
presents

Learn Unity • Create enemies • Design levels • Make Zombie Panic

Build Your Own
FIRST-PERSON

SHOOTER
in Unity

01_WF_Unity FPS Guide_Cover V3_LA_RL_LA_PK.indd 101_WF_Unity FPS Guide_Cover V3_LA_RL_LA_PK.indd 1 09/01/2020 13:4209/01/2020 13:42

Find hundreds
more books and
magazines in the

wfmag.cc/store

STORESTARTED

MAGAZINE

FROM THE MAKERS OF

Robots, musical instruments,

smart displays and more

Create AMAZING

projects with this

programmable

controller

http://wfmag.cc/store

an one person make a first-person shooter? The size, scope,
and sheer detail of a typical triple-A game – the Call of Dutys,
Battlefields and Halos of this world – might leave you thinking
that the answer’s a resounding no. But beneath all the polish
and modes, the basic elements that underpin the shooter

genre haven’t changed all that much since Doom and Quake defined it way
back in the 1990s.

In fact, with a bit of help and guidance, even a relative newcomer can put
together a simple shooter with most of the trappings you’d expect: a level
to navigate around, keys that unlock doors and, most importantly, hordes of
enemies to blast.

That’s where this guide comes in
– it’ll take you step by step through
the process of making your very
own first-person shooter. From
downloading the free software
you’ll need, to setting up a player
character and waves of zombies,
it’ll show you how to get a basic
shooting game up and running. Once that’s in place, you’ll be taken through
the process of building level assets and 3D models, and shown how to add
lighting, sound, and other effects.

Follow our guide through to the end and you’ll have a shooter that you
can customise further with optional mechanics and even a boss fight. So
if you’ve always wanted to make your own first-person action game, or
simply wanted an approachable means of getting started in Unity, this is
the book for you.

Turn the page, and let’s get started.

Ryan Lambie
Editor

“Follow our guide
through to the end
and you’ll have a
shooter that you can
customise further”

3

This magazine is printed on paper sourced from
sustainable forests and the printer operates an
environmental management system which has been
assessed as conforming to ISO 14001.

Wireframe magazine is published by Raspberry Pi
(Trading) Ltd, Maurice Wilkes Building, St. John’s
Innovation Park, Cowley Road, Cambridge, CB4 0DS.
The publisher, editor, and contributors accept no
responsibility in respect of any omissions or errors
relating to goods, products or services referred to or

advertised in the magazine. Except where
otherwise noted, content in this magazine
is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).
ISSN: 2631-6722 (print), 2631-6730 (online).

Editorial
Editor
Ryan Lambie
Email ryan.lambie@raspberrypi.org

Features Editor
Ian Dransfield
Email ian.dransfield@raspberrypi.org

Book Production Editor
Phil King

Sub-Editors
David Higgs, Vel Ilic, Nicola King

Design
criticalmedia.co.uk

Head of Design
Lee Allen

Designer
Harriet Knight

Contributors
Stuart Fraser, Patrick Gordon, Steve Lee,
Andrew Palmer, Ryan Shah, Mark Vanstone

Publishing
Publishing Director
Russell Barnes
Email russell@raspberrypi.org

Director of Communications
Liz Upton

CEO
Eben Upton

Advertising
Commercial Manager
Charlie Milligan
Email charlotte.milligan@raspberrypi.org

Tel +44 (0)7725 368887

Distribution
Seymour Distribution Ltd
2 East Poultry Ave, London EC1A 9PT
Tel +44 (0)207 429 4000

Subscriptions
Unit 6, The Enterprise Centre, Kelvin Lane,
Manor Royal, Crawley, West Sussex, RH10 9PE

To subscribe
Call 01293 312192 or visit wfmag.cc/subscribe

Subscription queries
wireframe@subscriptionhelpline.co.uk

C

You too can
make a shooter

mailto:charlotte.milligan@raspberrypi.org
http://wfmag.cc/subscribe
mailto:wireframe@subscriptionhelpline.co.uk

4 Unity FPS Guide

Building the
basic engine

Levels, models,
and more

Taking your first
steps in Unity
Set up Unity and create a
moving, firing character

Add enemies and
improvements
Advanced your shooter,
adding enemies and basic AI

Expand your first-
person shooter
Add spawners to create
waves of angry zombies

Creating a level
Construct an arena for our players:
Castle Brains

Add doors and switches
Create elements that control your
level’s flow

Expand your gameplay
Upgrade your shooter with medikits
and limited ammo

Create a character
Construct, texture, and animate a
walking zombie in Blender

Add lighting and effects
Use lighting and visual effects to
create atmosphere

Add sound and audio
Heighten tension and excitement
with sound effects

C
on

te
nt

s

08

46

08.

16.

24. �

34.

40.

46. �

52.

64.

70. �

Build Your Own

in Unity
FIRST-PERSON SHOOTER

64

Unity FPS Guide 5

Additional
mechanics

Level design
and inspiration

Create a mission marker
Make a rotating arrow to guide
players to a goal

Adding a minimap
Improve the user interface with
enemy and goal positions

Create a gun turret
Help the player fend off zombies
with a deployable weapon

Create a blink ability
Teleport around levels like
Tracer from Overwatch

Develop wall running
Let your players defy gravity
and dodge enemies

Saving and loading
How to add a handy
quality-of-life feature

Develop a boss battle
End your level with a formidable
boss encounter

Getting into level design
A masterclass from Bulletstorm’s
Steve Lee

Tips for improving
your level designs
Six simple ways to make your
stages sparkle

The theory
behind hitboxes
Why hitboxes matter, and how to
implement them

Jon Chey on design
Design principles from the director
of System Shock 2

114

134

34

12478.

84.

88. �

94. �

100.

106. �

114. �

124.

126.

128.

134.

52

88

WHERE TO
FIND ASSETS

You’ll find all the files,
models, and other assets
you need for this book at

wfmag.cc/fps-guide

From downloading the Unity engine to creating
a player character, here’s everything you need
to get your shooter started

Building the
basic engine

Taking your
first steps in Unity
Set up Unity and create a
moving, firing character

Add enemies and
make improvements
Advanced your shooter,
adding enemies with basic AI

Expanding your
first-person shooter
Learn how to add spawners to
create waves of angry zombies

08.

16.

24.

6

Build Your Own

in Unity
FIRST-PERSON SHOOTER

7

Follow the
tutorials in this
section and you’ll
have the basics for
your shooter down,
including simple
enemies that
attack the player.

8 Unity FPS Guide

Taking your first steps in Unity
Building the basic engine

From setting up Unity to creating a moving, firing character,
here’s how to lay the foundations for your shooter

ools such as Unity and Unreal
Engine have opened the way
for just about anyone to make
high-quality video games. In this
guide, we’re going to look at Unity,

and how we can develop a basic first-person
shooter. The great thing about the Unity engine
is that it works well on multiple platforms, and
the documentation is really clear, with a suite of
easy-to-follow tutorials available for beginners
and also experts.

GETTING HOLD OF UNITY
First, then, we need to get our hands on
the Unity software itself and get it installed
on your PC or Mac. The maker has made it

Taking your first
steps in Unity

T easy to get hold of any supported version of
Unity by using a tool called Unity Hub. This is
essentially a program launcher and still in beta,
but it’s simple, reliable, and will give you fast
access to what you need. First, open up a web
browser and navigate to the downloads page:
wfmag.cc/get-unity. Then you need to select
Download Unity Hub, run the UnityHubSetup to
continue, and select a suitable install location.

INSTALLING UNITY
USING THE HUB
Once you open the Hub, you’ll be presented
with some choices in the launcher. They’re
pretty self‑explanatory, with the headings
Projects, Learn, and Installs. I’ll touch on Projects
later, but this is where your games will live. As
mentioned earlier, the Learn section has some
great resources. Finally, we’ll choose the heading
Installs, and on the top right-hand side, click on
Add. Next, choose the 2019.2 version of Unity
and select Next. Once it’s complete, you’ll be
able to launch Unity and your projects from
the Hub.

TAKE CONTROL OF THE EDITOR
Now you have the Unity Hub, it’s a simple
process of selecting New from the top-right set
of icons, and then giving your project a name
and set a location for it to live on your drive; by
default, the version of Unity we downloaded
is selected. We’ll leave the Templates options

 �Under the official releases
window, we can see the
various available versions
of Unity.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and has also
worked as a lecturer of games development.

http://wfmag.cc/get-unity/

Unity FPS Guide 9

Taking your first steps in Unity
Building the basic engine

set to 3D, and then complete the process by
selecting Create. When you start up into the
Unity Editor, you’ll see a bunch of windows – this
can be daunting to someone who hasn’t used
a games editor before. Again, Unity has some
brilliant starter guides at wfmag.cc/unity-tut,
but I’ll take you through the process anyway.

The first thing we need to do is think about a
typical first-person shooter: you generally can’t
see the character you’re playing, but you have a
viewport onto the world via a camera.

The first viewport is in the Scene tab, in the
centre of the default layout. This is where we
see the entire game world and build our levels.
Next to the Scene tab in the same window is
the Game tab; click
this and preview what
our players will see
when they start our
game. Unity has given
us a starting point of a
camera and a light in its default startup scene.
This provides us with the building blocks to
get started – and if you hit the play button,
you’ll start the game running. You might be
unimpressed with the result, though: there’s no
ability to move, and pressing the keyboard will
have no effect. Press Play again to exit out of
the preview mode, and let’s make the game do
something more interesting.

SETTING UP OUR FIRST-
PERSON CHARACTER
We want to add the ability to move our camera
around and have it behave like a first-person
character. The first step is to allow the camera
to be controlled by the player. First, we need
to do some setup in the Unity editor, then we’ll
be doing some very basic game programming.
This is sometimes referred to as game scripting,
and allows rapid development of the gameplay

mechanics in a programming language that is
easy to understand. So let’s get going and make
our first-person character.

We’ll use a capsule object to represent the
player. From the toolbar, select GameObject >
3D Object > Capsule. While we won’t see this
in the game, it gives us a reference point in our
editor, and it will allow our player to collide with
objects in the game world. Reset this capsule
back to the origin, i.e. (0,0,0) – this can be
achieved simply by using the Inspector, which is

the panel on the right-
hand side.

Look for the panel
labelled Transform.
If you don’t see the
values (0,0,0) for X,Y,Z,

then select the cog icon to the right of the pane
and select Reset Position. Now, select the Main
Camera in the Hierarchy tab and set this back
to the origin (0,0,0) using the above method.
Finally, use the Hierarchy window and drag the
Main Camera onto the Capsule game object.
You should see that the camera is now parented
to the capsule. In other words, the camera is
attached to and placed below the capsule in
the Hierarchy.

We’re going to do some more setup to the
viewing position of our character. Select the
camera that we parented and you’ll see a
camera preview in the lower right of the Scene
viewport. You should also see a transform gizmo
with three arrows (red, green, blue) extending
out of the camera object. Select the arrow that’s
pointing up and coloured green. Use the left
mouse button to drag it up slightly so it’s in
the upper area of the capsule. Think about

“The great thing about
Unity is that it works well

on multiple platforms”

 �The default view from the Unity editor. We can easily
customise the layout to suit your needs as a developer.

 �This is my setup for our
representation of the
character. I have moved up
the camera, and you can see
the positional difference for
the Y value in the Inspector.

http://wfmag.cc/unity-tut/

10 Unity FPS Guide

Taking your first steps in Unity
Building the basic engine

 �The Project window will
show all the assets you are
using for your game and
which can be placed in
your levels. This could be
scripts, audio, textures,
models, and much more.

 �It isn’t exactly Crysis, but
it’s still a solid basis for
your own shooter in Unity.

TIP
It’s best practice to set your
game world and game objects
to the world origin – position
0,0,0 – when you import them
into Unity or any other game
engine. It makes things easier
when implementing script
logic or building your levels, as
you aren’t applying additional
transforms to your objects.

the capsule being your character: you want the
camera to be its eyes. If you want to adjust your
viewing angle within the Scene viewport, you can
move the view angle by clicking and dragging the
right mouse button within the viewport, and you
can use WASD or arrow keys to move around.

ADDING THE BASE MOVEMENT
We’re now going to add our script to move the
character. Unity is mostly object driven, so we
essentially attach our scripts to the game objects
that we want to affect. In this case, we need to
select our capsule object in the editor. Go to
your Inspector window on the right and click the
Add Component button at the bottom. In the
new pop-up window, scroll to the very bottom
and select New Script. You need to set a name
for your script – I suggest CharacterMovement
– and then click the Create and Add button.
This method is great, as it attaches the script
to the object and saves it to your game
project automatically.

The only thing we have to do now is open
the script. This can be opened from the
bottom Project window by double-clicking.
You’ll be provided with some sort of scripting
environment – this will be either MonoDevelop
or Visual Studio. Now all we need to do is
replace our code with the template script that
Unity provides. Don’t forget to save.

using UnityEngine;

public class CharacterMovement : MonoBehaviour

{

 public float speed = 5;

 // Use this for initialization

 void Start()

 {

 Cursor.lockState = CursorLockMode.

Locked;

 }

 // Update is called once per frame

 void Update()

 {

 float Horizontal = Input.

GetAxis("Horizontal") * speed;

 float Vertical = Input.

GetAxis("Vertical") * speed;

 Horizontal *= Time.deltaTime;

 Vertical *= Time.deltaTime;

 transform.Translate(Horizontal, 0,

Vertical);

 if (Input.GetKeyDown("escape"))

 Cursor.lockState = CursorLockMode.

None;

 }

}

Unity FPS Guide 11

Taking your first steps in Unity
Building the basic engine



�With this layout, you can
clearly view the world
you’re editing and
preview your gameplay
at the same time.

TIP
Make sure you are careful with
your script file name and the
name of the public class in your
C# script. These have to be
identical to each other, else the
script will fail to compile.

We should have our movement script ready to
go. I’d suggest changing your viewport setting
before pressing Play so you can easily see the
effect in your Scene view. Select the Game tab
with your mouse, then drag the window and it
will undock. Drag it towards the Inspector and
it will expand, then release. You should now
have two easy-to-access
viewports for the Scene
and the Game. Press Play
and use WASD, arrow
keys, or a controller to
apply movement. While
it’s difficult to see in the Game viewport, it’s easy
to see the applied motion in the Scene viewport.
Again, when you finish, you need to press the
Play button to exit this game preview.

ADDING GRAVITY
AND JUMP ABILITY
What we have is pretty limited, so we want to
expand the range of motion and apply gravity
limitations to our character. We’re going to
expand the code we created earlier, but we first
need to expand our character so it understands
that it has physics rules. First, we’re going to
add another component called a rigidbody –
this is from a physics term that describes any
solid object, and is used in the mathematical

understanding of applying forces like velocity
and acceleration. We’ll select our capsule and
then, in the Inspector, select Add Component.
We can then use the search box at the very top
of this window to search for Rigidbody.

I suggest adding a floor object to the scene,
otherwise your character will fall forever. It also

helps you to have a
reference point when
moving around your
level. From the toolbar,
select GameObject > 3D
Object > Plane.

You can use the transform gizmo to move the
object around; the arrows dictate the direction
you’ll move the object in. Move this under the
player capsule. We’re going to expand the
code we have already, so we need to open up
the same code editor we had before. Select
the CharacterMovement.cs file and then
simply replace the original example with the
following code:

using UnityEngine;

public class CharacterMovement : MonoBehaviour

{

 public float speed = 5;

 public float jumpPower = 4;

“I suggest adding a floor
object, otherwise your

character will fall forever”

12 Unity FPS Guide

Taking your first steps in Unity
Building the basic engine

 Rigidbody rb;

 CapsuleCollider col;

 // Use this for initialization

 void Start()

 {

 Cursor.lockState = CursorLockMode.

Locked;

 rb = GetComponent<Rigidbody>();

 col = GetComponent<CapsuleCollider>();

 }

 // Update is called once per frame

 void Update()

 {

 //Get the input value from the

controllers

 float Horizontal = Input.

GetAxis("Horizontal") * speed;

 float Vertical = Input.

GetAxis("Vertical") * speed;

 Horizontal *= Time.deltaTime;

 Vertical *= Time.deltaTime;

 //Translate our character via our

inputs.

 transform.Translate(Horizontal, 0,

Vertical);

 if (isGrounded() && Input.

GetButtonDown("Jump"))

 {

 //Add upward force to the rigid

body when we press jump.

 rb.AddForce(Vector3.up *

jumpPower, ForceMode.Impulse);

 }

 if (Input.GetKeyDown("escape"))

 Cursor.lockState = CursorLockMode.

None;

 }

 private bool isGrounded()

 {

 //Test that we are grounded by drawing

an invisible line (raycast)

 //If this hits a solid object e.g.

floor then we are grounded.

 return Physics.Raycast(transform.

position, Vector3.down, col.bounds.extents.y

+ 0.1f);

 }

}

Again, select to play your game and use the
SPACE bar or buttons on the controller to try
to jump as your character. You may notice
some odd behaviour, as the character may
topple over. We can fix this by selecting the
capsule object; in the options for the Rigidbody,
you’ll see the word Constraints and a small
down arrow. If you click this, it will expand and
show Freeze Position and Freeze Rotation.
Activate the checkboxes for X, Y, and Z for
the Freeze Rotation only. If you play the game
again, it should be impossible to make the
character topple.

LOOKING AROUND
THE ENVIRONMENT
One element of a first-person shooter is that
you can look around the environment or level
by using your mouse or the controller sticks to
effectively move the head of the character. We
are going to add another script to our player,
but this time to our camera and not the capsule.

 �Components often have
properties that you can
override to change how
they behave. In this case,
we’re stopping the object
from rotating in an
undesirable direction.

 �You can view what components are on a game object in
the Inspector. You can add multiple components to
change the behaviour of these objects.

Unity FPS Guide 13

Taking your first steps in Unity
Building the basic engine

First, we need to select the camera, and repeat
the process of selecting Add Component and
then making a new script. I would name the
script MouseLook, and then you can open the
code editor and add the code provided.

using UnityEngine;

public class MouseLook : MonoBehaviour

{

 private GameObject player;

 private float minClamp = -45;

 private float maxClamp = 45;

 [HideInInspector]

 public Vector2 rotation;

 private Vector2 currentLookRot;

 private Vector2 rotationV = new Vector2(0,

0);

 public float lookSensitivity = 2;

 public float lookSmoothDamp = 0.1f;

 void Start()

 {

 //Access the player GameObject.

 player = transform.parent.gameObject;

 }

 // Update is called once per frame

 void Update()

 {

 //Player input from the mouse

 rotation.y += Input.GetAxis("Mouse Y")

* lookSensitivity;

 //Limit ability look up and down.

 rotation.y = Mathf.Clamp(rotation.y,

minClamp, maxClamp);

 //Rotate the character around based on

the mouse X position.

 player.transform.

RotateAround(transform.position, Vector3.up,

Input.GetAxis("Mouse X") * lookSensitivity);

 //Smooth the current Y rotation for

looking up and down.

 currentLookRot.y = Mathf.

SmoothDamp(currentLookRot.y, rotation.y, ref

rotationV.y, lookSmoothDamp);

 //Update the camera X rotation based

on the values generated.

 transform.localEulerAngles = new

Vector3(-currentLookRot.y, 0, 0);

 }

}

TIP
You can build out your level by
using the basic 3D objects that
are available in Unity, or you
can explore the Unity Store. The
Unity Store has both free and
paid items that can help expand
the quality of your projects, such
as meshes, effects, sounds, and
even scripts. You can access the
store at any time by selecting
Window > General > Asset Store
within the taskbar or by using
the key combination CTRL+9.



�I’ve parented my second
capsule object, which has
been rotated to an empty
game object. You’ll notice
that it has a default
rotation and no other
components attached.

14 Unity FPS Guide

Taking your first steps in Unity
Building the basic engine

You may notice that this works as a mouse look
only, and that it doesn’t work on a controller.
Unfortunately, creating controls like these is
beyond the scope of this tutorial, but you can
always try to implement this yourself if it’s
something you want to add.

MAKING A
PROJECTILE WEAPON
Of course, this wouldn’t be much of a first-
person shooter without being able to shoot.
There are many ways to implement a weapon
mechanic, and a game
like Quake Champions
has several ways to
handle weapon types,
from projectile to beam
weapons. We’re going
to add ours in the most basic way and have
a projectile that we can fire in the direction
we face.

First, we need to select the capsule. This
time, we’re going to use a shortcut to parent
a new object to it. We now need to right-click
on Capsule in the Hierarchy and select Create
Empty. We’re going to use this to spawn our
projectile on. This is a quite common practice
in games, where you have an empty or dummy
object for positioning or spawning. I would also
advise renaming the game object by typing in
the text box at the top of the Inspector with this
object highlighted. I would suggest calling this
‘Weapon’ or something meaningful.

We also need an object to use as a projectile,
so we’ll quickly create this from two objects:
another dummy and another capsule. On the
taskbar, select GameObject > Create Empty.
We’re going to use this to help us make sure
the bullet moves in the correct direction even
when we rotate the capsule object. I’d rename
this object to ‘Projectile’ so we can find it later
on. Now we need to select the new object in
the Hierarchy, then right-click and choose 3D
Object > Capsule.

I’d rename this ‘Bullet’ in the Inspector
window. Now we want to make some size and

rotation adjustments. Just underneath the
left-hand side of the upper-left taskbar, you
have six to seven icons. You’ll notice that one is
highlighted (a cross shape of arrows); this
means you’re using the Move tool. Select the
icon to the right of this (); a tooltip will tell
you it’s the Rotate tool. You’ll notice the gizmo is
now a sphere with overlapped circles. Select the
red circle, and then drag until the capsule faces
forward or the Inspector shows approximately
90 degrees in the rotation box labelled X.

Finally, we need to rescale the dummy object.
First, you need to select this dummy object in
the Hierarchy. To the right of the rotation icon
is the Scale tool icon (); select this, and the
gizmo will change again. This time the gizmo will
be similar to transform, but instead of arrows
we have cubes. We’re going to select the bigger
white cube at the centre of the gizmo; this will let

us rescale all directions
at the same time. If you
drag downwards you’ll
see that the capsule
object will shrink.
We need to make this

about one-tenth the scale of the character.
The final step for the projectile is to centre it

to the world. In the Inspector you can select the
cog on the Transform for your dummy object,
and then select Reset Position.

FIRING THE WEAPON
We’re going to add two new scripts. The good
news is that these are really simple and
comprise only a few lines of code. We need one
to make the projectile spawn, and one to make
the projectile move in a constant direction.
We’ll deal with the movement first, as we should
still be highlighting the projectile object. As
with the other scripts, we add them via Add
Component and then giving the script a name.
You should set the name to ProjectileMovement
for your script.

using UnityEngine;

public class ProjectileMovement : MonoBehaviour

{

 public float speed = 10f;

 // Update is called once per frame

 �Our prefab in our Project
window is ready to go.
Prefabs are extremely
useful as they can be used
multiple times in the
project and will always
have the same behaviours
we set.

TIP
You can better visualise an
empty object by adding an
icon to it. In the top-left of the
Inspector is a small cube with
a down arrow. Select this and
you can set one of several
icon looks. This won’t show
in the game, but it’s great as a
guideline when moving objects
in the viewport.

“You’ve created the
basis for your very own

first-person shooter”

15

Taking your first steps in Unity
Building the basic engine

 void Update()

 {

 transform.Translate(Vector3.forward *

speed * Time.deltaTime);

 }

}

Before we work on the next script, we’re
actually going to remove this initial projectile
game object from the scene. However, we still
want to use it in the project, so we’re going to
make a special type of object called a prefab.
We can make this a prefab by selecting it in
the Hierarchy and dragging it into the Project
window at the bottom of the screen. You then
need to make sure you’ve now selected the
version in the Hierarchy and hit DELETE.

Now for the second half of this scripting
adventure: select the Weapon game object and
then, as before, you can select Add Component
and follow the flow. Name your script
ActivateProjectile and then open the script to
add the final part of the code:

using UnityEngine;

public class ActivateProjectile : MonoBehaviour

{

 public GameObject projectile;

 // Update is called once per frame

 void Update()

 {

 if (Input.GetButtonDown("Fire1"))

 {

 var clone = Instantiate(projectile,

gameObject.transform.position, gameObject.

transform.rotation);

 //Destroy after 2 seconds to stop

clutter.

 Destroy(clone, 5.0f);

 }

 }

}

There is one issue we currently have: if we
spawn our bullet, it will collide with the player as
we spawn this inside our player collider. There
is a very simple fix for this by telling the player

to ignore collisions from our bullet. To do this,
we are going to create two layers; this is simply
done by selecting the Layer drop-down in the
Inspector and choosing Add Layer. You should
see the expanded list of Layers and some that
are inaccessible. We will choose an empty user
layer slot and type the word Player into that
field. We will then type the word Projectile in
the entry below that, so we should have two
additional entries. Next, we need to select Edit >
Project Settings… and we need to select Physics
from the new window that appears. In this
window, you will see the Layer Collision Matrix
and our entries; we want to untick the checkbox
for Player in the first column.

With that set up, we will need to select the
player capsule and make sure that we have set
the Layer drop-down to Player in the Inspector
panel. It will ask you about applying the changes
to the children; we want to say Yes, change
children. We then need to select the Projectile in
the Project panel and, in the Inspector, change
the drop-down to Projectile, and repeat the
selection for the message about applying to
all children.

We have one last thing to do. We have our
prefab, but our spawn script doesn’t know to
use it yet. In our Weapon object we can see the
script we added, called ActivateProjectile. You’ll
also see the words Projectile and a slot that says
‘empty’ or ‘none’. We need to add our prefab
here by selecting the circle to the right of the
slot. A window will appear, which has Assets and
Scene tabs. Select the Assets tab and you’ll see
our Projectile prefab.

Make sure you’ve selected it, then press Play
to see the result. You should be able to fire
using the left mouse button, and see multiple
projectiles when you click. Congratulations:
you’ve created the mechanical basis for your
very own first-person shooter.

 �We can easily make sure
that the fired bullet never
hits the player by changing
the physics matrix to
ignore it.

 �It may look rough right
now, but we’ll be adding
character models and lots
more soon.

15Unity FPS Guide

16 Unity FPS Guide

Add enemies and make improvements
Building the basic engine

With the basics for our shooter now in place,
here’s how to add enemies and more

n this second Unity tutorial, we’re
going to look at advancing the simple
shooting mechanics. In the first part, we
focused on getting our player character
in motion and adding the ability to

shoot a basic projectile. Now we’re going to add
some basic AI, have a way to detect damage to
them, and have points displayed. In addition
to this, we’ll add some basic ‘quality of life’
elements to the experience.

IMPROVING THE
FIRST-PERSON AIMING
First, we’re going to add a crosshair to the first-
person camera – this will help the player with

Add enemies and
make improvements

I their aiming as they move and fire. We’ll also
make it so that the player can aim up and down.
The first thing to do is to open the project; if you
are using the Unity Hub then you should see a
list of all the projects as soon as you load into
the launcher. Select the applicable project, and
then this should load the Unity Editor and the
last scene you worked on.

Select the Hierarchy window to the left-hand
side of the screen, and then right-click in an
empty space and select UI > Canvas. Next, select
the Canvas object in the Hierarchy, right-click,
then select UI > Panel. You’ll see that the Panel is
linked to the Canvas game object. With the newly
created Panel selected, look to the right-hand
side of the editor and find the Inspector. In your
Inspector, you should see the first pane is called
Rect Transform. Select the icon that looks like
a blue cross with arrows at each end. A new
window will be shown called Anchor Presets.
Select the icon in the centre that looks like a red
cross with a red dot in the middle.

You should see there are now values in the
Width and Height boxes; we want to type the
value of 3 into both boxes. You then need
to change some parameters in the Image
script component. First, select the box to the
right of the word Color. This will bring up a
colour selection tool similar to one in a photo
manipulation package. We want to choose a
bright colour – for example, a nice red. We also
want to adjust the bottom slider prefixed by the

 �Use the Anchor Presets to
set the relative positions
your UI element will be
anchored to. This will be
unaffected by changes to
the screen resolution.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and has also
worked as a lecturer of games development.

Unity FPS Guide 17

Add enemies and make improvements
Building the basic engine

letter A (for alpha) to be fully to the right-hand
side. This will make the red dot be fully opaque,
so you can easily see it in the centre of the
screen. We now have a simple crosshair that
should be rendered to the screen.

The next change is to make the projectile
fire from the centre point
of where we’re looking. For
this, go to the Hierarchy
and select the Weapon
game object we created last
time, and drag this onto
our Main Camera. If you can’t see these objects,
you may need to click the arrow next to your
Capsule object.

The final change is to keep the Weapon game
object selected, and then in the Inspector, set
the Position for the X, Y, and Z to 0. This will
effectively set the object to be aligned to the
Camera position. Feel free to try out the current
iteration of what you’ve done by pressing the
Play button. You should see the crosshair and
the projectile spawn from that point. Don’t
forget to exit the preview by selecting the Play
button again.

SETTING UP OUR ENEMY
We’re going to effectively make our shooter
into a wave-based game. For simplicity, we’ll
have ‘zombie’ enemies who’ll do you damage on

contact. We’re going to use the AI pathfinding
in Unity to create this logic, so the first thing to
do is create a separate capsule to represent
our enemy. In the Hierarchy window, right-click
and select 3D Object > Capsule. With the new
capsule selected, go into the Inspector panel,

and rename the Capsule
to a unique name. I’d
suggest Zombie.

