS(Betah, Sigmah, kappa0, tau20, zeta0, m, K, niter = 1000, burnin = 500,
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nthin = 2, nchains = 2, a1 = a1, a2 = a2, c1 = c1, c2 = c2, sigma2 = 10^-3,
snpnames = snpnames, genename = genename)

where Betah, Sigmah, kappa0, m, K, niter, burnin, nthin, nchains, a1, a2, snpnames and genename
are the same as those introduced for the DS function. For the other arguments we have

• zeta0: Initial value for zeta. For the elicitation of initial values of zeta, first the regression
coefficients and their standard errors for each study are considered. After that, by adjusting
their p-values, we can find the initial values of zeta, k = 1, cdots, andK. As a result, if one
group contains at least one non-null signal, the group is a non-null and zeta0[k] = 1, otherwise
zeta0[k] = 0.

• c1, c2: Hyperparameters of tau2. Default values are c1=0.1 and c2=0.1.

• sigma2: The variance of the spike (multivariate normal distribution with a diagonal covariance
matrix with small variance) represents the null effect distribution. The default setting is 10 − 3.

Example 5: Using the CS method to analyze pleiotropy between breast and thyroid cancers at
PARP2 gene For this example, we consider the same data used for Example 4 as input. So, first,
we estimated the regression coefficients for each SNP and corresponding covariance matrix for both
studies (the same estimated regression coefficients and covariance matrices were computed in Example
4), and then, we performed the CS function on the results. To get the values for xi(0)k, a user must
first calculate the p-values and initial values of xik for each regression coefficient using the code below
(for more information, see (Baghfalaki et al. 2021):

K <- 2
m <- 6
pvalue <- matrix(0,K,m)
for(k in 1:K){
pvalue[k,] <- 2*pnorm(-abs(Betah[[k]]/sqrt(diag(Sigmah[[k]]))))
}
zinit <- rep(0,K)
for(j in 1:K){
index <- 1:m
PVALUE <- p.adjust(pvalue[j,])
SIGNALS <- index[PVALUE<0.05]
modelf1 <- rep(0,m)
modelf1[SIGNALS] <- 1
if(max(modelf1)==1)(zinit[j] <- 1)
}

The initial value is a two-dimensional vector (as K=2) of 0 or 1:

print(zinit)

#> [1] 0 0

Now, we could use the CS function to look for a pleiotropic signal:

set.seed(123)
RES1 <- CS(Betah, Sigmah, kappa0=c(0.2,0.5), tau20=c(1,2), zeta0=zinit,

m=m, K=K, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, c1=0.1, c2=0.1, sigma2=10^-3, snpnames, genename)

The output of CS (here RES1) is the same as DS and has similar interpretations, summaryCS is a
generic function used to produce result summaries of the CS function.

HS function

The HS function runs a Gibbs sampler for a multivariate Bayesian sparse group selection model with
hierarchical spike prior for the detection of pleiotropic effects associated with the traits at group-level
and variable-level. As in the case of CS and DS, this function is designed to use summary statistics
as inputs, containing estimated regression coefficients and their estimated covariance matrices. The
following is a general usage example of the HS function:
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HS(Betah, Sigmah, kappa0 = kappa0, kappastar0 = kappastar0, sigma20 = sigma20, s20 = s20,
m, K, niter = 1000, burnin = 500, nthin = 2, nchains = 2, a1 = 0.1, a2 = 0.1,
d1 = 0.1, d2 = 0.1, c1 = 1, c2 = 1, e2 = 1, snpnames, genename)

where Betah, Sigmah, kappa0, sigma20, m, K, niter, burnin, nthin, nchains, a1, a2, d1, d2, snpnames,
and genename have similar definitions as the DS function. For the other arguments we have

• kappastar0: Initial value for kappastar such that its dimension is equal to nchains. The domain
for initial values of kappastar0 is (0, 1).

• s20: Initial value for s2 such that its dimension is equal to nchains such that the domain for
initial values of s2 is ℜ+.

• c1, c2: Hyperparameters of the kappastar. Defaults are c1=0.1 and c2=0.1.

• e2: Initial value for doing the Monte Carlo EM algorithm to estimate the hyperparameter of s2.

Example 6: Use of the HS method to analyze pleiotropy between breast and thyroid cancers at
PARP2 gene The same data as in Example 4 is used as input. We used the same estimated regression
coefficients and their covariance matrices.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

set.seed(123)
RES <- HS(Betah, Sigmah, kappa0=c(0.5,0.3), kappastar0=c(0.5,0.3), sigma20=c(2,1), s20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, c1=1, c2=1, e2=1, snpnames, genename)

In this example, the HS function is applied to detect group and variable pleiotropic signals. The
outputs of the HS function based on median threshold are as follows:

summaryHS(RES1)

The overall output of HS (RES1) is the same as that of DS and has similar interpretations.

MCMCplot function

Monitoring the convergence of the MCMC statistic is important and the Gelman-Rubin statistic
is not the only way to assess convergence. MCMCplot presents some visual plots, such as trace,
auto-correlation function (ACF) and posterior density plots to check the convergence of the MCMC
chains. The trace plot is the plot of the generated values over the course of the iterations. If all values
fall within a uniform bandwidth around the posterior mean and do not display any periodicity or
non-stationary trends, we can assume convergence. The density plot represents the signal’s estimated
posterior distribution. Also, monitoring ACF plots is very useful since low or high values indicate
fast or slow convergence, respectively. In fact, we need to monitor the ACF of the MCMC generated
sample and select a sampling lag larger than 1 [=L]. Then, we can produce an independent sample by
keeping the first generated values in every batch of L iterations, which is called the thinning rate. In
practice, the ACF should be close to zero for a sufficiently large number of lags.

The inputs of the MCMCplot function are the generated results by DS, CS, or HS function, the
number of studies for drawing plots, the number of MCMC chains in the result, and the names of
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favorable SNPs for drawing the plots. Up to 10 plots can be plotted simultaneously. In general, a
usage for the MCMCplot function is as follows:

MCMCplot(Result, k, nchains, whichsnps, betatype, acftype, dencol, denlty, denbg)
where

• Result: All of the results produced by the DS, CS, and HS functions.

• k: The number of plotting studies, where k = 1, 2,. . . , K.

• nchains: The number of Markov chains that were run to produce Result.

• which SNPs: The SNPs’ names

• betatype: The type of plot desired. The following values are possible: “p” for points, “l” for
lines, “b” for both points and lines, “c” for empty points joined by lines, “o” for overplotted
points and lines, “s” and “S” for stair steps, and “h” for histogram-like vertical lines. Finally, “n”
does not produce any points or lines.

• acftype: String giving the type of ACF to be computed. Allowed values are “correlation” (the
default), “covariance” or “partial” will be partially matched.

• dencol: The color used to fill out the density plot.

• denlty: The line type to be used in the density plot.

• denbg The color to be used for the background of the density plot.

Example 7: Using the MCMCplot function to check convergence of the DS method For this
example, the output of the DS function for PARP2 gene is used when drawing the MCMCplot. We
select this gene because it is a special case because it required more MCMC iterations to converge.
To run this example, a user needs to run the first fourteen lines of code in Example 4 (briefly, these
commands compute regression coefficients and covariance matrices based on the individual-level
data). Then the DS function needs to be run as follows:

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=200, burnin=100, nthin=1, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

MCMCplot(Result = RES1, k = 2, nchains = 2, whichsnps = snpnames,
betatype = "l",
acftype = "correlation",
dencol = "white", denlty = 1, denbg = "white")

set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

MCMCplot(Result = RES1, k = 2, nchains = 2, whichsnps = snpnames,
betatype = "l",
acftype = "correlation",
dencol = "white", denlty = 1, denbg = "white")

The plots for the thyroid cancer study with 200 MCMC iterations and 100 burn-in are given in
Figure 2. The top row of the figure shows strong periodicities in the posterior samples for some
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Figure 1: Trace, density and ACF plot for the posterior samples of the regression coefficients (niter=200,
burnin=100, nthin=2) for thyroid study. Based on the top and last rows, the results do not show a
convergence.

SNPs, which are confirmed by their corresponding ACF plots (last row). As a result, more samples
are needed to achieve convergence for the PARP2 gene. In the second DS command, the number of
iterations was increased to 2000; half of this number was considered burn-in, and the thinning rate
was set to 2. The results are shown in Figure 3 and the resulting regularities in the plot implies that
increasing the number of iterations has made the model converge successfully.

Comparing GCPBayes results using summary statistics level versus individual level data
as input

As we mentioned earlier, we showed that the performance of the GCPBayes package is better when
using non-diagonal covariance matrices (individual-level data) compared to diagonal covariance
matrices (summary level data, Baghfalaki et al. (2021)). In this section, we show two examples to deal
with such differences.

Example 8: Comparing DS function outputs using summary statistics level versus individual-level
data of PARP2 gene as inputs First, we consider summary statistics level data for PARP2 gene as an
input of the GCPBayes package and run the DS function for this data as follows:

library(GCPBayes)
data(PARP2_summary)
Breast <- PARP2_summary$Breast
Thyroid <- PARP2_summary$Thyroid
genename <- "PARP2"
snpnames <- rownames(Breast)
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
print(Betah,digits=2)
print(Sigmah,digits=2)
set.seed(123)
RES_sum <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

print(RES_sum$Criteria,digits=2)

Now, we use individual data for the PARP2 gene, then compute regression coefficients and
covariance matrices based on the individual data and used it as the input to the GCPBayes package.
Finally, we run the DS function for this data as follows:
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Figure 2: Trace, density and ACF plot for the posterior samples of the regression coefficients
(niter=2000, burnin=1000, nthin=5) for thyroid study. Based on the top and last rows, the results imply
a convergence.

library(GCPBayes)
data(PARP2)
Breast <- PARP2$Breast
Thyroid <- PARP2$Thyroid
genename <- "PARP2"
snpnames <- names(PARP2$Breast)[-1]
Fit1 <- bayesreg::bayesreg(as.factor(y1)~ ., model = "logistic", prior = "ridge",data=Breast)
Betah1 <- Fit1$mu.beta
Sigmah1 <- cov(t(Fit1$beta))
Fit2 <- bayesreg::bayesreg(as.factor(y2)~ ., model = "logistic", prior = "ridge",data=Thyroid)
Betah2 <- Fit2$mu.beta
Sigmah2 <- cov(t(Fit2$beta))
Betah <- list(Betah1,Betah2)
Sigmah <- list(Sigmah1,Sigmah2)
set.seed(123)
RES_ind <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=6, K=2, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

#print(RES_ind$Criteria,digits=2)

By comparing the results for these two scenarios, it is clear that using individual-level data, which
includes more information about the SNP correlations, would lead to less biased results and hence
better signals at the end.

Example 9: Investigation of pleiotropic effect between breast cancer and thyroid cancer at DNAJC1
gene in large datasets For the final example, we consider the summary statistics for the DNAJC1
protein-coding gene, specifically betas and standard errors, for fourteen SNPs from two studies (on
breast and thyroid cancers), and try to investigate any potential pleiotropic signal at group and
individual levels. The summary statistics of the breast and thyroid cancer studies were extracted from
the Breast Cancer Association Consortium (BCAC) (Zhang et al. 2020) and the EPITHYR consortium
(Truong et al. 2021), respectively. The data is embedded in the GCPBayes package, and a user can run
the DS function as follows:

library(GCPBayes)
data(DNAJC1)
Breast <- DNAJC1$Breast
Thyroid <- DNAJC1$Thyroid
genename <- "DNAJC1"
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snpnames <- Breast$snp
Betah <- list(Breast$beta,Thyroid$beta)
Sigmah <- list(diag(Breast$se^2),diag(Thyroid$se^2))
K <- 2
m <- 14
set.seed(123)
RES1 <- DS(Betah, Sigmah, kappa0=c(0.2,0.5), sigma20=c(1,2),

m=m, K=K, niter=2000, burnin=1000, nthin=2, nchains=2,
a1=0.1, a2=0.1, d1=0.1, d2=0.1, snpnames, genename)

Now, we run the following command for testing the global null hypothesis:

print(RES1$Criteria)

#> $`Name of Gene`
#> [1] "DNAJC1"
#>
#> $`Name of SNPs`
#> [1] "rs10740997" "rs10764330" "rs10828266" "rs12570400" "rs1970467"
#> [6] "rs2666762" "rs2807967" "rs35759613" "rs3951780" "rs4747438"
#> [11] "rs60773921" "rs6650129" "rs7075508" "rs77353976"
#>
#> $PPA
#> $PPA[[1]]
#> [1] 1
#>
#> $PPA[[2]]
#> [1] 1
#>
#>
#> $log10BF
#> [1] 47.29012
#>
#> $lBFDR
#> [1] 1.709075e-48
#>
#> $theta
#> [1] 0.9998224

Based on the values of log10BF and lBFDR, the null hypothesis is rejected. Thus, we check the
value of theta which is equal to 0.999, and conclude that the gene has a group pleiotropic effect.

A user should run the following command to test for variable pleiotropic effects:

print(RES1$Indicator$`Significant studies and Pleiotropic effect based on CI`)

#> Study 1 Study 2 Total Pleiotropic effect
#> rs10740997 1 0 1 No
#> rs10764330 1 0 1 No
#> rs10828266 1 0 1 No
#> rs12570400 1 0 1 No
#> rs1970467 1 0 1 No
#> rs2666762 1 1 2 Yes
#> rs2807967 1 0 1 No
#> rs35759613 1 0 1 No
#> rs3951780 1 0 1 No
#> rs4747438 1 1 2 Yes
#> rs60773921 1 0 1 No
#> rs6650129 1 0 1 No
#> rs7075508 1 0 1 No
#> rs77353976 0 0 0 No

Based on the results, two SNPs are significantly associated with both traits (rs4747438, and
rs2666762).
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4 Guidelines

In this section, we provide some guidelines for working with the GCPBayes package and for extracting
potential pleiotropic effects at group and variable-levels. We first give some practical advice on which
methods to consider and in what order, and then we provide a decision pipeline based on statistical
inferences, firstly for a primary analysis by using DS (or CS), and secondly for a precision analysis by
using HS.

Practical hints

We do not recommend that a user do initial exploration by using the HS function because it may take
a long time to compute when working with large datasets.

Besides, the HS function does not show better power in for detecting group pleiotropy compared
to the other methods (DS and CS). In addition, DS and CS methods have similar strategies, but we
showed that DS performed better than CS during the simulations for all tested scenarios (Baghfalaki
et al. 2021). That is why we suggest the user first performs the the pleiotropic analysis on all groups in
the data by using the DS function (Figure 3). Thus, in order to select groups with probable pleiotropic
effects, we recommend performing a first batch of analyses by using the DS method, with a reasonable
number of iterations such that most of the groups converge, using 2 chains to compute the BGR and
test the convergence of the method. We suggest performing the method with 2,000 iterations and 1,000
burn-in. Then, if the BGR values for one or more SNPs in the group are significantly different from 1
(values between 0.9 and 1.1 are typically used as threshold for reasonable convergence), the method
should be run again for the group using higher number for iterations and burn-in. We recommend to
repeatedly double these values until the convergence threshold is reached.

Statistical inference pipeline for primary analysis

We provide a diagram in Figure 3 that helps the user detect group and variable pleiotropic effects
using the GCPBayes package. The first step for detection of a pleiotropic signal is to test the global
null hypothesis of no association against the global alternative hypothesis of association with at least
one trait by considering DS (or CS).

Considering the CS method of the package (please refer to the corresponding equations in Ap-
pendix A), we define the following global null hypothesis of no association as follows:

H0 : ξ1 = ξ2 = · · · = ξK = 0 versus H1 : at least one ξk ̸= 0, k = 1, · · · , K. (2)

To perform this test, the package computes two quantities. Let et P(H0|D) be the posterior
probability of the null hypothesis, i.e. the probability of making a false discovery for a non-null effect,
which (Efron 2012) refers to as the D local Bayesian false discovery rate (denoted by lBFDR). The
phrase “local” comes from a single point, {0}, as the domain of the null hypothesis tested (Efron 2012).
Note that small values of lBFDR show strong evidence for the existence of a substantive effect. We
recommend using the usual value of 0.05 as a threshold to decide whether to reject the null hypothesis
or not. The Bayes factor (BF), which describes the evidence of H1 versus H0 could also be considered.
In contrast to the lBFDR, a high Bayes factor (BF) value indicates strong evidence in favor of H1. We
recommend considering a value of 1 as a threshold (or log10BF > 0).

The marginal study-specific posterior probability of association (PPA) proposed by Majumdar et
al. (Majumdar et al. 2018) is also computed to quantify the relative contribution of a study underlying

the signal. This is defined for each study k by PPAk = 1
M

M
∑

r=1
ξ
(r)
k . This corresponds to the probability

that the study k was drawn from the slab distribution, i.e. the probability that the group has a non-zero
effect.

For checking any association by using DS, the global test is defined by:

H0 : β1 = · · · = βK = 0, versus H1 : at least one fik ̸= 0, k = 1, · · · , K. (3)

The existence of an association when using DS can be defined in the same way as for CS.

If there is no sufficient evidence for H1 (i.e., a non-null effect in at least one study), then there is
no need to further consider group pleiotropy or variable pleiotropy. If there is evidence for H1, the
user can calculate the value of the DS function’s theta. The strategy to detect group pleiotropic effects
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based on CS is to compute θ as follows:

θ = P

(
K

∑
k=1

ξk ≥ 2|β̂k, Σ̂k, k = 1, · · · , K

)
. (4)

Note that for computing θ for DS, we can follow the same strategy as for CS. Hence, θ represents
the probability of having a non-zero effect in at least two studies. Thus, it is reasonable to consider a
threshold t of 0.5 to statistically determine whether there is pleiotropy or not. However, a user wishing
to generate many tentative hypotheses could choose a less stringent threshold (i.e., 0.1). Conversely,
a user could choose a very strict threshold (i.e., 0.9) to select only the most certain groups. If θ ≤ t,
no pleiotropic effect is detected at the group level, and thus no pleiotropy signal is present at the
variable level. However, if θ > t, we can consider the group to have a pleiotropic effect. It should be
mentioned that when a pleiotropic effect is detected for a group, we can investigate the pleiotropy for
each variable in the group. In this case, as CS and DS are defined group by group, the use of Bayesian
point estimations (the means of the posterior distributions) and 95% credible intervals from the DS
function can be used as criteria for variable selection. The jth variable has a pleiotropic effect if at least
two βkjs are chosen. For example, assume that a pleiotropic effect is detected in an analysis of two
studies. The posterior estimates β̂1j and β̂2j can then be used as a pleiotropy decision tool for the jth

variable j = 1, 2, · · · , m.Hence, if β1j and β2j are two non-zero signals, Then the jth variable is declared
to have a pleiotropic effect; otherwise, the jth variable has no pleiotropic effect.

Statistical inferences for analysis by using HS

Because HS has shown a higher power to detect pleiotropy at the variable-level in simulations, we
recommend using the HS approach for the groups initially detected as pleiotropic via the DS function.
A user can move down the θ threshold in order to explore potential pleiotropic effects that could
have been detected with a larger sample size (i.e. to consider θ ≥ 0.1 from DS). Then, the user can
compare the results at the variable-level for DS and HS (Figure 3). Using this overall strategy, a user
would have to run the HS method on a smaller number of groups and thus avoids dealing with long
computational time of the HS function for all groups at once.

To detect a pleiotropic signal for the jth variable, the posterior estimates β̂kj, j = 1, 2, · · · , m,
k = 1, 2, · · · , K, and k = 1, 2, · · · , K can be used. We consider the variable j to have pleiotropic
effect if and only if there are at least two non-zero signals among the K studies. It should be noted
that, in addition to a 95% CI, the sparseness of the posterior median of the regression coefficient
βkj, k = 1, · · · , K, j = 1, 2, · · · , mg can be used for this purpose.

Pleiotropy should be considered at the variable level based on the posterior median: for example,
the jth variable can be considered pleiotropic if the posterior median of a βkj is different from 0 for at
least two studies k. Finally, pleiotropy is considered at the group level if at least one pleiotropic variable
is found within the group. Moreover, HS allows for the detection of pleiotropy at the group-level in
other situations. Note that the pleiotropy effect can take on different shapes. As presented in (Solovieff
et al. 2013), biological pleiotropy at the gene level can occur when two different signals within the
same gene are associated with two different phenotypes. This can affect both phenotypes in a similar
way. Therefore, we also consider pleiotropy at the group-level when an association is detected (not
necessarily detected as pleiotropic) for different variables within the group in at least two different
studies.

5 Computational time for GCPBayes

In this section, the computational time of GCPBayes package is explored by re-analysing of the
experimental data for nine groups (genes) described in (Baghfalaki et al. 2021). The analysis has
been conducted using a PC with a Core(TM) i5-4690K CPU @ 3.50 GHz processor and 8 GB of
memory. For this purpose, we consider nine genes with different numbers of variables (SNPs). To
fit the models, we used 2,000 MCMC iterations and discarded half as burn-in. Table 1 represents the
results of computational times using the GCPBayes package for analyzing the data. As expected,
the computational time increases when the number of variables within a group increases. The
computational time for the DS method is the shortest, and the more complex HS model HS has the
longest computational time, as expected. Another exploration of computational time for the GCPBayes
package, based on simulation studies, see (Baghfalaki et al. 2021).

We have also applied GCPBayes on whole genome data of breast and ovarian cancers (summary
statistics data). Running GCPBayes over all coding genes (number of genes: 18,244 and number of
SNPs: 1 to 9,595) took about 17 days (on a PC with Intel Core(TM) i7-1165G7 @ 2.80 GHz, 32 GB RAM).
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Figure 3: A diagram for detecting group and variable pleiotropic effects using GCPBayes package. For
more information see the text.

However, the user takes advantage of parallelization (using “foreach” command), the computational
time can be reduced. For instance, the computational time was about 40 hours using the same PC but
running six genes in each loop (i.e., using six CPUs instead of one).

Table 1: Computational time (in mins) of GCPBayes.

Name of gene Number of SNPs CS DS HS
ADH1A 2 0.070 0.030 0.139

ACE 5 0.069 0.036 0.172
ADH1B 10 0.084 0.049 0.243

RFC3 14 0.105 0.066 0.347
AOX1 24 0.158 0.127 0.629

ABCC8 30 0.220 0.190 0.966
BCAT1 50 0.555 0.539 3.123
EBF2 60 0.779 0.775 5.156
EGFR 103 2.697 2.882 30.794

6 Concluding remarks

We have developed the R package GCPBayes that implements several Bayesian meta-analysis methods
for studying cross-phenotype genetic associations (pleiotropy), taking into account group structure
from prior biological knowledge. GCPBayes offers multivariate spike and slab priors for group-
level pleiotropy, using either DS or CS formulations, and for pleiotropy at both group and variable-
level using the hierarchical spike prior (HS) formulation. These approaches take into account the
heterogeneity in size and direction of the genetic effects across traits. Although DS and CS are not
designed for variable selection, these methods do allow us to investigate the pleiotropy for each
variable in the group by using 95% credible intervals and the median threshold as criteria for variable
selection in groups for which a pleiotropic effect has been detected. On the other hand, the posterior
estimates can be used to detect a pleiotropic signal for each variable using HS. Thus, a variable is
considered to have a pleiotropic effect if and only if there are at least two non-zero signals among the
studies. For this purpose, in addition to the 95% credible intervals, the sparseness of the posterior
median of the regression coefficients is reported. Also, it should be mentioned that GCPBayes package
provides marginal trait-specific posterior probability of association of each study (PPA), direction
of associations for each variable, Bayes factor and local Bayesian false discovery rate of the global
hypothesis, a statistical criterion for detection of group pleiotropic signal (θ), credible interval and
median of the variables, summary information of the variables, and the generated MCMC samples.
Besides, as we mentioned, HS allows us to consider the pleiotropy at the group-level if at least one
pleiotropic variable is detected within the group. It also allows detection of pleiotropy at group-level
without pleiotropy at variable-level if two or more different variables are significant in different studies
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(Baghfalaki et al. 2021). This might happen if, for example, the same gene (group) may have a similar
effect on several phenotypes through different genetic markers (Solovieff et al. 2013).

We provided nine examples to demonstrate the different ways of working with the package using
both simulated and real data. In addition, three more examples are provided in Appendix B to show
the ability of the GCPBayes package to deal with various types of input data. As we mentioned
earlier, while the input of the package is summary statistics data, it is possible to use the package
for investigating pleiotropy in various kinds of phenotypes. So, a user look for pleiotropic signals
in different types of phenotypes, including categorical, continuous, mix categorical and continuous,
survival data, without any limitation.

However, there are still some limitations that a user should consider while working with the
package. For example, for more accurate detection of pleiotropic signals, a large enough sample size
for the input data should be provided. This means having a larger sample size in the individual-level
data (from which the summary statistics are calculated from) would lead to better accuracy of the
method for detecting pleiotropic signals. Besides, the GCPBayes package is designed for uncorrelated
studies (no overlapping samples between studies). So, an improvement of the package for correlated
studies could be considered for the future. Also, GCPBayes can deal with correlated samples in
uncorrelated studies as it uses summary statistics. Though the user should exercise caution, the
summary statistics has been calculated using methods which take into account such correlations
between samples. More user-friendly functions for preparing the data, for pre-selecting, and assigning
key variables into groups before applying the GCPBayes methods, are currently in development.
Furthermore, since the main focus of the package is on the detection of pleiotropic effects using GWAS
data, we are currently developing guidelines to optimize the package for use in real-world large-scale
data by taking into account factors such as optimal iterations of the MCMC step for convergence and
the development of a general strategy for dealing with genes with a large number of SNPs or large
sizes.
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rankFD: An R Software Package for
Nonparametric Analysis of General
Factorial Designs
by Frank Konietschke, Markus Pauly, Arne C. Bathke, Sarah Friedrich and Edgar Brunner

Abstract Many experiments can be modeled by a factorial design which allows statistical analysis
of main factors and their interactions. A plethora of parametric inference procedures have been
developed, for instance based on normality and additivity of the effects. However, often, it is not
reasonable to assume a parametric model, or even normality, and effects may not be expressed
well in terms of location shifts. In these situations, the use of a fully nonparametric model may be
advisable. Nevertheless, until very recently, the straightforward application of nonparametric methods
in complex designs has been hampered by the lack of a comprehensive R package. This gap has now
been closed by the novel R-package rankFD that implements current state of the art nonparametric
ranking methods for the analysis of factorial designs. In this paper, we describe its use, along with
detailed interpretations of the results.

1 Introduction

Nonparametric methods and in particular rank-based methods are commonly used for the analysis
of experiments when it cannot be assumed that the observations derive from a normal population
distribution. In online discussion fora regarding the application of statistical methods one can often
find questions such as: “Does anybody know whether there is a nonparametric analog of ANOVA?”.
The common response is: “You may use rank methods” which usually prompts the next question:
“Does anybody know a software package performing the computations for a nonparametric ANOVA /
rank ANOVA?”. The answers to this question vary: some list more or less popular statistical software
packages, others give the heuristic advice of simply replacing the observations by their ranks and
then performing regular ANOVA on the ranks. This suggests that there is a lack of clear advice
on not just how to implement rank-based methods, but also how to interpret and understand the
theoretical background. As such, the goal of the present article is to both explain when and how to use
the procedures implemented in rankFD, and also provide the reader with enough of the theoretical
background so that they can interpret the results correctly.

In order to provide a more precise answer regarding the nonparametric analog of ANOVA, one
has to discuss the quantities by which a potential effect in a trial can be intuitively described. Such
effects may be the differences or ratios of the means of the observations or of some other parameter or
estimand defined in a semi-parametric model. To compare the differences of means in semi-parametric
models where the normal distribution cannot be assumed, the so-called studentized permutation
procedures (Janssen, 1997; Pauly et al., 2015; Smaga, 2015) are appropriate. These procedures provide
quite accurate results even in case of small to moderate sample sizes, depending on the type of the data
and the underlying population distribution. However, there are several situations where differences
or linear combinations of means may not be appropriate to describe intuitive treatment effects – for
example if the data have floor and ceiling effects or if the distributions have completely different
shapes. In case of ordinal data, means are not even defined, and using a numerical encoding of the
ordered categories as seemingly metric data may lead to incorrect conclusions (Kahler et al., 2008).
In such cases, treatment effects can reasonably be described by the so-called relative effect which was
introduced by Mann and Whitney (1947) and Putter (1955). For independent observations X ∼ F1
and Y ∼ F2, the relative effect is defined as θ = P(X < Y) + 1

2 P(X = Y), which can be equivalently
written as θ =

∫
F1dF2. It may be noted that this effect has been known under many different names

in the literature, for example Wilcoxon functional (Janssen, 1999a), Mann-Whitney type effect (Dobler
et al., 2019), stochastic superiority (D’Agostino et al., 2006), or probabilistic index (Acion et al., 2006;
Thas et al., 2012). We prefer the expression “relative effect” or “nonparametric relative treatment effect”
with reference to Birnbaum and Klose (1957).

The relative effect θ can be estimated by replacing the distribution functions F1 and F2 with their
empirical counterparts, F̂1 and F̂2, the so-called empirical distribution functions. This leads to the

estimator θ̂ =
∫

F̂1dF̂2 = 1
n1

(
R2· − n2+1

2

)
, where R2· =

1
n2

∑n2
k=1 R2k denotes the mean of the overall

ranks R2k of the observations X21, . . . , X2n2 among all N = n1 + n2 observations in the experiment. It
is well-known that θ̂ is an unbiased and L2-consistent estimator of the relative effect θ and thus, the
mean of the ranks provides the basis for estimating θ and for statistical inference regarding θ.
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For two random variables X and Y, a relative effect θ > 1/2 indicates a tendency that X takes
smaller values than Y, while θ < 1/2 means that X tends to have larger values than Y. No tendency in
either direction corresponds to a relative effect of θ = 1

2 . Crucially, the presence of a relative effect does
not translate to a difference in means, and likewise, the absence of a relative effect does not suggest
that the means are the same. In other words, if X has a mean µx and Y has a mean µy, then we may
have θ ̸= 1/2 when µx = µy, or θ = 1

2 when µx ̸= µy. Analogously, for the medians µ̃x and µ̃y, it
is possible that θ ̸= 1

2 and µ̃x = µ̃y, or that θ = 1
2 and µ̃x ̸= µ̃y. Thus, from a significant result of a

rank test it cannot be concluded that µx ̸= µy or µ̃x ̸= µ̃y. In this sense, rank tests based on θ̂ (e.g.,
the Wilcoxon-Mann-Whitney test, the Fligner-Policello test, or the Brunner-Munzel test) are not tests
of the equality of means or medians, and therefore not simply nonparametric analogs of the t-test
since the hypotheses and consistency regions of these tests are not identical. Note that the consistency
region contains all distribution functions for which the power of the test tends to 1 as sample sizes
tend to ∞. In most parametric models, the set of distribution functions contained in the hypothesis
and in the consistency region are complementary. In some nonparametric models, however this is
in general not the case which may lead to difficulties interpreting “significant” results obtained by
rank-based tests (Brunner et al., 2020). Some details will be explained in Section 2.2. Similar remarks
apply to rank tests for multiple samples or even in factorial designs. This is ultimately the reason why
the heuristic approach of replacing the observations by their ranks may lead to non-valid procedures
in general (Conover and Iman, 1981). Especially in factorial designs, linear combinations of means
may have different meanings than linear combinations of relative effects. With this in mind, users of
the R-package for rank tests described in this paper should know that they might get different results
than obtained by using a common ANOVA package.

The second question often read in discussion fora —’what software package should I use’ —can
be answered more easily. Most statistical software packages provide options for the classical nonpara-
metric rank-based methods, however, these can still be quite limited and more contemporary and/or
appropriate methods may not be available. For example, most statistical software packages offer the
Wilcoxon-Mann-Whitney and the Kruskal-Wallis test for independent observations, as well as some
particular procedures from the literature. However, more modern nonparametric rank-based methods
developed during the last decades (Ruymgaart, 1980; Akritas and Arnold, 1994; Akritas et al., 1997;
Brunner and Puri, 1996; Konietschke et al., 2012; Brunner et al., 2017, 2019) are not mplemented in
most packages. Moreover, in software tools following a more classical paradigm, ties (i.e., two or more
different observations with exactly the same value, as frequently is the case in ordinal or count data)
are often considered in form of “corrections” that are added to the case of no ties, instead of considering
the situation of no ties as a special case of a general model allowing for arbitrary ties (only the trivial
case of one-point distributions should generally be excluded). Also, quick algorithms (Streitberg
and Röhmel, 1986; Mehta et al., 1988) for the computation of exact p values for permutation-based
procedures are rarely used, and general methods for purely nonparametric effects in factorial designs
are not provided in standard implementations. However, exactly such procedures are often needed in
applications. Researchers are then tempted to use heuristic procedures as described above, although
the conclusions drawn from them might be misleading.

Finally, confidence intervals for purely nonparametric effects, such as the relative effect θ, are
not provided in standard software, in spite of the fact that appropriate confidence intervals for the
effect measures being used in the analysis have been required by the pertinent guidelines for decades.
Instead, some software packages offer confidence intervals for location shift effects which in general
may be neither compatible to the decisions of the rank tests nor justified regarding the types of
alternatives or the scales of the measurements in the experiment. Recall that the relative effect is not
a measure of mean or median differences, and therefore confidence intervals for mean or median
shifts are not congruent with hypothesis tests based on the relative treatment effect, such as the
Wilcoxon-Mann-Whitney and the Kruskal-Wallis tests, among others.

The R package rankFD intends to close these gaps. It includes the classical rank tests for continuous
observations as special cases, allows for situations with arbitrary ties, and extends these procedures
to factorial designs. The hypotheses tested in factorial designs are expressed as linear hypotheses in
terms of the distribution functions as introduced in Akritas et al. (1997) or as linear combinations of
the relative effects as discussed in Brunner et al. (2017). Ranking procedures for testing equalities of
distribution functions in factorial longitudinal data (repeated measures) and multivariate data are
implemented in R packages nparLD (Noguchi et al., 2012), npmv and nparMD (Burchett et al., 2017;
Kiefel et al., 2022), respectively. Semiparametric methods for testing null hypotheses in general factorial
designs in means are implemented in the R packages GFD (Friedrich et al., 2017) and MANOVA.RM
(Friedrich et al., 2019b).

In any case, it must be clearly noted that rank methods, especially in factorial designs, answer
different questions than those considered by the ANOVA in common factorial designs. The relations
between linear combinations of the expectations of the observations and their respective counterparts
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expressed in terms of rank or pseudo-rank means depend on the underlying distribution functions.
Questions investigated by parametric factorial designs are related to the expected values of the
observations, while questions investigated by using rank- and pseudo-rank-based methods are related
to relative effects. The latter compare the distributions in the different treatment groups to an average
distribution. Thus, it should not be a surprise to obtain different answers if different questions are
posed. This must be kept in mind when responding to the seemingly simple question: “Does anybody
know whether there is a nonparametric analog of ANOVA?”.

The paper is organized as follows. Section 2.2 discusses the statistical models and explains the
concepts and methodology underlying the inferential procedures provided by the package rankFD
while the corresponding test statistics are described in Section 2.3. Section 2.4 lists and explains
the different functions used in this package, as well as examples demonstrating the usage of these
functions on real-life data. The paper closes with a discussion of the meaning and interpretation of
these methods and their relations to some procedures implemented in other R packages

2 Statistical models, effects, and hypotheses

First we consider the simple experimental design involving only one factor A with a levels involving
ni independent observations in each level i. These are modeled as

Xik ∼ Fi, i = 1, . . . , a; k = 1, . . . , ni. (1)

Throughout, we assume that the observations Xik are measured at least on an ordinal scale,
whereas Fi denotes an arbitrary distribution (or its cdf), with the exception of one-point distributions.
In total, there are N = ∑a

i=1 ni observations in the trial. This statistical model does not involve any
explicit parameters or parametrization that could be used to describe appropriate treatment effects. To
describe effects in such a general model, we therefore define weighted and unweighted relative effects

θi =
∫

HNdFi = P(Y < Xik) +
1
2

P(Y = Xik), i = 1, . . . , a, (2)

ψi =
∫

GdFi = P(Z < Xik) +
1
2

P(Z = Xik), i = 1, . . . , a. (3)

In this general definition of a relative treatment effect, each distribution function Fi is compared
either to a weighted average HN = 1

N ∑a
i=1 niFi or an unweighted average G = 1

a ∑a
i=1 Fi of the

distribution functions. This can be regarded as comparing each observation Xik ∼ Fi with either
an artificial independent observation Y ∼ HN of the weighted mean distribution or Z ∼ G of the
unweighted mean distribution. The former leads to the weighted relative effect θi, while the latter
leads to the unweighted relative effect ψi. In case of equal sample sizes, both effects coincide.

The unweighted relative effects ψi can be interpreted as follows: If ψi <
1
2 , then the observations

in group i tend to be smaller than those coming from the average distribution G. If ψi = ψj, then in
relation to the average distribution G, the observations coming from distributions Fi and Fj have the
exact same tendency towards smaller or larger observations. Thus, it is reasonable to consider the case
of ψi = ψj as no (relative) treatment effect between levels i and j. The relations and interpretations for
the weighted effects θi and θj follow analogously. In the following, we collect all distribution functions
and relative effects in the vectors F = (F1, . . . , Fa)⊤ and ψ = (ψ1, . . . , ψa)⊤ or θ = (θ1, . . . , θa)⊤,
respectively.

Estimators of the weighted relative effects θi defined in (2) can be obtained using the ranks Rik of

the observations Xik. In fact, θ̂i =
1
N

(
Ri· − 1

2

)
is an unbiased and consistent estimator of θi, where

Ri· =
1
ni

∑ni
k=1 Rik, and Rik denotes the rank of Xik among all N = ∑d

i=1 ni observations. In case of ties,
mid-ranks must be used. Formally, the mid-rank Rik is obtained from the empirical weighted average
distribution function ĤN(x) = 1

N ∑d
i=1 ni F̂i(x) by Rik = 1

2 + NĤ(Xik).

In the same way, the unweighted relative effects ψi defined in (3) are estimated using the so-called
pseudo-ranks Rψ

ik = 1
2 + NĜ(Xik), where Ĝ(x) denotes the empirical unweighted average distribution

function. An unbiased and consistent estimator ψ̂i of ψi is given by

ψ̂i =
1
N

(
Rψ

i· −
1
2

)
, (4)

where Rψ
i· =

1
ni

∑ni
k=1 Rψ

ik. For details we refer to Brunner et al. (2019), Section 2.3.2 or to Happ et al.

(2020), Section 2. Basically, the estimators θ̂ = (θ̂1, . . . , θ̂a)⊤ and ψ̂ = (ψ̂1, . . . , ψ̂a)⊤ are vectors whose
components are linear functions of the rank means Ri· or the pseudo-rank means Rψ

i· , respectively.
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Thus, rank tests are related to the weighted relative effects θi in (2), while pseudo-rank tests are related
to the unweighted relative effects ψi in (3).

Hypotheses formulated in terms of distribution functions

Classical rank-based methods for a one-way layout, (e.g., Kruskal-Wallis test, Kruskal (1952); Kruskal
and Wallis (1952); or Hettmansperger-Norton test, Hettmansperger and Norton (1987)) can be used to
test null hypotheses formulated in terms of the distribution functions, such as

HF
0 : F1 = . . . = Fa, (5)

where obviously, equal distribution functions imply equal variances if HF
0 in (5) is true (if second

moments exist).

Two- and higher way layouts are covered within model (1) by sub-indexing the index i, similar to
the theory of linear models. For instance, a two-way design involving a factor A with a levels and a
factor B with b levels, respectively, can be written as

Xijk ∼ Fij, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij, (6)

and the distribution functions and relative effects are then collected in the structured vectors F =
(F11, . . . , Fab)

⊤ and ψ = (ψ11, . . . , ψab)
⊤ or θ = (θ11, . . . , θab)

⊤, respectively.

Consequently, Akritas and Arnold (1994), Brunner and Puri (1996), and Akritas et al. (1997)
suggested to formulate null hypotheses in two- and higher-way layouts in a similar way as in linear
models, with the expected values being replaced by the corresponding distribution functions. In a
two-way layout, for example, hypotheses of no (distribution-)main effects A or B and no (distribution-
)interaction (AB) are written as

HF
0 (A) : F1· = · · · = Fa·, Fi· =

1
b

b

∑
j=1

Fij, i = 1, . . . , a,

HF
0 (B) : F·1 = · · · = F·b, F·j =

1
a

a

∑
i=1

Fij, j = 1, . . . , b,

HF
0 (AB) : Fij = Fi· + F·j − F··, F·· =

1
ab

a

∑
r=1

b

∑
s=1

Frs, i = 1, . . . , a; j = 1, . . . , b . (7)

In order to extend the hypotheses in (5) or (7) to higher-way layouts, general hypotheses are written
using matrix notation as

HF
0 (C) : CF = 0, (8)

where C denotes an appropriate hypothesis matrix, in the same way as in linear models, only replacing
means with the respective distribution functions. Note that 0 is here understood to be a vector of
functions which are identically 0. Testing these hypotheses HF

0 of no distribution effects can be
performed using the argument hypothesis="H0F" in the rankFD function. More details are provided
in Section 2.4.

Hypotheses formulated in terms of relative effects

In general, researchers may not be interested in detecting the somewhat abstract alternative HF
1 : CF ̸=

0 that HF
0 in (8) is not true, but instead they want to detect whether a tendency to smaller or larger

values exists between treatment levels. In a one-way layout, for example, the latter corresponds to the
testing problem

HP
0 : ψ1 = . . . = ψa, (9)

formulated in terms of the relative effects ψi. Here, the symbol HP
0 refers to the probabilities ψi in (3).

Remark: Of course, one can also state the hypothesis

HP
0 : θ1 = . . . = θa, (10)

but it must be kept in mind that the hypothesis (10) depends on the relative sample sizes ni/N in
groups i = 1, . . . , a. Thus, the rejection region of such a test is not invariant, but it changes with the
ratios ni/N of the sample sizes. In extreme cases, this might lead to surprising results when compared
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to the results obtained in designs with equal sample sizes. For details we refer to Brunner et al. (2020)
and Brunner et al. (2019). The unweighted mean distribution is, however, one reference distribution of
choice that helps in reducing the issues obtained with the weighted version. Whether the unweighted
version is the “best” one, can not be answered and guaranteed, in general (Zimmermann et al., 2022).

In a two-way layout, for example, the hypotheses of no main effects or no interactions in terms of
the relative effects ψij =

∫
GdFij are written as

HP
0 (A) : ψ1· = · · · = ψa·, i = 1, . . . , a,

HP
0 (B) : ψ·1 = · · · = ψ·b, j = 1, . . . , b,

HP
0 (AB) : ψij = ψi· + ψ·j − ψ··, i = 1, . . . , a; j = 1, . . . , b, (11)

where ψi· =
1
b ∑b

j=1 ψij, ψ·j =
1
a ∑a

i=1 ψij, and ψ·· =
1
2 . The matrix notation of these hypotheses is,

analogously to (7) and (8),

HP
0 (C) : Cψ = 0, (12)

where ψ denotes the vector of unweighted relative effects. For a detailed explanation of using matrix
notation in factorial designs we refer to, e.g., Brunner et al. (2017) or Brunner et al. (2019), Sect. 5.2 and
Sect. 8.7.1.

In a similar way as in the one-way layout, the hypotheses involving the weighted relative effects
θij in the two-way layout can be stated by replacing ψij, ψi·, and ψ·j in (11) with θij, θi·, and θ·j,
respectively. It may be noted, however, that – unlike in the one-way layout – in two- or higher-way
layouts surprising results may already be obtained in case of moderate unequal samples sizes in
simple shift-effect models. These basic models cannot be considered “extreme cases”. This means that
unequal sample sizes in two- or higher-way layouts constitute a serious challenge for rank tests while
this is not the case for pseudo-rank tests. For more details we refer to Brunner et al. (2019), Chapter 5
and Brunner et al. (2020), Section 4.

Note that HP
0 in (12) neither implies variance homogeneity nor equal shapes of the distributions.

In the case of two samples, this situation is also known as the nonparametric Behrens-Fisher problem
(Fligner and Policello, 1981; Brunner and Munzel, 2000; Konietschke et al., 2012). In general, it is easier
to estimate the covariance matrix of the empirical relative effects under the stronger null hypothesis
HF

0 than under HP
0 . Therefore, statements about the sampling distribution of test statistics based on

ranks have traditionally been formulated under HF
0 , even though it is well-known that those test

statistics can only detect alternatives of the form HP
1 : Cθ ̸= 0 or HP

1 : Cψ ̸= 0.

Remark: The rankFD package implements the current state-of-the-art methods for testing HP
0

(using ranks as well as pseudo-ranks) in general factorial designs (Konietschke et al., 2012; Brunner
et al., 2017), and it allows for the computation of a wide range of nonparametric test statistics. It
explicitly also includes the classical tests based on weighted relative effects θi (using ranks) and on
unweighted relative effects ψi (using pseudo-ranks). Both types of ranking procedures are included in
rankFD. A reason for including the former tests is that it allows users to reproduce findings that have
been obtained by other researchers using rank tests. Also, it offers the possibility to directly compare
procedures which may facilitate a transparent discussion in that regard.

Multiple comparisons

So far, both null hypotheses HF
0 and HP

0 have been written as global null hypotheses. If they get
rejected, one may only conclude that some factor level differs from the others (at corresponding
significance level α). However, it still remains unknown specifically which one differs. Therefore,
testing global null hypotheses often does not answer the particular research question of interest to
scientists applying statistical methods, namely the specific localization of those treatment groups that
are “driving” the significant results. In order to accomplish this goal, testing linear contrasts using a
q × a contrast matrix

C =


c⊤1
...

c⊤q

 =


c11 c12 · · · c1a
c21 c22 · · · c2a
...

...
...

...
cq1 cq2 · · · cqa

 ;
a

∑
i=1

cℓi = 0, ℓ = 1, . . . , q,

in terms of multiple null hypotheses H(ℓ)
0 : c⊤ℓ ψ = 0 (or H(ℓ)

0 : c⊤ℓ F = 0) is the key. Here, each row
vector c⊤ℓ describes one of q different contrasts reflecting the researcher’s particular question. For
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instance, in a one-way layout with a = 4 levels, many-to-one (Dunnett-type) (Dunnett, 1955) or all
pairwise (Tukey-type) comparisons are performed with the contrast matrices

C =

 1 −1 0 0
1 0 −1 0
1 0 0 −1

 or C =


1 −1 0 0
1 0 −1 0
1 0 0 1
0 1 −1 0
0 1 0 −1
0 0 1 −1


Note: left shows many-to-one (Dunnett-type); right shows all-pairwise (Tukey-type) contrast matrix

respectively. Which contrast to use depends on the respective research question of interest. Bretz
et al. (2001) provide a broad overview of different contrast matrices, which are numerically available
within the contrMat function of the multcomp package in R (Hothorn et al., 2008). In general factorial
designs involving more than one factor, multiple comparisons in terms of means of the levels of the
main effects are a meaningful and valuable asset of a fundamental data analysis. For instance, in a
2 × 4 two-way design, many-to-one comparisons to the control group (j = 1 of factor B) are expressed
as

HP(1)
0 : ψ·1 = ψ·2

HP(2)
0 : ψ·1 = ψ·3 C =


ψ11 ψ12 ψ13 ψ14 ψ21 ψ22 ψ23 ψ24

1/2 −1/2 0 0 1/2 −1/2 0 0
1/2 0 −1/2 0 1/2 0 −1/2 0
1/2 0 0 −1/2 1/2 0 0 −1/2

.

HP(3)
0 : ψ·1 = ψ·4

The rankFD function implements a broad list of pre-defined contrasts as well as flexible options
allowing for user-defined contrast matrices for making multiple comparisons of the levels of the main
or interaction effects. We provide computational details in Section 2.4.

Confidence intervals

To comply with the basic principle “no test without a confidence interval”, the rankFD package also
provides confidence intervals for the nonparametric quantities upon which the test is based. Two-sided
(1 − α)-confidence intervals for ψi and θ = ψ2 − ψ1 are obtained from the asymptotic distribution of
the estimators ψ̂i in (4) by

CI =
[

ψ̂i ∓ z1−α/2
ŝi√
N

]
, (13)

where z1−α/2 denotes the (1 − α/2) quantile of the standard normal distribution. Here, the variance
estimator ŝ2

i is a quite involved linear combination of different quadratic forms obtained from different
rankings of the observations Xik. For details we refer to Brunner et al. (2019), Sect. 4.6.1.

The confidence intervals in (13) may suffer from poor coverage probability if ψi is close to the
limits 0 or 1 and, moreover, the limits of the confidence interval may exceed the boundaries 0 or 1. In
this case, so-called range preserving intervals can be obtained by using the logit-transformation. The
limits thus obtained are then “back-transformed” using the expit-transformation. For details we refer
to Brunner et al. (2019), Sect. 4.6.2.

In rankFD, these confidence intervals are computed by the function rankFD() using the options
CI.method = ”normal” for the limits in (13) or CI.method = ”logit” for the range preserving confidence
intervals obtained by the logit-transformation. By default, rankFD() provides confidence intervals
for both, ψi and θi. Regarding the confidence intervals for θi the same remarks as in Sect. 2.2.2 apply.
Furthermore, since the Wilcoxon-Mann-Whitney test (and relative methods) use variance estimators
that are only consistent under the respective null hypothesis HF

0 formulated in terms of the distribution
functions, the tests cannot be inverted into confidence intervals for ψi.

3 Test statistics

The rankFD package implements a broad class of different test statistics for testing the general null
hypotheses HF

0 : CF = 0, HP
0 : Cψ = 0, and HP

0 : Cθ = 0, respectively. They include global test
procedures (quadratic forms) and multiple contrast tests (linear statistics) for the analysis of data
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from general factorial designs, as well as methods specifically designed for the evaluation of two
independent samples including the classical rank tests.

In the following, we will briefly explain these procedures. They are all based on the (asymptotic)
distribution of standardized vectors of point estimators θ̂ = (θ̂1, . . . , θ̂d)

⊤ or ψ̂ = (ψ̂1, . . . , ψ̂d)
⊤ of the

weighted or unweighted relative effects as defined in (2) and (3), respectively. Since both of them denote
the probabilities (appropriately weighted) of data being smaller in group i than in the joint sample,
estimators can be constructed using the (usual) ranks Rik or the so-called pseudo-ranks Rψ

ik (Happ et al.,
2020). In rankFD these point estimators are obtained by

effect=weighted (scaled) mean of ranks Rik

effect=unweighted (scaled) mean of pseudo-ranks Rψ
ik

For more details, we refer to (Brunner et al., 2019, Section 2.3.2). Besides the vectors of point
estimators θ̂ or ψ̂, their (estimated) covariance matrices are needed for the computation of test
statistics. In the general nonparametric setup considered here, we can take advantage of the type of
hypothesis we aim to test. Assuming HF

0 to hold, then the covariance matrices of
√

N(θ̂− θ) and of√
N(ψ̂ − ψ) have (much) simpler structures than under HP

0 (Konietschke et al., 2012). This property
carries over to its estimation and therefore the estimators used in the statistics for testing HF

0 or HP
0

are different. However, for the ease of notation, we denote with V̂N their estimators in a general way
having both versions in mind. In the following, we therefore provide the statistics using ψ̂ (and in turn
the pseudo-ranks) for the ease of convenience only. For more details we refer to Brunner et al. (2020).

Global test procedures

In order to test the null hypothesis HF
0 as given in (8), the rankFD package implements the Wald-type

statistic

WN(C) = Nψ̂⊤C⊤
[
CV̂NC⊤

]+
Cψ̂. (14)

Here, the matrix [A]+ denotes the Moore-Penrose inverse of the matrix A. Under the hypothesis
HF

0 , the statistic WN(C) follows, for large sample sizes, a χ2
w-distribution with w = rank(CV̂NC⊤)

degrees of freedom. Since the statistic involves the estimators and the known contrast matrix only,
its numerical computation is feasible. However, very large sample sizes (ni ≥ 50; depending on the
actual design) are necessary for an accurate type-1 error rate control. Therefore, Akritas et al. (1997)
and Brunner et al. (2017) propose the so-called ANOVA-type statistic

AN(C) = N · ψ̂⊤Aψ̂

trace(AV̂N)
, A = C⊤

[
CC⊤

]+
C, (15)

and approximate its distribution by an F-distribution with f̂1 and f̂2 degrees of freedom (obtained
via Box-type approximation as derived by Brunner et al. (1997)). In comparison with the Wald-type
statistic WN(C) in (14), the ANOVA-type statistic AN(C) controls the type-I error much better in small
sample sizes; ni ≥ 15 depending on the design and hypothesis of interest.

Moreover, the approximation of the distribution of AN(C) is also valid under the more general
hypothesis HP

0 . We note that, basically, both statistics can also be computed using the ranks Rik instead
of the pseudo-ranks Rψ

ik. But the general remarks in Sections 2.2.2 regarding the usual ranks Rik must
be carefully considered. We also note that the asymptotic distribution of the Wald-type statistic WN(C)
under the more general hypothesis HP

0 is not the χ2
w-distribution with w = rank(CV̂NC⊤) in general.

This would require an additional assumption on the sequence of the empirical covariance matrices
V̂N which cannot be verified in practice.

The preceeding comments and discussion might appear somewhat difficult to understand but
they are necessary to explain the different options in the printout of rankFD. At this point, it becomes
evident that the question “Does anybody know whether there is a nonparametric analog of ANOVA?”
cannot be answered by some simple statements and that the heuristic technique replacing observations
by their ranks and then performing an ’ANOVA on the ranks’ may lead to non valid procedures and
incorrect conclusions in general.
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Multiple contrast test procedures

Both the Wald-type and ANOVA-type statistics are global tests, i.e. if the respective hypothesis HF
0 or

HP
0 is rejected, the only available information is that any of the factor levels (or their combinations)

differ at pre-assigned significance level α. The identification of the factor levels which are responsible
for the difference is, however, often of major interest and a key research question. Local test decisions in
terms of adjusted p-values and simultaneous confidence intervals are of primary importance and key
elements of a complete data evaluation. These can be exposed using Multiple Contrast Test Procedures
(MCTP) (Bretz et al., 2001; Hothorn et al., 2008; Konietschke et al., 2012), which are also known as
max-t-test type procedures in parametric models (Konietschke et al., 2021). In order to test the local

null hypothesis H(ℓ)
0 : c⊤ℓ ψ = 0, we use the test statistic

Tℓ =
√

N
c⊤ℓ ψ̂

c⊤ℓ V̂Ncℓ
, (16)

where the contrast vector cℓ reflects the researcher’s particular question. Typical contrast vectors are
discussed by Bretz et al. (2001).

Since the statistics Tℓ and Tℓ′ are not necessarily independent when ℓ ̸= ℓ′, we collect them in the
vector T = (T1, . . . , Tq)⊤, which follows, asymptotically, as N → ∞, a multivariate normal distribution
with expectation 0 and correlation matrix R. Since R is unknown, we replace it with the estimator R̂
obtained from standardizing C⊤V̂NC, see Konietschke et al. (2012). For large sample sizes, we reject

the individual null hypothesis H(ℓ)
0 at significance level α, if |Tℓ| ≥ z1−α(R̂), where z1−α(R̂) denotes

the two-sided (1 − α)-equicoordinate quantile from the N(0, R̂) distribution. For details we refer to
Konietschke et al. (2012); Umlauft et al. (2019). Compatible (1 − α)× 100% simultaneous confidence

intervals are obtained by CIℓ =
[

c⊤ℓ ψ̂ ∓ z1−α(R̂)√
N

√
c⊤ℓ V̂Ncℓ

]
. Finally, the global null hypothesis HP

0 (or

HF
0 ) is rejected, if

T0 = max{|T1|, . . . , |Tq|} ≥ z1−α(R̂). (17)

For small sample sizes, Konietschke et al. (2012) suggest to use t quantiles rather than normal and
the Fisher-transformation for the computation of range-preserving confidence intervals. The rankFD
function implements all of the different procedures.

4 Software and examples

In the following, we will analyze different data sets to illustrate the application of the implemented
functions in rankFD. They differ in their complexity and cover two- and several samples as well as a
factorial design, respectively. We note that the wrapper function rankFD() realizes the actual statistical
design from the given formula argument. However, few of the statistical methods are available for
two independent samples only and we therefore implemented the function rank.two.samples for
their exclusive analysis. First, we will explain the syntax of the two functions and then illustrate their
application using real data sets.

Syntax

Two samples: The rank.two.samples() function implements current state of the art methods for
testing the null hypothesis H0 : θ = 1

2 versus H1 : θ ̸= 1
2 along with the computation of (1− α)× 100%

confidence intervals for θ. Its most important arguments are

rank.two.samples(formula, data, method = c("t.app", "logit", "probit","normal"),
permu = TRUE, alternative = c("two.sided", "less", "greater"),
wilcoxon = c("asymptotic","exact"),shift.int = TRUE,
nperm = 10000,conf.level = 0.95, info = TRUE,rounds = 4)

• formula plus data
is the standard way of specifying regression relationships in R/S introduced in Chambers and
Hastie (1992).

• method
specifies the approximate method, where t.app computes the Brunner-Munzel test (Brunner
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and Munzel, 2000) with t-approximation, normal uses the standard normal quantiles and range-
preserving confidence intervals are obtained by logit or probit tranformation functions (Pauly
et al., 2016).

• permu
indicates whether additional studentized permutation tests shall be computed (Janssen, 1999b;
Neubert and Brunner, 2007; Pauly et al., 2016)

• alternative
Two-sided and one-sided tests and confidence intervals are available using the argument
alternative.

• wilcoxon
gives the option to compute additional Wilcoxon-Mann-Whitney tests for testing the equality
of the two distributions HF

0 : F1 = F2 of the two samples. We use the coin package for these
computations (Zeileis et al., 2008). Both the asymptotic as well as exact distribution of the test is
available.

• shift.int
can be used for the computation of a confidence interval for the shift-effect (Hodges-Lehmann).

• nperm, conf.level, info and rounds
list optional arguments specifying the numbers of permutation, coverage probability, output
explanation and decimals.

The use of the plot() function to a rank.two.samples object displays a plot of the confidence
interval for θ.

Several samples and factorial designs: In addition, rankFD() implements statistical methods for
the analysis of general nonparametric factorial designs. Its most important arguments are:

rankFD(formula, data, CI.method = c("logit", "normal"),
effect = c("unweighted", "weighted"), hypothesis = c("H0F", "H0P"),
contrast = NULL, sci.method = c("fisher", "multi.t"),
info = TRUE, rounds=4)

• formula plus data
is the standard way of specifying regression relationships in R/S introduced in Chambers and
Hastie (1992).

• CI.method
specifies the computational method of the confidence intervals, either using the normal approxi-
mation or the logit transformation function.

• effect
defines the effect to be estimated, in particular,

effect = "weighted" or effect = "unweighted"
estimate the weighted or unweighted relative effect, respectively. As explained above, this
choice either leads to using traditional ranks (weighted) or pseudo-ranks (unweighted).

• hypothesis
defines the null hypothesis of interest (either HF

0 or HP
0 formulated in terms of distribution

functions or relative effects, respectively).
• contrast

is specified to perform multiple contrast tests. The argument must be given as a list() spec-
ifying the factor level and the kind of contrast (optional). The user can chose from a pre-
implemented list of possible contrasts or commit a user-specific contrast matrix.

• sci.method
defines the computational method of the simultaneous confidence intervals.

• Factor.Information
is a logical argument whether descriptive information (effect estimators, standard error and
confidence intervals) for each factor and interaction effect is of interest and shall be displayed.

• info and rounds
list optional arguments specifying the numbers of output explanation and decimals.

Plot options: In order to visualize the results of the analysis, the confidence intervals can be plotted
by using the generic plot() function (being applied to a rankFD object). In two- and higher way
layouts, the user is asked to type the name of the main or interaction effect the confidence intervals
of which should be drawn. All standard font, width and color arguments apply (lwd, pch, cex, etc.).
Furthermore, the argument cex.ci sets the ”cex” (number indicating the amount by which plotting
text and symbols should be scaled relative to the default) of the confidence interval limits.
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Figure 1: Boxplots (left) and 95%-confidence interval (right) for the relative effect of the reaction time
data.

Two independent samples

As an illustrating example, we use a part of the reaction time data provided by Shirley (1977). In this
animal experiment, N = 40 mice were randomized to a = 4 dose groups (n = 10 animals per group).
The observations are the reaction times [in seconds] of mice to stimuli applied to their tails. Here, we
only use the data from dose group 0 (negative control) and dose group 1 and thus reduce the data set
to two independent samples. The boxplots of the reaction times as displayed in Figure 1 confirm our
initial conjecture of quite skewed distributions. In this case, the Wilcoxon-Mann-Whitney effect:

θ = P(X01 < X11) +
1
2 P(X01 = X11),

may have a better interpretation for the researcher than the difference of the two means. Recall that
for θ < 1

2 the observations coming from the control group tend to be larger than those from group
1. If θ = 1

2 , then none of the observations tend to be smaller or larger. No treatment effect is therefore
indicated by θ = 1

2 . The reaction time data set is analyzed with the rank.two.samples() function. As
approximate method, we use the logit approach, compute the exact Wilcoxon-Mann-Whitney test
but omit estimation of shift effects:

library("rankFD")
data("reaction")

A <- rank.two.samples(Time ~ Group, data = reaction, method = "logit",
+ wilcoxon = "exact", shift.int = FALSE)

Nonparametric Methods for 2 Independent Samples

#Alternative: Relative Effect is unequal to 1/2
#Method: Logit Transformation
#Interpretation: If p(0,1) >1/2, then data in group 1 tend to be

larger than those in group 0
#Confidence Level: 95 %
#Number of permutations: 10000
#Wilcoxon-Mann-Whitney Test: exact
#Shift-Effect: NA
---------------------------------------------------------------------------
Call:
Time ~ Group

Descriptive:
Sample Size

0 0 10
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Figure 2: Boxplots (left) and (local) 95%-confidence intervals for the relative effects of the EEG values
(right) .

1 1 10
----------------------Analysis of Relative Effects-------------------------
Test Results:
Effect Estimator Std.Error T Lower Upper p.Value
p(0,1) 0.88 0.0801 2.6277 0.6239 0.9701 0.0086

Studentized Permutation Test:
Effect Estimator Std.Error T Lower Upper p.Value
p(0,1) 0.88 0.0801 2.6277 0.6551 0.9673 0.0016

-------------------Analysis of Distribution Functions-----------------------

Wilcoxon-Mann-Whitney Test:
Effect Estimator Statistic p.Value
p(0,1) 0.88 143 0.0029

plot(A)

The estimated relative effect θ̂ = 0.88 and thus, the estimated probability that untreated mice react
faster than treated ones is 88%. Furthermore, the data provide the evidence to reject Hθ

0 : θ = 1
2 at

5% level of significance (p < 5%) which is also evident in the compatible confidence interval (not
containing 1/2).

A one-way factorial design

As an example of a one-way factorial design we use the data set EEG that is included in the package
MANOVA.RM (Friedrich et al., 2019a, 2021). The data set contains EEG measurements of 160 patients
who were diagnosed with either Alzheimer’s Disease (AD), mild cognitive impairments (MCI), or
subjective cognitive complaints without clinically significant deficits (SCC), based on neuropsycho-
logical diagnostics (Bathke et al., 2018). For demonstration purposes, we restrict our analysis to the
measurement of Hjorth complexity (represents change in frequency) obtained at central electrode
positions. The question of interest is whether this EEG value tends to be larger or smaller than the
mean Mann-Whitney effect across the different diseases and therefore, the relative effects defined in
(3) are used for the analysis.