We’re also going to add a
unique colour to the capsule
to help differentiate it. First,

we select the Project window and then right-
click and select Create > Material, then add a
unique name to the material – for example,
Zombie Skin. With this material still selected,
go to the Inspector panel, and click on the box
next to Albedo colour to open the Colour Palette
window. You can try adjusting the colour on your
material; I’ve gone with a bright green. Once
you’ve set your material colour, select it from the
Project window and drag onto the Zombie game
object in the Hierarchy window.

The final thing we need to do is to use a
component on our enemy to make it navigate to
the player.

To do this is easy enough: select the enemy in
the Hierarchy, and then in the Inspector, select
Add Component and choose Navigation > Nav
Mesh Agent.

“We’re going to make
our shooter into a

wave-based game”

 �They may just be green
capsules, but our enemies
are an angry bunch.

A TIP FOR
PREVIEWS
If you can’t tell whether you’re in
a preview of your game or not,
then there’s a great setting you
can use in Unity preferences.
From the taskbar, select Edit
> Preferences… and from the
new window, choose Colors.
There are lots of customisation
options for colours here, but
we want to select Playmode
tint. Select the colour to open
the colour palette window and
simply choose an obviously
different colour from the
standard Unity grey. From now
on, you will always see this
colour tint in a game preview.

18 Unity FPS Guide

Add enemies and make improvements
Building the basic engine

While we now have our navigation agent, we
will also need to tell it where we want it to go.
It’s just a case of creating a simple script to drive
the AI character.

First of all, select Add Component and scroll
down to the New Script entry. Then, in the next
window, set the script name to MoveToPosition
and select Create and Add. We can double-click
the new script on the Inspector and the script
editor should load. Now, simply replace the
template script with the code below.

using UnityEngine;

using UnityEngine.AI;

public class MoveToPosition : MonoBehaviour

{

 public Transform goal;

 private NavMeshAgent agent;

 void Start()

 {

 agent = GetComponent<NavMeshAgent>();

 }

 void Update()

 {

 agent.SetDestination(goal.position);

 }

}

Once you’ve saved the script and navigated back
to the Unity editor, you’ll see that the script will
have a slot called Goal; this was made publicly
accessible in our script above. What we need to
do is set the Goal as our player. This is simply
a case of selecting our player capsule in the
Hierarchy window and dragging it to the slot to
the right-hand side of the word Goal.

The final step is to select the Zombie in the
Hierarchy window, and then drag this into the
Project window to create our second prefab
object. The reason to do this is so we can drag in
or spawn more copies of the same enemy.

GENERATING OUR
ENEMY NAVIGATION
So, we have our enemy, and it has the navigation
component and a script to tell it where to go.
There is, however, one final and critical step that
we must perform to make this all work. We need
to create a navigation mesh. This is an invisible
mesh that tries to contour itself to the floor of a
game level. This is something that most modern
games will use as a way to create AI navigation.
In the example, we only have a flat plane, but
let’s imagine we have a sprawling level with
steps, slopes, and so on. This will work out if the
AI could acceptably make it to these places.
To use this feature, go to the taskbar and select
Window > AI > Navigation. It will open a new
tab which will appear where the Inspector is
usually shown.

Now the issue is that we need to have a
static object to bake the navigation. So, in the
Hierarchy, select the Plane we created for our
floor. We actually need to select the Inspector
tab, so switch away from the Navigation tab for
a second. In the Inspector for the Plane game
object, you need to select the checkbox to the
top-right called Static. We can now move back to
the Navigation tab and from the row at the top
of this window, select the Bake option. Finally,
select the Bake button to the bottom-right of the
window. You will now see the navigation mesh
in a blue colour that will render just above the
Plane mesh.

We’re ready to test our enemy character
navigation. All we need to do is use the

 �To allow for vertical
movement of our projectile
weapon, we need to make
the Weapon game object a
child of our camera.

 �Once you have created a
material, selecting the
Albedo will allow you to set
a colour of your choice via
the colour wheel, sliders, or
a hex value.

Unity FPS Guide 19

Add enemies and make improvements
Building the basic engine

OBJECT
AVOIDANCE
While we’re using static objects
to generate navigation, we
can do the same for dynamic
objects. To set an object to have
object avoidance, you need to
select the game object and then
use Add Component to add the
Nav Mesh Obstacle component.
There are various settings here,
but you must remember to
check the carve option to make
it work with your navigation. Do
remember that this is costly in
terms of performance, so use it
sparingly in your scenes.

transform gizmo tool to move the position
so that it doesn’t start on top of the player
character or the ground. Simply select the red,
green, or blue axis and they should highlight.
Drag these until you’re happy with the position.
When we press Play to preview, you’ll see that
the AI will navigate to our player’s position.

One issue we can see straight away is that
the enemy navigates to the same point as the
player, and we can see some odd behaviour in
this interaction. To fix this,
we need to stop the game
from playing and then select
the enemy game object. In
the Inspector, look at the
Nav Mesh Agent component,
and then set the Stopping
Distance value to around 1.5, as this will make
the enemy stop just before it touches the player.

UNDERSTANDING
TRIGGERS AND COLLISIONS
We now want to set up a way of testing for
damage when the enemy collides with our
player, and when the projectile hits the enemy.
We’re going to use an event trigger in both cases
to achieve this. An example of a trigger in video
games is when you walk into an area and this
starts a cutscene. Effectively, there’s an invisible
box around the area, and by walking into it, the
player sets off the event.

While I say we are using a trigger, we’re
actually going to test if we’re colliding with an
object, and set our events based on that. By
default, in Unity, anything with a collider can be
used to check if something is interacting with it.
The only limitation with the event is that one of
the two colliding objects needs a Rigidbody. As
a rule of thumb, I would add a Rigidbody to any
dynamic object.

We already added a Rigidbody to the player in
the first tutorial, so let’s add one to the enemy.
In the Hierarchy, select the enemy game object.

We then go to the Inspector and select Add
Component and then select Physics > Rigidbody.
I’d also expand the Rigidbody component and
check the option Is Kinematic. This means while
it has a Rigidbody, the Physics interactions of
motions won’t be applied, as we want this driven
by our AI script.

Remember, we created the enemy as a
prefab. To make sure all the prefabs have
the same properties we need to select Apply

All from the Overrides
drop‑down; this is to the
top-right of the Inspector
options, and should be
below the Static checkbox
and Layer drop-down.

We want to do the same
with the projectile we created last time; in fact,
we’ll also be adding a script to this. The script
will check that the bullet object has hit an object
with a collider; this will then disable or ‘destroy’
the game object. The first thing is that we never
now have our projectile in the scene. It’s a
prefab that is created when we are pressing the
fire button.

We can still make changes to it by looking
for it in the Project window. We do want to,
however, expand the object by selecting
Open Prefab in the Inspector when we have
highlighted it. Now select the bullet mesh and
you should see the capsule mesh listed in the
Inspector. We want to select Add Component
and repeat the process of adding a Rigidbody
to the object. I recommend disabling the Use
Gravity option on the Rigidbody, as while there
would be some gravity applied to a real bullet,
this is much larger, and we want an arcade feel
to the game.

As mentioned above, we want to add a script
to the object, so select Add Component and
scroll down to New Script. Give this script the
name BulletHit, and select Create and Add.
We then open it in the script editor. We can

 �To make the AI navigate to the player, make sure that you have
dragged in the appropriate game object to the entry marked Goal
on the Move to Position script.

 �Select the Bake button to generate your
navigation mesh; this will be previewed as a blue
mesh above the level geometry.

“Our enemy has the
navigation component

and a script to tell
it where to go”

20 Unity FPS Guide

Add enemies and make improvements
Building the basic engine

then copy the code below over the template
Unity provides.

using UnityEngine;

public class BulletHit : MonoBehaviour

{

 //When we touch the collider we disable

this object.

 void OnCollisionEnter()

 {

 gameObject.SetActive(false);

 }

}

Once you’ve saved the code and you’re back
in Unity editor, try previewing the game.
You should be able to fire the projectile and it
will disappear when hitting the enemy or the
ground plane. If this bullet doesn’t appear at all,
check that it’s not spawning in the player.

HANDLING OUR
ENEMY DAMAGE
We now have our bullet understanding that if it
collides with an object, we want it to be removed
from the scene. Let’s say we want to apply this
logic to the enemy, but we want it only to be
damaged by the bullet, and we only want it to be
destroyed after three bullets have hit it.

The first challenge is to work out if the
projectile has hit the enemy. Unity has provided
us with a way of marking up certain game
objects to help us identify them. This feature is
known as a tag, and we’re going to add it to our
projectile prefab. We need to go back to the
Project window and find our Projectile prefab;
if you need to expand it then do so. You should
then select the Bullet mesh that we added the
script to earlier.

Look at the top-left of the Inspector, and
you should see the words Tag, and in the
drop-down, it will show Untagged. Select the
drop-down and then select Add Tag… and the
Inspector will change to show Tags & Layers. We
want to expand the Tags element by clicking the
down arrow, and then you should see a + icon to
the bottom-right of this element. Click the + icon
and add your tag name, and then Save. I would
type in ‘bullet’ for the name, but do note that
this is case-sensitive, so it must be exactly the
same in the code.

We need to reselect the Bullet mesh in the
Project window to get back to our original
Inspector view. You’ll notice that, annoyingly, the

COLLIDERS AND
TRIGGERS
Games engines like Unity all
have a concept of a collider,
which is often an invisible,
simplified version of the more
detailed visual mesh you see
in-game. The reason we use a
collider is that it’s processor-
intensive to do collisions,
so a simplified mesh – for
example, a box – is less costly
to calculate. You can find more
about colliders and triggers in
the Unity online documentation
(wfmag.cc/RYXD). This also has
a matrix of which components
are required to create a
collision event.

 �Change the stopping
distance for the Nav Mesh
Agent to stop the AI
character moving onto the
same spot as the player.

 �On the bullet prefab we want to disable the Use Gravity
checkbox on the Rigidbody component.

http://wfmag.cc/RYXD/

Unity FPS Guide 21

Add enemies and make improvements
Building the basic engine

tag wasn’t added even though we just specified
it. We just need to make sure that we select
the Tag drop-down and change it to our bullet
tag we set up. You will need to select the back
button to the left of the word Projectile in out
Hierarchy to go back to the Scene view.

We now need to turn our attention to the
enemy and the script to track whether it’s been
hit by a bullet, and how many times it’s been
hit. If we count enough hits, we’ll destroy the
enemy. As usual, select the Zombie enemy in
the Hierarchy and then in Inspector, select Add
Component and choose New Script. We then
name the script as EnemyDamage, and then add
the code below.

using UnityEngine;

public class EnemyDamage : MonoBehaviour

{

 //Private means only this script can

access the variable.

 private int hitNumber;

 //Unity stores the collider it hits and we

can access it via the name other.

 void OnCollisionEnter(Collision other)

 {

 //We compare the tag in the other

object to the tag name we set earlier.

 if (other.transform.

CompareTag("bullet"))

 {

 //If the comparison is true, we

increase the hit number.

 hitNumber++;

 }

 //if the hit number is equal to 3 we

destroy this object.

 if (hitNumber == 3)

 {

 Destroy(gameObject);

 }

 }

}

Do remember to save the code and then move
back to the Unity Editor. If we play the game
in preview mode now, we’ll see that when we
successfully hit the enemy three times, it’ll be
destroyed. Once you’re happy that you’ve tested

the feature, exit out of the play mode so we
can continue.

DISPLAYING DAMAGE
TO THE PLAYER
We want our zombies to do damage when they
touch the player game object, but we need a way
of expressing the damage to our player. We’re
going to expand our canvas that we created
for the crosshair and add the player’s health to
the interface. We’re also going to communicate
between the enemy and the player. Effectively,
we’ll send a message from a script on the
zombie that they’re biting the player. This means
that if we have multiple zombies, each one will
apply damage at the appropriate times.

We’re also going to reuse the tag functionality,
but this time we don’t need to create a new tag.
First, select the player capsule in the Hierarchy
window, and then in the Inspector, select the
Tag drop-down, and select Player from the list.
While we’re in here, rename this object from
Capsule to Player. It’ll make it easier for us as we
expand the game and make it clear to us which
is our Player object.

Now we’ve done those changes, let’s go back
to our enemy object and add a new script to
send a message from the zombie to our player.
We use a command called SendMessage that
Unity created to talk between game objects.
It is by no means the only way to do this and,
arguably, not the best way. However, it’s

 �We want to add our own
unique tag to our bullet by
first creating a new tag in the
Tags & Layers window.

THE POWER
OF TAGS
Tags are a powerful tool in
Unity and help to improve
performance. They allow you to
quickly look for all objects with a
tag and perform an operation on
those objects. You could find all
the objects individually, but this
is an inefficient way of working
and will slow performance of
your game.“We want our zombies

to do damage when
they touch the player

game object”

22 Unity FPS Guide

Add enemies and make improvements
Building the basic engine

 �The SendDamage script will
let our angry capsule
zombies injure the player.

simple to understand and effective enough for
our needs.

So, select the Zombie game object in the
Hierarchy, and then in the Inspector, select Add
Component, and then New Script. We will call
our new script SendDamage, and then we can
open the script in our code editor and replace
with the script shown below. Do also remember
to apply the prefab changes.

using UnityEngine;

public class SendDamage : MonoBehaviour

{

 void OnCollisionStay(Collision other)

 {

 //We compare the tag in the other

object to the tag name we set earlier.

 if (other.transform.

CompareTag("Player"))

 {

 //If the above matches, then send

a message to the other object.

 //This will also pass a value of 1

for our damage.

 other.transform.

SendMessage("ApplyDamage", 1);

 }

 }

}

As I said above, we want to add some sort of
output to the Canvas object we created to show
the player health. We’ll keep this really simple for
now, and just display a health value of 100 to 0.
In the Hierarchy we need to find the Canvas, and
then right-click and select UI > Text.

You should see the default text string that
says New Text in the viewport. We don’t need to
change the text as we will overwrite it in code,
but we do need to reposition it. We’ll use the
Anchor Presets we used when setting up our
crosshair. With the Text object selected, go
over to the Inspector and once again select the
anchor presets icon.

We need to look for, but not select, the icon
that is on the second row down and has a red
dot on the top-right outer box. As we select this,
hold the SHIFT key, and this will set the pivot
rather than moving the position of the text.
Now, back in the RectTransform, replace Pos X
and Pos Y values with 0. Also, you need to set
the Paragraph Alignment option for the Text
component by clicking the right-hand icon on
the first row. The text is now neatly positioned in
the top-right corner.

The final steps are to add some code to
the player, and then link our Canvas to it so
it correctly updates. Find the newly renamed
Player object and select it in the Hierarchy.
Move to the Inspector and select Add
Component, and then select New Script. We’ll
call this new script PlayerDamage, and then
open it ready for editing with our code.

using UnityEngine;

using UnityEngine.UI;

public class PlayerDamage : MonoBehaviour

{

 //Use this to reference the text in the

canvas

 public Text healthPanel;

 //Sets default health to 100

 public int health = 100;

 private void Start()

 {

 //Sets the health text at the start,

we pass 0 as we don't want to remove health.

 ApplyDamage(0);

 }

 void ApplyDamage(int damage)

 {

WHY NOT TRY…
You may want to tweak things
like the player health or number
of Zombies to make for a better-
balanced game. This is now in
a stage that you can go to town
on the level layout, too; feel free
to expand the plane or even
build in additional structures
to the Unity scene using 3D
Objects. Don’t forget to bake
your navigation and set the
geometry to be static if you do
modify the level structure.

Unity FPS Guide 23

Add enemies and make improvements
Building the basic engine

 //Checks we has attached a health

panel and out health is greater than 0

 if (healthPanel != null && health > 0)

 {

 //Stores the current health and

subtracts the damage value

 health = health - damage;

 //Sets the text on our panel.

 healthPanel.text = health.

ToString();

 }

 }

}

As usual, you’ll want to save and return to the
Unity Editor. We still, however, need to link our
Canvas. Select the Player object and look in the
Inspector – you’ll see the script has two entries,
one called Health Panel and one called Health.
The Health entry is self-explanatory and has a
default value of 100.

The other is where we need to drag in our
Text object, so go ahead and do that. Just for
completeness, and to make it easier to reuse
our Player game object, we should select it in

the Hierarchy and drag it into the Project panel
to make it into a prefab.

We should be ready for a test, but you may
want to duplicate your Zombie enemy a few
times and move them around. Once you’re
happy with the setup, hit Play and start your new
zombie-blasting challenge.

 �We should use the Anchor
Presets again, but we want
to align the pivot for the text
in the top-right corner.

 �If everything’s working
correctly, a collision with a
capsule zombie will now
damage the player’s health.

Unity FPS Guide 23

24 Unity FPS Guide

Expanding your first-person shooter
Building the basic engine
Expanding your first-person shooter
Building the basic engine

n our earlier tutorials, we looked
at building the foundations of
our first-person shooter, and
worked through adding gameplay
elements and mechanics, such

as firing a projectile and creating a simple
enemy type. We also added a wave-based
survival mode, which we’ll now expand
on further by adding an enemy spawner
and rounds. We’ll also polish the game,
adding a menu system and visual effects to
our projectile hits.

CREATING AN
OBJECT SPAWNER
First, let’s create a spawner that we can
use to spawn multiple enemies. This is
going to be very simple, and we’ve already
used some of this logic to spawn our bullet
object. We’ll also expose some variables or
values so that we can expand the idea of a
wave-based survival mode.

To do this, we need to create a game
object to be our spawner object. You can
simply right-click in the Hierarchy and
select Create Empty. In the Inspector
window for this object, rename it to
Spawner. We’ll add a script that allows
us to choose the object to spawn, the
number of spawned objects, and a delay
between spawns. In Inspector, select Add

I Component and then select New Script
and set the name to Spawner. We can then
double-click the script to open the script
editor of our choice, and then replace the
script with our code. Remember to save
and go back to Unity when you are done.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Spawner : MonoBehaviour {

 public GameObject spawn;

 public int amount = 1;

 public float delaySpawn = 1;

 private int getAmount;

 private float timer;

 private int spawned;

 private void Start()

 {

 ResetRound();

 }

 private void ResetRound()

 {

 getAmount = amount;

 }

 �With the addition of rounds, menus,
and effects, our project is really
starting to feel like a proper game.

With our foundations in place, we’ll expand our
shooter with visual effects, menus and more

Expanding your
first-person shooter

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and has also
worked as a lecturer of games development.

Unity FPS Guide 25

Expanding your first-person shooter
Building the basic engine

 void Update () {

 timer += Time.deltaTime;

 if (delaySpawn < timer)

 {

 if (spawned< getAmount)

 {

 //Reset our timer.

 timer = 0;

 spawned++;

GameObject instance = Instantiate(spawn,

transform);

 instance.transform.parent

= null;

 }

 }

 }

 private void OnDrawGizmos()

 {

 //Draw the wireframe mesh of what

we intend to spawn in our editor.

 Gizmos.color = Color.red;

 if (spawn != null)

 {

 Gizmos.DrawWireMesh(spawn.

GetComponent<MeshFilter>().

sharedMesh,transform.position, spawn.

transform.rotation, Vector3.one);

 }

 }

}

We made our Zombie enemy a prefab
in our Project in the last tutorial, so we
should be able to select this and drag it
onto the slot named Spawn that is shown
for the Spawner object in the Inspector
window. You can then delete any other
Zombie objects that are in the Hierarchy,
as we can now spawn them via this
spawner object.

Now test the spawner by pressing Play
to preview the game. The first thing you
may notice is that the enemy is spawned,
but it won’t move, and we have an error in
the Unity log. The reason for the issue is
that while we have the Player in our scene,
the Zombie prefab is in the Project so the
engine doesn’t understand this exists.
This is not a huge issue, but we need to
change how we’re going to set the goal for
our AI script.

We need to stop the game playing, and
then we need to select the MoveToPosition
script. The fix is going to use the tags that
we looked at in the second tutorial. We’ll
tell the script to set the goal to the object
with the tag Player as soon as it spawns.
So, open the script and you can replace
the existing code with the changes below.

using UnityEngine;

using UnityEngine.AI;

“The enemy is spawned,
but it won’t move”

 �When you drag in the prefab, you’ll
see a wireframe outline of the mesh
to help you position it easily.

public class MoveToPosition :

MonoBehaviour {

 private Transform goal;

 private NavMeshAgent agent;

 void Start()

 {

 goal = GameObject

FindGameObjectWithTag("Player").

transform;

 agent =

GetComponent<NavMeshAgent>();

 }

 void Update()

 {

 agent.SetDestination(goal.

position);

 }

}

Save this, run the game again, and the
error should be gone, and the AI will

GET THE FILES
Remember, you can download all the
project files, models, snippets of code,
and other assets you’ll need to follow along
with this guide at our website – simply visit
wfmag.cc/fps-guide

http://wfmag.cc/fps-guide/

26 Unity FPS Guide

Expanding your first-person shooter
Building the basic engine

work as before. You can then exit the play
mode and we will look at improving the
look of our projectiles.

ADDING WEAPON
PARTICLE EFFECTS
Let’s add some particle effects to the
action – this will make the game look more
engaging. First, some setup: we’re going
to add another camera. We do this so the
particle hit effects render before the rest
of the scene – otherwise, the particle effect
will clip with whatever it hits. To achieve
this, select the Player in the Hierarchy and
expand it until you find the Main Camera,
then right-click and select Camera. We’ll
get a warning if we have two or more Audio
Listeners on cameras, so select Audio
Listener in the Inspector and then right-
click to remove the component.

Check the Depth on the camera
component is 0 rather than the default

of -1. This is telling Unity to render this
camera before the main camera. We’ll also
set the drop-down under Clear Flags to
Depth only. Next, we select the Layer drop-
down to the top-right of the Inspector
window and select Add Layer. We’ll now
see the Tags & Layers tab we used on the
last tutorial. We need to expand the Layers
option and then, in an active empty layer,
type WeaponFX.

Now we need to select our Main Camera
in the Hierarchy. In the Inspector, select
the Culling Mask drop-down and then
untick our new WeaponFX layer. You’ll
notice that the drop-down will now say
Mixed – this is the correct behaviour. Now,

select your new camera and select the
Culling Mask drop-down and then Nothing
from the options. Reselect the Culling Mask
and tick just the WeaponFX layer.

We’re now ready to create a particle
effect and make it a prefab. To make this
easier, we’ll create a new level – from the
Taskbar, select File > New Scene. Save the
previous scene if you’re prompted. In the
Hierarchy, right-click and select Effects
> Particle System. In the Inspector for
the Particle System, reset the position to
0,0,0 and then expand the Particle System
component. We need to uncheck Looping
and change the parameters of Duration
and Start Lifetime to 0.4, the Start Speed

 �The Particle System contains a lot of useful modules
that allow you to control your particle effect.

 �The gradient editor allows you to
control the transparency and colour
of the particles within a timeline.

to 0, and Max Particles to 1. Now expand
the Shape module and then change the
Shape drop-down to Sphere and set the
Scale for the shape to 0,0,0.

If you select Restart from the Particle
Effect window that appears in the Scene
viewport, you’ll see a single particle appear
at a fixed position, then disappear. We’ll
now enable the Size over Lifetime module
and the Color over Lifetime module. Open
the Color over Lifetime module and click
the box to the right of the word Color.
You’ll see the Gradient editor. This has
several sets of arrows that control the
transparency or the colour of the particle
over time.

Let’s add a new arrow along the top
by clicking in the same approximate area
as the other down arrows. We select
this arrow and drag it to be about three-
quarters along the top. Now select the
down-arrow to the top-right and you’ll see
an Alpha slider; change the value from
255 to 0. This should make a nice fade
out when your particle is about to die off.
Next, select the up-arrows that are along
the bottom. This will let you set colours of
your choice. I’ve selected the same orange
colour for both the left and right arrow, but
this is up to your own artistic choice. Finally,
close the Gradient editor and try replaying
your effect by restarting the playback.

We’ll add an additional spark effect on
top of this to make it more dramatic. With
our Particle System still selected in the
Hierarchy, right-click and select Effects >
Particle System. Select the new Particle
System and then, in the Particle System

“We’ll add a spark
effect on top to make it

more dramatic”

Unity FPS Guide 27

Expanding your first-person shooter
Building the basic engine

component, deselect Looping and change
the Start Lifetime and Start Size to 0.2,
and the Duration and Start Speed to 2.
Select and open the Emission module
and change Rate over Time to 0 and then,
under the Bursts parameter, select the
+ to the bottom-right; the defaults are
fine here.

Next, select the Shape module and
change the Shape drop-down to Sphere.
Select the Color over Lifetime module, and
again, open the Gradient editor and set up
the Alpha and Colour settings to mirror the
ones for the first particle. In the Renderer
module, select the Render Mode drop-
down and select Stretch Billboard and then
change the Speed Scale to 0.2 and the
Length Scale to 1.

You can then preview the effects
together; this should be quite satisfying,
but feel free to tweak the settings to your
preference. For ease of identification,
select the first Particle System we made
and, in the Inspector, name it HitEffect.
One last thing is to change the Layer drop-
down to WeaponFX and select Yes; choose
children from the prompt.

As an addition, we’ll add a script to
destroy the particle effect so it won’t
clutter our inventory. In the Inspector,
select Add Component, select New Script,
and name this DestroyEffect, then open
the script and replace with the code below.

using UnityEngine;

public class DestroyEffect :

MonoBehaviour

{

 public float maxTime = 1;

 private float timer;

 // Update is called once per frame

 void Update()

 {

 timer += Time.deltaTime;

 if (timer > maxTime)

 {

 Destroy(gameObject);

 }

 }

 }

Save the script and then return to the
Unity editor. We’ll now drag this object into
our Project window to make a prefab. Next,
we load our original scene from the Project
window – you don’t need to save the
current scene, as we have our prefab.

We now need to make some updates
to our existing scripts. This will allow us
to spawn a particle effect on the exact
point our bullet hits the collider and add
a knockback force to the Zombie enemy.
Let’s first find the BulletHit script in the
Project and double-click to open it. We
then replace the existing script with the
modified code below.

using UnityEngine;

using System.Collections;

public class BulletHit : MonoBehaviour {

 public GameObject particle;

 //When we touch the collider we

disable this object.

 void OnCollisionEnter(Collision

other)

 {

 //Find the contact point on the

object we collided with.

 ContactPoint contact = other.

contacts[0];

 //Set the exact position and

rotation we hit the collider at.

 Quaternion rot = Quaternion.

FromToRotation(Vector3.up, contact.

normal);

 Vector3 pos = contact.point;

 //Spawn our particle using the

above parameters.

 Instantiate(particle, pos, rot);

 gameObject.SetActive(false);

 }

}

 �The shape module allows you to set the shape of
the volume that the effect will be emitted from.

Save this and then we want to open and
replace our MoveToPosition script in a
similar fashion.

using UnityEngine;

using UnityEngine.AI;

public class MoveToPosition :

MonoBehaviour

{

 public float knockbackTime = 1;

 public float kick = 1.8f;

 private Transform goal;

 private NavMeshAgent agent;

 private bool hit;

 private ContactPoint contact;

 private float timer;

 void Start()

 {

 goal = GameObject

FindGameObjectWithTag("Player").

transform;

 agent =

GetComponent<NavMeshAgent>();

 //Set timer to the same a

knockback in first instance.

 timer = knockbackTime;

 }

 void Update()

 {

 if (hit)

 {

 //Allow physics to be

applied.

 gameObject.

GetComponent<Rigidbody>().isKinematic =

false;

THE JOY OF LAYERS
Layers are extremely useful and can be applied
to more than camera rendering. We can use
them to specify which lights would cast on an
object, or which objects can interact with each
other. You can find out more about layers from
the Unity documentation: wfmag.cc/sWAQFT

http://wfmag.cc/sWAQFT/

28 Unity FPS Guide

Expanding your first-person shooter
Building the basic engine

 //Stop our AI navigation.

 gameObject.

GetComponent<NavMeshAgent>().

isStopped=true;

 //Push back our enemy with an

impulse force set via the kick value.

 gameObject.

GetComponent<Rigidbody>().

AddForceAtPosition(Camera.main.transform.

forward * kick, contact.point, ForceMode.

Impulse);

 hit = false;

 timer = 0;

 }

 else

 {

 timer += Time.deltaTime;

 //After being knocked back,

restart movement after X seconds.

 if (knockbackTime < timer)

 {

 gameObject.

GetComponent<Rigidbody>().isKinematic =

true;

 gameObject.

GetComponent<NavMeshAgent>().isStopped =

false;

 agent.

SetDestination(goal.position);

 }

 }

 }

 void OnCollisionEnter(Collision

other)

 {

 //We compare the tag in the other

object to the tag name we set earlier.

 if (other.transform.

CompareTag("bullet"))

 {

 contact = other.contacts[0];

 hit = true;

 }

 }

}

Save this script and move back to Unity
editor, select the Projectile in the Project

window and expand it by clicking the right-
arrow and select the Bullet mesh. In the
Inspector for the mesh, you should see
our BulletHit script. Select the slot labelled
Particle, click the small circle next to it, and
then select our HitEffect particle prefab.

DEVELOPING OUR
ROUNDS SYSTEM
We want to add a rounds system. For this,
we’ll make a new Game Object. Go to the
Hierarchy, right-click in an empty space,
and select Create Empty. In the Inspector,
rename this object to GameManager. We
then select Add Component and then New
Script and call the script GameManager.
Then we will open this and add the
code below.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.SceneManagement;

public class Spawners

{

 public GameObject go;

 public bool active;

 public Spawners(GameObject newGo,

bool newBool)

 {

 go = newGo;

 active = newBool;

 }

}

public class GameManager : MonoBehaviour

{

 public GameObject panel;

 public delegate void RestartRounds();

 public static event RestartRounds

RoundComplete;

 private int health;

 private int roundsSurived;

 private int currentRound;

 private PlayerDamage playerDamage;

 private Text panelText;

 public List<Spawners> spawner = new

List<Spawners>();

 void Start () {

 Time.timeScale = 1;

 panel.SetActive(false);

 playerDamage = GameObject.