The EEG data is analyzed using the function rankFD(). Here, we calculate confidence intervals with
the logit approach and estimate the unweighted relative treatment effects to test the null hypothesis
HP

0 . Moreover, we specify a multiple contrast test based on Tukey-type contrasts for the pairwise
comparisons of the three diagnosis groups.

library("MANOVA.RM")
data("EEGwide")
B <- rankFD(complexity_central ~ diagnosis, data = EEGwide,
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+ CI.method = "logit", effect = "unweighted", hypothesis = "H0p",
+ contrast = list("diagnosis", "Tukey"))

Nonparametric Methods for General Factorial Designs

---------------------------------------------------------------------------
#Hypotheses: Tested in Relative Effects
#Ranking Method: Pseudo-Ranks
#Confidence Intervals: 95 % with Logit-Transformation

#MCTP: Fisher Transformation and multivariate T-Approximation
---------------------------------------------------------------------------

Call:
complexity_central ~ diagnosis

Descriptive:
diagnosis Size Rel.Effect Std.Error Lower Upper

1 AD 36 0.4091 0.0400 0.3335 0.4893
2 MCI 57 0.4357 0.0304 0.3773 0.4960
3 SCC 67 0.6551 0.0272 0.6002 0.7063

Wald.Type.Statistic:
Statistic df p-Value

diagnosis 36.2624 2 0

ANOVA.Type.Statistic:
Statistic df1 df2 p-Value

diagnosis 11.1605 1.6222 80.9562 2e-04

MCTP:
$Contrast.Matrix
1 2 3
C1 -1 1 0
C2 -1 0 1
C3 0 -1 1

$Local.Results
Effect Std.Error T Lower Upper p.value

C1 0.0266 0.0657 0.4044 -0.1308 0.1827 0.9119
C2 0.2460 0.0613 3.8510 0.0941 0.3868 0.0010
C3 0.2194 0.0415 5.1125 0.1176 0.3167 0.0000

$Global.Result
T0 p.value

1 5.1125 0

$DF
[1] 46

$Quantile
[1] 2.4042

plot(B)

The output consists of several parts: First, a brief description of the methods is given. B$Descriptive
returns the sample sizes, the estimated relative effects as well as their standard errors and confidence
intervals for the factor levels. B$ Wald.Type.Statistic and B$ANOVA.Type.Statistic return the
results of the Wald-type and ANOVA-type test as described in Section 2.3, respectively. Since we
specified our null hypothesis in terms of HP

0 , Kruskal-Wallis test is not performed. The part B$MCTP
finally contains the results of the multiple contrast test: the contrast matrix (Tukey-type), the local test
results Tℓ as well as the global results T0 along with the t-quantile and the corresponding degrees of
freedom (Konietschke et al., 2012) are reported, see Section 2.3.2 for details. The significant difference
between the diagnosis groups and the results of the post-hoc tests reveal that SCC patients differ
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Figure 3: Barplots (percent) of the nasal mucosa scores.

significantly from the other two groups, see also Figure 2.

A two-way factorial design

As an illustrative example of a two-way factorial design, we chose the Irritation of the Nasal Mucosa
trial provided by Brunner et al. (2019, Chapter B.3.2) and included in the package. In this trial, the
researchers investigated the damage of two gaseous substances (factor A) on the nasal mucous mem-
brane of mice. Hereby, both substances were given in three different concentrations (1[ppm], 2[ppm]
and 5[ppm]) (factor B) to 25 mice each. The degree of irritation and damage was histopathologically
assessed using an ordinal score ranging from 0 to 4 with 0 = “no irritation”, 1 = “mild irritation”, 2 =
“strong irritation”, 3 = “severe irritation” and 4 = “irreversible damage”, respectively. The outcome is
displayed in Figure 3. The code to analyze this data is similar to that provided above, but we addition-
ally include an interaction term in the formula. In this example, we formulate the null hypothesis in
terms of the distribution functions to show the R-code for testing this hypothesis. Note that due to the
balanced design, both weighted and unweighted estimators give the same results.

data(nms)
rankFD(score ~ conc * subst, data = nms,
+ hypothesis = "H0F")

Nonparametric Methods for General Factorial Designs

---------------------------------------------------------------------------
#Hypotheses: Tested in Distribution Functions
#Ranking Method: Pseudo-Ranks
#Confidence Intervals: 95 % with Logit-Transformation

---------------------------------------------------------------------------

Call:
score ~ conc * subst

Descriptive:
conc subst Size Rel.Effect Std.Error Lower Upper

1 1 1 25 0.3053 0.0310 0.2481 0.3693
2 1 2 25 0.3193 0.0320 0.2601 0.3851
3 2 1 25 0.3927 0.0386 0.3200 0.4704
4 2 2 25 0.5296 0.0459 0.4397 0.6176
5 5 1 25 0.6925 0.0429 0.6027 0.7698
6 5 2 25 0.7605 0.0310 0.6947 0.8159

Wald.Type.Statistic:
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Figure 4: Local 95%-confidence interval for the (relative) main and interaction effects of the reaction
time data.

Statistic df p-Value
conc 114.9046 2 0.0000
subst 4.5200 1 0.0335
conc:subst 2.2174 2 0.3300

ANOVA.Type.Statistic:
Statistic df1 df2 p-Value

conc 49.8167 1.9289 127.0195 0.0000
subst 4.5200 1.0000 127.0195 0.0354
conc:subst 1.0741 1.9289 127.0195 0.3428

The right plot in Figure 4 shows that the relative effects increase at a similar rate in both levels of the
main effect suggesting no qualitative interaction between the factor substance and the concentration.

5 Summary

The rankFD-package implements current state of the art rank methods for nonparametric inference
in general factorial designs with independent observations. It comprises of functions for computing
various test statistics for testing null hypotheses formulated either in distribution functions or in
relative effects using ranks or pseudo-ranks, respectively. Up until now, no other software package
for testing null hypotheses in relative effects in general factorial designs have existed. Besides global
procedures (Wald-type and ANOVA-type statistics) using quadratic forms, rankFD implements
multiple contrast tests and simultaneous confidence intervals for relative effects. The possibility
of testing contrasts between the main and interaction effects makes rankFD a powerful tool for the
application of nonparametric methods in data analysis and a useful addition to nparcomp (Konietschke
et al., 2015). Besides the inference methods discussed above, rankFD furthermore implements formulas
for computing sample sizes using the functions WMWSSP() and noether() (Happ et al., 2019). Since
these methods apply for two independent samples only, we did not discuss them in the present
manuscript.

We designed the package and its functions to be similar to the well known R-functions lm(), aov()
for the analysis of linear models and the glht() function of the multcomp package for the computation
of multiple contrast tests in means. Both rankFD and multcomp use the mvtnorm package (Genz et al.,
2021) for the computation of critical values. However, as explained in detail in the Introduction, the
effect measures used in multcomp and mvtnorm are different from those used in rankFD. In general
parlance, this means that the parametric and nonparametric methods are not comparable at hand.

We plan to update rankFD frequently with novel procedures. For instance, various international
research groups are currently investigating rank-based methods for the analysis of clustered data, see
also the package clusrank Jiang et al. (2020) for the analysis of two samples, sample size planning,
as well as analysis of covariance methods. We plan to add these methods in the future. The package
rankFD is online available on CRAN.
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The segmetric Package: Metrics for
Assessing Segmentation Accuracy for
Geospatial Data
Rolf Simoes, Alber Sanchez, Michelle C. A. Picoli and Patrick Meyfroidt

Abstract Segmentation methods are a valuable tool for exploring spatial data by identifying objects
based on images’ features. However, proper segmentation assessment is critical for obtaining high-
quality results and running well-tuned segmentation algorithms Usually, various metrics are used to
inform different types of errors that dominate the results. We describe a new R package, segmetric, for
assessing and analyzing the geospatial segmentation of satellite images. This package unifies code
and knowledge spread across different software implementations and research papers to provide a
variety of supervised segmentation metrics available in the literature. It also allows users to create
their own metrics to evaluate the accuracy of segmented objects based on reference polygons. We hope
this package helps to fulfill some of the needs of the R community that works with Earth Observation
data.

1 Introduction

Earth Observation aims to collect data regarding the Earth’s systems at several spatio-temporal
resolutions. These data allow scientists to understand Earth’s processes, such as greenhouse gas
emissions and land cover change. Segmentation is among the most used unsupervised processing
methods for extracting information from satellite imagery (Hossain and Chen, 2019). Segmentation is
the process by which objects are extracted using image features. This process consists of delineating
groups of adjacent pixels with similar characteristics such as intensity, color, and texture. Numerous
segmentation algorithms are available in the Remote Sensing scientific literature (see e.g. Kotaridis
and Lazaridou, 2021).

Assessing segmentation results is difficult due to under and over-segmetation errors. Underseg-
mentation occurs when the segmentation algorithm fails to separate a contiguous pixel group while
oversegmentation is the opposite, that is, the segmentation algorithm unnecessarily splits a pixel
group (Costa et al., 2018). Both under and over-segmentation come with assessment metrics that target
segments’ characteristics such as area, shape, and position. One way to assess these errors is to use
supervised quality metrics (Costa et al., 2018). Supervised metrics compare segments to reference data,
measuring their similarity or discrepancy in terms of under and over-segmentation (Clinton et al.,
2010).

One significant challenge in the domain of Earth Observation data is the scarcity of software
tools specifically designed for segmentation assessment. While several packages such as imageseg
(Niedballa et al., 2022), ExpImage (Azevedo, 2022), SuperpixelImageSegmentation (Mouselimis,
2022a), OpenImageR (Mouselimis, 2022b), and image.Otsu (Wijffels, 2020) enable users to segment
images but, when provided, they offer a limited set of facilities to assess the accuracy of the segmenta-
tion and some of them are not tailored to the needs of Earth Observation data or applications. This
often requires users to adapt the code from these packages for their own purposes, which can be
time-consuming and unrelated to their primary research goals.

In this paper, we introduce the segmetric package, which addresses the lack of R tools for assessing
segmentation of Earth Observation data and provides a coherent set of metrics that can be used
to compare and contrast different assessment methods for evaluating segmentation. Additionally,
segmetric provides innovative visualization tools to assist qualitative spatial analysis as well as metrics
that can be used to tune and assess segmentation algorithms.

2 Supervised segmentation metrics

Supervised metrics use reference data to assess segmentation accuracy. These metrics are grouped
into two categories: geometric, which use the geometry of the objects (i.e. polygons) to determine
the similarity between the segments and the reference data; and thematic, which use instead objects’
attributes such as the land cover label associated with each object (Costa et al., 2018). The segmetric
package focuses on geometric methods that require two sets of polygons as inputs, one for the segments
and other for the reference data.
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The segments’ polygons, denoted by Y = {yj : j = 1, ..., m}, are obtained from a segmentation
method and the reference polygons, denoted by X = {xi : i = 1, ..., n}, are typically collected in-situ
by specialists. The quality metrics are defined considering different subsets of X and Y. The subsets of
Y used to compute metrics for each reference i are defined as follows 1:

• Ỹi ⊂ Y, where Ỹi = {yj : area(xi ∩ yj) ̸= 0}

• Y′
i ⊂ Y, where Y′

i = {yj : max(area(xi ∩ yj))}

• Yai ⊂ Ỹi, where Yai = {yj : centroid(xi) in yj}

• Ybi ⊂ Ỹi, where Ybi = {yj : centroid(yj) in xi}

• Yci ⊂ Ỹi, where Yci = {yj : area(xi ∩ yj)/area(yj) > 0.5}

• Ydi ⊂ Ỹi, where Ydi = {yj : area(xi ∩ yj)/area(xi) > 0.5}
• Y∗

i , where Y∗
i = Yai ∪ Ybi ∪ Yci ∪ Yci

• Ycdi, where Ycdi = Yci ∪ Ydi

• Yei ⊂ Ỹi, where Yei = {yj : area(xi ∩ yj)/area(yj) = 1}

• Yfi ⊂ Ỹi, where Yfi = {yj : area(xi ∩ yj)/area(yj) > 0.55}

• Ygi ⊂ Ỹi, where Ygi = {yj : area(xi ∩ yj)/area(yj) > 0.75}

Likewise, the subsets of X used to compute metrics for each segment j are defined as:

• X̃j ⊂ X, where X̃j = {xi : area(yj ∩ xi) ̸= 0}

• X′
j ⊂ X, where X′

j = {xi : max(area(yj ∩ xi))}

To illustrate these subsets definition, we depict some of them in Figure 1. Subsets contains all
elements for which a metric value has to be computed. To obtain a single metric value, a summary
function can be applied on all values, typically a mean or a weighted mean. The range of possible
values can differ from metric to metric. Also, the optimal value varies for each metric. Table 1 lists all
implemented metrics in segmetric, their ranges and optimal values. The corresponding subsets used
to compute values are shown in their formulas definition.

(a) (b) (c)

(d) (e)

Figure 1: Subsets are used to compute segmentation metrics. The red squares and black hexagons
represent reference and segmented polygons, respectively. (a) Ỹ is made of segmentation polygons
overlapping any reference polygon. (b) Y′ is made of the segmentation polygon overlapping the most
of a reference polygon. (c) Y∗ is made of polygons in the segmentation that either their centroids
fall inside the reference, or they cover or overlap more than half of the reference polygon, or the
reference polygon centroid falls inside them. (d) X̃ is made of the reference polygons overlapping
any segmentation polygon. (e) X′ is made of the reference polygons, which overlap the most with
the segmentation polygons. Yellow represents the intersection between the references and segments
included in a subset. The magenta areas are excluded from the reference-segmentation intersection
but included in the subset. Adapted from Jozdani and Chen (2020).

1We are following the notation used by Clinton et al. (2010) and Costa et al. (2018)
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Table 1: Metrics implemented

Metric Range Opt. References

OS1ij = 1 − area(xi∩yj)
area(xi)

, yj ∈ Y∗
i [0, 1] 0 Clinton et al. (2010)

OS2ij = 1 − area(xi∩yj)
area(xi)

, yj ∈ Y
′
i [0, 1] 0 Persello and Bruzzone (2010)

OS3ij = 1 − area(xi∩yj)
area(xi)

, yj ∈ Ycdi [0, 1] 0 Yang et al. (2014)

US1ij = 1 − area(xi∩yj)
area(yi)

, yj ∈ Y∗
i [0, 1] 0 Clinton et al. (2010)

US2ij = 1 − area(xi∩yj)
area(yi)

, yj ∈ Y
′
i [0, 1] 0 Persello and Bruzzone (2010)

US3ij = 1 − area(xi∩yj)
area(yi)

, yj ∈ Ycdi [0, 1] 0 Yang et al. (2014)

AFIij =
area(xi)−area(yj)

area(xi)
, yj ∈ Y

′
i (−∞, 1] 0

Lucieer and Stein (2002);
Clinton et al. (2010)

QRij = 1 − area(xi∩yj)
area(xi∪yj)

, yj ∈ Y∗
i [0, 1] 0

Weidner (2008);
Clinton et al. (2010)

Dij =

√
OS2

ij+US2
ij

2 [0, 1] 0
Levine and Nazif (1982);
Clinton et al. (2010)

precisionij =
area(xi∩yj)

area(yi)
, yj ∈ Y

′
i [0, 1] 1

van Rijsbergen (1979);
Zhang et al. (2015)

recallij = 1 − area(xi∩yj)
area(xi)

, yj ∈ Y
′
i [0, 1] 1

van Rijsbergen (1979);
Zhang et al. (2015)

UMergingij =
area(xi)−area(xi∩yj)

area(xi)
, yj ∈ Y∗

i [0, 1] 0
Levine and Nazif (1982);
Clinton et al. (2010)

OMergingij =
area(yj)−area(xi∩yj)

area(xi)
, yj ∈ Y∗

i [0, ∞) 0
Levine and Nazif (1982);
Clinton et al. (2010)

Mij =

√
area(xi∩yj)2

area(xi)area(yj)
, yj ∈ Y

′
i [0, 1] 1

Janssen and Molenaar (1995);
Feitosa et al. (2010)

Eij =
area(yj)−area(xi∩yj)

area(yi)
× 100, xi ∈ X

′
j [0, 100] 0 Carleer et al. (2005)

RAsubij =
area(xi∩yj)

area(xi)
, yj ∈ Ỹi [0, 1] 1

Moller et al. (2007);
Clinton et al. (2010)

RAsuperij =
area(xi∩yj)

area(yi)
, yj ∈ Ỹi [0, 1] 1

Moller et al. (2007);
Clinton et al. (2010)

PIi = ∑m
j=1

area(xi∩yj)2

area(xi)area(yi)
, yj ∈ Ỹi [0, 1] 1 Van Coillie et al. (2008)

Fitnessij =
area(xi)+area(yi)−2 area(xi∩yj)

area(yi)
, xi ∈ X

′
i [0, ∞) 0 Costa et al. (2008)

ED3ij =

√
OS32

ij+US32
ij)

2 [0, 1] 0 Yang et al. (2014)

F-measureij*= 1
α

precisionij
+ (1−α)

recallij

[0, 1] 1
van Rijsbergen (1979);
Zhang et al. (2015)

IoUij =
area(xi∩yj)
area(xi∪yj)

, yj ∈ Y
′
i [0, 1] 1

Jaccard (1912);
Rezatofighi et al. (2019)

SimSizeij =
min(area(xi),area(yj))
max(area(xi),area(yj))

, yj ∈ Y∗
i [0, 1] 1 Zhan et al. (2005)

qLocij = dist(centroid(xi), centroid(yj)), yj ∈ Y∗
i [0, ∞) 0 Zhan et al. (2005)

RPsubij = dist(centroid(xi), centroid(yj)), yj ∈ Ỹi [0, ∞) 0
Moller et al. (2007);
Clinton et al. (2010)

RPsuperij =
dist(centroid(xi),centroid(yj))

maxj(dist(centroid(xi),centroid(yj)))
, yj ∈ Y∗

i [0, 1] 0
Moller et al. (2007);
Clinton et al. (2010)

OI2i = maxj

(
area(xi∩yj)

area(xi)
area(xi∩yj)

area(yj)

)
, yj ∈ Ỹi [0, 1] 1 Yang et al. (2017)

Diceij =
2 area(xi∩yj)

area(xi)+area(yj)
, yj ∈ Y

′
i [0, 1] 1 Dice (1945)

* It takes the optional weight argument α ∈ [0, 1] (the default is 0.5).
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Metrics can be computed either from scratch using subsets or by combining other metrics. Exam-
ples of metrics using subsets include: Oversegmentation (OS), Undersegmentation (US), Area Fit Index
(AFI), Quality Rate (QR), Precision, Recall, Undermerging (UMerging), Overmerging (OMerging),
Match (M), Evaluation measure (E), Relative area (RAsub and RAsuper), Purity Index (PI), and Fitness
Function (Fitness). The metrics computed by combining other metrics include: Index D (D), Euclidean
Distance (ED3), and F-measure (F_measure). Some of these metrics are not intended to be summarized
such as Relative position (RPsub and RPsuper).

3 The segmetric package

Installation

The stable release of segmetric package can be installed from CRAN, using:

install.packages("segmetric")

Computing metrics

segmetric depends on the sf package (Pebesma, 2018) to open and manipulate geographic vector data
sets. sf is an implementation of a standard issued by the Open Geospatial Consortium (OGC, 2011),
which was further formalized in ISO 19125-1 (2004). This standard defines a common way to store and
access spatial data in the context of geographic information systems.

To start with segmetric, users should create a segmetric object using sm_read(ref_sf,seg_sf)
passing to it a reference spatial data set and a segmentation spatial data set. The parameters ref_sf
and seg_sf should be either sf objects or paths to a supported file vector format (e.g., ‘shapefile’).

library(segmetric)

# load example data sets
data("sample_ref_sf", package = "segmetric")
data("sample_seg_sf", package = "segmetric")

# create a segmetric object
m <- sm_read(ref_sf = sample_ref_sf, seg_sf = sample_seg_sf)

To compute a metric, users should run the function sm_compute(m,metric_id,...), where m is a
segmetric object and metric_id is the identification of a metric in segmetric. Any extra parameter
necessary to compute metrics can be informed using the ellipsis parameter. The list of available met-
rics can be obtained using sm_list_metrics() which returns a character vector listing all registered
metrics.

The sm_compute() function can compute a set of metrics by passing a vector of values to the
metric_id parameter or making a sequence of function calls using a pipe operator. The two examples
below produce equivalent results:

# compute three metrics
sm_compute(m, c("AFI", "OS1", "US1"))

# compute the same three metrics as above
sm_compute(m, "AFI") %>%
sm_compute("OS1") %>%
sm_compute("US1")

Most metrics are computed by feature (i.e., by reference or segment). To summarize the values of a
set of metrics, users can run the function summary(object,...), which computes aggregated values
for the metrics returned by sm_compute().

# compute three metrics
sm_compute(m, c("AFI", "OS1", "US1")) %>%
summary()

Once created, a segmetric object stores in the cache every computed subset. Further subset
requests are retrieved from the cache, speeding up the computation.
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How to extend segmetric

The segmetric package is extensible by providing functions to implement new metrics. To implement
a new metric, users can use sm_new_metric() to create a new metric object and register it using
sm_reg_metric() function. Users can type ?sm_reg_metric() to find more details on how new metrics
can be implemented. The following example implements the Jaccard index (Jaccard, 1912), also known
as Intersection over Union (IoU) (Rezatofighi et al., 2019), which is defined between 0 and 1 (optimal):

# register 'IoU' metric
sm_reg_metric(

metric_id = "IoU",
entry = sm_new_metric(

fn = function(m, s, ...) {
# m is the metric object, s is the subset
# for IoU, s is equivalent to sm_yprime(m)
sm_area(s) / sm_area(sm_subset_union(s))

},
fn_subset = sm_yprime,
name = "Intersection over Union",
optimal = 1,
description = "Values from 0 to 1 (optimal)",
reference = "Jaccard (1912); Rezatofighi et al. (2019)"

)
)

# describes the 'IoU' metric
sm_desc_metric("IoU")
#> * IoU (Intersection over Union)
#> Values from 0 to 1 (optimal)
#> reference: Jaccard (1912); Rezatofighi et al. (2019)

Contributions to the package are welcome at GitHub 2 and more details on how to contribute can
be found in segmetric home-page at https://michellepicoli.github.io/segmetric.

4 Package segmetric in action

The specific steps involved in a segmentation workflow can vary depending on researcher goals,
characteristics of the input data, and the task requirements. In general, a segmentation workflow
typically includes the steps in Figure 2. First, researchers working with segmentation data need
to obtain satellite images and preprocess them via methods such as radiometric and geometric
corrections, image mosaicking, cloud masking, indices computation, and texture extraction. Second, a
segmentation method is used to obtain the segments. Typically, researchers can use supervised and
unsupervised machine learning methods such as convolutional neural network (Fukushima, 1980), U-
Net (Ronneberger et al., 2015), multi-resolution segmentation (Baatz and Schape, 2000), and watershed
segmentation (Beucher, 1992). In this step, the segments can be stored in a vector format. Finally, the
accuracy of the segmentation can be assessed by supervised quality metrics. Using reference data,
researchers compute metrics to evaluate the segmentation. The last two steps may be repeatedly
iterated until the desired level of accuracy is reached.

In the following section, we demonstrate an application of the segmetric package to assess several
segmentation parameters and guide users to select the most accurate one.

Data

In agriculture studies, mapping characteristics such as the size and number of fields can provide
information about productivity and other important variables such as food security, socioeconomic
status, and environmental status. To demonstrate segmetric, we used data on the Luís Eduardo
Magalhães (LEM) municipality, west of Bahia state, Brazil. This municipality belongs to the Brazilian
agricultural frontier known as MATOPIBA, which includes the states of Maranhão (MA), Tocantins
(TO), Piauí (PI), and Bahia (BA) (Figure 3).

We used three PlanetScope images acquired on Feb 18, 2020, with a 3.7-meter resolution and four
spectral bands (blue, green, red, and near-infrared). Radiometric and geometric corrections were

2https://github.com/michellepicoli/segmetric
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Figure 2: General steps of segmentation workflow.

Figure 3: Study area in Luís Eduardo Magalhães municipality, west of Bahia state, Brazil (Google
Earth imagery). Reference data (in red) was provided by Oldoni et al. (2020).
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applied to the image (level 3B) (Planet Team, 2017). The images were in the same projection (UTM
zone 23S) and we mosaicked them.

We segmented the image applying a multi-resolution segmentation approach (Baatz and Schape,
2000). We tested four scale parameters (SP) to segment the image: 200, 500, 800, and 1000; shape
parameter: 0.9; and compactness: 0.1. The resulting polygons were simplified using the Douglas-
Peucker algorithm (Douglas and Peucker, 1973) (distance parameter: 10 meters) in QGIS software
(version 3.22.2). The Self-intersections were removed using SAGA’s Polygon Self-Intersection tool
(version 7.8.2). The final segmentation set is composed of polygons intersecting the reference data
with an area-perimeter ratio above 25. The segmentation results are provided as part of the segmetric
package.

The reference data set (ref_sf), provided by Oldoni et al. (2020), was collected in two fieldwork
campaigns in March and August 2020. Oldoni et al. (2020) draw the field boundaries in-situ on top
of images Sentinel-2, with a spatial resolution of 10 meters. segmetric includes only a portion of this
data set. The spatial data sets can be loaded into R using sf objects. To create a segmetric object, use
function sm_read():

library(segmetric)

# load data sets
data("ref_sf", package = "segmetric")
data("seg200_sf", package = "segmetric")
data("seg500_sf", package = "segmetric")
data("seg800_sf", package = "segmetric")
data("seg1000_sf", package = "segmetric")

# create a segmetric object
m200 <- sm_read(ref_sf = ref_sf, seg_sf = seg200_sf)
m500 <- sm_read(ref_sf = ref_sf, seg_sf = seg500_sf)
m800 <- sm_read(ref_sf = ref_sf, seg_sf = seg800_sf)
m1000 <- sm_read(ref_sf = ref_sf, seg_sf = seg1000_sf)

Analysis

This analysis assesses four different segmentations with different Scale Parameters (SP) to verify which
one fits better with the reference polygons. First, we visualize the reference polygons and the four
segmentations individually using the plot() function (Figure 4).

# plot layers
plot(m200, layers = "ref_sf", plot_centroids = FALSE)
plot(m200, layers = "seg_sf", plot_centroids = FALSE)
plot(m500, layers = "seg_sf", plot_centroids = FALSE)
plot(m800, layers = "seg_sf", plot_centroids = FALSE)
plot(m1000, layers = "seg_sf", plot_centroids = FALSE)

The metrics available in the package can be consulted using the function sm_list_metrics(). In
this example, the metrics chosen to evaluate the accuracy of the segmentations and verify the best
value of the scale parameter were: Area Fit Index (Carleer et al., 2005), F-measure (van Rijsbergen,
1979) (Zhang et al., 2015), Quality Rate (Weidner, 2008) (Clinton et al., 2010), Oversegmentation
(Clinton et al., 2010), and Undersegmentation (Clinton et al., 2010).

# compute all metrics
metrics <- c("QR", "F_measure", "IoU", "M", "OS2", "US2")
m200 <- sm_compute(m200, metrics)
m500 <- sm_compute(m500, metrics)
m800 <- sm_compute(m800, metrics)
m1000 <- sm_compute(m1000, metrics)

# results
summary(m200)
#> QR F_measure IoU M OS2 US2
#> 0.7394817 0.6988555 0.4988198 0.6569973 0.2948025 0.2585708

summary(m500)
#> QR F_measure IoU M OS2 US2
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(a) (b) (c)

(d) (e)

Figure 4: (a) reference polygons; (b) segmentation using SP = 200; (c) segmentation using SP = 500; (d)
segmentation using SP = 800; (e) segmentation using SP = 1000.

#> 0.50380348 0.80671198 0.56837519 0.70140431 0.07982693 0.37207120

summary(m800)
#> QR F_measure IoU M OS2 US2
#> 0.47487615 0.78764418 0.54923433 0.68297970 0.04300207 0.43014287

summary(m1000)
#> QR F_measure IoU M OS2 US2
#> 0.50311268 0.75742922 0.51745883 0.65548524 0.03679037 0.46524463

The computed metrics are presented in Table 2; the optimal value of QR, OS2, and US2 is 0, and 1
for F-measure, M, and IoU. These results indicate that segmentation using SP equal to 200 had the
highest oversegmentation while using SP equal to 1000 had the highest undersegmentation. Observing
the metrics F-measure, IoU, and M, we conclude that the best SP is 500.

Users must pay attention to which metric better fits their goals of accuracy assessment. For more
information, we suggest the user consult comparative studies dedicated to geometric metrics such as
Clinton et al. (2010), Räsänen et al. (2013), Yang et al. (2015), Costa et al. (2018), and Jozdani and Chen
(2020).

Table 2: Accuracy metrics of Quality Rate (QR), F-measure, Intersection over Union (IoU), Match (M),
Oversegmentation (OS2), and Undersegmentation (US2) for four segmentations with different Scale
Parameters (SP).

QR F_measure IoU M OS2 US2

seg 200 0.739 0.699 0.499 0.657 0.295 0.259
seg 500 0.504 0.807 0.568 0.701 0.080 0.372
seg 800 0.475 0.788 0.549 0.683 0.043 0.430
seg 1000 0.503 0.757 0.517 0.655 0.037 0.465

The segmetric package allows users to visualize subsets used to compute metrics. The example
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in Figure 5 shows the results of the function to plot the subset Y_tilde over the reference and the
segmentation polygons (SP = 500). This allows analyzing the overlap between the reference and
segmentation polygons visually.

plot(
x = m500,
type = "subset",
subset_id = "Y_tilde",
plot_centroids = FALSE,
plot_legend = TRUE,
extent = sm_seg(m500)

)

Figure 5: Overlapping between reference polygons and segmentation objects (SP = 500).

It is also possible to visualize the metrics for each segment in choropleth maps using the function:

plot(
x = m500,
type = "choropleth",
metric_id = c("QR", "IoU", "M", "OS2", "US2"),
break_style = "jenks",
choropleth_palette = "RdYlBu",
plot_centroids = FALSE

)

Legend bar of choropleth maps are generated automatically, and users can further customize it
with options such as the number of breaks and the palette. The legend consistently uses the same
color for the optimal metric value (for example, in Figure 6, blue is better while red is worse), except
for those metrics in which the optimal value is in the middle of the color scale (e.g., AFI). The size
and number of intervals in each color scale change accordingly to the metric values present in the
data set. Users can choose the method to compute the intervals. To check available options use
?plot.segmetric and see break_style parameter.

Figure 6 presents the spatialized results of the calculated metrics. The F-measure metric was not
plotted because it is a global metric with a single value for all objects. Figures 6a, d, and e show the
similarity between the QR, OS, and US metrics results, for which the ideal value is zero. In the three
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(a) (b)

(c) (d)

(e)

Figure 6: Spatial distribution of the metrics: (a) Quality Rate, (b) Intersection over Union, (c) Match,
(d) Oversegmentation, and (e) Undersegmentation.

plots of these metrics, it is noted that the objects with the best results (close to zero) are located in
the southeast part of the study area. The IoU and M metric maps (Figure 6b and c), for which the
ideal value is 1, are also similar. We also observed that for these two metrics, the objects located in the
southwest part of the study area have values close to 1. The figure shows differences in the number of
objects plotted in each of the metrics, as the subsets used to calculate each of the metrics are different.

5 Summary

The segmetric package provides 28 metrics that can be used to evaluate and compare the results of
segmentation methods. The package also offers innovative visualization options to assist qualitative
spatial assessment, allowing diagnostics of the quality, issues, and potential biases of the segmentation.
Plotting the segmented objects along their reference polygons and spatially visualizing the metrics
may help users to evaluate and improve segmentation procedures, select segmentation parameters,
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and decide on adequate validation metrics.

To the extent of our knowledge, segmetric is the first available package in R that provides several
supervised metrics based on reference polygons. segmetric also enables users to implement new
metrics. In the future, we plan to add more supervised metrics and other ways to visualize metrics,
and to use parallel processing to speed up computations.
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Onlineforecast: An R Package for
Adaptive and Recursive Forecasting
by Peder Bacher, Hjörleifur G. Bergsteinsson, Linde Frölke, Mikkel L. Sørensen, Julian Lemos-Vinasco,
Jon Liisberg, Jan Kloppenborg Møller, Henrik Aalborg Nielsen and Henrik Madsen

Abstract Systems that rely on forecasts to make decisions, e.g. control or energy trading systems, re-
quire frequent updates of the forecasts. Usually, the forecasts are updated whenever new observations
become available, hence in an online setting. We present the R package onlineforecast that provides a
generalized setup of data and models for online forecasting. It has functionality for time-adaptive
fitting of dynamical and non-linear models. The setup is tailored to enable the effective use of forecasts
as model inputs, e.g. numerical weather forecast. Users can create new models for their particular
applications and run models in an operational setting. The package also allows users to easily replace
parts of the setup, e.g. using new methods for estimation. The package comes with comprehensive
vignettes and examples of online forecasting applications in energy systems, but can easily be applied
for online forecasting in all fields.

1 Introduction

Time series analysis and forecasting are indispensable to numerous applied fields such as business,
finance, science and engineering (Cryer and Chan, 2008). Time series analysis is the process of
statistical modelling of time series, i.e. data which is sampled at different points in time over a period –
often with a constant increment between the time-points, i.e. equidistant. Classical time series models
for a single equidistant time series use past values of the response variable (model output) as the
predictors (inputs). In this way, appropriate models describing the inherent auto-correlation structure
of the time series can be realized. Examples of these models include exponential smoothing (e.g.
Holt-Winters), AutoRegressive (AR), Moving Average (MA), and the combination of the latter two
known as ARMA models. When multiple correlated time series are available, they can be used as
simultaneous model inputs to improve the forecast. They are then called exogenous variables and
the classical model becomes an ARMAX – hence the X indicates that exogenous input variables
are included. ARMAX models are optimal for forecasting the output of linear time invariant (LTI)
systems, however for most forecasting applications models that can handle non-linear systems are
needed. A wide range of techniques for modelling non-linear systems exists, either based on input
transformations or local fitting methods. The onlineforecast package implements an advanced model
setup for modelling and forecasting the output of non-linear time varying systems. The setup was
developed for applications such as forecasting wind power (Nielsen et al., 2002) and thermal loads in
district heating (Nielsen and Madsen, 2006). The significance of the package is in the “online” term,
indicating that at each sampling point the model parameter estimates are updated in an effective way
for generating multi-step forecasts.

The use of ARMAX models and their variations for forecasting is still widespread (De Gooijer and
Hyndman, 2006), especially for energy systems due to the high dependency between variables such
as weather, load, renewable generation, and periodic phenomena. Load forecasting is an obvious
example. A nice overview of electric load forecasting is given by Alfares and Nazeeruddin (2002)
and Hong and Fan (2016), and for heat load by Dotzauer (2002) who demonstrates the dependency
between the response variable, heat load, and the predictor – ambient temperature – using a piecewise
linear function. It is also proposed to model the daily and weekly diurnal using hours of the week as
inputs.

Bacher et al. (2009) demonstrated that solar power forecasting (Kleissl, 2013) can be improved by
moving from a standard AR model to an AR model with an exogenous input (ARX), specifically by
using numerical weather predictions (NWPs) as the exogenous inputs. The ARX model uses past
observations and NWPs of global irradiance to forecast the power production from PV systems and
the ARX model obtains higher accuracy than the AR model. Bacher et al. (2013) identified exogenous
variables that are suitable for forecasting the heat load of a building, via similar models.

Energy systems are time-varying systems as they usually change over time due to wear and contami-
nation, like dirt on solar panels or changes in usage. For example, with new tenants in a house, the
dependency between heat load and other variables, such as calendar time and temperature, changes.
Therefore, a forecast model needs to adapt: the model coefficients are not optimal if they are constant,
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they need to be updated and allowed to change over time. The Recursive Least Square (RLS) method
provides a recursive estimation scheme for the coefficients in regression models, where they are
updated at each step, when new data becomes available. A forgetting factor can be introduced to
RLS to allow for the control of how fast the coefficients can change over time – this is referred to as
adaptive recursive estimation, with exponential forgetting, in linear regression and autoregressive
models. The method is described by Ljung and Söderström (1983), for advances that has been made
since then see e.g. (Engel et al., 2004).

The objective of the onlineforecast package is to make it easy to set up and optimize non-linear models
for generating online multi-step forecasts. The package contains functionalities not directly available
elsewhere, such as:

• Use of forecasts, e.g. NWPs, as input to multi-step forecast models.

• Optimal tuning of models for multi-step horizons.

• Recursive estimation for tracking time-varying systems.

The package provides a framework for handling data and setting up models, which makes it easy to
apply it in a wide range of forecasting applications.

Time series modelling and forecasting in R

A wide range of existing software for time series forecasting is currently available (Chatfield and Xing,
2019; Siebert et al., 2021). Below, an overview of the currently most relevant R packages for forecasting
is given – generally, the same functionalities are available in Python packages.

Classical ARMAX models can be fitted with the arima() function from the stats package and the
Arima() function from the forecast package (Hyndman and Khandakar, 2008) provides automatic
model selection with arima(). R Packages like marima (Spliid, 1983), KFAS, sysid and dlm (Petris, 2010)
can also be used for fitting ARMAX models. Spliid (1983) proposed a very fast and simple method for
parameter estimation in large multivariate ARMAX models with a pseudo-regression method that
repeats the regression estimation until it converges. The other packages represent time series and
regression models as state-space models and use a Kalman or Bayesian filter to include exogenous
variables in the model, and optimally reconstruct and predict the states. Compared to these classical
ARMAX models, onlineforecast models offers several advantages, first and foremost the recursive
fitting scheme which allows for much faster and adaptive fitting. Furthermore, model coefficients are
tuned as a function of the forecast horizon. This optimize the use of multi-step forecasts as models
inputs, such functionality is not available for ARMAX models.

State-space modelling is frequently used to describe time series data from a dynamical system, e.g. a
falling body, see (Madsen, 2007). The dynamical system can in such cases be written as a system of
differential equations or difference equations. State-space models use filter techniques to optimally
reconstruct and predict the states, with examples including the Kalman filter, the extended Kalman
filter, and other Bayesian filters. This gives the possibility of tracking the coefficients over time, i.e.
time-varying parameter estimation. The KFAS package (Helske, 2017) provides state-space modelling,
where the observations come from the exponential family, e.g. Gaussian or Poisson. The ctsm-r package
provides a framework for identifying and estimating partially observed continuous-discrete time state
space models, referred to as grey-box models. This modelling approach bridges the gap between
physical and statistical modelling using Stochastic Differential Equations (SDEs) to model the system
equations in continuous time and the measurement equations in discrete time. Packages for discrete
time state-space modelling are: dlm for Bayesian analysis of dynamic linear models, MARSS and
SSsimple for fitting multivariate state-space models. The onlineforecast models are basically fitted
using a Kalman filter, as explained in Section Regression, thus existing packages could be applied.
However, the use of forecasts as model inputs would be very cumbersome and is made very easy with
the onlineforecast setup.

For non-parametric time series models, the number of available packages is growing rapidly. NTS
provides simulation, estimation, prediction and identification for non-linear time series data. It also
includes threshold autoregressive models (e.g. self-exciting threshold autoregressive models) and
neural network estimation. tsDyn provides methods for estimating non-parametric time series models,
including neural network estimation. Neural network, deep learning and machine learning methods
are available in R. Recurrent neural networks are available in the rnn, the keras and tensorflow packages.
Additive time series models, where non-linear trends are fitted with seasonality patterns, are available
in prophet. Time adaptive neural networks, i.e. with recursive updating, can be implemented in various
ways (Yang et al., 2019), however currently no effective implementation is available.
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Some packages can be useful for forecast evaluation, e.g. ForecastTB presented in (Bokde et al., 2020).
Packages like forecastML and modeltime (Alexandrov et al., 2020) provide functionality that simplifies
the process of multi-step-ahead forecasting with machine learning algorithms. The handling of multi-
step-ahead forecasts is also a key feature of the onlineforecast package. The classical time series models,
such as ARMAX and Exponential Smoothing models, are mostly optimal for modelling Linear Time
Invariant (LTI) systems, however, most systems are not LTI. Furthermore, since a model is always a
simplification of reality, optimal multi-step forecasting is often not possible with the classical models,
especially when using exogenous inputs. For optimal multi-step ahead forecasting the models must
be tuned for each horizon – which is exactly what the onlineforecast package does.

Functionality of onlineforecast

A model is an approximation to the real world, thus it will always be a simplification and can never
predict real-world data. One of the main challenges of identifying a good forecast model is to find
the most informative input variables and the best structure of the model. The onlineforecast package
provides functionality for defining, validating and selecting models in a systematic way.

To introduce the onlineforecast models consider the simplest model with one input. It is the linear
model for the k’th horizon

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (1)

where Yt+k|t is the response variable and ut+k|t is the input variable. The coefficients are β0,k and β1,k,
note that they are subscripted with k to indicate that they are estimated for individually for every
horizon. The error εt+k|t represents the difference between the model prediction and the observed
value for the k-step horizon. The interpretation of the subscript notation t + k|t on a variable is, that it
is the k-step prediction calculated using only available information at time t, usually referred to either
“conditional on time t” or “given time t”.

The options for estimating the coefficients in the package are either the Least Squares (LS) or Recursive
Least Squares (RLS) method. In the LS method, the coefficients are constant, while the in RLS method
the coefficients can change over time

Yt+k|t = β0,k,t + β1,k,tut+k|t + εt+k|t (2)

as indicated by the subscript t on the coefficients. This allows for tracking changes occurring over
time.

The package allows for easy definition of transformations and thus the possibility to fit non-linear
models e.g.

Yt+k|t = β0,k,t + β1,k,t f (ut+k|t; α) + εt+k|t (3)

where the function f (ut+k|t; α) is some non-linear function of the input ut+k|t with parameter α, e.g. a
low pass filter on the outdoor temperature to model building heat dynamics. The package sets up
tuning of the non-linear function parameters, e.g. if the parameter α determines the degree of low-pass
filtering it can be tuned with an optimizer to match the dynamics of the system at hand.

An example of generated forecasts can be appreciated in Figure 1. Hourly forecasts up to 36 steps
ahead of heat load in a single building are shown for three consecutive steps. This is the typical
structure of forecasts generated with the package. It can be seen how the forecasts change slightly as
they are updated in each step, e.g. around 12:00 the second day, hence horizon k = 23 in the upper
plot, which corresponds to k = 21 in the lower plot.
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Figure 1: Example of hourly load forecasts at three consecutive time steps. The upper is calculated at
12:00, the middle is calculated at 13:00 and the lower at 14:00. It can be seen how the forecasts change
slightly as they are updated in each step, most clearly seen around 12:00 on the second day.

Vignettes

A great way to get hands-on experience with the package is through vignettes. They are available
when installing the package and on the website onlineforecasting.org, where also examples of different
forecast applications can be found. The package vignettes are:

• setup-data covers how data must be set up. The vignette goes into detail on how observations
and model inputs (forecasts) are set up. The vignette also focuses on the importance of aligning
forecasts correctly in time.

• setup-and-use-model focus on how to set up a model and use it to generate forecasts.

• model-selection demonstrates how model selection can be carried out.

• forecast-evaluation covers the evaluation of forecasts, and how to use this information to
improve a model.

• online-updating demonstrates how to update an operational model when new observations
become available. This functionality is not covered in the R examples in the present paper.

Furthermore, one vignette is available only on the website:

• nice-tricks provides some useful tips on how to make the workflow easier with the package.

Paper structure

The paper is structured as follows: In Section Notation and forecast matrices the notation used in
the paper and how to set up data is introduced. The core methodology is presented in Section
Two-stage modelling procedure and important aspects of forecast modelling are outlined in Section
Model selection and validation. In Section Example with R code examples with R code are presented
to provide a short hands-on tutorial. The paper ends with a summary and conclusions in Section
Discussion and conclusion.

In addition, three appendices are included with the paper. In Appendix Forecast model notation some
guidelines on the mathematical notation of forecast models are provided. In Appendix Regression the
regression schemes are covered in full detail.
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2 Notation and forecast matrices

The notation in this article follows Madsen (2007) as close as possible. All time series considered are
equidistantly sampled and the sampling period is normalized to 1. Hence, the time t is simply an
integer indexing the value of a variable at time t. The same goes for k which indexes the forecast
horizon k steps ahead. In the onlineforecast setup, forecasts are calculated at time t for each horizon up
to nk steps ahead. To achieve the desired notation that can deal with overlapping time series, a two
dimensional index is required. The notation used is

ut+k|t (4)

which translates to: the value of variable u at time t + k conditional on the information available at time
t. The conditional term is indicated by the bar |. Thus, for k > 0 this is a forecast available at t and k is
the horizon. When writing a forecast model the following convention is used

Yt+k|t = β0,k + β1,kut+k|t + εt+k|t (5)

where Yt+k|t is the model output, β0,k and β1,k are the coefficients and εt+k|t with Var(εt+k|t) = σ2
k is

the error. The error process and variance σ2
k is thus separate for each horizon. Note, that the model is

fitted separately for each horizon, so the coefficients take different values for each horizon, and the
predictions and errors are separated for each horizon. This was a simplified example, see Appendix
Forecast model notation on how to write the full forecast models.

Forecast matrix

A forecast matrix is the format of forecast data in the onlineforecast setup. See examples in the
setup-data vignette. Data must have this format in order to be used as model input, and the forecasts
are generated in this format. The forecast matrix holds for any time past the latest available forecast along
the row for the corresponding time

un =

k0 k1 k2 . . . knk → horizon/time ↓



u1|1 u2|1 u3|1 . . . u1+nk |1 1

u2|2 u3|2 u4|2 . . . u2+nk |2 2

...
...

...
...

...

ut−1|t−1 ut|t−1 ut+1|t−1 . . . ut−1+nk |t−1 t − 1

ut|t ut+1|t ut+2|t . . . ut+nk |t t
...

...
...

...
...

un|n un+1|n un+2|n . . . un+nk |n n

(6)

where

• t is the counter of time for equidistant time points with sampling period of 1 (note that t is not
included in the matrix, it is simply the row number).

• n is the number of time points in the matrix. Hence, the data is available and can be used as
model input at time t = n.

• nk is the longest forecasting horizon.

• The column names (in R) are indicated above the matrix, they are simply a ’k’ concatenated
with the value of k, e.g. nk in the last column.

Note, that the k0 column holds values with forecast horizon k = 0, which could be real time observa-
tions. Usually, only the horizons to be forecasted should be included, hence often k0 is not needed.
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For example with a prediction horizon nk = 24 at t = 100, we will have the forecast matrix

u100 =

k0 k1 k2 . . . k24 → horizon/time ↓



u1|1 u2|1 u3|1 . . . u25|1 1

u2|2 u3|2 u4|2 . . . u26|2 2

...
...

...
...

...

u99|99 u100|99 u101|99 . . . u123|99 99

u100|100 u101|100 u102|100 . . . u124|100 100

(7)

In Section Setup of data examples of how data and forecast matrices are set up in R are given.

3 Two-stage modelling procedure

Two-stage modelling procedure is a widespread approach to modelling non-linear functional relations
between inputs and outputs (see e.g. Breiman and Friedman (1985) and Weisberg (2005) for direct
transformation of predictor variables, and Hastie et al. (2009) for non-parametric transformation
techniques). Using transformations allows for fitting complex models with robust and fast estimation
techniques. In the first stage, the transformation stage, the inputs are mapped by some function –
potentially into a higher dimensional space. In the second stage, the regression stage, a linear regression
model1 is applied between the transformed inputs and the output.

As an example, a model with two inputs is presented. In this model the transformation stage consists
of generating an intercept and mapping the two inputs (they are set up as forecast matrices u1,t and
u2,t)

Intercept: x0,t+k|t = 1 (8)

Input 1: x1,t+k|t = f1(u1,t+k|t, α1) (9)

Input 2: x2,t+k|t = f2(u2,t+k|t, α2) (10)

where the f ’s are transformation functions that map the inputs to regressors. Note, that the intercept
is simply a constant passed on to the regression. The transformations result in multiple inputs for
the regression – the latter actually as multiple variables indicated by the bold font notation. In the
regression stage the linear model

Yt+k|t = β0,kx0,t+k|t + β1,kx1,t+k|t + βT
2,kx2,t+k|t + εt+k|t (11)

is fitted. The regression is carried out separately for each horizon k. Thus, the combined model has:

• An intercept

• Two inputs: u1,t+k|t and u2,t+k|t

• Output: Yt+k|t

• Transformation functions: f1 and f2

• Transformation parameters: α1 and α2

• Regression coefficients: β0,k, β1,k and β2,k

Some transformation parameters should be optimized for the data at hand, e.g. a low-pass filter
coefficient depends on the system dynamics. The same goes for some parameters related to the
regression scheme, e.g. the forgetting factor (introduced below). We will refer to them together as
offline parameters. The onlineforecast package provides a setup, where the offline parameters can be
optimized using a heuristic optimization (e.g. a BFGS quasi-Newton method). The default score, which
is minimized, is the Root Mean Square Error (RMSE) of the predictions – hence offline parameters in

1In the remaining of the text, when the term “regression” is used it is implicit that it is “linear regression”.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://onlineforecasting.org


CONTRIBUTED RESEARCH ARTICLE 179

the model above, given data from the period, t = 1, 2, . . . , n, are optimized by solving

min
α1,α2

1
n − k

n−k

∑
t=1

(yt+k − ŷt+k|t(α1, α2))
2 (12)

Naturally, other scores can be minimized (e.g. MAE or the Huber psi-function, however the regression
schemes should be modified accordingly, which is not trivial).

The regression coefficients are calculated with a closed-form scheme: either with the Least-Squares
(LS) or the Recursive Least-Squares (RLS) scheme – in the latter the coefficients are allowed to vary
over time. In both schemes the coefficients are gathered in the vector βk and calculated separately for
each horizon k. In Appendix Regression both schemes are presented in full detail.

In the LS scheme the coefficients are constant during the entire period. The output vector is yk,n and for
a given value of the transformation parameters (i.e. here α1 and α2) the transformed data is calculated
and set up in the design matrix Xk,n. The LS coefficients are then calculated by

β̂k = (Xk,nXk,n)
−1Xk,nyk,n (13)

and the predictions calculated by

ŷk,n = Xk,n β̂k (14)

where ŷk,n =
[
ŷ1+k|1 ŷ2+k|2 . . . ŷn|n−k

]T
are the predictions. Note, that for the LS scheme the

predictions are “in-sample”, since data from the entire period is used for the coefficient calculation.

In the RLS scheme the coefficients are calculated recursively, meaning that they are updated in every
time step – the RLS is actually a Kalman filter with the model coefficients in the state vector. At each
time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (15)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (16)

and the predictions by

ŷt+k|t = xt+k|t β̂k,t (17)

where xk,t is the data available for horizon k at time t (a row in the design matrix Xk,n), and xt+k|t is
the k’th horizon transformed input forecast available at time t, see the appendix for all details. The
coefficients adapts to data over time and the level of adaptivity is controlled by the forgetting factor λ
(with value between 0 and 1). When λ = 1, all past data at t is equally weighted. When λ < 1, higher
weight is put on recent data – the smaller the value, the faster the model adapts to recent data. By
optimizing the forgetting factor as an offline parameter, the model adaptivity can be tuned.

An important point to notice is that the offline parameters are always constant for the given period,
hence all predictions are essentially “in-sample”. However, depending on the regression scheme there
is a difference: with the LS scheme the regression coefficients are calculated once using all data, thus
the predictions are (fully) “in-sample”, where as with the RLS scheme they adapt through the period
and the predictions are “out-of-sample” (except for the offline parameters). This makes a difference,
since model overfitting is less of a problem when using the RLS scheme.

The typical onlineforecast setup is to optimize the (usually few) offline parameters in an “offline” setting,
but calculate the regression coefficients adaptively with the RLS. This has the advantage that the
model adapts and tracks the systematic changes in input-output relations, while keeping the setup
computationally very effective – updating the coefficients and calculating a forecast at each time t
takes few operations. The optimization of offline parameters can be carried out when computational
resources are available (e.g. every week for hourly forecasts).

Transformations

In the transformation stage the inputs are mapped using some function as demonstrated above,
for more examples, see the setup-and-use-model vignette. The onlineforecast package has functions
available for most common use, however it is easy to write and use new functions as they are simply
R functions. The main functionality they have to fulfil is to return a forecast matrix (or a list of them),
which is also the reason why some of the regular R functions and operators has been extended for the
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multi-horizon setup, e.g. for splines as explained below. For R examples, see Section Defining a model
and the vignettes. The currently available transformation functions are:

• Low-pass filtering, lp(): A low-pass filtering for modelling linear dynamics as a simple RC-
model. See e.g. Nielsen and Madsen (2006) for further information.

• Basis splines, bspline(): Use the bs function for calculating regression splines basis functions.

• Periodic basis splines, pbspline(): Use the pbs function for calculating periodic regression
splines basis functions.

• Fourier series, fs(): Fourier series as periodic regression basis functions.

• Auto-regressive, AR(): For including Auto-Regressive (AR) terms.

• Intercept, one(): Generates a forecast matrix of ones, i.e. intercept.

In the following section, the low-pass filtering is shortly described below. For more examples of
transformations, see the package vignettes.

The implementation in onlineforecast allows all parameters which are used in some way (except the
regression coefficients) to be included in an optimization, using any available optimizer i R. This
includes e.g. the RLS forgetting factor, knot points or order of splines, i.e. both continuous and integer
variables. This functionality is achieved using a simple syntax as explained in Section Example with R
code.

Low-pass filtering

When modelling time series from linear dynamical systems, the classical ARMAX model is often
the optimal choice (Madsen, 2007). However, for multi-step forecasting, this is often not the case,
especially for longer horizons. In the onlineforecast setup, where the regression model is fitted for
each horizon, a “trick” can be used for modelling linear dynamics: simply apply a filter on the input
and then use the filtered input in the regression stage. For example, dynamics between ambient air
temperature and heat demand are slow due to the thermal mass of the building. Thus they can be
modelled using a low-pass filter, see Nielsen and Madsen (2006) for modelling heat load in district
heating and Bacher et al. (2013) for forecasting single buildings heat load.

In the package the simple low-pass filter

xt+k|t =
(1 − a)ut+k|t

1 − axt−1+k|t−1
(18)

is implemented. The filter coefficient a must take a value between 0 and 1 and should be tuned to
match the time constant optimal for the particular data. When the current implemented low-pass
filter is applied in the transformation stage on some forecast matrix ut+k|t, the filter is applied on each
column, i.e. independently for each horizon k. More advanced filters can also be implemented.

4 Model selection and validation

Model selection

In statistics, different model selection procedures are used (Madsen and Thyregod, 2010). Essentially,
a backward or a forward selection procedure can be applied, or some combined approach. In the
onlineforecast package both procedures are implemented, as well as a combined approach (see the
model-selection vignette for examples).

In each step of the selection process two properties of the model can be modified:

• Model inputs: In each step, inputs can either be removed or added.

• Integer offline parameters: In each step integer parameters, such as the number of knot points in
a basis spline or the number of harmonics in a Fourier series can be incremented or decremented.

In each step of the process, the offline parameters are first optimized to minimize the score for each
modified model (in most cases the appropriate score is the RMSE in Equation (12) summed for selected
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horizons). Then the scores of the modified models are compared with the score of the currently
selected model and the model with the lowest score is selected for the next step. This continues until
no further improvement of the score is achieved and the model with the lowest score is selected. It is
important to note, that the implemented procedure should only be used with the RLS scheme, with
the LS scheme the score is calculated fully in-sample leading to overfitting.

Model validation

The most important aspects of validation of forecast models are discussed in this section (see the
forecast-evaluation vignette for examples).

Training and test set

One fundamental problem in data-driven modelling is overfitting. This can easily happen when the
model is fitted (trained) and evaluated on the same data. There are essentially two ways of dealing
with this: penalize increased model complexity (regularization) or divide the data into a training set
and test set (cross-validation) (Tashman, 2000). In most forecasting applications the easiest and most
transparent approach is cross-validation – many methods for dividing into sets are possible. In the
onlineforecast setup, when a model is fitted recursively using the RLS, only past data is used when
calculating the regression coefficients, so there is little need for dividing into a training and a test set.

The offline parameters (like the forgetting factor and low-pass filter coefficients) are optimized on a
particular period, hence overfitting is possible, however, typically, only very few parameters compared
with the number of observations are estimated – so it is very unlikely that a recursively-fitted model
will overfit.

Scoring

The scoring of forecasts can be done in many ways, however in the onlineforecast package, where the
conditional mean is estimated and when using the RLS scheme, we recommend choosing the Root
Mean Square Error (RMSE) in Equation (12) as the best score to use. When using the LS scheme it can
be favourable to include regularization penalty to avoid overfitting, hence AIC or BIC is preferable.
One important point when comparing forecasts is to only include the complete cases, i.e. forecasts at
time points with no missing values across all horizons and across all evaluated models. A function for
easy selection of only complete cases given multiple forecasts is implemented, see the examples in
Section Evaluation.

Residual analysis

Analysing the residuals is an important way of validating that a model cannot be further improved or
learning how it can improved. The main difference from classical time series model validation, where
only the one-step ahead error is examined, is that multiple horizons should be included in the analysis.
The two most important ways of analyzing the residuals are to:

• Plot residual time series to find where large forecast errors occur.

• Plot scatter plots of the residuals vs. other variables to see if there are any apparent dependencies
not captured by the model.

In order to dig a bit more into the result of a recursive estimation, the regression coefficients can be
plotted over time. In this way, it is possible to learn how the relations between the variables in the
model evolve over time. If large changes are found in some periods it might be worthwhile to zoom
into those periods to learn what causes these changes and how to potentially improve the model. In
case auto-correlation is left in the residuals, an error model can be used to improve the forecasts by
applying an auto-regressive model on the residuals. This is somewhat equivalent to include an MA
part in the original model.

As summarizing measures for validation of how well dynamics are modelled:

• Plot the auto-correlation function (ACF) of the one-step residuals.
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• Plot cross-correlation functions from one-step residuals to other variables, see (Bacher et al.,
2013).

Systematic patterns found in these functions lead to direct knowledge on how to improve the model,
see for example the table on page 155 in Madsen (2007).

5 Example with R code

A short introduction to the functionalities and steps in setting up a model is given in the following –
for more details, see the vignettes listed in Section Vignettes and the website onlineforecasting.org.

First, a few remarks on the implementation. onlineforecast models are set up using an object-oriented
R6 class. The main reason for this is that R6 objects use reference pointers, which allows to make
minimum changes in computer memory when updating a model fit with new data – this would not
be possible with the regular S3 class objects, as they are always copied in memory when updated by a
function.

Furthermore, it is noted, that model inputs and transformations simply are defined using R code.
The regular formula class is not used, since it cannot operate as needed on the multi-horizon forecast
matrices. The provided code for the inputs defines the transformations etc. and is executed for each
input to generate the data used for regression.

Setup of data

Data must be set as variables in a list, here we have loaded D with the data for the examples:

class(D)

## [1] "data.list" "list"

As seen its class is data.list, which is inherited from the list class. Hence, it is simply a list
extended with some modified and new functions (can be listed with methods(class="data.list")).

All inputs to be used must be formatted as forecast matrices and set in the list as data.frames. For
example the ambient temperature forecasts:

class(D$Ta)

## [1] "data.frame"

head(D$Ta[ ,1:8], 4)

## k1 k2 k3 k4 k5 k6 k7 k8
## 1 -2.82340 -3.20275 -3.1185 -3.0896 -3.13200 -3.16130 -3.16645 -3.08885
## 2 -2.90405 -3.11850 -3.0896 -3.1320 -3.16130 -3.16645 -3.08885 -2.77165
## 3 -2.93590 -3.08960 -3.1320 -3.1613 -3.16645 -3.08885 -2.77165 -2.32185
## 4 -2.89315 -3.11285 -3.0484 -3.1090 -3.11600 -2.80990 -2.36895 -2.00945

The time must be in a POSIXct vector named t:

D$t[1:4]

## [1] "2010-12-15 01:00:00 UTC" "2010-12-15 02:00:00 UTC"
## [3] "2010-12-15 03:00:00 UTC" "2010-12-15 04:00:00 UTC"

Observations must be in a numeric vector:
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D$heatload[1:4]

## [1] 5.916667 5.850000 5.850000 5.883333

For more details on the data.list class, see the setup-data vignette – which demonstrates useful
functions for manipulating, validating and exploring forecast data.

Defining a model

Models are set up using the R6 class forecastmodel. An object of the class is instantiated by:

model <- forecastmodel$new()

It holds variables and functions for representing and manipulating a model.

If we want to forecast the observed heatload variable in the data list D, we set that as the model output
by:

model$output <- "heatload"

The model inputs must then be defined. We can add an input as a linear function by:

model$add_inputs(Ta = "Ta")

The code given as text simply evaluates into the Ta forecast matrix, which will lead to the k-step
forecast of ambient temperature (i.e. a column in Ta) will be set directly into the design matrix for the
k horizon regression (more explanation of this is given in the end of the current section).

Adding an intercept to a model can be done by:

model$add_inputs(mu = "one()")

where the function one() evaluates into a forecast matrix of 1’s, which will be inserted in the design
matrix, see details in Appendix Regression.

Functions for a range of useful transformations were already listed in Section Transformations. Dy-
namics can be modelled using filters, for example low-pass filtering of a variable with:

model$add_inputs(Ta = "lp(Ta, a1=0.9)")

will apply a low-pass filter along each column of Ta and return a forecast matrix with the modified
data. The filter coefficient is set to a = 0.9. To illustrate the effect of this, see the vignette setup-and-
use-model.

Non-linear effects can be modelled using basis functions. For mapping an input to basis splines the
function bspline() is provided. It is a wrapper of the bs() function from the splines package and has
the same arguments. To e.g. include a non-linear function of the ambient temperature:

model$add_inputs(Ta = "bspline(Ta, df=5)")

where df is the degrees of freedom of the spline function.

Functions can be nested, e.g. first a low-pass filter before mapping to basis splines:

model$add_inputs(Ta = "bspline(lp(Ta, a1=0.9), df=5)")

Varying-coefficient models can be realized with multiplication of inputs (Hastie and Tibshirani, 1993).
For more details, see the solar-power-forecasting example on the website. For more examples of input
transformations, e.g. fourier-series and auto-regressive inputs, see the setup-and-use-model vignette.
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Execution of the input transformations

As seen above, R code is given for each input. The code is given as text and will simply be executed to
calculate the data for regression. This is carried out with the function model$transform_data(data),
inside which:

eval(parse(text=frml), data)

is executed for each input. The frml is the R code for the input (as a character e.g. as "Ta" or
"bspline(Ta,df=5)" in the examples) and data is the list containing the variables used in the frml
code (as D in the examples).

This way of defining the input formulas simply as code is very flexible. It also allows for easy
debugging, for example a function used in the code can be set for debug and it is possible to step
through its execution during the transformation – or even by setting "browser();" directly into in the
input code to stop and step through the execution.

The only constraint to an inputs code is that it must just return a forecast matrix as a data.frame (or
list of them). The regression can then be carried out separately for every horizon by, for the k horizon
taking the k column from each of the returned matrices and bind these together into a design matrix,
on which LS or RLS can be applied to calculate the k horizon forecasts.

Model fitting and offline parameter tuning

After setting up a model it can be fitted to data by carrying out the transformation and regression
steps. To simply the code, functions of fitting the model are provided. Different functions implement
different regression schemes. The two currently available fitting functions are lm_fit() and rls_fit()
– they take offline parameters as a vector, fit a model and return the RMSE score (summed across all
fitted horizons).

To demonstrate the model-fitting process, we first replace the inputs on the model defined above with
two inputs by:

model$inputs <- NULL
model$add_inputs(mu = "one()",

Ta = "lp(Ta, a1=0.9)")

We also have to set the “score period”, which is simply a logical vector that specifies the observations
to be included in the score calculation. It is useful for defining a burn-in period and dividing the data
into test and training sets. For the current linear regression we simply include all points by:

D$scoreperiod <- rep(TRUE, length(D$t))

Now the summed RMSE for the horizons 1 to 6 steps ahead can be obtained by:

model$kseq <- 1:6
lm_fit(c(Ta__a1=0.8), model, D, scorefun=rmse, returnanalysis=FALSE)

## [1] 5.039611

The function can be passed to an optimizer, which can then find the parameter value(s) which
minimizes the score.

Any optimizer function in R can be used, but, again to simplify the code, wrappers for optim() are
included – similar wrappers can easily be made for other optimizers. The parameter(s) to optimize
within the wrapper function is defined by:

model$add_prmbounds(Ta__a1 = c(min=0.8, init=0.95, max=0.9999))

Note, the double underscore syntax. The double underscore separates the input name and the name
of the parameter. So in the case above the value of a1 in the R code for input Ta will be optimized,
starting at an initial value of 0.95 and staying within the specified bounds.
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We can then run the optimization calculating scores (to save computational time run on only a horizons
3 and 18 steps ahead):

lm_optim(model, D, kseq=c(3,18))

The lm_optim() function is a wrapper for the R optimizer function optim(). It returns the result from
optim() and sets optimized parameters in:

model$prm

## Ta__a1
## 0.8926346

i.e. a lower low-pass coefficient than the initial value of 0.95.

For more details, see the setup-and-use-model vignette.

Calculating forecasts

While developing models it is most convenient to use the fit functions for calculating predictions, e.g.:

model$kseq <- 1:24
fit <- lm_fit(model$prm, model, D)

will return a list holding the forecasts (in the forecast matrix fit$Yhat) and other useful information.
Forecasts can also be calculated directly with the predict function:

lm_predict(model, model$transform_data(D))

will return a forecast matrix using the input data in D.

Evaluation

Finally, it can be worthwhile to evaluate the forecasts and inspect the model for potential improvements.
For a more comprehensive introduction, see the forecast-evaluation vignette.

First, it is always a good idea to plot the model’s forecasts over time and see how well it predicts:

D$Yhat <- fit$Yhat
plot_ts(subset(D,D$scoreperiod), "heatload$|Yhat", kseq=c(1,5,24), p=p)
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2011−01−01 2011−01−15 2011−02−01 2011−02−15 2011−03−01

heatload: 2.4 to 12
Yhat_k1: 3.9 to 6.8
Yhat_k5: 3.9 to 6.8
Yhat_k24: 4 to 6.8

We can plot the ACF of the one-step residuals by:
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acf(residuals(fit)$h1, na.action=na.pass, lag.max=96, main="")
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The ACF plot suggests that there remains a diurnal pattern to be modelled. It can be achieved by
adding a diurnal curve to the model, e.g. with Fourier series basis functions. This is demonstrated in
the vignette setup-and-use-model.

We may also want to calculate the score as a function of the horizon:

inscore <- D$scoreperiod & complete_cases(fit$Yhat)
RMSE <- score(residuals(fit), scoreperiod = inscore)
plot(RMSE, ylim=c(0.75,0.88), xlab="Horizon")
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The trend is relatively constant, which makes sense since the model is very simple. The offline
parameters were optimized for k = 3 and k = 18, which can explain why it is not monotonic increasing
with the horizon.

6 Discussion and conclusion

Extending functionality

The current package is designed to make it easy to implement new transformation functions and
regression schemes, as well as using other optimizers for tuning parameters.

Implementing a new transformation function is straightforward. The function must receive either a
forecast matrix or a list of forecast matrices and return either after processing. Furthermore, when used
in an online operational setup, where the transformation is executed whenever new data arrives, it is
possible to save state information inside a transformation function, such that next time the function
is called, the state can be read and used. See the lp() function for inspiration when writing a new
transformation function.

A new regression scheme, e.g. a kernel or quantile regression, can also be implemented. A fitting func-
tion should be implemented in similar way as lm_fit() and rls_fit(), such that the first argument is
the parameter vector and it returns a score value, which can be passed to an optimizer.

It is very easy to use other optimizers. The current fitting functions can simply be passed to any
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optimizer in R, which follows the optim() way of receiving a function for optimization, see the code
in lm_optim().

In future versions of the package, new regression techniques, e.g. kernel regression (local fitting) and
quantile regression, might be added. The latter opens up the possibilities to calculate probabilistic
forecasts, see (Nielsen et al., 2006) and (Bjerregaard et al., 2021), as well as carry out normalization
and Copula transformations, which can be very useful for spatio-temporal forecast models, see (Tastu
et al., 2011) or (Lemos-Vinasco et al., 2021).

Summary and conclusion

This paper provides an entry point and reference for working with the onlineforecast package. The
paper covers version 1.0 of the package, which has been available on CRAN for almost one year at the
time of writing.

The main contribution of the package is to make it easy to generate online multi-step forecasts in a
flexible way. The package contains functionalities not directly available elsewhere, such as:

• Enabling the use of input variables given as forecasts, e.g. NWPs, in an easy and flexible way.

• Optimal tuning of non-linear models for multi-step horizons.

• Recursive estimation for tracking time-varying systems computationally efficient for multiple
horizons.

The onlineforecast package has a significant value for anyone who needs to carry out operational
online forecasting, for example, in energy scheduling, where recursive updated forecasts are needed
as input to optimal decision making and real-time control of systems. It can also be very useful for
companies that need online forecasts for other monitoring and real-time applications – specifically,
the functionality for model updating with very little computational costs when new data becomes
available, is a unique feature of the package.

Computational details

We have tried to make the onlineforecast package depend on as few other packages as possible. Only a
few additional packages are used in the core functionalities: R6 for the “usual” OOP functionalities
and Rcpp (Eddelbuettel and Balamuta, 2018) along with RcppArmadillo (Eddelbuettel and Sanderson,
2014) for easy integration of fast compiled code. For extending the modelling possibilities the splines
and pbs packages are essential, and for nice caching the digest package was used. We acknowledge
the devtools and knitr (Xie, 2015), rmarkdown (Xie et al., 2018), R.rsp, testthat (Wickham, 2011)
packages, which are indispensable for developing a package. We acknowledge the R community and
the amazing work behind R done by many people over the years!

The results in this paper were obtained using R 4.3.1. R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.
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1 Forecast model notation

In this section it is shown how to write onlineforecast models in mathematical notation. Both in a full
description and how to write a shorter summarized description. Note, that when variables are noted
in bold font it indicates that they are multi-variate.

A model can be described in full detail as presented in the following.

The transformation stage

Intercept: µt+k|t = 1 (19)

Periodic: xper,t+k|t = ffs(t; nhar) (20)

Part 1: x1,t+k|t = H(B; a)u1,t+k|t (21)

Part 2: x23,t+k|t = fbs(u2,t+k|t; ndeg)u3,t+k|t (22)

Part 3: x4,t+k|t = u4,t (23)

and the regression stage

Yt+k|t = β0,kµt+k|t + βT
1,kxper,t+k|t + β2,kx1,t+k|t + βT

3,kx23,t+k|t + β4,kx4,t+k|t + εt+k|t (24)

Thus the model inputs are:

• t is simply the time value.

• u1,t+k|t some forecast input (e.g. NWP variable).

• u2,t+k|t some forecast input (e.g. could be a deterministic value, e.g. time of day which is always
know (the |t could be omitted)).

• u3,t+k|t some forecast input (e.g. NWP variable).

• u4,t some value at time t (e.g. an observation variable).

The functions which maps the inputs (u’s) to the regression inputs (x’s) are:

• ffs(t; nhar) is a function generating Fourier series of some implicit period length.

• H(B; a) is a low-pass filter.

• fbs(u2,t+k|t; ndeg) is a function generating basis splines.

Their parameters are the transformation parameters:

• nhar is the number of harmonics.

• a is the low-pass filter coefficient.

• ndeg is the degrees of freedom of the spline function.

which must be set or optimized.

The regression coefficients are

βk =
[

β0,k βT
1,k β2,k βT

3,k β4,k

]T
(25)

=
[

β0,k β1,1,k β1,2,k . . . β1,2nhar,k β2,k β3,1,k β3,2,k . . . β3,ndeg,k β4,k

]T
(26)

If the model is fitted with a recursive scheme, thus the coefficients change over time, it should be
indicated by adding a t to the subscript, e.g. β0,k,t. Furthermore, other parameters can exist, which can
enter an optimization at the transformation stage, e.g. the RLS forgetting factor λ. The parameters
which are optimized in the transformation stage should be presented together.

Specifying the model in all details can be cumbersome to include in some texts, so it makes sense to
simplify the notation. When using a simpler notation, as suggested below, it should be stated, what
is implicit (e.g. the regression stage). Referencing the present text should be sufficient when using a
simpler notation. Naturally, all inputs, functions, etc., should be described in some way.
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A model can be specified in a simpler way, e.g. the model above in one equation

Yt+k|t = β0,k + βT
1,k ffs,k(t; nhar) + β2,k Hk(B; a)u1,t+k|t + βT

3,k fbs,k(u2,t+k; ndeg)u3,t+k|t

+ β4,k u4,t + εt+k|t (27)

or writing the regression stage implicitly by removing the regression coefficients where it is meaningful

Yt+k|t = µk + ffs,k(t; nhar) + Hk(B; a)u1,t+k|t + fbs,k(u2,t+k|t; ndeg)u3,t+k|t + βku4,t + εt+k|t (28)

It is then implicit that the functions are different from the previous stated functions, since they include
the regression coefficients. Again, if fitted with a recursive scheme, then it can be indicated by adding
a t subscript, e.g. ffs,k,t(t; nhar).

To simplify further the k on the functions can be implicit

Yt+k|t = µ + ffs(t; nhar) + H(B; a)u1,t+k|t + fbs(u2,t+k|t; ndeg)u3,t+k|t + βu4,t + εt+k|t (29)

and similarly the transformation parameters can be implicit

Yt+k|t = µ + ffs(t) + H(B)u1,t+k|t + fbs(u2,t+k|t)u3,t+k|t + βu4,t + εt+k|t (30)

Then the functions and their parameters, and the fitting scheme (i.e. with either LS or RLS for each
horizon) should be described in some other way.

Finally, the most simplified notation would be to even remove the time indexing

Y = µ + ffs(t) + H(B)u1 + fbs(u2)u3 + βu4 + ε (31)

after making clear how all the variables are defined.

2 Regression

In this section the two regression schemes implemented in onlineforecast are described. When fitting
a model, thus estimating the regression coefficients, data from a period t ∈ (1, 2, . . . , n) is used and
passed on to either: the lm_fit() function which implements the Least Squares (LS) scheme, or the
rls_fit() function, which implements the Recursive Least Squares (RLS) scheme.

One important difference between the two implementations is that in the LS the coefficients are
estimated using data from the entire period, thus they are constant during the period and the calculated
predictions are “in-sample”. This is opposed to the RLS, where the coefficients are updated through
the period using only past data at each time t. In that case the coefficients vary over time and the
calculated predictions are “out-of-sample”.

This difference is explained in the following and indicated by subscripting the coefficient vector with t
only for the RLS.

Least squares

The regression coefficients for the k’th horizon is set in the vector

βk =
[

β0,k β1,k . . . βp,k

]T
(32)

Note, that t is not included in the subscript.
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The input data for the k horizon is the design matrix

Xk,t =



x0,1+k|1 x1,1+k|1 . . . xp,1+k|1

x0,2+k|2 x1,2+k|2 . . . xp,2+k|2
...

...
...

x0,n−1|n−1−k x1,n−1|n−1−k . . . xp,n−1|n−1−k

x0,n|n−k x1,n|n−k . . . xp,n|n−k


(33)

The output observations are in the vector

yk,n = [y1+k y2+k . . . yn−1 yn]
T (34)

The LS estimates of the coefficients are

β̂k = (Xk,nXk,n)
−1Xk,nyk,n (35)

The predictions are “in-sample” and calculated by

ŷk,n = Xk,n β̂k (36)

and returned when fitting a model with lm_fit().

The estimated coefficients may now be used for “out-of-sample” prediction (for tnew ≥ n), with the
input

xtnew+k|tnew
=

[
x0,tnew+k|tnew

x1,tnew+k|tnew
. . . xp,tnew+k|tnew

]T
(37)

by

ŷtnew+k|tnew
= xtnew+k|tnew

β̂k (38)

This can be done by providing new data to the lm_predict() function.

Recursive least squares

In the RLS scheme the coefficients are recursively updated through the period. Time t steps from 1
to n and in each step the “newly” obtained data at t is used for calculating updated coefficients. The
coefficient vector has the same structure as for LS

βk,t =
[

β0,k,t β1,k,t . . . βp,k,t

]T
(39)

The only difference is that we now subscript with t because it varies over time.

Only the most recent input data at t (the row at t from the LS design matrix in Equation (33)) is used
in each update

xk,t =
[

x0,t|t−k x1,t|t−k . . . xp,t|t−k

]T
(40)

and similarly the most recent output observation yt. At each time t the coefficients are updated by

Rk,t = λRk,t−1 + xk,tx
T
k,t (41)

β̂k,t = β̂k,t−1 + R−1
k,t xk,t(yt − xT

k,t β̂k,t−1) (42)

Hence, when applying RLS for data from the period t ∈ (1, 2, . . . , n) the RLS provides a new value of
the coefficients for each time t (opposed to LS).

The predictions are calculated recursively as well by using the updated coefficients at each time t.
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Given the inputs

xt+k|t =
[

x0,t+k|t x1,t+k|t . . . xp,t+k|t
]T

(43)

the prediction is

ŷt+k|t = xt+k|t β̂k,t (44)

Only past data has been used when calculating the predictions through the period, hence they are
“out-of-sample” predictions (these predictions are returned by rls_fit()).

The initial value of R is set simply set to a zero matrix with diagonal 1/10000 and β set to a zero vector.

An alternative updating scheme, which is actually the implemented scheme (gives the same results as
the scheme above), is the Kalman gain scheme (Sayed and Kailath, 1994), where matrix inversion is
avoided

Kk,t =
Pk,t−1xk,t

λ + xT
k,tPk,t−1xk,t

(45)

β̂k,t = β̂k,t−1 + Kk,t(yt − xT
k,t β̂k,t−1) (46)

Pk,t =
1
λ

(
Pk,t−1 − Kk,tx

T
k,tPk,t−1

)
(47)

This actually opens up the possibilities for self-tuned variable forgetting (Shah and Cluett, 1991).
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markovMSM: An R Package for Checking
the Markov Condition in Multi-State
Survival Data
by Gustavo Soutinho and Luís Meira-Machado

Abstract Multi-state models can be used to describe processes in which an individual moves through
a finite number of states in continuous time. These models allow a detailed view of the evolution or
recovery of the process and can be used to study the effect of a vector of explanatory variables on the
transition intensities or to obtain prediction probabilities of future events after a given event history. In
both cases, before using these models, we have to evaluate whether the Markov assumption is tenable.
This paper introduces the markovMSM package, a software application for R, which considers tests
of the Markov assumption that are applicable to general multi-state models. Three approaches using
existing methodology are considered: a simple method based on including covariates depending on the
history; methods based on measuring the discrepancy of the non-Markov estimators of the transition
probabilities to the Markovian Aalen-Johansen estimators; and, finally, methods that were developed
by considering summaries from families of log-rank statistics where individuals are grouped by the
state occupied by the process at a particular time point. The main functionalities of the markovMSM
package are illustrated using real data examples.

1 Introduction

Multi-state models are commonly used to analyze complex longitudinal survival data involving
multiple events of interest (Andersen et al., 1993; Hougaard, 2000; Putter et al., 2007; Meira-Machado
et al., 2009; Meira-Machado and Sestelo, 2019). These models can be considered as a generalization
of the survival process where survival is the ultimate outcome of interest, but where information is
available about intermediate events that individuals may experience during the study period. For
instance, in some biomedical applications, besides the ’healthy’ initial state and the absorbing ‘dead’
state, one may observe intermediate (transient) states based on health conditions (e.g., heart or lung
disease), disease stages (e.g., stages of cancer, HIV infection or Alzheimer’s), clinical symptoms (e.g.,
bleeding episodes), biological markers (e.g., CD4 T-lymphocyte cell counts; serum immunoglobulin
levels) or they can represent a non-fatal complication in the course of the illness (e.g., cancer recurrence,
transplantation, etc.). The number of states and transitions among them defines the complexity of
the model, which is illustrated by a directed graph with rectangular boxes representing possible
states and arrows representing the allowed transitions. Among the multi-state models, the simplest is
the mortality model for survival data (with only two states). The competing risks model (Andersen
and Keiding, 2002; Putter et al., 2007) can be seen as an extension of the simple mortality model for
survival data in which each individual may ‘die’ due to any of several causes. The most common
is the illness-death model, also known as the disability model, which comprises three states. In the
irreversible version of this model (Figure 1), individuals start in the ‘alive and disease-free’ state and
subsequently move either to the ‘diseased’ state or to the ‘dead’ state. Individuals in the ‘diseased’
state will eventually move to the ‘dead’ state, without any possibility of recovery. Data that arises
from the model depicted in Figure 1 has been termed as semi-competing risk data and can be seen as
an emerging challenge for time-to-event data where two events of interest are studied: non-terminal
(e.g., disease diagnosis) and terminal (e.g., death) events. The non-terminal event is observed only if it
precedes the terminal event, which may occur before or after the non-terminal event. In this context,
the terminal event is a competing risk for the intermediate state but not the contrary (Xu et al., 2010; Li
and Peng, 2017; Nevo and Gorfine, 2020).

Multi-state models can be used to assess the effects of covariates on the transition intensities,
but they can also be used to obtain conditional prediction probabilities of future events. From the
transition intensities, it is possible to evaluate the probability of one event ahead, but the transition
probabilities are the relevant predictive quantities since they consider several transitions ahead. The
occupation probabilities, often used in practice, are particular examples of transition probabilities in
which the time origin is taken as the current time. When the underlying stochastic process is Markov,
an elegant theory can be used to link the transition intensities to the transition probabilities, leading
to the Aalen-Johansen estimator (Aalen and Johansen, 1978). This assumption claims that given the
present state, the future evolution of the process is independent of the states previously visited and the
transition times among them; in other words, the history of the process is summarized by the current
state. The Aalen-Johansen estimator is adapted to censoring, and benefits from the assumption of
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Markovianity to get consistent estimates. However, when the multi-state model is non-Markov, this is
no longer the case. In fact, there are many applications for which the Markov assumption may not
be met; for example, the arrival time at the current state of the process often influences the transition
intensities, leading to non-Markov structures (Andersen et al., 2000, Andersen and Keiding, 2002).
Although the Aalen–Johansen estimator may be used to consistently estimate occupation probabilities
for non-Markov multi-state models (Datta and Satten, 2001), in general it provides biased estimators if
the Markov assumption does not hold. To tackle this issue, Meira-Machado et al. (2006) introduced,
for the first time, estimators that do not rely on the Markov assumption. These authors showed the
practical superiority of their estimators relative to the Aalen-Johansen estimator in situations in which
the Markov condition is strongly violated. However, this approach has the drawback of requiring that
the support of the censoring distribution contains the support of the lifetime distribution, otherwise
they only report valid estimators for truncated transition probabilities. Recently, alternative estimators
that are consistent regardless of the Markov condition and the referred assumption on the censoring
support were proposed by de Uña-Álvarez and Meira-Machado (2015). The idea behind the proposed
estimators is to use a procedure based on differences between Kaplan-Meier estimators derived from
a subset of the data, consisting of all subjects observed to be in a given state at a given time. The
same idea of subsampling, combined with the Aalen-Johansen estimator, was later used by Putter and
Spitoni (2018) to introduce new estimators which were termed landmark Aalen-Johansen.

In the multi-state setting, it is of practical interest to determine whether the Markov property
holds within a particular data set. This information can be used to assess the validity of the transition
probability estimates as well as the best option for performing inference on the transition intensities
when one aims to relate the individual characteristics to the intensity rates through a multi-state
regression model. This assumption is usually checked by including covariates depending on the
history (Kay, 1986; Andersen et al., 2000; Andersen and Keiding, 2002). For the progressive illness-
death model, for example, the Markov assumption is particularly relevant for modeling the death
transition after disease and, consequently, assessing whether this transition rate is affected by the
time in the previous state. Alternative methods, based on a local Kendall’s tau measuring the future-
past association along time, were proposed by Rodriguez-Girondo and de Uña-Álvarez (2012) and
Rodriguez-Girondo and de Uña-Álvarez (2016). The method proposed by these authors can be used
for three-state progressive and illness-death models, but the extension of this test to general multi-state
models is not straightforward, and thus flexible methods that may be used in general models are
required. A very recent work by Titman and Putter (2020) considers new approaches for checking this
assumption. In one of these approaches, local and general tests have been developed by considering
summaries from families of log-rank statistics where individuals are grouped by the state occupied at
varying initial time s. Chiou et al. (2018) also considered an equivalent problem to testing Markovianity
(in the progressive illness-model) but involving tests for dependent truncation. Making use of the
landmark approach, Soutinho and Meira-Machado (2021) introduces new methods for checking the
Markov assumption through a local and global test given by measuring the discrepancy between the
Aalen-Johansen estimator and the landmark estimators (de Uña-Álvarez and Meira-Machado, 2015,
Putter and Spitoni, 2018) that are free of the Markov condition.

There are some software packages available for multi-state survival analysis. A comprehensive
list of the available packages in the Comprehensive R Archive Network (CRAN) can be seen in the
CRAN task view ’Survival Analysis’ (Allignol and Latouche, 2022). In particular, in the context
of multi-state models, mstate package provides functions for estimating hazards and probabilities,
possibly depending on covariates. This package also permits checking the Markov assumption from
families of log-rank statistics where individuals are grouped by the state occupied at different times
(Titman and Putter, 2020). The msm package can be used to fit a Markov model with any number
of states and any pattern of transitions to panel data. It includes several extensions, such as hidden
Markov models and models whose transition intensities vary with individual-specific or time-varying
covariates (Jackson, 2011). survidm package provides estimates of predictive probabilities, such as the
transition probabilities, occupation probabilities, cumulative incidence functions, and waiting (sojourn)
time distributions. It also allows one to perform multi-state regression for transition intensities as well
as to implement global tests for the Markov assumption in illness-death models (Soutinho et al., 2021).
Other examples are the SemiMarkov package that can be used to fit semi-Markov multistate models
to longitudinal data proposed by Król and Saint-Pierre (2015) and the frailtyEM which contains
functions for fitting shared frailty models with a semi-parametric baseline hazard with the Expectation-
Maximization algorithm (Balan and Putter, 2019). Multi-state regression can be performed using
several of the aforementioned packages by decoupling the whole process into various survival models,
by fitting separate intensities to all permitted transitions using, for example, semi-parametric Cox
proportional hazard regression models, while making appropriate adjustments to the risk set. To this
end, the JM and joineR packages, proposed by Rizopoulos (2010) and Philipson et al. (2018), can be
useful to estimate the parameters for the joint modeling of longitudinal and time-to-event data. In this
context, we can also refer to the joineRML which extends the inference of the joint model to the case
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1. Disease-free  2. Diseased

3. Dead

Figure 1: The progressive illness-death model with three states and three irreversible transitions.
‘Disease-free‘ correspond to the initial state, ‘Diseased‘ the intermediate state and the absorbing state
‘dead‘.

of multiple continuous longitudinal measures (Hickey et al., 2018).

The organization of this paper is as follows: In Section 2, we present a brief introduction of the
notation and the mathematical background of existing methods for testing the Markov assumption. In
Section 3, we introduce the markovMSM package, a software application for R that performs these
local and global tests in the multi-state models described in Soutinho and Meira-Machado (2021) using
three real data examples. Finally, the main conclusions are reported in Section 4.

2 Background and notation

This section contains a brief description of the mathematical background underlying the markovMSM
package. Further details on the proposed methods can be found in Soutinho and Meira-Machado
(2021).

Multi-state models and transition probabilities

A multi-state model (X(t), t ∈ [0, ∞)) is a model for a time continuous stochastic process. These
models provide a relevant modeling framework for dealing with complex longitudinal survival data,
since they allow the representation of the movement of the individuals among a set of finite states
space S = 1, . . . , K. They can be fully characterized through the transition probabilities, for two states
h, j and two time points s < t, that are given by the conditional probability phj(s, t) = P(X(t) =
j|X(s) = h,Hs−), where Hs− denotes the history of the process up to time s. This history can represent
information about the process, such as the states previously visited, transition times, etc. Under the
Markov assumption, P(X(t) = j|X(s) = h, X(u) = y) = P(X(t) = j|X(s) = h), for any 0 ≤ u < s and
y ∈ S , and thus, the future of the process after time s depends only on the state occupied at time s, not
on the arrival time to that state or on the states previously visited.

Without loss of generality and for the purpose of simplicity, let us consider the progressive illness-
death model, with state space {1, 2, 3}, given by the initial State (e.g., ‘alive and disease-free’; State 1),
the intermediate state (e.g., ‘diseased’; State 2), and the absorbing state (e.g., ‘dead’; State 3). For this
type of model, there are five different transition probabilities to be considered that can be obtained as
follows (Meira-Machado and Sestelo, 2019):

p11(s, t) = exp
(
−
∫ t

s (λ12(u) + λ13(u)) du
)

p22(s, t | t12) = exp
(
−
∫ t

s λ23(u, t12)du
)

p12(s, t) =
∫ t

s p11(s, u−)λ12(u)p22(u, t | u)du.

Here, p22(s, t | t12) denotes the transition probability p22 conditional on a particular entry time t12, and
λhj(.) correspond to the transition intensities that are the instantaneous hazards for movement from
one state (h) to another (j). If the process is Markov, h23(t, t12) = h23(t) and p22(s, t | t12) = p22(s, t).
The two other transition probabilities, p13(s, t) and p23(s, t), can be estimated from the two obvious
relations that exist in the progressive illness-death model: p11(s, t) + p12(s, t) + p13(s, t) = 1 and
p22(s, t) + p23(s, t) = 1. Expressions for general models are not possible. Since the prognosis for
an individual in the intermediate state may be influenced by the subject’s specific arrival time, the
illness-death model is not necessarily Markovian.
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The estimation of the transition probabilities is a major goal in multi-state models since they allow
for long-term predictions. A common nonparametric method to estimate these quantities is the Aalen-
Johansen (AJ) estimator, (Aalen and Johansen, 1978) which can be obtained as the product–integral of
the Nelson-Aalen estimators for the cumulative transition intensities (Andersen et al., 1993). Explicit
formulae of the Aalen-Johansen estimator for the illness-death model can be found in Borgan (2005).
When the multi-state process is Markovian, the AJ estimator provides consistent estimates of the
transition probabilities, but this is no longer the case if the process is non-Markov. To avoid this
problem, de Uña-Álvarez and Meira-Machado (2015) use the idea of subsampling, also referred to
as landmarking (Van Houwelingen, 2007), which is based on (differences between) Kaplan-Meier
estimators derived from a subset of the data consisting of all subjects observed to be in the given state
at the given time. For the specific case of the illness-death model, given the time point s, to estimate
p1j(s, t) for j = 1, 2, 3 the landmark analysis is restricted to the individuals observed in State 1 at time
s; whereas, to estimate p2j(s, t), j = 2, 3, the landmark analysis proceeds from the sample restricted to
the individuals observed in State 2 at time s. Further details on the formulae and proofs can be seen in
de Uña-Álvarez and Meira-Machado (2015). The subsampling approach was later used by Putter and
Spitoni (2018) to derive a landmark Aalen-Johansen estimator (LMAJ) of the transition probabilities.
The idea behind the proposed estimator is to use the Aalen-Johansen estimator of the state occupation
probabilities derived from those subsets (consisting of subjects occupying a given state at a particular
time) for which consistency has already been proved in multi-state models that are not necessarily
Markov (Datta and Satten, 2001). It is worth mentioning that, in the illness-death model, the landmark
Aalen-Johansen estimators (LMAJ) and the landmark estimators (LM) of the transition probabilities have
shown similar performances. However, the former methods (LMAJ) can be used in general multi-state
models, which can be considered an advantage.

From now on, we will use the abbreviation AJ for the Aalen-Johansen estimator, LM for the
LandMark estimator proposed by de Uña-Álvarez and Meira-Machado (2015), and LMAJ for the
LandMark Aalen-Johansen estimator (Putter and Spitoni, 2018).

Tests for the Markov assumption

Modeling particular transition intensities

Traditionally, the Markov condition is verified by modeling particular transition intensities on aspects
of the history of the process using a proportional hazard model (Kay, 1986; Andersen et al., 2000; An-
dersen and Keiding, 2002). In the progressive illness-death model, the Markov condition is particularly
relevant for the transition from the intermediate state ‘disease’ (State 2) to ‘death’ (State 3). Under this
model, we can examine whether the time spent in the initial state (State 1) is important in the transition
from the disease state to death or not. For doing that, let λ23(t) denote the hazard function of T for
those individuals going from State 2 to State 3. Fitting a Cox model λ23(t | Z) = λ23,0(t) exp(βZ),
where λ23,0 is the baseline hazard, Z the ‘time spent in the healthy (initial) state’ and β a regression
parameter, we now need to test the null hypothesis, if the transition rate from the disease state into
death is unaffected by the time spent in the healthy state, H0 : β = 0, against the general alternative,
H1 : β ̸= 0. This ‘global’ test, based on the semiparametric Cox proportional hazards model, assumes
proportional hazards and a linear effect on the hazard for the covariate. When either of these two
assumptions is not fulfilled, the test may not be able to detect the lack of Markovianity.

Since the landmark methods (LM) for estimating the transition probabilities proposed by de Uña-
Álvarez and Meira-Machado (2015), and (LMAJ) by Putter and Spitoni (2018) are free of the Markov
assumption, they can be used as a basis for the construction of tests for Markovianity. These ideas
were used by Soutinho and Meira-Machado (2021) to introduce local and global tests for Markovianity
based on the discrepancy of the landmark estimators to Markovian Aalen-Johansen estimators (AJ).
Subsampling, also known as landmarking, has been also used by Titman and Putter (2020) to introduce
a general test based on summaries from families of log-rank statistics where individuals are grouped
by the state they occupied at a given (landmark) time.

AUC Local Test

Soutinho and Meira-Machado (2021) introduce a local test based on the area under curve, AUC,
given by the estimated transition probabilities, for a fixed time s > 0, that can be used for a general
multi-state model for checking the Markovianity of the process. They propose the following test
statistic that is based on the difference between the area under the estimated transition probability

curve for the non-Markov LMAJ estimator and the AJ estimator, U =
∫ τ

s

(
p̂ LMAJ

hj (s, u)− p̂ AJ
hj (s, u)

)
du,

where τ is the upper bound of the support of T. When the process is Markovian, it is expected that
the test statistic will be close to zero. The Markov assumption becomes less likely as the test statistic
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gets further away from zero in either direction. Because of censoring, both estimators (LMAJ and AJ)
may reveal high variability in the right tail, which may inflate the test statistic. In addition to this
issue, since landmarking is based on reduced data, the maximum point for which the LMAJ transition
probability estimate is strictly defined may be lower than the maximum point for AJ. To address these
issues, we propose that when computing U, the minimum between the upper bound for which LMAJ is
defined and the 90th percentile of the total time for the upper limit in the integral that defines the test
statistic be used.

In the progressive illness-death model, besides the transition probability p̂23(s, t), p̂12(s, t) can
also be used to test the Markov assumption. For general multi-state models, one can use transitions
depending on history. In fact, if the goal is to decide which estimator is the most appropriate to use to
estimate a specific transition probability phj(s, t), then the test statistic should be the one based on that
same transition probability.

To approximate the distributions of the test statistic, bootstrap methods with a large number
of resamples, M, are used. We generate M bootstrap samples, and for each sample, we calculate
the test statistic U⋆ which corresponds to the difference between the areas of the AJ and the LMAJ
estimators. Finally, the variance σ⋆

(U⋆)
is obtained from the M values of U⋆. Then, according to large

sample asymptotic distribution theory, when M, the number of replicates, goes to infinity, we have
the following statistic distributed approximately as a standard normal distribution with a mean of 0
and variance of 1: V = (U − 0)/σ⋆

(U⋆) ∼ N(0, 1). The null hypothesis will be rejected if V > v(1−α/2)
or V < v(α/2), where v(α/2) and v(1−α/2) denote the α/2 and 1 − α/2 percentiles, respectively, of a
normal distribution with a mean of 0 and variance of 1.

AUC Global Test

Soutinho and Meira-Machado (2021) also introduce a global test, which can be achieved by com-
bining the results obtained from local tests over different times. The testing procedure used here
involves the following steps:

1. Using the original sample of the illness-death model, obtain the percentiles 5, 10, 20, 30, and 40
of the times spent by all individuals in State 1, the so-called waiting (soujorn) time. For general
multi-state models, we recommend the use of the same percentiles of the subject’s specific
arrival time at the corresponding state.

2. For each of the values s obtained in Step 1, obtain the probability values for the local method as
explained before.

3. Obtain the mean of the probability values for each closest pair; i.e., the mean of the probability
values of the following pairs of percentiles: (5, 10), (10, 20), (20, 30) and (30, 40).

4. Finally, the p-value for the global test is equal to the minimum between the four probability val-
ues obtained in Step 3. In the case of this probability value being below a particular significance
value, for example 0.05, we reject the null hypothesis of the process being Markovian.

Step 1 considers a global test based on local tests computed at low percentiles of subject-specific
arrival times at the corresponding state. This is based on our experience that the failure of Markovianity
often occurs at small transition times. Besides the hypothesis tests proposed above, we also suggest
graphical local tests that can be used to check the Markov assumption in the illness-death model as
well as for more complex multi-state models, possibly with reversible transitions between states. These
graphical tests can be used to validate the default values proposed in Step 1 or to propose alternative
values for which a discrepancy between the two methods (LMAJ and AJ) is more evident.

The procedure described in Step 3 can be used to ensure that there is a discrepancy between the
two estimated curves over a large range of time values.

Log-rank test

The construction of the landmark Aalen-Johansen estimators (LMAJ) also motivated the develop-
ment of new tests of the Markov assumption (Titman and Putter, 2020). Assume initially that interest
lies in assessing the validity of transition probability estimates from a specific start point time s and a
given state h, i.e. phj(s, t). Under the landmark approach, the estimators of the transition probabilities
should be derived from the subset of the data consisting of all subjects observed to be in the state h at
time s, S = {i : Xi(s) = j, Yi(s) = 1} where Yi(s) is the at risk indicator of the process (de Uña-Álvarez
and Meira-Machado, 2015; Putter and Spitoni, 2018). On the other hand, the Aalen-Johansen estimator
would use also the set of subjects in Sc = {i : Xi(s) ̸= j, Yi(s) = 1}. Besides, under a Markov
process, the transition intensities of the process for t > s will be the same in the two groups. This
motivated Titman and Putter (2020) to propose a local test for the Markov assumption that lies in
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Function Description
PHM.test Performs a global test for the Markov assumption based on the Cox

PH model.
AUC.test Performs global and local tests for the Markov assumption using the

Area Under Curves (AUC) method.
LR.test Log-rank based test for the validity of the Markov assumption.
plot.markovMSM Plot for an object of class markovMSM.
eventsMSM Counts the number of observed transitions in the multi-state model.
prepMSM Prepares the data set for multi-state modeling in a long format from a

data set in wide format.
transMatMSM Define transition matrix for a multi-state model.
print.markovMSM Print for an object of class markovMSM.
summary.markovMSM Summary for an object of class markovMSM.

Table 1: Summary of functions in the markovMSM package.

testing H0 : λ(t|X(s) = h) = λ(t|X(s) ̸= h) for t ≥ s versus a general alternative. The proposed test is
constructed using several log-rank statistics grouped by membership in S. Titman and Putter (2020)
also propose a global test via a grid of times in which, for each s time, local tests are computed. In this
paper, the grid of values is given by the percentile times.

The same authors pointed out that the use of the individual supremum or integrated statistics may
be combined to provide an overall test of the dependence of the transition intensities on occupation in
state j at previous times.

3 Application of the markovMSM

This section offers the guidelines for the use of the markovMSM package with the R statistical program
(R Core Team, 2021). To this end, a description of the functions of the package is illustrated using
three real data sets. The first one involves data from a clinical trial on colon cancer modeled using
the progressive illness-death model (Moertel et al., 1995). Extensions to progressive processes beyond
the three-state illness-death model are demonstrated using data from the European Group for Blood
and Marrow Transplantation (EBMT) (Putter et al., 2007). Finally, we use data from a study with liver
cirrhosis patients subjected to prednisone treatment (Andersen et al., 1993). The package comprises
seven main functions, which are briefly summarized in Table 1.

Data manipulation

In this section, we reanalyze data from a large clinical trial on Duke’s stage III patients affected by
colon cancer who underwent curative surgery for colorectal cancer (Moertel et al., 1990). Of the 929
patients, 468 developed a recurrence, and among these, 414 died; 38 died without a recurrence. The
remaining 423 patients were alive and disease-free up to the end of the follow-up. Besides the two
event times (time to recurrence and time to death) and the corresponding indicator statuses, a vector
of covariates including age, sex, number of lymph nodes, and extent of local spread is also available.
Below is an excerpt of the data set with one row per individual. Individuals were chosen in order to
represent all possible combinations of movements among the three states.

> library(markovMSM)
> data("colonMSM")
> db_wide <- colonMSM
> head(db_wide[c(1:2,16,21),1:11])

time1 event1 Stime event rx sex age obstruct perfor adhere nodes
1 968 1 1521 1 Lev+5FU 1 43 0 0 0 5
2 3087 0 3087 0 Lev+5FU 1 63 0 0 0 1
16 1323 1 3214 0 Obs 1 68 0 0 0 1
21 2789 0 2789 1 Obs 1 64 1 0 0 1

The four initial variables describe the movement of the patients among the three states of the
illness-death model: time1 denote the time measured in days from surgery to recurrence, whereas
Stime is the total time or the time to death or censoring; event1 and event denote the corresponding
status/censoring indicator (1 for an event and 0 for censoring). Patient 1 had a recurrence after 968
days (i.e., observed a transition from the initial state to the intermediate state) and then died after 1521
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days in the study. Patient 2 remained alive and without recurrence at the end of follow-up (event1 =
0 and event = 0). The two event times are equal in these cases. The patient represented in the third
line had a recurrence after 1323 days but remained alive at the end of the follow-up (i.e., in State 2).
Finally, the patient represented in the last line died after 2789 days in the study without experiencing a
recurrence.

As the original data set is in the wide format, the next step to implementing the proposed methods
will be to convert the data into a long format, which is given by one line for each transition for which a
subject is at risk. This can be done using functions transMatMSM and prepMSM. transMatMSM function
defines the transition matrices, revealing which transitions are possible, whereas prepMSM provides a
new dataset in a long format for which each row will correspond to a transition for which a patient is
at risk. For the progressive illness-death model, these two functions are used as follows:

> positions <- list(c(2, 3), c(3), c())
> state.names <- c("Alive", "Rec", "Death")
> tmat <- transMatMSM(positions, state.names)
> tmat

to
from Alive Rec Death
Alive NA 1 2
Rec NA NA 3
Death NA NA NA

> timesNames <- c(NA, "time1", "Stime")
> status <- c(NA, "event1", "event")
> trans <- tmat
> db_long <- prepMSM(data = db_wide, trans, timesNames, status)
> db_long[1:10,]

id from to trans Tstart Tstop time status
1 1 1 2 1 0 968 968 1
2 1 1 3 2 0 968 968 0
3 1 2 3 3 968 1521 553 1
4 2 1 2 1 0 3087 3087 0
5 2 1 3 2 0 3087 3087 0
6 3 1 2 1 0 542 542 1
7 3 1 3 2 0 542 542 0
8 3 2 3 3 542 963 421 1
9 4 1 2 1 0 245 245 1
10 4 1 3 2 0 245 245 0

Finally, in terms of manipulation of data, a useful function is eventsMSM since it allows one to
summarise the number of transitions among states and their percentages:

> eventsMSM(db_long)

$Frequencies
to

from Alive Rec Death no event total entering
Alive 0 468 38 423 929
Rec 0 0 414 54 468
Death 0 0 0 452 452

$Proportions
to

from Alive Rec Death no event
Alive 0.0000000 0.5037675 0.0409042 0.4553283
Rec 0.0000000 0.0000000 0.8846154 0.1153846
Death 0.0000000 0.0000000 0.0000000 1.0000000

Methods for testing the Markov condition in the illness-death model

The illness-death model is a special multi-state model with several applications in the biomedical
literature. Many time-to-event data sets with multiple end points can be reduced to this generic
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structure. Unlike the survival or competing risk models, this model is not necessarily Markovian since
the prognosis for an individual in the intermediate state may be influenced by the subject’s specific
arrival time. Traditionally, the Markov assumption is checked by including covariates depending on
the history. In the particular case of the colon cancer data set, we are interested in assessing if the
transition rate from the recurrence state into death is unaffected by the time spent in the previous
state. This global test for the Markov assumption can be done using the function PHM.test. A brief
description of the arguments of this function is shown in Table 2. Results for this global test of our
data indicated that the effect of the time spent in State 1 is not significant (p-value of 0.154), revealing
no evidence against the Markov model for the colon data. The corresponding input codes are the
following:

> res <- PHM.test(data = db_long, from = 2, to = 3)
[1] 0.1543195
> res
$p.value
[1] 0.1543195
$from
[1] 2
$to
[1] 3

Argument Description
data A data frame in the long format containing the subject id; from cor-

responding to the starting state; the receiving state, to; the transition
number, trans; the starting time of the transition given by Tstart;
the stopping time of the transition, Tstop, and status (for the status
variable, with 1 indicating an event (transition), 0 a censoring).

from The starting state of the transition to check the Markov condition.
to The last state of the considered transition to check the Markov condi-

tion.

Table 2: Summary of the arguments of the function PHM.test.

In the markovMSM package the local test proposed in Section 2.2.2 is performed using function
AUC.test, through argument type='local'. A summary of the arguments of this function is presented
in Table 3.

The input commands to perform the AUC local test, for a fixed time s = 180 and transitions 1→2
and 1→3 are the following:

> set.seed(1234)
> res2 <- AUC.test(data = db_long, times = 180, from = 1, to = 3, type = 'local',

replicas = 100, tmat = tmat)
> res2$localTest

s 1->1 1->2 1->3
1 180 0.2902191 0.002982042 0.002992007

As a result, the function AUC.test returns the probability values for all attainable transitions from
the initial state. To obtain the same local test for transition 2→3, we only need to put 2 in the parameter
from as follows:

> set.seed(1234)
> res3 <- AUC.test(data = db_long, times = 180, from = 2, to = 3, type = 'local',

replicas = 100, tmat = tmat)
> res3$localTest

s 2->2 2->3
1 180 0.02547708 0.04816232

Results reveal a possible failure of the Markov assumption with low probability values for tran-
sitions 1→2 and 2→3 for s = 180 (less than 5%). These findings agree with the results depicted in
Figure 2, which reports the estimated transition probabilities. In fact, we can observe departures be-
tween the two Markov-free estimators (LM and LMAJ) and the Aalen-Johansen estimator (AJ) revealing a
possible failure of the Markov assumption. The input commands to obtain the plots shown in Figure 2
are the following:

> plot(res2, to = 2, axis.scale = c(0,0.25), difP = FALSE) #Figure 2 (Left column)
> plot(res3, to = 3, axis.scale = c(0,1), difP = FALSE) # Figure 2 (Right column)
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Argument Description
data A data frame in the long format containing the subject id; from cor-

responding to the starting state; the receiving state, to; the transition
number, trans; the starting time of the transition given by Tstart;
the stopping time of the transition, Tstop, and status for the status
variable, with 1 indicating an event (transition), 0 a censoring.

from The starting state of the transition probabilities.
to The last receiving state considered for the estimation of the transition

probabilities. All the probabilities among the first and the last states
are also computed.

type Type of test for checking the Markov condition: local or global. By
default type='global'.

times For the local test, times represents the starting times of the transition
probabilities. In case of a global test, the argument is given by times
between the minimum time and the third quartile times used in the
formula of this test. Default to NULL.

quantiles Quantiles used in the formula of the global test for the AUC methods.
tmat The transition matrix for multi-state model.
replicas Number of bootstrap samples to standardization of the T-statistic

given by the difference of the areas of AJ and LMAJ transition probabili-
ties estimates.

limit Percentile of the event time used as the upper bound for the computa-
tion of the AUC-based test.

positions List of possible transitions; x[[i]] consists of a vector of state numbers
reachable from state i.

namesStates A character vector containing the names of either the competing risks
or the states in the multi-state model specified by the competing risks
or illness-death model. names should have the same length as the list
x (for transMat), or either K or K + 1 (for trans.comprisk), or 3 (for
trans.illdeath).

timesNames Either 1) a matrix or data frame of dimension n × S (n being the num-
ber of individuals and S the number of states in the multi-state model),
containing the times at which the states are visited or last follow-up
time, or 2) a character vector of length S containing the column names
indicating these times. In the latter cases, some elements of time may
be NA

status Either 1) a matrix or data frame of dimension n × S, containing, for
each of the states, event indicators taking the value 1 if the state is
visited or 0 if it is not (censored), or 2) a character vector of length S
containing the column names indicating these status variables. In the
latter cases, some elements of status may be NA

Table 3: Summary of the arguments of function AUC.test.

Putting the parameter difP=TRUE, we can also obtain the discrepancy between the Aalen-Johansen
estimator (Markovian) and the landmark non-Markovian estimator (LMAJ), for p12(s, t) and p23(s, t),
for s = 180, measured through Dhj = p̂AJhj (s, t) − p̂ LMAJ

hj (s, t), h = 1, 2, j = h + 1. The 95% point-
wise confidence limits were obtained using a simple bootstrap (Figure 3). The corresponding input
commands in this case are the following:

> plot(res2, to = 2, axis.scale = c(-0.03,0.03), difP = TRUE) #Figure 3 (Left column)
> plot(res3, to = 3, axis.scale = c(-0.30,0.10), difP = TRUE) #Figure 3 (Right column)

The plots in Figure 3 can be thought of as graphical local tests for the Markov assumption. As
expected, in both cases they reveal differences between the two methods for s = 180 since they show a
clear deviation with respect to the horizontal line y = 0. From these, one gets some (graphical) evidence
of the lack of Markovianity of the underlying process beyond half a year after surgery. Therefore, for
this specific time, the application of the Aalen-Johansen method may not be recommended here, due
to possible biases.

In Section 2, a global test was also introduced that combines the probability values of the local
test over different times (given by the percentiles of the sojourn time in State 1). In the markovMSM
package, this can be obtained using the function AUC.test. The arguments for this function are
described in Table 3. Some examples of how to perform the proposed AUC global test are shown
in the following input commands, in which we consider the default percentiles in the argument
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Figure 2: Estimated transition probabilities for the Aalen-Johansen (AJ) and Markov-free estimators
(landmark and landmark Aalen-Johansen) using data from a colon cancer for s = 180. The displayed
curves reveal a possible failure of the Markov assumption due to the departures between the LM and
AJ estimates.

quantiles. Depending on the number of replicas, the implementation of the AUC.test function can be
computationally time-consuming.

> set.seed(1234)
> res4 <- AUC.test(data = db_long, from = 1, to = 3, type = 'global', replicas = 100,

tmat = tmat)

> round(res4$globalTest,3)
1->1 1->2 1->3

1 0.067 0.012 0.012

> set.seed(1234)
> res5 <- update(res4, from = 2)
> round(res5$globalTest,3)

2->3
1 0.006

Results reported by the first command lines provide the probability values for the global test based
on the AUC for the three transitions leaving State 1 (i.e., 1 → 1, 1 → 2 and 1 → 3). As expected, a
higher probability value was obtained for transition 1→1 than the two remaining transitions, revealing
evidence against the Markov condition. Results reported in the second set of input commands agree
with previous findings, reporting a probability value of 0.006 for 2→3. Among the objects saved by
this function, AUC.test displays the probability values for each percentile time (default to 5, 10, 20, 30,
and 40) through the following codes:

> round(res4$localTest,3)
s 1->1 1->2 1->3

1 102.4 0.978 0.081 0.081
2 173.0 0.118 0.025 0.025
3 290.6 0.015 0.000 0.000
4 469.2 0.679 0.056 0.056
5 726.8 0.635 0.176 0.176

> round(res5$localTest,3)
s 2->2 2->3

1 102.4 0.015 0.015
2 173.0 0.011 0.011
3 290.6 0.000 0.000
4 469.2 0.050 0.050
5 726.8 0.156 0.156

These outputs show, for instance, that the probability value of the AUC local test reveal the fail of
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Figure 3: A local graphical test for the Markov condition for colon cancer data, for s = 180, based on
the discrepancy between the Aalen-Johansen estimator (Markovian) and the Markov-free estimator
(LMAJ) for each time from s. Bootstrap resamples were used to determine the 95% confidence interval.
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Figure 4: Local graphical test for the Markov condition for colon cancer data, for s equal to 290.6, the
third percentile of the sojourn time in the initial state. Transition 1→2 is shown on the left hand side,
and transition 2→3 is shown on the right hand side.

the Markovian assumption for the third percentile time (p-value < 0.001). Plots with the graphical
local tests for the respective quantiles can be easily obtained using the following input commands:

> plot(res4, quantileOrder = 3, to = 2, axis.scale = c(-0.04, 0.02))
#Figure 4 (Left column)

> plot(res5, quantileOrder = 3, to = 3, axis.scale = c(-0.20, 0.10))
#Figure 4 (Right column)

The plots shown in Figure 4 display the differences between the AJ and LMAJ estimates for the third
quantile (quantileOrder) of the sojourn time in the initial state being in accordance with the p-values
obtained in the local tests.

Often, multi-state models include covariates, and it may be the omission of covariate effects that
induces apparent non-Markovianity. The methods proposed in this paper can also deal with this
problem since discrete covariates can be included in the estimation of the transition probabilities
phj(s, t) by splitting the sample for each level of the covariate and repeating the described procedures
for each subsample. As an example, the following input codes show how to obtain the AUC global for
individuals with the treatment ‘Obs’ of covariate ‘rx’. To this end, we start to filter the wide data set
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Argument Description
data Multi-state data in msdata format, which is created from the mstate

package. It should also contain (dummy coding of) the relevant co-
variates; no factors allowed.

times Grid of time points at which to compute the statistic.
from The starting state of the transition to check the Markov condition.
to The last state of the considered transition to check the Markov condi-

tion.
replicas The number of wild bootstrap replications. This method, proposed

by Wu (1986) is commonly applied to solve problems related to het-
erocedasticity. Beyersmann and Allignol (2012) found better small
sample results using centered Poisson random variables rather than
standard normal weights. For further information on the usage of the
wild bootstrap, see Titman and Putter (2020).

formula Right-hand side of the formula. If NULL will fit with no covariates
(formula="1" will also work), offset terms can also be specified.

fn A list of summary functions to be applied to the individual zbar traces
(or a list of lists).

fn2 A list of summary functions to be applied to the overall chi-squared
trace.

dist Distribution of wild bootstrap random weights, either poisson for
centred Poisson (default), or normal for standard normal.

min_time The minimum time for calculating optimal weights.
other_weights Other (than optimal) weights can be specified here.

Table 4: Summary of the arguments of the function LR.test.

colonMSM and run the prepMSM function to obtain the subgroups of the new data in the format long. At
least, we just need to use the AUC.test function for the specific transitions as follows:

> db_wide_obs <- db_wide[db_wide$rx == 'Obs',]
> db_long_obs <- prepMSM(data = db_wide_obs, trans, timesNames, status)
> set.seed(12345)
> res4.obs <- AUC.test(data = db_long_obs, times = 365, from = 1, to = 3,

type='local', replicas = 100, tmat = tmat)
> res4.obs$localTest

s 1->1 1->2 1->3
1 365 0.6295861 0.0003563306 0.0004307342

> set.seed(12345)
> res5.obs <- AUC.test(data = db_long_obs, times = 365, from = 2, to = 3,

type = 'local', replicas=100, tmat = tmat)
> res5.obs$localTest

s 2->2 2->3
1 365 5.935795e-05 0.0001894722

The markovMSM package can also be used to compute the results of the global and local tests
proposed by Titman and Putter (2020) which are based on log-rank statistics. A summary of the
arguments of the LR.test function is shown in Table 4. The following input commands illustrate the
usage of LR.test function to implement these tests:

> set.seed(1234)
> res6 <- LR.test(data = db_long, times = 180, from = 2, to = 3, replicas = 1000)
> res6$globalTestLR
[1] 0.047

As we can see, the probability value of the global tests based on the log-rank statistics confirms the
possible failure of Markovianity for lower values of s (P=0.047 < 0.05).
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Figure 5: A six-state model given by the Blood and Marrow Transplantation (EBMT) data set for
leukemia patients after bone marrow transplantation.

Tests for Markov assumption for more complex multi-state models

In this section, we use two data sets to illustrate the extension of the previous functions to more
complex multi-state models. As a first example, we consider the data of 2279 patients transplanted by
the European Society for Blood and Marrow Transplantation (EBMT) and, as a second example, data
from liver cirrhosis patients subjected to prednisone treatment. Further details on the description of
the data can be found in Putter et al. (2007) and Andersen et al. (1993), respectively.

The steps taken in the analysis are quite similar to those introduced for the illness-death model. To
extend the proposed local and global tests to more complex models, we make use of the LMAJ estimator
that produces consistent estimates of the transition probabilities in the case of non-Markovianity of
the process.

We start by considering the data set comprising 2279 patients who suffered from blood cancers
and who were treated at the EBMT between 1985 and 1998 after a transplant. The movement of the
patients among the six states can be modeled through the multi-state model with the following six
states: ‘Alive and in remission, no recovery or adverse event’ (state 1); ‘Alive in remission, recovered
from the treatment’ (state 2); ‘Alive in remission, occurrence of the adverse event’ (state 3); ‘Alive,
both recovered and adverse event’ (state 4); ‘Alive, in relapse’ (treatment failure) (state 5) and ‘Dead
(treatment failure)’ (state 6). In total, there are 12 transitions: three intermediate events given by
recovery (Rec), adverse event (AE) and a combination of the two (AE and Rec), and two absorbing
states: relapse and death (Figure 5).

Since the original data ebmt4 is in the wide format, before implementing a global test we need to
convert it into the long format using functions transMatMSM, prepMSM before using function AUC.test
with the argument type='global':

> data("ebmt4")
> db_wide <- ebmt4
> positions <- list(c(2, 3, 5, 6), c(4, 5, 6), c(4, 5, 6),

c(5, 6), c(), c())
> state.names <- c("Tx", "Rec", "AE", "Rec+AE", "Rel", "Death")
> tmat <- transMatMSM(positions, state.names)
> timesNames <- c(NA, "rec", "ae","recae", "rel", "srv")
> status <- c(NA, "rec.s", "ae.s", "recae.s","rel.s", "srv.s")
> trans <- tmat
> db_long <- prepMSM(data = db_wide, trans, timesNames, status)
> db_long[1:10,]

Data:
id from to trans Tstart Tstop time status

1 1 1 2 1 0 22 22 1
2 1 1 3 2 0 22 22 0
3 1 1 5 3 0 22 22 0
4 1 1 6 4 0 22 22 0
5 1 2 4 5 22 995 973 0
6 1 2 5 6 22 995 973 0
7 1 2 6 7 22 995 973 0
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Figure 6: A reversible illness-death model from the data set of patients with liver cirrhosis subjected to
prednisone treatment. Reversible transitions are possible in transient states defined by prothrombin
levels.

8 2 1 2 1 0 12 12 0
9 2 1 3 2 0 12 12 1
10 2 1 5 3 0 12 12 0

> set.seed(1234)
> res7 <- AUC.test(data = db_long, from = 1, to = 5, type = 'global',

quantiles = c(0.05, 0.10, 0.20, 0.30, 0.40),
tmat = tmat, replicas = 100,
positions = positions, namesStates = state.names,
timesNames = timesNames, status = status)

> round(res7$globalTest, 4)
1->1 1->2 1->3 1->4 1->5

1 0.1417 0.0094 0.0231 0.099 0.0068

> round(res7$localTests,4)
s 1->1 1->2 1->3 1->4 1->5

1 9.9 0.2822 0.6030 0.0176 0.0848 0.0137
2 12.0 0.2833 0.5230 0.0285 0.4643 0.0000
3 15.0 0.0001 0.2106 0.0398 0.0191 0.1193
4 18.0 0.4584 0.0041 0.1763 0.1789 0.0240
5 21.0 0.0060 0.0147 0.4673 0.2363 0.4796

The interpretation of the output for the global test and for local tests of the five percentile times
is similar to that shown for the illness-death model. Thus, object res7 is used to get a list with
components giving the probability values for the Markov test for all transitions leaving State 1 (i.e.,
for 1→ j with j ∈ {1, 2, 3, 4, 5}). For instance, the probability value of 0.0094 corresponds to the result
of the AUC global test for transition 1→2, while 0.0147 is the probability value for the local test, for
s = 21 for the same transition.

The proposed methods can also be used in reversible multi-state models such as those applied
to the data set of liver cirrhosis patients who were included in a randomized clinical trial at several
hospitals in Copenhagen between 1962 and 1974. The study aimed to evaluate whether a treatment
based on prednisone prolongs survival for patients with cirrhosis Andersen et al. (1993). State 1
corresponds to ‘normal prothrombin level’, State 2 to ‘low (or abnormal) prothrombin level’, and
State 3 to ‘dead’. The movement of the patients among these three states can be modeled using the
reversible illness-death model shown in Figure 6. The input commands for the local and global tests of
the AUC and Log-rank tests are presented as a vignette in the markovMSM package.

4 Conclusions

This paper discusses the implementation in R of new methods for checking the Markov assumption in
multi-state models proposed by Soutinho and Meira-Machado (2021). Instead of testing, as usual, the
Markovianity of the multi-state process by including covariates depending on the history, Soutinho
and Meira-Machado (2021) propose global and local tests based on the comparison between estimated
transition probabilities. This can be done by measuring the discrepancy between the Aalen-Johansen
estimator, which gives consistent estimators in Markov processes, and recent approaches that do not
rely on this assumption, given by the Landmark and the Landmark Aalen-Johansen estimators.
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The use of local tests is recommended whenever the goal is to estimate the transition probabilities
and, in particular, decide which estimator is the most appropriate to use: the Aalen-Johansen estimator
or a robust estimator. A global test, such as the test proposed here, might be preferable for regression
purposes. To this end, a common simplifying strategy is to decouple the whole process into various
survival models. Then, for all permitted transitions, the transition intensities may be modeled using
separate Cox models, assuming the process to be Markovian (also known as the clock forward
modeling approach). When the test rejects the Markov assumption, one alternative approach is to use
a semi-Markov Cox model in which the future of the process does not depend on the current time but
rather on the duration of the current state.

A brief summary of the theory underlying these methods has been provided, along with an
extensive review of the current literature. A detailed usage of the three main functions that compose
the markovMSM package, AUC.test, LR.test and PHM.test are illustrated using three real data sets:
colonIDM, ebmt4 and prothr. Whereas the first data enables the application of the Markov tests to an
illness-death model, the last two cases show how to extend the proposed methods to more complex
multi-state models (with more than three states or with reversible transitions). The comparison of the
proposed tests to the new methods given by the log-rank test described by Titman and Putter (2020) is
also shown. We also present approaches to validate the suspicion of the failure of the Markovianity of
the process using graphical tests. The markovMSM package is available at the first author’s GitHub
repository as well as the CRAN repository at https://cran.r-project.org/web/packages/markovMSM.
Further details on the usage of its functions can be obtained from the corresponding help pages.
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Robust Functional Linear Regression Models
by Ufuk Beyaztas and Han Lin Shang

Abstract With advancements in technology and data storage, the availability of functional data whose
sample observations are recorded over a continuum, such as time, wavelength, space grids, and depth,
progressively increases in almost all scientific branches. The functional linear regression models,
including scalar-on-function and function-on-function, have become popular tools for exploring the
functional relationships between the scalar response-functional predictors and functional response-
functional predictors, respectively. However, most existing estimation strategies are based on non-
robust estimators that are seriously hindered by outlying observations, which are common in applied
research. In the case of outliers, the non-robust methods lead to undesirable estimation and prediction
results. Using a readily-available R package robflreg, this paper presents several robust methods build
upon the functional principal component analysis for modeling and predicting scalar-on-function and
function-on-function regression models in the presence of outliers. The methods are demonstrated via
simulated and empirical datasets.

1 Introduction

The interest and need for developing statistical methods for analyzing functional data have increased
in the last few decades. There have been many recent theoretical and applied developments in
functional data analysis tools (see Ramsay and Dalzell, 1991; Ramsay and Silverman, 2002, 2006;
Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Cuevas, 2014; Hsing and Eubank, 2015; Marron
et al., 2015; Srivastava and Klassen, 2016; Dryden and Mardia, 2016; Kokoszka and Reimherr, 2017).
Among many others, the scalar-on-function linear regression model (SFLRM), where the response is
scalar-valued and predictor(s) consist of random functions (see Cardot et al., 1991, 2003; James, 2002;
Reiss and Ogden, 2007; Chen et al., 2011; Jiang and Wang, 2011; Goldsmith et al., 2011; Dou et al., 2012;
Tucker et al., 2019; Ahn et al., 2020; Beyaztas and Shang, 2022), and the function-on-function linear
regression model (FFLRM), where both the response and predictor(s) consist of random curves (see
Yao et al., 2005; Harezlak et al., 2007; Şentürk and Müller, 2008; Matsui et al., 2009; Ivanescu et al.,
2015; Scheipl et al., 2015; Chiou et al., 2016; Beyaztas and Shang, 2020), have received considerable
attention among researchers as a tool for exploring the functional relationship between a scalar
response-functional predictors and functional response-functional predictors, respectively. In addition,
please see the available R packages fda (Ramsay et al., 2022) and refund (Goldsmith et al., 2022) for
the implementation of many functional data analysis methods, including SFLRM and FFLRM.

Most of the existing methods developed to estimate the SFLRM and FFLRM are non-robust to
outlying observations, i.e. observations which are generated by a stochastic process with a distribution
different from that of the rest of the observations (see, e.g., Raña et al., 2015). In the case of outliers,
the non-robust methods produce biased estimates; thus, predictions obtained from the fitted models
become unreliable (see, e.g., Zhu et al., 2011; Maronna and Yohai, 2013; Shin and Lee, 2016; Kalogridis
and Aelst, 2019; Boente et al., 2020; Hullait et al., 2021; Beyaztas and Shang, 2022). These methods may
also lack robustness because they are coss-sectional and the fitted mean of the response variable may
not be representative of the underlying data generating process. In this paper, we provide a hands-on
tutorial for the implementation of functional principal component regression based on several robust
approaches ( available in the R package robflreg), for robustly modeling and predicting the SFLRM
and FFLRM in the presence of outliers.

The methods available in the robflreg package are centered on the robust functional principal
component analysis (RFPCA) approach of Bali et al. (2011). It uses the robust projection pursuit
approach of Croux and Ruiz-Gazen (1996) combined with a robust scale estimator to produce functional
principal components and the corresponding principal component scores. With this approach, the
infinite-dimensional SFLRM and FFLRM are projected onto a finite-dimensional space of RFPCA
bases. Then, for the SFLRM, the robust estimation methods, including the least trimmed squares
(LTS) of Rousseeuw (1984), MM-type regression estimator (MM) of Yohai (1987) and Koller and Stahel
(2011), S estimator, and the tau estimator of Salibian-Barrera et al. (2008), are used to estimate the
parameter vector of regression model, where the scalar-valued response is predicted by the robust
principal component scores of the functional predictors. For the FFLRM, on the other hand, the robust
estimation methods, including the minimum covariance determinant estimator (MCD) of Rousseeuw
et al. (2004), multivariate least trimmed squares estimator (MLTS) of Bali et al. (2008), MM estimator of
Kudraszow and Moronna (2011), S estimator of Bilodeau and Duchesne (2000), and the tau estimator
of Ben et al. (2006), are used to estimate the parameter matrix of the regression model between the
robust principal component scores of the functional response and the functional predictor variables.
Besides the robust procedures, the package robflreg allows for non-robust estimation of the functional
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principal component regression model using the classical functional principal component analysis
(FPCA) of Ramsay and Silverman (2006) and the least-squares estimator.

The remainder of this paper is organized as follows. The SFLRM and FFLRM, as well as the
techniques used for modeling and predicting these regression models, are reviewed and implemented
using the robflreg package. Some ideas on how the available R package robflreg can be further
improved are given at the end.

2 Functional linear regression models

We present the SFLRM and FFLRM, respectively.

The SFLRM

We consider a random sample {Yi,X i(s) : i = 1, . . . , n} from the pair (Y,X ), where Y ∈ R is the
scalar response and X = [X1(s), . . . ,XP(s)]⊤ with Xp(s) ∈ L2[0, I ], ∀ p = 1, . . . , P is the vector
of P set of functional predictors whose sample elements are denoted by curves belonging to L2
Hilbert space, denoted by H, with bounded and closed interval s ∈ I . We assume that the functional
predictors Xp(s), for p = 1, . . . , P, have finite second-order moments, i.e., E[∥Xp(s)∥] < ∞. Without
loss of generality, we also assume that Y and Xp(s), for p = 1, . . . , P, are mean-zero processes, so that
E[Y] = E[Xp(s)] = 0 and s ∈ [0, 1]. Then, the SFRM is defined as follows:

Yi =
∫ 1

0
X⊤

i (s)β(s)ds + ϵi, (1)

where βp(s) ∈ L2[0, 1] is the regression coefficient function linking Y with Xp(s), and β(s) =

[β1(s), . . . , βP(s)]⊤ ∈ LP
2 [0, 1], and ϵi is the error term which is assumed to follow a Gaussian distribu-

tion with mean-zero and variance σ2.