FindGameObjectWithTag("Player").

GetComponent<PlayerDamage>();

 panelText = panel.

GetComponentInChildren<Text>();

 foreach (GameObject go in

GameObject.FindObjectsOfType(typeof(Game

Object)))

 {

 if (go.name.

Contains("Spawner"))

 {

 spawner.Add(new

Spawners(go, true));

 }

 }

 }

	

	 void Update () {

 int total = 0;

 �The particle effect will appear on
any scene geometry that your
projectile hits.

Unity FPS Guide 29

Expanding your first-person shooter
Building the basic engine

 health = playerDamage.health;

 if (health > 0)

 {

 for (int i = spawner.Count -

1; i >= 0; i--)

 {

 if (spawner[i].

go.GetComponent<Spawner>().spawnsDead)

 {

 total++;

 }

 }

 if (total == spawner.Count &&

roundsSurived == currentRound)

 {

 roundsSurived++;

 panelText.text =

string.Format("Round {0} Completed!",

roundsSurived);

 panel.SetActive(true);

 }

 if (roundsSurived !=

currentRound && Input.GetButton("Fire2"))

 {

 currentRound =

roundsSurived;

 RoundComplete();

 panel.SetActive(false);

 }

 }

 else

 {

 if (Input.GetButton("Fire2"))

 {

 Scene current =

SceneManager.GetActiveScene();

 SceneManager.

LoadScene(current.name);

 }

 else

 {

 panel.SetActive(true);

 panelText.text =

string.Format("Survived {0} Rounds",

roundsSurived);

 Time.timeScale = 0;

 } } } }

We now need to update the Spawner
script. This is because we want to be able
to trigger the spawners to restart when
we’ve completed a round. The manager will
look at when all the spawners are marked
as depleted and restart spawning when a
new round initialises. So we need to open
our Spawner script and replace it with our
updates below.

using System;

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class Enemy

{

 public GameObject go;

 public bool active;

 public Enemy (GameObject newGo, bool

newBool)

 {

 go = newGo;

 active = newBool;

 }

}

public class Spawner : MonoBehaviour

{

 public GameObject spawn;

 public int amount = 1;

 public float delaySpawn = 1;

 public bool spawnsDead;

 private int getAmount;

 private float timer;

 private int spawned;

 private int enemyDead;

 public List<Enemy> enemies = new

List<Enemy>();

 public void Start()

 {

 GameManager.RoundComplete +=

ResetRound;

 ResetRound();

 while (spawned < getAmount)

 {

 //Increment the amount

spawned count.

 spawned++;

 //Create the prefab as an

instance.

 GameObject instance =

Instantiate(spawn, transform);

 enemies.Add(new

Enemy(instance, false));

 //Removes the spawned object

from the spawner object.

 instance.transform.parent =

null;

 instance.SetActive(false);
 }

 ResetRound();

 }

 public void ResetRound()

 {

 spawnsDead = false;

 getAmount = amount;

 spawned = 0;

 timer = 0;

 enemyDead = 0;

 }

 void Update()

 {

 //Increase timer per frame.

 timer += Time.deltaTime;

 //Do the spawn if our timer is

larger than the delay spawn we set.

 if (delaySpawn < timer)

 {

 //And we haven't reached the

spawn amount.

 if (spawned < getAmount)

NOISES OFF
You can easily add sound effects to game
objects by using the Audio Source component.
By default, these will play the audio as soon
as the object is active in the scene. You can
import standard audio formats: MP3, WAV, and
OGG. A great addition is to add a weapon firing
audio effect to your bullet prefab; each shot will
then play the effect on spawning.

30 Unity FPS Guide

Expanding your first-person shooter
Building the basic engine

 {

 //Reset our timer.

 timer = 0;

 //Set our bool to track

the state of the enemy.

 enemies[spawned].active

= true;

 //Set the enemy to be

active.

 enemies[spawned].

go.SetActive(true);

 //Get ready to set

isKinematic.

 StartCoroutine(SetKinemat

ic(spawned));

 //Increment the amount

spawned count.

 spawned++;

 }

 for (int i = enemies.Count -

1; i >= 0; i--)

 {

 //If another script

disabled the object but we set them

active above.

 if (enemies[i].

go.activeSelf == false && enemies[i].

active == true)

 {

 //Reset the spawn

position and set our tracking bool that

they are not active.

 enemies[i].

go.transform.position = transform.

position;

 enemies[i].active =

false;

 enemyDead++;

 }

 }

 if (enemyDead == enemies.

Count)

 {

 spawnsDead = true;

 }

 }

 }

 IEnumerator SetKinematic(int id)

 {

 //We set isKinematic at the start

of the next frame to avoid confusion with

other commands.

 yield return null;

 enemies[id].

go.GetComponent<Rigidbody>().isKinematic

= true;

 }

 private void OnDrawGizmos()

 {

 //Draw the wireframe mesh of what

we intend to spawn in our editor.

 Gizmos.color = Color.red;

 if (spawn != null)

 {

 Gizmos.DrawWireMesh(spawn.

GetComponent<MeshFilter>().sharedMesh,

transform.position, spawn.transform.

rotation, Vector3.one);

 }

 }

}

We need to make one very small
change to an existing script. Open the
EnemyDamage script and replace this with:

using UnityEngine;

public class EnemyDamage : MonoBehaviour

{

 private int hitNumber;

 private void OnEnable()

 {

 hitNumber = 0;

 }

 void OnCollisionEnter(Collision

other)

 {

 if (other.transform.

CompareTag("bullet"))

 {

 //If the comparison is true,

we increase the hit number.

 hitNumber++;

 }

 if (hitNumber == 3)

 {

 gameObject.SetActive(false);

 }

 }

}

DISPLAYING OUR
ROUNDS SCOREBOARD
We’ll also set up a new Panel in our canvas;
this will let us display a round scoreboard
and a message when you run out of health.
In the Hierarchy, right-click the Canvas and
select UI > Panel. Select the new Panel
and, in the Inspector, change the name

AMAZING SCENES
You can create a game object with a script that
is persistent in your scene (or set of scenes)
and will not get disabled or deleted. Essentially,
they take in input from other scripts, can control
elements in other game objects, and help
manage other elements of gameplay. I tend to
refer to these game objects as managers, but
you may see these called a slightly different
name elsewhere.

 �Consider adding some tips/instructions
to your scoreboard for your players.

Unity FPS Guide 31

Expanding your first-person shooter
Building the basic engine

to ScorePanel. You might want to change
some of the other parameters in the Image
component, such as the opacity and colour
of the panel image.

We now right-click in the Hierarchy
with the new panel still highlighted and
choose UI > Text. You can try changing the
Alignment, font size, and colour of the text
component in the Inspector. Once you’re
happy with the look of the panel, select
the GameManager object and drag the
ScorePanel into the slot called Panel on
the Inspector window.

We now have a complete experience in
terms of our game loop; we’ll know when
we’ve completed a round, and when we
get down to no-health we’ll see the total
rounds complete and have a chance to
restart the game. To progress to the next
round or to restart, we can use the binding
for Fire2 which equates to the right-mouse
button or left ALT on the keyboard.

IMPLEMENTING OUR
GAME FRONT-END
It would be quite cool to add a front-end
menu and be able to play through the
game as a standalone executable like any
other PC game. Let’s start with the main
menu first, and create a new scene by
selecting File > New Scene and saving our
current work.

In the new scene, go into the Hierarchy
and right-click and select UI > Canvas. Next,
right-click and select UI > Panel. As with
the score panel, try changing the defaults
to give this a look and feel that suits your
game. Again, keep the panel selected, then
right-click and select UI > Text.

I’d place this at the top of the canvas by
selecting the Anchor Presets from the Rect
Transform in the Inspector. Remember
last time, when we held the SHIFT key to
change the behaviour of the anchor? We’ll
do this again and then select the icon with
the blue dot at the top-middle of the inner
square. You’ll then need to type in the
value of 0 to Pos Y.

You should also change the values for
the width and height of the Rect Transform
to 300 by 200. Choose a font size of about
70 and set your alignments to the centre
for the Text component. You can then
come up with a title for your game; I chose
Zombie Panic for mine.

We’ll make two buttons; one to start
a new game and the other to exit. First,
select the Panel from the Hierarchy,
then right-click and select UI > Button.
We then repeat the process to add our
second button. The two buttons will be
overlaid, so with the second button still
selected, we can use the move tool. Select
the green arrow that’s pointing up in the
Scene window, then drag it downwards
when highlighted.

Next, we’ll expand the Button object by
selecting the right-arrow next to it in the
Hierarchy. You should see another Text
object attached. Select this and then in the
Inspector change the text from Button to
Exit. We expand the first button we created
and repeat the process; however, we want
to replace text with Start.

We need to make a script to start or
exit the game. We can then link this to the
buttons with an OnClick event. First, select
the Canvas in the Hierarchy and then in
the Inspector select Add Component.
We then select New Script and name this
MenuScript, then open it ready to replace
it with the code below.

using UnityEngine;

using UnityEngine.SceneManagement;

public class MenuScript : MonoBehaviour {

 public void StartGame()

 {

 SceneManager.LoadScene(1);

 }

 public void ExitGame()

 {

 Application.Quit();

 }

}
Save the script and return to Unity

editor, then we can reselect the first
Button we created. In the Inspector, look
for the OnClick option. To the bottom-
right is a +, so click this and a new entry
will appear. Select the Canvas and drop
this into the slot that displays None
(Object). Now select the drop-down
that says No Function and then choose
MenuScript > StartGame. Repeat the step
with our exit button, but this time choose
MenuScript > ExitGame.

We now save this scene by selecting
File > Save Scene as… from the taskbar,
then go back to the taskbar and select Build
Settings. In the new window, select the Add
Open Scenes button. Close the window
and now load our game scene. Next, select
Build Settings and again Add Open Scenes.
We’re now in the position to make an
executable. All we need to do is select Build
and Run, select a suitable folder and file
name for the game, and Save.

We’ll now be able to try our menu
system and play through the entire
experience from start to finish. There are
still many more improvements we
can make, but you can see how we’re
building up the layers of a complete
game experience.



�Just using the UI elements
we are familiar with, we
can create our title screen.

 �Having the spawns separated and in
their own ‘caves’ increases the challenge.

“We should have a
complete experience in
terms of our game loop”

Let your shooter take shape with walking zombies, lighting,
sound effects, and a castle to explore

Add levels,
models, and more

Creating a level
Construct a spooky castle arena
for our players

Add doors, triggers,
and switches
Create elements that
control your level’s flow

Expanding your
level gameplay
Upgrade your shooter with
medikits and limited ammo

34.

40.

46.

Create and rig
a character
in Blender
Construct, texture, and
animate a walking zombie

Add lighting
and visual effects
Use lighting and visual
effects to create atmosphere

Add sound
and audio
Heighten tension and
excitement with sound effects

52.

64.

70.

32

Build Your Own

in Unity
FIRST-PERSON SHOOTER

33

Zombie meshes,
level assets and
atmospheric lighting
will transform your
shooter’s look and feel.

34 Unity FPS Guide

Creating a level
Levels, Models, Sounds, and More

evel design is where designers
take all the various components of
a game and piece them together
into one cohesive chunk of
entertainment, and doing it well –

especially when creating opportunity for player
creativity and including a satisfying narrative
– can be extremely complicated. For a simple
game design with few moving parts, though,
level design doesn’t need to be difficult and can
be lots of fun.

LEVEL DESIGN GOALS
Before you can begin building a level, it’s
important to understand the game your level’s
for. This includes the player’s abilities, enemies,
and power-ups. There may be an overall narrative

L progression you want in your game, in which
case it’s important to decide where the level will
fit in, and how the level will further this narrative.
Even if your game has no story, you’ll need to
decide on what the player will face based on their
experience at that point in the game, and if you’re
going to introduce a new mechanic, then the level
will need to feature gameplay focusing on that
mechanic, and perhaps how it builds upon other
mechanics from previous levels.

Depending on your game, the goal of your
level could be something as simple as reaching
the exit, surviving for as long as possible, or
something more complex, broken down into
smaller objectives, like finding your way into
a building, getting past the guards, and safely
guiding an ally out of the building.

Now we have the basics in place, let’s create
a level that players will remember

AUTHOR
ANDREW PALMER

Starting out as a hobbyist level designer in the nineties, Andrew has
contributed to a long list of published titles in design, art, and technical art
roles. He currently works for indie game developer 17-BIT, in Kyoto, Japan.

Creating a level
 �Prison Break: the view from the

start of our castle level.

Unity FPS Guide 35

Creating a level
Levels, Models, Sounds, and More

 �Our castle stage isn’t huge,
but its winding layout
means it takes a little time
to explore.

In the original Doom, for example, the goal
of all the levels was simply to reach the exit,
maybe finding a key to open a door in order
to progress. Players weren’t really guided by
anything other than the sound of the next group
of monsters that needed to be dispatched, or
the sight of the aforementioned key or other
valuable item sitting in a darkened room,
beckoning them inside. I personally remember
exploring Doom’s maze-like levels, feeling lost
and trying to find the route forward, but often
stumbling across secret areas before I finally got
back on the right path.

Most modern FPS games aren’t much more
complicated than this, but the keys and doors
which served to guide the player along a
predetermined path are replaced with other
things that help drive the narrative. Levels tend
to be a lot more streamlined and linear, often
with elaborate set-pieces, which are usually tied
into the story. These games aim to provide a
memorable, focused experience, where there’s
no potential to get lost, or secret areas to
distract from the experience the designers want
to craft for the player.

There are exceptions, of course, with titles
such as the open-world Far Cry series, and
immersive sim Deus Ex putting the player in a
world with consistent and predictable rules,
and providing a set of tools that encourage
experimentation, allowing missions to be solved
in a variety of ways – sometimes in ways even
the designers hadn’t planned for.

There’s also been a resurgence of the simpler
FPS games of past generations that put a
greater reliance on the player’s navigational and
combat skills, and the return of secret areas to
uncover. The 2016 reimagining of Doom brings
back some of the complex, secret-filled level
design from earlier games, while upping the

focus on intense combat against a bestiary of
demons, with all the graphical bells and whistles
that modern technology allows. Games such as
Ion Fury and Wrath: Aeon of Ruin even use the
actual game engines (from Duke Nukem 3D and
Quake, respectively) used by games released in
the nineties.

For Zombie Panic, we’ll focus more on the style
of level design used in older games. There’s a
lot to learn, and we’ll mix in lessons learned
since the early days of the FPS to improve the
experience for our players.

LOOKING AT THE PARTS
In Zombie Panic, there are a small number
of building blocks for our level, so it’s up to
us to make the most of these to create an
entertaining experience. Not only do we need
to think about the individual parts that make up
the game, but we must think about how these
parts interact with each other in order to design
a level that makes the most of what we have.

Player
Walk, Shoot, Punch,
Jump

Zombie
Follow player, Attack
player (drain health)

Zombie Spawner Create more zombies

Health Pick-up
Restore the player’s
health

Ammo Pick-up
Allows the player
to shoot instead of
punch (less danger)

 �Views to later parts of the level give
the player an idea of where to head.

35

36 Unity FPS Guide

Creating a level
Levels, Models, Sounds, and More

 �Castle level before adding
doors and triggers.

In addition to what’s already in the game, we’ll
create some environmental components that
allow us to control the level flow and guide the
player along the path we wish them to take.
You’ll learn about how to make these in the next
chapter (page 40).

Door

Block player and
zombie movement,
Open, Close. Can
be locked.

Key
Allows locked doors
to be opened

Switch
Allows player to open
or close doors

Trigger
Invisible switch we will
use to spawn zombies
and activate doors

Although this may seem limiting, there’s a lot
that can be done even with just these parts. The
zombies are simple and will always move towards
the player, but we can spawn them where we
want at just the right time using triggers, and we
can use doors to trap them or allow the player to
redirect them. The key can be used to open up
multiple new areas at once and give the player
a choice of route. Although a key is functionally
similar to a switch that opens a door, it feels
fundamentally different to the player, and makes
more logical sense when placed far from the door
(or doors) it unlocks.

We can ration the ammo and health so that
we know players are likely to need to use their
punch attack at certain times, or run out of
ammo during a zombie onslaught and be forced
to run looking for more, urging them forward
into the next horde of zombies we unleash.

The other thing we have control over is how
we build spaces and where we place walls, stairs,
floors, and other architectural elements. Spaces
should be created to make combat with our
enemies interesting, and tailored to encourage
certain types of combat or situation to occur
based on the level goals.

EXPLORING DESIGNS
Before you begin building a level, it’s a good
idea to write some notes and sketch some ideas
for the shape of the environment and path
you’d like the player to take. Although it’s rare
that the level you build will be exactly like your

initial design, it helps to get an idea in your head
before starting. Of course, you might prefer to
skip notes and start blocking out the level in 3D,
and that’s fine too, but try to at least have an
idea of what it is you want to create first. I find
writing notes and sketches really helps to get me
started with the blocking out process.

BUILDING THE LEVEL
There are a few options when it comes to
turning your ideas into reality. You can use an
external tool, such as Blender, to model the
level and import it into Unity, or tools such as
ProBuilder, which let you work directly inside the
Unity editor. While external tools may provide
more freedom, in general it’s best to start with
something inside Unity so that you can play
with scale, forms, and spaces and quickly test
the game without the extra step of importing
geometry from an external program.

When you first start creating your level, it’s
important to get a sense of scale by building a
few simple rooms, doorways, stairs, and other
things you wish to incorporate into your level.
Failure to do this could result in a massive
amount of wasted work if you end up making
a level that feels too cramped, or too large
because you didn’t feel out the scale before
starting. Even worse, you could end up making
something too small for your enemies to
navigate, so make a small test environment and
put some enemies in it before you start building
your level. If you’re making multiple levels, you

 �An early scale test for
the castle level, with
navmesh overlay.

“There are a few options
when it comes to turning

your ideas into reality”

Unity FPS Guide 37

Creating a level
Levels, Models, Sounds, and More

INSTALLING
PROBUILDER
Although ProBuilder is a free
and supported by Unity, it needs
to be downloaded through the
package manager. To install,
open up the Package Manager
(Window > Package Manager),
and wait while it refreshes the
list of available packages. Once
the list of packages has been
loaded, select ProBuilder and hit
the ‘Install’ button in the bottom
right corner. From there, you
can create ProBuilder meshes
by pressing CTRL+K to create
a cube, or CTRL+SHIFT+K to
open a shape menu, allowing
you to create a variety of
shapes, including cylinders and
staircases. There will also be a
new menu item in the top menu
bar (under Tools > ProBuilder)
with more options, and any
mesh created by ProBuilder will
have a special component on
it, allowing you to toggle editing
features easily.

only need to do this once or twice until you get
a good sense for the scale things should be in
your game, and you can always refer back to
your tests, or add to them in order to ensure
you are working at the right scale.

Likewise, it’s a good idea to make combat tests.
Let’s say you have multiple enemy types, and
different weapons that can be used to dispatch
them. In order to ensure that a particular
combination of enemies is fun to fight, you
should test them out in a simplified environment
before working it into your level. The simplified
environment or test level can be used to quickly
iterate on your design, and then you can copy it
into your level once you’ve refined it.

For my castle level, I began by blocking out
some simple shapes inside ProBuilder, testing
the scale of doorways, staircases, and other
elements I’d need to make sure they could
be easily navigated by both the player and
zombies. After a while, I figured out the scale
I wanted, and moved into Blender, where I’m
more comfortable with the modelling tools, and
started to build parts that I could quickly piece
together inside Unity.

The parts I made were all turned into prefabs,
with collision added and set to static. Doing this
meant that all my parts would work with the
navmesh baker, which requires static geometry
to create the navmesh. It also has the benefit of
being easier to update colliders and any other
components attached to the parts with changes
being reflected across the entire level, just by
editing a single prefab. It’s also easy to pass
these placeholder parts to an environment artist
to turn into beautiful, finished assets, but don’t

worry about that now, as it’s the design we need
to focus on.

After making enough parts, I began to build up
the level gradually until I had something similar
to what I had initially imagined – even if it looked
nothing like my messy sketches! Although this
level was initially devoid of gameplay, save the
odd zombie to check the scale was OK, I had
thought about the route I wanted the player
to take through the level, as well as what they
would see as they passed through it. Although
this route wasn’t completely confirmed after
making my notes, it began to solidify as I saw the
level forming and spent more time looking at it in
three dimensions.

CONTROLLING LEVEL FLOW
We’ve all had the experience of playing a game
and getting lost. Sometimes we go the right way,
but don’t notice something and then spend ages
looking for what was right under our noses all
along, and sometimes the level’s so complex, or
its scenery so similar, that we just stay lost. In
general, good level design should try to mitigate
this problem as much as
possible, and there are many
ways to keep your players on
the right path.

Players will tend to
remember anything that looks
important along their path
through a level; the locations
of locked doors, currently
unreachable items, and even
just unique decoration (visual
markers) will be noted so that
if the player finds something
relevant to their discovery,
such as a key or new ability,
they can easily return to
that point.



�Some of the level parts
created in Blender for
the castle level.

38 Unity FPS Guide

Environment art can aid level design by
creating strong visual markers that players
remember, and gradually build a mental map
around. Likewise, lighting and sound can be
used to draw players toward important locations
and away from others. However, there are
things we can do in the design of spaces to push
players forward, or aid their understanding of
said space.

Just like in real life, players become more
familiar with something the more they are
exposed to it. Creating a space the player will
revisit from several angles allows players to
figure out where they are in relation to where
they’ve already been, and build a much better
mental map of their environment than if they
were walking through a set of rooms and
corridors. While this trick takes a bit more
thought than placing lights or other markers to
highlight the route, it can not only help players
navigate the level, but also reinforces the sense
that they’re in a real place and not just walking
through a movie set.

Of course, there are times when you can’t
design in a way that allows players to get
familiar with the environment. If your game
has a level where you must run out of a huge
underground complex before it blows up, then
you’ll have to rely on clear visual markers to
guide the player out.

Although Zombie Panic features a simple
key and locked door, some games unlock new
areas with abilities in place of keys. In the Legend
of Zelda series, players will notice elements
throughout the world that they’re not equipped
to make use of, such as mounted hooks around
the environment. Later on, after defeating a
tough enemy, the player receives a grappling
hook which can be used with the mounted
hooks to access entirely new areas. This is much
more work to implement than locked doors,
since it requires game design and level design

to work closely together, but a great deal more
rewarding and interesting for the player.

Challenge can also force players to avoid an
area until they’ve gained a certain amount of
power or experience. RPGs often do this, but it
can be done in FPS games, even within the space
of a single level, by putting difficult enemies
near the beginning, and powerful weapons
elsewhere. This also has the added benefit of
providing two ways to tackle the situation: face
down the enemy under-prepared, or get loaded
up to tip the balance. Players who manage to
defeat difficult situations without preparing
are also able to glean added satisfaction from
overcoming the increased challenge.

With Zombie Panic, there are many other ways
to control how players can move through your
level. For this level, I used several techniques in
order to guide players through the level:

• �The player can see out from the start, and
back to the start from other parts of the level,
allowing them to see their progress.

• �Ammo packs placed in front of the player in
the courtyard help pull the player forward,
triggering even more zombie spawners.

• �The route passes the main gate, which is a
large red door. Hopefully, this tells the player
that it is important.

• �From the locked door, the key is visible. The
player just needs to figure out how to reach it.

• �Likewise, the locked door is visible and
directly in front of where the key is found.

• �The entire level can be seen from the
battlements, helping the player understand
the space.

• �The main gate switch is right above the gate
itself, with a window allowing the player to
see down to the gate.

Of course, you may not want to guide players
clearly all the time; secrets and alternative
routes should be hinted more subtly, allowing
the player to discover things by themselves,
which is far more satisfying than just doing what
the designer wants.

 �Finding the locked door and spotting
the key in Zombie Panic.

Creating a level
Levels, Models, Sounds and More

PROBUILDER
GEOMETRY
Geometry you create using
ProBuilder will automatically
have a collider attached, saving
you the hassle of adding it
manually. ProBuilder geometry
is marked as non-convex, which
enables you to make whatever
shape you want without
worrying about breaking the
parts into convex chunks to get
accurate collision. However,
convex mesh colliders – and
especially box, capsule, and
sphere colliders – are much
better for performance than
non-convex mesh colliders. Not
only that, but you will not be
able to use non-convex mesh
colliders with rigidbodies, so if
you need to add collision to a
moving object, such as a door,
you may have to manually set
up the collision shapes after
building the mesh.

Unity FPS Guide 39

Creating a level
Levels, Models, Sounds, and More

COMBAT DESIGN
Although combat design is also closely related
to game design, it’s also a vital part of level
design for FPS games. It’s especially important
when there are multiple types of enemies
with different abilities, as putting certain
combinations of enemies can make situations
more fun and engaging, or prove frustratingly
difficult. Getting the right balance of enemies,
along with power-ups (if relevant to your game),
can be tricky.

In general, you should try to place each enemy
where it will be most effective. If your game has
flying enemies, make sure there’s room for them
to fly; if the game has charging enemies, make
sure there isn’t so much cover the player can
avoid them too easily. If introducing an enemy
for the first time, make sure to do it in a way that
the player will notice it and see what makes that
enemy different.

In Zombie Panic, the enemies use the
navmesh to get to the player, so placement is
less important for combat. What is important,
however, is making sure zombies spawn
relatively close to the player so that there are
enough zombies to
overwhelm the player
at key moments.
In our castle level,
there are a few
places where this can
happen, one of which being the large courtyard.

Initially, the zombies pouring into the
courtyard would chase the player in a relatively
straight line that not only looked odd, but was
also not at all threatening. In order to somewhat
reduce this problem, I added some cover objects
to split up the navmesh and hopefully force the
zombies to take slightly different routes to get
to the player. Doing this made the space feel
a little more interesting, and also caused the
odd zombie to split off from the pack and go a
different way around the obstacles, increasing
the chance the player could be surrounded.

Allowing zombies to jump down from above
by placing Off Mesh Links to connect areas of
the navmesh had a more positive effect on the
combat, as it made the zombies feel a little less
predictable and it became easier to surprise the
player, such as the first time the locked door
room is entered. In fact, the zombies in this
room are some of the most fun to fight in the
whole level.

TESTING AND REFINEMENT
Once you’ve built your level, it’s really important
you test it to make sure there aren’t any major
bugs and that it can be completed. Play through
it a few times to make all the zombies spawn,
doors open, and everything works as it should.

It’s actually quite tricky to judge whether your
own level is fun because you’ve spent so long
making it, and will know every nook and cranny
by the time it’s finished. To really test your
level, you should get a couple of friends who’ve
never played it before. If you can, sit behind
them and make notes as they play, but don’t

immediately tell them
how to progress if
they appear stuck. Be
patient! Once your
testers have finished
their playthrough, ask

them what they thought, whether they enjoyed
it, and then ask specifically about issues you
noticed while they were playing. Write notes
of their answers and compile a list of changes
you would like to make to the level. Don’t just
do everything your friends suggest, but try to
think why problems occurred and how to fix
or improve the level while staying true to the
experience you were aiming to create.

Once the level has been tested by one player,
make any changes you deem necessary and
get someone else to test it. You can repeat the
process until testers are not having any major
problems and you’re happy with the level.

JUST THE BEGINNING
This chapter barely scratches the surface of
designing levels, which is an incredibly deep
topic that would require an entire book to fully
explain, but hopefully you now have enough
basic knowledge to start creating interesting
levels for your game.

“It’s tricky to judge whether
your own level is fun because

you’ve spent so long making it”
 �Obstacles and Off Mesh

Links are used to make the
zombies less predictable.

40 Unity FPS Guide

Adding doors, triggers, and switches
Levels, Models, Sounds, and More

Create elements that control the flow of your level

aving a big, open level full of
zombies is a good start, but if there
is nothing to control the flow, then
all that players will experience is
the basic mechanics of the game.

Doors, triggers, and switches are some of the
simplest methods of directing gameplay, but
since they’re easily understood by players and
easily implemented, they are some of the most
used and effective. Here, we’ll implement a
simple but expandable system for making doors
that can be opened by switches, and add a new
component that makes our spawners a whole
lot more useful. Let’s dive in.

TRIGGERABLE BASE CLASS
Before we start writing any code, it’s important
to take a moment to think about why it’s needed
and how it should work. In this case, we need
doors that can be triggered by switches, and

trigger volumes, but later on we may
also want to trigger other things, such
as spawners, animations, and sound
effects in the same way.

To make this easier, I decided
to create a base class, named
Triggerable, that the door, spawner,
or anything else that can be triggered
can inherit from. This way, we don’t
need to write a separate trigger class
for each type of thing we want to
trigger, and our triggers can trigger
a list of different Triggerable objects,
and trigger them all at once and in
the same way.

Adding doors,
triggers, and switches

H using UnityEngine;

public enum TriggerAction
{
 Activate,
 Deactivate,
 Toggle,
}

public abstract class Triggerable :
MonoBehaviour
{
 public abstract void Trigger (TriggerAction
action);
}

The code defines an abstract class,
meaning an instance of Triggerable cannot be
created, and any class deriving from it must
override its members, which in this case is
the single function named Trigger. The enum
TriggerAction must be passed as a parameter
to the Trigger function, and can be used to
allow different functionality when Trigger is
called, such as open or close in the case of 	
the door.

public class Door : Triggerable
{
 public override void Trigger (TriggerAction
action)
 {
 }
}

 �By adding the
OnCollisionEnter
function to the Switch
class, we can make the
Trigger activate its
targets when the player
touches the cube.