Simulation of a dataset for the SFLRM

The function generate.sf.data() in the package robflreg allows to simulate a dataset for the SFRM (1)
as follows:

generate.sf.data(n, n.pred, n.gp, out.p = 0)

Here, the argument n denotes the number of observations for each variable to be generated, n.pred
denotes the number of functional predictors to be generated, n.gp denotes the number of grid points
(i.e. the number of breaks in a fine grid on the interval [0, 1]), and out.p is a number between 0
and 1, denoting percentage of outliers in the generated data. In the data generation process, first,
generate.sf.data() simulates the functional predictors based on the following process:

X (s) =
5

∑
j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√

aj−3/2, where
a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The regression coefficient functions are generated from a coefficient space that includes ten different
functions, such as b sin(2πt) and b cos(2πt), where b is generated from a uniform distribution between
1 and 3. The error process is generated from the standard normal distribution. Finally, the scalar
response is obtained using (1). Suppose outliers are allowed in the generated data, i.e., out.p > 0.
Then, the randomly selected n × out.p cases are generated differently from the process mentioned
above. In more detail, if out.p > 0, the regression coefficient functions (possibly different from the
previously generated coefficient functions) generated from the coefficient space with b∗ (instead of b),
where b∗ is generated from a uniform distribution between 3 and 5, are used to generate the outlying
observations. Further, in this case, the following process is used to generate functional predictors:

X ∗(s) =
5

∑
j=1

κ∗j ν∗j (s),
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where κ∗j is a vector generated from a Normal distribution with mean one and variance
√

aj−1/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

Moreover, the error process is generated from a normal distribution with mean of zero and a variance
of one. A graphical display of the generated dataset with five functional predictors and n = 400
observations at 101 equally spaced points in the interval [0, 1] obtained by generate.sf.data() is
presented in Figure 1.
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Figure 1: Plots of the simulated scalar response and the functional predictor variables. a) Observations
generated under the main data generating process (black) and outlier points (grey). b-f) Curves of the
functional predictors generated under the main data generating process (black) and outlier curves
(grey).

Figure 1 can be produced by the following code (refer to the supplement code file for all the
reproducible code):

library(robflreg)
library(fda.usc)
set.seed(202)

# Generate a dataset with five functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)

# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X
# Regression coefficient functions
coeffs <- sim.data$f.coef
# Plot the scalar response
out.indx <- sim.data$out.indx
plot(Y[-out.indx,], type = "p", pch = 16, xlab = "Index", ylab = "",
main = "Response", ylim = range(Y))
points(out.indx, Y[out.indx,], type = "p", pch = 16, col = "blue")
# Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "", col = "black",

main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey")
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The FFLRM

Let us consider a random sample {Yi(t),X i(s): i = 1, 2, . . . n} from the pair (Y ,X ), where Y ∈ L2[0, 1]
is the functional response and X = [X1(s), . . . ,XP(s)]⊤ with Xp(s) ∈ L2[0, 1], ∀ p = 1, . . . , P is the
vector of P set of functional predictors. We assume that the functional response and functional
predictors have finite second-order moments, i.e., E[∥Y(t)∥] = E[∥Xp(s)∥] < ∞, for p = 1, . . . , P.
Without loss of generality, we also assume that both Y(t) and Xp(s), for p = 1, . . . , P, are mean-zero
processes, so that E[Y(t)] = E[Xp(s)] = 0. Then, the FFRM is defined as follows:

Yi(t) =
∫ 1

0
X⊤

i (s)β(s, t)dsdt + ϵi(t), (2)

where βp(s, t) ∈ L2[0, 1] is the bivariate regression coefficient function linking Y(t) with Xp(s), and
β(s, t) = [β1(s, t), . . . , βP(s, t)]⊤ ∈ LP

2 [0, 1], and ϵi(t) ∈ L2[0, 1] is the error term which is assumed to
be independent of Xp(s), for p = 1, . . . , P and E[ϵi(t)] = 0.

Simulation of a dataset for the FFLRM

The function generate.ff.data() allows for the simulation of a dataset for the FFLRM as follows:

generate.ff.data(n.pred, n.curve, n.gp, out.p = 0)

Similar to the generate.sf.data(), n.pred denotes the number of functional predictors to be gener-
ated, n.curve denotes the number of observations for each functional variable to be generated, n.gp
denotes the number of grid points, and out.p is an integer between 0 and 1, denoting the outlier
percentage in the generated data. When generating a dataset, first, the function generate.ff.data()
first simulates the functional predictors via the following process:

X (s) =
5

∑
j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√

aj−1/2, where
a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The bivariate regression coefficient functions are generated from a coefficient space that includes ten
different functions such as b sin(2πs) sin(πt) and be−3(s−0.5)2

e−4(t−1)2
, where b is generated from a

uniform distribution between 1 and 3. The error process ϵ(t), on the other hand, is generated from the
Ornstein-Uhlenbeck process:

ϵ(t) = l + [ϵ0(t)− l]e−θtσ
∫ t

0
e−θ(t−u)dWu,

where l, θ > 0, σ > 0 are real constants, ϵ0(t) is the initial value of ϵ(t) taken from Wu, and Wu is
the Wiener process. If outliers are allowed in the generated data, i.e., out.p > 0, then, the randomly
selected n × out.p cases are generated differently from the process mentioned above. In more detail,
if out.p > 0, the regression coefficient functions (possibly different from the previously generated
coefficient functions) generated from the coefficient space with b∗ (instead of b), where b∗ is generated
from a uniform distribution between 1 and 2, are used to generate the outlying observations. In
addition, in this case, the following process is used to generate functional predictors:

X ∗(s) =
5

∑
j=1

κ∗j ν∗j (s),

where κ∗j is a vector generated from a Normal distribution with mean one and variance
√

aj−3/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

A graphical display of the generated dataset with five functional predictors and n = 200 observations
at 101 equally spaced points in the interval [0, 1] obtained by generate.ff.data() is presented in
Figure 2.

Figure 2 can be produced by the following code (refer to the supplement code file for all the
reproducible code):
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Figure 2: Plots of the simulated functional response and functional predictor variables: In the plots, the
black curves denote the observations of the response and functional predictors generated under the
smooth data generation process. The grey curves denote the outlying observations in the functional
variables.

library(robflreg)
library(fda.usc)
set.seed(202)

# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)

# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X
# Regression coefficient functions
coeffs <- sim.data$f.coef
# Plot the scalar response
out.indx <- sim.data$out.indx
fY <- fdata(Y, argvals = seq(0, 1, length.out = 101))
plot(fY[-out.indx,], lty = 1, ylab = "", xlab = "",
main = "Response", mgp = c(2, 0.5, 0), ylim = range(fY))
lines(fY[out.indx,], lty = 1, col = "grey")
# Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "", col = "black",
main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey")

3 Estimation

We first review the classical and robust FPCA methods. Then, we will focus on the robust estimation
of the SFLRM and FFLRM by the functional principal component regression.
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Functional principal component analysis (FPCA)

For a functional random variable X (s), let us denote its covariance function by C(s1, s2) = Cov[X (s1), X (s2)]

satisfying
∫ 1

0

∫ 1
0 C(s1, s2)ds1ds2 < ∞. Then, by Mercer’s Theorem, the following representation holds:

C =
∞

∑
k=1

κkψk(s1)ψk(s2), ∀s1, s2 ∈ [0, 1],

where {ψk(s) : k = 1, 2, . . .} are orthonormal bases of eigenfunctions in L2[0, 1] corresponding to the
non-negative eigenvalues {κk : k = 1, 2, . . .} with κk ≥ κk+1. In practice, most of the variability in
functional variables can be captured via a finite number of the first K eigenfunctions. Thus, the
covariance function of a functional variable is estimated using a pre-determined truncation constant
K. In addition, the orthonormal bases of eigenfunctions are unknown in practice. Thus, they are
approximated via a suitable basis expansion method such as B-spline, which is used in the robflreg
package.

The RFPCA of Bali et al. (2011) follows a similar structure as the classical FPCA, but it uses a robust
scale functional instead of variance. Now let ∥α∥2 = ⟨α, α⟩ denote the norm generated by the inner
product ⟨·, ·⟩. Also, let F [α] denote the distribution of ⟨α,X ⟩ where F is the distribution of X . Then,
for a given M-scale functional σM(F ), the orthonormal bases of eigenfunctions defined by Bali et al.
(2011) are as follows: 

ψk(F ) = arg max
∥α∥2=1

σM(F [α]), k = 1,

ψk(F ) = arg max
∥α∥2=1,α∈Bk

σM(F [α]), k ≥ 2,

where Bk = {α ∈ L2[0, 1] : ⟨α, ψk(F )⟩ = 0, 1 ≤ k ≤ K − 1}. The k-th largest eigenvalue is given by:

κk(F ) = σ2
M(F [ψk]) = max

∥α∥2=1,α∈Bk

σ2
M(F [α]).

Denote by σM(Fn[α]) the functional for σM. Let s2
n : L2[0, 1] → R denote the function of empirical

M-scale functional such that s2(α) = σ2
M(F [α]). Then, the RFPCA estimates of the orthonormal bases

of eigenfunctions for X (s) are given by
ψ̂k(s) = arg max

∥α∥2=1
sn(α), k = 1,

ψ̂k(s) = arg max
α∈B̂k

sn(α), k ≥ 2,

where B̂k =
{

α ∈ L2[0, 1] : ∥α∥ = 1, ⟨α, ψ̂k⟩ = 0, ∀ 1 ≤ k ≤ K − 1
}

. The corresponding eigenvalues,
on the other hand, are given by

κ̂k = s2
n(ψ̂k), k ≥ 1.

Main RFPCA function and its arguments

The main function to obtain the robust estimates of functional principal components and the corre-
sponding principal component scores is called getPCA():

getPCA(data, nbasis, ncomp, gp, emodel = c("classical", "robust"))

In the getPCA() function, the data set is provided in the data argument as a matrix. The grid points of
the functional predictors are provided in the gp argument as a vector. nbasis denotes the number of
B-spline basis expansion functions used to approximate the robust functional principal components.
ncomp specifies the number of functional principal components to be computed. The argument emodel
denotes the method used for functional principal component decomposition. If emodel = "classical",
then the classical functional principal component decomposition is performed. On the other hand,
if emodel = "robust", then the RFPCA method of Bali et al. (2011) is used to obtain the functional
principal components and the corresponding principal component scores. Figure 3 presents the plot of
five functional principal components computed from simulated functional data using RFPCA and
nbasis = 20 B-spline basis expansion functions.

Figure 3 can be produced by the following code:

library(robflreg)
# Generate a dataset with five functional predictors and 200
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Figure 3: Plot of the first five functional principal components of the simulated functional data. The
principal components were obtained using the RFPCA and different colors correspond to different
principal components.

# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)
# Response variable
Y <- sim.data$Y
gpY <- seq(0, 1, length.out = 101) # grid points

# Perform robust functional principal component analysis on the response variable Y
rob.fpca <- getPCA(data = Y, nbasis = 20, ncomp = 5, gp = gpY, emodel = "robust")

# Principal components
PCs <- rob.fpca$PCAcoef

plot(PCs, xlab = "Grid point", ylab = "Values", lty = 1)

Robust estimation of the SFLRM

In the robust estimation of the SFRM, we first consider the principal component decomposition of the
functional predictors as follows:

Xp(s) =
Kp

∑
k=1

ξpkψpk(s),

where Kp is the truncation constant for the p-th functional predictor Xp(s), ψpk(s) is the k-th eigen-
function obtained by the RFPCA of Bali et al. (2011), and ξpk is the corresponding principal component
score, given by:

ξpk =
∫ 1

0
Xp(s)ψpk(s)ds.

In practice, the eigenfunctions are approximated via a basis expansion function such as B-spline.
Let φp(s) denote the B-spline basis expansion function, and Ap = (apl) be an n × L-dimensional
matrix of basis expansion coefficients for the p-th functional predictor variable. In addition, let φ =∫ 1

0 φp(s)φ⊤
p (s)ds and φ1/2 denote the L × L dimensional matrix of inner products between the basis

expansion functions and its square root, respectively. Then, the infinite-dimensional RFPCA of Xp(s)
is equivalent to the multivariate principal component analysis of Apφ1/2 and the k-th eigenfunction is
given by ψpk(s) = φ−1/2vpk, where vpk denotes the p-th eigenvector of the sample covariance matrix
of Apφ1/2 (see, e.g., Ocana et al., 2007, for more information).

If we assume that the p-th regression coefficient function βp(s) admits the similar functional
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principal decomposition as the functional predictors as follows:

βp(s) =
Kp

∑
k=1

bpkψpk(s),

where bpk =
∫ 1

0 βp(s)ψpk(s)ds. Then, the infinite-dimensional SFRM in (1) is approximated by the
finite-dimensional regression model of scalar response on all the functional principal component
scores as follows:

Y =
P

∑
p=1

Kp

∑
k=1

bpkξpk.

Main functions for the robust estimation of a SFRM and their arguments

The main function for robust estimation of SFRMs is called rob.sf.reg():

rob.sf.reg(Y, X, X.scl = NULL, emodel = c("classical", "robust"),
fmodel = c("LTS", "MM", "S", "tau"), nbasis = NULL, gp = NULL, ncomp = NULL)

In the rob.sf.reg() function, the scalar response is provided in the Y argument as an n × 1-
dimensional column vector, where n is the sample size. The functional predictors, on the other hand,
are provided as a list object in the X argument. Each element of X is an n × Lp-dimensional matrix
containing the observations of p-th functional predictor Xp(s), where Lp is the number of grid points
for Xp(s). The rob.sf.reg() function also allows for scalar predictors, which can be provided in the
X.scl as an n × R-dimensional matrix, where R denotes the number of scalar predictors. In this case,
the following SFRM is considered:

Yi =
∫ 1

0
X⊤

i (s)β(s)ds + X.scliγ + ϵi,

where γ denotes the vector of coefficients for the scalar predictors’ matrix. The functional principal
component decomposition method is provided in the emodel argument. If emodel = "classical",
then the classical functional principal component decomposition is performed to obtain principal
components and the corresponding principal component scores. The coefficient vector of the regression
problem of scalar response on the principal component scores is estimated via the least-squares
method. If emodel = "robust", then the RFPCA of Bali et al. (2011) is performed to obtain the
principal components and the corresponding principal component scores. In this case, the method
used to estimate the coefficient vector of the regression problem constructed by the scalar response
and principal component scores is provided in the fmodel argument. One of the methods among
LTS, MM, S, and tau can be chosen to estimate the parameter vector (by specifying, for example,
fmodel = tau"). The number of B-spline basis expansion functions used to approximate the functional
principal components are provided in the nbasis argument as a vector with length p. Suppose nbasis
= NULL, then min(20, Lp/4) number of B-spline basis expansion functions are used for each functional
predictor. The grid points for the functional predictors are provided in the gp argument as a list object.
The p-th element of gp is a vector containing the grid points of the p-th functional predictor Xp(s). If
gp = NULL, then Lp equally spaced time points in the interval [0, 1] are used for the p-th functional
predictor. The number of principal components to be computed for the functional predictors are
provided in the ncomp argument as a vector with length P. If ncomp = NULL, then, for each functional
predictor, the number whose usage results in at least 95% explained variation is used as the number of
principal components.

The function get.sf.coeffs() can be used to obtain the estimated regression coefficient functions
from a fitted functional principal component regression:

get.sf.coeffs(object)

In this function, the argument object is the output object obtained using the function rob.sf.reg().
The function get.sf.coeffs() produces a list object whose p-th element is a vector with length Lp
containing the p-th regression coefficient function βp(s).

The plots of the estimated regression coefficient functions can be obtained using the function
plot_sf_coeffs():

plot_sf_coeffs(object, b)

In Figure 4, the plots of the regression coefficient functions obtained from simulated data (outlier-
contaminated) using RFPCA and MM estimator, as well as the classical functional principal component
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regression, are presented. In this function, the argument object is the output object obtained by
the function get.sf.coeffs(). On the other hand, the argument b is an integer value indicating
which regression parameter function to plot. It is clear from this figure that, compared with the
classical functional principal component regression, the robust approach produces estimated parameter
functions which are more similar to the true parameter functions.
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Figure 4: A plot of the estimated regression coefficient functions obtained from simulated data (outlier-
contaminated) using RFPCA and MM estimator and the classical functional principal component
regression. Blue lines denote the true parameter functions. On the other hand, black and red lines
denote the estimated parameter functions by the classical functional principal component regression
and robust MM-based functional principal component regression, respectively.

The following code can be used to produce this figure and the results (refer to the supplement
code file for all of the reproducible code):

library(robflreg)
# Generate a dataset with three functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
set.seed(202)
sim.data <- generate.sf.data(n = 400, n.pred = 3, n.gp = 101, out.p = 0.1)

# True parameter functions
true.b1 <- sim.data\$f.coef[[1]]
true.b2 <- sim.data\$f.coef[[2]]
true.b3 <- sim.data\$f.coef[[3]]

# Response variable
Y <- sim.data\$Y
# Predictors
X <- sim.data\$X

gp <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a functional principal component regression model for the generated data
# using the classical functional principal component analysis method:
classical.fit <- rob.sf.reg(Y, X, emodel = "classical", gp = gp)

# Fit a functional principal component regression model for the generated data
# using the robust functional principal component analysis method and tau estimator:
robust.fit <- rob.sf.reg(Y, X, emodel = "robust", fmodel = "MM", gp = gp)

# Estimated regression coefficient functions
classical.coefs <- get.sf.coeffs(classical.fit)
robust.coefs <- get.sf.coeffs(robust.fit)

# The first estimated regression coefficient function
plot_sf_coeffs(object = classical.coefs, b = 1)
lines(gp[[1]], robust.coefs\$coefficients[[1]], col = "red")
lines(gp[[1]], true.b1, col = "blue", lwd = 2)
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Robust estimation of the FFLRM

Let us consider the functional principal decompositions of both the functional response and functional
predictor variables as follows:

Y(t) =
K

∑
k=1

ζkϕk(t), Xp(s) =
Kp

∑
j=1

ξpjψpj(s),

where ϕk(t) and ψpj(s) respectively are the k-th and j-th eigenfunctions of Y(t) and Xp(s) obtained by
the RFPCA and ζk and ξpj are the corresponding principal component scores given by

ζk =
∫ 1

0
Y(t)ϕk(t)dt, ξpj =

∫ 1

0
Xp(s)ψpj(s)ds.

If we assume that the p-th bivariate regression coefficient function βp(s, t) admits the principal
component decomposition with the eigenfunctions ϕk(t) and ψpj(s) as follows:

βp(s, t) =
K

∑
k=1

Kp

∑
j=1

bpkjϕk(t)ψpj(s),

where bpkj =
∫ 1

0

∫ 1
0 βp(s, t)ϕk(t)ψpj(s)dtds. Then, the infinite-dimensional FFRM in (2) is approxi-

mated by the finite-dimensional regression model of principal component scores of the functional
response on all the functional principal component scores as follows:

ζk =
P

∑
p=1

Kp

∑
j=1

bpkjξpj.

Finally, the following regression model is obtained for the functional response

Y(t) =
K

∑
k=1

 P

∑
p=1

Kp

∑
j=1

bpkjξpj

 ϕk(t).

Main functions for the robust estimation of a FFRM and their arguments

The main function to estimate the FFRM robustly is called rob.ff.reg():

rob.ff.reg(Y, X, model = c("full", "selected"), emodel = c("classical", "robust"),
fmodel = c("MCD", "MLTS", "MM", "S", "tau"), nbasisY = NULL, nbasisX = NULL,
gpY = NULL, gpX = NULL, ncompY = NULL, ncompX = NULL)

In the rob.ff.reg() function, the functional response is provided via the Y argument as a matrix.
On the other hand, the functional predictors are provided in the argument X as a list object. Each
element of X is a matrix containing the observations of p-th functional predictor. The model type
to be fitted can be chosen with model argument. If model = "full", then all of the functional
predictors are used in the model. On the other hand, if model = "selected", then only the significant
functional predictor variables, determined by the forward variable selection procedure of Beyaztas
and Shang (2021), are used in the model. The functional principal component decomposition method
is provided via the emodel argument. If emodel = "classical", then the classical functional principal
component decomposition is performed to obtain principal components and the corresponding
principal component scores and the coefficient vector of the regression problem of principal component
scores of the functional response on the principal component scores are estimated via the least-squares
method. If emodel = "robust", then the RFPCA of Bali et al. (2011) is performed to obtain the principal
components and the corresponding principal component scores. In this case, the method used to
estimate the coefficient matrix of the regression problem constructed by the principal component scores
is provided in the fmodel argument. Here, one of the methods, among MCD, MLTS, MM, S, and tau
estimators, can be chosen to estimate the parameter matrix. The number of B-spline basis expansion
functions used to approximate the functional principal components of response and predictor variables
are provided in the nbasisY and nbasisX arguments, respectively. The argument nbasisY is a numeric
value while the argument nbasisX is a vector with length P. Suppose nbasisY = NULL and nbasisX =
NULL, then min(20, Ly) and min(20, Lp) B-spline basis expansion functions are used to approximate
the functional principal components of functional response and p-th the functional predictor, where
Ly and Lp respectively denote the number of grid points for Y(t) and Xp(s). The grid points for the
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functional response and functional predictors are provided in the gpY and gpX arguments, respectively.
The argument gpY is a vector consisting of the grid points of the functional response Y(t). On the other
hand, the argument gpX is a list object, and its p-th element is a vector containing the grid points of the
p-th functional predictor Xp(s). If gpY = NULL and If gpX = NULL, then equally spaced time points in
the interval [0, 1] are used for all the functional variables. The number of functional predictors to be
computed for the functional response and functional predictors are provided in the arguments ncompY
and ncompX, respectively. The argument ncompY is a numeric value while the argument ncompX is a
vector with length P. If ncompY = NULL and ncompX = NULL, then the number whose usage results in
at least 95% explained variation is used as the number of principal components for each functional
variable.

The estimated bivariate regression coefficient functions from a fitted functional principal compo-
nent regression model are obtained by the get.ff.coeffs() function:

get.ff.coeffs(object)

In this function, the argument object is the output object obtained using the function rob.ff.reg().
The function get.ff.coeffs() produces a list object whose p-th element is a matrix containing the
p-th bivariate regression coefficient function βp(s, t).

The image plots of the estimated bivariate regression coefficient functions can be obtained using
the function plot_ff_coeffs():

plot_ff_coeffs(object, b)

In Figure 5, the image plots of the regression coefficient functions obtained from simulated data using
RFPCA and MM estimator are presented. In this function, the argument object is the output object
obtained by the function get.ff.coeffs(). The argument b is an integer value indicating which
regression parameter function is to be plotted.
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Figure 5: Image plots of the estimated bivariate regression coefficient functions obtained from simu-
lated data using RFPCA and MM estimator.

This figure and the results can be produced by the following code (refer to the supplement code
file for all the reproducible code):

library(robflreg)
# Generate a dataset with three functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 3, n.curve = 200, n.gp = 101)
# Response variable
Y <- sim.data$Y
# Predictors
X <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

# Fit a functional principal component regression model for the generated data
# using the RFPCA and MM estimator:
model.fit <- rob.ff.reg(Y, X, model = "full", emodel = "robust",
fmodel = "MM", gpY = gpY, gpX = gpX)
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# Estimated bivariate regression coefficient functions
coefs <- get.ff.coeffs(model.fit)
# Plot the first bivariate regression coefficient function
plot_ff_coeffs(object = coefs, b = 1)

Outlier detection in the functional response

Detection of outliers in functional data is an important problem (see, e.g., Sun and Genton, 2011;
Arribas-Gil and Romo, 2014; Dai and Genton, 2018). From a fitted functional principal compo-
nent regression for scalar response and scalar predictors, the robflr package with the function
rob.out.detect() allows to detection of outliers in the functional response. This is achieved by
applying the function depth-based outlier detection method of Febrero-Bande et al. (2008) together
with the h-modal depth proposed by Cuaves et al. (2007) to the estimated residual functions obtained
from rob.ff.reg() to determine the outliers in the response variable. In the outlier detection algo-
rithm, the threshold value used to identify outliers is determined by the smoothed bootstrap procedure
proposed by Febrero-Bande et al. (2008). The rob.out.detect() is as follows:

rob.out.detect(object, alpha = 0.01, B = 200, fplot = FALSE)

Herein, the argument object is an output object obtained from rob.ff.reg(). alpha, whose default
value is 0.01, denotes the percentile of the distribution of the functional depth. B denotes the number
of bootstrap samples (the default value is B = 200). fplot is a logical argument, if fplot = TRUE, then
the outlying points flagged by the method are plotted along with the values of functional response
Y(t).

To show how the function rob.ff.reg() works, we simulate an outlier-contaminated dataset for
the FFRM. Then, we apply the outlier detection algorithm with the classical FPCA - least squares
estimator and the RFPCA - MM estimator. The plots of the functional response and detected outlying
observations are presented in Figure 6. The results show that the classical method fails to flag 13
outlying curves, while the robust procedure fails to flag only two outlying curves.
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Figure 6: Plots of the functional response and detected outliers: Classical method (left panel) vs. Robust
method (right panel). The detected outlying curves are denoted by black, while the non-outlying
curves are denoted by grey.

The following code can produce the results and Figure 6.

library(robflreg)
# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictors
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X <- sim.data\$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression using least-squares
model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)

# Perform robust functional principal component regression using MM-estimator
model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust", fmodel = "MM",

gpY = gpY, gpX = gpX)

# Detect outliers using rob.out.detect function
rob.out.detect(object = model.classical, fplot = TRUE)
# outlying functions are: 16 56 69 70 71 80 92 96 117 138 140 173 188
rob.out.detect(object = model.MM, fplot = TRUE)
# outlying functions are: 2 16 56 69 70 71 80 82 92 96 117 134 138 140
# 173 188 197 199

# Compare with the original outliers
sort(out.indx)
# [1] 2 16 47 56 69 70 71 80 82 92 96 117 134 138 140 162 173 188 197 199

4 Prediction

We review the prediction problem for a new set of functional predictors based on a fitted functional
principal component regression model.

Prediction for the SFRM

When robustly predicting the unknown values of the scalar response variable for a given new set of
functional predictors (X ∗(s)), the principal component scores of the new set of functional predictors
(ξ∗) are obtained as follows:

ξ∗pk =
∫ 1

0
X ∗

pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA. Then,
the predictions corresponding to the new set of functional predictors are obtained as follows:

Ŷ∗ =
P

∑
p=1

Kp

∑
k=1

b̂pkξ∗pk,

where b̂pk is the estimated parameter vector obtained from the fitted model rob.sf.reg().

Main function for the robust prediction of a SFRM and its arguments

The main function for the robust prediction of a SFRM is called predict_sf_regression():

predict_sf_regression(object, Xnew, Xnew.scl = NULL)

In the function predict_sf_regression(), the argument object is an output object obtained from
rob.sf.reg. The new set of functional predictors is provided in the Xnew argument as a list object
whose p-th element is a matrix denoting the new observations of Xp(s). Xnew must have the same
length and the same structure as the input X of rob.sf.reg. If scalar predictors are used in the SFRM,
then, in the prediction process, the new set of scalar predictors is provided as a matrix in the Xnew.scl
argument. The argument Xnew.scl must have the same length and the same structure as the input
X.scl of rob.sf.reg.

To evaluate the prediction performance of classical and robust methods, we simulate a dataset
with size n = 400 for the SFRM. Then, the simulated data are divided into a training sample with a
size of 280 and a test sample with a size of 120. Random outliers contaminate the training sample, and
both the classical and robust methods with the tau estimator are applied to the training sample to
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predict the values of the response variable in the test sample. To compare both methods, we compute
the mean squared prediction error (MSPE):

MSPE =
1

200

200

∑
i=1

(Y∗
i − Ŷ∗

i )
2,

where Y∗
i and Ŷ∗

i denote the observed and predicted values of the scalar response in the test sample.
Our results indicate that the robust method considerably outperforms the classical method. The MSPE
computed from the classical method is 20.9388, while the MSPE obtained from the robust method is
1.868. The reproducible code to obtain those results is as follows:

library(robflreg)
# Generate a dataset with five functional predictors and 400
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the scalar-on-function regression model
set.seed(202)
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictors
X <- sim.data\$X

# Split the data into training and test samples.
indx.test <- sample(c(1:400)[-out.indx], 120)
indx.train <- c(1:400)[-indx.test]

Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression model using training samples
model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)
# Perform robust functional principal component regression model
# using training samples and tau-estimator
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)
# Predict the observations in Y.test using model.classical
pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)
# Predict the observations in Y.test using model.tau
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)
# Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 2.49 (classical method)
round(mean((Y.test - pred.tau)^2), 4) # 1.1457 (tau method)

Prediction for the FFRM

In the robust prediction of the FFRM for a given new set of functional predictors, as in the scalar-on-
function regression case, the principal component scores of the new set of functional predictors are
first obtained:

ξ∗pk =
∫ 1

0
X ∗

pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA. Then,
the predictions of functional response (Ŷ(t)) corresponding to the new set of functional predictors are
obtained as follows:

Ŷ∗(t) =
K

∑
k=1

 P

∑
p=1

Kp

∑
j=1

b̂pkjξ
∗
pj

 ϕ̂k(t),
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where ϕ̂k(t) is the k-th eigenfunction of the functional response obtained by RFPCA and b̂pkj is the
estimated parameter matrix obtained from the fitted model rob.ff.reg().

Main function for the robust prediction of a FFRM and its arguments

The main function for the robust prediction of a FFRM is called predict_ff_regression():

predict_ff_regression(object, Xnew)

Here, the argument object is an output object obtained from rob.ff.reg. The new set of functional
predictors is provided in the Xnew argument as a list object whose p-th element is a matrix denoting
the new observations of Xp(s). Xnew must have the same length and the same structure as the input X
of rob.ff.reg.

We simulate a dataset with size n = 200 for the FFRM to investigate and compare the prediction
performance of the classical and robust methods. The simulated data are divided into a training
sample with a size of 140 and a test sample with a size of 60. Random outliers contaminate the training
sample, and both the classical and robust methods with MM estimator are applied to the training
sample to predict the values of the response variable in the test sample. To compare both methods, we
compute the following MSPE:

MSPE =
1

100

200

∑
i=1

∥Y∗
i (t)− Ŷ∗

i (t))∥
2
L2

,

where Y∗
i (t) and Ŷ∗

i (t)) denote the observed and predicted values of the functional response in the
test sample. Our results show that the robust method produces a significantly smaller MSPE value
than the classical method. The MSPE computed from the classical method is 3.3213, while the MSPE
obtained from the robust method is 0.5925. The reproducible code to obtain those results is as follows:

library(robflreg)
# Generate a dataset with five functional predictors and 200
# observations at 101 equally spaced point in the interval [0, 1]
# for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data\$out.indx
# Response variable
Y <- sim.data\$Y
# Predictor variables
X <- sim.data\$X
# Split the data into training and test samples.
indx.test <- sample(c(1:200)[-out.indx], 60)
indx.train <- c(1:200)[-indx.test]
Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){
X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

# Perform classical functional principal component regression model using training samples
model.classical <- rob.ff.reg(Y = Y.train, X = X.train, model = "full",

emodel = "classical", gpY = gpY, gpX = gpX)
# Perform robust functional principal component regression
# using training samples and MM-estimator
model.MM <- rob.ff.reg(Y = Y.train, X = X.train, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)
# Predict the functions in Y.test using model.classical
pred.classical <- predict_ff_regression(object = model.classical, Xnew = X.test)
# Predict the functions in Y.test using model.MM
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pred.MM <- predict_ff_regression(object = model.MM, Xnew = X.test)
# Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 1.5705 (classical method)
round(mean((Y.test - pred.MM)^2), 4) # 0.8166 (MM method)

5 Data analysis

We consider the MaryRiverFlow dataset available in the robflreg package to present the superiority
of the robust functional principal component regression models over the classical model when the
dataset includes outliers. The MaryRiverFlow dataset consists of hourly river-flow measurements
obtained from January 2009 to December 2014 (6 years in total) in the Mary River, Australia. River-flow
time series varies throughout the years due to the variation of the seasons and the amount of rainfall
received at particular catchments. This problem still needs to be solved in the hydrological domain to
be addressed appropriately using theoretical models.

Our first aim with the MaryRiverFlow dataset is to assess how the previous river flow curve time
series, Xi(s), affects the current day’s maximum river flow, Yi. Here, the observations of predictor are
assumed to be functions of hours, i.e., there are 2188 functional observations Xi(t)

(
1 ≤ t ≤ 24, i =

1, . . . , 2188
)

while the response is a scalar predictor. A graphical display of the response and predictor
is presented in Figure 7. From this figure, both the scalar response and functional predictor include
clear outliers, which motivates us to apply the robust functional principal component regression
models to better model this dataset.
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Figure 7: Plot of the daily maximum river flow measurement (left panel) and the functional time series
plot (right panel) of the flow level in the Mary River.

Figure 7 can be produced by the following code:

library(robflreg)
library(fda.usc)
data("MaryRiverFlow")
X <- MaryRiverFlow[1:2188,]
Y <- apply(MaryRiverFlow[2:2189,], 1, max)
Day <- seq(as.Date("2009/01/01"), as.Date("2014/12/28"), by="days")
plot(Day, Y, type = "p", pch = 16, ylab = "Level (m)", main = "Response")
X <- fdata(X, argvals = 1:24)
plot(X, lty = 1, ylab = "", xlab = "Hour", col = "black",

main = "Predictor", mgp = c(2, 0.5, 0))

We assume the SFLRM, Yi = β0 +
∫
Xi(s)β(s)ds, where Yi is the maximum river flow measurement

for the current day and Xi(s) is the true river flow measurements recorded in the previous day. An
expanding-window approach is considered to compare the predictive performance of the robust
methods with the classical one. While doing so, The entire data are divided into two parts: a training
sample containing the days from 01/01/2009 to 20/12/2014 and a test sample including days from
21/12/2014 to 30/12/2014. First, the models are constructed using the entire training data to forecast
the maximum river flow measurement on 21/12/2014. Then, the maximum river flow measurement is
forecasted by increasing the training samples by one day. This procedure is repeated until the training
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samples cover the entire dataset. The MSPE is computed for each method, and the computed mean
MSPEs (×10−3) along with standard errors (×10−3 given in bracket) are 7.559 (5.674), 1.635 (1.303),
1.671 (1.376), 1.617 (1.274), and 1.617 (1.274) for the classical, LTS, MM, S, and tau-estimator based
SFLRM, respectively. From the results, all the robust methods produce significantly smaller MSPE
values than the classical method. These results can be obtained by the following code:

library(robflreg)
data("MaryRiverFlow")
MaryRiverFlow <- as.matrix(MaryRiverFlow)
X <- list(MaryRiverFlow[1:2188,])
Y <- apply(MaryRiverFlow[2:2189,], 1, max)
gp <- rep(list(1:24), 1)

MSPE <- matrix(, ncol = 5, nrow = 10)
colnames(MSPE) <- c("classical","LTS","MM","S","tau")
starting_value <- 2178

for(i in 1:10){

# Divide the data into training and test samples
Y.train <- Y[1:starting_value]
Y.test <- Y[(starting_value+1)]

X.train <- list(X[[1]][1:starting_value,])
X.test <- list(matrix(X[[1]][(starting_value+1),], nrow = 1))

# Perform classical and robust functional principal component regression models
model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)
model.LTS <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "LTS", gp = gp)
model.MM <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "MM", gp = gp)
model.S <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "S", gp = gp)
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)

# Predict the maximum river flow measurement of the current day
pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)
pred.LST <- predict_sf_regression(object = model.LTS, Xnew = X.test)
pred.MM <- predict_sf_regression(object = model.MM, Xnew = X.test)
pred.S <- predict_sf_regression(object = model.tau, Xnew = X.test)
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)

# Record the MSPE values
MSPE[i,1] <- (Y.test - pred.classical)^2
MSPE[i,2] <- (Y.test - pred.LST)^2
MSPE[i,3] <- (Y.test - pred.MM)^2
MSPE[i,4] <- (Y.test - pred.S)^2
MSPE[i,5] <- (Y.test - pred.tau)^2
starting_value <- starting_value + 1

}

apply(MSPE, 2, mean); apply(MSPE, 2, sd)

Our second aim with the MaryRiverFlow dataset is to assess how the previous river flow curve
time series, Xi(s) affects the current day’s river flow curve time series, Yi(t). In this case, the elements
of both the response and predictor are assumed to be functions of hours. Here, we assume the FFLRM,
Yi(t) = β0(t) +

∫
Xi(s)β(s, t)dsdt. The similar expanding-window approach used in the SFLRM

example is considered, i.e., the entire dataset is divided into two parts: a training sample containing
the days from 01/01/2009 to 20/12/2014 and a test sample including days from 21/12/2014 to
30/12/2014. The functional principal component regression models are constructed using the entire
training data to forecast the river flow curve time series on 21/12/2014. Then, the river flow curve
time series is forecasted by increasing the training samples by one day. This procedure is repeated
until the training samples cover the entire dataset. The MSPE is computed for each method, and
the computed mean MSPEs (×10−3) along with standard errors (×10−3 given in bracket) are 5.721
(3.884), 1.565 (0.965), 1.377 (0.847), 1.546 (0.949), 1.511 (0.920), and 1.377 (0.849) for the classical, MCD,
MLTS, MM, S, and tau-estimator based FFLRMs, respectively. From the results, the robust methods
produce improved MSPEs over the classical FFLRM, i.e., the robust method models the MaryRiverFlow
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data better than the classical functional principal component regression model. These results can be
obtained by the following code:

library(robflreg)
data("MaryRiverFlow")
MaryRiverFlow <- as.matrix(MaryRiverFlow)

# The following function is used to obtain the functional response and predictor
var_fun = function(data,order){
n = dim(data)[1]
y = data[((order+1):n),]
x=list()
a=1
b=order
for(i in 1:order){
x[[i]] = data[(a:(n-b)),]
a = a+1
b = b-1

}
return(list(x=x,y=y))

}

# Grid points for the functional response and predictor
gpY <- 1:24 # grid points of Y
gpX <- rep(list(1:24), 1) # grid points of Xs

MSPE <- matrix(, ncol = 6, nrow = 10)
colnames(MSPE) <- c("classical","MCD","MLTS","MM","S","tau")
starting_value <- 2179
# In two cases (when i = 3 and i = 6) the covariance is not decomposed.
# Thus, try() is used to ignore these two cases.
for(i in 1:10){
try({
data.i <- MaryRiverFlow[1:starting_value,]
# Obtain the functional response and predictor
XY = var_fun(data=data.i, order=1)
X = XY$x
Y = XY$y

# Perform classical and robust functional principal component regression models
model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)
model.MCD <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MCD", gpY = gpY, gpX = gpX)
model.MLTS <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MLTS", gpY = gpY, gpX = gpX)
model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)
model.S <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "S", gpY = gpY, gpX = gpX)
model.tau <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust",

fmodel = "tau", gpY = gpY, gpX = gpX)
Xnew = list(t(as.matrix(Y[dim(Y)[1],])))

# Predict the maximum river flow measurement of the current day
predict.classical <- predict_ff_regression(object = model.classical, Xnew = Xnew)
predict.MCD <- predict_ff_regression(object = model.MCD, Xnew = Xnew)
predict.MLTS <- predict_ff_regression(object = model.MLTS, Xnew = Xnew)
predict.MM <- predict_ff_regression(object = model.MM, Xnew = Xnew)
predict.S <- predict_ff_regression(object = model.S, Xnew = Xnew)
predict.tau <- predict_ff_regression(object = model.tau, Xnew = Xnew)

# Record the MSPE values
MSPE[i,1] <- mean((predict.classical - MaryRiverFlow[starting_value+1,])^2)
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MSPE[i,2] <- mean((predict.MCD - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,3] <- mean((predict.MLTS - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,4] <- mean((predict.MM - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,5] <- mean((predict.S - MaryRiverFlow[starting_value+1,])^2)
MSPE[i,6] <- mean((predict.tau - MaryRiverFlow[starting_value+1,])^2)
starting_value <- starting_value +1
},silent=T)

}

apply(MSPE, 2, mean, na.rm=TRUE); apply(MSPE, 2, sd, na.rm=TRUE)

6 Conclusion

The R package robflreg provides an implementation of functional principal component regression
model based on several robust procedures to fit and predict SFLRM and FFLRM. These methods
are centered on the RFPCA of Bali et al. (2011), a popular robust dimension reduction technique in
functional data, and several robust regression parameter estimators. In addition, the package robflreg
allows us to fit and predict SFLRM and FFLRM via the classical FPCA and least-squares estimator.
Several simulation examples and empirical data analysis show that the robust procedures provide
better inference for functional linear regression models when outliers are present in the response and
predictor variables. The robflreg package code can be found at: https://github.com/cran/robflreg.

The aspects that the current version of the R package robflreg that may be improved upon in the
future are listed below.

1) In the current version, the scalar predictors are allowed in the SFLRM only. In the next versions
of the package, it is planned to improve the functions rob.ff.reg and predict_ff_regression
to include scalar predictors (whose effects are constant and/or vary along the continuum of the
functional predictor).

2) The current package version does not allow for modeling the function-on-scalar regression
model, where the response consists of random functions, and the predictors include scalar
observations. The robust procedures used in the FFLRM are planned to extend the function-on-
scalar regression model in the subsequent versions of the package.

3) In the current version, the observations of the functional variables are assumed to be densely
observed. In the next versions of the package, the robust methods are planned to extend the
models where the elements of functional variables can also be observed over irregular and
curve-specific grids.
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Fairness Audits and Debiasing Using
mlr3fairness
by Florian Pfisterer, Siyi Wei, Sebastian Vollmer, Michel Lang, and Bernd Bischl

Abstract Given an increase in data-driven automated decision-making based on machine learning
(ML) models, it is imperative that, along with tools to develop and improve such models, there are
sufficient capabilities to analyze and assess models with respect to potential biases. We present the
package mlr3fairness, a collection of metrics and methods that allow for the assessment of bias in
machine learning models. Our package implements a variety of widely used fairness metrics that can
be used to audit models for potential biases, along with a set of visualizations that can help to provide
additional insights into such biases. mlr3fairness furthermore integrates bias mitigation methods for
machine learning models through data pre-processing or post-processing of predictions. These allow
practitioners to trade off performance and fairness metrics that are appropriate for their use case.

1 Introduction

Humans are increasingly subject to data-driven automated decision-making. Those automated proce-
dures, such as credit risk assessments, are often applied using predictive models (Kozodoi, Jacob, and
Lessmann 2022; Galindo and Tamayo 2000), often profoundly affecting individual’s lives. It is therefore
important that, along with tools to develop and improve such models, we also develop sufficient
capabilities to analyze and assess models not only with respect to their robustness and predictive
performance but also with respect to potential biases. This is highlighted by the European General
Data Protection Regulation (GDPR) which requires data to be processed fairly. Popular modelling
frameworks for the R language (R Core Team 2021) such as caret (Kuhn 2021), tidymodels (Kuhn and
Wickham 2020), SuperLearner (Polley et al. 2021), or mlr (Bischl et al. 2016) implement a plethora
of metrics to measure performance, but fairness metrics are widely missing. This lack of availability
can be detrimental to obtaining fair and unbiased models if the result is to forgo bias audits due to
the considerable complexity of implementing such metrics. Consequently, there exists a considerable
necessity for R packages to (a) implement such metrics, and (b) to connect these metrics to existing ML
frameworks. If biases are detected and need to be mitigated, we might furthermore want to employ
bias mitigation techniques that tightly integrate with the fitting and evaluation of the resulting models
in order to obtain trade-offs between a model’s fairness and utility (e.g., predictive accuracy).

In this article, we present the mlr3fairness package which builds upon the ML framework mlr3
(Lang et al. 2019). Our extension contains fairness metrics, fairness visualizations, and model-agnostic
pre- and post-processing operators that aim to reduce biases in ML models. Additionally, mlr3fairness
comes with reporting functionality that assists the user in documenting data and ML models, as well
as in performing fairness audits.

In the remainder of the article, we first provide an introduction to fairness in ML to raise awareness
of biases that can arise due to the use of ML models. Next, we introduce the mlr3fairness package,
followed by an extensive case study, showcasing the capabilities of mlr3fairness. We conclude with a
summary.

2 Fairness in Machine Learning

Studies have found that data-driven automated decision-making systems often improve over human
expertise (Dawes, Faust, and Meehl (1989)) and high-stakes decisions can therefore be enhanced using
data-driven systems. This often does not only improve predictions, but can also make decisions more
efficient through automation. Such systems, often without human oversight, are now ubiquitous
in everyday life (O’neil 2016; Eubanks 2018; Noble 2018). To provide further examples, ML-driven
systems are used for highly influential decisions such as loan accommodations (Chen 2018; Turner
and McBurnett 2019), job applications (Schumann et al. 2020), healthcare (Topol 2019), and criminal
sentencing (Angwin et al. 2016; Corbett-Davies et al. 2017; Berk et al. 2018). With this proliferation,
such decisions have become subject to scrutiny as a result of prominent inadequacies or failures, for
example in the case of the COMPAS recidivism prediction system (Angwin et al. 2016).

Without proper auditing, those models can unintentionally result in negative consequences for
individuals, often from underprivileged groups (Barocas, Hardt, and Narayanan 2019). Several
sources of such biases are worth mentioning in this context: Data often contains historical biases
such as gender or racial stereotypes, that – if picked up by the model – will be replicated into the
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future. Similarly, unprivileged populations are often not represented in data due to sampling biases
leading to models that perform well in groups sufficiently represented in the data but worse on others
(Buolamwini and Gebru 2018) – this includes a higher rate of missing data. Other biases include
biases in how labels and data are measured (Bao et al. 2021) as well as feedback loops where repeated
decisions affect the population subject to such decisions. For an in-depth discussion and further
sources of biases, the interested reader is referred to available surveys of the field (Barocas, Hardt, and
Narayanan 2019; Mehrabi et al. 2021; S. Mitchell et al. 2021).

Quantifying fairness

We now turn to the question of how we can detect whether disparities exist in a model and if so,
how they can be quantified. What constitutes a fair model depends on a society’s ethical values and
which normative position we take, resulting in different metrics that are applied to a problem at hand.
In this article, we focus on a subgroup of these, so-called statistical group fairness metrics. First, the
observations are grouped by a sensitive attribute A (A = 0 vs. A = 1), which, e.g., is an identifier
for a person’s race or a person’s gender. For the sake of simplicity, we consider a binary classification
scenario and a binary sensitive attribute. Each observation has an associated label Y, Y ∈ {0, 1}, and we
aim to predict, e.g., whether a defendant was caught re-offending. A system then makes a prediction
Ŷ, Ŷ ∈ {0, 1}, with the goal to predict whether an individual might re-offend. We assume that Y = 1 is
the favored outcome in the following exposition. While we do not describe them in detail, the concepts
discussed in the following often extend naturally to more complex scenarios including multi-class
classification, regression or survival analysis. Similarly, metrics can be extended to settings that require
consideration of multiple possibly intersecting sensitive attributes. We now provide and discuss
groups of metrics that require either Separation or Independence (Barocas, Hardt, and Narayanan 2019)
to provide further intuition regarding core concepts and possible applications.

Separation

One group of widely used fairness notions requires Separation: Ŷ ⊥ A|Y. In order for separation
to hold, the prediction Ŷ has to be independent of A given the true label Y. This essentially requires
that some notion of model error, e.g., accuracy or false positive rate, is equal across groups A. From
this notion, we can derive several metrics that come with different implications. It is important to
note that those metrics can only meaningfully identify biases under the assumption that no disparities
exist in the data or that they are legally justified. For example, if societal biases lead to disparate
measurements of an observed quantity (e.g. SAT scores) for individuals with the same underlying
ability, separation based metrics might not identify existing biases. For this reason, Wachter, Mittelstadt,
and Russell (2020) refer to those metrics as bias-preserving metrics since underlying disparities are not
addressed.

Equalized Odds A predictor Ŷ satisfies equalized odds with respect to a sensitive attribute A and
observed outcome Y, if Ŷ and A are conditionally independent given Y:

P
(
Ŷ = 1 | A = 0, Y = y

)
= P

(
Ŷ = 1 | A = 1, Y = y

)
, y ∈ {0, 1}. (1)

In short, we require that the true positive rates (TPR) and false positive rates (FPR) across both groups
A = 0 and A = 1 are equal. This intuitively requires, e.g., in the case of university admission,
independent of the sensitive attribute, equal chances for qualified individuals to be accepted and
unqualified individuals to be rejected. Similar measures have been proposed based on equalized
false positive rates (Chouldechova 2017) and false omission rates (Berk et al. 2018), depending on the
scenario and societal context.

Equality of Opportunity A predictor Ŷ satisfies equality of opportunity with respect to a sensitive
attribute A and observed outcome Y, if Ŷ and A are conditionally independent for Y = 1. This is a
relaxation of the aforementioned equalized odds essentially only requiring equal TPRs:

P
(
Ŷ = 1 | A = 0, Y = 1

)
= P

(
Ŷ = 1 | A = 1, Y = 1

)
. (2)

Intuitively, this only requires that, independent of the sensitive attribute, qualified individuals have
the same chance of being accepted.

Performance Parity A more general formulation can be applied when we require parity of some
performance metric across groups. To provide an example, Buolamwini and Gebru (2018) compare
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accuracy across intersectional subgroups, essentially arguing that model performance should be equal
across groups:

P
(
Ŷ = Y | A = 0

)
= P

(
Ŷ = Y | A = 1

)
. (3)

This intuitively requires that the model should work equally well for all groups, i.e., individuals are
correctly accepted or denied at the same rate, independent of the predicted attribute. This notion can
be extended across supervised learning settings and performance metrics, leading to considerations of
equal mean squared error, e.g., in a regression setting.

Independence

The second group of fairness metrics is given by so-called bias-transforming metrics (Wachter, Mittel-
stadt, and Russell 2020). They require that decision rates, such as the positive rate, are equal across
groups. This notion can identify biases, e.g., those which arise from societal biases, that manifest in
different base rates across groups. At the same time, employing such notions poses a considerable risk,
as blindly optimizing for demographic parity might result in predictors that, for example jail innocent
people from an advantaged group in order to achieve parity across both groups (Dwork et al. 2012;
Berk et al. 2018). A predictor Ŷ satisfies demographic parity (Calders and Verwer 2010) with respect to a
sensitive attribute A and observed outcome Y, if Ŷ and A are conditionally independent:

P
(
Ŷ = 1 | A = 0

)
= P

(
Ŷ = 1 | A = 1

)
. (4)

In contrast to the previous definitions, this requires that the chance of being accepted is equal across
groups.

Fairness metrics

In order to encode the requirements in equations (1) - (4) into a fairness metric, we encode differences
between measured quantities in two groups. For a performance metric M, e.g., the true positive rate
(TPR), we calculate the difference in the metric across the two groups:

∆M = MA=0 − MA=1.

When ∆M significantly deviates from 0, this indicates a fairness violation with respect to the fairness
notion described in M. To provide an example, with P

(
Ŷ = 1 | A = ⋆, Y = 1

)
denoted with TPRA=⋆,

we calculate the difference in TPR between the two groups:

∆TPR = TPRA=0 − TPRA=1.

When ∆TPR now significantly deviates from 0, the prediction Ŷ violates the requirement for equality of
opportunity formulated above.

It is important to note that in practice, we might not be able to perfectly satisfy a given metric, e.g.,
due to stochasticity in data and labels. Instead, to provide a binary conclusion regarding fairness, a
model could be considered fair if |∆TPR| < ϵ for a given threshold ϵ > 0, e.g., ϵ = 0.05. This allows
for small deviations from perfect fairness due to variance in the estimation of TPRA=⋆ or additional
sources of bias. However, choosing appropriate thresholds is difficult, and widely used values for
ϵ such as 0.05 are arbitrary and do not translate to legal doctrines, e.g., disparate impact (Watkins,
McKenna, and Chen 2022). A more in-depth treatment of metrics is given by (Barocas, Hardt, and
Narayanan 2019; Saleiro et al. 2018; Kim, Chen, and Talwalkar 2020; Mehrabi et al. 2021; Wachter,
Mittelstadt, and Russell 2020).

Selecting fairness metrics While the aforementioned metrics are conceptually similar, they encode
different beliefs of what constitutes fair in a given scenario. Wachter, Mittelstadt, and Russell (2020)
differentiate between bias-preserving and bias-transforming metrics: Bias-preserving metrics such as
equalized odds and equality of opportunity require that errors made by a model are equal across
groups. This can help to detect biases stemming, from imbalances in the sampling or under- and
overfitting in ML models, but might be problematic in cases where labels are biased. To provide an
example, police enforcement and subsequent arrests of violent re-offenders might be different across
ZIP code areas, a proxy for race. This might lead to situations where observed labels Y suffer from
differential measurement bias strongly correlated with race (Bao et al. 2021). Bias-preserving metrics
do not take such disparities into account and might, therefore (wrongly) lead to the conclusion that a
given model is fair.
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Bias-transforming methods, in contrast, do not depend on labels and might therefore not suffer
from this problem. They can help detect biases arising from different base rates across populations, aris-
ing, e.g., from aforementioned biases in the labelling or as a consequence of structural discrimination.
Deciding which metrics to use constitutes a value judgement and requires careful assessment of the
societal context a decision-making system is deployed in. A discussion of different metrics and their
applicability can be found in the Aequitas Fairness Toolkit (Saleiro et al. 2018) which also provides
guidance towards selecting a metric via the Aequitas Fairness Tree. Wachter, Mittelstadt, and Russell
(2020) recommend using bias-transforming metrics and provide a checklist that can guide the choice of
fairness metric. Corbett-Davies and Goel (2018), on the other hand, point out several limitations of
available metrics and argue for grounding decisions in real-world quantities in addition to abstract
fairness metrics. Similarly, Friedler, Scheidegger, and Venkatasubramanian (2016) emphasize the need
to differentiate between constructs we aim to measure (e.g., job-related knowledge) and the observed
quantity that can be measured in practice (e.g., years in a job) when trying to automate decisions, since
disparities in how constructs translate to observed quantities might suffer from bias. To provide an
example, individuals with similar abilities might exhibit different measured quantities (grades) due to
structural bias, e.g., differential access to after-school tutoring programs.

The dangers of fairness metrics We want to stress that overly trusting in metrics can be dangerous
and that fairness metrics cannot and should not be used to prove or guarantee fairness. Whether a
selected fairness notion (and a corresponding numerical value) is actually fair depends on the societal
context in which a decision is made and which action should be derived from a given prediction.
Therefore, selecting the correct fairness metric requires a thorough understanding of the societal
context of a decision, as well as the possible implications of such decisions. To provide an example,
in some cases discrepancies in positive predictions might be justified or even desired, as they, for
example, allow for a more nuanced, gender-specific diagnosis (Cirillo et al. 2020). Furthermore,
fairness metrics might not detect biases in more fine-grained subgroups, e.g., at the intersection
of multiple sensitive attributes. It is also important to note that fairness metrics merely provide a
reduction of the aforementioned fairness notions into mathematical objectives. As such, they require
a variety of abstraction steps that might invalidate the metric (Watkins, McKenna, and Chen 2022),
as they, for example, require that the data is a large enough and representative sample of exactly the
population that we aim to investigate. Furthermore, practitioners need to look beyond the model, and
also at the data used for training and the process of data and label acquisition. If the data for example
exhibit disparate measurement errors in the features or labels, valid fairness assessments can become
impossible. Similarly, feedback loops might arise from a prediction leading to changes in the data
collected in the future. Even an initially fair model might then lead to adverse effects in the long term
(Schwöbel and Remmers 2022).

Note that the fairness definitions presented above serve a dual purpose (Wachter, Mittelstadt, and
Russell 2020): First, as a diagnostic tool to detect disparities. This allows for assessing whether a model
has inherited biases, e.g., from historical disparities reflected in the data. The second purpose is as
a basis for model selection and making fair decisions in practice. In this setting, fairness notions are
employed to audit ML models or to select which model should be used in practice. In this setting, it
is important to note that fairness metrics should not be used as the sole basis for making decisions
about whether to employ a given ML model or to assess whether a given system is fair. We therefore
explicitly encourage using the presented metrics for exploratory purposes.

Other notions of fairness In addition to statistical group fairness notions introduced above, several
additional fairness notions exist. The notion of individual fairness was proposed by Dwork et al. (2012).
Its core idea comes from the principle of treating similar cases similarly and different cases differently. In
contrast to statistical group fairness notions, this notion allows assessing fairness at an individual
level and would therefore allow determining whether an individual is treated fairly. A more in-depth
treatment of individual fairness notions is, given in Binns (2020). Similarly, a variety of causal fairness
notions exist (c.f. Kilbertus et al. (2017)). They argue that assessing fairness requires incorporating
causal relationships in the data and propose a variety of causal fairness metrics based on a directed
acyclic graph describing relationships in the data.

Fairness constraints Statistical group fairness notions suffer from two further problems in practice:
First, it might be hard to exactly satisfy the required fairness notions, e.g., due to a limited amount of
data available for evaluation. Secondly, only requiring fairness might lead to degenerate solutions
(Corbett-Davies and Goel 2018) or models that have low utility, e.g., in separating good and bad
credit risk. One approach to take this into account is to employ models which maximize utility but
satisfy some maximum constraint on potential unfairness. This can be achieved via constraints on
the employed fairness measure, e.g. |∆M| ≤ ϵ requiring that the absolute difference in a metric M
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between groups is smaller than a chosen value ϵ. In the following, we denote the fairness metric we
want to minimize with ∆M and a performance metric with ρ.

ρ|∆M |≤ϵ =

{
ρ |∆M| ≤ ϵ
−|∆M| else.

Note that this assumes that the fairness metric ρ is strictly positive and should be maximized. This
approach is similar in spirit to the approach of Perrone et al., (2021) who optimize the constrained
expected improvement cEI = P(|∆M| ≤ ϵ) · ρ.

However, it is not immediately clear how the constraint ϵ should be chosen. An alternative, there-
fore, is to employ multi-objective optimization to investigate available trade-offs between performance
and accuracy metrics. This can be done via mlr3tuning (Becker, Lang, et al. 2023) which contains
functionality to tune models for multiple metrics, described in more detail in the mlr3book (Bernd
Bischl 2024). The result of multi-objective optimization then is the Pareto-set: A list of models which
optimally trade off the specified objectives.

Bias mitigation

If biases are detected in a model, we might now be interested in improving models in order to
potentially mitigate such biases. Bias in models might arise from a variety of sources, so a careful
understanding of the data, data quality and distribution might lead to approaches that can help in
decreasing biases, e.g. through the collection of better or additional data or a better balancing of
sensitive groups. Similarly, biases might arise from the model, through under- or overfitting and
more careful tuning of model hyperparameters might help with improving fairness. Especially if
the goal is to satisfy bias-transforming metrics, a better solution might often be to address fairness
problems in the real world instead of relying on algorithmic interventions to solve fairness. This might
lead to more robust, long-term solutions instead of temporarily addressing issues via algorithmic
interventions. In addition, a variety of algorithmic bias mitigation techniques, that might help with
obtaining fairer models have been proposed. Their goal is to reduce measured gaps in fairness, either
via data pre-processing, employing models that incorporate fairness, or by applying post-processing
techniques to a model’s predictions. Popular examples of such techniques include computing instance
weights before training (Kamiran and Calders 2012), where each observation is weighted proportional
to the inverse frequency of its label and sensitive attribute. Other methods work by directly learning
fair models that incorporate fairness constraints into the fitting procedure (Zafar et al. 2017) or by
adapting model predictions, e.g., Hardt, Price, and Srebro (2016) propose to randomly flip a small
fraction of predictions in each group given by Ŷ and A, such that fairness metrics are satisfied in
expectation. Since bias mitigation techniques are often tailored towards a particular fairness metric,
the optimal choice is often not trivial and a combination of algorithms and bias mitigation techniques
determined via tuning might result in an optimal model.

Bias-mitigation techniques, as proposed above, have the goal of mitigating fairness issues, as
measured by fairness metrics. In practice, this usually comes with several drawbacks: First, bias-
mitigation strategies often lead to a decrease in a classifier’s predictive performance (Corbett-Davies
and Goel 2018). In addition, processing schemes can worsen interpretability or introduce stochasticity
during prediction (see, e.g., Hardt, Price, and Srebro (2016)). Furthermore, we want to caution against
favouring bias-mitigation techniques over policy interventions that tackle biases at their root cause.
A different set of risks is posed by fairwashing (Aivodji et al. 2019), i.e., finding fair explanations or
satisfying fairness metrics for otherwise unfair models. If biases are only addressed at a given moment
and without regard for downstream effects, they might simultaneously lead to a decrease in predictive
performance in the near term and to negative consequences for the sensitive group in the long term
(Schwöbel and Remmers 2022).

3 The mlr3fairness package

In this section, we first give an overview of related software. Next, we give a very brief introduction to
the mlr3 ecosystem of packages. Finally, the implemented extensions for fairness are presented.

Related software

Several R packages provide similar capabilities to our software, but mostly focus on fairness metrics
and visualization. The fairness package (Kozodoi and V. Varga 2021) allows for the calculation of a
variety of fairness metrics, while aif360 (Bellamy et al. 2019) wraps the Python aif360 module allowing
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for the computation of fairness metrics and several bias mitigation techniques, but has only limited
interoperability with R objects such as data.frames. The fairmodels (Wiśniewski and Biecek 2022)
package again allows for the computation of fairness metrics for classification and regression settings
as well as several bias mitigation techniques. It tightly integrates with DALEX (Biecek 2018) to gain
further insight using interpretability techniques.

Outside R, in Python, the fairlearn module (Bird et al. 2020) provides ample functionality to study
a wide variety of metrics, bias mitigation with respect to a variety of pre-, in- and post-processing
methods as well as to visualize differences. It furthermore provides a fairlearn dashboard providing a
comprehensive fairness report. The aif360 (Bellamy et al. 2019) module similarly provides metrics
as well as bias mitigation techniques while the aequitas fairness toolkit (Saleiro et al. 2018) provides
similar capabilities. Interoperability with the scikit-learn (Pedregosa et al. 2011) ML framework allows
for bias mitigation for a wide variety of ML models in all aforementioned systems. Similar capabilities
are also available in Julia’s Fairness.jl (Agrawal, Chen, et al. 2020) library.

The mlr3 ecosystem

mlr3fairness is tightly integrated into the ecosystem of packages around the ML framework mlr3 (Lang
et al. 2019). mlr3 provides the infrastructure to fit, resample, and evaluate over 100 ML algorithms
using a unified API. Packages from the ecosystem can be installed and updated via the mlr3verse
(Lang and Schratz 2023) package. Multiple extension packages bring numerous additional advantages
and extra functionality. In the context of fairness, the following extension packages deserve special
mention:

• mlr3pipelines (Binder et al. 2021) for pre- and postprocessing via pipelining. This allows
composing bias mitigation techniques with arbitrary ML algorithms shipped with mlr3 as well
as fusing ML algorithms with pre-processing steps such as imputation or class balancing. It
furthermore integrates with mcboost (Pfisterer et al. 2021), which implements additional bias
mitigation methods. We present an example in the supplementary material.

• mlr3tuning and bbotk (Becker, Richter, et al. 2023) for its extensive tuning capabilities.
• mlr3proba (Sonabend et al. 2021) for survival analysis.
• mlr3benchmark for post-hoc analysis of benchmarked approaches.
• mlr3oml as a connector to OpenML (Vanschoren et al. 2014), an online scientific platform for

collaborative ML.

In order to provide the required understanding for mlr3, we briefly introduce some terminology
and syntax. A full introduction can be found in the mlr3 book (Bernd Bischl 2024).

A Task in mlr3 is a basic building block holding the data, storing covariates and the target variable
along with some meta-information. The shorthand constructor function tsk() can be used to quickly
access example tasks shipped with mlr3 or mlr3fairness. In the following chunk, we retrieve the
binary classification task with id "adult_train" from the package. It contains a part of the Adult data
set (Dua and Graff 2017). The task is to predict whether an individual earns more than $50.000 per
year. The column "sex" is set as a binary sensitive attribute with levels "Female" and "Male".

library("mlr3verse")
library("mlr3fairness")

task = tsk("adult_train")
print(task)

#> <TaskClassif:adult_train> (30718 x 13)
#> * Target: target
#> * Properties: twoclass
#> * Features (12):
#> - fct (7): education, marital_status, occupation, race, relationship,
#> sex, workclass
#> - int (5): age, capital_gain, capital_loss, education_num,
#> hours_per_week
#> * Protected attribute: sex

The second building block is the Learner. It is a wrapper around an ML algorithm, e.g., an
implementation of logistic regression or a decision tree. It can be trained on a Task and used for
obtaining a Prediction on an independent test set which can subsequently be scored using a Measure
to get an estimate for the predictive performance on new data. The shorthand constructors lrn() and
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msr() allow for the instantiation of implemented Learners and Measures, respectively. In the following
example, we will first instantiate a learner, then split our data into a train and test set, afterwards train
it on the train set of the dataset and finally evaluate predictions on held-out test data. The train-test
split in this case is given by row indices, here stored in the idx variable.

learner = lrn("classif.rpart", predict_type = "prob")
idx = partition(task)
learner$train(task, idx$train)
prediction = learner$predict(task, idx$test)

We then employ the classif.acc measure which measures the accuracy of a prediction compared
to the true label:

measure = msr("classif.acc")
prediction$score(measure)

#> classif.acc
#> 0.8382

In the example above, we obtain an accuracy score of 0.8382, meaning our ML model correctly
classifies roughly 84 % of the samples in the test data. As the split into training set and test set is
stochastic, the procedure should be repeated multiple times for smaller datasets (Bischl et al. 2012) and
the resulting performance values should be aggregated. This process is called resampling, and can
easily be performed with the resample() function, yielding a ResampleResult object. In the following,
we employ 10-fold cross-validation as a resampling strategy:

resampling = rsmp("cv", folds = 10)
rr = resample(task, learner, resampling)

We can call the aggregate method on the ResampleResult to obtain the accuracy aggregated across
all 10 replications.

rr$aggregate(measure)

#> classif.acc
#> 0.8408

Here, we obtain an accuracy of 0.8408, so slightly higher than previous scores, due to using a larger
fraction of the data. Furthermore, this estimate has a lower variance (as it is an aggregate) at the cost of
additional computation time. To properly compare competing modelling approaches, candidates can
be benchmarked against each other using the benchmark() function (yielding a BenchmarkResult). In
the following, we compare the decision tree from above to a logistic regression model. To do this, we
use the benchmark_grid function to compare the two Learners across the same Task and resampling
procedure. Finally, we aggregate the measured scores each learner obtains on each cross-validation
split using the $aggregate() function.

learner2 = lrn("classif.log_reg", predict_type = "prob")

grid = benchmark_grid(task, list(learner, learner2), resampling)
bmr = benchmark(grid)

bmr$aggregate(measure)[, .(learner_id, classif.acc)]

#> learner_id classif.acc
#> 1: classif.rpart 0.8408
#> 2: classif.log_reg 0.8467

After running the benchmark, we can again call .$aggregate to obtain aggregated scores. The
mlr3viz package comes with several ready-made visualizations for objects from mlr3 via ggplot2’s
(Wickham 2016) autoplot function. For a BenchmarkResult, the autoplot function provides a Box-plot
comparison of performances across the cross-validation folds for each Learner. Figure 1 contains
the box-plot comparison. We can see that log_reg has higher accuracy and lower interquartile range
across the 10 folds, and we might therefore want to prefer the log_reg model.
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Figure 1: Model comparison based on accuracy for decision trees (rpart) and logistic regression
(log_reg) across resampling splits.

Selecting the sensitive attribute

For a given task, we can select one or multiple sensitive attributes. In mlr3, the sensitive attribute is
identified by the column role pta and can be set as follows:

task$set_col_roles("marital_status", add_to = "pta")

In the example above, we add the "marital_status" as an additional sensitive attribute. This
information is then automatically passed on when the task is used, e.g., when computing fairness
metrics. If more than one sensitive attribute is specified, metrics will be computed based on intersecting
groups formed by the columns.

Quantifying fairness

With the mlr3fairness package loaded, fairness measures can be constructed via msr() like any other
measure in mlr3. They are listed with prefix fairness, and simply calling msr() without any arguments
will return a list of all available measures. Table 1 provides an overview of some popular fairness
measures which are readily available.

Table 1: Overview of fairness metrics available with mlr3fairness.

key description

fairness.acc Accuracy equality (Buolamwini and Gebru, 2018)
fairness.mse Mean squared error equality (Regression)
fairness.eod Equalized odds (Hardt et al., 2016)
fairness.tpr True positive rate equality / Equality of opportunity (Hardt et al., 2016)
fairness.fpr False positive rate equality / Predictive equality (Chouldechova, 2017)
fairness.tnr True negative rate equality
fairness.fnr False negative rate equality (Berk et al., 2018)
fairness.fomr False omission rate equality (Berk et al., 2018)
fairness.tnr Negative predictive value equality
fairness.tnr Positive predictive value equality
fairness.cv Demographic parity / Equalized positive rates (Calders and Verwer, 2010)
fairness.pp Predictive parity / Equalized precision (Chouldechova, 2017)
fairness.{tp, fp, tn,
fn}

Equal true positives, false positives, true negatives, false negatives

fairness.acc_eod=.05 Accuracy under equalized odds constraint (Perrone et al., 2021)
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key description

fairness.acc_ppv=.05 Accuracy under ppv constraint (Perrone et al., 2021)

Furthermore, new custom fairness measures can be easily implemented, either by implementing
them directly or by composing them from existing metrics. This process is extensively documented in
an accompanying measures vignette available with the package.

Here we choose the binary accuracy measure "classif.acc" and the equalized odds metric from
above using "fairness.eod": The constructed list of measures can then be used to score a Prediction,
a ResampleResult or BenchmarkResult, e.g.

measures = list(msr("classif.acc"), msr("fairness.eod"))
rr$aggregate(measures)

#> classif.acc fairness.equalized_odds
#> 0.84078 0.07939

We can clearly see a comparatively large difference in equalized odds at around 0.08. This means,
that in total, the false positive rates (FPR) and true positive rates (TPR) on average differ by ~0.08,
indicating that our model might exhibit a bias. Looking at the individual components yields a clearer
picture. Here, we are looking at the confusion matrices of the combined predictions of the 10 folds,
grouped by sensitive attribute:

fairness_tensor(rr)

#> $Male
#> truth
#> response <=50K >50K
#> <=50K 0.43030 0.10033
#> >50K 0.03408 0.11202
#>
#> $Female
#> truth
#> response <=50K >50K
#> <=50K 0.282668 0.020900
#> >50K 0.003907 0.015789

Plotting the prediction density or comparing measures graphically often provides additional
insights: For example, in Figure 2, we can see that Females are more often predicted to earn below
$50.000. Similarly, we can see that both equality in FPR and TPR differ considerably.

fairness_prediction_density(prediction, task)
compare_metrics(prediction, msrs(c("fairness.fpr", "fairness.tpr", "fairness.eod")), task)

Bias mitigation

As mentioned above, several ways to improve a model’s fairness exist. While non-technical inter-
ventions, such as e.g. collecting more data should be preferred, mlr3fairness provides several bias
mitigation techniques that can be used together with a Learner to obtain fairer models. Table 2
provides an overview of implemented bias mitigation techniques. They are implemented as PipeOps
from the mlr3pipelines package and can be combined with arbitrary learners using the %>>% operator
to build a pipeline that can later be trained. In the following example, we show how to combine a
learner with a reweighing scheme (reweighing_wts) or alternatively how to post-process predictions
using the equalized odds debiasing (EOd) strategy. An introduction to mlr3pipelines is available in the
corresponding mlr3book chapter (Bernd Bischl 2024).

po("reweighing_wts") %>>% lrn("classif.glmnet")
po("learner_cv", lrn("classif.glmnet")) %>>% po("EOd")
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Figure 2: Visualizing predictions of the decision tree model. Left: Prediction densities for the negative
class for Female and Male. Right: Fairness metrics comparison for FPR, TPR, EOd metrics. Plots show
a higher likelihood for the ’<50k’ class for females resulting in fairness metrics different from 0.

Table 2: Overview of bias mitigation techniques available in mlr3fairness.

Key Description Type Reference

EOd Equalized-Odds Debiasing Postprocessing Hardt, Price, and
Srebro (2016)

reweighing_os Reweighing (Oversampling) Preprocessing Kamiran and
Calders (2012)

reweighing_wts Reweighing (Instance weights) Preprocessing Kamiran and
Calders (2012)

It is simple for users or package developers to extend mlr3fairness with additional bias mitigation
methods – as an example, the mcboost package adds further post-processing methods that can improve
fairness. Along with pipeline operators, mlr3fairness contains several machine learning algorithms
listed in table 3 that can directly incorporate fairness constraints. They can similarly be constructed
using the lrn() shorthand.

Table 3: Overview of fair ML algorithms available with mlr3fairness.

Key Package Reference

regr.fairfrrm fairml Scutari, Panero, and Proissl (2021)
classif.fairfgrrm fairml Scutari, Panero, and Proissl (2021)
regr.fairzlm fairml Zafar et al. (2017)
classif.fairzlrm fairml Zafar et al. (2017)
regr.fairnclm fairml Komiyama et al. (2018)

Reports

Because fairness aspects can not always be investigated based on the fairness definitions above (e.g.,
due to biased sampling or labelling procedures), it is important to document data collection and the
resulting data as well as the models resulting from this data. Informing auditors about those aspects of
a deployed model can lead to better assessments of a model’s fairness. Questionnaires for ML models
(M. Mitchell et al. 2019) and data sets (Gebru et al. 2021) have been proposed in literature. We further
add automated report templates using R markdown (Xie, Dervieux, and Riederer 2020) for data sets
and ML models. In addition, we provide a template for a fairness report which includes many fairness
metrics and visualizations to provide a good starting point for generating a fairness report inspired by
the Aequitas Toolkit (Saleiro et al. 2018). A preview for the different reports can be obtained from the
Reports vignette in the package documentation.
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Table 4: Overview of reports generated by mlr3fairness.

Report Description Reference

report_modelcard() Modelcard for ML models M. Mitchell et al. (2019)
report_datasheet() Datasheet for data sets Gebru et al. (2021)
report_fairness() Fairness Report –

4 Case study

In order to demonstrate a full workflow, we conduct full bias assessment and bias mitigation on
the popular adult data set (Dua and Graff 2017). The goal is to predict whether an individual’s
income is larger than $50.000 with the sensitive attribute being gender. The data set is included with
mlr3fairness, separated into a train and test task and can be instantiated using tsk("adult_train")
and tsk("adult_test"), respectively. As a fairness metric, we consider true positive parity which calls
for equality in the true positive rates across groups, in this case the sex variable. We furthermore are
interested in the model’s utility, here measured as its classification accuracy.

library("mlr3verse")
library("mlr3fairness")

task = tsk("adult_train")
print(task)

#> <TaskClassif:adult_train> (30718 x 13)
#> * Target: target
#> * Properties: twoclass
#> * Features (12):
#> - fct (7): education, marital_status, occupation, race, relationship,
#> sex, workclass
#> - int (5): age, capital_gain, capital_loss, education_num,
#> hours_per_week
#> * Protected attribute: sex

measures = msrs(c("fairness.tpr", "classif.acc"))

In order to get an initial perspective, we benchmark three models using 3-fold cross-validation
each:

• a classification tree from the rpart package,
• a penalized logistic regression from the glmnet package and
• a penalized logistic regression from the glmnet package, but with reweighing pre- processing.

The logistic regression in the latter two approaches does not support operating on factor features
natively, therefore we pre-process the data with a feature encoder from mlr3pipelines. To achieve
this, we connect the feature encoder po("encode") with the learner using the %>>% operator. This
encodes factor variables into integers using dummy encoding. We then evaluate all three learners
on the adult_train data using 3-fold cross-validation by building up a grid of experiments we want
to run using benchmark_grid. This grid is then executed using the benchmark function, and we can
aggregate the performance and fairness metric scores via the $aggregate() function.

set.seed(4321)
learners = list(

lrn("classif.rpart"),
po("encode") %>>% lrn("classif.glmnet"),
po("encode") %>>% po("reweighing_wts") %>>% lrn("classif.glmnet")

)

grid = benchmark_grid(
tasks = tsks("adult_train"),
learners = learners,
resamplings = rsmp("cv", folds = 3)

)
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bmr1 = benchmark(grid)
bmr1$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767 0.8408
#> 2: encode.classif.glmnet 0.070781 0.8411
#> 3: encode.reweighing_wts.classif.glmnet 0.004732 0.8351

The pre-processing step of reweighing already improved the fairness while sacrificing only a
tiny bit of performance. To see if we can further improve, we use mlr3tuning to jointly tune all
hyperparameters of the glmnet model as well as our reweighing hyperparameter. In order to do this,
we use an AutoTuner from mlr3tuning; a model that tunes its own hyperparameters during training.
The full code for setting up this model can be found in the appendix. An AutoTuner requires a specific
metric to tune for. Here, we define a fairness-thresholded accuracy metric. We set ϵ = 0.01 as a
threshold:

i f |∆EOd| ≤ ϵ : accuracy else : −|∆EOd|.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.01

)

We then design the pipeline and the hyperparameters we want to tune over. In the following
example, we choose tuning_iters = 3 and set a small range for the hyperparameters in vals to
shorten the run time of the tuning procedure. In real settings, this parameter would be set to a larger
number, such as 100. To construct a self-tuning learner, we construct an AutoTuner that takes as input
a learner, the resampling procedure and metric used for tuning as well as the tuning strategy along
with a termination criterion (here how many tuning iterations should be run). In addition, we provide
a new id for the learner to beautify subsequent printing and visualization. We can then use this
self-tuning learner like any other learner and benchmark it using benchmark as described above.

tuning_iters = 3
at = AutoTuner$new(lrn, rsmp("holdout"),

metric,
tuner = mlr3tuning::tnr("random_search"),
terminator = trm("evals", n_evals = tuning_iters)

)
at$id = "glmnet_weighted_tuned"

grd = benchmark_grid(
tasks = tsks("adult_train"),
learners = list(at),
resamplings = rsmp("cv", folds = 3)

)

bmr2 = benchmark(grd, store_models = TRUE)
bmr2$aggregate(measures)[, c(4, 7, 8)]

#> learner_id fairness.tpr classif.acc
#> 1: glmnet_weighted_tuned 0.009486 0.8385

The result improves w.r.t. accuracy while only slightly decreasing the measured fairness. Note that
the generalization error is estimated using a holdout strategy during training and slight violations
of the desired threshold ϵ should therefore be considered (Feurer et al. 2023). The results of both
benchmark experiments can then be collected and jointly visualized in Figure 3 visualizing accuracy
and fairness of models in our benchmark. In addition to aggregate scores (denoted by a cross)
individual iterations of the 3-fold Cross-Validation (represented by points) are shown to visualize
variations in the individual results.

bmr$aggregate(measures)[, c(4, 7, 8)]
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Figure 3: Fairness-Accuracy tradeoff for 3-fold CV on the adult train set.

#> learner_id fairness.tpr classif.acc
#> 1: classif.rpart 0.059767 0.8408
#> 2: encode.classif.glmnet 0.070781 0.8411
#> 3: encode.reweighing_wts.classif.glmnet 0.004732 0.8351
#> 4: glmnet_weighted_tuned 0.009486 0.8385

Especially when considering optimizing accuracy while still retaining a fair model, tuning can be
helpful and further improve upon available trade-offs. In this example, the AutoTuner improves w.r.t.
the fairness metric while offering accuracy comparable with the simple glmnet model. This can be
observed from the fairness accuracy tradeoff shown in Figure 3. Whether the achieved accuracy is
sufficient needs to be determined, e.g. from a business context. For now, we assume that the model
obtained from the AutoTuner is the model we might want to use going forward. Having decided on a
final model, we can now train the final model on the full training data

at_lrn = bmr$learners$learner[[4]]
at_lrn$train(tsk("adult_train"))

and predict on the held out test set available for the Adult dataset to obtain a final estimate. This is
important since estimating fairness metrics often incurs significant variance (Agrawal, Pfisterer, et al.
2020) and evaluation of the test-set provides us with an unbiased estimate of model performance after
the previous model selection step.

test = tsk("adult_test")
at_lrn$predict(test)$score(measures, test)

#> fairness.tpr classif.acc
#> 0.07141 0.84375

On the held-out test set, the fairness constraint is slightly violated which can happen due to the
comparatively large variance in the estimation of fairness metrics.

5 Summary

The large-scale availability and use of automated decision making systems have resulted in growing
concerns for a lack of fairness in the decisions made by such systems. As a result, fairness auditing

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 247

methods, that allow for investigating (un-)fairness in such systems are an important step towards
improving the auditability of deployed systems. For ease of use, it is especially important, that they
provide interoperability with machine learning toolkits that allows for ease of use and integration
into model evaluation and tuning. In future work we plan on implementing several tools that further
support the user w.r.t. pinpointing potential fairness issues in the data, especially through the help of
interpretability tools, such as the iml (Molnar, Bischl, and Casalicchio 2018) package. We furthermore
aim to implement additional fairness metrics from the realm of ‘individual fairness’ (Dwork et al.
2012) and ‘conditional demographic parity’ (Wachter, Mittelstadt, and Russell 2020).
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6 Appendix

Tuning the ML pipeline

We include the full code to construct the AutoTuner with additional details and comments below. We
first load all required packages and use mlr3’s interaction with the future (Bengtsson 2021) package
to automatically distribute the tuning to all available cores in parallel by setting a plan. See the
documentation of future for platform-specific hints regarding parallelization.

library(mlr3misc)
library(mlr3)
library(mlr3pipelines)
library(mlr3fairness)
library(mlr3tuning)

# Enable parallelization utilizing all cores
future::plan("multicore")

We then instantiate an ML pipeline using mlr3pipelines. This connects several modelling steps, in
our case categorical encoding, reweighing and a final learner using the %>>% (double caret) operator,
ultimately forming a new learner. This learner can then subsequently be fit on a Task. We use the
po(<key>) shorthand to construct a new pipeline operator from a dictionary of implemented operators.
We conduct categorical encoding because glmnet can not naturally handle categorical variables, and
we therefore have to encode them (in our case using one-hot encoding).

# Define the learner pipeline.
lrn = as_learner(po("encode") %>>% po("reweighing_wts") %>>%
po("learner", lrn("classif.glmnet")))

In addition, we have to specify the hyperparameter space our Tuner should tune over. We do this
by defining a list of values with a to_tune() token specifying the range. Note, that hyperparameter
names are prefixed with the respective operation’s id.

# Define the parameter space to optimize over
vals = list(
reweighing_wts.alpha = to_tune(0.75, 1),
classif.glmnet.alpha = to_tune(0.5, 1),
classif.glmnet.s = to_tune(1e-4, 1e-2, logscale = TRUE)

)

# Add search space to the learner
lrn$param_set$values = insert_named(lrn$param_set$values, vals)

Before we now train the model, we again specify a metric we aim to satisfy, here we would like the
equalized odds difference to be smaller than 0.1. In this case, we set a constraint on the equalized odds
difference comprised of the differences in true positive rate (TPR) and false positive rate (FPR):

∆EOd =
|TPRsex=M − TPRsex=F|+ |FPRsex=M − FPRsex=F|

2
.

This can be done using the fairness.constraint measure.

metric = msr("fairness.constraint",
performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)

We can now instantiate a new AutoTuner using lrn defined above by additionally providing
arguments specifying the tuning strategy, in our case random search, the measure to optimize for as
well as the number of tuning steps.

metric = msr("fairness.constraint",
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performance_measure = msr("classif.acc"),
fairness_measure = msr("fairness.eod"),
epsilon = 0.1

)

at = AutoTuner$new(
learner = lrn, # The learner
resampling = rsmp("holdout"), # inner resampling strategy
measure = metric, # the metric to optimize for
tuner = mlr3tuning::tnr("random_search"), # tuning strategy
terminator = trm("evals", n_evals = 30) # number of tuning steps

)

The so-constructed AutoTuner can now be used on any classification Task! Additional information
regarding the AutoTuner is again available in the corresponding mlr3book chapter. In the following
example, we will apply it to the Adult task and train our model. This will perform a tuning loop for
the specified number of evaluations and automatically retrain the best found parameters on the full
data.

at$train(tsk("adult_train"))

After training, we can look at the best models found, here ordered by our metric. Note, that our
metric reports the negative constraint violation if the constraint is violated and the accuracy in case
the constraint is satisfied.

head(at$archive$data[order(fairness.acc_equalized_odds_cstrt), 1:4])

#> reweighing_wts.alpha classif.glmnet.alpha classif.glmnet.s
#> 1: 0.9503 0.5138 -4.654
#> 2: 0.8160 0.9289 -5.314
#> 3: 0.7507 0.6784 -5.786
#> 4: 0.9694 0.9219 -6.198
#> 5: 0.8254 0.8826 -7.241
#> 6: 0.8808 0.7362 -7.311
#> fairness.acc_equalized_odds_cstrt
#> 1: 0.8411
#> 2: 0.8445
#> 3: 0.8447
#> 4: 0.8448
#> 5: 0.8448
#> 6: 0.8448

We can then use the tuned model to assess our metric on the held out data:

prd = at$predict(tsk("adult_test"))
prd$score(c(metric, msr("classif.acc"), msr("fairness.eod")), tsk("adult_test"))

#> fairness.acc_equalized_odds_cstrt classif.acc
#> 0.83976 0.83976
#> fairness.equalized_odds
#> 0.07512

So our tuned model manages to obtain an accuracy of ~0.84 while satisfying the specified con-
straint of ∆EOd < 0.1. So to summarize, we have tuned a model to optimize accuracy with respect to a
constraint on a selected fairness metric using an AutoTuner.
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ClusROC: An R Package for ROC Analysis
in Three-Class Classification Problems for
Clustered Data
by Duc-Khanh To, Gianfranco Adimari, and Monica Chiogna

Abstract This paper introduces an R package for ROC analysis in three-class classification problems,
for clustered data in the presence of covariates, named ClusROC. The clustered data that we address
have some hierarchical structure, i.e., dependent data deriving, for example, from longitudinal studies
or repeated measurements. This package implements point and interval covariate-specific estimation
of the true class fractions at a fixed pair of thresholds, the ROC surface, the volume under the ROC
surface, and the optimal pairs of thresholds. We illustrate the usage of the implemented functions
through two practical examples from different fields of research.

1 Introduction

In clinical studies, receiver operating characteristic (ROC) surface analysis is widely used to evaluate
the accuracy of a diagnostic test (or biomarker) when there are three ordinal disease classes (or
diagnostic groups). See Nakas (2014) for a comprehensive review. Although the clinical context
is where ROC surface analysis finds its natural application, other contexts, such as economics and
engineering, very often face the problem of evaluating the accuracy of a classifier.

Within the ROC surface analysis framework, the following quantities are typically objects of
interest: ROC surface, VUS (volume under ROC surface), and optimal pair of thresholds. Statistical
methods for evaluating such quantities have been widely discussed in the statistical literature. We
cite, among others, papers by Nakas and Yiannoutsos (2004); Xiong et al. (2006); Nakas et al. (2010);
Attwood et al. (2014); Bantis et al. (2017); To Duc et al. (2016). Moreover, on the Comprehensive R
Archive Network (CRAN), there are several packages implementing estimation methods for ROC
surface analysis, for instance, trinROC (Noll and Reinhard, 2022), ThresholdROC (Sara et al., 2021)
and bcROCsurface (To, 2021).

Most of the existing methods for ROC surface analysis have focused on a standard setting, in which
measurements on statistical units are realizations of independent random variables, and the diagnostic
test, or, more broadly, the classifier, is not influenced by any covariate. In some studies, however, not
only the classifier can be affected by some covariates that characterize the units themselves (e.g. age,
gender), but statistical units can be enrolled in clusters (e.g., families, genotype, communities, etc.).
When statistical units are drawn from clusters, they can no longer be treated as independent. Indeed,
units from the same cluster are typically more similar to each other than they will be to statistical
units from other clusters. Therefore, unobserved variables may induce statistical dependence between
observations within clusters that may be uncaptured by covariates. For such kinds of clustered
data, which have a hierarchical structure and are dependent, Xiong et al. (2018) proposed the use
of a standard linear mixed-effects model (McCulloch and Searle, 2001) to account for clusters and
covariates’ effects on the classifier. Then, the authors developed an approach to estimate the VUS,
under an assumption of normality. Based on the model in Xiong et al. (2018), To et al. (2022) developed
an estimation procedure for the ROC surface and methods for choosing the optimal pair of thresholds.
The authors also discussed a variant of their approach, based on the Box-Cox transformation, useful
when the normality assumption is (not heavily) violated.

In this paper, we introduce our R package for ROC surface analysis with clustered data, named
ClusROC. The package (with related details) is available on CRAN at http://CRAN.Rproject.org/
package=ClusROC. In the package, we implement procedures for estimating the parameters of the
models (with and without the Box-Cox transformation), and for making inferences about the ROC
surface, and the optimal pair of thresholds, by following methods outlined in To et al. (2022). In
addition, we also implement a procedure for estimating the VUS, as discussed in Xiong et al. (2018).

In the following sections, we first briefly present the reference model and the inferential procedures
for ROC surface analysis with clustered data. Then, we describe the ClusROC package and illustrate
its use through two real datasets. The last section provides a brief conclusion.
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2 The ROC surface analysis for clustered data

Here we briefly review methods proposed by Xiong et al. (2018) and To et al. (2022). Details and
theoretical results can be found in the original articles. For convenience, as in the quoted papers, we
refer to some clinical studies in the presentation and use appropriate language for that area.

The models

Let Y be the diagnostic test result, on a continuous scale, and let Y1, Y2, Y3 be the test results for subjects
in classes 1, 2, and 3, respectively. We assume that higher values of test results are associated with
higher severity of the disease, and the severity of the disease grows with the class (i.e., class 3 is the
worst). Let X1, . . . , Xp be p covariates, possibly associated with the test Y.

Let c be the total number of clusters, randomly selected from the population. For the k-th cluster,
k = 1, . . . , c, let nki be the total number of subjects belonging to class i, i = 1, 2, 3 and let nk =
nk1 + nk2 + nk3 be the total sample size within the cluster. Note that nki might be equal to 0 for some
clusters. The linear mixed-effects model for the clustering effect on the test result Y, as well as for
covariates’ effects, is written as follows (Xiong et al., 2018; To et al., 2022):

Y1 = αk1
+ z⊤1 β1 + ε1,

Y2 = αk2 + z⊤2 β2 + ε2, (1)

Y3 = αk3 + z⊤3 β3 + ε3,

where (Y1, Y2, Y3) is a triplet of test scores from three randomly sampled subjects from the three
disease classes, (k1, k2, k3), ki ∈ {1, . . . , c}, are cluster memberships indicating the clusters from
which Y1, Y2, Y3 are observed, zi = (1, x1i, . . . , xpi)

⊤ are fixed (i.e., not random) covariates values, and
βi = (β0i, β1i, . . . , βpi)

⊤, i = 1, 2, 3, are vectors of parameters representing covariates effects. In model
(1), αk are random effects accounting for the presence of clusters, and εi are subject-level random errors.
We assume that: (i) the random effects αk and the subject-level random errors εi follow a normal
distribution, i.e., αk ∼ N (0, σ2

c ) and εi ∼ N (0, σ2
i ) with i = 1, 2, 3; (ii) α1, α2, . . . , αc and ε1, ε2, ε3 are all

independent (see also, McCulloch and Searle, 2001).

Let β = (β⊤
1 , β⊤

2 , β⊤
3 )⊤ with βi = (β0i, β1i, . . . , βpi)

⊤, and θ = (σc, σ1, σ2, σ3)
⊤ be the unknown

parameters in model (1). By using a restricted (or residual) maximum likelihood (REML) estimation

approach, a consistent estimator γ̂ = (β̂
⊤

, θ̂
⊤
)⊤ of γ = (β⊤, θ⊤)⊤ can be obtained. Under some

regularity conditions, we have γ̂
.∼ N (γ, Λ). The asymptotic covariance matrix Λ can be consistently

estimated by using the sandwich formula (Liang and Zeger, 1986; Kauermann and Carroll, 2001; Mancl
and DeRouen, 2001).

In some practical situations, data distributions may be skewed and the normality assumption
might be violated. For such cases, To et al. (2022) considered the application of Box-Cox transformation
for linear mixed-effects models (Lipsitz et al., 2000; Gurka et al., 2006):

Y(λ)
1 = αk1

+ z⊤1 β1 + ε1,

Y(λ)
2 = αk2 + z⊤2 β2 + ε2, (2)

Y(λ)
3 = αk3 + z⊤3 β3 + ε3,

where Y(λ)
i is the Box-Cox transformed response, Y(λ)

i = (Yλ
i − 1)/λ if λ ̸= 0 and Y(λ)

i = log(Yi) if
λ = 0, with i = 1, 2, 3, Yi > 0, and λ is the transformation parameter (Box and Cox, 1964). Assumptions
about the random effects αk and the subject-level random errors εi are the same as in model (1). To
obtain λ̂ and the REML estimator γ̂, To et al. (2022) applied the method proposed by Gurka and
Edwards (2011) which is based on the scaled Box-Cox transformation model (Gurka et al., 2006). The
estimator of the variance-covariance matrix of the REML estimator γ̂ is obtained again by applying
the sandwich formula.

ROC surface analysis

According to the model (1), at a given vector z of covariates’ values, Yi ∼ N (z⊤βi, σ2
c + σ2

i ) with
z = (1, x1, . . . , xp)⊤ and i = 1, 2, 3. To et al. (2022) further assume that z⊤β1 < z⊤β2 < z⊤β3, i.e., that
the stochastic dominance for the three classes holds at z.

For given thresholds t1 and t2 (t1 < t2), the covariate-specific true class fractions (TCFs) are written
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as TCF1(t1; z) = Φ
(

t1−z⊤β1√
σ2

c +σ2
1

)
, TCF2(t1, t2; z) = Φ

(
t2−z⊤β2√

σ2
c +σ2

2

)
− Φ

(
t1−z⊤β2√

σ2
c +σ2

2

)
and TCF3(t2; z) = 1 −

Φ
(

t2−z⊤β3√
σ2

c +σ2
3

)
, where Φ(·) is the cumulative distribution function of the standard normal distribution.

Moreover, by setting TCF1(t1; z) = p1 and TCF3(t2; z) = p3, the covariate-specific ROC surface can be
defined as a function of (p1, p3), i.e.,

ROCs(p1, p3; z) = Φ

Φ−1(1 − p3)
√

σ2
c + σ2

3 + z⊤β3 − z⊤β2√
σ2

c + σ2
2


− Φ

Φ−1(p1)
√

σ2
c + σ2

1 + z⊤β1 − z⊤β2√
σ2

c + σ2
2

 , (3)

if Φ−1(p1) <
Φ−1(1−p3)

√
σ2

c +σ2
3+z⊤β3−z⊤β1√

σ2
c +σ2

1

; otherwise, ROCs(p1, p3; z) = 0.

Based on the above expressions, for clustered data, To et al. (2022) considered covariate-specific
estimation of the TCFs at a fixed pair of thresholds (t1, t2) and estimation of the ROC surface for each
pair (p1, p3). Moreover, the authors proposed methods to estimate covariate-specific optimal pairs of
thresholds (t+1 , t+2 ) by considering three different criteria: (i) maximization of the covariate-specific
generalized Youden index (GYI); (ii) minimization of the covariate-specific Euclidean distance between
the ideal point (1, 1, 1) and the point (TCF1(t1; z), TCF2(t1, t2; z), TCF3(t2; z)) (CtP); (iii) maximization
of the covariate-specific volume of the cuboid under the covariate-specific ROC surface (MV). Resulting
estimators are shown to be consistent and asymptotically normal, with asymptotic covariance matrices
estimable by using the plug-in method. The normal approximation results can be used to construct
suitable (joint) confidence regions.

Starting from model (1), covariate-specific inference on the VUS is discussed in Xiong et al. (2018),
where maximum likelihood (ML) methods for point and interval estimation are proposed. In particular,
Xiong et al. (2018) showed that covariate-specific ML VUS estimator θ̂(z) is the summation of five
components: θ̂1(z) = P̂r(Y1 < Y2 < Y3, k1 = k2 = k3|z), θ̂2(z) = P̂r(Y1 < Y2 < Y3, k1 = k2 ̸= k3|z),
θ̂3(z) = P̂r(Y1 < Y2 < Y3, k1 = k3 ̸= k2|z), θ̂4(z) = P̂r(Y1 < Y2 < Y3, k1 ̸= k2 = k3|z), and
θ̂5(z) = P̂r(Y1 < Y2 < Y3, k1 ̸= k2 ̸= k3|z).

In cases where the assumption of normality for Y1, Y2 and Y3 is unrealistic, inferential procedures
for covariate-specific TCFs, ROC surface, optimal pair of thresholds (and VUS) can be obtained starting
from model (2); see Section 3.3 in To et al. (2022).

3 Overview of R package ClusROC

The ClusROC package implements techniques for ROC surface analysis, in case of clustered data and
the presence of covariates. The package comprises five major functions:

• clus_lme(): This function fits the linear mixed-effects model (1) under the normality assump-
tion, or the model (2) when the Box-Cox transformation is used.

• clus_roc_surface(): This function estimates and makes a 3D plot of covariate-specific ROC
surfaces.

• clus_opt_thres3(): This function estimates the covariate-specific optimal pair of thresholds.

• clus_vus(): This function estimates the covariate-specific VUS.

• clus_tcfs(): This function estimates the covariate-specific TFCs at a specified pair of thresholds.

The ClusROC package can be installed directly from CRAN by using the code below:

install.packages("ClusROC")

Also, it can be installed from GitHub (“toduckhanh/ClusROC”), by using the function install_github()
from devtools package:

library(devtools)
install_github("toduckhanh/ClusROC")
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Description

The REML estimation in function clus_lme() is based on the function lme() of package nlme (Pinheiro
et al., 2022). The function clus_lme() needs, firstly, specification of a fixed_formula which is a two-
sided linear formula object describing the fixed-effects part of the model for three classes, with the
response on the left of ~ operator and the terms, separated by + operators, on the right. Secondly, the
arguments name_class and name_clust are needed to specify the name of the variables indicating
the disease classes (or diagnostic groups) and the clusters in the data, respectively. To enable the
Box-Cox transformation, users need to set the argument boxcox as TRUE. The Box-Cox parameter λ is
estimated by a grid search on the interval (−2, 2). This interval is suggested by Gurka and Edwards
(2011), but users can change this range by setting the argument interval_lambda. Before fitting the
model, clus_lme() determines the ordering of the disease groups based on the average values of test
results in each disease group. If an ordering is provided by the user via the argument levl_class, the
ordering of the mean values is still obtained to confirm the input ordering. In case of disagreement
between the two orderings, the one based on the averages of test results is adopted. The function
plot() provides three diagnostic plots for the model fitted by clus_lme(), namely, a Q-Q plot for
residuals, a Fitted vs. Residuals plot, and a Q-Q plot for cluster effects. These plots exploit the ggplot2
package (Hadley et al., 2022).

The functions clus_roc_surface(), clus_opt_thres3(), clus_vus() and clus_tcfs() are the
main functions to perform the ROC surface analysis for clustered data. All of them require the output
of clus_lme() as an argument. When one of the above functions is called, a check on the monotone
ordering assumption is performed. That is, for a given value of the covariates, say z, the three predicted
mean values of the test results in the three diagnostic groups, i.e., z⊤ β̂1, z⊤ β̂2 and z⊤ β̂3, are computed
and compared. If the assumption (z⊤ β̂1 < z⊤ β̂2 < z⊤ β̂3) is not met, the ROC surface analysis is not
performed at z.

The function clus_roc_surface() estimates a covariate-specific ROC surface at a single point for
covariates and makes a 3D plot to display the estimated covariate-specific ROC surface by using rgl
package (Duncan et al., 2021). This function also allows plotting an ellipsoidal confidence region for
TCFs at a given pair of thresholds, in the ROC surface space. If the constructed confidence region is
outside the unit cube, a probit transformation (Bantis et al., 2017) is automatically applied to obtain an
appropriate confidence region, which is inside the unit cube.

The function clus_opt_thres3() gives the estimated covariate-specific optimal pair of thresholds
as defined by the criteria GYI, CtP, and MV at multiple points of the covariates. The optimization is
done by using the function optim() with the “L-BFGS-B” method; however, users can select other
optimization methods, such as, “BFGS” or “Nelder-Mead”. The function returns also the estimated
asymptotic variance-covariance matrix of the (estimated) covariate-specific optimal pair of thresholds.
Under the normality assumption, the asymptotic variance-covariance matrix is estimated by the
Delta method. If the Box-Cox transformation is applied, a nonparametric bootstrap procedure for
clustered data is used to estimate the asymptotic variance-covariance matrix. To speed up the bootstrap
procedure, users can set the argument parallel as TRUE to enable parallel computing support. Users
can also select the number of CPUs needed for the computation. After calling clus_opt_thres3(), the
function plot() can be used to display confidence regions (and point estimates) of covariate-specific
optimal pairs of thresholds.

The function clus_vus() estimates the covariate-specific VUS at multiple points of the covariates
by using the integrate() routine. This function also performs the statistical test for the null hypothesis
H0 : VUS = 1/6 versus the alternative HA : VUS > 1/6. This statistical test is a formal assessment of
the adequacy of a diagnostic test in a three-class classification problem via its VUS at given covariates
values. After calling clus_vus(), users can apply ci_clus_vus() to obtain confidence intervals for
covariate-specific VUS. Three types of confidence intervals are computed: normal approximation-
based; after logit and probit transformations.

The function clus_tcfs() estimates covariate-specific TCFs at a specified pair of thresholds, given
one or multiple points for the covariates. This function also implements the Delta method to estimate
the asymptotic variance-covariance matrix of the estimated covariate-specific TCFs. Note that, if the
Box-Cox transformation is applied for the linear mixed-effects model, the pair of threshold values
must be provided in the original scale.

Applications

To illustrate the use of the ClusROC package, we provide two examples with the MouseNeurons dataset
and EnergyEthiopia, which are included in the package.
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The glutamatergic neurons

To et al. (2022) used the MouseNeurons dataset to evaluate the ability of the Lysosomal Associated
Membrane Protein Family Member 5 (Lamp5) gene to discriminate three types of glutamatergic
neurons, namely Layer 2/3 Intratelencephalic (L2/3 IT), Layer 4 (L4) and Layer 5 Pyramidal Tract
(L5 PT) neurons. A full version of the data is publicly available at http://portal.brain-map.org/
atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq.

This dataset includes 860 observations (brain cells) and the following variables: the expression of
the Lamp5 gene (diagnostic test/biomarker), the mouse genotype (which yields 23 clusters), the class
labels (L2/3 IT, L4, and L5 PT), and the sex and age (in days) of the mouse. Below, we illustrate the
use of the ClusROC package using this data.

Step 1: Load library and data

> library(ClusROC)
> data("MouseNeurons")

The above code loads the ClusROC package and the MouseNeurons data into R.

Step 2: Model fitting
In this step, we fit a linear mixed-effects model with Lamp5_cpm as a response and age_days as a
covariate, under the Box-Cox transformation, by using function clus_lme():

> out_md <- clus_lme(fixed_formula = Lamp5_cpm ~ age_days,
+ name_class = "subclass_label", name_clust = "genotype_id",
+ data = MouseNeurons, boxcox = TRUE)
The ordered levels of classes are specified by the order of
averages of the test values for each class:
L4 < L5 PT < L2/3 IT

As, in this case, the rank-ordered nature of the biomarker concerning the classes is not given, the
monotone ordering was specified by ordering the classes according to the rank of the biomarker’s
sample means in the three groups. The results are shown as follows.

> print(out_md)

CALL: clus_lme(fixed_formula = Lamp5_cpm ~ age_days, name_class = "subclass_label",
name_clust = "genotype_id", data = MouseNeurons, boxcox = TRUE)

Coefficients:
Est. Std.Error z-value p-value

subclass_labelL4 0.78770 5.95328 0.132 0.89474
subclass_labelL4:age_days 0.45039 0.18193 2.476 0.01330 *
subclass_labelL5 PT 34.30543 12.27946 2.794 0.00521 **
subclass_labelL5 PT:age_days 0.20995 0.10652 1.971 0.04872 *
subclass_labelL2/3 IT 49.34642 20.88162 2.363 0.01812 *
subclass_labelL2/3 IT:age_days 0.08991 0.08306 1.082 0.27907
sigma_c 6.78582 4.15973 -- --
sigma_1 15.02492 7.12012 -- --
sigma_2 11.24066 5.70949 -- --
sigma_3 11.14321 6.07808 -- --
lambda 0.44565 -- -- --
ICC 0.22848 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 860
Number of clusters: 23
Sample size within cluster:

Min Max Average
1.0000 330.0000 37.3913

Box-Cox transformation: TRUE

The diagnostic plots for the fitted model are obtained by the following command (see Figure 1):
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Figure 1: The diagnostic plots for the linear mixed-effects model.

> plot(out_md)

The plots suggest that the assumptions of normality and homogeneity of variances are satisfied. To
help the reader evaluate the need for transforming the data, we also fitted the linear mixed-effects
model without the Box-Cox transformation. The results are reported in Appendix, showing that the
assumptions are violated.

Step 3: ROC surface analysis
After fitting the linear mixed-effects models of interest and verifying the normality assumption and
the homogeneity of variances assumption, the ROC surface analysis can be performed. First, let us
start with the estimation for covariate-specific VUS.

> out_vus <- clus_vus(out_clus_lme = out_md,
+ newdata = data.frame(age_days = c(54, 60, 66)))
> print(out_vus)

CALL: clus_vus(out_clus_lme = out_md, newdata = data.frame(age_days = c(54,
60, 66)))

Covariate-specific VUS:
Covariates Values Est. Std.Error z-value p-value

54 0.541 0.0505 7.42 <0.001 ***
60 0.514 0.0535 6.49 <0.001 ***
66 0.485 0.0582 5.47 <0.001 ***

---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
z-value and p-value are for testing the null hypothesis H0: VUS = 1/6 vs HA: VUS > 1/6

In this case, we are interested in computing the (estimated) covariate-specific VUS at three different
ages of mice, i.e., 54, 60, and 66 days. The 95% confidence intervals for covariate-specific VUS are
obtained by:

> ci_clus_vus(out_vus)

The 95% confidence intervals for covariate-specific VUS:
Covariates Values Normal approximation Logit transformation Probit transformation
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54 (0.442, 0.640) (0.442, 0.637) (0.442, 0.638)
60 (0.409, 0.618) (0.410, 0.616) (0.410, 0.617)
66 (0.371, 0.599) (0.374, 0.598) (0.373, 0.599)

As shown in the results, we can see three types of confidence intervals: normal approximation-based;
after logit and probit transformations.

One obtains an estimate and a plot of the covariate-specific ROC surface, at, for example, the age
of 58 days, as follows:

> clus_roc_surface(out_clus_lme = out_md, newdata = data.frame(age_days = 58),
+ main = "Age-Specific ROC surface, at 58 days")

The result is displayed in Figure 2(a). A plot of a 95% ellipsoidal confidence region for TCFs at a fixed
pair of threshold, for instance, (t1, t2) = (350, 1350) is obtained as follows:

> clus_roc_surface(out_clus_lme = out_md, newdata = data.frame(age_days = 58),
+ main = "Age-Specific ROC surface, at 58 days",
+ ellips = TRUE, thresholds = c(350, 1350))

The 95% ellipsoidal confidence region for TCFs and covariate-specific ROC surface are displayed in
2(b), together.

(a) (b)

Figure 2: The plots of covariate-specific ROC surface at Age as 58 days: (a) without an ellipsoidal
confidence region; (b) with an ellipsoidal confidence region for TCFs at t1 = 350 and t2 = 1350.

Estimates of covariate-specific TCFs at several values of the covariate, for a fixed pair of thresholds,
are obtained by:

> clus_tcfs(out_clus_lme = out_md, newdata = data.frame(age_days = c(54, 58, 62)),
+ thresholds = c(350, 1350), ap_var = TRUE)

CALL: clus_tcfs(out_clus_lme = out_md, newdata = data.frame(age_days = c(54,
58, 62)), thresholds = c(350, 1350), apVar = TRUE)

Covariate-specific TCFs at (350,1350) :
Covariate(s) Values TCF 1 TCF 2 TCF 3 Se.TCF 1 Se.TCF 2 Se.TCF 3

54 0.576 0.632 0.522 0.113 0.0242 0.0630
58 0.533 0.620 0.533 0.119 0.0242 0.0604
62 0.490 0.607 0.544 0.124 0.0244 0.0592

The results consist of three-point estimates of covariate-specific TCFs at the fixed pair of thresholds
(350, 1350), corresponding to three different values of age, 54, 58, and 62 (days), and the associated
standard errors (Se). Note that, for the function roc_surface() and clus_tcfs(), if the Box-Cox
transformation is applied, the pair of thresholds values must be provided in the original scale.

The following call performs the estimation of the covariate-specific optimal pair of thresholds, and
the corresponding asymptotic variance-covariance matrices, at three different ages of mice: 55, 65 and
75 days. Here, we consider all criteria, i.e., GYI, CtP and MV.
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> out_thresh <- clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md,
+ newdata = data.frame(age_days = c(55, 65, 75)),
+ ap_var = TRUE,
+ control = list(n_boot = 1000, parallel = TRUE,
+ ncpus = 8))

In this case, a nonparametric bootstrap procedure for clustered data estimates the asymptotic variance-
covariance matrix of the (estimated) covariate-specific optimal thresholds. Hence, we used a parallel
computation with 8 CPUs ( Windows 10 Pro 64-bit, Intel(R) Core(TM) i7-7700, 3.6 GHz) to speed up
this process ( the computation time for the parallel bootstrap process is about 15 minutes). As a general
recommendation, we advise the user to switch to parallel computation not only in cases similar to the
one tackled in this example but whenever the computational times appear to be too slow. The results
are shown below.

> print(out_thresh)

CALL: clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md,
newdata = data.frame(age_days = c(55, 65, 75)), ap_var = TRUE,
control = list(n_boot = 1000, parallel = TRUE, ncpus = 8))

Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method Threshold 1 Threshold 2 TCF 1 TCF 2 TCF 3

55 Generalized Youden Index 530 1170 0.706 0.429 0.630
55 Closest to Perfection 446 1260 0.647 0.534 0.575
55 Max Volume 460 1260 0.658 0.525 0.575
65 Generalized Youden Index 627 1240 0.671 0.395 0.613
65 Closest to Perfection 538 1350 0.612 0.508 0.550
65 Max Volume 548 1350 0.619 0.502 0.550
75 Generalized Youden Index 731 1320 0.632 0.361 0.597
75 Closest to Perfection 639 1450 0.575 0.482 0.524
75 Max Volume 644 1450 0.578 0.480 0.523

Standard errors of Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method SE. Threshold 1 SE. Threshold 2

55 Generalized Youden Index 61.1 130.0
55 Closest to Perfection 73.8 85.7
55 Max Volume 66.7 85.8
65 Generalized Youden Index 98.6 120.0
65 Closest to Perfection 115.0 87.1
65 Max Volume 98.7 84.3
75 Generalized Youden Index 133.0 147.0
75 Closest to Perfection 146.0 140.0
75 Max Volume 126.0 121.0

The following call is needed to plot 95% confidence regions for the covariate-specific optimal pairs of
thresholds, and the result is shown in Figure 3.

> plot(out_thresh, colors = c("forestgreen", "blue", "red"),
+ xlims = c(250, 1250), ylims = c(750, 1750), names.labels = "Age in days:",
+ size.point = 0.9)

House cooking fuel choice

We use the dataset EnergyEthiopia to illustrate the use of the package for evaluating a classifier in a
three-class setting with panel data. The EnergyEthiopia data, included in the package, is a subset of
the panel dataset discussed in Alem et al. (2016). The full dataset is collected in 4 cities of Ethiopia
(Addis Ababa, Awassa, Dessie and Mekelle) within three different years: 2000, 2004 and 2009. Each
household participated in the study at most three times (three years). For each time, the information on
household energy choice and some covariates such as expenditure, demographic indicators, household
size and educational status, are recorded. Alem et al. (2016) used the full dataset to investigate the
determinants of household fuel cooking choice and energy transition in urban Ethiopia, based on a
random-effects multinomial logistic model.

The dataset, named EnergyEthiopia, includes 2088 observations from 1123 households living in
Addis Ababa and the following variables:
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Figure 3: The 95% confidence regions for the age-specific optimal pairs of thresholds for three values
of age: 55, 65, and 75.

• the cooking energy states of a household (energy2) with three categories: clean fuel only
(denoted as 1), a mix of clean and biomass fuel (2) and biomass fuel only (1);

• log real consumption per adult equivalent units (lrconsaeu);

• the household size (hhs);

• the log of firewood price (lfirewood_pr);

• the log of charcoal price (lcharcol_pr);

• the log of kerosene price (lkerosene_pr);

• the log of electricity price (lelectric_pr).

We are interested in evaluating the ability of the log real consumption per adult equivalent units to
discriminate three cooking energy states for a household, given the information provided by some
covariates, such as the household size, the prices of firewood, charcoal and kerosene. Above, the term
“clean fuel only” refers to clean energy sources such as electricity, gas and kerosene; whereas, “biomass
fuel only” refers to energy sources such as firewood, charcoal, dung and crop residues. In our analysis,
the 1123 households make up the clusters.

> library(ClusROC)
> data("EnergyEthiopia")

As the first step, we fit a linear mixed-effects model for the response variable lrconsaeu with the
covariates: hhs_ft, lfirewood_pr, lcharcol_pr and lkerosene_pr. Here hhs_ft is a factor represent-
ing four levels of the household size: small (1 ≤ hhs ≤ 4), medium (5 ≤ hhs ≤ 8), large (9 ≤ hhs ≤ 12)
and very large (hhs ≥ 13).

> out_md_enery <- clus_lme(
+ fixed_formula = lrconsaeu ~ hhs_ft + lfirewood_pr + lcharcol_pr + lkerosene_pr,
+ name_class = "energy2", name_clust = "uqid",
+ data = EnergyEthiopia, boxcox = FALSE
+ )
The ordered levels of classes are specified by the order of
averages of the test values for each class:
3 < 2 < 1

As in the first application, we still have no information about the rank-ordered nature of the classifier
(lrconsaeu) concerning the classes, so the monotone ordering was specified by ordering the classes
according to the rank of the sample means of lrconsaeu inside the three groups. The results are shown
as follows.

> print(out_md_enery)
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CALL: clus_lme(fixed_formula = lrconsaeu ~ hhs_ft + lfirewood_pr +
lcharcol_pr + lkerosene_pr, name_class = "energy2", name_clust = "uqid",
data = EnergyEthiopia, boxcox = FALSE)

Coefficients:
Est. Std.Error z-value p-value

energy23 4.93925 0.11856 41.661 < 2e-16 ***
energy23:hhs_ftmedium -0.48145 0.09126 -5.275 1.33e-07 ***
energy23:hhs_ftlarge -0.77942 0.12139 -6.421 1.36e-10 ***
energy23:hhs_ftvery large -0.92139 0.14911 -6.179 6.44e-10 ***
energy23:lfirewood_pr -0.09812 0.04806 -2.042 0.04119 *
energy23:lcharcol_pr -0.01146 0.08398 -0.136 0.89150
energy23:lkerosene_pr -0.13069 0.09731 -1.343 0.17927
energy22 5.14705 0.08235 62.502 < 2e-16 ***
energy22:hhs_ftmedium -0.39801 0.06730 -5.914 3.33e-09 ***
energy22:hhs_ftlarge -0.60084 0.09475 -6.341 2.28e-10 ***
energy22:hhs_ftvery large -0.63877 0.18434 -3.465 0.00053 ***
energy22:lfirewood_pr 0.02983 0.04203 0.710 0.47793
energy22:lcharcol_pr -0.10345 0.05570 -1.857 0.06329 .
energy22:lkerosene_pr -0.24888 0.08953 -2.780 0.00544 **
energy21 5.05581 0.05928 85.283 < 2e-16 ***
energy21:hhs_ftmedium -0.40857 0.04612 -8.859 < 2e-16 ***
energy21:hhs_ftlarge -0.57306 0.06944 -8.252 < 2e-16 ***
energy21:hhs_ftvery large -0.74813 0.17193 -4.351 1.35e-05 ***
energy21:lfirewood_pr 0.05490 0.02776 1.978 0.04793 *
energy21:lcharcol_pr -0.11632 0.03957 -2.940 0.00328 **
energy21:lkerosene_pr 0.13104 0.06246 2.098 0.03590 *
sigma_c 0.47835 0.02062 -- --
sigma_1 0.55878 0.03409 -- --
sigma_2 0.49135 0.02568 -- --
sigma_3 0.57106 0.02103 -- --
ICC 0.43933 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 2088
Number of clusters: 1123
Sample size within cluster:

Min Max Average
1.000000 3.000000 1.859305
Box-Cox transformation: FALSE

The diagnostic plots shown in Figure 4 seem to suggest that the normality assumption and the
homogeneity of variances are reliable.

> plot(out_md_enery)

We estimate the covariate-specific VUS at four different combinations of the covariates, when the
value of hhs_ft changes from “small” to “very large”, the values of lfirewood_pr, lcharcol_pr and
lkerosene_pr are fixed as 1, −1 and 2, respectively. Here, the values “1” and “2” of lfirewood_pr and
lkerosene_pr refer to the very high price of the firewood, and the kerosene, respectively, while the
value “-1” of lcharcol_pr refers to the very low price of the charcoal. The results of the covariate-
specific VUS estimation procedure are displayed below.

> out_vus_enery <- clus_vus(
+ out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1),
+ lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2))
+ )
> print(out_vus_enery)

CALL: clus_vus(out_clus_lme = out_md_enery, newdata = data.frame(hhs_ft = c("small",
"medium", "large", "very large"), lfirewood_pr = c(1, 1,
1, 1), lcharcol_pr = c(-1, -1, -1, -1), lkerosene_pr = c(2,
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Figure 4: The diagnostic plots for the linear mixed-effects model (EnergyEthiopia data).

2, 2, 2)))

Covariate-specific VUS:
Covariates Values Est. Std.Error z-value p-value
(small, 1, -1, 2) 0.380 0.0674 3.17 <0.001 ***

(medium, 1, -1, 2) 0.404 0.0639 3.72 <0.001 ***
(large, 1, -1, 2) 0.443 0.0693 3.99 <0.001 ***

(very large, 1, -1, 2) 0.440 0.0862 3.17 <0.001 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
z-value and p-value are for testing the null hypothesis H0: VUS = 1/6 vs HA: VUS > 1/6

The estimated covariate-specific VUSs suggest that the accuracy of lrconsaeu increases as the house-
hold size increases while the other covariates are fixed. The inference results for covariate-specific
VUS indicate that the lrconsaeu can be considered as a classifier for distinguishing a household using
biomass fuel only from others using either clean fuel only or a mixed fuel. However, its accuracy is not
so high. We also compute the 95% confidence intervals for the covariate-specific VUS at four different
points.

> ci_clus_vus(out_vus_enery)

The 95\% confidence intervals for covariate-specific VUS:
Covariates Values Normal approximation Logit transformation Probit transformation
(small, 1, -1, 2) (0.248, 0.512) (0.259, 0.518) (0.257, 0.517)

(medium, 1, -1, 2) (0.279, 0.529) (0.287, 0.533) (0.286, 0.532)
(large, 1, -1, 2) (0.307, 0.579) (0.314, 0.580) (0.313, 0.580)

(very large, 1, -1, 2) (0.271, 0.609) (0.284, 0.609) (0.281, 0.609)

Since the covariate point ("large", 1, -1, 2) gives the highest covariate-specific VUS estimate
among the considered points, we plot the covariate-specific ROC surface at this point, to visualize the
covariate-specific TCFs at all possible pairs of thresholds. The result is displayed in Figure 5.

> clus_roc_surface(
+ out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = "large", lfirewood_pr = 1,
+ lcharcol_pr = -1, lkerosene_pr = 2),
+ file_name = "ROCS_Energy_ex1.png"
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+ )

Figure 5: The plot of covariate-specific ROC surface at the covariate point ("large", 1, -1, 2).

Now, suppose we consider a pair of thresholds as (t1, t2) = (3.75, 4.75). The results of the
estimation of the covariate-specific TCFs at that pair, associated with four different covariate points,
are obtained by:

> clus_tcfs(out_clus_lme = out_md_enery,
+ newdata = data.frame(
+ hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1), lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2)),
+ thresholds = c(3.75, 4.75), ap_var = TRUE)

CALL: clus_tcfs(out_clus_lme = out_md_enery, newdata = data.frame(hhs_ft = c("small",
"medium", "large", "very large"), lfirewood_pr = c(1, 1,
1, 1), lcharcol_pr = c(-1, -1, -1, -1), lkerosene_pr = c(2,
2, 2, 2)), thresholds = c(3.75, 4.75), ap_var = TRUE)

Covariate-specific TCFs at (3.75,4.75) :
Covariate(s) Values TCF 1 TCF 2 TCF 3 Se.TCF 1 Se.TCF 2 Se.TCF 3
(small, 1, -1, 2) 0.126 0.415 0.839 0.0569 0.0617 0.0366

(medium, 1, -1, 2) 0.312 0.526 0.671 0.0906 0.0247 0.0532
(large, 1, -1, 2) 0.467 0.532 0.588 0.1100 0.0147 0.0612

(very large, 1, -1, 2) 0.543 0.529 0.495 0.1230 0.0247 0.1080

Finally, we obtain the covariate-specific optimal pairs of thresholds at four different covariate
points, based on all criteria, i.e., GYI, CtP and MV.

> out_thresh_enery <- clus_opt_thres3(
+ method = c("GYI", "CtP", "MV"), out_clus_lme = out_md_enery,
+ newdata = data.frame(hhs_ft = c("small", "medium", "large", "very large"),
+ lfirewood_pr = c(1, 1, 1, 1),
+ lcharcol_pr = c(-1, -1, -1, -1),
+ lkerosene_pr = c(2, 2, 2, 2)),
+ ap_var = TRUE
+ )
> print(out_thresh_enery)

CALL: clus_opt_thres3(method = c("GYI", "CtP", "MV"), out_clus_lme = out_md_enery,
newdata = data.frame(hhs_ft = c("small", "medium", "large",

"very large"), lfirewood_pr = c(1, 1, 1, 1), lcharcol_pr = c(-1,
-1, -1, -1), lkerosene_pr = c(2, 2, 2, 2)), ap_var = TRUE)

Covariate-specific optimal pair of thresholds:
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Covariate(s) Values Method Threshold 1 Threshold 2 TCF 1 TCF 2 TCF 3
(small, 1, -1, 2) Generalized Youden Index 4.52 5.18 0.460 0.370 0.661
(small, 1, -1, 2) Closest to Perfection 4.51 5.35 0.455 0.453 0.572
(small, 1, -1, 2) Max Volume 4.51 5.35 0.454 0.452 0.575

(medium, 1, -1, 2) Generalized Youden Index 4.13 4.78 0.509 0.363 0.657
(medium, 1, -1, 2) Closest to Perfection 4.08 4.94 0.481 0.465 0.574
(medium, 1, -1, 2) Max Volume 4.07 4.93 0.480 0.464 0.578
(large, 1, -1, 2) Generalized Youden Index 3.91 4.59 0.553 0.379 0.669
(large, 1, -1, 2) Closest to Perfection 3.84 4.74 0.514 0.486 0.591
(large, 1, -1, 2) Max Volume 3.83 4.73 0.512 0.483 0.597

(very large, 1, -1, 2) Generalized Youden Index 3.84 4.50 0.592 0.369 0.627
(very large, 1, -1, 2) Closest to Perfection 3.74 4.63 0.535 0.485 0.560
(very large, 1, -1, 2) Max Volume 3.74 4.63 0.535 0.483 0.562

Standard errors of Covariate-specific optimal pair of thresholds:
Covariate(s) Values Method SE. Threshold 1 SE. Threshold 2
(small, 1, -1, 2) Generalized Youden Index 0.234 0.1040
(small, 1, -1, 2) Closest to Perfection 0.112 0.0914
(small, 1, -1, 2) Max Volume 0.114 0.0932

(medium, 1, -1, 2) Generalized Youden Index 0.166 0.0990
(medium, 1, -1, 2) Closest to Perfection 0.110 0.0868
(medium, 1, -1, 2) Max Volume 0.111 0.0891
(large, 1, -1, 2) Generalized Youden Index 0.158 0.1090
(large, 1, -1, 2) Closest to Perfection 0.122 0.0954
(large, 1, -1, 2) Max Volume 0.123 0.0988

(very large, 1, -1, 2) Generalized Youden Index 0.192 0.1640
(very large, 1, -1, 2) Closest to Perfection 0.154 0.1390
(very large, 1, -1, 2) Max Volume 0.154 0.1410

The 95

> plot(out_thresh_enery, colors = c("orange", "red", "blue", "forestgreen"),
+ file_name = "optThres_energy_ellip.pdf", nrow_legend = 2,
+ width = 6, height = 4)
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Figure 6: The 95% confidence regions for the age-specific optimal pairs of thresholds for four covariate
points (in the house cooking fuel choice example).

4 Conclusion

This paper introduces the ClusROC package, the first R package for ROC surface analysis in three-
class classification problems, for clustered data and in the presence of covariates. The package allows
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obtaining point estimates and confidence regions for true class fractions, ROC surface estimates and
plots, point and interval estimates of VUS, and point estimates and confidence regions for optimal pair
of thresholds. In the last case, three different criteria can be used: GYI, CtP, and MV. The package is
available on Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=
ClusROC. The functions in the package are described and implemented using, as examples, the real
datasets MouseNeurons and EnergyEthiopia provided in the package itself.

The linear mixed-effects model relies on the assumptions of normality and homoscedasticity.
When such assumptions do not hold, the Box-Cox transformation can be employed. In these cases, a
bootstrap procedure is needed to estimate the elliptical confidence regions for the optimal thresholds.
This procedure can take a long computation time depending on the size of the data (either the number
of clusters or the sample size within the clusters). For this reason, we recommend users enable the
parallel computation option, which is already implemented within the function clus_opt_thres3().
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6 Appendix

To help the reader evaluate the need for transforming the data, we report here the results of the
analysis based on the linear mixed-effects model without the Box-Cox transformation. The results
show that the assumptions of normality and homoscedasticity are violated.

> out_md_0 <- clus_lme(fixed_formula = Lamp5_cpm ~ age_days,
+ name_class = "subclass_label", name_clust = "genotype_id",
+ data = MouseNeurons)
The ordered levels of classes are specified by the order of
averages of the test values for each class:
L4 < L5 PT < L2/3 IT
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> print(out_md_0)

CALL: clus_lme(fixed_formula = Lamp5_cpm ~ age_days, name_class = "subclass_label",
name_clust = "genotype_id", data = MouseNeurons)

Coefficients:
Est. Std.Error z-value p-value

subclass_labelL4 -378.9740 208.6613 -1.816 0.0693 .
subclass_labelL4:age_days 11.3966 1.4166 8.045 8.62e-16 ***
subclass_labelL5 PT 558.0245 89.6372 6.225 4.80e-10 ***
subclass_labelL5 PT:age_days 8.6915 0.6581 13.207 < 2e-16 ***
subclass_labelL2/3 IT 1227.4463 251.7121 4.876 1.08e-06 ***
subclass_labelL2/3 IT:age_days 5.0032 3.4950 1.432 0.1523
sigma_c 330.1655 68.9777 -- --
sigma_1 529.2924 9.1052 -- --
sigma_2 514.0238 12.5033 -- --
sigma_3 611.5288 30.7857 -- --
ICC 0.2638 -- -- --
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Number of observations: 860
Number of clusters: 23
Sample size within cluster:

Min Max Average
1.0000 330.0000 37.3913

Box-Cox transformation: FALSE

> plot(out_md_0)
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Figure 7: The diagnostic plots for the linear mixed-effects model for MouseNeurons data, without
Box-Cox transformation.
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Resampling Fuzzy Numbers with
Statistical Applications: FuzzyResampling
Package
by Maciej Romaniuk, Przemysław Grzegorzewski

Abstract The classical bootstrap has proven its usefulness in many areas of statistical inference. How-
ever, some shortcomings of this method are also known. Therefore, various bootstrap modifications
and other resampling algorithms have been introduced, especially for real-valued data. Recently,
bootstrap methods have become popular in statistical reasoning based on imprecise data often mod-
eled by fuzzy numbers. One of the challenges faced there is to create bootstrap samples of fuzzy
numbers which are similar to initial fuzzy samples but different in some way at the same time. These
methods are implemented in FuzzyResampling package and applied in different statistical functions
like single-sample or two-sample tests for the mean. Besides describing the aforementioned functions,
some examples of their applications as well as numerical comparisons of the classical bootstrap with
the new resampling algorithms are provided in this contribution.