AUTHOR
ANDREW PALMER

Starting out as a hobbyist level designer in the nineties, Andrew has
contributed to a long list of published titles in design, art, and technical art
roles. He currently works for indie game developer 17-BIT, in Kyoto, Japan.

Unity FPS Guide 41

Adding doors, triggers, and switches
Levels, Models, Sounds and More

This is the minimal Door class, with no
functionality. As you can see, it derives from the
Triggerable base class, and overrides the Trigger
function. We could also modify the spawner
code to derive from Triggerable in the same way,
but it might be easier and more useful to make
a script that activates or deactivates its parent
GameObject, so let’s just do that to see a simple
example of a full Triggerable derived class.

using UnityEngine;

public class TargetActivator : Triggerable
{
 public bool deactivateOnAwake = true;

 void Awake ()
 {
 if (deactivateOnAwake)
 {
 gameObject.SetActive(false);
 }
 }

 public override void Trigger (TriggerAction
action)
 {
 if (action == TriggerAction.Activate)
 {
 gameObject.SetActive(true);
 }
 else if (action == TriggerAction.Deactivate)
 {
 gameObject.SetActive(false);
 }
 else
 {
 gameObject.SetActive(!gameObject.
activeSelf);
 }
 }
}

This TargetActivator class can be used to
activate and deactivate any GameObject it’s
attached to. While we wouldn’t want to do that
for something that would visibly vanish when
deactivated, it’s perfect for our spawners. As you
can see by looking at the code in the Trigger
function, the TriggerAction parameter can
be used to activate, deactivate, or toggle the
GameObject on or off. However, we don’t yet
have a Trigger class, so let’s make one.

THE TRIGGER
In order to call the Trigger
function of our Triggerable
derived classes, such
as the TargetActivator
just shown, or the door
(which we’ll get to in the
next section), we’ll need a
Trigger class.

At its simplest, a Trigger
is an invisible volume
that calls the Trigger
method on a targeted
Triggerable component
when something enters
the volume. In order to
detect when something
enters the volume, we’ll
need to first create a
new GameObject in the
Scene view and attach a
BoxCollider to it, with the
‘Is Trigger’ option enabled. Once that’s done, we
just need to attach a minimal Trigger script.

using UnityEngine;

public class Trigger : MonoBehaviour
{
 public TriggerAction action =
TriggerAction.Activate;
 public Triggerable[] targets;

 void OnTriggerEnter (Collider other)
 {
 if (other.CompareTag("Player"))
 {
 TriggerTargets();
 }
 }

 public void TriggerTargets ()
 {
 foreach (Triggerable t in targets)
 {
 if (t != null) // Check in case a
target is destroyed
 {
 t.Trigger(action);
 }
 }
 }
}

 �A plan view of the castle
game environment; the red
dots are zombies.

42 Unity FPS Guide

Adding doors, triggers, and switches
Levels, Models, Sounds, and More

 �Our finished level with
all its doors, switches,
and triggers added.

Now place a spawner
somewhere in the scene
and add a TargetActivator
component to it. The
TargetActivator will set
the spawner to inactive
when the game begins, so
nothing will spawn; we’ll
use the Trigger we just
created to make things
happen. In the Inspector,
add the spawner to the
‘Targets’ list of the Trigger.
Now when you play the
game and walk into the
Trigger, zombies should
start spawning.

We may not even want
to use a volume, and instead attach the Trigger
to another GameObject, and directly trigger the
targets when something happens in another
script; for example, we could attach the script
to an enemy and open a door only when the
enemy is killed. In order to have this flexibility,
the TriggerTargets function is public and can be
called by other classes.

MAKING A DOOR
Now that we’ve seen how to create a Triggerable
class, and have made a Trigger with which to
trigger them, we can get to work on the door,
which due to collision and animation is a little
more involved than the TargetActivator class –
but don’t worry, it’s not too difficult.

First of all, we need to create a solid object
with a rigidbody, so create a cube and assign a
Rigidbody to it, and make sure the ‘Is Kinematic’
option is on, as we’ll control the movement of
the door in code. Scale the cube to the shape
you’d like your door to be. Next comes the fun
part: writing the door code.

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

[RequireComponent(typeof(Rigidbody))]
public class Door : Triggerable
{
 public float moveSpeed = 5f;
 public Vector3 moveOffset;

 private Vector3 _startPosition;

 private Vector3 _endPosition;
 private Vector3 _targetPosition;
 private Coroutine _update;
 private Rigidbody _rigidbody;

 void Awake ()
 {
 _rigidbody = GetComponent<Rigidbody>();
 _rigidbody.isKinematic = true;

 // Transform the offset so that it works
even when the door is rotated
 Vector3 offsetLocal = transform.
TransformVector(moveOffset);
 _startPosition = transform.position;
 _endPosition = _startPosition +
offsetLocal;
 }

 // Add the other functions here
}

The door’s public variables define the speed
at which it will move, and the offset of the
movement from the door’s initial position. Since
we’ll be moving the door with code, it’s helpful to
calculate the start and end positions of the door
so we can avoid doing it every frame as the door
moves. This can be done in the Awake function,
and you should notice here that the offset is
being transformed into the local space of the
door before the start and end positions are
calculated. Doing this means that once a door
has been set up, it can be copied and moved
around the level, and the offset will always be
the same relative to the door’s transform.

public override void Trigger (TriggerAction
action)
{
 // Support the door opening and closing
 if (action == TriggerAction.Toggle)
 {
 if (_targetPosition == _endPosition) {
_targetPosition = _startPosition; }
 else { _targetPosition = _endPosition; }
 }
 else
 {
 if (action == TriggerAction.Deactivate) {
_targetPosition = _startPosition; }
 else { _targetPosition = _endPosition; }
 }

Unity FPS Guide 43

Adding doors, triggers, and switches
Levels, Models, Sounds and More

DOOR? I DIDN’T
SEE NO DOOR!
Although the door will block
player collisions, you might
notice that zombies just pass
straight through. While a
zombie that can walk through
closed doors is certainly
terrifying, in the interest of
fairness it’s better if they’re
also blocked like the player. To
make the zombies aware of the
door, we must add a Navmesh
Obstacle component. A
Navmesh Obstacle is basically
a collider that dynamically
affects the navmesh. Assign a
Navmesh Obstacle component
to your door and enable the
‘Carving’ flag, which tells the
Navmesh Obstacle script to
update the navmesh when
the parent object has stopped
moving. Carving can be set
to update while the object is
moving, but this has a higher
performance penalty, and is
not really required for simple
doors, although you might want
to enable it for large and slow-
moving doors.

 // Use a coroutine so we only update when
the door is moving
 if (_update != null)
 {
 StopCoroutine(_update);
 _update = null;
 }
 _update = StartCoroutine(MoveToTarget());
}

Since the Door is a Triggerable derived class,
it must implement the Trigger function. In this
code, the target position of the door is first
determined by the action parameter, and then
a coroutine is started in order to move the
door. We could use an Update function on the
door, but since doors are mostly stationary, it
would waste a lot of CPU power if the game was
constantly updating all the doors in the level,
regardless of whether or not they were moving.

 IEnumerator MoveToTarget ()
 {
 while (true)
 {
 // Calculate distance to the target
position and also
 // the distance we can move this frame
 Vector3 offset = _targetPosition -
transform.position;
 float distance = offset.magnitude;
 float moveDistance = moveSpeed * Time.
deltaTime;

 // Keep moving towards target until we
are close enough
 if (moveDistance < distance)
 {
 Vector3 move = offset.normalized *
moveDistance;
 _rigidbody.MovePosition(transform.
position + move);
 yield return null;
 }
 else
 {
 break;
 }
 }

 // Ensure we move exactly to the target
 _rigidbody.MovePosition(_targetPosition);

 _update = null;
 }

The coroutine itself is quite simple, just
moving the door a little each frame until the
target position is reached.

Now that we’ve written the door code, try
adding it to you cube door and hooking up a
Trigger to activate it. The door should now open
when you enter the trigger. Try adding another
trigger to close the door, or better yet, modify
the code to make the door open when the player
enters the trigger and closes when they leave.

FUN WITH SWITCHES
The Trigger class we made works pretty well,
but what if we want the player to be able to
see it? Well, in that case, a switch might be a
better tool for the job. A switch works in more or
less the same way as a trigger, but has a visual
representation that can change state to show
that it has been activated, and collision can be
handled differently so that it activates when the
player pushes against it.

It’s easy to create a switch by using the Trigger
component we already made. First create a
cube and add a Trigger component to it. The
trigger won’t work because the cube’s default
Box Collider isn’t a trigger, but we want this
for the switch, so leave it as it is. Create a new
Switch script and add it to the cube. If we add an
OnCollisionEnter function in the Switch class, we
can make the Trigger activate its targets when
the player touches the cube, but we also want
a visual state change of the cube so that the
player knows the switch has been pressed.

using UnityEngine;

[RequireComponent(typeof(Trigger))]
[RequireComponent(typeof(MeshRenderer))]
public class Switch : MonoBehaviour
{
 // The materials we will swap between when
the switch state changes
 // Active means the switch CAN be pressed,
inactive means it can't
 public Material activeMaterial;
 public Material inactiveMaterial;

 private Trigger _trigger;
 private MeshRenderer _renderer;
 private bool _pressed = false;

44 Unity FPS Guide

Adding doors, triggers, and switches
Levels, Models, Sounds, and More

 void Awake ()
 {
 _trigger = GetComponent<Trigger>();
 _renderer =
GetComponent<MeshRenderer>();
 _renderer.sharedMaterial =
activeMaterial;
 }

 void OnCollisionEnter (Collision collision)
 {
 if (!_pressed && collision.gameObject.
CompareTag("Player"))
 {
 _trigger.TriggerTargets();
 _renderer.sharedMaterial =
inactiveMaterial;
 _pressed = true;
 }
 }
}

As you can see, the basic code for the switch
is very simple; it piggybacks on the functionality
of the trigger and just adds a few additions, such
as the material state change when it’s triggered.
This version of the switch is very simple and
only works once, but you could modify it to turn
things on, reset after a couple of seconds, and
then turn them off the next time it’s pressed.

DRAWING GIZMOS
We’ve placed our door and trigger setup in
the level, but setting up the movement of the
door was a bit annoying because we couldn’t
see where it would move to. Also, we can’t see
the trigger to select it, so we need to use the

outliner, and once it’s selected, we
have to check the targets list to see
which Triggerable objects it targets.
If your game uses a lot of triggers,
doors, and switches, then you
might find yourself wasting a lot of
time simply because setting them
up takes longer than it should.

To make setting up switches,
doors, and any other Triggerables
we might make, we’ll write some
DrawGizmos functions that makes
it obvious how they move and how
they’re connected. If you haven’t
used Unity’s Gizmos class before,

it’s a handy tool that allows you to draw lines,
primitives, and meshes in the Scene view, which
can be helpful as a debugging aid, or to show
extra information about the objects in your
scene and the connections between them. For
objects that are invisible in games, such as our
trigger, we may also use gizmos to draw it in the
Scene view to make selecting it easier.

First, it would be helpful to see which objects
are targeted by a trigger without having to
figure it out from the targets list. This can
be accomplished by adding an OnDrawGizmos
function to the Trigger script. In this example, in
addition to the connection lines, a small cube is
also drawn at the centre of the trigger to make it
visible and easily selectable.

// Gizmos function for the Trigger
void OnDrawGizmos ()
{
 //Draw a cube to make it possible to
select the trigger in the scene view
 Gizmos.color = Color.green;
 Gizmos.DrawCube(transform.position,
Vector3.one * 0.25f);

 // This first null check avoids an editor
error on creation of the Trigger
 if (targets != null)
 {
 foreach (Triggerable t in targets)
 {
 if (t != null)
 {
 Gizmos.DrawLine(transform.
position, t.transform.position);
 }
 }
 }
}

Note that if you would like the gizmos to be
drawn only when an object is selected, you can
add an OnDrawGizmosSelected function instead.
Both functions work together, so you can have
the OnDrawGizmos function draw the small cube
for selection, and then only draw the connection
lines when the trigger is selected.

In order to make the setup of our Door class
easier, we can add an OnDrawGizmosSelected
function that draws a wireframe mesh preview
in the position the door will move to when the
door is selected in editor.

 �Figure 1: This
TargetActivator class can
be used to activate and
deactivate any GameObject
it is attached to.

Unity FPS Guide 45

Adding doors, triggers, and switches
Levels, Models, Sounds and More

// Gizmos function for the Door
void OnDrawGizmosSelected ()
{
 // Gizmos will be drawn using the local
transform of the door
 // This means even if we rotate or scale the
door, the preview
 // will be correct!
 Gizmos.matrix = transform.localToWorldMatrix;

 MeshFilter mf = GetComponent<MeshFilter>();
 if (mf != null)
 {
 // Setting Gizmos.matrix means we only
need the offset here. Easy!
 Gizmos.DrawWireMesh(mf.sharedMesh,
moveOffset);
 }
}

Figure 1 shows an example of how our Gizmos
look in the editor with a trigger targeting a door
and a spawner. You can see that the switch is
connected to the Triggerables by the green lines,
and the door’s open position is also visible.

ADDING FEATURES
It’s now possible to add doors and operate them
with triggers and switches, but we still need to
add them to the level to block the player from
running straight to the exit. One of the first ideas
I had for Zombie Panic was to start the player in
a dungeon, trapped in a cell they must escape
from. You’ve probably seen this scenario in a
hundred different games; the player’s captured
by the enemy and must stage a daring prison
breakout. Zombies aren’t particularly attentive
prison guards, so breaking out isn’t especially
challenging, but the main gate is locked, and
getting past the ravenous horde in order to open
it may prove difficult. Let’s take a look at the level
with doors, triggers, and spawners in place.

From the handful of components we’ve made
during this tutorial, quite a fun little level can be
created. In Zombie Panic, doors are used both to
suggest the route to the player, and also provide
obstacles to progress. Triggers are used liberally
to spawn zombies at the most inconvenient (but
hopefully fun) time for the player, and I also took
a few minutes to create a simple inventory and
item system for the player, and modified the
Trigger class to enable triggers that only activate
when the player has a particular item.

LOCKED
DOORS
Let’s briefly look at how
locked doors are made.
In order to open a
locked door, the player
needs to have a key
to open it. This means
we need to store some
kind of state about
what items the player
has picked up, and
when the player enters
the trigger to the door,
the trigger must check
this state and determine whether the player can
open it.

To do this, I created a simple item and
inventory system. The Inventory contains a list
of the items the player is carrying, and items can
be added or queried by other scripts. The Item
is an object with a trigger collider and is visible in
the scene. When the player collides with an item,
the Item script gets the player’s inventory, adds
itself by name, and then removes itself from the
scene, giving the effect of it being picked up.

When the player enters a trigger that
requires an item to activate, their inventory
is queried for the item, and if it’s found then
the trigger will activate its targets, and will do
nothing if it’s not. Additionally, I also added an
option to remove the item from the player’s
inventory so that keys can be used up, making
the system a little more flexible.

Without seeing any code, you can probably
imagine the changes you need to make to the
existing systems, so why not give it a shot?
Try making your own locked doors and keys!

ADDING YOUR OWN TWIST
Now we’ve set up a system to control the
player’s movement through the level, try thinking
about simple changes or additions that could be
made to spice things up. With doors, triggers,
and switches, it’s possible to create more
interesting gameplay without needing more
enemies, weapons, or special abilities. In fact, a
key principle of level design is working within the
constraints of what’s available to create variety
and fun experiences for your players. In Unity,
with components as our building blocks, making
variety by combining them can provide endless
fun for designers, too.

ESCAPE FROM
THE CASTLE:
LEVEL GUIDE
1 �Escape from the jail cell

and find a weapon.
2 �Battle through the

courtyard to access the
second level.

3 �A locked door! How was
that implemented!? An
exercise for the reader!

4 �Blast through the hordes
along the battlements.

5 �Take down all the undead
in your way to get that key.

6 �Open the door to reveal the
main gate switch.

7 �Freedom!

46 Unity FPS Guide

Expanding your level gameplay
Levels, Models, Sounds, and More

e’ve looked at various mechanics
we can mix up to extend our base
game, so we can now refocus on
the level we’ve built and how to
make it feel more cohesive by

adding some risk and reward elements. At the
moment, we have a weapon that has unlimited
shots and the player has limited health that can’t
be replenished. We’re going to look at how we
can mix this up by limiting the ammo, but having
ammo pick-ups around the arena. We’ll also have
a health pick-up that will allow the player to refill
their health as the rounds get more intense.
We’re also going to provide the player with a

W basic melee attack when they have no ammo;
as a trade-off, this could end with them taking
damage. Finally, we’ll add some more readability
to the UI, and show an effect each time the
zombies do damage. So let’s get started.

The first thing we’ll focus on is our two new
pick-ups. We’ll also revisit or replace some of
our scripts to allow this to all work together.
Let’s start with creating the health pick-up; we’ll
just use the basic sphere by selecting Game
Object>3D Object>Sphere from the toolbar.
Select the Sphere in the Hierarchy and then in
the Inspector, we’ll rename this as HealthPickup 	
for clarity.

Add risk-and-reward elements like medikits and limited ammunition

Expanding your
level gameplay

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and has also
worked as a lecturer of games development.

 �Our level design and
gameplay really starts
to come together by
adding some reasons
for the player to explore
our castle environment.

BETTER MESHES
You can easily switch out the
basic meshes on your pick-ups
with something more suitable
from the Unity Store or created
yourself in Blender. All you need
to do is change what object
is listed by the Mesh Filter
component for the object.

Unity FPS Guide 47

Expanding your level gameplay
Levels, Models, Sounds, and More

With that done, we can easily add a script that
is similar to the one we created to send damage
to the player. So while we’re in the Inspector, we
need to select Add Component > New Script and
then set the name of the script to HealthPickup
and create it. With that done, we can open the
script and add our code as it is shown below:

using UnityEngine;

public class HealthPickup : MonoBehaviour
{
 public int healthAmount = 10;
 public bool respawn;
 public float delaySpawn = 30;

 void OnCollisionEnter(Collision other)
 {
 //We compare the tag in the other object
to the tag name we set earlier.
 if (other.transform.CompareTag("Player"))
 {
 //We disable the mesh renderer to
make it look like it's been picked up.
 gameObject.
GetComponent<MeshRenderer>().enabled = false;
 //We disable the collider once it's
picked up.
 gameObject.GetComponent<Collider>().
enabled = false;
 other.transform.
SendMessage("ApplyHeal", healthAmount);
 //If we choose to we can make it
respawn after X seconds.
 if (respawn)
 {
 Invoke("Respawn", delaySpawn);
 }
 }
 }

 void Respawn()
 {
 //We make the pickup visible again.
 gameObject.GetComponent<MeshRenderer>().
enabled = true;
 //The collider is enabled so we can pick
it up again.
 gameObject.GetComponent<Collider>().
enabled = true;
 }
}

The next step is to update the player so that
the health pack is added to their health once it’s
picked up. Originally we created a script called
PlayerDamage; while we could just edit this, the
script name doesn’t make sense. We will create
a new script to replace it, and while we are there
we improve the feedback for damage by adding
an effect when the player is hit. We need to select
our Player prefab in the Hierarchy and then
either delete or disable the PlayerDamage script.
Next, we can select Add Component > New Script
and set the name of this script to PlayerHealth as
this is more descriptive for handling both losing
and gaining health. We can then open this new
script and add the following code:

using System.Collections;
using UnityEngine;
using UnityEngine.UI;
[RequireComponent(typeof(AudioSource))]

public class PlayerHealth : MonoBehaviour
{
 //Use this to reference the text in the canvas
 public Text healthText;
 public Image damageFX;
 //Sets default health to 100
 public int health = 100;
 //Set the maximum value the alpha will reach.
 private float maxAlpha = 0.7f;
 //Check the effect is active;
 private bool isActive;
 //Add an audio effect;
 public AudioClip audioClip;

 �We can make our health
pick-up look enticing to the
player and easily readable.
I’ve dropped in an emissive
material and a point light to
make the item pop in
the environment.

48 Unity FPS Guide

Expanding your level gameplay
Levels, Models, Sounds, and More

 �Now you’ve created the
panel, you need to make
sure you’ve set the colour
for your damage overlay to
something suitable.
Remember to set the alpha
to be fully transparent or
you won’t be able to see
the viewport in the editor.

 private AudioSource audioSource;

 private void Start()
 {
 UpdateText();
 audioSource = GetComponent<AudioSource>();
 }

 void ApplyDamage(int damage)
 {
 health = health - damage;
 UpdateText();
 if (!isActive && damageFX != null)
 StartCoroutine(SetEffect());
 }

 void ApplyHeal(int heal)
 {
 //Stores the current health and subtracts
the damage value
 health = health + heal;
 UpdateText();
 }

 void UpdateText()
 {
 //Make sure max health cannot go below 0
or over 100.
 health = Mathf.Clamp(health, 0, 100);
 //Check the health panel exists.
 if (healthText != null)
 {
 //Sets the text on our panel.
 healthText.text = health.ToString();
 }
 }

 private IEnumerator SetEffect()
 {
 isActive = true;
 //Grab the current alpha on the panel.
 float alpha = damageFX.color.a;
 //Grab the colour of the panel.
 Color color = damageFX.color;
 //Set the alpha to show the current colour
of the panel.
 damageFX.color = new Color(color.r,
color.g, color.b, maxAlpha);
 if (audioSource != null && audioClip !=
null)
 {
 audioSource.PlayOneShot(audioClip);
 }

 //Wait for 0.2 of a second.
 yield return new WaitForSeconds(0.2f);
 //Set the alpha back to fully transparent.
 damageFX.color = new Color(color.r,
color.g, color.b, 0);
 //Wait for 0.4 of a second, so we are not
constantly flashing.
 yield return new WaitForSeconds(0.4f);
 //Make sure we know we can run the
coroutine again.
 isActive = false;
 //Exit.
 yield return null;
 }
}

Once saved and back in Unity, we need to do
some setup with the Canvas: we need to expand
the canvas and rename the Text object we
previously added to Health for clarity.

While we’re here, we’ll create a panel to act
as our screen effect when the player gets hurt.
All we need to do is right-click on the Canvas and
select UI > Panel. We then select the Panel and
in the Inspector, rename this to DamageFX. We
also need to set the Color parameters on the
Image script by setting the pallet to a red colour
and set the alpha to be fully transparent.

Now to set some references for your script
so it can control the UI elements. We select our
Player in the Hierarchy and, in the Inspector,
drag the Health object onto the Health Text slot
of our script; then the DamageFX object to the
DamageFX slot on our script. With that done,
we’ve created our pick-up; to test this, you can
place a pick-up in the level and then preview the
game by selecting the Play button. You should
be able to get hurt by the zombies and heal up
to a maximum health of 100 by picking up the
medikit. Once you’ve finished testing, remember
to exit out of the preview.

We can make the ammo pick-up in almost the
same way, but instead of SendMessage, we use
BroadcastMessage. We’re doing this as the script
that we’re communicating with is a child of the
Player prefab, but instead of us directly stating
the child object, we’re using this command to

ICONS
To add some more readability
to how much health you have,
or for that matter any other
important UI information, think
about adding some icons. You
can easily add a new sprite
and apply them to an image
object on your canvas.

“You should be able to
heal up to a maximum

health of 100”

Unity FPS Guide 49

Expanding your level gameplay
Levels, Models, Sounds, and More

 �The last thing you want to
do is skip over an ammo
box when in the middle
of a rush of zombies.

ART OF NOISE
As an optional extra, the script
allows us to add audio for when
your player gets hurt, you can
record your own audio or find a
suitable effect and add it to the
project. To use this you will need
to also make sure you include
an AudioSource component on
the Player prefab. For more on
adding sound to your game, turn
to page 70.

talk to all the child objects. This isn’t the most
efficient way to do this, but as our player only
has a small amount of attached objects, it makes
sense to do it in this way.

Let’s start on making the pick-up and the
script we need. Firstly, select Game Object
> 3D Object > Cube from the toolbar. Next,
scale down the cube to make it look more like
an ammo box. We should rename this in the
Inspector to be called AmmoPickup, and then
we can select Add Component > New Script.
As usual, we want to name this script; in
this case, we’ll call it AmmoPickup. With that
created, we can add our script.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class AmmoPickup : MonoBehaviour
{
 public int ammoAmount = 10;
 public bool respawn;
 public float delaySpawn = 30;

 void OnCollisionEnter(Collision other)
 {
 //We compare the tag in the other object
to the tag name we set earlier.
 if (other.transform.CompareTag("Player"))
 {
 //We disable the mesh renderer to
make it look like it's been picked up.
 gameObject.
GetComponent<MeshRenderer>().enabled = false;
 //We disable the collider once it's
picked up.
 gameObject.GetComponent<Collider>().
enabled = false;
 //We broadcast to the player and all
children.
 other.transform.
BroadcastMessage("ApplyAmmo", ammoAmount);
 //If we choose to we can make it
respawn after X seconds.
 if (respawn)
 {
 Invoke("Respawn", delaySpawn);
 }
 }
 }

 void Respawn()

 {
 //We make the pickup visible again.
 gameObject.GetComponent<MeshRenderer>().
enabled = true;
 //The collider is enabled so we can pick
it up again.
 gameObject.GetComponent<Collider>().
enabled = true;
 }
}

We can now save this and turn our attention
to implementing a limitation on the amount of
shots we can fire. We’ll also wrap this up with
adding our melee attack. This is reminiscent of
the original Doom games, where the player could
punch enemies if they had run out of ammo.
The first thing we need to do is make a few small
changes to make sure we query what collider
we’re touching rather than what object we’ve
collided with. This is a one-line change, but the
code below is provided in full. We need to first
open the EnemyDamage script and update it
as below:

using UnityEngine;

public class EnemyDamage : MonoBehaviour
{
 private int hitNumber;

 private void OnEnable()
 {
 hitNumber = 0;
 }

 void OnCollisionEnter(Collision other)
 {
 if (other.collider.transform.
CompareTag("bullet"))
 {

50 Unity FPS Guide

Expanding your level gameplay
Levels, Models, Sounds, and More

 //If the comparison is true, we
increase the hit number.
 hitNumber++;
 }
 if (hitNumber == 3)
 {
 gameObject.SetActive(false);
 }
 }
}

Save this and then we need to edit the
SendDamage script in the same way:

using UnityEngine;

public class SendDamage : MonoBehaviour
{

 void OnCollisionStay(Collision other)
 {
 //We compare the tag in the other object
to the tag name we set earlier.
 if (other.collider.transform.
CompareTag("Player"))
 {
 //If the above matches, then send a
message to the other object.
 //This will also pass a value of 1
for our damage.
 other.transform.
SendMessage("ApplyDamage", 1);
 }
 }
}

With all this done, we’re ready to work on our
Player prefab back in Unity. We want to add
something to represent our player’s fist. So for
this, we’re going to right-click in the Hierarchy
and select 3D Object > Sphere and rename this
Punch in the Inspector.

We then want to make this more
representative of being the player’s hand. We
should rescale the sphere to be about fist size,
and place it just in front of the player capsule and
slightly lower than our head height. You may want
to play around with this so that you can see the
sphere in the first-person view. We should also
change the tag for this object to be tagged as
bullet; while this is a bit strange, we’re using the
same logic. Ideally, we may want to change the
name of the tag, but you would need to update
all script references as well as your tag.

The next thing to do is to select the Weapon
object in the Hierarchy. We’re going to need
to disable or remove the ActivateProjectile
script and replace it with a similar script that
will handle some additional aspects. To create
this new script we’ll select Add Component >
New Script and call this script UseAttacks and
complete the process of creating the script.
We can then open the new script and add the
modifications we need as below:

using UnityEngine;
using System.Collections;
using UnityEngine.UI;

public class UseAttacks : MonoBehaviour
{

 �It might not look like very much, but
don’t let that fool you – it’s still a
devastating attack against the horde!

Unity FPS Guide 51

Expanding your level gameplay
Levels, Models, Sounds, and More

 �With our additional text
object added to the canvas
in our Hierarchy, we can
display how much ammo
the player has picked up.

RESPAWNING
PICK-UPS
As an optional extra for each
pick-up, there are parameters
built into the script to change
the amount that you get of
health or ammo from each
pick-up. You can also set them
to respawn, and how long that
takes in seconds.

 public int ammoAmount = 10;
 public float meleeRepeatDelay = 0.25f;
 public GameObject projectile;
 public GameObject punchMesh;
 public Text ammoPanel;
 private bool punchActive;

 private void Start()
 {
 //Update text to display the player ammo.
 UpdateText();
 //Hide the hand when we start the game
and have ammo.
 punchMesh.SetActive(false);
 }

 // Update is called once per frame
 void Update()
 {
 if (Input.GetButtonDown("Fire1"))
 {
 if (ammoAmount > 0)
 {
 ammoAmount--;
 UpdateText();
 var clone =
Instantiate(projectile, gameObject.transform.
position, gameObject.transform.rotation);
 //Destroy after 2 seconds to stop
clutter.
 Destroy(clone, 5.0f);
 }
 else
 {
 if (!punchActive)
 {
 punchActive = true;
 StartCoroutine(MeleeAttack());
 }
 }
 }
 }

 void ApplyAmmo(int ammo)
 {
 ammoAmount += ammo;
 UpdateText();
 }

 void UpdateText()
 {
 //Check the ammo panel exists.
 if (ammoPanel != null)

 {
 //Sets the text on our panel.
 ammoPanel.text = ammoAmount.
ToString();
 }
 }

 IEnumerator MeleeAttack()
 {
 punchMesh.SetActive(true);
 yield return new WaitForSeconds(0.1f);
 punchMesh.SetActive(false);
 yield return new
WaitForSeconds(meleeRepeatDelay);
 punchActive = false;
 yield return null;
 }
}

Now we have that done, we need to make
sure we’ve added a new text object to our
canvas to display the ammo count, and that
we’ve linked up the references to our new script.
First, we can right-click on the Canvas object and
select UI>Text and rename the new object to
Ammo in the Inspector.