1 Introduction

The bootstrap introduced by Efron (1979) is one of the most important contemporary achievements
of computational statistics. It has proven its usefulness in various fields, e.g., in estimating standard
errors, computing confidence intervals, or hypothesis testing, especially if the actual population
distribution is unknown or the desired statistical procedures are not tractable analytically, and when
the sample size is not large enough to apply asymptotic methods (e.g, Efron and Tibshirani (1993)).
Then Giné and Zinn (1990) developed a bootstrapped approximation to the Central Limit Theorem
for generalized random elements, which allows to apply bootstrap for fuzzy random variables used
for modeling imprecise outputs of random experiments. This application is of extreme importance
because the absence of suitable models for the distribution of fuzzy random variables makes the
statistical reasoning difficult. Practice has shown that the use of the bootstrap to handle fuzzy data has
been very effective (e.g., Gil et al. (2006); González-Rodríguez et al. (2006); Montenegro et al. (2004);
Lubiano et al. (2016, 2017)).

An important disadvantage of the classical bootstrap, easily spotted especially for small sample
sizes, is that the bootstrap samples almost always contain repeated values and hence their variability
is lower when compared to the initial sample. This is more troublesome when the random distribution
of the assumed statistical model is continuous, since this feature is not properly reflected with the
classical bootstrap where each value has the same non-zero probability of appearing in the bootstrap
sample. To overcome this problem many modifications of Efron’s approach were proposed in the
literature, like the smoothed bootstrap (Silverman and Young, 1987). The same shortcomings and
remarks apply to bootstrap methods applied in a fuzzy environment. Here it would also be desirable
to generate samples consisting of fuzzy observations that are almost identical to those contained in
the original sample, but nevertheless different from them to some extent. Several methods have been
proposed to deal with this problem (Grzegorzewski and Romaniuk, 2022b). One can divide them into
two main groups. The first one group shares the generation of new fuzzy numbers which keep some
“characteristic points” of the membership functions describing initial fuzzy values. For the second
group, we are interested in the preservation of some basic characteristics of the initial values, like their
canonical representation (Delgado et al., 1998). Both approaches seem to be fruitful in many aspects
of the statistical inference (see Grzegorzewski et al. (2019, 2020b,a); Grzegorzewski and Romaniuk
(2022b); Romaniuk (2019); Romaniuk and Hryniewicz (2019)) and may be helpful in improving the
results of some real-life data analyses.

To allow potential users access to the aforementioned new bootstrap methods, several resampling
algorithms have been implemented in FuzzyResampling package (Romaniuk et al., 2022). They
have been complemented by some additional procedures which might be useful for the generation
of samples of trapezoidal fuzzy numbers, for estimation of the standard error (or the MSE), and for
testing hypotheses about the fuzzy mean (in the single or two samples problem), etc. The proposed
package can be applied together with other tools designed for data analysis. FuzzyResampling is, to
our knowledge, the first package in R (R Core Team, 2023) which provides a few resampling methods
for trapezoidal fuzzy numbers together with some statistical functions based on them.

In the following, we briefly compare FuzzyResampling with the existing packages, introduce a
necessary notation and describe the new resampling methods. Functions implemented in the package
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are illustrated with examples. Finally, the proposed resampling methods are compared with the
classical bootstrap in some important statistical problems (both theoretical and utilizing real-life data).

Related packages

There is an abundance of packages oriented toward the classic bootstrap and its statistical applications,
like boot (Canty and Ripley, 2022), with many functions and data originated from Davison and
Hinkley (1997) including the parametric and nonparametric resampling approaches, or bootstrap
(Tibshirani and Leisch, 2019), which contains functions and data related to Efron and Tibshirani (1993),
e.g. cross-validation or jackknife procedures.

There are also many R packages intended to handle fuzzy numbers that may be useful in statistical
reasoning with fuzzy data. Researchers can utilize FuzzyNumbers (Gagolewski and Caha, 2021) for
computing arithmetic operators, designing approximations, and finding possibility and necessity
values for arbitrary fuzzy numbers or some of their special types. FuzzySTs (Berkachy and Donze,
2020) might be helpful for fuzzification, calculation of different distances, numerical estimations of
fuzzy statistical measures and bootstrap distribution of the likelihood ratio, etc. Such packages as
SAFD (Trutschnig et al., 2013) or Sim.PLFN (Parchami, 2017) are devoted to simulation on fuzzy
numbers (see also Coroianu et al. (2013) for additional details).

However, to our knowledge, FuzzyResampling is the only package that provides the new resam-
pling methods, different from Efron’s classical approach, for trapezoidal fuzzy numbers and lets users
apply them to various problems of statistical inference. In particular, SAFD provides procedures for
the bootstrapped versions of the one- or two-sample tests for the mean of trapezoidal fuzzy numbers
(which are related to the C-test mentioned in this paper), but they are limited to the classical bootstrap.
Although it contains a function that generates stochastically perturbated new values based on the
input data frame, it only adds some random noise without keeping track of important characteristics
of the input fuzzy numbers (as is done in the resampling methods implemented in FuzzyResampling).

Fuzzy numbers – notation

For a more detailed introduction to the theory of fuzzy numbers, we refer the reader to Ban et al.
(2015). In the following, we provide only some necessary concepts and notation.

A fuzzy number A is characterized by its membership function A(x) which represents the degree
of membership of x into A. We assume that 0 ⩽ A(x) ⩽ 1, where A(x) = 1 indicates that x surely
belongs to A, while A(x) = 0 means that x surely does not belong to A. If A(x) ∈ (0, 1) then x
partially belongs to A.

Perhaps the most often used fuzzy numbers are known as the trapezoidal fuzzy numbers (TPFNs)
with their membership functions given by

A(x) =


x−a1
a2−a1

if a1 < x ⩽ a2,
1 if a2 ⩽ x ⩽ a3,
a4−x
a4−a3

if a3 ⩽ x < a4,
0 otherwise,

(1)

where a1, a2, a3, a4 ∈ R, and a1 ⩽ a2 ⩽ a3 ⩽ a4. Here, the interval [a2, a3], called the core, contains
all values which are fully compatible with the concept described by the fuzzy number A, while the
interval [a1, a4], called the support, indicates all real values that are compatible to some extent with A.
If A is a TPFN it can be described completely using only four real values a1, a2, a3, a4, so we can state
A = (a1, a2, a3, a4). If a2 = a3 then we have a triangular fuzzy number (TRFN), and A = (a1, a2, a4).

Another parametrization of a trapezoidal fuzzy number, which is especially useful for generating
fuzzy data and simulation studies, is given by

c =
a2 + a3

2
, s =

a3 − a2
2

, l = a2 − a1, r = a4 − a3, (2)

where c indicates the center of the core of a fuzzy number, s is equal to its core radius (the spread of
the core), and l and r stand for the spread of the left and the right arm of the membership function
A(x), respectively. Of course, we have c ∈ R, and s, l, r ⩾ 0.

To introduce basic arithmetic operations (such as addition, subtraction, etc.) for the fuzzy numbers,
the Zadeh extension principle should be applied (see Ban et al. (2015)). However, in the case of TPFNs,
some operations are easier to conduct, e.g., for A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4), we have

A + B = (a1 + b1, a2 + b2, a3 + b3, a4 + b4), (3)
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so the result is also a TPFN.

Resampling approaches for fuzzy data

Let X̃ = (X̃1, . . . , X̃n) be a fuzzy random sample (Puri and Ralescu, 1986) and x̃ = (x̃1, . . . , x̃n) –
its actual realization. This sample will be called the primary sample or the initial sample. For the
classical Effron’s bootstrap, the bootstrap samples (or secondary samples) are drawn randomly with
replacement from the primary sample. In this way we can create b bootstrap samples and the i-th
element of the j-th secondary sample is denoted by x̃∗ij.

Because of the previously mentioned shortcomings of Efron’s approach, several modifications were
proposed in the case of real-valued data. New resampling methods for fuzzy data were introduced
recently in Grzegorzewski et al. (2019, 2020b,a); Romaniuk (2019); Romaniuk and Hryniewicz (2019).
All of them are implemented in FuzzyResampling package. We summarize them briefly below. For a
more detailed review, we refer the reader to Grzegorzewski and Romaniuk (2022b).

The proposed approaches can be divided into two groups. In the first one, following (2), each
TPFN x̃i is described by its “characteristic points”, like the left bound of the core lci = a2 = ci − si, the
core width wci = a3 − a2 = 2si, and the spreads li and ri. Then, given a primary sample x̃, four sets
are created: LC = {lc1, . . . , lcn, }, WC = {wc1, . . . , wcn, }, L = {l1, . . . , ln, } and R = {r1, . . . , rn, }. If
the d-method (Romaniuk and Hryniewicz, 2019) is applied then four numbers lc∗, wc∗, l∗, r∗ from the
respective sets LC, WC, L, R are drawn to construct a new bootstrapped element x̃∗. This procedure is
repeated n times to obtain a whole secondary sample. For the w-method (Romaniuk and Hryniewicz,
2019), instead of the equal probabilities on the discrete sets, the special density w(x) is used to construct
x∗i . This leads to a more diversified secondary sample than for the d-method. Both methods were also
applied in Romaniuk and Hryniewicz (2021) for interval-valued fuzzy numbers.

The second group of methods contains the following flexible bootstrap algorithms: VA-method
(Grzegorzewski et al., 2019, 2020a), EW-method (Grzegorzewski et al., 2020a), VAF-method (Grze-
gorzewski et al., 2020b) and VAA-method (Grzegorzewski and Romaniuk, 2022b). Contrary to
d-method or w-method, flexible approaches can be applied to primary samples of any fuzzy numbers,
but the generated outputs consist of TPFNs. However, the generated secondary samples preserve the
so-called canonical representations of the primary observations. Our flexible methods differ in the
type of preserved representation, which is summarized in Table 1.

Each of the flexible methods consists of four steps. Firstly, depending on the particular method,
some characteristics of fuzzy numbers – like the value Val(x̃i), ambiguity Amb(x̃i) (Delgado et al.,
1998), expected value EV(x̃i) (i.e. the middle point of the expected interval of a fuzzy number (Dubois
and Prade, 1987; Heilpern, 1992)), width w(x̃i) (Chanas, 2001), fuzziness Fuzz(x̃i) (Delgado et al.,
1998), left- and right-hand ambiguities AmbL(x̃i), AmbU(x̃i) – are calculated for each observation x̃i
of the primary sample. What values are determined depends on the user’s decision on which values
should be preserved during the generation of the bootstrap samples. While some characteristics will
be kept, others will be randomly generated from the uniform distribution. Finally, the remaining
values describing a TPFN are directly calculated based on the formulas depending on the resampling
approach. In Table 1 we list some flexible bootstrap methods along with an indication of which
parameters are preserved, which are randomly generated, and which are directly calculated.

Method Preserved Randomly generated Directly calculated
VA-method Val, Amb s, c l, r
EW-method EV, w s, c l, r
VAF-method Val, Amb, Fuzz c s, l, r
VAA-method Val, AmbL, AmbU s c, l, r

Table 1: Brief characteristic of the flexible bootstrap methods.

2 Overview of FuzzyResampling package

Below we briefly discuss functions implemented in FuzzyResampling package (version 0.6.0, available
via CRAN). All further examples in R can be self-repeated using a supplementary file.
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Generation of the initial sample

When the bootstrap is applied to solve any real-life problem the provided data is automatically
treated as the initial sample. However, to perform any simulation study many synthetic samples are
necessary, so effective data generators from various distributions are then strongly desirable. In the
case of reasoning with imprecise data, we need an algorithm which generates fuzzy numbers used for
modeling such data. In FuzzyResampling package two specialized functions to generate randomly
trapezoidal fuzzy numbers are available:

GeneratorNU (n, mu, sigma, a, b, increases = FALSE, ...)
GeneratorNExpUU (n, mu, sigma, lambda, b, c, increases = FALSE, ...)

The third function, GeneratorFuzzyNumbers, can be used for various random distributions describing
the “true origin” of TPFN, the increases of its core and the support. In this case, the respective functions
(e.g., rnorm) from stats package (R Core Team, 2023), together with their parameters’ names, can be
directly applied.

In both cases, to generate a TPFN, the parametrization described by (2) is used. In particular, to
obtain a single TPFN four values c, s, l, r are generated independently using random distributions
described in Table 2, where N(mu,sigma) stands for the normal distribution with the mean mu and
standard deviation sigma, U (0,a) denotes the uniform distribution on the interval (0, a), Exp (lambda)
stands for the exponential distribution with the parameter lambda, etc. More details concerning various
types of simulated fuzzy numbers can be found in, e.g., Grzegorzewski et al. (2020b); Grzegorzewski
and Romaniuk (2022a).

Function c s l r
GeneratorNU N(mu,sigma) U (0,a) U(0,b) U(0,b)
GeneratorNExpUU N(mu,sigma) Exp (lambda) U(0,b) U(0,c)

Table 2: Distributions used to simulate fuzzy numbers.

If we generate a sample of n fuzzy numbers using any of the considered functions we receive the
output as a matrix with n rows and four columns corresponding to values a1, a2, a3, a4 defined in (1)
(abbreviated further as “the ends”) if the parameter increases is set to FALSE, otherwise producing
values l, c − s, c + s, r described in (2) (abbreviated further as “the increments”). It is worth noting
that the parameter increases plays the same role of indicating the form of the output (or input) fuzzy
numbers in all functions in this package.

As an example consider the following code generating a sample of n = 10 trapezoidal fuzzy
numbers in the “ends” mode, i.e. a1, a2, a3, a4:

# seed PRNG
> set.seed(1234)

> sample1 <- GeneratorNU(10, mu = 0, sigma = 1, a = 0.2, b = 0.6)
> head(sample1,2)

[,1] [,2] [,3] [,4]
[1,] -1.6023884 -1.2703882 -1.1158475 -1.0715795
[2,] -0.1709531 0.2168906 0.3304666 0.5162785

Resampling methods

To perform the classical Efron’s bootstrap, the ClassicalBootstrap function should be applied. Func-
tions related to other methods (VA, EW, etc.) have the common form XXXMethod, where XXX stands for
the respective method abbreviation. For instance, we write EWMethod in the case of the EW approach.
A general structure of these functions is rather intuitive:

XXXMethod(initialSample, b = n, increases = FALSE)

where initialSample denotes the name of a matrix of input fuzzy numbers, b indicates the desired
size of the bootstrap sample (if b is not specified we assume it is equal to the initial sample n, i.e. the
number of rows in the input matrix), while with increases we set the mode (“ends” or “increments”)
used for describing fuzzy numbers both in the input and output matrices.

To generate the bootstrapped sample of b = n = 10 values using the classical Efron’s approach
based on the previously created initial sample sample1:
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> set.seed(1234)
>
> sampleEfron <- ClassicalBootstrap(sample1)
>
> head(sampleEfron,2)

[,1] [,2] [,3] [,4]
[1,] -1.3584678 -0.8991919 -0.7285674 -0.2195319
[2,] 0.0427377 0.3439362 0.6579900 0.9603501

Similarly, to perform the VA method for b = 20:

> set.seed(1234)
>
> sampleVA <- VAMethod(sample1, 20)
>
> head(sampleVA,2)

[,1] [,2] [,3] [,4]
[1,] -1.091883230 -1.0324841 -0.8074509 -0.06176483
[2,] 0.009038746 0.3607857 0.4974204 1.28148926

Calculation of the mid/spread distance

A distance between two fuzzy numbers often used in the statistical context is the so-called mid/spread
distance Dλ

θ proposed in Bertoluzza et al. (1995); Trutschnig et al. (2009). It can be designated by:

BertoluzzaDistance(fuzzyNumber1, fuzzyNumber2, theta = 1/3, increases = FALSE)

where fuzzyNumber1 and fuzzyNumber2 denote vectors containing the respective fuzzy numbers, theta
is the weight of the impact of the distance between the mid-points of α-cuts in contrast to the distance
between their spreads (usually theta=1/3 or theta=1).

To find the mid/spread distance between two fuzzy numbers from the sample sample1 we apply:

> BertoluzzaDistance(sample1[1,],sample1[2,])
[1] 1.488457

Estimation of SE/MSE

Bootstrap is often applied to estimate the standard error (SE) or the mean squared error (MSE) of the
considered estimator. If the resulting estimator of the mean is given by a trapezoidal fuzzy number
both SE and MSE can be obtained with the following function:

SEResamplingMean(initialSample, resamplingMethod = "ClassicalBootstrap",
repetitions = 100, trueMean = NA, theta = 1/3, increases = FALSE)

where initialSample indicates a matrix containing the initial sample, resamplingMethod denotes a
resampling method, and repetitions stands for the number of the bootstrap samples. If trueMean is
not set then SE is estimated by the formula

ŜE =

√√√√ 1
repetitions − 1

repetitions

∑
k=1

D2
θ

(
X̄∗i, X̄∗

)
, (4)

where Dθ is the mid/spread distance, while

X̄∗i =
1
n

n

∑
j=1

X∗ij, X̄∗ =
1

repetitions

repetitions

∑
i=1

X̄∗i, (5)

and where X∗ij is the j-th fuzzy value in the i-th bootstrap sample. Otherwise, MSE is estimated as
follows

M̂SE =
1

repetitions − 1

repetitions

∑
k=1

D2
θ

(
X̄∗i, EX

)
, (6)

where EX is the Aumann-type mean (Puri and Ralescu, 1986) of the fuzzy number given by trueMean
expressed by the four values (depending on the mode “ends” or “increments” specified in increases
parameter).

To estimate SE using the classical bootstrap and the previously generated sample1 we apply:
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> set.seed(1234)
> SEResamplingMean(sample1)
$mean
[1] -0.70650791 -0.40296248 -0.22308095 0.05157294

$SE
[1] 0.05715056

Here, mean is equal to X̄∗ while SE gives ŜE.

On the other hand, the MSE based on the VA method can be estimated as follows:

> set.seed(1234)
>
> SEResamplingMean(sample1,resamplingMethod = "VAMethod",trueMean = c(-0.4,-0.1,0.1,0.4))
$mean
[1] -0.4 -0.1 0.1 0.4

$SE
[1] 0.04421334

where SE actually gives M̂SE.

Bootstrapped one-sample test for the mean

Bootstrap methods are often used in hypothesis testing with fuzzy data. One of such tests, denoted
further as the one-sample C-test (Colubi, 2009; Lubiano et al., 2016), is designed to verify

H0 : EX = µ0 vs. H1 : EX ̸= µ0, (7)

where µ0 is a fixed fuzzy number assumed as the true fuzzy mean. This test can be invoked with the
following function:

OneSampleCTest(initialSample,mu_0,numberOfSamples = 100,theta = 1/3,
resamplingMethod = "ClassicalBootstrap",increases = FALSE)

where initialSample is a matrix describing the initial sample, mu_0 is the hypothetical mean µ0,
numberOfSamples is the number of bootstrap samples and resamplingMethod specifies the resampling
method. As the output, we receive the estimated p-value which can be used to make a final decision
(i.e. to reject or not reject the null hypothesis H0).

To check whether the true mean of the population represented by sample1 is a TPFN mu0
parametrized by (−0.4,−0.1, 0.1, 0.4) we can apply the C-test based on the classical bootstrap as
follows:

> set.seed(1234)
> OneSampleCTest(sample1, mu_0 = c(-0.4,-0.1,0.1,0.4))
[1] 0.31

To perform this test based on the VA method we apply:

> set.seed(1234)
>
> OneSampleCTest(sample1, mu_0 = c(-0.4,-0.1,0.1,0.4),
+ numberOfSamples = 1000, resamplingMethod = "VAMethod")
[1] 0.253

In both cases, there is no reason to reject the null hypothesis because the estimated p-values are greater
than any reasonable significance level (like the traditional 0.05).

Bootstrapped two-sample test for the mean

A similar procedure can be applied to check whether there is a significant difference between the
means of the two independent fuzzy samples. More precisely, we consider the two-sample C-test
(Lubiano et al., 2016) to verify

H0 : EX1 = EX2 vs. H1 : EX1 ̸= EX2, (8)

where EX1 and EX2 are the Aumann-type means of the first and second sample, respectively. Here
the desired p-value can be calculated by the following function
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TwoSampleCTest(initialSample1,initialSample2,numberOfSamples = 100,
theta = 1/3,resamplingMethod = "ClassicalBootstrap",increases = FALSE)

where initialSample1 and initialSample2 are matrices corresponding to the first and the second
initial sample, respectively, while other parameters remain identical as for OneSampleCTest.

Given previously generated sample1 and sample2 simulated with a slight shift (i.e. for mu = 0.2)
we verify (8) using the two-sample C-test based on the classical bootstrap. Thus we type the following
commands:

> set.seed(1234)
> sample2 <- GeneratorNU(10, mu = 0.2, sigma = 1, a = 0.2, b = 0.6)
>
> TwoSampleCTest(sample1, sample2,numberOfSamples = 1000)
[1] 0.678

Thus obtaining such a high p-value there is no reason to reject H0.

3 Comparison of the resampling methods with FuzzyResampling pack-
age

Now we numerically compare the introduced resampling methods with the classical bootstrap using
various statistical approaches like the standard error estimation or the power analysis.

Method comparison with SE/MSE

To compare the statistical properties of the considered resampling methods we firstly use SE/MSE for
the mean. In some papers, it is stated that the proposed new resampling methods usually have smaller
errors than the classical bootstrap (Grzegorzewski et al., 2020a,b; Grzegorzewski and Romaniuk,
2022b). To check this, one may use the following SEResamplingMean function

ComparisonSEMean (generator, sampleSize = 10, numberOfSamples = 100,
repetitions = 100,trueMean = NA, theta = 1/3, ...)

where generator indicates the algorithm applied to simulate fuzzy numbers (see Tab. 2), ... specifies
some additional parameters required by generator and numberOfSamples stands for the number of
experiment repetitions performed to minimize the undesired influence of random fluctuations.

To estimate SE for a small (e.g. n = 10) or moderate (e.g. n = 50) initial sample size we proceed as
follows:

> set.seed(1234567)

> outputSEsample3 <- ComparisonSEMean(generator = "GeneratorNExpUU",sampleSize = 10,
+ numberOfSamples = 10000,repetitions = 100,mu = 0,sigma = 4,lambda = 4,b = 0.4,c = 0.8)

> round(outputSEsample3, digits = 5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.10756 0.10757 0.10753 0.10751 0.10763 0.10664 0.10764

As it can be seen the estimated SE for the new resampling methods may be significantly lower
(about 1%) than for the classical bootstrap. These results confirm the remarks given in Grzegorzewski
and Romaniuk (2022b) that “the w-method is usually the best approach for small sample sizes, while
the VAF-method is the best for moderate and big samples. In general, when considering various
models, it appears that the VAF-method and EW-method behave in a rather stable manner, while the
behavior of the VAA-method depends strongly on the type of data.” Some other examples can be
found in the supplemental file.

A similar comparison of the bootstrap methods can be done using the MSE:

> set.seed(1234567)

> outputMSEsample2 <- ComparisonSEMean(generator = "GeneratorNExpUU",sampleSize = 10,
+ numberOfSamples = 10000, repetitions = 100, trueMean = c(-0.45,-0.25,0.25,0.65),
+ mu = 0, sigma = 4, lambda = 4, b = 0.4, c = 0.8)
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> round(outputMSEsample1, digits = 5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.16495 0.16499 0.16482 0.16470 0.16496 0.16315 0.16519

Here the relative difference is about 1.1% if the w-method is compared with the classical bootstrap.

Test size estimation

We can also compare the empirical size (i.e. the maximal percentage of rejections if the null hypothesis
holds) of the one-sample C-test based on different resampling approaches (see also Grzegorzewski
et al. (2020b)). To proceed with such a study, the following special function based on OneSampleCTest
is available:

ComparisonOneSampleCTest (generator,mu_0,shift=0,sampleSize = 10,numberOfSamples = 10,
initialSamples = 100,theta = 1/3,significance = 0.05, ...)

It generates a sequence of initial samples (their number is given in initialSamples and the size
is determined by sampleSize) for fuzzy numbers of the type specified by generator. Then some
deterministic shift of the size shift is added to each fuzzy observation in these samples. Next,
the function OneSampleCTest is executed to calculate the p-value for each combination of the initial
sample and resampling method. Then, by comparing the p-value with the assumed significance level
significance we make a decision whether to reject the null hypothesis H0 specified in (7) or not. The
output of this procedure is the percentage of rejections in the sequence of experiments. To estimate the
test size one should set shift=0. All other parameters of this function are passed to OneSampleCTest
or the respective generator.

Let us consider the following simulation experiment:

> set.seed(1234567)

> outputCSizetest1 <- ComparisonOneSampleCTest(generator="GeneratorNU",
+ mu_0 = c(-0.4,-0.1,0.1,0.4), sampleSize = 10,numberOfSamples = 100,
+ initialSamples = 1000,mu = 0, sigma = 1,a = 0.2,b = 0.6)

> round(outputCSizetest1, digits = 4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.038 0.035 0.040 0.035 0.037 0.040 0.034

# check the distance to the "true value" 0.05
> round(outputCSizetest1-0.05, digits = 4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
-0.012 -0.015 -0.010 -0.015 -0.013 -0.010 -0.016

It can be seen that the empirical sizes of the C-test combined with the new resampling methods
might be closer to the assumed significance level of 0.05 than obtained for Efron’s bootstrap. Some
other examples can be found in the supplemental file. The plot showing the estimated percentage of
rejections as a function of the significance level is shown in Fig. 1. Because the distance between these
two values (i.e. the percentage of rejections and the significance level) is usually low, the respective
differences are additionally plotted in Fig. 2 for all the resampling methods.

Our experiments confirm the conclusion stated in (Grzegorzewski et al., 2020a) that the classical
bootstrap was never the winner in such comparisons. New resampling methods usually behave much
better – especially the d-method and the VA-method. The EW-method behaves always in a relatively
stable manner and never drops below the third place.

Test power analysis

Our package also enables the power comparison for the one-sample C-test combined with different
resampling methods. This is possible by using the ComparisonOneSampleCTest function, which de-
termines the percentage of the null hypothesis rejection under increasing shift added to the initial
sample:

ComparePowerOneSampleCTest (generator,mu_0,shiftVector,sampleSize = 10,
numberOfSamples = 10,initialSamples = 100,theta = 1/3,significance = 0.05, ...)
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Figure 1: Test size depending on the signifi-
cance level for the one-sample C-test based on
the samples generated with GeneratorNU.
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Figure 2: Differences in test size between
the resampling methods and the significance
level.

This procedure produces a matrix with the successive shift values, set in the vector shiftVector,
specified in the rows and the corresponding percentages of rejections for the respective resampling
methods given in columns.

Below we show how to apply this function to comparisons based on very small samples (n = 5).
To minimize undesired random effects the following experiment was repeated 10000 times:

# prepare vector of shifts
> shifts <- seq(0.1,1,by = 0.05)

> set.seed(1234567)

> outputCPowerTest1 <- ComparePowerOneSampleCTest(generator="GeneratorNU",
+ mu_0 = c(-0.4,-0.1,0.1,0.4),shiftVector = shifts,sampleSize = 5,numberOfSamples = 100,
+ initialSamples = 10000,mu = 0,sigma = 1,a = 0.2,b = 0.6)

> head(round(outputCPowerTest1, digits = 4),4)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.1 0.0274 0.0302 0.0305 0.0314 0.0288 0.0276 0.0278
0.15 0.0278 0.0321 0.0321 0.0305 0.0304 0.0293 0.0297
0.2 0.0315 0.0357 0.0337 0.0325 0.0339 0.0326 0.0302
0.25 0.0386 0.0393 0.0386 0.0391 0.0395 0.0397 0.0366

The results given both in the output matrix and in Fig. 3 show that the new resampling methods have
greater power than the classical bootstrap approach. To better highlight the results, differences between
the power curves for each of the new resampling methods and Efron’s bootstrap are plotted in Fig. 4.
Observing these results we can agree with the conclusions of simulations reported in (Grzegorzewski
and Romaniuk, 2022b), that “In general (i.e. including other models) this method (VA-method) was
usually one of the best, especially for smaller sample sizes or a lower number of bootstrap replications
(e.g. b = 100). The VAA-method or the EW-method were usually just after VA-method; the d-method,
w- and the VAA-method were neither too good nor too bad, but the classical bootstrap (as compared
with other resampling methods) was usually the worse method in hypotheses testing.”

Two-sample test – a real-life case

Finally, we compare the resampling methods combined with the two-sample C-test applied to some
real-life imprecise data. Such data may appear naturally wherever we deal with expert opinions
expressed in everyday language. In our study, we consider the opinions of the experts related to
the Gamonedo cheese quality (a kind of blue cheese produced in Asturias, Spain). The inherently
imprecise assessments were modeled by the TPFNs (Ramos-Guajardo et al., 2019).

To check whether two given experts, say A and C, differ significantly in their opinions, we verify
the null hypothesis (8) of no difference (Grzegorzewski et al., 2020a). We can perform the desired test
using the following function based on TwoSampleCTest:

CompareRealCaseTwoSample(numberOfSamples, numberOfIterations)
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Figure 3: Power curves of the one-sample
C-test based on the samples generated with
GeneratorNU.

0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Shift

P
ow

er
 d

iff
.

VAMethod
EWMethod
VAFMethod
DMethod
WMethod
VAAMethod

Figure 4: Differences in power curves between
the new resampling methods and the classical
approach.

which delivers p-values of the two-sample C-test for all resampling methods. To eliminate un-
desired randomness each experiment (i.e. the bootstrap procedure for the single test) is repeated
numberOfIterations times and then the obtained p-values are averaged. The parameter numberOfSamples
is passed directly to TwoSampleCTest.

Then the following function is applied:

> set.seed(1234567)
> realCaseP <- CompareRealCaseTwoSample(numberOfSamples=100,numberOfIterations=10000)
>
> round(realCaseP,5)

ClassicalBootstrap VAMethod EWMethod VAFMethod DMethod WMethod VAAMethod
0.82055 0.91213 0.88388 0.85542 0.82179 0.82212 0.85455

Assuming any reasonable significance level, the null hypothesis H0 is not rejected. Thus, whichever
resampling method is applied, we may conclude that the given two experts do not differ significantly
in their opinions. However, the new resampling methods usually lead to greater p-values than the
classical bootstrap (i.e. we are “more sure” that H0 can be accepted).

4 Conclusions

The main goal of the proposed resampling algorithms for fuzzy samples of trapezoidal fuzzy numbers
is to overcome the shortcomings typical to the classical bootstrap. New approaches are implemented
in FuzzyResampling package and are supplemented with some ready-to-use functions useful in
statistical inference based on imprecise data. It is shown that, in some cases analyzed in this paper and
related literature, the suggested bootstrap algorithms are more effective than the classical one.

Obviously, many problems are still open. New methods and algorithms that would be helpful
in solving many problems faced by practitioners are still needed. In particular, an in-depth study on
the so-called “epistemic bootstrap” (Grzegorzewski and Romaniuk, 2021) would be useful to handle
“epistemic data” instead of the “ontic data” (Couso and Dubois, 2014) discussed in this paper.
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combinIT: An R Package for Combining
Interaction Tests for Unreplicated
Two-Way Tables
by Mahmood Kharrati-Kopaei, Zahra Shenavari, Hossein Haghbin

Abstract Several new tests have been proposed for testing interaction in unreplicated two-way
analysis of variance models. Unfortunately, each test is powerful for detecting a pattern of interaction.
Therefore, it is reasonable to combine multiple interaction tests to increase the power of detection for
significant interactions. We introduce the package combinIT that provides researchers the results of
six existing recommended interaction tests, including: the value of test statistics, exact Monte Carlo
p-values, approximated or adjusted p-values, the results of four combined tests and explanations of
interaction types if the discussed tests are significant. The software combinIT is a more comprehensive
R package in comparison with the two existing packages. In addition, the software is executed quickly
to obtain the exact Monte Carlo p-values, even for large Monte Carlo runs, in contrast to existing
packages.

1 Introduction

Suppose that there are two factors A and B with a and b levels, respectively. To investigate the effect of
the factors on a response variable y, an unreplicated two-way analysis of variance (ANOVA) model is
sometimes used to reduce the experiment cost. Formally, this model is

yij = µ + αi + β j + γij + ϵij, i = 1, . . . , a; j = 1, . . . , b, (1)

where yij denotes the i-th and the j-th observation of the response variable, µ is the grand mean, αi and
β j denote the main effects of the factors, γijs are interaction terms, and ϵijs are random errors which
are independent and identically normal variables with mean zero and variance σ2. As noted by Franck
and Osborne (2016), the unreplicated two-way ANOVA models arise in the context of (a) completely
randomized two-factor experiments, (b) randomized complete block experiments that block on a
source of nuisance variability, and (c) observational studies with two factors. The main problem
in an unreplicated two-way ANOVA model is that all observations are used to estimate the model
parameters and no observations remain to estimate σ2; see Shenavari and Kharrati-Kopaei (2018) and
Kharrati-Kopaei and Sadooghi-Alvandi (2007). Therefore, neither F-test nor t-test can be used to make
inferences on the effects (including the interaction effect). The textbook approach is to assume that the
interaction terms are zero (i.e. the model is additive). In this case, (a − 1) (b − 1) degrees of freedom
are left to estimate σ2 and the usual F-tests can be used to make inferences about the main effects.
However, if the interaction effects are present (i.e. the model is non-additive), the main effects may
be masked by the interaction effect; see Montgomery (2017). Therefore, it is important to implement
some method to test if there exists a significant interaction in an unreplicated ANOVA model.

The existing approaches to test interaction in unreplicated two-way ANOVA models can be
categorized into two main groups: functional-based-form (FBF) and non-functional-based-form
(NFBF). In FBF approaches, a functional form is assumed for the interaction terms. This group includes
interaction tests proposed by Tukey (1949), Mandel (1961, 1971), Johnson and Graybill (1972), and
Corsten and Eijnsbergen (1972, 1974); see Milliken and Johnson (1989, pp 2–63) for a discussion of
some of these interaction tests. Simecek and Simeckova (2013) also modified Tukey’s test. It is known
that these tests are powerful for detecting interaction only when the specified functional form for the
interaction terms is appropriate; see Boik (1993a), Alin and Kurt (2006), Simecek and Simeckova (2013),
and Shenavari and Kharrati-Kopaei (2018). In NFBF approaches, a specific functional form is not
assumed for the interaction terms. The NFBF group includes interaction tests proposed by Milliken and
Rasmuson (1977), Tusell (1990), Boik (1993a), Piepho (1994), Kharrati-Kopaei and Sadooghi-Alvandi
(2007), Franck et al. (2013), Malik et al. (2016) and Kharrati-Kopaei and Miller (2016). Kharrati-Kopaei
and Sadooghi-Alvandi (2007) formally showed that there does not exist the best interaction test in
an unreplicated two-way ANOVA model in the sense that there is no test that can detect all patterns
of interaction with high power. This means that each test is powerful for detecting certain types of
interaction. Therefore, it is meaningful to combine multiple interaction tests to provide researchers with
a testing approach that leverages many existing methods to detect different patterns of non-additivity.
We note that the interaction tests are dependent and the main problem is how to combine multiple
dependent tests into a single test procedure for testing additivity such that it controls the Type I error
rate and has an acceptable power. Shenavari and Kharrati-Kopaei (2018) evaluated the performances
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of different combination methods and ultimately recommended combining the interaction tests by the
Bonferroni method, a Beta (Sidak) approximation, the Jacobi polynomial expansion, and the Gaussian
copula method. These methods are abbreviated as Bon, Sidak, JPE, and GC, respectively, throughout
this paper.

Despite the application of unreplicated two-way ANOVA models in industry, biology, agriculture,
and medicine, the newly proposed interaction tests have not been discussed in statistical packages; as
similarly noted by Franck and Osborne (2016). Recently, Osborne et al. (2016) released the package
hiddenf which is available from the Comprehensive R Archive Network (CRAN). As the name of the
package hiddenf implies, this package mainly focuses on detecting a hidden non-additivity structure
proposed by Franck et al. (2013). This package also reports the p-values of tests for non-additivity
developed by Tukey (1949), Mandel (1961), Kharrati-Kopaei and Sadooghi-Alvandi (2007), and Malik
et al. (2016). However, this package neither provides the result of NFBF interaction tests proposed
in Boik (1993a), Piepho (1994), and Kharrati-Kopaei and Miller (2016) nor the result of the combined
interaction test. In addition, this package uses a Monte Carlo procedure to report the p-value of
Malik et al. (2016); however, the applied procedure is rather time-consuming. Further, the package
hiddenf provides only adjusted Bonferroni p-values of the tests proposed by Kharrati-Kopaei and
Sadooghi-Alvandi (2007) and Franck et al. (2013) instead of the exact Monte Carlo p-values. Although
Franck and Osborne (2016) mentioned that the Bonferroni adjustment is not overly conservative for
a ≤ 7, one might be interested in knowing the exact p-values. We note that Simeckova et al. (2014)
also developed the additivityTests package that provides test statistics, critical values, and binary
reject/fail-to-reject decisions for tests proposed by Tukey (1949), Mandel (1961), Boik (1993a), Tusell
(1990), Johnson and Graybill (1972), and Simecek and Simeckova (2013). However, the additivityTests
package does not provide the p-values of tests; see Franck and Osborne (2016).

In this paper, we introduce the R package combinIT, which is available from CRAN (Shenavari
et al., 2022). This package reports both exact Monte Carlo and adjusted or approximate (if available)
p-values of the six NFBF interaction tests developed by Boik (1993a), Piepho (1994), Kharrati-Kopaei
and Sadooghi-Alvandi (2007), Franck et al. (2013), Malik et al. (2016), and Kharrati-Kopaei and Miller
(2016). We use abbreviations Boik, Piepho, KKSA, Franck, Malik, and KKM, respectively, for these
NFBF tests. In addition, this package provides the results of four combined interaction tests that are
based on the Bon, Sidak, JPE, and GC methods. Furthermore, if a significant interaction is detected by
a combined test, the package combinIT gives some explanations of the interaction type or pattern.
Note that FBF tests have not been considered in combinIT because Boik (1993b) showed that the Boik
test is never less powerful and is sometimes much more powerful than the test proposed by Johnson
and Graybill (1972), which can be regarded as an extension of FBF tests proposed by Tukey (1949) and
Mandel (1961, 1971). In addition, Boik (1993b) compared the Boik test with the NFBF test developed
by Tusell (1990) and recommended the Boik test. Furthermore, the Piepho test is a modified version of
the NFBF test proposed by Milliken and Rasmuson (1977) hence this test has not been considered in
combinIT, either. In summary, the combinIT package reports the results of all recommended existing
interaction tests in unreplicated two-way ANOVA models and, in this view, can be regarded as a more
comprehensive package than hiddenf for testing interaction. In terms of code execution speed, nearly
25% of the code has been written in C++; see https://github.com/haghbinh/combinIT. We used the
Rcpp package (Eddelbuettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018)
for writing some parts of the codes in C++. Thus, Monte Carlo simulations for calculating the p-value
of the Malik test are not as time-consuming as those in the hiddenf package. In addition, using the
Rcpp package allows us to calculate the exact Monte Carlo p-values of the Franck and KKSA tests
in a reasonable time, in contrast to the hiddenf package, which provides only adjusted Bonferroni
p-values; see Franck and Osborne (2016).

The rest of the paper is organized as follows. In the next section, the six NFBF interaction tests and
the four combination methods that are utilized in the combinIT package are briefly reviewed. Then,
technical details of the combinIT package are provided. After that, use of the package combinIT is
illustrated with an example. The execution speed of the code is also discussed in this section. Finally,
the performances of the combined interaction tests in terms of controlling the Type I error rate are
discussed via a simulation study by using the hiddenf and combinIT packages.

2 Six NFBF interaction tests and four combination methods

This section has two subsections. We first review the Boik, Piepho, KKSA, Franck, Malik, and KKM
interaction tests. We also discuss what patterns of interactions these tests are powerful for detecting.
We then review the Bon, Beta, JPE, and GC combination methods. These tests and combination
methods are utilized in the combinIT package. Throughout this section, the null hypothesis of interest
is H0 : There is no interaction or, equivalently, H0 : γij = 0 for all i and j and rij = yij − ȳi. − ȳ.j + ȳ..
(in usual notation) denote the residuals of the model 1 under H0.
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Six NFBF interaction tests

Boik. Let p = min{a − 1, b − 1}, q = max{a − 1, b − 1} and tr (X) denote the trace of matrix X. Boik
(1993a) proposed a locally best invariant (LBI) test and H0 is rejected when

TBoik = tr2 (R′R
)

/
(

ptr
((

R′R
)2
))

is small, where R = [rij] denotes the residual matrix of the model 1. Boik (1993a) provided the
exact distribution of the test statistic under the null hypothesis H0 when p = 2 and its asymptotic
distribution when q is large. Note that the p-value of the Boik test is always 1 when p = 1. Note that
the Boik (1993a) test is powerful for detecting interaction when the matrix of interaction terms [γij]
has small rank and one singular value dominates the remaining singular values; see Boik (1993b). For
example, the Boik test is powerful for detecting the multiplicative form of interaction. The package
combinIT provides the value of test statistic TBoik, an asymptotic p-value, and an exact p-value of the
Boik test based on a Monte Carlo simulation procedure.

Piepho. Piepho (1994) discussed and modified an interaction test procedure proposed by Milliken and
Rasmuson (1977) by using the estimator of variance for each level of one factor; i.e.,

σ̂2
i =

a (a − 1)Wi − ∑a
k=1 Wk

(a − 1) (a − 2) (b − 1)
,

where Wi = ∑b
j=1 r2

ij . Piepho (1994) proposed three test statistics. The combinIT package utilizes the
third one, which detects a significant interaction when

TPiepho = − (a − 1) (a − 2) (b − 1) log(U)/2

is large, where U = 2a ∑i<j σ̂2
i σ̂2

j /
(
(a − 1)

(
∑a

i=1 σ̂2
i
)2
)

. Piepho (1994) provided only an asymptotic
chi-square distribution of TPiepho under H0. By construction, the Piepho test is powerful for detecting
interactions when the estimators of variances are heterogeneous across the levels of one factor. The
package combinIT provides the value of test statistic TPiepho, an asymptotic chi-square p-value, and
an exact p-value of the Piepho test based on a Monte Carlo simulation procedure.

KKSA. Suppose that a ≥ b and b ≥ 4. Split the data table into two sub-tables, obtained by putting
a1 (2 ≤ a1 ≤ a − 2) rows in the first sub-table and the remaining a2 rows in the second sub-table
(a1 + a2 = a). The number of all possible divisions of the data table is APD = 2(a−1) − a − 1. For
the l-th division, let RSS1 and RSS2 denote the residual sum of squares for the two sub-tables. Let
F∗

l = max{Fl , 1/Fl} where Fl = (a2 − 1) RSS1/ ((a1 − 1) RSS2) and Pl denote the corresponding
p-value. Kharrati-Kopaei and Sadooghi-Alvandi (2007) proposed minP = min1≤l≤APD Pl as a test
statistic and the hypothesis of no interaction is rejected for a small value of minP. The KKSA test is
powerful for detecting interaction when the magnitude of interaction effects is heteroscedastic across
the sub-tables of observations. The package combinIT provides the value of the test statistic and an
exact p-value of the KKSA test based on a Monte Carlo simulation procedure. In addition, it provides
an approximate p-value based on the Bonferroni adjustment. Note that the KKSA test is not applicable
when both a and b are less than 4.

Franck. Franck et al. (2013) defined the hidden additivity structure as “the levels of one factor belong
in two or more groups such that within each group the effects of the two factors are additive but the
groups may interact with the ungrouped factor”. Based on this concept, Franck et al. (2013) proposed a
test statistic by dividing the table of data into two sub-tables and developing an interaction F-test. Then,
they considered all possible configurations of data and used the maximum of the interaction F-tests as
a test statistic; the all-configurations and maximum-interaction F-test (ACMIF). The hypothesis of no
interaction is rejected when ACMIF is large. It is clear that the Franck test is powerful when there is
a hidden additivity structure in the data set. The package combinIT provides the value of the test
statistic (ACMIF), an exact p-value of the Franck test based on a Monte Carlo simulation procedure,
and an approximate p-value based on the Bonferroni adjustment.

Malik. Malik et al. (2016) used the idea that some cells may be involved in a significant interaction
pattern and those cells might produce large positive or negative residuals. Therefore, Malik et al. (2016)
proposed to partition the residuals into three clusters using a suitable clustering method like k-means
clustering. The hypothesis of no interaction can be interpreted as the effect of the three clusters being
equal. In more detail, Malik et al. (2016) proposed the model yij = µ∗ + α∗i + β∗j + ξk(ij) + ϵij where ξk

is the cluster effect for the k-th cluster, k = 1, 2, 3, and k (ij) denotes the cluster k to which the residual of
the (i, j)-th cell is assigned by the clustering procedure. Malik et al. (2016) considered the hypothesis of

no interaction as H0 : ξ1 = ξ2 = ξ3. Let SSE (cluster) = ∑a
i=1 ∑b

j=1 ∑3
k=1

(
yij − µ̂∗ − α̂∗i − β̂∗j − ξ̂k(ij)

)2

where the hat notation denotes the estimates of effects. Malik et al. (2016) proposed the following test
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statistic to test H0

TMalik =

(
∑a

i=1 ∑b
j=1 r2

ij − SEE (cluster)
)

/2

SSE (cluster) / ((a − 1) (b − 1)− 2)
.

The hypothesis H0 is rejected for large values of TMalik. Note that the result of the Malik test may
depend on the method of clustering. In the combinIT package, clustering is done by kmeans function in
RcppArmadillo. The speed_mode parameter on the kmeans clustering was set as static_subset. Note
that the Malik test performs well when there are some cells that produce large negative or positive
residuals due to significant interaction. The package combinIT provides the value of test statistic
TMalik and an exact p-value of the Malik test based on a Monte Carlo simulation procedure.

KKM. Let µij = µ + αi + β j + γij denote the (i, j)-th cell mean and let ηij = µij − µi′ j − µij′ + µi′ j′ , i ̸=
i′; j ̸= j′, denote pairwise interaction contrasts. Kharrati-Kopaei and Miller (2016) used the idea that if a
significant interaction is present, its corresponding interaction contrast shall be significant. To describe
this method, let Z be an n× 1 vector with elements yij − yi′ j − yij′ + yi′ j′ where n = ab (a − 1) (b − 1) /4
is the total number of estimated pairwise interaction contrasts. Kharrati-Kopaei and Miller (2016)
proposed as a test statistic, where Zk is the k-th element of Z, PSE = median{|Zk|; |Zk| ≤ 5S0} in
which S0 = median{|Zk|; k = 1, . . . , n}/c0 where c0 is an unbiasing constant obtained by a Monte
Carlo simulation. H0 is rejected when TKKM is large. This test procedure is powerful for detecting
significant interactions when they are caused by some cells; i.e. some values of |Zk| are large. The
package combinIT provides the value of test statistic TKKM and the exact p-value of the KKM test
based on a Monte Carlo simulation procedure.

Four methods for combining interaction tests

Since there is no single best interaction test in an unreplicated two-way ANOVA model, it is reasonable
to combine multiple interaction tests to provide researchers with a testing approach that leverages
many existing methods to detect different patterns of non-additivity. In this section, we review four
combination methods that were proposed by Shenavari and Kharrati-Kopaei (2018). Throughout
the section, we assume that K ≥ 2 tests, whose test statistics are dependent and whose distribution
functions are continuous, have been performed for a null hypothesis H0. Therefore, there are K
dependent p-values P1, . . . , PK corresponding to the interaction tests. We are going to combine these
p-values into a single p-value using one of the following four test procedures for testing H0.

Bon. Following the Bonferroni inequality, H0 can be rejected at level α when Kpmin < α where pmin is
the observed value of Pmin = min1≤i≤K{Pi}. Note that the Bonferroni method leads to a conservative
method of combination; i.e. its Type I error rate is always less than α; PrH0{KPmin < α} ≤ α.

Sidak. The distribution function of Pmin under H0 would be a beta distribution with parameters 1 and
K if Pi, i = 1, . . . , K, were independent; i.e. PrH0{Pmin ≤ x} = 1 − (1 − x)K . When Pis are dependent,
it can be shown that there is an x∗ ∈ (0, 1) such that PrH0{Pmin ≤ x} ≤ 1 − (1 − x)K for all x < x∗;
see Sadooghi-Alvandi and Kharrati-Kopaei (2015). Therefore, H0 would be rejected at level α when
1 − (1 − pmin)

K < α.

JPE. The distribution of Pmin under H0 can be approximated by the Jacobi polynomial expansion.
In this expansion, the distribution of Pmin is approximated by the weighted sum of several Beta
distribution functions with parameters p = 1 and q = 1/E1 − 1 where E1 denotes the first moment
of Pmin; see Shenavari and Kharrati-Kopaei (2018). Up to the second term in the Jacobi polynomial
expansion, the distribution of Pmin is approximated by a Beta distribution with parameters 1 and q.
In practice, the parameter q can be estimated as q̂ = min{max{1, 1/Pmin − 1}, K − 1}; see Shenavari
and Kharrati-Kopaei (2018). By this approximation, the null hypothesis H0 is rejected at level α when
1 − (1 − pmin)

q̂ < α.

GC. Let Zi = Φ−1 (Pi), i = 1, . . . , K, where Φ−1 (.) is the quantile function of the standard normal
distribution. Although it is well known that Zis are marginally distributed as the standard normal
distribution under the null hypothesis H0, the joint distribution of the Zi is unknown in practice.
One can use the Gaussian copula (GC) family to model the joint distribution of Zis. Therefore,
one can assume that the random vector (Z1, . . . , ZK) has a K-variate normal distribution under the
null hypothesis H0 with zero mean vector and variance-covariance matrix Σ. In this case, the null
hypothesis H0 is rejected at level α when

PrH0{Pmin ≤ pmin} = 1 − PrH0{Z1 > Φ−1 (pmin) , . . . , ZK > Φ−1 (pmin)} < α.

This probability is calculated by using mvtnorm in the package combinIT. Note that Σ can be estimated
by Σ̂ = (1 − ρ̂) IK + ρ̂1K1

′
K where IK is a K × K identity matrix, 1K is a K-dimensional vector of ones,
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and ρ̂ = max{−1/ (K − 1) , 1 − ∑K
i=1 (Zi − Z̄)2 / (K − 1)}; see Shenavari and Kharrati-Kopaei (2018).

Note 1. If the null hypothesis H0 is rejected, the combined tests can suggest a pattern of non-additivity
by examining the interaction test for which Pmin = min1≤i≤K{Pi} occurs.

Note 2. The inequality Kpmin ≤ 1 − (1 − pmin)
K ≤ 1 − (1 − pmin)

q̂ guarantees that the JPE method
provides an interaction test that is never less powerful and is sometimes much more powerful than
the Bon and Sidak counterparts.

3 Technical details about the combinIT package

The combinIT package stands for "Combined Interaction Test". This package allows users to perform
the six NFBF interaction tests individually and to perform a combined test of the six NFBF interaction
tests. It also has a function to produce an interaction plot and four data sets. The available functions
in the combinIT package are described in Table 1. This package produces two S3-class objects: (i)
ITtest, produced by functions that perform a single test and (ii) combtest, produced by the function
that performs the combined test. These returned objects are lists with the following components:

(i) ITtest class: For the return object of the functions Malik_test, Franck_test, Boik_test, KKSA_test,
KKM_test, and Piepho_test. An object of this class consists of a list of six components, including:

- pvalue_exact: The calculated exact Monte Carlo p-value. For Boik_test, this is an exact
Monte Carlo p-value when p > 2 and it is an exact p-value for p = 2.

- pvalue_appro: For Piepho_test this is an asymptotic p-value. This component is the
Bonferroni-adjusted p-value for Franck.test and KKSA_test. This component is not
available for Malik_test and KKM_test.

- nsim: The number of Monte Carlo samples used to calculate the exact Monte Carlo p-
values.

- statistic: The value of the test statistic.

- data_name: The name of the input data set.

- test: The name of the test.

(ii) combtest class: For the return object of the function CI_test. An object of this class consists of a
list of 19 components, including:

- nsim: The number of Monte Carlo samples used to calculate the exact Monte Carlo p-
values.

- Piepho_pvalue: The p-value of Piepho’s (1994) test.

- Piepho_Stat: The value of Piepho’s (1994) test statistic.

- Boik_pvalue: The p-value of Boik test.

- Boik_Stat: The value of Boik’s (1993) test statistic.

- Malik_pvalue: The p-value of Malik, et al.’s (2016) test.

- Malik_Stat: The value of Malik, et al.’s (2016) test statistic.

- KKM_pvalue: The p-value of Kharrati-Kopaei and Miller’s (2016) test.

- KKM_Stat: The value of Kharrati-Kopaei and Miller’s (2016) test statistic.

- KKSA_pvalue: The p-value of Kharrati-Kopaei and Sadooghi-Alvandi’s (2007) test.

- KKSA_Stat: The value of Kharrati-Kopaei and Sadooghi-Alvandi’s (2007) test statistic.

- Franck_pvalue: The p-value of Franck, et al.’s (2013) test.

- Franck_Stat: The value of Franck, et al.’s (2013) test statistic.

- Bonferroni: The combined p-value by using the Bonferroni method.

- Sidak: The combined p-value by using the Sidak method.

- Jacobi: The combined p-value by using the Jacobi method.

- GC: The combined p-value by using the Gaussian copula.

- data_name: The name of the input data set.

- test: The name of the test.

The print method is developed for a brief displaying of these objects. One of the key features
of this package is to make it possible for users to obtain accurate results for various tests within a
reasonable time. This feature was achieved by assigning the time-consuming parts of these tests to
several C++ functions that are called from R using Rcpp.
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Function Descriptions Inputs Main outputs

Boik_test
Performs the

Boik test
The data matrix, the number of Monte Carlo
samples for calculating the exact p-value.

The value of test statistic,
an asymptotic p-value, the
exact Monte Carlo p-value.

Piepho_test
Performs the
Piepho test

The data matrix, the number of Monte Carlo
samples for calculating an exact p-value.

The value of test statistic,
an asymptotic p-value, the
exact Monte Carlo p-value.

KKSA_test
Performs the

KKSA test

The data matrix, the number of Monte Carlo
samples for calculating the exact p-value, log-
ical Elapsed_time for printing the progress.

The value of test statistic,
an adjusted p-value, the ex-
act Monte Carlo p-value.

Franck_test
Performs the
Franck test

The data matrix, the number of Monte Carlo
samples for calculating the exact p-value, log-
ical Elapsed_time for printing the progress.

The value of test statistic,
an adjusted p-value, the ex-
act Monte Carlo p-value.

Malik_test
Performs the

Malik test

The data matrix, the number of Monte Carlo
samples for calculating the exact p-value, log-
ical Elapsed_time for printing the progress.

The value of test statistic
and the exact Monte Carlo
p-value.

KKM_test
Performs the

KKM test

The data matrix, the number of Monte Carlo
samples for calculating the exact p-value and
the unbiasing constant.

The value of test statistic
and the exact Monte Carlo
p-value.

CI_test

Performs the
six NFBF tests

and their
combined tests

The data matrix, the number of Monte Carlo
samples for calculating the exact p-value and
the unbiasing constant, logical Elapsed_time
for printing the progress.

The value of six test statis-
tics, the exact Monte Carlo
p-values of tests, and the re-
sult of four combined tests.

interaction_plot
Plots the

interaction plot
The matrix of data. Interaction plot.

Table 1: A summary of the functions in the combinIT package .

4 Using the package combinIT

Here, we illustrate the usage of the combinIT package. We also compare the new package with
hiddenf in terms of execution speed. For reference, the functions of combinIT have been shown in
Table 1. This table also presents some information about the inputs and outputs of functions.

We consider the copy number variation (CNV) data set that contains CNV values for normal
and tumor tissue samples among six dogs. In this data set, the value of CNV was measured as a
signal intensity obtained from a comparative genomic hybridization (CGH) array, with higher signals
corresponding to higher copy numbers; see Franck et al. (2013) and Osborne et al. (2016). The following
code loads the data and plots the interaction plot. It can be seen from Figure 1 that a hidden structure
might exist (rows 4 and 5 are parallel and they interact with rows 1, 2, 3, and 6).

> library(combinIT)
> data(CNV)
> interaction_plot(CNV)

Now, we use CI_test to combine the result of the six interaction tests to see if there exists any
significant interaction. We note that the exact Monte Carlo p-values are obtained based on 10000
Monte Carlo samples and hence the absolute error of Monte Carlo approximation is at most 0.0082
with the 0.95 confidence coefficient (following the Central Limit Theorem). In addition, the p-value
of the Boik test will be 1 since p = 1. We also set α = 0.05 (as default to test at the 5% level) and
report=TRUE (to provide a report on the test), and opvalue=0.6187 as the p-value of the Tukey’s test
(that is, we are going to combine the p-value of the Tukey’s test in addition to the six interaction tests).

> CI_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE, nc0 = 10000,
opvalue = 0.6187, Elapsed_time = FALSE)
Test: Combined interaction Test
Data: CNV
Piepho Test: Statistic = 1.73949 , Pvalue = 0.8743
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Figure 1: The interaction plot of the CNV data.

Boik Test: Statistic = 1 , Pvalue = 1
Malik Test: Statistic = 526.66767 , Pvalue = 0.0289
KKM Test: Statistic = 1.18173 , Pvalue = 0.9994
KKSA Test: Statistic = 0.0112 , Pvalue = 0.2092
Franck Test: Statistic = 526.66767 , Pvalue = 7e-04
Bonferroni method: Pvalue = 0.0049
Sidak method: Pvalue = 0.00489
Jacobi method: Pvalue = 0.00419
Gaussian copula: Pvalue = 0.00491
------------------------------------------------
A report on the combined interaction test:
A significant hidden structure exists at the 5% level. The first
group includes rows: 4, 5. The second group includes rows: 1, 2, 3,
6. The estimated critical value of the Franck_test at the 5% level
with 10000 Monte Carlo samples is 57.327.

The CI_test function has detected a significant interaction at the 5% level and the detected
interaction type is the hidden structure as we expect. All combined tests report that there is a
significant interaction. It is worth mentioning that a significant interaction would not be detected if
only Boik or Piepho or KKM or KKSA test was used. However, the combined tests provide researchers
with much more opportunity to detect a significant interaction. One can use the Franck_test to
analyze the hidden structure in the CNV data set in more detail. The argument plot was set as TRUE
to plot the interaction plot in the Franck_test function. This interaction plot in Figure 2 shows that
rows 4 and 5 are parallel (plotted in blue and solid line) and that they interact with rows 1, 2, 3, and 6
(plotted in red and broken line).

> Franck_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE, plot = TRUE,
Elapsed_time = FALSE)
Test: Franck Test
Data: CNV
Statistic = 526.668
Exact Monte Carlo P-value = 0
Approximate P-value = 0.001
Nsim = 10000
---------------------------------------
A report on the test:
A significant hidden structure exists at the 5% level. The first
group includes rows: 4, 5. The second group includes rows: 1, 2, 3,
6. The estimated critical value of the Franck_test at the 5% level
with 10000 Monte Carlo samples is 56.7246.

Although the other five interaction tests can be used individually to test interaction, one should
take care that a Type I error has not resulted from the multiple tests that have been performed. Code
for each test is shown below.

> Boik_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE)
Test: Boik Test
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Figure 2: The interaction plot of the CNV data to see the hidden structure of interaction.

Data: CNV
Statistic = 1
Exact Monte Carlo P-value = 1
Approximate P-value = 1
Nsim = 10000
---------------------------------------
A report on the test:
The Boik_test could not detect any significant interaction at the 5%
level. The exact critical value of the Boik_test is 1.
> Piepho_test(CNV, nsim = 10000, alpha =0.05, report = TRUE)
Test: Piepho Test
Data: CNV
Statistic = 1.739
Exact Monte Carlo P-value = 0.878
Approximate P-value = 0.884
Nsim = 10000
---------------------------------------
A report on the test:
The Piepho_test could not detect any significant interaction at the
5% level. The estimated critical value of the Piepho_test at the 5%
level with 10000 Monte Carlo samples is 12.5169.
> KKSA_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE, plot = FALSE,
Elapsed_time = FALSE)
Test: KKSA Test
Data: CNV
Statistic = 0.011
Exact Monte Carlo P-value = 0.206
Approximate P-value = 0.28
Nsim = 10000
---------------------------------------
A report on the test:
The KKSA_test could not detect any significant interaction at the 5%
level. The estimated critical value of the KKSA_test at the 5% level
with 10000 Monte Carlo samples is 0.0023.
> Malik_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE, Elapsed_time = FALSE)
Test: Malik Test
Data: CNV
Statistic = 526.668
Exact Monte Carlo P-value = 0.026
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Approximate P-value = NULL
Nsim = 10000
---------------------------------------
A report on the test:
There exists a significant interaction at the 5% level.The
significant interaction might due to the some outliers in residuals;
some cells produce large negative or positive residuals:
The cell with row=5 and column=1 produces a large negative residual
The cell with row=5 and column=2 produces a large positive residual
The estimated critical value of the Malik_test at the 5% level with
10000 Monte Carlo samples is 362.0247.
> KKM_test(CNV, nsim = 10000, alpha = 0.05, report = TRUE, nc0 = 10000)
Test: KKM Test
Data: CNV
Statistic = 1.182
Exact Monte Carlo P-value = 0.999
Approximate P-value = NULL
Nsim = 10000
---------------------------------------
A report on the test:
The KKM_test could not detect any significant interaction at the 5%
level. The estimated critical value of the KKM_test at the 5% level
with 10000 Monte Carlo samples is 4.2359.

As we see, Boik_test, Piepho_test, KKSA_test, and KKM_test could not detect any significant
interaction at the 5% level. However, Malik_test is significant and the significant interaction is due to
the cells (5, 1) and (5, 2) that produce large negative and positive residuals, respectively. Note that
the KKSA_test has an argument plot that if plot is TRUE an interaction plot will be plotted. Color and
line type are used to display which levels of row factor are assigned to which sub-tables based on the
minimum p-values among all possible configurations. The values of the Monte Carlo p-value and the
adjusted p-value of the Franck test differ little (the presented values were rounded up to three decimal
digits and the actual value of the Monte Carlo p-value is around 0.00069); on the other hand, they
differ for the KKSA test. This shows the importance of calculating the exact Monte Carlo p-values,
while the package hiddenf provides only the adjusted p-values.

We now compare the execution speed of the Malik_test function in the combinIT package with
the MalikPavlue function in the hiddenf package. To do this, we consider the CNV data again. We use
the command system.time in R to record the elapsed time of execution in seconds for comparing the
speed of execution. The elapsed time for 500 (the default of the hiddenf package), 1000, 5000, 10000
(the default of the combinIT package), 50000, and 100000 Monte Carlo samples are shown in Figure
3. All computations were done on a laptop with Windows 10 operating system, Intel(R) Core(TM)
i5-4200U CPU,1.60GHz 2.30 GHz processor, and 8G of RAM. The following shows the R code used and
the output for 500 Monte Carlo samples.

> library(hiddenf)
> CNV.mtx<-HiddenF(CNV)
> system.time(
+ Malik_test(CNV,nsim=500,Elapsed_time = FALSE)
+ )
user system elapsed
0.15 0.13 0.22
> system.time(
+ MalikPvalue(CNV.mtx,N=500)
+ )
(Pvalue from Malik's test estimated with N=500 Monte Carlo datasets)
user system elapsed
4.05 0.00 4.08

It is seen that the run time of the Malik_test function is much shorter than that of the MalikPvalue
function. Actually, the run speed of the Malik_test function is at least 18.5 times faster than the run
speed of the MalikPvalue function.
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Figure 3: The elapsed time of executing MalikPvalue and Malik_test functions for the CNV data.