While we’re here, we can use the Anchor
Presets and the Pos X and Pos Y values to
make sure we’re happy with the position this
information is displayed on the canvas. Now we
select the Weapon object in our Player prefab
again, and we can then drag over the Ammo
text we just created into the Ammo Panel.
The next task is to drag the Punch mesh we
parented to the Player onto the Punch Mesh
slot of this script. Finally, drag the Projectile
prefab from the Project panel onto the
matching slot of the script.

With all that done, it’s a good time to make
sure that all your prefabs are updated, and we
should create a prefab for the ammo pick-up
by dragging the game object into the Project
panel. With all this done, you should see that
when playing the game you have a limited ammo
supply that can be replenished with the pick-up.
You should also have a short-range punch ability
when all ammo has been depleted. This has
shown us another way to expand our gameplay
from being just about avoiding and shooting
the zombies: it forces the player to explore
more of the carefully crafted level, and use the
environment to try to outlast the hordes of
enemies as they endlessly approach.

52 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

 �Figure 1: You can switch
from Object Mode to Edit
Mode by clicking the
arrow circled on the left.

lthough the realm of 3D modelling
might sound daunting at first, it’s
become increasingly easy – not to
mention affordable – to get into
with the advent of software like

Blender. In this tutorial, we’ll build a low-polygon
humanoid mesh, and then transform it into
the twisted form of a zombie. Then we’ll add

A textures, a walking animation, and finally import
the model into Unity and connect it up to the
rest of our game.

To get started, make sure that you have
Blender 2.8 – the newest version at the time of
writing – installed. To download it, head to
blender.org. Once we have the program
installed, we can start work on our model.

MODELLING THE BASIC BODY
With Blender loaded, you should see the default
grey cube in the middle of the display. Look at
the top right and you’ll see that you’re in Layout
View, while the default mode is set to Object
Mode. This means you can select whole objects
and move them around. We need to be in Edit
Mode; so, with the cube selected, switch from
Object Mode to Edit Mode from the drop-down

Here’s how to construct, texture, and animate
a walking zombie and import it into Unity

Creating and rigging
a character in Blender

AUTHOR
MARK VANSTONE

Mark is Technical Director of TechnoVisual, and the
author of the educational game series, ArcVenture.
education.technovisual.co.uk

http://education.technovisual.co.uk/
http://blender.org/

Unity FPS Guide 53

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

 �Figure 2: We’ve erased all the faces of the cube
lying to the right of the z axis. We’re almost
ready to start modelling our zombie head.

 �Figure 3: By making loop
cuts, we’ve made extra
faces on our mesh.

menu at the top left of the view (Figure 1). Our
cube will go from grey to orange, with orange
dots on each corner. We’re in Vertex Selection
mode, as shown by the icons to the right of the
Mode selector drop-down. The three icons are
(from left to right): Vertex Select, Edge Select,
and Face Select. Remember these tools – you’ll
be using them a lot.

As a base for our character, we want to
create a humanoid shape which is symmetrical
– and if we use the mirror modifier, we only
have to model one half of our mesh. Thanks
to the modifier, anything we do on one side
will be reflected on the other side, too. To
add our mirror modifier, first change to Front
Orthographic view (1 on numpad). We’re going
to mirror our object across the z axis (denoted
by the blue line), but we have half of our cube on
each side of it.

We need to chop the cube in half, so make
a loop cut by pressing CTRL+R while hovering
over the cube, and an orange line will appear
down the centre of the cube. Left-click twice
to select and cut. Change to Face Select Mode
(from the icons on the top left) and select all
the faces on the left of the cube. To make sure
you get the back faces and the front faces, you’ll
need to set the ‘Show X-Ray’ mode, which you’ll
find in the top right of the view; it looks like
two squares. Hit the DELETE key and, from the
pop-up menu, select Faces. Now you should

have just half a cube on the right of the z axis
(see Figure 2).

We can now add our modifier. Select the
Spanner on the Properties panel to the right of
the view. Drop down the Add Modifier selector
and choose Mirror from the Generate column.
When the modifier has been added, you’ll
see the other side of the cube reappear. Now
everything we do to the right-hand side will also
happen in reverse on the left. Don’t apply the
modifier yet; we will do that when we’ve finished
modelling the mesh.

We used a loop cut to chop our cube in half,
but loop cuts are also a good way add extra
faces to our model. We want to make a head
shape, so we’ll need some extra faces. You can
make two loop cuts by hovering over the cube
and pressing CTRL+R – make sure you see an
orange horizontal line, then rotate your mouse
wheel, and another orange line should appear.
Left-click twice to select and slice, and you now
have three faces instead of one (Figure 3). Now
do the same in Top Orthographic view (7 on
the numpad).

ON WITH HIS HEAD
Now our cube should be split into nine
segments on the right side and mirrored on the
left. We can now go back to Vertex Select mode
(from the icons top-left) and start forming our
cube into a head shape. It will be very rough at

54 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

the moment, but we’ll improve on that as we go
on. Go back to Front View (numpad 1) and select
the top-right vertices by dragging a selection box
around them (left-click and drag). This will select
all the vertices that are hidden behind the front
one, as we’re still in Show X-ray mode. Then
move these vertices by pressing G and moving
the mouse towards the z axis. You should see
the mirror modifier working
as you move. Then left-
click to fix the vertices in
place. Do the same with the
bottom-right vertices. We
want to make a sort of oval
shape from the front view
(Figure 4), perhaps a bit thinner at the bottom
to form the chin, and a bit wider at the top. Now
do the same with the top view and make a rough
circle shape, then switch to the side view and
move the vertices to make the shape of a head
from the side.

MAKING THE BODY
When you’re satisfied with the shape of the
head, you can select the lowest face of the
shape (where the neck would start), switch
to front view, and press E to start extruding
the neck (Figure 5). You will notice that the
extrusion doesn’t go straight down, so press Z
to extrude along the z axis. Left-click to fix the
extrusion. At this point, you can either scale the
new faces by pressing S and dragging out the
shape, or continue to extrude another section
which will form the collar bone part of the body.
From there, you can use the same process to
select the right side face of the new section and
extrude it out to start forming the shoulder and
then the rest of the arm.

BENDY BITS
As you work your way along the arm, you will
need to extrude the arm in sections, because
the arm will need to bend in places. You’ll need

to have a couple of sections for the shoulder,
three for the elbow, and another couple for the
wrist (we’ll get on to the hand in a moment).
Think of these sections as hinges which will allow
us to bend our character’s limbs when we come
to animate it later on (Figure 6).

When you get to the hand, we can make
a mitten shape hand by more scaling and

extruding (Figure 7). Make
sure you have a section
for each joint in the hand.
Make a thumb by selecting
a face from the side of the
hand and extrude out three
sections. Once you’ve done

all this, you’ll probably want to refine the shape
a bit. You could add a loop cut on the top and
side of the arm shape so that you can make it a
bit rounder. Move any vertices around to give a
better shape by going into vertex select mode,
select the vertices, press G to move, and left-
click to fix in place.

THE REST OF THE BODY
Once you have an arm shape, you can continue
with the rest of the body by selecting the
underside faces of the collar bone and shoulder
(in face select mode) and extruding then down.
You will probably need at least five sections from
the collar bone down to the hips (Figure 8).
Then select just the outside face and extrude
down and slightly right for the thigh bit of the
leg. You will need an extra section or two for
the knee joint and the ankle. The foot can
be extruded from the front face of the ankle
section. By the time you get to the end of the
foot, you should have a roughly human shape.
You may well at this stage want to add a bit
more detail to the model, making the legs more
rounded with additional faces or getting the
proportions better. Once you’re happy with
the shape, you can apply the mirror modifier.
Making sure the model’s selected, go back

USEFUL TOOLS
Blender provides a huge array
of built-in tools, but you’ll need
a couple of other things to
create your zombie character.
The first is a camera or mobile
phone. Rather than try to find
copyright-free images that fit
exactly what you need for your
model textures, you can use
photographed items from real
life. Try to start with the largest,
best-quality images you can get.
The other tool you’ll need is an
image manipulation program,
such as Photoshop or the free-
to-download GIMP.

“We can also have
a bit of the skull

missing, exposing
some brains”

 �Figure 4: Our mesh viewed
from the front. We’re
gradually moving the
vertices to form the rough
shape of a human head.

 �Figure 7: Because we’re
creating a low-poly
character, we’re keeping the
hand shape simple here –
something along the lines of
a mitten or oven glove.

 �Figure 5: With the head roughly
modelled, we can select the polygons
beneath the jaw and extrude them to
form the neck, as seen here.

 �Figure 6: By repeatedly extruding faces and
adjusting the vertices, we can gradually
model our character’s arms. Don’t forget to
create sections for each joint.

Unity FPS Guide 55

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

into Object Mode. Go to the spanner on the
properties view and select Apply. You’ll see the
modifier disappear from the properties view,
and if you go back into Edit Mode you will see
that the mesh is editable on both sides of the
z axis now.

FACIAL FEATURES
Now we’ll take our humanoid model and turn
it into a zombie. Starting with the head and
face, we can make the zombie have a crooked
mouth and an eye hanging out of the socket.
For the mouth, we can add a couple of loop cuts
to the bottom of the head and make one side
go down a bit. You’ll probably want to add two
more loop cuts to the eye area, and cut each
side of the middle of the face to model the nose.
The hanging eyeball can be done by adding an
Ico Sphere whilst in Edit Mode and placing it on
the cheek. Then stretch out the vertices nearest
the face to look like it’s joined to the eye socket.
We can also have a bit of the zombie’s skull
missing, exposing some brains – so one side of
the head needs to be remodelled to look like a
bit is missing (Figure 9).

ADDING CLOTHES
There are several ways of adding clothes. For
high-polygon models, the clothes are often
separate meshes, but with low-poly characters
it’s best to make the clothes part of the same
mesh. The reason being that if you only have a
few polygons with some on top of others (like a
shirt sleeve over an arm), when those faces are
deformed to bend, often the inside faces can
show through the outside faces. We’re going to
have our zombie wearing a sleeveless jacket with
a bite taken out of it, and jeans with one leg torn
off so you see a withered leg which the zombie
will drag along as it walks (Figure 10).



��Figure 8: Again, we’ve
extruded existing faces
and manipulated the
vertices to create a rough
humanoid shape.



�Figure 9: We’re moving
vertices around to make
the model look less
symmetrical, while the
addition of a sphere will
serve as a detached
eyeball. Nice.

 �Figure 10: We’re starting to
add gnarly details to the
body now: note the
missing chunk from the
torso on the bottom right.

 �Once the basic shape’s
finished, we can start to
add more detail.

56 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

The jacket can be made by extruding the
back and then the front of the torso area, then
adding some extra faces down the front to make
a collar opening. You’ll probably want to move
a few of the vertices around to make the shape
a bit less symmetrical, and add a few creases.
The same can be done with the shirt and jeans,
adding some extra faces to provide some
creases in the material. For the chunk of body
warmer that is missing (and showing exposed
ribs), select the whole side section of the torso
and extrude inwards, and then scale to create
a recessed area. Don’t get too hung up on the
fine-tuning of the mesh here, as we can add the
detail with textures later.

ADAPTING LIMBS
Our zombie’s going to have one arm half missing
and one leg dragging along the floor behind it.
For the damaged arm, we can just select the
hand and forearm and delete the faces (delete
and select faces from the pop-up menu). Then
extrude and scale faces to form a bone sticking
out of the missing arm. With the leg, you can
move existing vertices and scale faces to make
the leg thin and bony (Figure 11). When you’ve

remodelled to your satisfaction, you may want
to switch back to Object Mode, make sure you
have your zombie selected, and then from the
Object menu select ‘Shade Smooth’. This irons
out all the sharp edges of your mesh and makes
everything look smooth. It doesn’t actually
change the geometry – just renders it differently.
You can switch between this setting and ‘Shade
Flat’ to see the difference.

ASSIGNING MATERIALS
Now it’s time to start putting some colour on the
mesh. We’re going to be putting textures onto
the faces, but first it’s a good idea to separate
the different parts of the mesh and allocate
them to separate materials. This way, we can
easily select and deselect these parts as we’re
working with different textures. To see the
materials that you set up on your mesh, you
will need to be in shading mode. The controls
for Viewport Shading are in the top right of the
3D view and look like four spheres; the one you
want to select is the second from the right and is
called ‘Look Dev’.

In Edit Mode, select all the faces that make
up the head and neck. You can use Show

 �Figure 11: A better view
of our zombified human
model. You can copy our
design or come up with
a grotesque character of
your own.

 �Figure 12: Selecting areas on your
mesh and forming vertex groups
will make it easier to colour and
texture our model later on.

Unity FPS Guide 57

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

X-Ray mode to make sure you get all the faces
selected. You can either select faces with a box
select, individually selecting each face with shift
and left-click, or you can press C, which goes
into paint select mode (press ESC to exit again).
When you’ve selected the faces of the head and
neck, go to the object data tab on the Properties
view, and you’ll see a section called Vertex
Groups. Select the + button and then the Assign
button to add this part of the mesh to the new
group. Rename this ‘Head’. Vertex groups allow
you select and deselect parts of the mesh.

With the faces still selected, switch to the
Material tab in the Properties view and create
a new material (+ button), then select Assign. If
you now change the Base Color setting of this
material you will see the head changing colour.
Rename this material to ‘Head’ as well. Now
do the same with each part of the body that
will have a different texture (Figure 12). We’ve
made groups for the Head, Body Warmer, Side
Guts, Trousers, Sleeves, Hand, Stump, Leg,
and Boot.

ADDING TEXTURES
Now that we have our material groups sorted
out, there are various ways we can add texturing
to the faces of the mesh. We’ll start by making

a texture for each of the materials. Ideally, we’ll
want to have a single texture for our character
when we import it into the game, but we’ll deal
with that later. Separate textures are much
easier to work with in Blender. We don’t need
to worry too much about texture sizes at this
stage, but we tend to stick to images measuring
1024×1024 or 2048×2048, as these sizes have
been supported by 3D engines for some time.

There are various tools you can use to map
textures onto a mesh. The first and easiest way
is to get an image and add it to your material. If
we select one of the materials in the materials
tab, we can look at the nodes that make up that
material (or shader). We can open up a Shader
Node Editor view by splitting our 3D view into
two (right-click while hovering over the bottom
edge of the 3D view and select Split Area),
then select Shader Editor from the drop-down
selector in the top left of this new view (you can
also press SHIFT+F3). In this editor, we can edit
all the properties of the material (Figure 13).

To add a texture to the material, select Add
from the menu and choose Texture then Image
Texture. This will create a new node that we can
connect to our Material Output Surface. When
you connect your Image Texture Color output
to the Material Output Surface channel, the



�Figure 13: You can select,
add, and adjust textures
by opening up the
Shader Node Editor.

58 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

faces that are assigned to that Material should
go black. That’s because there is no texture
loaded yet. Select the Open button on the Image
Texture node and load in your texture. You
should now see the image wrapped around the
part of your model to which it’s assigned in the
3D viewport.

EDITING TEXTURE
COORDINATES (UVS)
With a texture now on your mesh, you can now
adjust its position – this is where the UV editor
comes in. First, split your Shader Editor view
horizontally and change this new view to the
UV Editor. From here, we can select our image
from the image selector drop-down (top middle
of the view) and then in Edit Mode, if we select
faces of our mesh in the 3D view, we’ll see what
part of the image is being mapped to the face
(Figure 14). You can move the points around on
the image in the same way you move vertices. As
you move the points, you’ll see how the texture
is remapped in the 3D view. This means we
can align details on our textures precisely with
specific points on our mesh. All we need to do
now is make some images to use as textures,
which is where your camera and image editor
will come in useful.

UV UNWRAPPING
When we attached our texture to the material, it
gave us a set of default mapping points for each
face. If we want to start from a more suitable
mapping point, we can use the UV menu in the
3D view. You’ll probably want to experiment with
all these options, but a useful way to get things
done quickly is to line up your mesh in the 3D
view by looking at the faces you want the texture
on (make sure just the faces you want to map
are selected) and choose ‘Project From View’
from the UV menu. This will create a set of UV
points which you can lay over the area of your
image that has the details you want on those
faces (Figure 15).

It will take some time, and probably a lot of
trial and error, to get good texture mapping
on your character model, so start off with flat
colours and small details that can be easily
positioned. Most of the zombie character has
been textured using the Project From View
unwrapping and then filled in with our next
texturing tool: Texture Painting.

TEXTURE PAINTING
You may want to fill in a few details or iron out a
few seams on your textures once you have them
mapped onto your mesh. If you change your
workspace to the Texture Paint Tab at the top of
the Blender window, you’ll see a toolbox of items
to help you do this. All you need to do is select a
tool from the tool palette on the right-hand view
and start painting on your model (Figure 16).
You’ll see the changes appear both in the 3D

 �Figure 14: Once applied to
our model, we can adjust
our textures’ positioning
with the UV Editor.

 �Figure 15: Project From View allows you to see how
a texture will line up with your model’s faces.

Unity FPS Guide 59

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

version and in the Image view on the left. Make
sure you save any images that are changed (the
Image item in the menu will have a star after
it if it needs saving) by selecting Save from the
Image menu in the left-hand view.

RIGGING THE CHARACTER
We now need to start thinking about how to
make our zombie move around – and for that
we need bones, which will allow us to move and
animate our model’s joints, not unlike a real
skeleton. (Note: a set of bones is often known as
a rig, but it’s called an Armature in Blender.)

In Object Mode, go to the Add menu and
select Armature. You’ll see a triangular shape
object with a sphere on top appear at the cursor
position. If you go into Edit Mode and press E to
extrude, you’ll see that another connected bone
appears. You can make a string of bones like this
and position them to match your mesh.

There’s a far less time-consuming way to rig
a humanoid model, however: we can use Rigify.
Rigify is a plug-in that provides a ready-made
skeleton of bones for humanoid characters
(and some other forms, too). To enable it, go

to the Preferences in the Edit menu and select
Add-ons. Search for Rigify, and enable it by
clicking on the square box (a tick should appear),
then close the Preferences window. Now, in
Object Mode, if you go to add an Armature,
you’ll see some new options. Select the Basic
Human(Meta-Rig) option and you’ll see a
skeleton appear at the cursor position.

Now you need to match the bones on the
skeleton to your mesh. You may need to scale
it up or down, and you’ll probably need to move
and rotate some or all of the bones. A useful
setting so that you can see where the bones are
without them being hidden by your mesh is to
go to the little stick figure icon on the properties
view and, under Viewport Display, you’ll find a
setting called ‘In Front’. Select that and you’ll be
able to see your bones through the mesh. Make
sure that your bones line up in all directions with
your mesh. You can delete bones that you don’t
need – in this case, the lower arm bones of one
arm (Figure 17).

SKINNING
When we have all our bones lined up with our
mesh, we need to attach the two together so
that when we move a bone, the mesh moves
too – this is known as Skinning. In Object Mode,
select your mesh, then SHIFT-select your
skeleton so that both are selected at the same

 �Figure 17: Rigify will
automatically generate a
humanoid skeleton, which
you can resize and adjust to
fit the limbs on your mesh.

 �Figure 16: Texture Paint allows you to fix
seams or paint additional details while
your material is applied to your mesh.

60 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

time. Your mesh will have an orange line around
it, while the rig will have a yellow line around it.
From the Object menu, go to Parent, and then,
under Armature Deform, select ‘With Automatic
Weights’. This will join the rig and the mesh
together, and associate the bones with the faces
of the mesh that are closest to it.

TESTING THE RIG
Select the rig in Object Mode, then go to the
Mode selector and select Pose Mode. Next,
select one of the arm bones. If you press R to
rotate then move the mouse, you should see
not only the bone rotating, but also the mesh
deforming to follow the bone’s movement.
Test a few bones and if it all seems to have
married up properly, we can start thinking about
animating our zombie.

ANIMATING THE ZOMBIE
The Blender animation system is much the same
as other timeline-based animation packages,
in that you can move backwards and forwards
through your frames and set keyframes for
various properties. Blender 2.8 has a workspace
designed for animation, so you can select
that from the workspaces tabs at the top of
the window.

To create our zombie’s walk cycle, we want
to view our character from the side (numpad 3)
and we will need to be in Pose Mode, as we
were when we tested the rig. At the bottom of
the window you’ll find two views. The first is the
Dope Sheet, which shows keyframes as we set
them. Beneath is the timeline where you’ ll see
controls for play, forward, and rewind.

MAKING A WALK CYCLE
Our walk cycle will last for 24 frames, so change
the End value on the bottom right of the timeline
to 24. We’ll divide those 24 frames into four –
the four stages of our walk – and once played
back at 24 frames per second, our zombie will
move at a natural-looking pace.

Our first keyframe will be on frame 1, and
we want to have our zombie with its left foot
forward with its heel touching the floor, and
its right foot back with its toes touching the
floor – you can see what this first pose should
look like in Figure 18. To set this pose as a
keyframe, make sure you have all the bones
selected, and then from the Pose menu item, go
to Animation and then Insert Keyframe. You’ll be
presented with a list of types of keyframe. Select
LocRot, which will set keyframes for location
and rotation.

 �Figure 18: It’s much easier
to set your walk animation
poses by viewing the
model from the side as you
adjust the bones.

Unity FPS Guide 61

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

Now we need to do the same with the other
key parts of the animation (Figure 19). The next
keyframe to go to will be frame 13. The pose
needs to be the opposite to the first frame:
right foot forward and left foot back. When that
frame’s done, we can set the loop part of the
animation by copying the keyframes from frame
1 to frame 25 (yes, just outside our animation
range). We can then go to frame 7, where both
feet are in the middle but the left foot is flat on
the floor and the right knee is slightly bent. Then
on frame 19 we have the opposite to frame 7.
Use the Play button on
the timeline to preview
the animation.

The walk cycle’s a bit stiff
right now, so you’ll probably
want to add a few extra
keyframes and wave the
arms around a bit too. Make sure you always
have a copy of frame 1 at frame 25 so that it
loops smoothly. You might want to add other
animations to the character, like an idle cycle
or a lunging action. These can be added to the
same timeline in a different position.

COMBINING TEXTURES
While adding textures to a mesh, it’s much
easier to work with multiple images for each
section. Once it’s time to import our character
to Unity, however, we need to start thinking
about being more efficient with our use of
texture maps. By merging our separate textures
into one – to make something called a texture
atlas – we can save memory and ensure we
don’t end up with lots of files associated with a
single character.

The first stage of the process is to create
a new image (perhaps 2048×2048 or maybe
larger) which our textures are going to get
rendered to. Go into the UV Editor (or split the
screen and switch to UV Editor) and create
a new image from the menu. Rename it to
something like ‘AllTextures’. With your zombie
selected, go to the Object Data tab in the
Properties view and find UV Maps. Add a new
one and call it ‘AllMaps’. Now open up a Shader
Editor view and select the Head material. Add
a texture node and an Input UV Map node,

and connect the UV to the
Vector input of the Texture
node. Load your AllTextures
image into your new
Texture node and for the
UV Map node, select your
AllMaps UV set. Now add

an Input UV Map node with the UV set to your
original UVMap and attach it to your existing
Head Texture, UV to Vector input.

Now to populate the AllMaps UV Set. Select
your zombie, go into Edit Mode, and select all
faces (press A). Then, with the AllMaps UV set
selected in the Object Data section in Properties,
from the UV menu in the 3D view, select Smart
UV Project. Change Island Margin to 0.03 and
select OK. Your whole model will be unwrapped
and shown as a wireframe on your new image
in the UV Editor. Now, in the Shader Editor,
copy the new nodes that you made in the Head
material to all the other materials and connect
them in the same way.

In your 3D view, make sure you have all faces
selected, go to your UV Editor, and make sure
you have all the UVs selected, then go through

USING
REFERENCES
If you’re having difficulty making
a head shape – or modelling
anything in Blender, really – you
can use reference images to
guide you. In Object Mode go
into Front View, then go to the
Add menu, go down to Image,
and select Reference. You can
then browse for your reference
image and it will be added as a
plane into your scene. You can
then do the same for the side
view, and when you go into Edit
Mode you will have a reference
image to match your vertices to.

“If it all seems to have
married up properly, we
can start thinking about
animating our zombie”

 �Figure 19: The basic poses
for our zombie walk cycle.
It may take a bit of
refinement to get a nice,
shambling trudge.

62 Unity FPS Guide

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

each material, selecting the new AllTextures
node. When all that is selected at the same time,
go to the Render tab in the Properties view, and
select Cycles as the Render Engine. Go to the
Bake options and select Combined as the Bake
Type, and deselect Direct and Indirect (we just
want the texture with no
lighting). Now hit Bake.
After a few moments,
your combined atlas
of textures will appear
in the UV Editor
(Figure 20). Now make
sure you save the new image.

This new texture can now be attached with
the AllMaps UV set to all your material surfaces.
If you want to be even more efficient, the best
thing to do is make a new material, attach the
new texture atlas and UV set to it, and apply it
to the whole mesh. Then you’ll just have one
material and one texture to worry about.

IMPORTING INTO UNITY
To get our zombie into a game in Unity, we
will need to import it and hook it up to other
game elements. Unity will allow you to import
your .blend files directly, but it won’t import
the textures with it (this is why it’s a good idea

to have one texture to
reconnect). To import
your zombie into an
open Unity project,
just drag and drop
your .blend file into the
Assets view. This will

create a new asset which you can expand to see
the rig, animation, and AllTex material (this won’t
contain its texture).

Next, drag and drop your texture file into
the Assets view, select your zombie asset, and
from the Inspector, select Materials. Select
Extract Materials and confirm the folder to save
them in. This will enable us to edit the zombie’s

“You can drop your zombie
into a scene by dragging it
into the Hierarchy window”

 �Figure 20: Once you’ve
hit Bake, all your
separate textures will
merge together.

Unity FPS Guide 63

Creating and rigging a character in Blender
Levels, Models, Sounds, and More

materials; you should see that the AllTex
material has moved out of the Zombie asset and
into the main Assets directory. Now click on the
AllTex material and drag the Zombie Texture
onto the ‘Albedo’ property in the Inspector. If
you go back to your zombie asset, it’ll now be
correctly textured.

You can drop your zombie character into
a scene just by dragging it into the Hierarchy
window, but you may want to attach it to other
game objects. In our Zombie Panic game, you
can swap the capsule mesh for your zombie
just by creating an empty game object in
your placeholder asset in the Hierarchy, and
then dragging your zombie asset onto that
object. You may need to change the scale of
your zombie. Then, in the Inspector of your
placeholder object, uncheck the Mesh Renderer
component. Your zombie should have replaced
the placeholder capsule (Figure 21).

MAKING THE
ANIMATION WORK
The last piece of the puzzle is to get the
animations you set up working in the game.
Mesh animations are controlled through an
Animation Controller. First, select your zombie
asset and go to the animation section in the
Inspector. Create a new clip with the + button
under Clips and rename the clip to ‘WalkCycle’.
Set the End frame to 24, check the Loop Time
box, and scroll down to hit Apply. Now create
an Animation Controller (from the Asset window
right-click menu), call it ZombieAnim, select
it, and click Open in the Inspector. You will
see a flow-chart-type view open. Drag your
WalkCycle icon (inside your zombie asset) onto
the flow chart; you will see it connects up to the
‘Entry’ block.

Selecting the zombie that you have put
inside the placeholder object, you’ll see that
there’s an Animator component. Set the
controller to be your ZombieAnim Animation
Controller. You can set Culling Mode to Always
Animate and now when you play your game,
you should see an animated zombie where your
placeholder was.

 �Figure 21: Our fully textured zombie model safely
imported into Unity.



�The animation we created in
Blender can be assigned to
our zombie model in
Unity’s Inspector.



�Our flesh-eating zombie is
complete, and ready to start
hectoring our player.

64 Unity FPS Guide

Add lighting and atmospheric visual effects
Levels, Models, Sounds, and More

Lighting and effects generate atmosphere and highlight
points of interest to the player. Here’s how to get started

ighting is one of the most powerful
tools in a creator’s toolkit. From
illuminating important goals
to adding spooky atmosphere
– the importance of light and

understanding light cannot be overstated.
To use the lighting tools within Unity, we must

first know our limitations. There are two main
types of lighting to consider: baked and dynamic.
Baked lights are ones that are pre-calculated by
Unity, whereas dynamic lights are calculated at
runtime. The benefits here are that baked lights
are essentially ‘free’ in terms of performance
within your game, and also offer high-quality
shadows for static objects. With dynamic lights,
you gain the advantage of having shadows for
moving objects, as well as total control of adding,
removing, or altering lights at runtime.

The drawbacks of one type of lighting are
complemented by the other. For example, a big
drawback for baked lighting is that your game
requires more memory to read the lighting
data. As dynamic lighting doesn’t pre-compute
this data and creates it on the fly, this is more
lightweight in terms of memory requirements;
the trade-off is that dynamic lights are more
performance-intensive.

Figuring out what lighting to use in your project
may seem like a daunting task at first, but the
process becomes much easier when you start

Add lighting
and atmospheric
visual effects

L to break things down. A good example of this
is sunlight. Does your scene have any outdoor
elements, such as open spaces or windows to
the outside world? If so, you’re going to need a
sun. Does the sun move (is there a change to
time of day during playtime)? If so, we’ll need
to dynamically change the light properties at
runtime, and thus rely on dynamic lighting. Even if
the sun doesn’t move, if you have a lot of moving
objects in your scene that need to cast shadows,
dynamic lights are still required.

You don’t have to use just one type of light in
your scene, however. It’s possible to mix static
and dynamic lights together to get the best of
both worlds in terms of their functionality. Here,
we’ll use a number of different lights and lighting
profiles to add atmosphere to our scene.

LIGHT IT UP
To get started, let’s look at Environment Lighting.
First, head into the lighting menu by going to
Window > Rendering > Lighting Settings (see
Figure 1). Inside this lighting menu, there are a
number of features we can use to fully exploit
Unity’s lighting features to our advantage.
The first one we’re going to look at is the
Environmental Lighting feature. This is useful for
lighting that has no origin within the scene but
still needs to exist. You may be thinking that this
doesn’t make sense – after all, if you’re creating

 �The Lighting tab has a
plethora of options to
choose from.

AUTHOR
RYAN SHAH

An avid developer at The Multiplayer Guys with a strong
passion for education, Ryan Shah moonlights as KITATUS – an
education content creator for all things game development.

Unity FPS Guide 65

Add lighting and atmospheric visual effects
Levels, Models, Sounds, and More

a realistic game, you want your lights to come
from natural locations. But there are important
benefits to using environmental lighting, even in
realistic scenes.

In most movies, lighting emanates from
sources outside the scene captured by the
camera. In many behind-the-scenes videos, you
may notice additional lights and fixtures behind
or around the camera. Environmental lighting
is usually to either diffuse the existing lighting
within the scene – to brighten up dark corners,
or to highlight an object
or character in 		
the foreground.

We can do this in
Unity with Environment
Lighting. We have
three main options in
this section: source (which defines where the
light’s coming from), intensity (how strong the
light is), and ambient mode (if you have global
illumination turned on for your scene, this
would control how this light should be treated).
As you may have guessed, in the source section,
Skybox means the light will come from the sky.
Gradient deals with our scene in three chunks:
the sky, the distant horizon, and the ground.
With the gradient, you can set specific colours
for each of these three areas and Unity will
blend these colours together based on location,
to coat your scene in a naturally blended light.
The colour option blankets the whole scene
with a colour of your choosing, which is great
for diffusing your scene.

As a cool example, let’s coat our scene in a
luminous green (see Figure 2). This will not only

give us an effect akin to The Matrix, but will also
brighten our shadows a little to make sure our
scene isn’t too dark. To do this, head back to
Environment Lighting and change the source to
Color; for Ambient Color, click the colour (to open
up the property window) and add these values:
R: 0, G: 185, B: 22 (alternatively, you can set the
hexadecimal value to 00B916). If you take a look
at your scene now, you’ll notice everything is
coated in a bright shade of green – even our dark
shadows have a green tint to them.

There are still
plenty of steps we can
take to improve the
atmosphere of our level.
As our scene takes place
outdoors, we’re going
to need some sunlight.

In most cases, especially in modern games,
sunlight is displayed using a Directional Light.
In Unity, there are four key lighting types: Point,
Spot, Directional, and Area. Point lights are
placed in the scene and emit light in a spherical
fashion. Spot lights act like real life spot lights
– they radiate a cone of light from the point of
origin. Directional lights have no clear point of
origin, but act as if the light is omnipresent (like
a sun) and blanket the whole scene with lighting
based on the rotation of the directional light.
Finally, area lights are a baked-only light that
emits rays uniformly within a rectangle.

“In most movies, lighting
emanates from sources

outside the scene
captured by the camera”



�Here are the three options
for Environment Lighting,
where you can change the
source of the lighting, the
intensity multiplier, and the
ambient mode.

 �Figure 1: The Lighting
Settings window allows us
to make a number of
changes to the lighting in
our scene to help us achieve
the effect we’re looking for.

 �Figure 2: You can customise the environment
lighting in numerous ways. You aren't restricted to
using a simple colour – you can also import
cubemaps and skyboxes to add realistic reflections.

66 Unity FPS Guide

 �You can select the colour of
your directional light and
the kinds of shadows it
creates in the settings menu.

The best way to understand these different
lighting types is to use them in practice, so
let’s get started by creating a sun. Take a look
in your scene Hierarchy (usually on the left-
hand side of the main editor view). If you see a
Directional Light in there, delete it by selecting
it and pressing the
DELETE key on your
keyboard. Now our
scene is lit solely by
the ambient lighting
we set up earlier. To
make a new directional light, right-click inside
your Hierarchy; within the menu that pops up,
select Lights > Directional Light.

Wherever directional lights are placed,
they’ll blanket the whole scene in light. What
does matter with directional lights, however, is
rotation. If you select the Directional Light and
press E to edit rotation mode, grabbing the X
axis (the red spherical line) will let you spin the
light. You should immediately notice that the
time of day for the skybox changes when you do
this. This is because this light is simulating your
in-game sun. An X rotation of 0 is dawn, where
the light bleeds over the horizon, an X rotation
of 90 is mid-day and an X rotation of 180 is dusk
(see Figure 3). Unity does this because using a
directional light as sun or moon light is about as
helpful as this type of light can be. Let’s create a

warm, dawn sunlight by setting our rotation (via
the Inspector) to X: 0, Y: 0, Z: 0.

We now have a spring morning breaking out
across our scene. As we’ve already covered,
this light is a dynamic light (that doesn’t use
pre-baked lightmaps) because it has to calculate

shadows for objects
that move. You can
see what lighting
mode the light is set
to by clicking the
light and, within the

Inspector, going to the Mode area, where you
will see Realtime for our directional light.

Before we dive deeper into the lighting system,
let’s look at a couple of effects we can add to our
scene to further flesh out the atmosphere.

POST-PROCESS
To really add atmosphere to our scene, let’s
use the post-process feature. A post-process
adds effects to the rendered image just before
it’s displayed to the end user. It’s useful adding
atmosphere and style to your scenes. If you
haven’t brought in the Post Process tool yet,
you need to add it via the package manager.
To do this, you can go to Window > Package
Manager. Once it’s loaded, on the left-hand side
select Post Processing, and press the Install
button on the top right of the window to install
it into the project.

To start using the post-process, we need to do
two things. First, we need to add a Post-Process
layer to our camera. This tells the engine, “Hey,
this camera gets affected by the post-process
settings we’re going to make.” In order to do this,
select the camera within your scene, head over
to the Inspector, and select Add Component.

Now select Rendering > Post-Process Layer.
There are a few options in the Rendering
submenu, so ensure you select the correct

 �The four lighting
options can be accessed
via right-clicking in the
Project tab, or by using
the drop-downs at the
top of the Unity Editor.

“The best way to understand
these different lighting types

is to use them in practice”

Add lighting and atmospheric visual effects
Levels, Models, Sounds, and More

 �Figure 3: The rotation of
a directional light will
change the time of day
of the default skybox in
your scene.

Unity FPS Guide 67

Add lighting and atmospheric visual effects
Levels, Models, Sounds, and More



�The package manager is
filled with utilities and
packages you can use to
improve the look and feel
of your project.

DOUBLE
INSTALL?
If you’re having trouble
activating post-processing
features – if you find there are
options missing, for example –
you might have a 'double install'.
This is where you have two
instances of PostProcessing
in your project. The package
manager is the intended way
of using the system, so take a
look in your content browser
and delete any folders marked
PostProcessing (that isn’t a
Packages subfolder).

option. To ensure this camera captures our
post-process work, within the newly created
Post Process Layer section in our Camera, go to
Layer and select Everything. This means that the
camera will react to every post-process volume
in the scene – as opposed to the default value
of none, which means none of the post-process
volumes can affect the camera.

The second step to deal with is the post-
process volume. These are trigger boxes placed
within your scene that can either affect the
area covered inside them or the whole scene.
We will look at how to set this up in just a
moment. Before we do, we must first spawn a
Post-Process volume in our scene. To do this,
head over to the Hierarchy and create a new
component. Select 3D Object > Post-Process
Volume to spawn the system we need.

We now have a working post-process system
in our scene, but there are still a couple of things
we need to do before we can tune the settings.
Click the post-process volume and, over in the
Inspector, tick the Is Global checkbox so it’s true.
This tells Unity that instead of turning the post-
process on if the camera is inside this trigger
volume, it should apply it to the whole scene. If
you’re wondering when would be the right time
to have Is Global set to false, if you had multiple
post-process effects in your scene, if Is Global
was set to true then they would conflict and
cause unintended results. Basically, if you have
more than one post-process, turn Is Global off
and scale the trigger volumes accordingly to
cover the area you want said post-process to
appear in. If you only have a single post-process
that you want to cover the whole scene, set Is
Global to true.

There are a few other settings both within
the Post-Process Volume and the Post-Process
Layer we’ve created. Many of them are designed
to be tweaked by hand to get the exact specific
aesthetic you’re trying to achieve. For the
purposes of what we’re doing here, we’re simply

going to focus on the last piece of the puzzle:
the Post-Process Profile. This is where the magic
happens – this is the asset we can use to adjust
the post-process settings we want to implement
in our scene. To create a Post Process Profile,
either head to the content browser and create
it there, or you can press the handy New button
next to the Profile heading in the Post Process
Volume. Go ahead and create one now.

From here, open the newly created profile
by either double-clicking the asset or double-
clicking the now filled-in variable within the Post
Process profile. Within the Inspector, we can
now add and alter effects for our post-process
profile. Getting a post-process to look exactly
how you want will be a subjective experiment,
turning on and tweaking effects as you see fit to
get the exact atmosphere that you’re looking for.

Below is a list of the effects you can
implement with this post-process profile system:

Ambient Occlusion: Darkens calculated
ambient shadows between objects and surfaces.

Auto-Exposure: Mimics the human eye’s
reaction to light. It simulates those few seconds
where, if you’re in a dark room and then head
outside on a sunny day, your eyes take a few
seconds to adjust.

Bloom: Makes the light around a bright object
leak out a little, creating the illusion of a really
bright light source – a common artefact with
real life cameras. You can also add dirt masks to
emulate a dusty lens.

 �The Post Processing Volume allows
you to define specific areas and
select effects that apply to them.

68 Unity FPS Guide

Add lighting and atmospheric visual effects
Levels, Models, Sounds, and More

Chromatic Aberration: Emulates the
multicoloured halo effect sometimes seen on
real camera lenses.

Colour Grading: Uses a look-up table to adjust
the palette and tone of colours in a scene.

Depth of Field: Replicates the focal point of a
camera lens. You can change what objects are
blurred out and what’s in focus, just like a real
camera lens.

Grain: A film grain effect which can be used
to mask jagged lines or to provide a classic
cinematic feel.

Lens Distortion: Changes the shape of the
virtual camera lens to provide a distorted effect
made commonly seen in skateboarding videos
of the nineties.

Motion Blur: Enhances the look of a fast-
moving object. A popular technique in modern
video games.

Screen-Space Reflections: Alters the
appearance of objects that appear in reflective
materials, such as a puddle or a mirror. This
effect saves having to render geometry twice
by using the depth buffer to calculate how the
reflection should look.

Vignette: Darkens the edges of the image
to emulate a real camera. This effect is used
a lot in horror games because it adds to the
spooky atmosphere.

I have included an example below of a post-
process file you can use, but feel free to tweak
with the settings within this profile until you
come up with a visual style and aesthetic that
suits your project:

• �Ambient Occlusion:
 Mode: Scalable Ambient Obscurance
 Intensity: 4
 Radius: 1
 Quality: Medium

• �Bloom:
 Intensity: 2.5
 Threshold: 0.85
 Soft Knee: 0.5
 Clamp: 31250

 Diffusion: 4
• �Chromatic Aberration:

 Intensity: 1
• �Color Grading:

 Mode: ACES
 Temperature: 9
 Saturation: 1.2
 Contrast: 1
 Channel Mixer:

 Red: 40
 Green: 110

• �Depth Of Field:
 Focus Distance: 15
 Aperture: 3
 Focal Length: 70

• �Grain:
 Colored: False
 Intensity: 0.15

• �Motion Blur:
 Shutter Angle: 310
 Sample Count: 20

• �Vignette:
 Intensity: 0.425
 Smoothness: 0.2

One important thing to note with post-process
effects is that they’re not all created equal in
terms of performance. Some effects come
with a large performance cost, and it’s down
to you to decide if the effects are worth the
performance trade-off, or if you want to disable
(or in some cases enable) specific effects on
specific devices.

Before we go back to talking about lights,
let’s look at one last effect we can use to add
atmosphere and further stylise our project.
Head back into the Lighting window. If you’ve
closed it, you can find it again in Window >
Rendering > Lighting Settings. If you scroll
through the list, you’ll find Fog. Fog has been a
staple of video games for many years as an easy
way to build atmosphere, as well as hide any
imperfections in your game’s world. Select the
checkbox next to Fog to turn the feature on and
play with the settings until you find a look that
suits you. For my project, my settings are:

• �Fog:
 Fog: True
 Color: (Hexadecimal) D2C1C1
 Mode: Linear

 Start: 0
 End: 150

 �With Post-Process Volume
Profiles, keep performance
in mind, as some of the
effects can bring a large
performance cost.

 �Spot light settings give
you plenty of control over
things like angle, range,
colour, and intensity.

Unity FPS Guide 69

 �When viewed in the game,
our point lights give off a
sickly orange glow, and
generate the kinds of
shadows you'd expect
from a sinister castle.

There are many different tweaks and changes
you make in both the Post-Process settings and
the Lighting settings, so I highly recommend
going through and making tweaks to values until
you find a style you are happy with.

Now that we’ve covered post-processing,
let’s add a few more lights to gain a deeper
understanding of the options available to us.

IN THE SPOT LIGHT
There are two important light types we touched
on earlier, but are worth exploring in more
detail: point lights and spot lights.

Let’s start by making a spot light. You can
do this by right-clicking in the Hierarchy and
selecting Light > Spotlight. Earlier, we looked
at how we can emulate a real-world spot light;
here, we’ll use a spot light to create a torch.

Find the camera in your Hierarchy and drag
the spot light on top of the camera. You’ll notice
that your spot light now becomes a child of this
camera. We changed the parent of our spot
light, but it has stayed in the same location it
was in before the merge. To fix this, select the
camera and head into the Inspector. Set the
location and rotation to: X: 0, Y: 0, and Z: 0. This
will move the spot light to the camera, creating
the illusion that the torch is being held by the
player character.

Below, I’ve provided settings to create a
realistic-looking flashlight. Again, feel free to
tweak these values as you see fit.

• Light:
 Range: 10 – How far into the distance

does the light affect.
 Spot Angle: 45 – This is how big the cone

of the light should be.
 Mode: Realtime – As this is supposed to

act as a flashlight, we will need real-time
shadows due to the many moving objects
within our scene.

 Intensity: 10 – Intensity deals with how
bright the light source is.

 Indirect Multiplier: 5 – Deals with how
much light bleed you get from this light.

The last light I wanted to touch on is the point
light. These are ideal for areas in your scene that
require a realistic-looking light bulb, or an area of
your scene that requires a particular light or hue
that you’re not getting from your direction light,
such as an exaggerated glow from a neon sign.

 You can create a point light in almost the
same way as we’ve created the other lights within
the scene. Within your Hierarchy, right-click and
select Lighting > Point Light. For our example,
we’ll pretend there’s a street light at the corner of
our scene that has an evil, red tint. I’ve placed my
point light at the position: X: 0.5, Y: 2.5, Z: -5.

Earlier, we saw how point lights emit light
evenly with from the centre of a sphere, so
rotation isn’t necessary in most cases. Here are
the settings I’m using for my red light (if you’d
like to emulate them, or create your own style;
make sure the point light is selected and head
into the Light section of the Inspector):

• Light:
 Range: 15
 Color: (Hexadecimal) FF0000
 Mode: Baked – This light isn’t used to

shadow dynamic items within this scene;
it is simply used to further colorize our
in-game world so we can go for the more
performant Baked option.

 Intensity: 15

As we have a number of lights in our scene –
and process effects that also affect the visuals
– it might be hard to see this light while playing
your game. To combat this, you’ll have to tweak
your various lights and post-process settings
until you get the style you’re looking for – it’s a
case of balancing your project’s systems until
they look right.

We’ve just taken our first steps into the lighting
and effect systems within Unity, but this is just the
tip of the iceberg. If you are interested in taking
these systems a step further, I strongly suggest
looking into global illumination and how to alter
lights via code – for example, you could create a
spooky, flickering light in a lonely hallway.

 �The Lighting Settings
window contains many
helpful settings to
further tweak the visual
style of your scene,
from fog settings to
global illumination.

Add lighting and atmospheric visual effects
Levels, Models, Sounds and More

PREVIEWING
You can instantly see the results
of your post-processing effects
by heading over to the Game
viewport. The Scene viewport
doesn't include post-process
effects due to performance and
usability risks.

 �There you have it: the scene is lit
with a pleasing shade of green.

70 Unity FPS Guide

Adding sound and audio
Levels, Models, Sounds, and More

 �You can choose from
multiple templates
depending on your
project’s requirements.

ound in your projects is extremely
important. Watch a film with
the volume turned down and
you’ll immediately notice the
impact sound and audio has

on the experience. Adding audio to your
project is a great way to provide an immersive
atmosphere, and can even provide new
gameplay experiences.

When it comes to audio, there are a number
of different tools you can use in Unity, and
there are many different ways to use said tools,
too. Let’s go over the core features of Unity’s
audio systems and learn all about AudioClips,
AudioSources, and the powerful Audio
Mixer toolset.

In games, you can categorise sounds into five
core areas – Music, Dialogue, Effects, UI, and
Master. Master is the overall volume of your
project, which is a helpful way for your players to
turn down the overall volume of sounds without
having to adjust music, dialogue, effects, and
user interface sounds separately.

S Before we can start working with audio within
Unity, we need sounds to use. For the purposes
of what we’re doing here, you can either record
some audio in your favourite recording program
(such as Audacity or Adobe Audition), or you can
browse the asset store to find sounds that you’d
like to use. Most (if not all) of the Unity example
content also features sound files, so go ahead
and either make or find some sounds to use.

It’s worth touching on how to import sounds
into Unity – it’s handy to know how, even if
you’re not using your own sounds for this guide.
Unity supports many audio formats, such as
MP3, OGG, WAV, and more. When Unity builds
your project, it will convert the file into OGG
for desktop and consoles, or MP3 for mobile
platforms. In general, most people use WAV
files due to their lossy format, but if you use
OGG files on import, you’re not going to get
any degradation in quality compared to your
built files (if you’re building your project for
desktop and console) because no conversion
will take place.

Once you’ve got your audio files ready to
import, there are three main ways you can bring
them into your project. The first method is to
manually drag and drop the audio file from
your file explorer into Unity’s content browser.
The second method is to go to Assets > Import
New Asset… and import the files that way. The
third way is quite similar to the second method,
but instead of using the menu system, you can
right-click in an empty space inside the content
browser to bring up the requisite menu.

With your audio files inside the project, we
can now bring them into our scene. We’ll quickly
test to ensure our audio is coming through and

Heighten tension and excitement with music
and sound effects. Ryan shows you how

Adding sound and audio

AUTHOR
RYAN SHAH

An avid developer at The Multiplayer Guys, with a strong passion
for education, Ryan Shah moonlights as KITATUS – an education
content creator for all things game development.

Unity FPS Guide 71

Adding sound and audio
Levels, Models, Sounds, and More

 �Yep, you guessed it – we’ll
be meddling again with
the Unity Editor.

playing correctly. There are two key ways to do
this. The first way is to select the audio within
the content browser. With the audio selected,
you’ll be able to see some properties on the
right-hand side of your screen. If you look at the
very bottom of this properties area, you’ll see a
section with a waveform inside. Just above the
waveform on the far right, you’ll see some play
controls: volume, looping, and play/pause. You
can use these controls to test out the audio
within Unity.

Another way of testing the audio is to put
it in the scene. To do so, simply select an
object within the scene (or create an empty
GameObject) and drag
your audio file into the
properties panel. You’ll
see that it creates an
audio component for you,
and sets up the audio
to automatically play on game start. If you
were to test the project out now, you should
immediately hear the sound playing.

By now, we can confirm the sound is imported
and works in the scene. The next stage is to fire
this sound off with a piece of code, so that we
can understand how to activate a sound when
a gun is fired, a door is opened, or a footstep
is made.

NOISES OFF
We’re now going to create a sound that fires
every three seconds – this will give us a basic
understanding of how audio works in code
within Unity. To get started, we’re going to need
a new C# file. If you haven’t done this yet, you
can do so by right-clicking the content browser
and selecting the Create option. From here,
select New C# Script and this will generate the
files needed. Give it any name you want, but
for the purposes of synchronicity, I’ll be calling
mine ‘AudioTester’.

When the C# file is generated, we’re given
Start() and Update() functions – Start obviously

fires when this script is run,
and Update runs during
every update loop of the
game. We don’t need the
update loop for testing
our audio, so go ahead

and remove this function. We’re going to add
a requirement to our script, because we don’t
want our code to fire if there’s no audio present.
This is to prevent any errors or bugs within our
project at runtime. To add a requirement, head
above the class (the line that says public class
XX : MonoBehaviour) and add the following:

[RequireComponent(typeof(AudioSource))]

“We’re now going to
create a sound that fires

every three seconds”

72 Unity FPS Guide

Adding sound and audio
Levels, Models, Sounds, and More

This line of code ensures that when this script is
placed on an object, an audio source is present.
If one isn’t present, it will create one for us.

It’s almost time to add the code that will fire
our sound every three seconds. Before we do
so, we need to set up the audio source to accept
the sound we want to use. To do this, we’re
going to store the sound we want into a variable
(exposed to the Unity Editor) and tell the
AudioSource component to use that variable.

Just above the void Start() function, go ahead
and add the line public AudioClip soundToPlay;.
This will create a variable we can set within the
Unity editor for use with our script. We also
want to store the AudioSource as a variable so
we can talk to it a little easier (instead of having
to find it every time our code fires, which will be
once every three seconds). After the line you’ve
written, add a new line and copy AudioSource
audioSourceToUse; into your script. You should
now have the following:

using UnityEngine;

using System.Collections;

[RequireComponent(typeof(AudioSource))]

public class AudioTester: MonoBehaviour

{

 public AudioClip soundToPlay;

 AudioSource audioSourceToUse;

 void Start()

 {

 }

Once you’ve added that line, head into the void
Start() function and add the line:
audioSourceToUse =
GetComponent<AudioSource>();.
This line looks at the object this script is
attached to and finds the audio source. We then
save the found audio source to the variable we
made, so we can talk to it without forgetting who
we need to talk to.

All that’s left now is to fire the sound every
three seconds. To do this, we’re going to
create another function. For those who haven’t
understood what a function is yet, just take a

look at void Start() – the default function that
was created when our script file was generated.
Create a function called FireSound and place
it after your void Start() function. Your script
should now look like this:

using System.Collections;

using UnityEngine;

[RequireComponent(typeof(AudioSource))]

public class AudioTester : MonoBehaviour

{

 public AudioClip soundToPlay;

 AudioSource audioSourceToUse;

 void Start()

 {

 audioSourceToUse =

GetComponent<AudioSource>();

 }

 void FireSound()

 {

 }

}

Inside your FireSound function, adding
audioSourceToUse.PlayOneShot(soundToPlay);
will be enough for our example. This line of
code gets the created AudioSource and tells
it to play whatever sound file is stored in the
SoundToPlay variable. All we need to do now
is fire the function we’ve created every three
seconds. To do this, head back into the void
Start() function and add this line of code:
InvokeRepeating("FireSound", 1.0f, 3.0f);.
This is telling Unity that it should fire the
function FireSound one second after this script
is run. After that, it should repeat firing the
function every three seconds. Here’s how it
should look:

using System.Collections;

using UnityEngine;

[RequireComponent(typeof(AudioSource))]

public class AudioTester : MonoBehaviour

{

 public AudioClip soundToPlay;

 AudioSource audioSourceToUse;

 void Start()

 {

 audioSourceToUse =

FLOATS
The dynamic floats we can use
to alter values on our Audio
Mixer are between -80 and 20,
with -80 being 0% and 20 being
120%. This means a value of 0
is actually 100% audio, and any
further is artificially increasing
the audio output of the channel.

 �Here’s all of our imported sounds
in the editor – the wavelengths
give a visual clue as to what
they’ll sound like.

 �What your sound will look like in
the Inspector.

Unity FPS Guide 73

Adding sound and audio
Levels, Models, Sounds, and More

 �Sounds can be manipulated further
once applied to a GameObject.

GetComponent<AudioSource>();

 InvokeRepeating("FireSound", 1.0f,

3.0f);

 }

 void FireSound()

 {

 audioSourceToUse.

PlayOneShot(soundToPlay);

 }

}

We now have a working audio system that we
can use to test our sound in-game. Again, this
will fire every three seconds. To activate this
script, make sure you save the script, and then
head back into Unity. Find an object within the
scene of your Unity project and drag and drop
the script from the content browser. If the
object didn’t have an AudioSource, you’ll see
one is generated. All that’s left now is to add a
sound file into the audioSourceToUse variable of
your script by pressing the button and selecting
your sound and you’re ready to test and hear
your audio.

Now that we’ve learned about audio files and
how to use them via scripts in Unity, it’s time
to learn about the audio mixer. Remember
we talked about how sounds can be filtered
into five categories (Music, Dialog, Effects, UI,
and Master)? We can use Unity’s audio tools
to filter our sounds via said categories, which
gives us the power to alter the volume of each
element. An audio mixer can also store multiple
sounds in one place, so instead of storing and
playing audio on objects, you can have one
master audio object that drives the audio within
your scene.

IN THE MIX
To get started with the audio mixing system,
we need to create an Audio Mixer. You can do
this by going to Window > Audio Mixer. This

will create the Audio Mixer window within your
editor. We now want to make a mixer, so move
over to the Mixers heading within the Audio
Mixer and press the plus sign to do so.

As the Master is the owner of the other
mixers – its values directly affect all the others
– we need to make some child mixers. Although
independent in nature, these will always inherit
data and values from their parent, which in
our case is the Master mixer. To create these
children, head over to the Groups heading
and press the + button four times. Name
these mixers ‘Music’, ‘Dialogue’, ‘Effects’, and
‘UI’ respectively. Make sure that these created
mixers are only children to the Master mixer
and not each other. If you have a child of a child,
you can click and drag it in the Groups view to
ensure its only parent is Master.

The audio mixer tool is a powerful one, and if
we were to go into every facet, we’d be here
all day. Instead, I want to focus on getting
you started and give you enough breathing
room to experiment with the system to gain a
deeper understanding of the many features the
system contains.

At this point, none of the sounds in our scene
will be using the new mixer system we’ve made,
and any changes we make to values here won’t
be replicated to the audio within our scene.
Let’s fix that now.

Head into a sound that’s in the scene and find
the Audio Source properties. There’s a section

 �The Audio Mixer tab may look
intimidating at first, but it’s
simple once the basic functions
are broken down.

 �Scripts can be easily applied to
GameObjects in the editor.

“We can use Unity’s
audio tools to filter our
sounds via categories”

74 Unity FPS Guide

Adding sound and audio
Levels, Models, Sounds, and More

marked ‘Output’. Select the circle button next to
the ‘None (Audio Mixer Group)’ box, and select
the audio mixer you’d like this sound to play
through. Now, if you test your game with the
audio mixer open, you’ll see that when the audio
plays, the audio mixer tied to the audio should
react accordingly.

Excellent! Now our audio is being pushed
through the audio system, which allows us to
monitor each channel separately and make
changes to each channel accordingly. For now,
we’re going to focus on altering the values of our
channels through the power of code to gain a
deeper understanding of this system.

STICK TO THE SCRIPT
We need a new script file for our Audio Mixer
script; create one and call it MixerTest.cs. Now
open it up in your IDE. We need a variable to
store the Audio Mixer, which can be created by
adding the line public AudioMixer mixerToUse

just inside the class. This touches on the same
ground we covered earlier; putting this after the
class header tells the class we want this variable
to be a part of it, while putting ‘public’ before
the variable tells Unity we want this exposed to
the editor.

You may notice that your IDE is complaining
about not being able to find any class called
AudioMixer. This is because we haven’t included
the code to tell our IDE where to learn about
this class. To fix this, head to the top of the
code file, where you’ll see using UnityEngine;
on a new line, add Using UnityEngine.Audio;
to include access to the audio code within this
script. Here’s how it should look:

using System.Collections;

using UnityEngine;

using UnityEngine.Audio;

public class MixerTest : MonoBehaviour

{

 public AudioMixer mixerToUse;

 void Start()

 {

 }

}

We now have a variable storing our AudioMixer
– but we’re not currently doing anything with the
variable. Let’s add some functionality into the
void Start() function so our code fires when
this script is executed. Inside the function, the
line mixerToUse.SetFloat("currentVolumeForFX",
-10.0f); will find a parameter called
currentVolumeForFX and set it to -10.0; notice
the use of quotation marks and the f within
the line of code. The quotation marks around
"currentVolumeForFX" tell the code that this is
the text to look for, and to treat what’s inside
the quotations as literal text. The f tells unity
that what we’re giving it here is a float and not
an integer.

using System.Collections;

using UnityEngine;

using UnityEngine.Audio;

public class MixerTest : MonoBehaviour

{

 �The Audio Mixer can accept
multiple different channels,
mixers, and dynamic properties.
It’s a powerful tool for all things
audio manipulation.