5 Simulation study

In this section, we examine the performance of the Bon, Sidak, JPE, and GC methods in terms of
controlling the Type I error rate using the combinIT and hiddenf packages. Note that Shenavari and
Kharrati-Kopaei (2018) evaluated the performance of these methods for combining the p-values of the
Boik, Piepho, KKSA, Franck, KKM, and Malik tests. Here, in addition to the six p-values, we consider
the p-values of Tukey’s test and Mandel’s test (Tukey, 1949; Mandel, 1961) as the two other tests that
may apply. We used the following procedure to estimate the Type I error rate of the combination
methods. For given a and b, an a × b data table is generated from the standard normal distribution.
We also took σ2 = 1 without loss of generality (since the tests are scale invariant). For the computed
interaction effects" changes to "For the generated data table, the tests are done and their p-values
are recorded. For each method of combination, these p-values are combined and the result of the
combined test’s rejection of the null hypothesis of no interaction is recorded. This process is repeated
N1 times and the fraction of times that the combined test rejects the null hypothesis is calculated as an
estimate of the Type I error rate of the combining method.

The results of simulation for α = 0.10, 0.05, 0.01, N1 = 10, 000, and different values of a and b are
shown in Table 2. The exact Monte Carlo p-values of tests were calculated based on N2 = 100, 000
Monte Carlo samples. In this table, the estimated absolute errors (EAE) in estimating the Type I error
rate with confidence coefficient 0.95 are shown in parentheses. The value of EAE with confidence
coefficient 0.95 is 1.96

√
α̂ (1 − α̂) /N1 where α̂ denotes the estimated Type I error rate.

It is seen from Table 2 that the combining methods control the Type I error rate. This shows that
these methods can be used for combining the p-values of the other tests successfully that may be
introduced in the future. Among these four combination methods, the JPE method performs better
than the others since the values of its estimated Type I error are fairly close to the nominal Type I error.
We did not examine the performance of methods in terms of detecting a significant interaction power,
because the considered methods do not have the same estimated Type I error rate (The JPE method
would have the highest power, because its estimated Type I error rate is higher than the other methods;
see also Note 2).

6 Summary

We reviewed six recommended interaction tests in the context of unreplicated two-way ANOVA
models and four combination methods for combining dependent interaction tests. Then, we introduced
the combinIT package and demonstrated that the advantages of this package over the two existing
packages are: (i) it reports test statistics, estimated critical value, approximate p-values, and exact
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Methods

α a × b Bon Sidak JPE GC

0.10

4 × 3 0.0681(0.0049) 0.0716(0.0051) 0.0822(0.0054) 0.0770(0.0052)

5 × 3 0.0738(0.0051) 0.0771(0.0052) 0.0876(0.0055) 0.0784(0.0054)

5 × 5 0.0752(0.0052) 0.0792(0.0053) 0.0879(0.0055) 0.0799(0.0053)

6 × 6 0.0723(0.0051) 0.0749(0.0052) 0.0849(0.0055) 0.0764(0.0052)

0.05

4 × 3 0.0372(0.0037) 0.0377(0.0037) 0.0423(0.0039) 0.0388(0.0038)

5 × 3 0.0384(0.0038) 0.0394(0.0038) 0.0441(0.0040) 0.0396(0.0038)

5 × 5 0.0399(0.0038) 0.0411(0.0038) 0.0463(0.0041) 0.0406(0.0039)

6 × 6 0.0395(0.0038) 0.397(0.0038) 0.0448(0.0041) 0.0402(0.0038)

0.01

4 × 3 0.0090(0.0019) 0.0090(0.0019) 0.0103(0.0020) 0.0091(0.0019)

5 × 3 0.0078(0.0017) 0.0078(0.0017) 0.0088(0.0018) 0.0079(0.0017)

5 × 5 0.0090(0.0019) 0.0092(0.0019) 0.0101(0.0020) 0.0092(0.0019)

6 × 6 0.0087(0.0018) 0.0087(0.0018) 0.0096(0.0019) 0.0086(0.0018)

Table 2: The estimated Type I error rates of the combined tests and their EAE (the values in parenthe-
ses).

Monte Carlo p-values of six recommended NFBF interaction tests, (ii) it provides the results of the
four combined interaction tests in addition to some descriptions of detected significant interaction
patterns, and (iii) its execution is fast enough to make it feasible to calculate the exact Monte Carlo
p-values. Using the combinIT package, we evaluated the performance of the four combined tests in
terms of controlling the Type I error rate. Simulation results show that the combined tests control the
Type I error rate, and therefore can be used as an interaction test that leverages existing methods to
detect different patterns of non-additivity.

We note that the combinIT package can handle data sets as large as 15 × 15, although performing
the KKSA and Franck tests may be time-consuming when the size of the data set is larger. We will
focus on solving this problem in the next version of the package.
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Estimating Causal Effects using Bayesian
Methods with the R Package BayesCACE
by Jincheng Zhou, Jinhui Yang, James S. Hodges, Lifeng Lin, and Haitao Chu

Abstract Noncompliance, a common problem in randomized clinical trials (RCTs), complicates the
analysis of the causal treatment effect, especially in meta-analysis of RCTs. The complier average
causal effect (CACE) measures the effect of an intervention in the latent subgroup of the population
that complies with its assigned treatment (the compliers). Recently, Bayesian hierarchical approaches
have been proposed to estimate the CACE in a single RCT and a meta-analysis of RCTs. We develop an
R package, BayesCACE, to provide user-friendly functions for implementing CACE analysis for binary
outcomes based on the flexible Bayesian hierarchical framework. This package includes functions
for analyzing data from a single study and for performing a meta-analysis with either complete or
incomplete compliance data. The package also provides various functions for generating forest, trace,
posterior density, and auto-correlation plots, which can be useful to review noncompliance rates,
visually assess the model, and obtain study-specific and overall CACEs.

1 Introduction

Noncompliance in randomized clinical trials and causal effect

Randomized clinical trials (RCTs) are often used to evaluate healthcare-related interventions. An RCT
typically compares an experimental treatment to a standard treatment or to a placebo. A common
problem in RCTs is that not all patients fully comply with the allocated treatments. Although RCT
investigators control the randomization process, the actual treatments received by study participants
may not follow the randomization allocation; this is called noncompliance. For example, in trials of a
therapist-led intervention, noncompliance occurs when individuals randomized to the intervention
fail to take the intervention (e.g., due to severe adverse events), or when some patients assigned to the
control figure out a way to take the intervention. In some cases, investigators can collect outcome data
on all of these patients, regardless of whether they followed interventions. When compliance status is
incompletely observed, it is more complicated to evaluate the causal treatment effect.

Conventionally, researchers use the intention-to-treat (ITT) analysis, in which data are analyzed
based on treatments originally allocated rather than treatments actually received. The ITT method
estimates the effect of being offered the intervention, namely, the overall effect in the real world in
which the intervention is made available. However, our interest may lie in a different question, namely
the causal effect of actually receiving the treatment. When using ITT, the treatment effect tends to be
diluted by including people who do not receive the treatment to which they were randomly allocated
(Freedman 1990).

To identify a treatment’s causal effect, the principal stratification framework (Frangakis and
Rubin 2002) is proposed, which stratifies subjects on the joint potential post-randomization variables.
This causal inference method is widely used in handling various intercurrent events (also called an
intermediate variable) in areas like vaccine effect (Hudgens and Halloran 2006; J. Zhou et al. 2016),
pain relief use (Baccini, Mattei, and Mealli 2017), surrogate endpoint evaluation (Gilbert et al. 2015),
noncompliance (J. Zhou et al. 2019), etc. An estimator called the “complier average causal effect”
(CACE) has been proposed, in which patients are classified into different principal strata (compliers,
never-takers, always-takers, and defiers) based on their potential behavior after assignment to both the
treatment and control arms. Compliers are patients who receive the treatment as assigned; never-takers
are those who do not receive treatment, regardless of treatment assignment; always-takers are those who
receive treatment regardless of treatment assignment; and patients who always do the opposite of their
treatment assignment are called defiers. The CACE is the causal effect of the intervention estimated
from compliers. Because patients are assumed to be compliers (or not) before the randomization, the
CACE retains the benefit of the randomization. Specifically, CACE is an unbiased estimate of the
difference in outcomes for compliers in the intervention group compared to those in the control group,
who would have engaged with treatment had they been randomized to the intervention group.

The biggest challenge in estimating the CACE is that we cannot actually identify which participants
are compliers. Some of those receiving the treatment in the intervention group are compliers, but
the rest are always-takers. Similarly, some of those not receiving the treatment in the control arm are
compliers, but others are never-takers. Several R packages are available to perform CACE analysis in a
single study. For example, the noncomplyR package (Coggeshall 2017) provides convenient functions
for using Bayesian methods to perform inferences on the CACE. The package eefAnalytics (Kasim et al.
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2017) provides tools for exploratory CACE analysis of simple randomized trials, cluster randomized
trials, and multi-site trials with a focus on education trials. Besides the CACE analysis, another method
commonly used to account for noncompliance is the instrumental variable (IV) method estimating the
treatment effect with two-staged least squares (2SLS) regression (White 1982); the archived R package
ivpack (Jiang and Small 2014) performs this type of analysis.

CACE in meta-analysis

All of the above methods are framed in a single study setting. However, for analyzing multiple trials
in the presence of noncompliance, no software is available for causal effect analysis, specifically for
meta-analysis. When noncompliance data are reported in each trial, one could intuitively implement a
two-step approach by first estimating CACE for each study and then combining the study-specific
estimates using a fixed-effect or random-effects model to estimate the population-averaged CACE.
Recently, J. Zhou et al. (2019) proposed a Bayesian hierarchical model to estimate the CACE in a
meta-analysis of randomized trials where compliance may be heterogeneous between studies. It is
also common that noncompliance data are not available for some trials. Simply excluding trials with
incomplete noncompliance data from a meta-analysis can be inefficient and potentially biased. J. Zhou,
Hodges, and Chu (2021) proposed an improved flexible Bayesian hierarchical CACE framework to
account simultaneously for heterogeneous noncompliance and incomplete noncompliance data. More
recently, T. Zhou et al. (2021) used a generalized linear latent and mixed model to estimate CACE,
which accounts for between-study heterogeneity with random effects. The package BayesCACE
focuses on providing user-friendly functions to estimate CACE in either a single study or meta-
analysis using models based on J. Zhou et al. (2019), Baker (2020), J. Zhou, Hodges, and Chu (2020)
and J. Zhou, Hodges, and Chu (2021).

This article introduces the R package BayesCACE, which performs CACE analysis for binary
outcomes in a single study, and meta-analysis with either complete or incomplete noncompliance
information. The package BayesCACE is available from the Comprehensive R Archive Network
(CRAN). It uses Markov chain Monte Carlo (MCMC) methods on the R platform through JAGS. JAGS
is a program for analyzing Bayesian hierarchical models using MCMC simulation, which is available
for diverse computer platforms including Windows and Mac OS X. Convergence of the MCMC routine
can be assessed by the function outputs. The package also provides functions to generate posterior
trace plots, density plots, and auto-correlation plots. For meta-analysis, the package provides a forest
plot of study-specific CACE estimates with 95% credible intervals as well as the overall CACE estimate,
to visually display the causal treatment effect comparisons.

This article is organized as follows. The next section defines CACE in mathematical notation that
will be used throughout the paper. We also describe the assumptions needed to make the CACE a
valid causal effect estimator. Following that, we present an overview of the Bayesian hierarchical
models for CACE implemented in the BayesCACE package. Then, we illustrate use of the package
with a case study example and discuss the output structures. Finally, we provide a brief discussion
with potential future improvements.

Assumptions and definition of CACE

The CACE is a measure of the causal effect of a treatment or intervention on patients who received
it as intended by the original group allocation. It is an unbiased causal effect estimate based on five
standard assumptions commonly used in causal inference research. First, it assumes that potential
outcomes for each participant are independent of the potential outcomes for other participants, known
as the Stable Unit Treatment Value Assumption (SUTVA). Second, it assumes that assignment to treatment
is random, so that the proportion of compliers should be the same in the intervention and control
groups, thus allowing the estimation of one of the core unobserved parameters needed to derive a
CACE estimate. Third, it assumes that treatment assignment has an effect on the outcome only if it
changes the actual treatment taken, an assumption known as exclusion restriction. For never-takers, for
instance, it assumes that simply being assigned to treatment does not affect their outcomes, as they
do not actually receive the treatment assigned to them. Fourth, it assumes that assigning the study
treatment to participants in the intervention group induces at least some participants to receive the
treatment, so the compliance rate is not zero. Finally, it assumes that there is a monotonic relationship
between treatment assignment and treatment receipt, which implies that there are no individuals for
whom assignment to treatment actually reduces the likelihood of receiving treatment (i.e., no defiers).
This assumption reduces the number of compliance types for which estimates are derived, permitting
a properly identified model.

We follow J. Zhou et al. (2019) and introduce notation both on the individual level and on the
study level. Suppose a meta-analysis reviews I two-armed RCTs, and Ni is the number of subjects in
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the i-th trial for i ∈ {1, . . . , I}. If the data include a single study only, then I = 1 and we can remove
the subscript i from all notation.

On the individual level, notation is defined as follows for subject j in trial i.

1. Let Rij = r index the randomization assignment with r = 0 for those randomized to control and
r = 1 for those randomized to the intervention.

2. Let Tr
ij = t ∈ {0, 1} be the indicator of whether the individual received the intervention. This

is a potential outcome under the randomization assignment r ∈ {0, 1}, i.e., what the value of
treatment t would be for individual (i, j) if r = 0 or r = 1, respectively.

3. Let Yr,t
ij = o ∈ {0, 1} be the potential binary outcome under randomization assignment r and

treatment received t. Note that the exclusion restriction assumption allows us to define Yt
ij ≡ Yr,t

ij .

4. The sets of {Yr,t
ij } and {Tr

ij} are the potential outcome and treatment-received status respectively
under possible r and t, but for each subject in a trial, only one of the possible values of each set
can be observed. Therefore, we denote the observed response and received treatment variables
as Yij and Tij.

5. We allow Tij = ∗ if the actual received treatment is not recorded. Then let Mij = m be the
missing indicator corresponding to whether subject j has actual treatment received status on
record (m = 0) or missing (m = 1).

6. Using these potential outcomes, we can define the compliers and the CACE. Let Cij be the latent
compliance class of individual j in trial i, defined as follows:

Cij =


0, for never-taker with (T0

ij, T1
ij) = (0, 0)

1, for complier with (T0
ij, T1

ij) = (0, 1)

2, for always-taker with (T0
ij, T1

ij) = (1, 1)

3, for defier with (T0
ij, T1

ij) = (1, 0)

.

A subject’s compliance status Cij is not observable because in a two-arm trial, only one of T1
ij and

T0
ij can be observed. Based on the observed randomization group and actual treatment received, the

compliance classes can be only partially identified.

Now, the complier average causal effect of the i-th trial is the average difference between potential
outcomes for compliers. In this case, the CACE in study i is θCACE

i = E(Y1
ij − Y0

ij|Cij = 1), where the
patients for whom Cij = 1 are the compliers.

On the study level, nirto denotes the observed number of individuals in study i, randomization
group r, actual received treatment group t, and outcome o. If the compliance status of individual j in
trial i is not on record, Tij = t = ∗ so the corresponding count is nir∗o, which is the sum of the two
unobserved counts nir0o and nir1o.

2 Estimating CACE

This section briefly describes the Bayesian hierarchical models used to estimate CACE. These models
form the basis of the framework proposed by J. Zhou et al. (2019) and underlie the BayesCACE package.
In addition to the notation defined in the previous section, we define the following parameters for
study i.

1. Let πia and πin be the probabilities of being an always-taker and a never-taker, respectively.
Because defiers are ruled out by the monotonicity assumption, each trial has at most only three
compliance classes. Thus the probability of being a complier in study i is πic = 1 − πia − πin.

2. Define these response probabilities: ui1 for a complier randomized to the treatment group; vi1
for a complier randomized to the control/placebo group; si1 for a never-taker; and bi1 for an
always-taker. Thus for study i, the parameters included in the model are βi = (πia, πin, ui1, vi1,
si1, bi1).

As the outcome is binary, the expected difference between outcomes from the two treatment
groups among compliers is just the risk difference between ui1 and vi1. Therefore, the CACE can be
written as θCACE

i = E(Y1
ij − Y0

ij|Cij = 1) = ui1 − vi1.
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CACE for a single trial with noncompliance

Consider first a single trial with noncompliance, i.e., I = 1, so all notation and parameters defined
earlier are reduced to the version without subscript i. According to J. Zhou et al. (2019), each observed
nrto has a corresponding probability that can be written in terms of parameters defined in β = (πa,
πn, u1, v1, s1, b1), thus the vector (n000, n001, n010, n011, n100, n101, n110, n111) follows a multinomial
distribution. The likelihood is available in the Supplemental Materials.
The CACE for a single study is u1 − v1, so the posterior of θCACE is the posterior of u1 − v1.

CACE for a meta-analysis with complete compliance information

This section introduces two methods for performing a meta-analysis of the CACE when noncompliance
data are reported in each trial.

The two-step approach

As described in the previous section, using the observed data nirto, θCACE
i is identified for study~i.

Therefore, to estimate the population-average CACE in a meta-analysis, we propose combining the
study-specific estimates and standard errors using a standard meta-analysis method such as the
fixed-effect (Laird and Mosteller 1990) or random-effects model (Hedges and Vevea 1998; Hedges
and Olkin 1985). We call this a “two-step” approach. As the CACE measure is a risk difference, a
transformation may be necessary to ensure that the normal distribution assumption is approximately
true. Building upon the well-developed R package metafor, various estimators suggested in the
literature can be estimated to account for potential between-study heterogeneity in the CACE, e.g., the
Hunter–Schmidt estimator, the Hedges estimator, the DerSimonian–Laird estimator, the maximum-
likelihood or restricted maximum-likelihood estimator, or the empirical Bayes estimator (Viechtbauer
2010).

The Bayesian hierarchical model

In a meta-analysis, the CACE can also be estimated using the joint likelihood from the Bayesian
hierarchical model. This method is systematically introduced in J. Zhou et al. (2019). The log
likelihood contribution of trial i is denoted by adding a subscript i to each parameter. Then the
log likelihood for all trials in the meta-analysis is logL(β) = ∑i log Li(βi). Because the studies are
probably not exactly identical in their eligibility criteria, measurement techniques, study quality, etc.,
differences in methods and sample characteristics may introduce heterogeneity to the meta-analysis.
One way to model the heterogeneity is to use a random-effects model.

To guarantee the desired properties of study i’s latent compliance classes and to account for
possible between-study heterogeneity in the compliance class and response probabilities, we use these
transformations:

1. πin =
exp(ni)

1+exp(ni)+exp(ai)
, πia =

exp(ai)
1+exp(ni)+exp(ai)

, where ni = αn + δin, ai = αa + δia, and

(δin, δia)
⊤ ∼ N(0, Σps), Σps =

( σ2
n ρσnσa

ρσnσa σ2
a

)
.

2. We also define random effect models on the transformed scale of each response probability
si1, bi1, ui1, vi1: g(si1) = αs + δis, g(bi1) = αb + δib, g(ui1) = αu + δiu, g(vi1) = αv + δiv, where
g(·) is a link function such as the logit or probit, δis ∼ N(0, σ2

s ), δib ∼ N(0, σ2
b ), δiu ∼ N(0, σ2

u),
δiv ∼ N(0, σ2

v ).

Here we allow correlation between ni and ai, and assign random effect variables to all param-
eters. However, if a parameter does not vary between trials, it can be modeled as a fixed effect.
Let f (βi|β0, Σ0) be the distributions described above of all parameters βi = (πia, πin, si1, bi1, ui1,
vi1), where β0 is the vector of mean hyper-parameters (αn, αa, αs, αb, αu, αv), and Σ0 is the diagonal
covariance matrix containing Σps, σ2

s , σ2
b , σ2

u and σ2
v .

If we specify f (β0) and f (Σ0) as the prior distributions for the hyper-parameters, then the joint poste-
rior distribution is proportional to the likelihood multiplied by the priors, i.e., ∏i Li(βi) f (βi|β0, Σ0) f (β0) f (Σ0).

As stated earlier, θCACE
i = ui1 − vi1 for study i, so for the meta-analysis, the overall CACE

is θCACE = E(θCACE
i ) = E(ui1) − E(vi1). When a random effect δiu or δiv is not assigned in the

model, E(ui1) = g−1(αu) and E(vi1) = g−1(αv). Otherwise, E(ui1) and E(vi1) can be estimated
by integrating out the random effects, e.g., E(ui1) =

∫ +∞
−∞ g−1(αu + t)σ−1

u ϕ( t
σu
)dt, where ϕ(·) is the

standard Gaussian density. If the function g(·) is the probit link, this expectation has a closed form:

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=metafor


CONTRIBUTED RESEARCH ARTICLE 301

E(ui1) = Φ( αu√
1+σ2

u
). If the link function g(·) is logit, a well-established approximation E(ui1) ≈

logit−1( αu√
1+C2σ2

u

) can be used, where C = 16
√

3
15π (Zeger, Liang, and Albert 1988). The above formulas

also apply to E(vi1), the expected response rate of a complier in the control group.

The two-step approach, stated by Lin and Zeng (2010), can be viewed as asymptotically equivalent
to the model using the joint likelihood. However, as the two-step approach requires the whole set of
parameters to be estimated independently for each study, the total number of effective parameters
tends to be larger than the Bayesian hierarchical model, so estimates using our method are likely to be
more efficient.

CACE for meta-analysis with incomplete compliance information

Another advantage of the Bayesian hierarchical model is that it can include trials with incomplete
compliance data. Commonly, some trials do not report noncompliance data because study investigators
do not collect actual received treatment status for some subjects or simply do not report compliance.
The two-step approach needs counts for all of the groups defined by randomized assignment, treatment
received, and outcome in order to estimate the study-specific θCACE

i . Thus, by using this method, trials
with incomplete compliance data are simply excluded, making estimation less efficient and potentially
biased.

J. Zhou, Hodges, and Chu (2021) proposed a comprehensive framework to incorporate both
heterogeneous and incomplete noncompliance data for estimating the CACE in a meta-analysis of
RCTs. Here we present the data structure needed for binary outcomes. For study i, randomization
group r ∈ {0, 1} and output o ∈ {0, 1}, if the compliance information is reported, then values of nir0o
and nir1o are reported, so we assign the marginal count nir∗o = 0. Otherwise, we do not have data on
outcomes for groups defined by actually received treatment, so only the marginal nir∗o is observed,
where nir∗o is the number of patients randomized to treatment arm r who had outcome o. In this
situation, the two unobserved counts nir0o and nir1o are assigned as 0. In the Supplemental Materials,
a table for the observed counts data with corresponding probabilities is presented. The log likelihood
is also obtained from the multinomial distribution. The CACE for this meta-analysis incorporating
incomplete compliance data is θCACE = E(θCACE

i ) = E(ui1)− E(vi1) = Φ( αu√
1+σ2

u
)− Φ( αv√

1+σ2
v
) if the

probit link function is used for ui1 and vi1.

3 Using the R package BayesCACE

The primary objective of the BayesCACE package is to provide a user-friendly implementation of the
Bayesian method for estimating the CACE. The package is now available to download and install via
CRAN at https://CRAN.R-project.org/package=BayesCACE. It can be installed within R using the
command install.packages("BayesCACE"). The latest version of the package is 1.2.3.

The BayesCACE package depends on the R packages rjags (Plummer 2018), coda (Plummer et
al. 2006), and forestplot (Gordon and Lumley 2017). Users need to install JAGS separately from its
homepage http://mcmc-jags.sourceforge.net as the BayesCACE package does not include a copy
of the JAGS library. The current version of JAGS is 4.3.0, which is the version of the package that
BayesCACE requires; earlier versions of JAGS may not guarantee exactly reproducible results.

Data structure for estimating the CACE

We introduce the data structures through the illustrative example included in the package BayesCACE:
epidural_c and epidural_ic. These two data sets were obtained from Bannister-Tyrrell et al. (2015),
who conducted an exploratory meta-analysis of the association between using epidural analgesia in
labor and the risk of cesarean section. The dataset epidural_c contains 10 trials with full compliance
information; each trial has 8 observed counts, denoted by nirto and presented in columns nirto for
i = 1, . . . , 10 and r, t, o ∈ {0, 1}. These data were re-analyzed by J. Zhou et al. (2019) in a meta-analysis
using their proposed Bayesian hierarchical model to estimate the CACE. The function cace.meta.c()
performs this analysis. The column study.id contains IDs for the 10 studies, and study.name labels
each study by its first author’s surname and its publication year.

The data can be loaded and printed using these commands:

library("BayesCACE")
data("epidural_c", package = "BayesCACE")
epidural_c
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#> study.id study.name n000 n001 n010 n011 n100 n101 n110 n111
#> 1 1 Bofill, 1997 37 2 11 1 2 0 42 5
#> 2 2 Clark, 1998 72 6 68 16 7 2 134 13
#> 3 3 Halpern, 2004 62 5 44 7 0 0 112 12
#> 4 4 Head, 2002 51 7 2 0 3 0 43 10
#> 5 5 Jain, 2003 72 11 0 0 0 2 36 7
#> 6 6 Nafisi, 2006 179 19 0 0 0 0 173 24
#> 7 7 Nikkola, 1997 6 0 4 0 0 0 10 0
#> 8 8 Ramin, 1995 546 17 95 8 230 2 393 39
#> 9 9 Sharma, 1997 336 16 5 0 114 1 231 12
#> 10 10 Volmanen, 2008 23 1 3 0 1 0 23 1

The other dataset epidural_ic represents the situation in which not all trials report complete
compliance data. It contains 27 studies, only 10 of which have full compliance information and
are included in epidural_c. This dataset is also drawn from Bannister-Tyrrell et al. (2015), and
represents studies with incomplete compliance information when estimating the CACE. The function
cace.meta.ic() performs this analysis.

Each study is represented by one row in the dataset; the columns study.id and study.name have
the same meanings as in the dataset epidural_c. Each study’s data are summarized in 12 numbers
(columns) denoted by nirto and nir∗o. For a particular randomization group r ∈ {0, 1}, the observed
counts are presented either as nirto or nir∗o depending on whether the compliance information is
available; values for other columns are denoted by 0. The corresponding column names in the dataset
are nirto and nirso, respectively.

The first 6 rows of the dataset epidural_ic are printed below.

data("epidural_ic", package = "BayesCACE")
head(epidural_ic)

#> study.id study.name n000 n001 n010 n011 n0s0 n0s1 n100 n101 n110 n111
#> 1 1 Bofill, 1997 37 2 11 1 0 0 2 0 42 5
#> 2 2 Clark, 1998 72 6 68 16 0 0 7 2 134 13
#> 3 3 Dickinson, 2002 0 0 0 0 428 71 0 0 0 0
#> 4 4 Evron, 2008 40 4 0 0 0 0 0 0 0 0
#> 5 5 El Kerdawy, 2010 0 0 0 0 12 3 0 0 0 0
#> 6 6 Gambling, 1998 0 0 0 0 573 34 206 10 371 29
#> n1s0 n1s1
#> 1 0 0
#> 2 0 0
#> 3 408 85
#> 4 129 19
#> 5 11 4
#> 6 0 0

Note that NA is not allowed in a dataset for the package BayesCACE, but some trials may have 0 events
or 0 noncompliance rates.

Plotting noncompliance rates

Before performing the CACE analysis, one might want a visual overview of study-specific non-
compliance rates in both randomization arms. The function plt.noncomp provides a forest plot of
noncompliance rates in an R plot window. The function can be simply called as

plt.noncomp(data, overall = TRUE)

where data is a dataset with structure like epidural_c or epidural_ic. Specifically, the dataset
should contain the following columns: study.id, study.name, and 8 or 12 columns of data represented
by nirto, or nirto and nir∗o (see previous section for more details). Each row corresponds to one study.
Only studies with full compliance information are included in this plot because noncompliance rates
cannot be calculated without compliance data. Figure 1 shows the resulting plot, where the red dot
with its horizontal line shows the study-specific noncompliance rate with its 95% exact confidence
interval for the patients randomized to the treatment arm, and the blue square with its horizontal line
represents that rate and interval for those in the control arm. The confidence intervals are calculated
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Study (Author, Year)

Bofill, 1997

Clark, 1998

Halpern, 2004

Head, 2002

Jain, 2003

Nafisi, 2006

Nikkola, 1997

Ramin, 1995

Sharma, 1997

Volmanen, 2008

Overall

P(T=0|R=1)

0.041 (0.005,0.140)

0.058 (0.027,0.107)

0.000 (0.000,0.029)

0.054 (0.011,0.149)

0.044 (0.005,0.151)

0.000 (0.000,0.019)

0.000 (0.000,0.308)

0.349 (0.313,0.387)

0.321 (0.273,0.372)

0.040 (0.001,0.204)

0.093 (0.039,0.206)

P(T=1|R=0)

0.235 (0.128,0.375)

0.519 (0.439,0.598)

0.432 (0.341,0.527)

0.033 (0.004,0.115)

0.000 (0.000,0.043)

0.000 (0.000,0.018)

0.400 (0.122,0.738)

0.155 (0.128,0.184)

0.014 (0.005,0.032)

0.111 (0.024,0.292)

0.172 (0.080,0.333)

0 0.2 0.4 0.6
Nocompliance Rates

P(T=0|R=1)

P(T=1|R=0)

Figure 1: Noncompliance rates plot generated by the function plt.noncomp(). The red dots and
lines show the study-specific noncompliance rate with its 95% confidence interval randomized to the
treatment arm, and the blue squares and lines refer to those in the control arm.

by the Clopper–Pearson exact method (Clopper and Pearson 1934), which is based on the cumulative
distribution function of the binomial distribution. Using the default overall = TRUE, the figure also
gives a summary estimate of the compliance rates per randomization group. This overall rate is
estimated using a logit generalized linear mixed model. Otherwise, if the argument overall is FALSE,
the plot shows only study-specific noncompliance rates. Any additional parameters passed to the
function will be automatically used in the forestplot function from the forestplot package.

CACE analysis for a single study or in a meta-analysis

The major functions in BayesCACE are cace.study(), cace.meta.c(), and cace.meta.ic(), which
implement the models introduced earlier to perform Bayesian CACE analysis for different data
structures. In particular, cace.study() performs CACE analysis for a single study. The function
cace.meta.c() performs CACE analysis for a meta-analysis when each trial reports noncompliance
information. Users can choose to do the analysis either by the two-step approach or using the Bayesian
hierarchical model. When some trials do not report noncompliance data, the function cace.meta.ic()
can be applied to perform a CACE meta-analysis using the likelihood provided in the Supplemental
Materials. Each function may take 1–15 minutes to run. Generally the two-step approach using the
function cace.meta.c() takes longer because MCMC chains are run on the studies one by one. The
actual run time depends on the amount of data and the user’s processor.

Function cace.study() for a study-specific analysis or a two-step meta-analysis

For the default interface, the arguments of the function cace.study() are

cace.study(data, param = c("CACE", "u1", "v1", "s1", "b1", "pi.c", "pi.n",
"pi.a"), re.values = list(), model.code = '', digits = 3, n.adapt = 1000,
n.iter = 100000, n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/1e+05)), conv.diag = FALSE, mcmc.samples =
FALSE, two.step = FALSE, method = "REML")

where users need to input data with the same structure as epidural_c, containing either one row
of observations for a single study, or multiple rows referring to multiple studies in a meta-analysis.
This function fits a model for a single study. If the data includes more than one study, the study-specific
CACEs will be estimated by retrieving data row by row.

The argument param is a character string vector indicating the parameters to be tracked and
estimated. By default all parameters are included: θCACE (CACE), u1 (u1), v1 (v1), s1 (s1), b1 (b1), πa
(pi.a), πn (pi.n), and πc = 1 − πa − πn (pi.c). Users can modify the string vector to only include
parameters of interest besides θCACE. Users can specify the prior distributions (mean and standard
deviation) of n, a, αs, αb, αu, αv with the re.values parameter. By default, the re.values list is empty,
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and they are assigned to the transformed scale of the following parameters: πn =
exp(n)

1+exp(n)+exp(a) ,

πa =
exp(a)

1+exp(n)+exp(a) , logit(s1) = αs, logit(b1) = αb, probit(u1) = αu, and probit(v1) = αv, where

n, a ∼ N(0, 2.52) and αs, αb, αu, αv ∼ N(0, 22). With these settings, a 95% prior probability interval
for any of the probabilities πin, πia, and πic ranges from about 0.001 to 0.91, and a 95% prior interval
for the probabilities s1, b1, u1, and v1 ranges approximately from 0.01 to 0.98. The prior parameters
are passed into the model.study function to get the model code, which first calls the prior.study to
get the custom prior distribution. Here we give an example output of prior.study when assigning
N(0, 10−2) to every parameter:

out.string <-
"# priors
n ~ dnorm(0, 0.01)
a ~ dnorm(0, 0.01)
alpha.s ~ dnorm(0, 0.01)
alpha.b ~ dnorm(0, 0.01)
alpha.u ~ dnorm(0, 0.01)
alpha.v ~ dnorm(0, 0.01)
"

To customize the model fully, the user can pass their complete model string to the cace.study()
function with the parameter model.code. The arguments n.adapt, n.iter, n.burnin, n.chains, and
n.thin control the MCMC algorithm run by the R package rjags (Plummer 2018). The argument
n.adapt is the number of iterations for adaptation; it is used to maximize the sampling efficiency,
and the default is set as 1,000. The argument n.chains determines the number of MCMC chains
(the default is 3); n.iter is the number of iterations of each MCMC chain; n.burnin is the number
of burn-in iterations to be discarded at the beginning of each chain; n.thin is the thinning rate for
MCMC chains, which is used to avoid potential high auto-correlation and to save computer memory
when n.iter is large. The default of n.thin is set as 1 or the largest integer not greater than ((n.iter
- n.burnin)/1e+05)), whichever is larger. The argument conv.diag specifies whether to compute the
Gelman and Rubin convergence statistic (R̂) of each parameter as a convergence diagnostic (Brooks
and Gelman 1998; Gelman and Rubin 1992). The chains are considered well-mixed and converged
to the target distribution if R̂ ≤ 1.1. If the argument mcmc.samples = TRUE, the function saves each
chain’s MCMC samples for all parameters, which can be used to produce trace, posterior density, and
auto-correlation plots by calling the functions plt.trace, plt.density, and plt.acf.

By default, the function cace.study() returns a list including posterior estimates (posterior mean,
standard deviation, median, and a 95% credible interval with 2.5% and 97.5% quantiles as the lower
and upper bounds), and the deviance information criterion (DIC) statistic (Spiegelhalter et al. 2002)
for each study. The argument two.step is a logical value indicating whether to conduct a two-step
meta-analysis. If two.step = TRUE, the posterior mean and standard deviation of study-specific
θCACE

i are used to perform a standard meta-analysis, using the R package metafor. The default
estimation method is the REML (restricted maximum-likelihood estimator) method for the random-
effects model (Harville 1977). Users can change the argument method to obtain different meta-analysis
estimators from either a random-effects model or a fixed-effect model, e.g., method = "DL" refers to the
DerSimonian–Laird estimator, method = "HE" returns the Hedges estimator, and method = "HS" gives
the Hunter–Schmidt estimator. More details are available from the documentation of the function
metafor::rma (Viechtbauer 2010). If the input data include only one study, the meta-analysis result is
the same as the result from the single study.

Here is an example to demonstrate the function’s usage. We call the function cace.study() on the
dataset epidural_c as follows:

data("epidural_c", package = "BayesCACE")
set.seed(123)
out.study <- cace.study(data = epidural_c, conv.diag = TRUE,

mcmc.samples = TRUE, two.step = TRUE)

The following messages are output as the code runs:

% NA is not allowed in the input data set;
% the rows containing NA are removed.
Compiling model graph

Resolving undeclared variables
Allocating nodes
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Graph information:
Observed stochastic nodes: 2
Unobserved stochastic nodes: 6
Total graph size: 44

Initializing model

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100%
|**************************************************| 100%
|**************************************************| 100%

MCMC convergence diagnostic statistics are calculated and saved in conv.out

If the dataset contains more than one study, e.g., the epidural_c dataset has 10 trials, then once
the JAGS model compiles for the first study, it automatically continues to run on the next study’s data.
The results are saved in the object out.study, a list containing the model name, posterior information
for each monitored parameter, and DIC of each study. We can use parameter names to display the
corresponding estimates. The argument digits in the function cace.study() can be used to change
the number of significant digits to the right of the decimal point. Here, we used the default setting
digits = 3. For example, the estimates of θCACE for each single study (posterior mean and standard
deviation, posterior median, 95% credible interval, and time-series standard error) can be displayed
as:

out.study$CACE

#> Mean SD 2.5% 50% 97.5% Naive SE Time-series SE
#> [1,] 0.04980 0.0797 -0.09510 4.46e-02 0.2180 1.45e-04 2.51e-04
#> [2,] -0.02490 0.0489 -0.12200 -2.23e-02 0.0785 8.94e-05 1.48e-04
#> [3,] -0.02210 0.0606 -0.12700 -2.90e-02 0.1120 1.11e-04 1.94e-04
#> [4,] 0.07180 0.0758 -0.07550 7.10e-02 0.2230 1.38e-04 2.01e-04
#> [5,] 0.08250 0.0768 -0.06260 8.11e-02 0.2370 1.40e-04 2.51e-04
#> [6,] 0.02600 0.0319 -0.03650 2.59e-02 0.0891 5.83e-05 7.55e-05
#> [7,] 0.01430 0.1580 -0.28200 2.11e-04 0.4050 2.89e-04 4.21e-04
#> [8,] 0.05030 0.0248 0.00176 5.02e-02 0.0993 4.54e-05 7.34e-05
#> [9,] -0.01100 0.0234 -0.05740 -1.09e-02 0.0350 4.27e-05 6.22e-05
#> [10,] 0.00145 0.0655 -0.13400 -4.36e-06 0.1460 1.20e-04 1.56e-04

If the argument conv.diag is specified as TRUE, the output list contains a sub-list conv.out, which
outputs the point estimates of the “potential scale reduction factor” (the Gelman and Rubin conver-
gence statistic, labeled Point est.) calculated for each parameter from each single study, and their
upper confidence limits (labeled Upper C.I.). Approximate convergence is diagnosed when the upper
limit is close to 1 (Brooks and Gelman 1998; Gelman and Rubin 1992). For example, the first sub-list
from conv.out is:

out.study$conv.out[[1]]

#> Point est. Upper C.I.
#> CACE 1.000025 1.000046
#> b1 1.000041 1.000129
#> pi.a 1.000025 1.000094
#> pi.c 1.000036 1.000134
#> pi.n 1.000029 1.000067
#> s1 1.000014 1.000018
#> u1 1.000016 1.000033
#> v1 1.000077 1.000185

In this example, we included mcmc.samples = TRUE in the argument, so the output list out.study
includes each chain’s MCMC samples for all parameters. They can be used with our plotting functions
to generate the trace, posterior density, and auto-correlation plots for further model diagnostics.

If the dataset used by the function cace.study() has more than one study, specifying the argument
two.step = TRUE causes the two-step meta-analysis for θCACE to be done. The outcomes are saved as
a sub-list object meta. Note that users can obtain different meta-analysis estimators by changing the
method argument as described earlier.

out.study$meta
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#>
#> Random-Effects Model (k = 10; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0.0002 (SE = 0.0008)
#> tau (square root of estimated tau^2 value): 0.0131
#> I^2 (total heterogeneity / total variability): 8.10%
#> H^2 (total variability / sampling variability): 1.09
#>
#> Test for Heterogeneity:
#> Q(df = 9) = 5.9353, p-val = 0.7464
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> 0.0182 0.0143 1.2758 0.2020 -0.0098 0.0462
#>
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Function cace.meta.c() for meta-analysis with complete compliance data

The function cace.meta.c() performs the Bayesian hierarchical model method for meta-analysis when
the dataset has complete compliance information for all studies. The function’s default arguments are
as shown:

cace.meta.c(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '', digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments controlling the MCMC algorithm are mostly similar to those of cace.study(). One
major difference is that users need to specify parameters that are modeled as random effects. Earlier,
we showed how to specify random effects for each parameter on the transformed scales, namely δin,
δia, δiu, δiv, δis, and δib, and allowed a non-zero correlation ρ between δin and δia. The model with all of
these random effects as well as the correlation ρ is considered the full model. However, this function is
flexible, allowing users to choose which random effects to include by specifying the random.effects
argument. By default, the list is empty and all of the list values are set to TRUE. Users can customize
that by setting delta.n, delta.a, delta.u, delta.v, delta.s, delta.b, and/or cor to FALSE. Note that
ρ (cor) can only be included when both δin (delta.n) and δia (delta.a) are set to TRUE. Otherwise, a
warning is shown and the model continues running by forcing delta.n = TRUE and delta.a = TRUE.
The default parameters to be monitored depend on which parameters are modeled as random effects.
For example, u1out refers to E(ui1), where for the probit link, E(ui1) = Φ(αu) if δu is not specified in
the model, and E(ui1) = Φ( αu√

1+σ2
u
) when the random effect δu is included.

Users can use the re.values parameter to customize the prior distribution. Like the func-
tion cace.study(), by default, weakly informative priors αn, αa ∼ N(0, 2.52) and αs, αb, αu, αv ∼
N(0, 22) are assigned to the means of these transformed parameters: πin =

exp(ni)
1+exp(ni)+exp(ai)

, πia =

exp(ai)
1+exp(ni)+exp(ai)

, where ni = αn + δin, ai = αa + δia, logit(si1) = αs + δis, logit(bi1) = αb + δib,

probit(ui1) = αu + δiu, and probit(vi1) = αv + δiv. For the random effects, we have δis ∼ N(0, σ2
s ),

δib ∼ N(0, σ2
b ), δiu ∼ N(0, σ2

u), and δiv ∼ N(0, σ2
v ), as response rates are assumed to be independent

between latent classes. A Gamma(2, 2) hyper-prior distribution is assigned to the precision parame-
ters σ−2

s , σ−2
b , σ−2

u and σ−2
v , which corresponds to a 95% interval of (0.6, 2.9) for the corresponding

standard deviations, allowing moderate heterogeneity in the response rates. In a reduced model with
one of δin or δia set to 0, the prior of the other precision parameter is also assumed to be Gamma(2, 2),
which gives moderate heterogeneity for latent compliance class probabilities, whereas for the full
model, (δin, δia)

⊤ ∼ N(0, Σps), the prior for the variance-covariance matrix Σps is InvWishart(I, 3),
where I is the identity matrix.

Similar to cace.study(), to customize the model fully, the user can pass their complete model
string with the parameter model.code. Because the function cace.meta.c() is more complicated
depending on the choice of random effects, we show an example of the customized prior distributions
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when assigning delta.n = TRUE, delta.a = TRUE, delta.u = TRUE, delta.v = FALSE, delta.s =
TRUE, delta.b = TRUE, and cor = TRUE while keeping default values for re.values.

string <-
"# priors
alpha.n ~ dnorm(0, 0.16)
alpha.a ~ dnorm(0, 0.16)
alpha.s ~ dnorm(0, 0.25)
alpha.b ~ dnorm(0, 0.25)
alpha.u ~ dnorm(0, 0.25)
alpha.v ~ dnorm(0, 0.25)

II[1,1] <- 1
II[2,2] <- 1
II[1,2] <- 0
II[2,1] <- 0

Omega.rho ~ dwish (II[,], 3)
Sigma.rho <- inverse(Omega.rho)
sigma.n <- Sigma.rho[1, 1]
sigma.a <- Sigma.rho[2, 2]
rho <- Sigma.rho[1, 2]
u1out <- phi(alpha.u/sqrt(1+sigma.u^2))
tau.u ~ dgamma(2, 2)
sigma.u <- 1/sqrt(tau.u)
v1out <- phi(alpha.v)
CACE <- u1out-v1out
s1out <- ilogit(alpha.s/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.s^2))
tau.s ~ dgamma(2, 2)
sigma.s <- 1/sqrt(tau.s)
b1out <- ilogit(alpha.b/sqrt(1 + (16^2*3/(15^2*pi^2))*sigma.b^2))
tau.b ~ dgamma(2, 2)
sigma.b <- 1/sqrt(tau.b)
"

The epidural_c dataset is used as a real-study example:

data("epidural_c", package = "BayesCACE")
set.seed(123)
out.meta.c <- cace.meta.c(data = epidural_c, conv.diag = TRUE,

mcmc.samples = TRUE, study.specific = TRUE)

The usage of arguments conv.diag and mcmc.samples is the same as for the function cace.study.
When the argument study.specific is specified as TRUE, the model will first check the logical status
of arguments delta.u and delta.v. If both are FALSE, meaning that neither response rate ui1 or vi1 is
modeled with a random effect, then the study-specific θCACE

i is the same across studies. The function
gives a warning and continues by making study.specific = FALSE. Otherwise, the study-specific
θCACE

i are estimated and saved as the parameter cacei.

In this example, by calling the object smry from the output list out.meta.c, posterior estimates
(posterior mean, standard deviation, posterior median, 95% credible interval, and time-series standard
error) are displayed.

out.meta.c$smry

#> Mean SD 2.5% 50% 97.5% Naive SE Time-series SE
#> CACE 0.020200 0.0627 -0.10200 0.018900 0.1490 1.14e-04 7.69e-04
#> b1out 0.128000 0.0459 0.05970 0.121000 0.2370 8.39e-05 4.07e-04
#> cacei[1] 0.043900 0.0679 -0.08130 0.040700 0.1870 1.24e-04 2.35e-04
#> cacei[2] -0.023100 0.0489 -0.11500 -0.025000 0.0822 8.94e-05 1.89e-04
#> cacei[3] -0.007630 0.0569 -0.11000 -0.011800 0.1130 1.04e-04 2.16e-04
#> cacei[4] 0.065000 0.0678 -0.06620 0.064300 0.2010 1.24e-04 1.62e-04
#> cacei[5] 0.054000 0.0686 -0.07380 0.051500 0.1960 1.25e-04 2.45e-04
#> cacei[6] 0.026300 0.0309 -0.03390 0.026200 0.0875 5.64e-05 6.87e-05
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#> cacei[7] 0.002770 0.0931 -0.18900 -0.000142 0.2100 1.70e-04 3.71e-04
#> cacei[8] 0.048300 0.0239 0.00171 0.048200 0.0956 4.36e-05 6.38e-05
#> cacei[9] -0.010600 0.0224 -0.05520 -0.010500 0.0331 4.09e-05 5.49e-05
#> cacei[10] 0.000228 0.0600 -0.12000 -0.001200 0.1280 1.10e-04 2.15e-04
#> pia 0.114000 0.0742 0.02460 0.098200 0.3010 1.35e-04 3.92e-03
#> pic 0.821000 0.0842 0.60500 0.838000 0.9350 1.54e-04 4.50e-03
#> pin 0.064200 0.0397 0.01540 0.056700 0.1590 7.25e-05 2.11e-03
#> s1out 0.184000 0.1040 0.04560 0.161000 0.4450 1.91e-04 9.03e-04
#> u1out 0.127000 0.0473 0.05520 0.120000 0.2390 8.64e-05 6.10e-04
#> v1out 0.107000 0.0406 0.04700 0.100000 0.2040 7.41e-05 4.55e-04

The posterior estimates of θCACE
i can be used to make a forest plot by calling the function plt.forest.

Users can manually do model selection procedures by including different random effects and
comparing DIC from the outputs. DIC and its two components are saved as an object DIC in the output
list.

out.meta.c$DIC

#>
#> D.bar 204.40801
#> pD 44.74788
#> DIC 249.15590

DIC is the penalized deviance, calculated as the sum of D.bar and pD, where D.bar is the posterior
expectation of the deviance, reflecting the model fit, and pD reflects the effective number of parameters
in the model. D.bar is usually lower when more parameters are included in the model, but complex
models may lead to overfitting. Thus DIC balances the model’s fit against the effective number of
parameters. Generally a model with smaller DIC is preferred. However, it is difficult to conclude
what constitutes an important improvement in DIC. Following Lunn et al. (2012), we suggest that a
reduction of less than 5 is not a substantial improvement. When fitting models to a particular dataset,
it is usually uncertain which random effect variables should be included in the model. The function
cace.meta.c() allows users to specify candidate models with different random effects, and thus to
conduct a forward/backward/stepwise model selection procedure to choose the best fitting model.

Function cace.meta.ic() for meta-analysis with incomplete compliance information

Another major function in the package BayesCACE is cace.meta.ic(). It also estimates θCACE using
the Bayesian hierarchical model but can accommodate studies with incomplete compliance data. The
arguments of this function are:

cace.meta.ic(data, param = c("CACE", "u1out", "v1out", "s1out", "b1out",
"pic", "pin", "pia"), random.effects = list(), re.values = list(),
model.code = '', digits = 3, n.adapt = 1000, n.iter = 100000,
n.burnin = floor(n.iter/2), n.chains = 3, n.thin =
max(1,floor((n.iter-n.burnin)/100000)), conv.diag = FALSE,
mcmc.samples = FALSE, study.specific = FALSE)

The arguments of cace.meta.ic() are mostly similar to those of cace.meta.c(), although the function
cace.meta.ic() calls a different built-in model file from the package BayesCACE. The major difference
in using this function is that users need to create a dataset with the same structure as epidural_ic. As
for cace.meta.c(), users can set their customized prior distributions. Here we use the epidural_ic
dataset as an example:

data("epidural_ic", package = "BayesCACE")
set.seed(123)
out.meta.ic <- cace.meta.ic(data = epidural_ic, conv.diag = TRUE,

mcmc.samples = TRUE, study.specific = TRUE)

The results are saved in the object out.meta.ic, a list containing posterior estimates for monitored
parameters, DIC, convergence diagnostic statistics, and MCMC samples. In this example, the argument
study.specific is TRUE, so the summary for each study-specific θCACE

i is displayed in the object
out.meta.ic$smry together with other parameters.
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Note that when compiling the JAGS model, the warning “adaptation incomplete” may occasionally
occur, indicating that the number of iterations for the adaptation process is not sufficient. The default
value of n.adapt (the number of iterations for adaptation) is 1,000. This is an initial sampling phase dur-
ing which the samplers adapt their behavior to maximize their efficiency (e.g., a Metropolis–Hastings
random walk algorithm may change its step size) (Plummer 2018). The “adaptation incomplete”
warning indicates that the MCMC algorithm may not achieve maximum efficiency, but it generally
has little impact on the posterior estimates of the treatment effects. To avoid this warning, users may
increase n.adapt.

Plotting the trace plot, posterior density, and auto-correlation

When compiling the JAGS models, it is helpful to assess the performance of the MCMC algorithm. The
functions plt.trace, plt.density, and plt.acf provide diagnostic plots for the MCMC, namely trace
plots, kernel density estimation plots, and auto-correlation plots. Both trace plots and auto-correlation
plots can be used to examine whether the MCMC chains appear to be drawn from stationary distribu-
tions. A posterior density plot for a parameter visually shows the posterior distribution. Users can
simply call this function on objects produced by cace.study(), cace.meta.c(), or cace.meta.ic().

The arguments of this plot function are:

plt.trace(obj, param = c("CACE"), trialnumber = 1, ...)
plt.density(obj, param = c("CACE"), trialnumber = 1, ...)
plt.acf(obj, param = c("CACE"), trialnumber = 1, ...)

We use the objects list obtained from fitting the Bayesian hierarchical model cace.meta.ic() as an
example to generate the three plots. To avoid lengthy output we just illustrate how these plots are
produced for θCACE. The relevant code is:

plt.trace(obj = out.meta.ic)
plt.density(obj = out.meta.ic)
plt.acf(obj = out.meta.ic)

The produced plots are shown in Figures 2–4. The trace plots in Figure 2 show the parameter values
sampled at each iteration versus the iteration number. Each chain is drawn as a separate trace plot to
avoid overlay. Here we used the default n.chains = 3, so three trace plots are drawn. These plots
show evidence that the posterior samples of θCACE are drawn from the stationary distribution.

The density plot in Figure 3 is smoothed using the R function density(). It shows that the kernel-
smoothed posterior of θCACE is almost symmetric. The posterior mean is not far from 0, indicating
that the complier average causal effect of using epidural analgesia in labor on cesarean section is likely
not significant.

The auto-correlation plot in Figure 4 is a bar plot displaying the auto-correlation for different lags.
At lag 0, the value of the chain has perfect auto-correlation with itself. As the lag becomes greater, the
values become less correlated. After a lag of about 50, the auto-correlation drops below 0.1. If the plot
shows high auto-correlation, users can run the chain longer or can choose a larger n.thin, e.g., n.thin
= 10 would keep only 1 out of every 10 iterations, so that the thinned out chain is expected to have the
auto-correlation drop quickly. Any additional parameters passed to the 3 plotting function will be
automatically used in the plot function for plt.trace and plt.density, and in the acf function for
plt.acf.

Plotting the study-specific CACE in a forest plot

A graphical overview of the results can be obtained by creating a forest plot (Lewis and Clarke 2001).
The function plt.forest() draws a forest plot for θCACE estimated from the meta-analysis. Users can
call this function for the objects from cace.meta.c() or cace.meta.ic(). Here is an example using
the object out.meta.ic:

plt.forest(data = epidural_ic, obj = out.meta.ic)

Note that in addition to the object out.meta.ic, users also need to specify the dataset used to compute
that object, from which the plt.forest() function extracts the study names and publication years for
the figure.

Figure 5 is a forest plot of θCACE
i for each study individually, using the Bayesian method with

full random effects and default priors. The summary estimate based on the model cace.meta.ic()
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Figure 2: Trace plots for θCACE from the epidural_ic dataset fit using cace.meta.ic() for a sample of 3
chains. Because there are no strong patterns and the variability is relatively constant, we can conclude
that the posterior means are drawn from a stationary distribution.
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Figure 3: The kernel smoothed density for θCACE from the function cace.meta.ic() applied to the
epidural analgesia in labor meta-analysis. The posterior mean is close to 0, indicating that the complier
average causal effect may not be significant in this case.
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Figure 4: Auto-correlation plot of θCACE from the model cace.meta.ic() fit to the epidural_ic dataset. As
the lag increases, the values become less correlated. Users can choose to address high auto-correlation
with a longer chain or a larger n.thin.
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Figure 5: Forest plot of study-specific θCACE from the model cace.meta.ic() with full random effects fit
to the epidural_ic dataset. The summary estimate and confidence interval limits based on the model
cace.meta.ic() are included in the figure, both in terms of written values and the squares and lines on
the right. Overall, it shows that the study-specific θCACE

i vary from negative to positive in individual
studies, while most of the 95% credible intervals cover zero.
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is automatically added to the figure, with the outer edges of the polygon indicating the confidence
interval limits. The 95% credible interval of the summary θCACE covers zero, indicating a non-
significant complier average causal effect estimate for using epidural analgesia in labor on the risk of
cesarean section for the meta-analysis with 27 trials. For a study with incomplete data on compliance
status, a dashed horizontal line in the forest plot is used to represent the posterior 95% credible interval
of θCACE

i from the Bayesian hierarchical model fit. The study-specific θCACE
i vary from negative to

positive in individual studies, while most of the 95% credible intervals cover zero. As the θCACE
i for a

trial without complete compliance data is not estimable using only data from that single trial, dashed
lines tend to have longer credible intervals than those with complete data (solid lines).

4 Discussion

This article provides an overview of the BayesCACE package for conducting CACE analysis with
R. Bayesian hierarchical models estimating the CACE in individual studies and in meta-analysis
are introduced to demonstrate the underlying methods of the functions. Practical usage of various
functions is illustrated using real meta-analysis datasets epidural_c and epidural_ic. The package
provides several plots for model outputs and model diagnosis.

It is important to note that the two-step approach for meta-analysis is included in the package
BayesCACE because by using the full observed data from a single study i, θCACE

i is identifiable,
making it possible to pool the estimated posterior means and standard deviations of the θCACE

i in a
meta-analysis. However, the Bayesian hierarchical-model meta-analysis method for estimating the
overall CACE is preferred for two reasons: the conventional two-step approach requires the whole
set of parameters to be estimated for each trial, giving a greater total number of parameters than the
random effect model, so the estimate of the CACE can be less efficient. Also, when study i does not
report complete compliance data, it must be excluded from the two-step approach because θCACE

i is
no longer directly estimable by simply using the incomplete data from this individual study, while the
function cace.meta.ic() can use the incomplete information and thus help improve the efficacy in
estimation.

The Gelman and Rubin convergence statistics, time-series standard errors, trace plots, and auto-
correlation plots are provided by the package BayesCACE to examine whether the MCMC chains
are drawn from stationary distributions. However, in practice, any sample is finite, thus there is
no guaranteed way to prove that the sampler has converged (Kass et al. 1998; Cowles and Carlin
1996). Additional techniques may be required to determine the effective sample size for adequate
convergence (Robert and Casella 2004). For example, the well-developed R package mcmcse (Flegal et
al. 2017) can be used to assess whether MCMC has been run for enough iterations (sufficient chain
lengths). To call the functions in mcmcse, users can specify the argument mcmc.samples = TRUE in
cace.study(), cace.meta.c(), and cace.meta.ic(), so the MCMC posterior samples of monitored
parameters are saved in the output objects.

The current version of BayesCACE only applies to binary outcomes. However, the Bayesian
hierarchical model can be extended to handle ordinal outcomes o ∈ {1, . . . , O}.
By selecting weighting scores {W1, W2, . . . , WO} to reflect distances between outcome categories
{1, . . . , O}, θCACE

i is defined as E(Y1
ij −Y0

ij|Cij = 1) = ∑o (Wo × uio)− ∑o (Wo × vio) (J. Zhou, Hodges,
and Chu 2021; J. Zhou et al. 2019). Equally spaced scores {1, 2, ..., O}, their linear transforms, and
midranks are reasonable weight choices (Agresti 2013). Future work will add CACE meta-analysis
functions for ordinal outcomes, and allow users to choose their preferred weights {W1, W2, . . . , WO}.
Note that ordinal outcomes lead to more complex correlation structures in the parameters related to
response rates, so multivariate prior distributions are necessary to analyze such outcomes.
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A Framework for Producing Small Area
Estimates Based on Area-Level Models in
R
by Sylvia Harmening, Ann-Kristin Kreutzmann, Sören Schmidt, Nicola Salvati and Timo Schmid

Abstract The R package emdi facilitates the estimation of regionally disaggregated indicators using
small area estimation methods and provides tools for model building, diagnostics, presenting, and
exporting the results. The package version 1.1.7 includes unit-level small area models that rely on
access to micro data. The area-level model by Fay and Herriot (1979) and various extensions have been
added to the package since the release of version 2.0.0. These extensions include (a) area-level models
with back-transformations, (b) spatial and robust extensions, (c) adjusted variance estimation methods,
and (d) area-level models that account for measurement errors. Corresponding mean squared error
estimators are implemented for assessing the uncertainty. User-friendly tools like a stepwise variable
selection, model diagnostics, benchmarking options, high quality maps and results exportation options
enable a complete analysis procedure. The functionality of the package is illustrated by examples
based on synthetic data for Austrian districts.

1 Introduction

Small area estimation (SAE) enables better insight at smaller scales, for which it has gained importance
in both academic and applied research. Among others, SAE is used for estimating socio-economic
measures like income, poverty and health or indicators for agriculture (Datta et al., 1991; Tzavidis et al.,
2012; Zhang et al., 2015; Pratesi, 2016). Economic or political decision-makers and official statistics
practitioners especially benefit from reliable estimation of disaggregated indicators and thus SAE
methods. Existing surveys were often not planned for analysis at disaggregated levels and show only
small sample sizes, which leads to a low precision of the estimates. SAE methods can be employed
to avoid expensive and time-consuming enlargements of the sample size of surveys. The idea is to
combine data sources with model-based approaches. Existing survey data will be enriched by auxiliary
information, e.g., from census or register data, to improve the accuracy of the indicator estimation on
an area- or domain- level. The terms area and domain are used interchangeably and refer either to a
geographic area or to any subpopulation of a population of interest, like socio-demographic groups.
Among others, Pfeffermann (2013), Rao and Molina (2015), Tzavidis et al. (2018) and Jiang and Rao
(2020) give comprehensive overviews of SAE methods.

The main goal of the package emdi is the simplification of estimating these regionally disaggre-
gated indicators. The package version 1.1.7 contains direct estimation based exclusively on survey
data and model-based estimation using the unit-level empirical best predictor (EBP) method (Molina
and Rao, 2010). The EBP approach is powerful since it enables the simultaneous estimation of various
indicators. For this, it relies on unit-level information, i.e. information about each unit in each domain.
Though survey data often provides unit-level information, access to census or register data at unit-level
is less likely. Hence, area-level models provide a valuable alternative, with the following benefits:
First, only area-level aggregates are needed to estimate the regional indicators. Second, area-level
models can consider the survey design by integrating the sampling weights. Third, the computation is
faster compared to the computational intensive EBP approach.

Various R packages that employ different area-level models are available on the Comprehensive R
Archive Network (CRAN). The package smallarea (Nandy, 2015) offers several variance estimation
methods for the standard Fay-Herriot (FH) model: maximum likelihood (ML), residual maximum
likelihood (REML), and both Prasad-Rao and Fay-Herriot method-of-moment. Estimation of un-
known sampling variances is also offered." The ability to estimate unit- and area-level models under
heteroscedasticity is implemented by the JoSAE package (Breidenbach, 2018). Robust estimation
of area-level models with spatial and/or temporal structures in the random effects is supported by
package saeRobust (Warnholz, 2022). The mcmcsae package (Boonstra, 2021) also takes spatial and
temporal correlation of the random effects into account, but fits unit- and area-level models via Markov
Chain Monte Carlo simulation. Estimation of univariate and multivariate FH models is possible with
package msae (Permatasari and Ubaidillah, 2022). The package hbsae (Boonstra, 2022) allows for
the fitting of unit- and area-level models by frequentist or hierarchical Bayesian approaches. The
possibility of estimating FH models and some of its extensions in a Bayesian framework is also given
by the BayesSAE package (Developer, 2018). The tipsae package (De Nicolò and Gardini, 2022)
provides estimation and mapping tools within a Bayesian setting for proportions that are defined
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Standard variance estimation
√ √ √ √

Adjusted variance estimation
√

Unknown sampling variances
√

Heteroscedasticity
√

Spatial correlation
√ √

Spatio-temporal correlation
√

Robust
√ √

Robust, spatial correlation
√ √

Robust, (spatio-)temporal correlation
√

Multivariate
√

Bayesian formulation
√ √

Measurement error
√ √

Transformation (log, arcsin)
√

Table 1: Overview of selected implemented area-level models in R packages available on CRAN.

on the unit interval. The mme package (Lopez-Vizcaino et al., 2019) implements Gaussian area-level
multinomial mixed-effects models in the SAE context. The saeME package (Mubarak and Ubaidillah,
2022) can fit an area-level model when the auxiliary variables are measured with error. The NSAE
package (Chandra et al., 2022) can fit stationary and nonstationary FH models. One of the commonly
used packages is the sae package (Molina and Marhuenda, 2015). It includes a wide range of area-level
models (the standard FH model with REML, ML and FH method-of-moment model fitting and a
spatial and a spatio-temporal extension of the FH model) and unit-level models (the nested error linear
regression model of Battese et al. (1988) and the EBP approach). Table 1 gives an overview of selected
packages and the implemented methodology.
Besides packages that include particular area-level models, the packages saeMSPE (Xiao et al., 2022)
and SAEval (Fasulo, 2022) offer different analytical- and resampling-based MSE estimators and tools
for diagnostics and graphical evaluation of SAE models, respectively.

The latest version of package emdi 2.1.3 combines a wide range of SAE models with several tools
that enable a complete analysis, and therefore adds to the space of useful packages, for the following
reasons:

• None of the existing packages contains such a variety of different area-level models.

• In addition to models that are already available in existing R packages, emdi includes: adjusted
variance estimation methods and transformation options for the standard FH model. Adjusted
variance estimation methods are of particular importance when working in a non-Bayesian
framework. In a Bayesian context, the variance will always be estimated as strictly positive, so
packages providing a Bayesian approach do not need adjusted variance estimation methods.

• Package emdi offers user-friendly tools that go beyond model estimation: diagnostic tools
with both summary and graphical results, benchmarking options, high-quality geographical
visualization of results, and export of results to Excel and OpenDocument Spreadsheet formats.