 �The Audio Mixer allows you to add
all kinds of different effects. Using
what we’ve learned here, you can
extend the possibilities of the
system through code.

 �The Properties panel for your
imported audio has a number of
settings that you can use to
change various properties, such as
looping, blend time, and timing.

Unity FPS Guide 75

Adding sound and audio
Levels, Models, Sounds, and More

 public AudioMixer mixerToUse;

 void Start()

 {

 mixerToUse.

SetFloat("currentVolumeForFX", -10.0f);

 }

}

The code’s now complete, but it won’t
currently fire. We still have a few steps to take
before this code will successfully execute; first,
we need to add this script to an object within a
scene. We then need to set the correct audio
mixer. But, most importantly, we need to add
the currentVolumeForFX variable to our mixer.

Make sure your code is saved and, once
you’re happy, close the IDE and head back into
Unity. You can put the script on anything in your
scene, so I’ll put mine on the MainCamera, just
as a test and in the
same place I put the
test script for our audio
earlier. Remember,
to do this, you can
select the object in the
scene hierarchy, scroll down in the properties
to an empty space, and drag the script in from
the content browser. Our script now shows
up on the object you’ve placed it on, and it
has an empty variable. Go ahead and feed
in the Audio Mixer we set up earlier (which
should be titled ‘Master’). Finally, we need to
set up the ‘currentVolumeForFX’ link within
our AudioMixer.

Head back into the AudioMixer and select the
group that you want to adjust the volume for. In
my case, it’s the ‘Effects’ group. Go ahead and
select the one you need by left-clicking it either
in the ‘Groups’ drop-down or in the rack. You’ll
notice the properties page opens up on the far
right of your screen. There should be a single
effect currently applied to your audio group:
Attenuation. The simplest (albeit not scientific)
way to think of attenuation in this case is volume
– which is exactly what we’re looking for.
There’s some empty space with the Attenuation
area of the properties window in the section

marked ‘Volume’, between the title and the
scrollbar. Right-click in this area and select
‘Expose Volume (of XX) to script’. Now head
back to the AudioMixer window. If you look
carefully in the top-right of this window, you’ll
see a section marked, ‘Exposed Parameters
(1)’. If you’re not seeing the ‘(1)’ at the end of

the text, it means
you’ve not set up the
parameter correctly.

When you have the
correct text, left-click
this button and find

the parameter we created. All we have to do
now is right-click the parameter within this
menu and select ‘Rename’. This needs to be the
same name as in our code, which in my case is
‘currentVolumeForFX’.

If you’ve followed everything correctly, when
you test your scene, any audio that is a child
of the AudioMixer group with an exposed
parameter will have its volume changed
accordingly. You can even see the changes live
if you have the Audio Mixer open when testing
the scene.

Audio is such a massive subject within Unity,
and we’ve only just scratched the surface.
From what you’ve learned, you should now feel
comfortable adding audio to your scenes, and
be able to adjust their properties and effects
accordingly. Using your new knowledge, you
should be able to create such atmospheric
effects as an echo in large, empty spaces,
or distorted sounds when the player swims
underwater, and lots more besides.

“You should now feel
comfortable adding

audio to your scenes”



�In scripts within Unity, marking
variables as Public exposes them
to the editor window – allowing
you to dynamically set variables
inside the editor instead of
through code.



�With the skills we’ve learned
here, we can now start adding
sound effects to our shooter.

Customise your shooter experience
with these optional mechanics

Additional
mechanics

Creating a
mission marker
Make a rotating arrow to guide
players to a goal

Adding a minimap
Improve the user interface with
enemy and goal positions

Create a deployable
gun turret
Help the player fend off zombies
with a deployable weapon

78.

84.

88.

76

Build Your Own

in Unity
FIRST-PERSON SHOOTER

Create a
blink ability
Teleport around levels like
Tracer from Overwatch

Developing
wall running
Let your players defy gravity
and dodge enemies

Saving and loading
How to add a handy
quality-of-life feature

Develop a
boss battle
End your level with a
formidable boss encounter

94.

100.

108.

114.

Add mission
markers, extra
player abilities,
and even a boss
battle with
our additional
mechanics.

78 Unity FPS Guide

Creating a mission marker in Unity
Additional Mechanics

n this tutorial, we’re going to look at
adding a mission or objective marker:
this will point towards a specific goal
and let the player know the direction
they must go in. This is used in all

sorts of game genres, and there are various
ways that it can be presented. In our case,
we’ll make a simple arrow that rotates to point
towards the next goal, and it will also display
an approximate distance to that location. Also,
we’ll make the marker fade when you’re very
close and can see the objective, so we stop
cluttering the player’s view.

We can go ahead and open our first-person
character project. Once complete, we will

I make a new scene for us to test-prototype this
mechanic by selecting File > New Scene from
the toolbar. Firstly, we should delete the Main
Camera object as we are going to replace this
with our player camera. We will then add our
Player prefab from the Project panel into our
Hierarchy view. Then we can make a simple
floor by selecting GameObject > 3D Object >
Plane from the toolbar. You may need to use
the transform tools in the Scene viewport
to adjust your FPS Character to be above
the landscape.

Next, we need to add our UI elements, and
we also need to create or download an arrow
texture. At this stage, we can use a simple

Guide players through your game with a simple
mission marker. Stuart shows you how to set one up

Creating a mission
marker in Unity

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

Unity FPS Guide 79

Creating a mission marker in Unity
Additional Mechanics

 �We’ve used a plain arrow for
this tutorial, but you could
create a more stylish one for
your own game.

 �You should be at the point
where the arrow will be
correctly rendering to the
screen. Don’t worry that the
canvas is much larger than your
player – this is expected.

 �You don’t have to guide the player with arrows:
Shadow of the Colossus ingeniously let players find
their next objective with the glint of their sword.

arrow that points upwards and ideally has a
transparent background; I suggest saving using
the PNG format. Once done with creating the
arrow, you will need to simply drag the image
into your Project window and then select it
so we can set some
parameters. We need
to make sure that in
the Inspector for this
new arrow texture,
we set the Texture
Type to sprite and select Apply. You should
see a preview of the arrow on a chequered
background to indicate it is transparent.

The next thing to do is go to an empty area
of our Hierarchy panel and right-click, then
select UI > Canvas. Next, we need to select the
Canvas object in the Hierarchy and then right-
click and select UI > Image. If we now select the
Image object that we added and move to the
Inspector, we can see the image script. Select
the circle icon to the right of where it says
Source Image; this will open a new window in
which we can select our arrow image. If we are
successful, the arrow will appear in the centre
of the screen.

WAY TO GO
We also need to add a text object so we can
display how far away from the goal or target
the player is. Select the Canvas in our Hierarchy

and then right-click and choose UI > Text to
add it to our Canvas. The first thing you may
notice is that the text appears offset and is also
covering our arrow; we can simply double-
click the Text object in the Hierarchy and use

the Unity transform
tools to move it down
in the Y direction in
the Scene viewport.
We can also fix the
alignment by going

to the Inspector and using the Alignment
options to centre the text – these are under the
Paragraph heading for our Text component.

The next thing we want to do is add the
script – we will do this now, as this script will
attach to our Image object and not the player,

“We’ll make a simple
arrow that rotates to point

towards the next goal”

80 Unity FPS Guide

Creating a mission marker in Unity
Additional Mechanics

 �Mission markers are handy
for showing objectives, but
also consider giving players
the option to turn them off,
as Arkane did with its
shooter, Prey.

 �The alignment tools work
like a text alignment tool in
any word-processing
software. All you need to do
is select the option below
to centre your text, so it no
longer appears offset.

so make sure we are still selecting the Image
object. We want to select Add Component from
our Inspector and then select New Script and
type ObjectiveMarker as the Name and then
select Create and Add. We are ready to double-
click this new script and open it in a script
editor, then we can add the following code.

using UnityEngine;

using UnityEngine.UI;

public class ObjectiveMarker : MonoBehaviour

{

 public Transform target;

 public Text display;

 public float distance = 3f;

 public float fadeTime = 0.3f;

 private float angle;

 private RectTransform rectTransform;

 private GameObject player;

 private Image img;

 // Start is called before the first frame

update

 void Start()

 {

 rectTransform =

GetComponent<RectTransform>();

 player = GameObject.FindGameObjectWit

hTag("MainCamera");

 img = GetComponent<Image>();

 }

 // Update is called once per frame

 void Update()

 {

 float currentDist;

 transform.LookAt(target);

 //When we have a target, rotate our

arrow to its approx direction.

 if (target != null)

 {

 Vector3 relative = player.

transform.InverseTransformPoint(target.

position);

 angle = Mathf.Atan2(relative.x,

relative.z) * Mathf.Rad2Deg;

 //Fixes the fact that we want

to rotate the arrow clockwise and not anti-

clockwise.

 angle *= -1;

 }

 //Sets the rotation for our visual

arrow.

 rectTransform.transform.eulerAngles =

new Vector3(0, 0, angle);

Unity FPS Guide 81

Creating a mission marker in Unity
Additional Mechanics

 �You can always reuse this
in another project;
imagine you need to
highlight targets for a
flight combat game.

 //Find the distance from the player.

 currentDist = Vector3.

Distance(player.transform.position, target.

transform.position);

 //Display the distance in meters.

 if (display != null)

 display.text = (Mathf.

Round(currentDist * 10f) / 10f).ToString() +

" Meters";

 //If we are looking at the target and

in X meters of the target.

 //We will fade off the arrow so it

doesn't clutter the screen.

 if (angle <= 30 && angle >= -30 &&

currentDist < distance)

 {

 img.CrossFadeAlpha(0, fadeTime,

false);

 if(display!=null)display.

CrossFadeAlpha(0, fadeTime, false);

 }

 else

 {

 img.CrossFadeAlpha(1, fadeTime,

false);

 if (display != null)display.

CrossFadeAlpha(1, fadeTime, false);

 }

 }

}

We can save this and then return to Unity;
the actual base script is now usable, apart from
we need to give it three frames of reference so
it knows about the player, the objective, and
can display the distance correctly.

First, we will look at the FPS Character, more
specifically the camera it uses. You will need to
find your FPS character and expand it so you
can see the sub-objects. You should see an
object that has a camera component attached;
in this case, make sure that the Tag in its

FLYING ARROWS
There are various tools out there for creating your arrow;
some are paid, and some are free. Take some time to
research your options and see what other developers
recommend. If you enjoy the more artistic side of
development, you can always spend time theming your
arrow and being more creative with it than the ones
presented here.

“We want to select Add
Component from our Inspector

and then select New Script” �It’s vital to set the premade tag of MainCamera on our
game object that has the Camera component. The above
script uses this to reference our player position against
the position of the objective.

82 Unity FPS Guide

Creating a mission marker in Unity
Additional Mechanics

Inspector is set to the Main Camera. In the case
that it hasn’t been set, simply use the drop-
down to set it correctly.

We will then need to link our objective; at
the moment we don’t even have an object
to represent it. So, from the Unity toolbar,
select GameObject
> 3D Object, choose
the Cube, and place it
somewhere in your test
level. With that done,
we can select the Image
object we made earlier
and then look for our script in the Inspector.
The next stage requires you to drag the game
object we just added in the Hierarchy on the
slot of the Target variable in our attached
script. While we are here, we should also drag
the Text object we made earlier into the Display
parameter on the script. This effectively tells
the script that this is the element we want to
draw our text to, so it’s important to remember
to do it.

SNEAK PREVIEW
With that all complete, we can preview the
game in Unity by selecting the Play button from
the toolbar. We should see the arrow rotate
to the position of our target object. As we get
closer to the object and it remains in view, we

PLACEMENT
You can move the arrow to a
more suitable location rather
than having it remaining central
to the screen. Do your research
and find out what works for
other games and what feels
best for your situation.

 �Once we have reordered
the build list, we can set
the index of the scene
from our scene list. This
will then be the level that
we load up next.

 �The marker shows the
player which direction the
exit is – though they’ll have
to get past the zombies
before they can reach it. should see that the arrow will fade off as we

don’t need it any more. We should also see the
distance to the target displayed in metres – this
should update correctly as we move around.

Let’s say we wanted to have the player
navigate to this point as an exit to your level.
We have previously looked at loading up our
scenes based on if we click the Start button on
our main menu. We can do the same when we

touch the Cube object.
Firstly, we should save
this as a new scene
before we make any
further changes. Next,
select the Cube in the
Hierarchy and then,

in the Inspector, expand the Box Collider
component; check the Is Trigger option. While
still in the Inspector, select Add Component,
then select New Script and name this
LoadScene, and Create and Add. Once we have
that set up, we need to open our script and add
the code below.

using UnityEngine;

using UnityEngine.SceneManagement;

public class LoadScene : MonoBehaviour

{

 public int sceneId;

 public void OnTriggerEnter(Collider

“There are other ways
you can present the

marker and make
it your own”

Unity FPS Guide 83

Creating a mission marker in Unity
Additional Mechanics

other)

 {

 if (other.CompareTag("Player"))

 {

 SceneManager.LoadScene(sceneId);

 }

 }

}

Save it and return to the editor; we are going
to make some changes to our build settings.
We need to select File > Build Settings… in the
Toolbar and then select Add Open Scenes to
add this scene to the list. Let’s suppose we
want to load to our main menu – we would just
load this scene and then our zombie area. We
need to move our current scene to be above
the zombie arena. Note the numbers to the
right-hand side of the list: you should see the
zombie area will have the id value of 2; this will
be useful shortly.

Once we have that done, close these settings
and select the Cube in the Hierarchy; in the
Inspector, we can see the script we added. At
the moment, the Scene Id is wrong – it’s set to
0, which is our main menu. We need to change
this number to be 2 as this is the value of the id
for our zombie arena scene. We need to make
sure we save this scene again, so that the new
id is remembered. We can preview our loading

script by pressing the Play button on the
Toolbar – you should now be able to trigger the
level transition. It’s pretty easy to see how we
could build out our level and use the objective
marker to guide the player to a destination.

There are certainly other ways you can
present the marker, and there’s room to
make it your own; for instance, you might
want the arrow to be more dynamic to your
screen rather than moving around an axis.
But for now, this is a great way of displaying
information to the player and guiding what they
need to do next.

ON TARGET
In our example, the target isn’t
very exciting or dynamic, but
this is purely for testing that our
marker works. Imagine the wide
variety of goals you might have
in your game; there could be
many ways to use this marker
to help highlight key quests and
awesome rewards to your player.

 �Payday 2 shows enemy alerts and has similar
directional arrows to show information
about where threats are coming from.

 �Dishonored 2 kept its mission markers
and on-screen info tastefully minimal.

84 Unity FPS Guide

Adding a minimap to your Unity game
Additional Mechanics

Players can spot the location of enemies and
more with a minimap. Here’s how to make one

e’re now going to look at how
we can add a minimap to our
first-person shooter. Minimaps
have appeared in all kinds of
video games, from Halo to

World of Warcraft, and have stood the test of
time in terms of notable (and useful) UI features.
They can highlight specific information to the
player, from important mission goals to the
location of any enemies in the player’s proximity.
There are several ways to add a functional
minimap to your game, but we’re going to look
at a relatively cheap and efficient way to add this
to any game. We can also achieve this without
needing to use any C# scripts.

Adding a minimap
to your Unity game

W The first thing we need to do is open our
first-person character project. We can use
the main first-person level where we added
the zombie enemies, as we can easily add our
minimap into the scene without any major
changes or additional coding. You should also
have the player and the enemy prefabs we
already created as part of implementing our
initial project. This is great, as we can just adjust
these and save the changes and we should be
good to go.

SETTING UP THE MINIMAP
Our initial step towards setting up our minimap
is to draw icons for the positions of our player
and any other objects we wish to highlight on
the map. To achieve this, we’re going to use
another camera that is placed above our player.
We select the Player object in the Hierarchy
and right-click, and then select the Camera
object. You should see an additional camera
preview in the Scene viewport, but for what we
need next, it’s the completely wrong orientation
and position.

First, in the Inspector, we need to set the
rotation for X to 90, then set our Y position to
10. We also need to set the drop-down option
for Projection to Orthographic.

With that done, we also want to add our
player icon that will appear on the minimap.
So, what we need to do is select the main Player
object in the Hierarchy view, then right-click

 �The Halo minimap is
useful for finding enemies,
but has a clever and
rewarding mechanic, in
that it only highlights
them if they are making
excessive noise or already
visible to the player.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

Unity FPS Guide 85

Adding a minimap to your Unity game
Additional Mechanics

and select Create Empty. Select this new empty
object and move to the Inspector panel.

In the Inspector, we can name this as
‘Player Icon’ and then we need to select Add
Component > Rendering > Sprite Renderer.
Once added, select
the Sprite entry to
open the Select Sprite
window and select the
Knob sprite image. I
would also set the Color
value to a green hue. Finally, we should set
the value for the X rotation to 90 and the X, Y
Scale values to 4. In the preview for the camera
added, you may be able to see the icon, but it
will be clipping with the player capsule – this
will be fixed later. We need to apply our current
changes, so we must select the Player object
in the Hierarchy, and in the Inspector select
Overrides and Apply All.

Next up, we’ll find our Zombie prefab in
the Project panel, and in the Inspector, select
Open Prefab. We can then simply right-click and
select Create Empty to create an empty object.
As before, we select this and in our Inspector
we’re going to name this ‘Enemy Icon’. We’re
then going to repeat the process of adding
our Sprite Renderer and then our Knob sprite
image. In terms of the colour of the sprite, this
time I would go with a red, and we need to set
our rotation and scale as with the ones above
for our Player Icon. We can then select the back
icon next to the Zombie text in the Hierarchy to
return the objects in our main scene.

RENDERING OUR MINIMAP
The next thing to focus on is rendering our
minimap to our screen somehow. We’re going

to use a render texture; in effect, this can
be used to render what is usually rendered
to our camera viewport to a texture which
can be placed anywhere in the game world.
This method can also be used to create a mirror

or portal to another
location. To create this
render texture, we
need to right-click in
our Project window and
select Create > Custom

Render Texture and this should then appear.
I would take time to rename this as ‘Minimap’ so
we know what it will be used for.

We now need to find the camera we created
which points top-down onto our player
character. Simply drag the render texture to the
Target Texture slot on the Camera component.
Next, we want to use our Render Texture in the
game and show it somewhere on the UI, so we
need to create this. We already have a canvas

“We’re going to look at a
relatively efficient way to

add this to any game”

 �We already have a basic
level where we spawn
enemies for displaying on
the minimap. Now we’re
ready for implementation.



�With our additional
camera added, and a few
quick tweaks, you can
already see how this can
be used to draw our
minimap viewpoint.

MASKS
By setting what we can and
cannot see in the Culling Mask,
we can choose what appears to
the player in either their view or
what is shown on the minimap.

86 Unity FPS Guide

Adding a minimap to your Unity game
Additional Mechanics

object to render our player health, so we can
select this in the Hierarchy. We need something
to render the texture on; so, with the Canvas still
selected, right-click and select UI > RawImage.

You may have noticed that a white box
appears in your camera view on the Game
preview. We don’t want a minimap in the
centre of the screen, so we can simply fix
this by keeping the Image object selected
and heading to our
Inspector. We can now
look at adjusting the
position of the image by
changing values in the
Rect Transform.

The easiest way to do this is to use the Anchor
Presets; we used this before, and it looks like
a target with a red circle in it. If we select it,
we can then click the icon that corresponds
to the bottom-right of the matrix you’re
presented with. You should repeat that action,
but with the SHIFT key held down to make the
pivot also adhere to the bottom-right of the
screen. Next, we want to set our Pos X to -5 and
Pos Y to 5 to add a buffer between the map
and the edge of our screen. At this point, you

should see that the white texture appears in the
bottom-right corner with some padding.

We can now drag the Minimap that is our
Render Texture to the Texture slot on our Raw
Image component. You should see what looks
like the view from the secondary camera we
set up appear. While this is great, it doesn’t

show our icons and
doesn’t come across as
a traditional minimap.
To fix that, we’ll use
Layers. To set these
up, we’ll create a new

layer for our camera to use. We can do this by
selecting the Layer drop-down on the Inspector
and then selecting Add Layer… from the options.

You should now be shown the layers that
are already in use for this project. If we select
an empty entry, we can then type in a new
layer name of ‘Map Icons’. We’re going to have
to adjust both cameras as part of our setup.
First, we need to find the camera that has
the tag ‘Main Camera’ in the Hierarchy panel.
In most cases, this is going to be the camera that
our player uses to look around the game world.
We’ll then look in the Inspector for this camera
and select the Culling Mask. In there, you should
see the Map Icons layer. Deselect it.

Next, select the top-down camera we added
for the minimap. In the Inspector, we first
want to select Nothing as our Culling Mask,
then reselect the Culling Mask and choose our
Map Icons layer. The final task is to select our
Player Icon and the Enemy Icon we created

PREFABS
An important element we
should have set up during the
initial development was to
create our Player object as a
Prefab. You should see your
Player object in the Project
panel. If this isn’t the case, you
can easily open the original
scene and drag the Player
object from the Hierarchy to the
Project panel to achieve this.

“The red circles that
represent the enemies

appear on the minimap”

 �We should make sure to
correctly orientate the
rotation of our minimap
sprites so that they’re seen
by our overhead camera.

 �The render texture will
allow us to draw what
our top-down camera
sees. We can then apply
this to any mesh or
surface in the game.

 �The anchor presets allow us to quickly align our Canvas
elements to various positions on the screen. Perfect for
trying our various UI configurations.

Unity FPS Guide 87

Adding a minimap to your Unity game
Additional Mechanics

and set their Layer drop-down to Map Icons
in the Inspector. You may have to go through
the process from earlier to modify the Zombie
prefab. With that, we should be able to select
the Play button and preview our game. Notice as
you walk around that the red circles that
represent the enemies appear on the minimap.
Once you are happy, we can select the Play
button again to end the preview.

You may notice the minimap has a very
narrow field of view of where the enemies are;
this could do with widening. To fix this, we’re
going to increase the size of the viewport. This is
very simple: all we need to do is select the
top-down camera we made in our Hierarchy.
We can then look at the Camera component in
the Inspector and change the Size parameter
from 5 to 12. You may notice the displayed icons
are too small; to fix this, increase the X & Y scale
values from 4 to 6. Once you’re happy, it’s a
good idea to select the Player and make sure to
apply all the prefab changes.

While we’re here, we will make the minimap
render look more like a compass. This is going to
be extremely crude, but we can always improve
it by making a bespoke texture. For now, we’re
going to select the Canvas in the Hierarchy,
right-click, and select UI > Image. With this
selected, in the Inspector we need to select
the Knob sprite again as our Source Image. We
also need to select Add Component and then
select UI > Mask. We need to set our Anchor
position to the bottom-right; remember to do
this once to set the position, and again with the
SHIFT key held to move the pivot. We also need
to repeat the values for the Pos X and Pos Y,
setting them to -5 and 5 respectively. Finally,
we want to drag our RawImage object onto
this new Image object so that it’s a child of it.
We should see this update, so we have a basic

circular look to the map to emulate a typical
minimap design.

We can then preview our changes by selecting
the Play button; this feels a bit better and allows
us to see more of the playing area. It all depends
on the game you’re creating, though. Now we’ve
developed this basic minimap, we can think
about improvements like additional theming,
adding more visualisation for the architecture
of the level, or even adding a fog of war effect to
limit how much we can see on the map. It’s time
for your imagination to run wild and come up
with some creative solutions to achieve these.

WARNINGS
If you’re seeing warnings about
multiple audio listeners, then
look at your cameras; you
can remove all other listeners
that aren’t attached to your
Main Camera.

ANCHORS
We can use the anchors to
adjust where the minimap or any
canvas UI element will appear.
Feel free to try an alternative
position to have your minimap
display in.

 �The minimap is now being rendered to our UI and we can start
seeing the enemy position markers correctly displayed on it.

 �We now have more visibility
on the minimap and can see
enemies at a greater
distance, as well as
something that looks more
like a recognisable
map shape.



�RPG games like Divinity:
Original Sin 2 have minimaps
that hide the path ahead
with a ‘fog of war’ effect.
Have a look at shader
programming to efficiently
achieve this effect.

88 Unity FPS Guide

Creating a deployable gun turret in Unity
Additional Mechanics

 �You can download a package
and import it into the project
you’re developing at
any time. This gives you
access to assets and tools
that help speed up the
development process.

e’re going to make our own
deployable turret that will
fire for us when it’s set down,
similar to the ones used by
Roland in Borderlands and

Torbjörn in Overwatch. We’ll use a hitscan
method to determine if an enemy takes damage;
hitscan has been used in shooters since the
original Doom, and means that a shot from our
turret will instantly hit its target (you can find out
more about this subject on page 128).

BUILD THE TURRET
We can open the first-person shooter project
we’ve already created and modify this to include
our deployable turret. While we’re prototyping
this new mechanic, I would develop this in a
new scene. We can simply select File > New

W Scene from the toolbar and then delete the
Main Camera. Next, we can simply drag in the
Player from the Project panel and we should
have our playable character ready to go.

We then need to find a suitable mesh to
represent the turret; luckily, Unity has provided
an ideal asset in one of its packs on the
Unity Store. We are going to use assets from the
‘Tower Defense Template’ which Unity provides
for free. I‘ve created a new package that only
includes the assets we need, to make it a bit
easier to organise.

Download this asset package from
wfmag.cc/fps-turret. In the Unity editor, select
Assets > Import Package > Custom Package…
and locate the MachineGunTower1.unitypackage
from your Downloads folder. You can import
everything, but you don’t really need to include

Help the player fend off relentless waves of enemies
with a special auto-firing weapon

Creating a deployable
gun turret in Unity

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

http://wfmag.cc/fps-turret

Unity FPS Guide 89

Creating a deployable gun turret in Unity
Additional Mechanics



�In Overwatch, one of
Torbjörn’s abilities is his
deployable turret,
which can track the
enemy team.

PARTICLE
COLLISIONS
You might notice that the
turret particle effect will travel
through the wall. A way to fix
this is to select the Tracer child
object in the MachineGunTower
prefab and enable Collision for
that Particle System. We will
also need to set the following
parameter values: Type should
be set to World, and Lifetime
Loss to 1.

the scene file provided. We also need to add a
simple floor by selecting GameObject > 3D
Object > Plane. Feel free to adjust the position of
your Player prefab so it’s not clipping into the
ground. You could also scale up the floor to
give yourself some more room for testing
the mechanic.

We want the turret to fire at a target when we
deploy it, so we’re going to add an object for
testing this feature. In the Unity toolbar, select
GameObject > 3D Object > Sphere and place it
somewhere in the level. We need to make sure
this is tagged suitably, so select the Sphere in
the Hierarchy; then, in the Inspector select
the Tag drop-down and pick Add Tag… to create
a new tag. We’ll then select the + icon and set
the New Tag Name as Target for testing
purposes, and then save it. We also need to
make sure the Target tag is applied from the Tag
drop-down, as it’s not applied by default. This is
achieved by reselecting the Sphere in the
Hierarchy and then changing the drop-down in
the Inspector.

Next, we’re going to add a script to our turret
so that it tracks various targets; we’ll also have it
spawn a particle effect and play a sound to
indicate when it’s active and shooting. This will
also contain an event that we can use to track
damage on the target. To get started, we need
to expand Prefabs > Towers > MachineGun from
the Project panel, and select the
MachineGunTower_1 prefab, then drag it into
the Hierarchy panel. Next, from the Hierarchy,
we expand the MachineGunTower_1 prefab and
select the Turret_MachineGun_L02 sub-object.

With this selected, click on Add Component in
the Inspector and select New Script, add the
name TurretBehaviour, and then select Create
and Add.

We then double-click the new script and open
it in our script editor to begin writing our code,
as displayed below:

using UnityEngine;

using System.Collections;

using System.Collections.Generic;

public class TurretBehaviour : MonoBehaviour

{

 public ParticleSystem particleFX;

 public AudioClip soundFX;

 public float damageAmount = 10;

 private AudioSource audioSource;

 private GameObject target;

 private bool lookingAt;

 void Start()

 {

 StartCoroutine(Fire());

 audioSource =

GetComponent<AudioSource>();

 if (soundFX && audioSource)

 {

 audioSource.clip = soundFX;

 }

 else

 {

90 Unity FPS Guide

Creating a deployable gun turret in Unity
Additional Mechanics

 Debug.LogWarning("No audio source

and/or effect assigned.");

 return;

 }

 }

 public GameObject FindClosestEnemy()

 {

 GameObject[] gos;

 gos = GameObject.FindGameObjectsWithTa

g("Target");

 GameObject closest = null;

 float distance = Mathf.Infinity;

 Vector3 position = transform.position;

 foreach (GameObject go in gos)

 {

 Vector3 diff = go.transform.

position - position;

 float curDistance = diff.

sqrMagnitude;

 if (curDistance < distance)

 {

 closest = go;

 distance = curDistance;

 }

 }

 return closest;

 }

 void Update()

 {

 target = FindClosestEnemy();

 Vector3 fwd = transform.

TransformDirection(Vector3.forward);

 RaycastHit hit;

 Vector3 targetDir;

 // Rotate the camera every frame so it

keeps looking at the target

 if (target != null)

 {

 targetDir = target.transform.

position - transform.position;

 float step = 2 * Time.deltaTime;

 Vector3 newDir = Vector3.