• Plus a stepwise variable selection algorithm for area-level models is included in emdi to allow
the user to build a model based on information criteria.

Thus, since package version 2.0.0, version 1.1.7 has been extended by various area-level models, but
stays in line with the user-friendly orientation of the existing version.

The structure of the paper can be described as follows. The section Statistical methodology
introduces the statistical methods implemented in the package. The example data sets included in the
package are presented in the section Data sets. The section Functionality and case studies provides an
illustrative description of the functions using the example data sets. The section Estimation procedure
for the standard Fay-Herriot model guides the reader from model-building to diagnostics of a standard
FH model and creating maps of the results. The section Estimation of the extended area-level models
follows with short descriptions of how to build the different extended area-level models. Finally, the
section Conclusion and outlook summarizes our contributions and gives an outlook.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://CRAN.R-project.org/package=mme
https://CRAN.R-project.org/package=saeME
https://CRAN.R-project.org/package=NSAE
https://CRAN.R-project.org/package=sae
https://CRAN.R-project.org/package=saeMSPE
https://CRAN.R-project.org/package=SAEval


CONTRIBUTED RESEARCH ARTICLE 3

2 Statistical methodology

Area-level models for the estimation of indicators like means, totals or shares have been added to the
package since the release of version 2.0.0. These comprise the area-level model by Fay and Herriot
(1979) and several extensions of this standard model which account for issues that may come up in
real data applications. To measure the precision of those models, MSE estimators have been integrated
following the literature.

Standard Fay-Herriot model

Throughout the paper, a finite population U is assumed that consists of N units that are subdivided
into D domains or areas of specific sizes N1, ..., ND. Then a random sample of size n can be drawn
from U and partitioned into D areas with n1, ..., nD observations per domain.

The FH model links area-level direct estimators based on survey data to covariates aggregated
on an area level that may stem from administrative data (e.g. register or census) or alternative data
sources (e.g. satellite, social media or mobile phone data). The FH model is composed of two levels.
The first level is the sampling model

θ̂Dir
i = θi + ei, i = 1, . . . , D.

θ̂Dir
i is an unbiased direct estimator for a population indicator of interest θi, for instance, a mean or

a ratio. ei represents independent and normally distributed sampling errors with ei
ind∼ N

(
0, σ2

ei

)
.

Though the model assumes known sampling variances, in practical applications σ2
ei

are usually
unknown, and have to be estimated from the unit-level sample data (Rivest and Vandal, 2003; Wang
and Fuller, 2003; You and Chapman, 2006). Package emdi provides a non-parametric bootstrap for
estimating the variances of the direct estimator (Alfons and Templ, 2013). To allow for complex survey
designs, sampling weights (w) can be considered in the direct estimation (Horvitz and Thompson,
1952). For example, an estimator for the population mean θi of a continuous variable of interest y for
each area i is estimated by

θ̂Dir
i =

∑ni
j=1 wijyij

∑ni
j=1 wij

,

where the index j indicates an individual with j = 1, ..., ni in the i-th area. The second FH level links
the target indicator θi linearly to area-specific covariates xi,

θi = x⊤i β + ui,

where β is a vector of unknown fixed-effect parameters, and ui is an independent and identically

normally distributed random effect with ui
iid∼ N

(
0, σ2

u
)
.

The combination of the sampling and the linking model leads to a special linear mixed model

θ̂Dir
i = x⊤i β + ui + ei, i = 1, . . . , D. (1)

The empirical best linear unbiased estimators β̂ are computed by weighted least square theory.
The empirical best linear unbiased predictor (EBLUP) of θi is obtained by substituting the variance
parameter σ2

u with an estimate. The resulting estimator can then be written as

θ̂FH
i = x⊤i β̂ + ûi

= γ̂i θ̂
Dir
i + (1 − γ̂i) x⊤i β̂. (2)

The EBLUP/FH estimator can be understood as a weighted average of the direct estimator θ̂Dir
i and

a regression-synthetic part x⊤i β̂. The estimated shrinkage factor γ̂i =
σ̂2

u
σ̂2

u+σ2
ei

puts more weight on

the direct estimator when the sampling variance is small and vice versa. Areas for which no direct
estimation results exist, because the sample size is zero or the results may not be published, are
called out-of-sample domains. For those domains, the prediction reduces to the regression-synthetic
component θ̂FH

i,out = x⊤i β̂ (Rao and Molina, 2015).

Estimation methods for σ2
u

The variance of the random effects has to be estimated. Commonly used approaches are the FH
method-of-moment estimator (Fay and Herriot, 1979), the ML, and the REML estimators (Rao and
Molina, 2015). The likelihood methods are known to perform more efficiently than the methods
of moments (Rao and Molina, 2015). The commonly used methods can produce negative variance
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estimates that should be strictly positive. In the estimation methods mentioned above, negative
variance estimates are set to zero (σ̂2

u = max
(
σ̃2

u , 0
)
) resulting in zero estimates of the shrinkage factor

γi. Therefore, no weight is put on the direct estimator, ignoring its possible reliability. This poses a
problem, especially when the number of areas is small. To avoid this so-called over-shrinkage problem,
Li and Lahiri (2010) and Yoshimori and Lahiri (2014) proposed methods that adjust the respective
likelihoods of the standard ML and REML approaches by some factor:

Ladj

(
σ2

u

)
= A × L

(
σ2

u

)
,

where A denotes the adjustment factor and L(σ2
u) the given likelihood function. The proposed

adjustment factors are:

• by Li and Lahiri (2010): A = σ2
u ,

• by Yoshimori and Lahiri (2014): A =

(
tan−1

(
D
∑

i=1
γi

))1/D

.

Simulation studies conducted by Yoshimori and Lahiri (2014) showed that the adjusted Yoshimori-
Lahiri methods are preferable when the variance of the random effect is small relative to the sampling
variance. Otherwise, the adjusted Li-Lahiri methods are recommended. Package emdi offers six
different variance estimation methods: standard ML (ml) and REML (reml), and adjusted ML and
REML following either Li and Lahiri (2010) (amrl, ampl) or Yoshimori and Lahiri (2014) (amrl_yl,
ampl_yl).

Extended area-level models

In real data applications, problems might occur that were not theoretically expected. There may also
be some violation of the assumptions of the standard FH model, e.g., normality and independence
of the error terms. The following section outlines the extensions of the standard FH model that are
implemented in the package emdi to address these issues.

Transformations
When working with right-skewed data like income, wealth or business data, the assumptions of a
linear relation between the response and the explanatory variables and normality of both error terms
(ui and ei) of the FH model may be violated. Applying a log-transformation could be a reasonable
solution to meet these model assumptions (Neves et al., 2013; Kreutzmann et al., 2022). In the emdi
package, the direct estimates and their variances are transformed following Neves et al. (2013):

θ̂
Dir*log
i = log

(
θ̂Dir

i

)
,

var
(

θ̂
Dir*log
i

)
=
(

θ̂Dir
i

)−2
var

(
θ̂Dir

i

)
,

where the *log notation stands for the logarithmic transformed scale. To obtain the FH estimator on
the transformed scale θ̂

FH*log
i , θ̂Dir

i is substituted by θ̂
Dir*log
i and var(θ̂Dir*log

i ) serves as estimate for the
sampling variances (σ2

ei
) in Equation 2. Since the logarithm is a nonlinear transformation, the final

FH estimates on the original scale require a bias-corrected back-transformation (Slud and Maiti, 2006;
Sugawasa and Kubokawa, 2017). The emdi package provides two options:

1. A crude method (bc_crude) that takes the properties of the log-normal distribution into account:

θ̂FH, crude
i = exp

{
θ̂

FH*log
i + 0.5MSE

(
θ̂

FH*log
i

)}
.

2. A bias correction suggested by Slud and Maiti (2006) (bc_sm) that further regards the bias due to
the random effects:

θ̂FH, Slud-Maiti
i = exp

{
θ̂

FH*log
i + 0.5σ̂2

u

(
1 − γ̂

*log
i

)}
.

The FH estimator on the transformed scale is denoted by θ̂
FH*log
i and, accordingly MSE(θ̂FH*log

i ) stands
for a MSE estimator on the transformed scale, e.g., the Prasad-Rao or Datta-Lahiri MSE (cf. following
subsection). The Slud-Maiti back-transformation is derived for the ML variance estimation of the
random effect and is implemented for in-sample domains in emdi. In the presence of out-of-sample
domains, the crude method can be applied, which allows to use also other variance estimation
methods.
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Another transformation provided by the emdi package is the arcsin transformation, which is
widely used when the direct estimator of the FH model is a ratio (Casas-Cordero et al., 2016; Schmid
et al., 2017). The emdi package automatically transforms the direct estimates and the sampling
variances as suggested by Jiang et al. (2001):

θ̂Dir*arcsin
i = sin−1

(√(
θ̂Dir

i
))

,

var
(

θ̂Dir*arcsin
i

)
= 1/ (4ñi) ,

where the *arcsin denotes the arcsin transformed scale, and ñi the effective sample size: the sample
size adjusted by the sampling design (Jiang et al., 2001). The FH model is estimated using Equation 2
and, if necessary, the results are truncated to the interval [0, π/2] to ensure final results between 0 and
1. To obtain final estimates on the original scale, the final estimation results must be subjected to a
back-transformation. Two different back-transformations are available in emdi:

1. A naive back-transformation (naive):

θ̂FH, naive
i = sin2

(
θ̂FH*arcsin

i

)
.

2. A back-transformation with bias-correction (bc) following Sugawasa and Kubokawa (2017) and
Hadam et al. (2020):

θ̂FH, bc
i =

∫ ∞

−∞
sin2 (t)

1

2π
σ̂2

u σ2
ei

σ̂2
u+σ2

ei

exp

−
(
t − θ̂FH*arcsin

i
)2

2
σ̂2

u σ2
ei

σ̂2
u+σ2

ei

 dt.

Spatial FH model
The standard FH model assumes independence of the random effects. However, when working with
geographical areas, assuming correlated random effects to incorporate a certain neighbouring structure
can be valuable. The emdi package contains the spatial FH model introduced by Petrucci and Salvati
(2006) that considers a simultaneously autoregressive process of order one, SAR(1). Compared to the
standard model, the estimation differs mainly by discarding the assumptions of independent random
effects and estimating a spatial autoregressive coefficient (ρ) which takes values between −1 and 1.
Greater absolute values of (ρ) indicate a stronger relationship with the neighboring areas. The random
effect ui in Equation 1 is replaced by

u = ρ1Wu + ϵ, ϵ ∼ N
(

0D, σ2
1 ID

)
, (3)

with W being the D × D row standardized proximity matrix that describes the neighbourhood struc-
ture of the areas, 0D a vector of zeros and ID the D × D identity matrix. The random effects u of
Equation 3 follow a SAR(1). When normality of the random effects is assumed, the model can be fitted
by ML and REML. The application of spatial FH models should be considered when no geographic
auxiliary variables are available to capture the spatial relation, or when ρ1 is larger than 0.5 (Bertarelli
et al., 2021). Even before estimating the model, the emdi package enables testing for spatial correlation
by Moran’s I and Geary’s C statistics (Cliff and Ord, 1981; Pratesi and Salvati, 2008). While Moran’s I
mimics a typical correlation coefficient whose values range from −1 and 1, Geary’s C takes values
between 0 and 2 (0: positive, 1: no, 2: negative spatial autocorrelation). The two statistics behave
inversely to each other.

Robust area-level models
In the case of influential outlying observations, the emdi package allows for robust versions of the
standard and the spatial FH model. The theory is extensively studied in Warnholz (2016), wherein
the robust estimation procedure for linear mixed models suggested by Sinha and Rao (2009) was
extended to area-level models. The model fitting can be understood as a robustified ML version that
also contains an influence function with a tuning constant k. 1.345 is recommended as an initial value
for the tuning constant (Sinha and Rao, 2009). When non-symmetric outliers are expected to influence
the robust estimation, a bias correction should be involved. This correction can be controlled by a
multiplier constant (mult_constant). For further details, we also refer to Chambers et al. (2014) and
Schmid et al. (2016).

Measurement error model
The standard FH model is based on the assumption that the covariates are measured without error
(Fay and Herriot, 1979). This characteristic is typically assumed because census or register data
are used as auxiliary information. However, when the covariate information stems from larger
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Model Type of MSE Reference

Standard FH (depending on variance estimation of σ2
u)

ml/ampl_yl Analytical Datta and Lahiri (2000)
reml/amrl_yl Analytical Prasad and Rao (1990)
ampl/amrl Analytical Li and Lahiri (2010)
ml/reml (out-of-
sample)

Analytical Rao and Molina (2015)

Transformations
log (depending on back-transformation)
bc_crude Analytical Rao and Molina (2015)
bc_sm Analytical Slud and Maiti (2006)
arcsin (depending on back-transformation)
naive Jackknife Jiang et al. (2001)

Weighted Jackknife Jiang et al. (2001);
Chen and Lahiri (2002)

Parametric bootstrap Hadam et al. (2020)
bc Parametric bootstrap Hadam et al. (2020)

Spatial FH (depending on variance estimation)
ml/reml Analytical Singh et al. (2005)
ml/reml Parametric bootstrap Molina et al. (2009)
reml Nonparametric bootstrap Molina et al. (2009)

Robust FH
Pseudolinear Warnholz (2016)
Parametric bootstrap Warnholz (2016)

FH with ME
Jackknife Jiang et al. (2002)

Table 2: Overview of the MSE estimation options of the fh function.

surveys or alternative data sources, this assumption can be violated. The emdi package includes
an implementation of the measurement error (ME) model developed by Ybarra and Lohr (2008). To
account for the ME in the covariates xi, they modified the shrinkage factor as follows:

γi =
σ2

u + β⊤Ciβ

σ2
u + β⊤Ciβ + σ2

ei

,

where the Ci stands for the variance-covariance matrix of the covariates, which is a required prereq-
uisite for the model. The modified shrinkage factor pulls more weight on the direct estimator when
the variances of the covariates are large. A modified weighted least squares method and a moment
estimator were used to estimate βs and the σ2

u , respectively. Additional details are available in Ybarra
and Lohr (2008).

Mean squared error estimation

To evaluate the accuracy of the EBLUP estimates, the MSE is the most common measure used in
SAE (Rao and Molina, 2015). The emdi package offers a variety of MSE estimators stemming from
both analytical determination and resampling strategies, like the bootstrap and jackknife methods.
Table 2 gives an overview of the included MSE approaches. For each area-level model presented in the
previous sections, the provided MSE types are shown. The quoted references detail extensive formulas
and derivations. As an additional measure of variability of the direct and FH estimates, within
various functions and methods of the emdi package, the coefficient of variation (CV) is provided:

CV =

√
M̂SE(θ̂i)/θ̂i, where θ̂i either stands for θ̂Dir

i or θ̂FH
i .

3 Data sets

The emdi package version 1.1.7 contains a sample ‘eusilcA_smp’ and a population data set ‘eusilcA_pop’
at a household level. The generation process for both data sets is extensively described in Kreutzmann
et al. (2019). Our process is nearly equivalent, but we do not produce out-of-sample domains for the
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Variable Meaning

Sample data set
Domain Austrian districts
Mean Mean of the equivalized household income
MTMED Share of households who earn more than the

national median income
Cash Mean employee cash or near cash income
Var_Mean Variance of equivalized household income
Var_MTMED Variance of share of households who earn

more than the national median income
Var_Cash Variance of employee cash or near cash in-

come
n Effective sample sizes

Population data set
Domain Austrian districts
eqsize Equivalized household size according to the

modified OECD scale
cash Employee cash or near cash income
self_empl Cash benefits or losses from self-employment

(net)
unempl_ben Unemployment benefits (net)
age_ben Old-age benefits (net)
surv_ben Survivor’s benefits (net)
sick_ben Sickness benefits (net)
dis_ben Disability benefits (net)
rent Income from rental of a property or land (net)
fam_allow Family/children related allowances (net)
house_allow Housing allowances (net)
cap_inv Interest, dividends, profit from capital

investments in unincorporated business (net)
tax_adj Repayments/receipts for tax adjustment (net)
ratio_n Ratios of the population size per area and the

total population size

Table 3: Variables of the aggregated data sets. The Domain variables are factors, the rest of the variables
are numeric. Except for the variables Domain and ratio_n, the observations of all variables of the
population data set consist of the mean values per district.

area-level version of the data sets. The Austrian European Union Statistics on Income and Living
Conditions (EU-SILC) synthetic 2006 data set (eusilcP) sourced from the simFrame package (Alfons
et al., 2010) serves as basis for our data sets. The lowest regional level in the eusilcP data set consists
of the nine Austrian states. Based on certain population size and income criteria, households were
allocated to 94 Austrian districts resulting in the synthetic population data set ‘eusilcA_pop’. For the
‘eusilcA_smp’ data set, a sample was drawn following a stratified random sampling process using the
districts as strata. To show the usage of the FH model and its extensions, area-level data is required.
The area-level survey and population data sets, ‘eusilcA_smpAgg’ and ‘eusilcA_popAgg’, are obtained
by aggregation on the district level with the help of the direct function defined by the emdi package.
The direct estimates in ‘eusilcA_smpAgg’ are the weighted mean equivalized household income Mean,
the ratio of households that earn more than the national median income (MTMED) and their variances.
These are based on the equivalized household income eqIncome in ‘eusilcA_smp’, defined as the total
income of a household divided by the size of the household, with household size equalized by the
modified equivalence scale of the Organisation for Economic Co-operation and Development (OECD)
(Hagenaars et al., 1994). Additionally, the mean of the variable cash, its variance and the sample sizes
are included in ‘eusilcA_smpAgg’, being required by the model extensions. The population data set
‘eusilcA_popAgg’ contains a variety of variables that describe different income sources of households,
and a variable ratio_n that describes the ratios of the population sizes per area and the total population
size. The variable Domain exists in both data sets and identifies the different districts. Both data sets
have an observation for each of the 94 Austrian districts, with the sample data set ‘eusilcA_smpAgg’
containing eight variables and the population data set ‘eusilcA_popAgg’ containing fifteen. Table 3
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provides an overview of all included variables of the sample and population data sets. For the creation
of the proximity matrix used in the spatial FH model and the usage of the map_plot function, a shape
file is needed. A shape file ‘shape_austria_dis’ (.rda format, "SpatialPolygonsDataFrame") for the 94
districts of Austria is provided. This file was sourced from the SynerGIS website (Bundesamt für Eich-
und Vermessungswesen, 2017). The data set ‘eusilcA_prox’, an example proximity matrix, has also been
added to the emdi package. The creation of ‘eusilcA_prox’ is described in the following section.

4 Functionality and case studies

While the theoretical background of the implemented area-level models has been introduced in the
section Statistical methodology, the focus of this section lies on the functionality and the workflow of
their usage in R. All of the contained area-level models can be applied by one function: fh. Table 4
gives an overview of the 20 input arguments of function fh, together with a short description and any
default settings. Not every argument needs a specification for every estimated model. Depending

Argument Description Default

fixed Formula of fixed-effects part of linear
mixed model

vardir Domain-specific sampling variances of
the direct estimates

combined_data Combined sample and census data set
domains Domain indentifier for combined_data NULL
method Model fitting method reml
interval Lower and upper limit for the variance

estimation
NULL

k Tuning constant for robust estimation 1.345
mult_constant Bias correction multiplier constant for

robust estimation
1

transformation Type of transformation no
backtransformation Type of back-transformation NULL
eff_smpsize Effective sample sizes for the arcsin

transformation
NULL

correlation Correlation of random effects no
corMatrix Proximity matrix for the spatial model NULL
Ci Array of the variance-covariance

matrix of the explanatory variables for
each area for the ME model

NULL

tol Tolerance value for the variance
estimation

0.0001

maxit Maximum number of iterations for the
variance estimation

100

MSE MSE estimation FALSE
mse_type Type of MSE estimator analytical
B Numbers of bootstrap iterations for

computation of a bootstrap MSE and
information criteria by Marhuenda
et al. (2014)

c(50,0)

seed Seed for random number generator 123

Table 4: Input arguments of function fh.

on the area-level model, different arguments have to be determined (see Table 6 in Appendix A).
Figure 1 demonstrates the estimation possibilities of a standard FH model (for the extended area-level
models see Figure 6 in Appendix A). In line with the direct and ebp functions of package version
1.1.7, the S3 object system is used for function fh (Chambers and Hastie, 1992). All three return objects
of class "emdi". The application of function direct leads to a "direct" object, and of functions ebp
and fh to objects of classes "ebp" and "fh", respectively. Though all of the returned objects contain ten
components, not every component is available for each estimation method. In these cases they are
indicated as NULL (see Table 5). Furthermore, the model component differs for the two classes "ebp"
and "fh". The components of objects of class "fh" are provided in Table 7 in Appendix B. Not all of
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Standard FH model

non-adjusted
variances (σ2

u)

method

adjusted
variances (σ2

u)

ml reml

ML/REML
(Li and
Lahiri):

ampl/amrl

ML (Yoshi-
mori and

Lahiri):
ampl_yl

REML
(Yoshimori
and Lahiri):
amrl_yl

Datta-
Lahiri MSE:
analytical

Prasad-
Rao MSE:
analytical

Li-Lahiri
MSE:

analytical

Datta-
Lahiri MSE:
analytical

Prasad-
Rao MSE:
analytical

Figure 1: Overview of the standard FH model and adjusted variance estimation methods.

the components are available for every area-level model, e.g., the shrinkage factors per domain are not
provided for the spatial and robust model extensions, as they do not have an intuitive interpretation
in those cases. Due to the consistent structure, all functions and methods of emdi version 1.1.7 can
be applied to objects of class "fh". Additionally, new functions and methods are available for the
area-level models. Furthermore, a variety of methods that are available in base R and used by other
model fitting R packages are included in the latest package version 2.1.3 for the different "emdi"
objects. Two examples of the new generic functions used are coef and logLik. Figure 2 demonstrates
the steps of a full data analysis procedure and the respective functions, from model building and
diagnostics to presenting the results. The section Estimation procedure for the standard Fay-Herriot
model demonstrates the procedure shown in Figure 2 by applying the standard FH model to the
Austrian EU-SILC data described in the section Data sets. To demonstrate how the different extended
area-level models are fitted with function fh, the section Estimation of the extended area-level models
follows.

Name Description Available for
direct ebp fh

1 ind Point estimates per area
√ √ √

2 MSE Variance/MSE estimates
per area

√ √ √

3 transform_param Transformation and shift
parameters

√

4 model Fitted model
√ √

5 framework List for data description
√ √ √

6 transformation Type of transformation
√ √

7 method Estimation method
√ √

8 fixed Formula of fixed effects
√ √

9 call Function call
√ √ √

10 successful_bootstraps Number of successful
bootstraps

√ √

Table 5: The ten "emdi" object components distinguished in "direct", "ebp" and "fh". More detailed
information is provided by the package documentation.

Estimation procedure for the standard Fay-Herriot model

The aim of this example is to estimate the equivalized income for the 94 Austrian districts. The package
and the example data sets are loaded as follows:

> library("emdi")
> data("eusilcA_popAgg")
> data("eusilcA_smpAgg")
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Combine sample
and population

data: combine_data

Identify spatial structures:
spatialcor.tests

Perform model
selection: step

Estimate EBLUPs
and MSEs: fh

Assess the estimated
model: summary, plot

Compare results with
direct estimates: compare

and compare_plot

Benchmark the
EBLUPs: benchmark

Extract and visu-
alize the results:

estimators and map_plot

Export the results:
write.excel, write.ods

Figure 2: Estimation proce-
dure for area-level models.

Combine input data
The function fh requires one data set (argument combined_data)
that comprises the sample and population data. Thus, the data
set must contain all variables of the formula object fixed, the
variances of the direct estimates and, optionally, a domain iden-
tifier. For cases where the sample and population data are only
available separately, a merging function combine_data is pro-
vided. The necessary arguments are the two data sets and char-
acters specifying the domain indicator for the respective data
sets.

> combined_data <- combine_data(
+ pop_data = eusilcA_popAgg, pop_domains = "Domain",
+ smp_data = eusilcA_smpAgg, smp_domains = "Domain")

Identify spatial structures
With the help of a proximity matrix, Moran’s I and Geary’s C test
statistics can be computed to identify spatial structures by the
spatialcor.tests command. For the creation of the proximity
matrix, the shapefile must be loaded. We load the Austrian
shapefile that is provided and merge it to the sample data set
by using the respective domain identifiers with the help of the
merge method from the sp package (Pebesma and Bivand, 2005).
Before merging, we sort the Austrian shapefile by the domains
in the sample data.

> library("sp")
> load_shapeaustria()
> shape_austria_dis <- shape_austria_dis[
+ order(shape_austria_dis\$PB),]
> austria_shape <- merge(shape_austria_dis,
+ eusilcA_smpAgg, by.x = "PB", by.y = "Domain",
+ all.x = F)

Then the poly2nb and nb2mat functions of the spdep package
(Bivand and Wong, 2018) are used. While poly2nb generates a
list of neighbours that share joint boundaries, nb2mat computes
a weights matrix. The style argument has to be set to W, as a
row standardized proximity matrix is required.

> library("spdep")
> rel <- poly2nb(austria_shape,
+ row.names = austria_shape$PB)
> eusilcA_prox <- nb2mat(rel, style = "W",
+ zero.policy = TRUE)

Thus, a row standardized proximity matrix is generated that
initially had weights of one if an area shares a boundary with
another area and zero if not. Function spatialcor.tests makes
use of the moran.test and geary.test functions with their re-
spective default settings, from the spdep package. The input
arguments are the created matrix and the direct estimates.

> spatialcor.tests(direct = combined_data$Mean,
+ corMatrix = eusilcA_prox)

Statistics Value p.value
1 Moran's I 0.2453677 5.607958e-05
2 Geary's C 0.6238681 2.473294e-03

Since the output indicates only a weak positive spatial autocor-
relation, the following estimation procedure does not consider
the integration of a correlation structure for the random effects.
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Perform model selection
Besides theoretical considerations on which auxiliary variables should be part of the model, the
decision for the best model should be based on information criteria like the Akaike or Bayesian
information criterion (AIC, BIC). Many applications use selection techniques based on linear regression
(Casas-Cordero et al., 2016; Schmid et al., 2017). Instead, the emdi package provides the AIC, BIC,
Kullback information criterion (KIC) and their bootstrap and bias corrected versions (AICc, AICb1,
AICb2, KICc, KICb1, KICb2) especially developed for FH models by Marhuenda et al. (2014). These
criteria are also included in the sae package, but the emdi package enables a stepwise variable selection
procedure based on the chosen information criteria, comparable to the step function for lm models of
package stats. The most important input arguments are an object of class "fh" and the direction of the
stepwise search (both, backward, forward). In this example, the default setting backward and the KICb2
information criterion is used. In the fixed argument of the fh function, the variables employee cash
(cash), cash benefits from self-employment (self_empl) and unemployment benefits (unempl_ben) are
included. For a valid comparison of models based on information criteria, the model fitting method
must be ml. To activate the estimation of the information criteria by Marhuenda et al. (2014), we set
the number of bootstrap iterations to 50. The output shows the stepwise removal of variables until the
lowest KICb2 is reached, the function call and an overview of the estimated coefficients of the final
recommended model.

> fh_std <- fh(fixed = Mean ~ cash + self_empl + unempl_ben, vardir = "Var_Mean",
+ combined_data = combined_data, domains = "Domain", method = "ml", B = c(0,50))
> step(fh_std, criteria = "KICb2")

Start: KICb2 = 1709.42
Mean ~ cash + self_empl + unempl_ben

df KICb2
- unempl_ben 1 1708.3
<none> 1709.4
- self_empl 1 1763.0
- cash 1 1808.6

Step: KICb2 = 1708.33
Mean ~ cash + self_empl

df KICb2
<none> 1708.3
- self_empl 1 1765.3
- cash 1 1816.1

Call:
fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,
domains = "Domain", method = "ml", B = c(0, 50))

Coefficients:
coefficients std.error t.value p.value

(Intercept) 3070.51231 635.94290 4.8283 1.377e-06 ***
cash 1.05939 0.07049 15.0288 < 2.2e-16 ***
self_empl 1.74564 0.22017 7.9284 2.219e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

KICb2 is minimised when the variable unempl_ben is removed. Therefore, the formula Mean ∼ cash +
self_empl is used in the following.

Estimate EBLUPs and MSEs
The standard FH model is built. In addition to the fixed part, required arguments are vardir and
combined_data. We specify the domains (if the domains argument is set to NULL, the domains are
numbered consecutively) and activate the estimation of the MSE and of the information criteria by
Marhuenda et al. (2014).

> fh_std <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean", combined_data =
+ combined_data, domains = "Domain", method = "ml", MSE = TRUE, B = c(0,50))
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Assess the estimated model
In many publications using FH models, model diagnostics are discussed only briefly, if at all. One
reason for this might be the lack of an existing implementation of desired diagnostic measures in R
or other statistical software. The summary method of emdi provides additional information about the
data and model components, in particular the chosen estimation methods, the number of domains, the
log-likelihood, the information criteria by Marhuenda et al. (2014), the adjusted R2 of a standard linear
model and the adjusted R2 especially for FH models proposed by Lahiri and Suntornchost (2015).
Additionally, measures to validate model assumptions about the standardized realized residuals and
the random effects are provided: skewness and kurtosis (skewness and kurtosis of package moments,
Komsta and Novomestky, 2015) of the standardized realized residuals and the random effects and the
test statistics with corresponding p value of the Shapiro-Wilks-test for normality of both error terms.
As the introduced area-level models do not assume a homoscedastic sampling distribution, the realized
residuals (êi) are standardized by êstd

i = êi/σei for the summary and plot methods. The summary output
differs slightly for the different implemented area-level models. For example, log-likehoods and thus
information criteria are not available in theory for the robust and the ME model.

> summary(fh_std)

Call:
fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",

combined_data = combined_data,
domains = "Domain", method = "ml", MSE = TRUE, B = c(0, 50))

Out-of-sample domains: 0
In-sample domains: 94

Variance and MSE estimation:
Variance estimation method: ml
Estimated variance component(s): 1371195
MSE method: datta-lahiri

Coefficients:
coefficients std.error t.value p.value

(Intercept) 3070.51231 635.94290 4.8283 1.377e-06 ***
cash 1.05939 0.07049 15.0288 < 2.2e-16 ***
self_empl 1.74564 0.22017 7.9284 2.219e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explanatory measures:
loglike AIC AICc AICb1 AICb2 BIC KIC

1 -847.8303 1703.661 1703.91 1715.758 1703.461 1713.834 1707.661
KICc KICb1 KICb2 AdjR2 FH_R2

1 1708.783 1720.632 1708.335 0.9212817 0.9482498

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Standardized_Residuals 0.3004662 3.971216 0.9840810 0.3119346
Random_effects -0.4113238 3.086048 0.9839858 0.3072834

Transformation: No transformation

The output of the example shows that all domains have survey information and the variance of σ2
u

amounts to 1371195. Further, all of the included auxiliary variables are quite significant and their
explanatory power is large with an adjusted R2 (for FH models) of around 0.95. The results of the
Shapiro-Wilk-test indicate that normality is not rejected for both errors. Graphical residual diagnostics
are possible by the plot method.

> plot(fh_std)

Figure 3 shows normal quantile-quantile (Q-Q) plots of the standardized realized residuals and ran-
dom effects (Figure 3a) as well as plots of the kernel densities of the distribution of both error terms
and, for comparison, a standard normal distribution (Figure 3b and 3c). Like in emdi version 1.1.7,
the user is free to modify the interface of the plots. The label and color arguments are easy to edit.
Additionally, the overall appearance of the plots are changeable by the gg_theme argument, as the
plots are built with the ggplot2 package (Wickham, 2016). We refer to the package documentation
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for a detailed description of how to customize the plot arguments. Figure 3 supports the results
of the normality tests provided in the summary output, the distribution of the standardized random
effects may be slightly skewed (Figure 3c). If one is not be satisfied with the results, applying a
log-transformation could improve the distribution of the error terms.
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Figure 3: Output of plot(fh_std): (a) normal quantile-quantile (Q-Q) plots of the standardized real-
ized residuals and random effects, (b) and (c): kernel densities of the distribution of the standardized
realized residuals and random effects (blue) in comparison to a standard normal distribution (black).

Compare results with direct estimates
The FH results should be consistent with the direct estimates for domains with a small direct MSE
and/or large sample sizes. Further, the precision of the direct estimates should be improved by using
auxiliary information. The comparison of the direct and model-based (FH) estimates can be done
graphically by the generic function compare_plot. For the fh method the required input argument
is an object of class "fh". When the default settings of the command are used, the output consists
of two plots: a scatter plot proposed by Brown et al. (2001) and a line plot. Besides the direct and
FH estimates, the plot contains the fitted regression and the identity line. These two lines should not
differ too much. Preferably, the model-based (FH) estimates should track the direct estimates within
the line plot especially for domains with a large sample size or small MSE of the direct estimator.
The points are ordered by decreasing MSE of the direct estimates. In addition, the input arguments
MSE and CV can be set to TRUE leading to two extra plots, respectively. The MSE/CV estimates of the
direct and model-based (FH) estimates are compared first via boxplots and second via ordered scatter
plots (ordered by increasing CV of the direct estimates). Like for the plot command, a variety of
customization options are offered, e.g., the label options (label), the format of the points (shape) and
the style of the line (line_type).

> compare_plot(fh_std, CV = TRUE, label = "no_title")

Except one high value, the fitted regression and identity line of the scatter plot (Figure 4a) are relatively
close. Note that the high value corresponds to the domain Eisenstadt (Stadt) with a very small sample
size of 10 and the highest MSE of the direct estimates, so the direct estimator is very uncertain. Also
the direct estimates are well tracked by the model-based (FH) estimates within the line plot (Figure 4b).
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The boxplot (Figure 4c) and the ordered scatter plot (Figure 4d) show that the precision of the direct
estimates could be improved by the usage of the FH model in terms of CVs. Additionally, all of the
CV values are less than 20% which is a common rule of the UK Office for National Statistics in order to
determine whether estimation results should be published (Miltiadou, 2020).
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Figure 4: Output of compare_plot(fh_std): (a) and (b) scatter and line plots of direct and model-based
point estimates, (c) and (d) boxplot and scatter plots of the CV estimates of the direct and model-based
(FH) estimates.

Further on, the function compare enables the user to compute a goodness of fit diagnostic (Brown et al.,
2001) and a correlation coefficient of the direct estimates and the estimates of the regression-synthetic
part of the FH model (Chandra et al., 2015). Following Brown et al. (2001), the difference between the
model-based estimates and the direct estimates should not be significant (null hypothesis). The Wald
test statistic is specified as

W
(

θ̂FH
i

)
=

D

∑
i=1

(
θ̂Dir

i − θ̂FH
i
)2

v̂ar
(
θ̂Dir

i
)
+ M̂SE

(
θ̂FH

i
)

and is approximately χ2-distributed with D degrees of freedom. When working with out-of-sample
domains, those are not taken into account, because the direct estimates and their variances are missing.
The input argument of function compare is an "fh" object.

> compare(fh_std)

Brown test

Null hypothesis: EBLUP estimates do not differ significantly from the
direct estimates

W.value Df p.value
46.97181 94 0.9999874
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Correlation between synthetic part and direct estimator: 0.94

The results of the goodness of fit statistic and the correlation coefficient confirm what the scatter and
the line plot already indicated. In the example the null hypothesis is not rejected and the correlation
coefficient indicates a strong positive correlation (0.94) between the direct and model-based (FH)
estimates.

Benchmarking for consistent estimates
The idea of benchmarking is that the aggregated FH estimates should sum up to estimates of a higher
regional level (τ):

D

∑
i=1

ξi θ̂
FH, bench
i = τ,

where ξi stands for the share of the population size of each area in the total population size (Ni/N). In
our example, the EBLUP estimates could get aggregated on a national level and then compared to or
benchmarked with the Austrian mean equivalized income. The emdi package contains a benchmark
function that allows the user to select three different options suggested by Datta et al. (2011). A general
estimator of the three options can be written as follows:

θ̂FH, bench
i = θ̂FH

i +

(
D

∑
i=1

ξ2
i

ϕi

)−1(
τ −

D

∑
i=1

ξi θ̂
FH
i

)
ξi
ϕi

.

Depending on the weight ϕi, the formula leads to different benchmarking options. If ϕi equals
ξi, all FH estimates are adjusted by the same value (raking). A ratio adjustment (ratio) is being
conducted if ϕi = ξi/θ̂FH

i . For the last option (MSE_adj), ϕi = ξi/M̂SE
(
θ̂FH

i
)
. While the first option is

a relatively naive approach, the latter two conduct larger adjustments for the areas with larger FH and
MSE estimates, respectively. Thus, for the benchmark function the following arguments have to be
specified: an object of class "fh", a benchmark value, a vector containing the ξis (share) and the type
of benchmarking. The output is a data frame with an extra column FH_Bench for the benchmarked
EBLUP values. If the optional argument overwrite is set to TRUE, the benchmarked results are added
to the "fh" object and the MSE estimates of the non benchmarked FH estimates are set to NULL. For the
used example, the benchmark value is calculated by taking the mean of the variable eqIncome of the
‘eusilcA_smp’ data frame. The ξis can be found in ‘eusilcA_popAgg’ as ratio_n.

> fh_bench <- benchmark(fh_std, benchmark = 20140.09, share = eusilcA_popAgg$ratio_n,
+ type = "ratio")
> head(fh_bench)

Domain Direct FH FH_Bench Out
1 Amstetten 14768.57 14242.04 14480.61 0
2 Baden 21995.72 21616.40 21978.49 0
3 Bludenz 12069.59 12680.38 12892.79 0
4 Braunau am Inn 10770.53 11925.82 12125.59 0
5 Bregenz 35731.20 32101.69 32639.43 0
6 Bruck-Mürzzuschlag 23027.37 22523.50 22900.79 0

It is recognizable that for the first six Austrian districts the original estimates are slightly modified by
the benchmarking.

Extract and visualize the results
To gain an overview of the point, MSE and CV results of the direct estimates compared to the
model-based (FH) results the generic function estimators (Kreutzmann et al., 2019) can be used, but
differences among areas or hotspots of special interest are usually easier to detect on maps. With func-
tion map_plot, the emdi package offers a user-friendly way to produce maps since creating maps can
often become a time consuming task. The input arguments mainly consist of an object of class "emdi"
and a spatial polygon of a shape file. The only issue that might come up is if domain identifiers in the
data do not match to the respective identifiers of the shape file. In those cases, the input argument
map_tab is required, which is a data frame that contains the matching of the domain indentifiers of the
population and the shape file data sets. For detailed instructions, we refer to Kreutzmann et al. (2019)
and to the help page of function map_plot.

For producing maps of the 94 Austrian districts, the Austrian shape file has to be loaded. In addi-
tion to the "emdi" object, the "SpatialPolygonsDataFrame" object (map_obj) and a domain indicator
(map_dom_id) have to be specified. The map_tab argument is not necessary since the identifiers match
in our example. To allow for an easier comparison of the results, we adjust the scales of the maps
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using the scale_points argument.

> load_shapeaustria()
> map_plot(object = fh_std, MSE = TRUE, map_obj = shape_austria_dis,
+ map_dom_id = "PB", scale_points = list(Direct = list(
+ ind = c(8000, 60000), MSE = c(200000, 10000000)), FH = list(
+ ind = c(8000, 60000), MSE = c(200000, 10000000))))

(a) (b)

(c) (d)

Figure 5: Output of map_plot: Maps of the direct and FH estimates ((a) and (c)) with corresponding
MSE estimates ((b) and (d)).

Figures 5a and 5c show the distribution of the estimated (direct vs. model-based) equivalized income
across Austria. It is striking that white and light red tones dominate the map, indicating relatively
low mean incomes of the districts. But in contrast, districts Eisenstadt (Stadt), Urfahr-Umgebung and
Mödling stand out having the largest incomes. Urfahr-Umgebung is also eye-catching when having a
look at the MSE estimates (Figures 5b and 5d). The MSE of the direct and the FH estimates are quite
high. Probably a single wealthy household raised the mean income and also the variance. Figure 5b
contains some districts with MSEs larger than the customized scaling (gray areas). Without the scaling
it would have been hard to identify any differences in Figure 5d.

Export the results
Some users might have an interest to store the results separately or to use them for presentations. Excel
and OpenDocument Spreadsheets provide many opportunities for that. In contrast to some existing R
packages, the emdi functions write.excel/write.ods do not only export the estimation results, but
also the output of summary. Usage of the functions is comprehensively described in Kreutzmann et al.
(2019).

Estimation of the extended area-level models

FH model with transformation
If the indicator of interest needs a transformation, either log or arcsin, in addition to the function
used in the previous subsection, the arguments transformation and backtransformation must be
specified. If, for example, the share of households per area that earn more than the national median
income (MTMED) is the indicator of interest, an arcsin transformation can be used. The bias-corrected
back-transformation bc is chosen in the example. Two more arguments are needed when using an
arcsin transformation: the name of the variable describing the effective sample sizes (eff_smpsize)
which needs to be contained in the combined_data frame. Because of having chosen the bias-corrected
back-transformation, the only possible mse_type is boot, if the MSE estimation is activated.

> fh_arcsin <- fh(fixed = MTMED ~ cash + age_ben + rent + house_allow,
+ vardir = "Var_MTMED", combined_data = combined_data, domains = "Domain",
+ transformation = "arcsin", backtransformation = "bc", eff_smpsize = "n",
+ MSE = TRUE, mse_type = "boot")

Spatial FH model
If the spatial correlation tests indicated a spatial correlation of the domains, a spatial FH model for
incorporating the spatial structure in the model could be used. For that, the correlation has to be
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set to spatial and the example proximity matrix has to be given to the model within the corMatrix
argument. The possible variance estimation methods are ml and reml.

> fh_spatial <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",
+ combined_data = combined_data, domains = "Domain", correlation = "spatial",
+ corMatrix = eusilcA_prox, MSE = TRUE)

Robust FH model
If extreme values could influence the estimation, the application of a robust model might be appropri-
ate. Within the robust framework, package emdi allows the user to choose between a standard and a
spatial model (defaults to correlation = "no"). The estimation method must be reblup or reblupbc
which includes a bias correction that can be modified by the argument mult_constant. Further, the
tuning constant k defaults to 1.345 as proposed by Sinha and Rao (2009) and Warnholz (2016) and can
be changed if desired. The functions of the package saeRobust are utilized for the robust extensions.
An exemplary call with pseudolinear MSE estimation looks like this:

> fh_robust <- fh(fixed = Mean ~ cash + self_empl, vardir = "Var_Mean",
+ combined_data = combined_data, domains = "Domain", method = "reblup",
+ MSE = TRUE, mse_type = "pseudo")

Measurement error model
If other data sources than register data, e.g., data from larger surveys or big data sources are used
as auxiliary information, the ME model should be applied. For the estimation of the ME model, the
model fitting method must be set to me and the only possible MSE estimation method is jackknife.
The most complex input argument consists of the creation of the MSE array Ci. The variability of the
auxiliary variables that is taken into account by the ME model is expressed by the variance-covariance
matrices per domain (Ci). For example, for three covariates a, b and c the array should look like

Ci =


0 0 0 0
0 vari(a) covi(a, b) covi(a, c)
0 covi(a, b) vari(b) covi(b, c)
0 covi(a, c) covi(b, c) vari(c)

 , i = 1, ..., D.

The first row and column contain zeros, because the intercept is considered. The variances and
covariances can be computed by standard approaches like, for example, the Horvitz-Thompson
estimator.

For the Austrian EUSILC data example, the equalized income can also be explained by a variable
of the sample data set. The code below demonstrates how the MSE array Ci is created for one covariate
(variable Cash and its variance Var_Cash) and how the final ME model is built.

> P <- 1
> M <- 94
> Ci_array <- array(data = 0, dim = c(P + 1, P + 1, M))
> Ci_array[2,2, ] <- eusilcA_smpAgg$Var_Cash

> fh_yl <- fh(fixed = Mean ~ Cash, vardir = "Var_Mean",
+ combined_data = eusilcA_smpAgg, domains = "Domain", method = "me",
+ Ci = Ci_array, MSE = TRUE, mse_type = "jackknife")

5 Conclusion and outlook

In this paper, we have presented how the emdi package version 1.1.7 has been extended with various
area-level models. Along with the well-known FH model, adjusted variance estimation methods and
transformation options are offered to the user. In addition, spatial, robust, and ME model extensions
of the standard model allow the user to address various issues that arise in practical data applications.
All of these methods can be estimated conveniently by using a single function that provides EBLUP
and the respective MSE estimates to measure their precision. Especially in the section Functionality
and case studies, it is clear that the package does not only contain tools for estimation of the different
SAE models. Instead, it additionally provides user-friendly tools to enable a whole data analysis
procedure: 1. starting with model building and estimation, moving on to 2. model assessment and
diagnostics, 3. presentation of the results, and finishing with 4. exporting the results to Excel or
OpenDocument Spreadsheet.

For future package versions, it is planned to expand the options in the field of area-level models. In
some practical applications, the incorporation of random effects is redundant. Therefore, an area-level
estimator that considers a preliminary testing for the random effects following Molina et al. (2015)
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will be included. Since version 2.0.0 emdi accounts for spatial structures of the random effects. Future
developments may also account for out-of-sample EBLUP and MSE estimation for the spatial model
proposed by Saei and Chambers (2005) and for temporal and spatio-temporal extensions (Rao and Yu,
1994; Marhuenda et al., 2013). For the existing ME model, a bootstrap MSE estimation option may
be added to the package since the Jackknife MSE estimator may produce negative MSE estimates
(Marchetti et al., 2015). Furthermore, cross-validation options additional to the model assessment via
information criteria and the R2 will be investigated.
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7 Appendix A: Area-level model options and corresponding input argu-
ments

FH model with
transformation

transformation

log arcsin

crude bias-
correction:
bc_crude

Slud and
Maiti bias-

correction: bc_sm

backtransformation

Naive back-
transformation:

naive

general bias-
correction: bc

crude back-transf.
Datta-Lahiri/
Prasad-Rao

MSE: analytical

Slud-Maiti
analytical MSE:
analytical

(weighted)
Jackknife MSE:

(weighted_)
jackknife

bootstrap
MSE: boot

Spatial FH model

method

ml reml

analytical MSE:
analytical

parametric bootstrap
MSE: spatialparboot

nonparametric
bootstrap MSE:

spatialnonparboot

Robust FH model

correlation

no spatial

pseudo
linearisation
MSE: pseudo

parametric
bootstrap
MSE: boot

ME model

method

measurement
error model: ME

Jackknife MSE:
jackknife

Figure 6: Overview of extended area-level models and combinations of estimation methods.

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 24

Argument FH model
Standard Transformed Spatial Robust ME

fixed
√ √ √ √ √

vardir
√ √ √ √ √

combined_data
√ √ √ √ √

domains (
√

) (
√

) (
√

) (
√

) (
√

)
method

√ √ √ √ √

interval (
√

) (
√

)
k

√

mult_constant
√

transformation
√ √ √ √ √

backtransformation
√

eff_smpsize (only if
√

transformation = "arcsin")
correlation

√ √ √ √ √

corMatrix (only if
√ √

correlation = "spatial")
Ci

√

tol
√ √ √

maxit
√ √ √

MSE
√ √ √ √ √

mse_type (only if MSE = TRUE)
√ √ √ √ √

B (
√

)
√ √ √

seed (
√

) (
√

) (
√

) (
√

)

Table 6: Required
√

and optional (
√

) input arguments of function fh for the different area-levels
models. B: Only if bootstrap MSE is chosen. When the standard FH model is applied, B is required for
the computation of the information criteria by Marhuenda et al. (2014) (optionally).

8 Appendix B: Output of the model component

Name Short description Available for
Standard Transformed Spatial Robust ME

coefficients Estimated regression
coefficients

√ √ √ √ √

variance Estimated variance of
the random effects/
estimated spatial
correlation parameter

√ √ √ √ √

random_effects Random effects per
domain

√ √ √ √ √

real_residuals Realized residuals
per domain

√ √ √ √ √

std_real_residuals Standardized realized
residuals per domain

√ √ √ √ √

gamma Shrinkage factors per
domain

√ √ √

model_select Model selection and
accuracy criteria

√ √ √

correlation Selected correlation
structure of the
random effects

√ √ √ √ √

k Tuning constant
√

mult_constant Multiplier constant
for bias correction

√

seed Seed of the random
number generator

√ √ √ √

Table 7: Components of the output component model for models of class "fh".
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9 Reproducibility

For the computation of the results in this paper we worked with R version 4.2.2 on a 64-bit platform
under Microsoft Windows 10 with the installed packages listed in Table 8. Using the package packrat
(Ushey et al., 2022) a snapshot of the corresponding repository was created that is available from the
GitHub folder (https://github.com/SoerenPannier/emdi.git). We suggest the following steps:

• Install Git.

• Create a new project in RStudio.

• Choose checkout from version control and select Git.

• Insert the repository URL: https://github.com/SoerenPannier/emdi.git.

• Let packrat complete the initialization process.

• Restart RStudio.

• Enter the R command packrat::restore().

• After finishing the installation process all packages are installed as provided in Table 8.
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Package Version Package Version Package Version

aoos 0.5.0 highr 0.9 RColorBrewer 1.1-3
assertthat 0.2.1 HLMdiag 0.5.0 Rcpp 1.0.9
backports 1.4.1 hms 1.1.1 RcppArmadillo 0.11.2.0.0
BBmisc 1.12 isoband 0.2.5 readODS 1.7.0
bit 4.0.4 janitor 2.1.0 readr 2.1.2
bit64 4.0.5 jsonlite 1.8.0 rematch 1.0.1
boot 1.3-28 knitr 1.39 rematch2 2.1.2
brew 1.0-7 labeling 0.4.2 reshape2 1.4.4
brio 1.1.3 laeken 0.5.2 rgeos 0.5-9
cachem 1.0.6 lifecycle 1.0.1 rlang 1.0.4
callr 3.7.1 lubridate 1.8.0 roxygen2 7.2.1
cellranger 1.1.0 magrittr 2.0.3 rprojroot 2.0.3
checkmate 2.1.0 maptools 1.1-4 s2 1.1.0
classInt 0.4-7 MASS 7.3-58 saeRobust 0.3.0
cli 3.3.0 memoise 2.0.1 scales 1.2.0
clipr 0.8.0 modules 0.10.0 sf 1.0-8
colorspace 2.0-3 moments 0.14.1 simFrame 0.5.4
commonmark 1.8.0 MuMIn 1.47.1 snakecase 0.11.0
cpp11 0.4.2 munsell 0.5.0 sp 1.5-0
crayon 1.5.1 nlme 3.1-158 spData 2.0.1
data.table 1.14.2 openxlsx 4.2.5 spdep 1.2-4
DBI 1.1.3 operator.tools 1.6.3 stringi 1.7.8
deldir 1.0-6 packrat 0.8.1 stringr 1.4.0
desc 1.4.1 parallelMap 1.5.1 terra 1.5-34
diagonals 6.4.0 pbapply 1.5-0 testthat 3.1.4
diffobj 0.3.5 pillar 1.8.0 tibble 3.1.8
digest 0.6.29 pkgconfig 2.0.3 tidyr 1.2.0
dplyr 1.0.9 pkgload 1.3.0 tidyselect 1.1.2
e1071 1.7-11 plyr 1.8.7 tzdb 0.3.0
ellipsis 0.3.2 praise 1.0.0 units 0.8-0
emdi 2.1.3 prettyunits 1.1.1 utf8 1.2.2
evaluate 0.15 processx 3.7.0 vctrs 0.4.1
fansi 1.0.3 progress 1.2.2 viridisLite 0.4.0
farver 2.1.1 proxy 0.4-27 vroom 1.5.7
fastmap 1.1.0 ps 1.7.1 waldo 0.4.0
formula.tools 1.7.1 purrr 0.3.4 withr 2.5.0
fs 1.5.2 R.cache 0.16.0 wk 0.6.0
generics 0.1.3 R.methodsS3 1.8.2 xfun 0.31
ggplot2 3.3.6 R.oo 1.25.0 xml2 1.3.3
ggrepel 0.9.1 R.rsp 0.45.0 yaml 2.3.5
glue 1.6.2 R.utils 2.12.0 zip 2.2.0
gridExtra 2.3 R6 2.5.1
gtable 0.3.0 raster 3.5-21

Table 8: Installed packages for the computation of the results in this paper.
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Changes on CRAN
2023-02-01 to 2023-04-30

by Kurt Hornik, Uwe Ligges, and Achim Zeileis

In the past 3 months, 516 new packages were added to the CRAN package repository. 206
packages were unarchived, 416 were archived and 4 had to be removed. The following
shows the growth of the number of active packages in the CRAN package repository:
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On 2023-04-30, the number of active packages was around 19439.

CRAN package submissions

From February 2023 to April 2023 CRAN received 7905 package submissions. For these,
13597 actions took place of which 9071 (67%) were auto processed actions and 4526 (33%)
manual actions.

Minus some special cases, a summary of the auto-processed and manually triggered
actions follows:

archive inspect newbies pending pretest publish recheck waiting

auto 2276 1725 1370 0 0 2300 787 613
manual 1809 94 361 175 73 1497 406 111

These include the final decisions for the submissions which were

archive publish

auto 2126 (27.6%) 1977 (25.7%)
manual 1788 (23.2%) 1808 (23.5%)

where we only count those as auto processed whose publication or rejection happened
automatically in all steps.
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CRAN mirror security

Currently, there are 100 official CRAN mirrors, 80 of which provide both secure downloads
via ‘https’ and use secure mirroring from the CRAN master (via rsync through ssh tunnels).
Since the R 3.4.0 release, chooseCRANmirror() offers these mirrors in preference to the others
which are not fully secured (yet).

CRAN Task View Initiative

There is one new task view:

• Genomics, Proteomics, Metabolomics, Transcriptomics, and Other Omics: Maintained
by Julie Aubert, Toby Dylan Hocking, Nathalie Vialaneix.

Currently there are 43 task views (see https://cran.r-project.org/web/views/), with
median and mean numbers of CRAN packages covered 106 and 120, respectively. Overall,
these task views cover 4344 CRAN packages, which is about 22% of all active CRAN
packages.
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R Foundation News
by Torsten Hothorn

1 Donations and members

Membership fees and donations received between 2023-02-20 and 2023-05-09.
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Gilberto Camara (Brazil) Korea R User Group (Korea, Republic of) Nickalus Redell (United
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Supporting institutions

Alfred Mueller Analytic Services, München (Germany) Department of Clinical Research,
University of Basel, Switzerland, Basel (Switzerland) Ef-prime, Inc., Tokyo (Japan)

Supporting members

Ashanka Beligaswatte (Australia) Frederic Bertrand (France) Alistair Cullum (United States)
Guenter Faes (Germany) Bernd Fröhlich (Germany) Dejan Gregor (United Kingdom) Heidi
Imker (United States) Knut Helge Jensen (Norway) Christian Kampichler (Netherlands)
Katharina Kesy (Germany) Ziyad Knio (United States) Sebastian Koehler (Germany) Se-
bastian Krantz (Germany) Chris Kuty (United States) Luca La Rocca (Italy) Teemu Daniel
Laajala (Finland) Thierry Lecerf (Switzerland) Eric Lim (United Kingdom) Michal Majka
(Austria) Myriam Maumy (France) Ernst Molitor (Germany) David Monterde (Spain) Stefan
Moog (Germany) Steffen Moritz (Germany) Maciej Nasinski (Poland) Jens Oehlschlägel
(Germany) Harald Sterly (Germany) Robert van den Berg (Austria) Thomas van der Vaart
(Netherlands) Fredrik Wartenberg (Sweden) Jason Wyse (Ireland)

Torsten Hothorn
Universität Zürich
Switzerland
ORCiD: 0000-0001-8301-0471
Torsten.Hothorn@R-project.org

The R Journal Vol. 15/1, March 2023 ISSN 2073-4859

https://orcid.org/0000-0001-8301-0471
mailto:Torsten.Hothorn@R-project.org

	Editorial
	In this issue

	A Hexagon Tile Map Algorithm for Displaying Spatial Data
	Introduction
	Existing mapping practices
	Algorithm
	Implementation
	Algorithm steps
	Animation
	Discussion

	References

	A Clustering Algorithm to Organize Satellite Hotspot Data for the Purpose of Tracking Bushfires Remotely
	Introduction
	Background
	Algorithm
	Package
	Application
	Conclusions
	Acknowledgements

	References

	asteRisk - Integration and Analysis of Satellite Positional Data in R
	Introduction
	File formats and data sources
	TLE files
	RINEX navigation files

	Orbital propagators
	The SGP4 model
	The SDP4 model
	Numerical high-precision orbital propagator

	Frames of reference
	ITRF
	GCRF
	TEME
	Orbital elements
	Conversion between different coordinate systems

	Future work
	Summary
	Appendix: Test cases for SGP4/SDP4
	Acknowledgements
	References

	gplsim: An R Package for Generalized Partially Linear Single-index Models
	Introduction
	An overview of generalized partially linear single-index models
	The GPLSIMs
	Review of penalized spline estimation for GPLSIMs
	Algorithm

	The gplsim package
	Main fitting function
	Other functions

	Real data and simulation examples
	Air Pollution Data
	Simulations

	Summary

	Non-Parametric Analysis of Spatial and Spatio-Temporal Point Patterns
	Introduction
	Spatio-temporal point pattern data

	Spatial analysis
	Spatial intensity and relative risk
	Second-order descriptors

	Spatio-temporal analysis
	Spatio-temporal intensity and relative risk
	Second-order descriptors

	Discussion
	References

	nlmeVPC: Visual Model Diagnosis for the Nonlinear Mixed Effect Model
	Introduction
	Nonlinear mixed effect model
	Validation in the data space
	Visual Predictive Check
	Additive quantile regression VPC
	Bootstrap VPC
	Average shifted VPC

	Validation in the model space
	Numerical predictive check
	Coverage plot
	Coverage detailed plot
	Quantified VPC

	The nlmeVPC package: structure and functionality
	Example

	Summary
	Acknowledgements
	References

	Likelihood Ratio Test-Based Drug Safety Assessment using R Package pvLRT
	Introduction
	A brief review of the Likelihood Ratio test-based approaches to pharmacovigilance
	Adverse Event Data Analysis with 
	Analysis of the statin dataset with 47 adverse events
	Analysis of the full statin data with 6039 adverse events
	Analysis of the full gbca data with 1707 adverse events
	Analysis of the rotavirus vaccine datasets rv, rvold, and rvyoung

	Discussion and Future Directions
	Acknowledgment
	References

	GCPBayes: An R package for studying Cross-Phenotype Genetic Associations with Group-level Bayesian Meta-Analysis
	Introduction
	Data structure
	Summary statistics level data
	Individual level data

	Usage
	DS function
	CS function
	HS function
	MCMCplot function
	Comparing GCPBayes results using summary statistics level versus individual level data as input

	Guidelines
	Practical hints
	Statistical inference pipeline for primary analysis
	Statistical inferences for analysis by using HS

	Computational time for 
	Concluding remarks
	

	References

	rankFD: An R Software Package for Nonparametric Analysis of General Factorial Designs
	Introduction
	Statistical models, effects, and hypotheses
	Hypotheses formulated in terms of distribution functions
	Hypotheses formulated in terms of relative effects
	Multiple comparisons
	Confidence intervals

	Test statistics
	Global test procedures
	Multiple contrast test procedures

	Software and examples
	Syntax
	Two independent samples
	A one-way factorial design
	A two-way factorial design

	Summary

	The segmetric Package: Metrics for Assessing Segmentation Accuracy for Geospatial Data
	Introduction
	Supervised segmentation metrics
	The segmetric package
	Installation
	Computing metrics
	How to extend segmetric

	Package segmetric in action
	Data
	Analysis

	Summary

	Onlineforecast: An R Package for Adaptive and Recursive Forecasting
	Introduction
	Time series modelling and forecasting in R
	Functionality of onlineforecast
	Vignettes
	Paper structure

	Notation and forecast matrices
	Forecast matrix

	Two-stage modelling procedure
	Transformations

	Model selection and validation
	Model selection
	Model validation

	Example with R code
	Setup of data
	Defining a model
	Model fitting and offline parameter tuning
	Evaluation

	Discussion and conclusion
	Extending functionality
	Summary and conclusion

	Forecast model notation
	Regression
	Least squares
	Recursive least squares


	markovMSM: An R Package for Checking the Markov Condition in Multi-State Survival Data
	Introduction
	Background and notation
	Multi-state models and transition probabilities
	Tests for the Markov assumption

	Application of the markovMSM
	Data manipulation
	Methods for testing the Markov condition in the illness-death model
	Tests for Markov assumption for more complex multi-state models

	Conclusions

	Robust Functional Linear Regression Models
	Introduction
	Functional linear regression models
	Estimation
	Prediction
	Data analysis
	Conclusion

	Fairness Audits and Debiasing Using mlr3fairness
	Introduction
	Fairness in Machine Learning
	Quantifying fairness
	Bias mitigation

	The package
	Related software
	The mlr3 ecosystem

	Case study
	Summary
	Appendix
	Tuning the ML pipeline

	References

	ClusROC: An R Package for ROC Analysis in Three-Class Classification Problems for Clustered Data
	Introduction
	The ROC surface analysis for clustered data
	The models
	ROC surface analysis

	Overview of R package ClusROC
	Description
	Applications

	Conclusion
	Acknowledgments
	Appendix

	Resampling Fuzzy Numbers with Statistical Applications: FuzzyResampling Package
	Introduction
	Related packages
	Fuzzy numbers – notation
	Resampling approaches for fuzzy data

	Overview of FuzzyResampling package
	Generation of the initial sample
	Resampling methods
	Calculation of the mid/spread distance
	Estimation of SE/MSE
	Bootstrapped one-sample test for the mean
	Bootstrapped two-sample test for the mean

	Comparison of the resampling methods with FuzzyResampling package
	Method comparison with SE/MSE
	Test size estimation
	Test power analysis
	Two-sample test – a real-life case

	Conclusions

	combinIT: An R Package for Combining Interaction Tests for Unreplicated Two-Way Tables
	Introduction
	Six NFBF interaction tests and four combination methods
	Six NFBF interaction tests
	Four methods for combining interaction tests

	Technical details about the combinIT package
	Using the package combinIT
	Simulation study
	Summary
	Acknowledgment

	Estimating Causal Effects using Bayesian Methods with the R Package BayesCACE
	Introduction
	Noncompliance in randomized clinical trials and causal effect
	CACE in meta-analysis
	Assumptions and definition of CACE

	Estimating CACE
	CACE for a single trial with noncompliance
	CACE for a meta-analysis with complete compliance information
	CACE for meta-analysis with incomplete compliance information

	Using the R package BayesCACE
	Data structure for estimating the CACE
	Plotting noncompliance rates
	CACE analysis for a single study or in a meta-analysis
	Plotting the trace plot, posterior density, and auto-correlation
	Plotting the study-specific CACE in a forest plot

	Discussion
	References

	A Framework for Producing Small Area Estimates Based on Area-Level Models in R
	introduction
	Statistical methodology
	Standard Fay-Herriot model
	Extended area-level models
	Mean squared error estimation

	Data sets
	Functionality and case studies
	Estimation procedure for the standard Fay-Herriot model
	Estimation of the extended area-level models

	Conclusion and outlook
	Acknowledgments
	Appendix A: Area-level model options and corresponding input arguments
	Appendix B: Output of the model component
	Reproducibility

	Changes on CRAN
	CRAN package submissions
	CRAN mirror security
	CRAN Task View Initiative


	R Foundation News
	Donations and members
	Donations
	Supporting institutions
	Supporting members



	pbs@ARFix@1: 
	pbs@ARFix@2: 
	pbs@ARFix@3: 
	pbs@ARFix@4: 
	pbs@ARFix@5: 
	pbs@ARFix@6: 
	pbs@ARFix@7: 
	pbs@ARFix@8: 
	pbs@ARFix@9: 
	pbs@ARFix@10: 
	pbs@ARFix@11: 
	pbs@ARFix@12: 
	pbs@ARFix@13: 
	pbs@ARFix@14: 
	pbs@ARFix@15: 
	pbs@ARFix@16: 
	pbs@ARFix@17: 
	pbs@ARFix@18: 
	pbs@ARFix@19: 
	pbs@ARFix@20: 
	pbs@ARFix@21: 
	pbs@ARFix@22: 