RotateTowards(fwd, targetDir, step, 0.0f);

 transform.rotation = Quaternion.

LookRotation(newDir);

 if (Physics.Raycast(transform.

position, fwd, out hit))

 {

 Debug.DrawRay(transform.

position, fwd * 20, Color.green);

 if (hit.collider.tag ==

"Target")

 {

 lookingAt = true;

 }

 else

 {

 lookingAt = false;

 }

 }

 }

 else

 {

 lookingAt = false;

 }

 }

 IEnumerator Fire()

 {

 while (true)

 {

 yield return new

WaitForSeconds(0.5f);

 //Firing effect and damage will

only occur if the target can be seen.

 if (lookingAt)

 {

 //Play the particle effect.

 if (particleFX != null)

 {

 particleFX.Play();

 }

 //Play our firing audio

effect.

 if (audioSource && soundFX)

 {

 audioSource.Play();

 }

SOUND
EFFECTS
Unity provides a weapon
placement sound with the turret
asset, which we could easily use
as an audio cue when we deploy
the gun in our game. For this,
we can use the same audio
source and audio clip code in
our turret script, but remember
to make sure to attach an audio
source component.

 �Make sure that you’ve
created your tag and also
assigned it to the objects
you want to be targeted by
the turret.

Unity FPS Guide 91

Creating a deployable gun turret in Unity
Additional Mechanics

 //Apply damage to the target

via send message function.

 target.transform.

SendMessage("ApplyDamage", damageAmount);

 }

 yield return null;

 }

 }

}

 Save your script and return to the editor.
We’re almost ready to preview the turret
behaviour, but first we have a few options that
we can set on the above script. In the Inspector,
you will see two new entries for Particle FX and
Sound FX. To assign something to these, you’ll
need to click the little circle to the right-hand
side of the parameter names. First, we’ll assign
the MachineGunLvl2Effect child to the Particle
FX entry. Next, we’ll add the MG 1 sound effect
under the Assets tab to the Sound FX entry. We
also need to select Add Component and select
Audio > Audio Source so the audio clip will have
a source to play from.

We can then select the Play button on the
toolbar to preview the turret behaviour in the
Game window. You can try several different
things that the above code supports; such as, if
you have two or more targets, the gun will only
aim for the closest. It will also not send a
damage message if a wall or other object is
blocking the line of sight. Once you’re satisfied
this is working, you can press Play again to exit
the preview and continue development.

The next area we’ll look at is making our turret
deployable; we can implement this in a similar
way to our projectile. The first set of changes is

to prepare the MachineGunTower_1 prefab by
selecting it in the Hierarchy; in the Inspector,
select Add Component and then select Physics >
Rigidbody. On the Rigidbody, we need to expand
Constraints and check the options for Freeze
Rotation on the X, Y, Z.

We again select Add Component and then
Physics > Box Collider, and then for the Center
values change the Y value from 0 to 0.5. This will
make the wireframe box appear more central on
the turret. Finally, look for the word Prefab along
the top of the Inspector. We should select the
Overrides option, then select Apply All to
confirm the latest changes we made. Then we

“If you have two or more
targets, the gun will only

aim for the closest”



�We can start throwing
together a test area for
the turret, bringing in
our shooter character
and some other assets to
represent our enemies.



�To ensure you get the full
effect of the turret in
action, make sure you have
correctly assigned your
particle and sound effects,
and also that you have
assigned an audio source
to the game object. For
more on sound, turn to
page 70.

DAMAGE
Remember, the TargetDamage
script will need to be on each
target to make the turret fire
at it. To speed things up, we
can always set up a prefab of
the current completed object
by dragging this into the Project
panel. We can then reuse the
prefab anywhere in our scene.

92 Unity FPS Guide

Creating a deployable gun turret in Unity
Additional Mechanics

can delete the turret in the Hierarchy, as we’ll
spawn it later for the Project files.

The next area for change is the Player prefab
that we added. We need to expand it in the
Hierarchy and select the Main Camera object,
then right-click and select Create Empty.
With the new object selected, move to the
Inspector and rename this as ‘LaunchPoint’. I
would also move this forward of the character,
so about 0.7 in the Z direction. If we don’t make
this change, the turret will be spawned inside
the character – not ideal, I’m sure you’ll agree.

Next, we’ll add another script to this object, so
select Add Component, then New Script – we
can name this TurretLauncher – and select
Create and Add. Finally, double-click the new
script to open it in the script editor ready for
adding our code.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class TurretLauncher : MonoBehaviour

{

 public GameObject spawn;

 public float kickDistance = 300.0f;

 private bool spawned;

 // Update is called once per frame

 void Update()

 {

 if (Input.GetButtonDown("Fire2") &&

spawned == false)

 {

 spawned = true;

 var clone = Instantiate(spawn,

gameObject.transform.position, gameObject.

transform.rotation);

 clone.GetComponent<Rigidbody>().

AddForce(transform.forward * kickDistance);

 }

 }

}

 Save the script and then select the
LaunchPoint we created. The script should have
two values in the Inspector; one should be
named Spawn and be empty. We need to assign

the MachineGunTower_1 prefab from the
Assets tab to the Spawn entry. The other value
can be used to set how far our turret will be
‘kicked’ on pressing the secondary fire button.
We can now preview this again by using the Play
button and then, by using a right-mouse click or
left ALT key, we can deploy our turret.

TESTING THE TURRET
We also want to test that the damage is working.
We aren’t going to do too much with this as
we’re only testing that the turret damage system
works. We could easily expand on this to show
some sort of damage on the enemies and

“By using a right-mouse
click or left ALT key,

we can deploy our turret”

 �Make sure you’ve set the
rotation constraints on your
turret, otherwise when it’s
thrown out and deployed,
you’ll get all sorts of
odd behaviours.

 �With everything set on our
FPS character, and the
turret prefab assigned, we
should be able to deploy
our turret by selecting the
appropriate key bindings.

Unity FPS Guide 93

Creating a deployable gun turret in Unity
Additional Mechanics

have a more convincing ‘death’ sequence. For
now, we’re going to display the damage values
to the Unity console and then hide the target
when it’s destroyed.

Keen-eyed readers may note that this is very
similar to how we had our enemies reduce the
player’s health. First, we need to select one of
the Spheres we added to represent the targets.
We then need to go to our Inspector and select
Add Component and then select New Script.
We’ll name this TargetDamage, then select
Create and Add. We can open this new script
and start adding the code shown below

using UnityEngine;

public class TargetDamage : MonoBehaviour

{

 //Sets default health to 100

 public int health = 100;

 void ApplyDamage(int damage)

 {

 //Checks our health is greater than 0

 if (health > 0)

 {

 //Stores the current health and

subtracts the damage value

 health = health - damage;

 //Shows the health in the log.

 Debug.Log("Health: " + health);

 }

 else

 {

 //Log a message to show it's

destroyed

 Debug.Log("Destroyed!");

 //Disable object so it's not

visible.

 gameObject.SetActive(false);

 }

 }

}

 As usual, we can save the script we just
created. Before we preview the result of the
damage script, we should enable the Unity
console. This can be found in the toolbar under
Window > General > Console (CTRL+SHIFT+C).
Personally, I dock this next to or alongside the
Project window. I always have this open to look

for errors, but in our case, we can use it to look
for our debug damage logs. Run the preview by
selecting the Play button; as the relevant target
gets hit, you can see the current health in our
console, and the object will be ‘destroyed’ when
it reaches zero health.

We now pretty much have a fully working
deployable turret. There are a few
improvements we can make: the turret could
ignore targets that are in cover, and we could
allow the turret to take damage itself. Additional
mechanics could then be added, such as being
able to repair or upgrade the turret. Remember,
this project is meant as a starting point and it’s
up to you to take the turret mechanics in the
direction you want for your game!

 �We need to add the LaunchPoint as a child of the
camera, so that the turret will end up launched in
the direction in which the player is looking.

 �While we’re prototyping, we
can check that the damage
feedback is working by
looking for debug
information in the Unity
console. This is a common
way to debug a feature that
hasn’t been completely
hooked up.

 �In Borderlands, Roland’s
turret not only targets the
fauna, but can also be
upgraded to heal his
team members.

94 Unity FPS Guide

Creating a Blink ability in Unity
Additional Mechanics

Want to teleport around levels like Tracer in Overwatch?
Stuart shows you how to recreate the mechanic

e’re going to look at creating a
game mechanic that will allow
the player to instantaneously
teleport a short distance. This
is commonly called a blink

mechanic, and can be seen in single-player
shooters like Dishonored – it’s one of the skills
that the player can unlock when playing as Corvo
– or in online, competitive games like Overwatch
with Tracer’s ability to shift from point to point.

As with our earlier tutorials, we can use
Unity’s tools and C#a to create a prototype of
this mechanic.

EXPANDING OUR PROTOTYPE
To start, we’ll open the first-person project we
worked on earlier. While we’re working on this,
we should create a new scene for prototyping

Creating a Blink
ability in Unity

W our blink mechanic before we integrate it into a
larger level. When you’ve loaded up your Unity
project, we’ll select File > New Scene to create
our new level for test purposes.

We also need to drag our Player prefab from
the Project panel into the Hierarchy so it
appears in the level. We should then delete the
Main Camera in our level – this is because we
already have one in our Player prefab.

CHECKING THE DESTINATION
Before we implement the mechanic, we need to
do some groundwork. In our example, we’re
going to first do something like the Dishonored
blink ability, where you can set a destination and
teleport there.

We’ll use a raycast, which is something we
used in our code for an earlier tutorial.
Effectively, we’ll shoot out an invisible beam to
see if these destinations are possible to reach
before we blink between them. Ideally, we want
a surface such as a floor or walkable slope to be
valid to blink to; meanwhile, a wall should be
invalid as we would end up inside it. We can
differentiate these two types by looking at the
normal directions of where the ray hits.

So that we can test this, we’ll also build out a
level using some basic cubes. First, we need a
floor, so select GameObject > 3D Object >
Plane. In the Inspector window, set the Y value
for the Scale to 2. We want to move this cube
object so it’s not in the same space as our Player

 �Unity has a bunch of useful
assets that come as
standard in the installation.
You can always add them
to help you to prototype
levels or mechanics.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

PACKAGES
Unity now provides additional
tools and features via their
package manager, this can help
with everything from blockout
for levels to augmented reality.
The package manager can
be accessed via Window
> Package Manager in the
editor toolbar.

Unity FPS Guide 95

Creating a Blink ability in Unity
Additional Mechanics

object and also that it’s touching, but not in, the
ground. If we hold the CTRL key and then click
the left mouse button while selecting one of
the transform arrows on our cube object, we
can accurately snap our cube object into a
suitable position.

We’ll now make a slope by duplicating our
cube by selecting Edit > Duplicate. We then
move to the Inspector and change the X value
for the Rotation to around 65 degrees. Using the
positioning tools again, we use the CTRL key and
select the red arrow (X) to move this cube so it’s
next to the first.

We can then release the CTRL key and
manually move this using the green arrow (Y) so
that a slope is formed by effectively submerging
the cube in the ground.

Next, we’ll create our initial script on the
player camera object. In the Hierarchy, look for
the Player and select the arrow next to it. This
will expand, and you should then see an object
called MainCamera. Select this object, and then
in the Inspector look for the Add Component
button. Now scroll down the list and select New
Script; we can call this Blink, and then select
Create and Add. We can now add our code to
preview the logic of our blink ability by replacing
the template code with our own. We do this by
double-clicking on the script name to open our
script editor.

using UnityEngine;

public class Blink : MonoBehaviour {

	 // Update is called once per frame

	 void Update () {

 if (Input.GetMouseButton(0))

 {

 RaycastHit hit;

 Ray ray = Camera.main.

ScreenPointToRay(Input.mousePosition);

 if (Physics.Raycast(ray, out hit))

 {

 // Draw debug lines to aid

visualisation.

 if (hit.normal.y > 0.5f)

 {

 Debug.DrawLine(transform.

position, hit.point, Color.green);

 }

 else

 {

 Debug.DrawLine(transform.

position, hit.point, Color.red);

 }

 }

 }

 }

}

Once we save this in the code editor and
move back to Unity, we can preview this in the
Scene view. For now, we don’t want to shoot

 �This diagram is
used to show how
the invisible ray will be
‘fired’ along our Z axis from
the camera. When it hits an
object, we’ll be able to read
information about the object
that it strikes.



�You can easily create
geometry by using the
basic shapes in clever
ways; level designers often
do this to block out levels,
which will be replaced
later by artists.



�We’ll add an extra script to
the imported first-person
character prefab created
by Unity. As we want to
blink to a point we are
looking at, we attach the
script to the player camera.

NORMAL
DIRECTION
A normal direction is something
that exists for all polygons
in a game. It usually tells the
renderer that a valid polygon
should be drawn in a certain
orientation. In 3D packages, it’s
often shown as a small line that
points in an opposing direction
to the rendered polygon face.
We’re using this knowledge to
determine if our surfaces are
valid for teleporting onto.

“We’ll send out an invisible
beam to see if destinations

are possible to reach”

96 Unity FPS Guide

Creating a Blink ability in Unity
Additional Mechanics

and use our teleport, so expand the Player and
the Main Camera objects and look for the
Weapon object. In our Inspector, select the
active checkbox next to the word Weapon and
this will disable this object. We need to make
sure both the Scene and Game are both visible
to achieve this. If you haven’t done this already,
undock the Game tab by left-clicking and
dragging this to the right. This will allow you
to dock with another empty area of the
editor interface.

Press Play now and, as the FPS character, go
find your cube objects in the level. If you hold
the left mouse button, you will see that the
raycast will be drawn. In our code, the valid
locations are a green debug line, while invalid
locations are red.

With this tested, we can stop the preview and
add our basic blink mechanic.

BLINKING BETWEEN
LOCATIONS
As the debug lines aren’t drawn, and our goal is
to emulate the mechanics from popular games,
we want some sort of visualisation of the
location where the player will end up. To achieve
this, we’ll use some of the ready-made particle
assets in Unity, and use this to preview the
end location.

We need to open the Store by selecting
Window > Assets Store from the toolbar.
You can use the search to find the
Standard Assets or use the following link:
wfmag.cc/asset-pack. We simply download the
assets and then select Import. Although we
don’t need all the assets, there are many
dependencies between them, so it makes sense
to download them all.

Our next step is to update our script to
include the mechanic: select the blink script in
the Project window, and double-click to open it.
We can simply replace the current script with
the updated one below.

using UnityEngine;

public class Blink : MonoBehaviour {

 public GameObject particlePrefab;

 GameObject particleFX;

 Vector3 destination;

 bool FXVisible=false;

 private void Start()

 {

 particleFX =

Instantiate(particlePrefab);

 }

 // Update is called once per frame

 void Update () {

 if (Input.GetMouseButton(0))

 {

 RaycastHit hit;

 Ray ray = Camera.main.

ScreenPointToRay(Input.mousePosition);

 if (Physics.Raycast(ray, out hit))

 {

 // Draw debug lines to aid

visualisation.

 if (hit.normal.y > 0.5f)

 {

 Debug.DrawLine(transform.

position, hit.point, Color.green);

 destination = hit.point;

 FXVisible = true;

 }

 else

 {

 Debug.DrawLine(transform.

position, hit.point, Color.red);

 destination = transform.

position;

 FXVisible = false;

 }

 }

 �We can get an idea of where the raycast will
hit by drawing a debug line from the camera
to the point we’ve hit on the game object.
This helps us better visualise the mechanic,
and if it’s functioning correctly.

PREVIEWING
RAYCASTS
Raycasts are usually invisible.
We can preview this in the
Scene view by using built-in
Unity functions for debugging
raycasts. This is one of the
many useful debug functions
that are available in Unity, and
typical in most game engines.

http://wfmag.cc/asset-pack/

Unity FPS Guide 97

Creating a Blink ability in Unity
Additional Mechanics

 else

 {

 destination = transform.

position;

 FXVisible = false;

 }

 }

 if(Input.

GetMouseButtonUp(0)&&transform.

position!=destination)

 {

 destination.y += 0.5f;

 transform.parent.position =

destination;

 FXVisible = false;

 }

 if(FXVisible)

 {

 particleFX.transform.position =

destination;

 particleFX.SetActive(true);

 }

 else

 {

 particleFX.SetActive(false);

 }

 }

}

Save the script and return to the Unity editor.
We’re now going to make some final tweaks
before we try out the mechanic. First, select the

Main Camera game object in the Hierarchy, and
then in the Inspector, look for your script. You
should see a new slot named Particle Prefab –
this is where we can assign our particle. If we
look in the Project window and navigate to
Standard Assets > Particle Systems > Prefabs, we
have several effects at our disposal.

I suggest we use the Flare effect, and drag this
onto the Particle Prefab slot in the Inspector.
A final change, which allows us to easily see the
particle effect, is to change the light colour.
Select the Directional Light in the Hierarchy, and

 �A blink ability was among
the many powers at Corvo’s
disposal in Dishonored.

then in the Inspector, set the
colour to something other
than white; my suggestion
is blue.

We can now try out the
mechanic. Press the Play
button to preview, and then
hold the left mouse button;
you’ll see the particle effect
appearing on valid surfaces,
and disappearing when this is
not the case. We can also
teleport to these locations if we release the left
mouse button. Once you’ve finished testing this
out, remember to click the button to stop
playing the game preview.

EXPANDING THE
BLINK MECHANIC
Now, let’s think about how we can change this to
make the blink mechanic work more like it does
with Tracer in Overwatch.

To do this, we can simply use the same setup
and make a few modifications to the code. Note
that with this code there is no test for the
ground surface – this is because Tracer will
attempt to blink forward regardless of obstacles.
If you wanted to, you could make a new script so
you could easily switch between both versions;
or you can modify the existing blink script with
the updated code below.

using UnityEngine;

public class Blink : MonoBehaviour {

 public float maxDistance = 4.0f;

 public GameObject canvas;

 Vector3 destination;

 Animator anim;

 private void Start()

 {

 if (canvas != null)

 {

 anim = canvas.GetComponentInChildr

en<Animator>();

 anim.enabled = false;

 }

 }

“We want some sort of
visualisation of where the

player will end up”

98 Unity FPS Guide

Creating a Blink ability in Unity
Additional Mechanics

 �Our particle will render on
the position that is hit by our
raycast – this gives the player
a good indication of where
they will be moved to when
they use the blink mechanic.

 // Update is called once per frame

 void Update ()

 {

 if (Input.GetMouseButton(0))

 {

 RaycastHit hit;

 Ray ray = Camera.main.

ScreenPointToRay(Input.mousePosition);

 if (Physics.Raycast(ray, out hit,

maxDistance))

 {

 destination = hit.point;

 }

 else

 {

 destination = transform.

position+transform.forward*maxDistance;

 }

 }

 if(Input.

GetMouseButtonUp(0)&&transform.

position!=destination)

 {

 destination.y += 0.5f;

 transform.parent.position =

destination;

 if (anim != null)

 anim.enabled = true;

 }

 if(anim==null)

 {

 return;

 }

 if (anim.

GetCurrentAnimatorStateInfo(0).

normalizedTime>=1)

 {

 anim.Rebind();

 anim.enabled = false;

 }

 }

}

In the case of Tracer, she has a full-screen effect
that appears when she blinks, which is designed
to represent speed lines. A cheap alternative
we can add is to quickly fade out the alpha on a
white overlay. We’ve previously used a canvas in
other tutorials, but this time we’ll animate it to
simulate this effect. I’ve also built in the trigger
for it in our code above, but the mechanic will still
work regardless.

If you want to add this effect, then create a new
canvas by selecting GameObject > UI > Canvas
from the taskbar. We can then select the Canvas in
the Hierarchy, and then right-click and select UI >
Panel. The panel is the actual object that will
display our white flash, so with this still selected,
move to the Inspector.

In the Inspector, you’ll see the Image (Script) and
a parameter called Source Image. We want to
select the circle to the right of this entry and
change the Source Image to None. You’ll have
probably noticed there seems to be a white tint on
the whole scene. The reason is that the panel
image always gets set to around 50% opacity. We
can change that by selecting the white box to the
right of the Color parameter. You should see a
standard colour palette where we can adjust the
value to the right of the letter A to be 0.

We’re also going to make a very short animation
to create the fade from white to transparent on
this panel. We can achieve this by going to the
Project window, then right-clicking and selecting
Create > Animation. I would simply rename the
new Animation to Blink, so we know what it will
be used for. We then select the Panel in the
Hierarchy and drag our Blink animation onto the
objects Inspector.

At this stage, we might need to make the
Animation window visible. For this, just select
Window > Animation and dock the new window
suitably. We then select the Panel in the Hierarchy
and then select the button Add Property in the

PARTICLES
AND SOUND
You can always consider
making your own particle
effect, or even adding a sound
when you’re using the blink
mechanic. These are elements
that can be fleshed out as you
iterate on your design.

Unity FPS Guide 99

Creating a Blink ability in Unity
Additional Mechanics

 �Adjust the alpha value
so that it’s fully
transparent – or, in other
words, has no opacity.



�The animation timeline
lets us set keyframes,
which in turn let us set
specific values during
the animation playback.

Animation window. You should then drop down
the arrow next to the listing for Image (Script) and
select Color from the further options by clicking
the + symbol.

In the Animation window, you should see an
entry labelled Panel : Image Color, and again, we
expand this by clicking the arrow. You should see
the entries for the Red, Green, Blue, and Alpha
channels (RGBA), and a
timeline with keyframes
on. The keyframes will
look like diamonds on the
timeline. Next to the text
that shows color.a, you
should see a value; this is probably 0 in our case.
We select this and change it to 1. We then scrub
the timeline to the end of the animation. This is
achieved by placing the mouse at the very top of
the Animation window along the bar with the time
value visible. We select the white vertical line and
drag it to the right until we have the next set of
keyframes selected. We can now make sure that

the value for the color.a entry is 0, and if it isn’t,
alter it to this value.

Finally, we can select our Main Camera in the
Hierarchy and drag the Canvas object onto the slot
in our script, labelled as Canvas. When we play the
game, we should be able to blink in the direction
our character faces. We’ll have similar limitations
as before, but be able to traverse forward a short

distance if there’s nothing
that would block the
player’s path.

We should also see
our blink screen effect
show up – you can easily

tweak the animation timings for yourself if you like.
Another option is that we could limit the

number of blinks the character can attempt within
a timeframe, as with the real Tracer character.
For now, though, we’ve successfully developed two
different ways of handling a blink mechanic – feel
free to experiment with it, and see how you can
tailor the movement for your own game.

SPECIAL
EFFECTS
A standard canvas element will
always be rendered on top of the
game scene – this means we
can add full-screen effects like
player damage, colour tints, and
fades to our player camera to
enhance the experience.

 �Tracer’s blink ability makes
her one of the more mobile
characters in Overwatch.

Creating a Blink ability in Unity
Additional Mechanics

“We should be able to
blink in the direction our

character faces”

100 Unity FPS Guide

Developing wall running in Unity
Additional Mechanics

Let your players defy gravity and dodge enemies
with a fleet-footed wall-running mechanic

e’re going to look at how
to create a wall-running
mechanic in Unity. You can
see this mechanic in action in
games such as Titanfall and

Mirror’s Edge; the mechanic will allow you to run
along a wall in a gravity-defying motion. We are
going to use the existing first-person blueprint
provided by Unity and extend the code to
achieve what we want.

SETTING UP
As always, the first thing to do is open your
first-person character project. We’ll create the
prototype in a new scene so we can try out this
new mechanic in isolation. We need to select File

Developing wall
running in Unity

W > New Scene – we can go ahead and delete the
Main Camera. We then select the Player prefab
from the Project panel and drag this into the
Hierarchy view.

BUILDING OUR LEVEL
Before we can even think about creating a
detailed level, we’ll have to build some geometry
for our character to stand on and wall-run
along. We’re going to use the basic 3D shapes
in Unity to whitebox our level. First, we’ll select
GameObject > 3D Object > Cube. This will
appear in the Scene viewport and be listed in
our Hierarchy window. We can now use the
Inspector to position and scale our object.
On the right-hand side of the Unity editor, you’ll
find the Inspector panel, which has details about
the selected object. With the cube still selected,
set the X,Y,Z Position to 0 and the Scale values
for the X to 20, Y to 0.5, and Z to 10. We should
have something that we can use to make a floor.
You may need to move your player character
up in the Y direction so it’s on top of the floor.
I’d then duplicate this shape by selecting Edit >
Duplicate from the toolbar. We can then set the
X Rotation in the Inspector to 90.

We’re going to build our wall with this piece,
but we want this to snap to an edge of our floor.
To achieve this, we’ll select Edit > Snap Settings…
and set the Move X,Y,Z values to 0.25 in each of
the fields. We can then hold the CTRL key and
in the Scene viewport, we can use our transform

 �We’re going to create our
very own parkour or
wall-running mechanic, as
can be seen in games like
Mirror’s Edge Catalyst.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

Unity FPS Guide 101

Developing wall running in Unity
Additional Mechanics

widget to position our duplicate wall shape next
to our floor. Duplicate this again, and then move
this new duplicate in the X position to have a
wall that is positioned forwards of our previous
floor and wall. It’s a little up to you how you
want to build your level out. I duplicated both
my original floor and wall again, and put them
to the other side of the free-standing wall, so we
can use our wall-running technique to traverse
between the gaps in the floor.

SETTING UP OUR CHARACTER
The next thing we’re going do is add some tags.
We’ve looked at these in previous projects, but
tags allow us to mark up certain objects with
a label. We can then use these to give objects
specific rules – in our example, the character will
behave differently when colliding with the walls
we’re about to tag.

We can do this by selecting one of the game
objects that make up our wall pieces; in the
Inspector panel, we can select the Tag drop-
down and then select the Add Tag… option. We
can then simply select the + icon and type in
Walls for our tag and Save. To apply this, select

all our wall pieces and once again select the Tag
drop-down – this time we can apply the Walls
tag we created.

We’ll need to edit some of our original scripts
to handle what we’ll be able to wall-run on.
There are no massive changes to make, but
all the code including the modifications has
been provided below. The first script we have
to modify is the CharacterMovement script.
You can just open this in your code editor and
modify it to match the following code:

using UnityEngine;

public class CharacterMovement : MonoBehaviour

{

 public float speed = 5;

 public float jumpPower = 4;

 public bool Grounded;

 private Rigidbody rb;

 private CapsuleCollider col;

 private float Horizontal;

 private WallRunning wr;

 // Use this for initialization

 void Start()

 {

 Cursor.lockState = CursorLockMode.

Locked;

 rb = GetComponent<Rigidbody>();

 col = GetComponent<CapsuleCollider>();

 wr = GetComponent<WallRunning>();

 }

 // Update is called once per frame

 void Update()

 {

 Grounded = isGrounded();

 //Get the input value from the

controllers

 float Vertical = Input.

GetAxis("Vertical") * speed;

 if (!wr.isWall)

 {

 Horizontal = Input.

GetAxis("Horizontal") * speed;

 }

 Vertical *= Time.deltaTime;

 Horizontal *= Time.deltaTime;

 //Translate our character via our

inputs.

 transform.Translate(Horizontal, 0, Ver

tical);

“You can see this mechanic
in action in games such as
Titanfall and Mirror’s Edge”

 �We can block out a quick
level to test that our
wall-running mechanic is
functioning as we expect
it to. This is a common thing
to do when you’re a
developer and want to
quickly iterate on a design.

GEOMETRY
It’s a good idea to name the
geometry that makes up your
level so it’s easier to find in the
Hierarchy view. You can easily
do this by typing a new name
into the top of the Inspector
panel for that game object.

102 Unity FPS Guide

Developing wall running in Unity
Additional Mechanics

 if (isGrounded() && Input.

GetButtonDown("Jump"))

 {

 //Add upward force to the rigid

body when we press jump.

 rb.AddForce(Vector3.up *

jumpPower, ForceMode.Impulse);

 }

 if (Input.GetKeyDown("escape"))

 Cursor.lockState = CursorLockMode.

None;

 }

 private bool isGrounded()

 {

 //Test that we are grounded by drawing

an invisible line (raycast)

 //If this hits a solid object e.g.

floor then we are grounded.

 return Physics.Raycast(transform.

position, Vector3.down, col.bounds.extents.y

+ 0.1f);

 }

}

Once you’ve saved the above, we’ll then open
our MouseLook script so we can make the
following additional modifications:

using UnityEngine;

public class MouseLook : MonoBehaviour

{

 private GameObject player;

 private float minClamp = -45;

 private float maxClamp = 45;

 [HideInInspector]

 public Vector2 rotation;

 private Vector2 currentLookRot;

 private Vector2 rotationV = new Vector2(0,

0);

 public float lookSensitivity = 2;

 public float lookSmoothDamp = 0.1f;

 //Required if we are using the camera to

freelook.

 private CharacterMovement cm;

 private bool resetRotation = false;

 void Start()

 {

 //Access the player GameObject.

 player = transform.parent.gameObject;

 cm = player.GetComponent<CharacterMov

ement>();

 }

 // Update is called once per frame

 void Update()

 {

 //Player input from the mouse

 rotation.y += Input.GetAxis("Mouse Y")

* lookSensitivity;

 //Limit ability look up and down.

 rotation.y = Mathf.Clamp(rotation.y,

minClamp, maxClamp);

 //Rotate the character around based on

 �Make sure that all the
walls are tagged correctly
in the Inspector panel, else
the wall-running ability
will not work correctly.

 �Don’t forget to keep testing
out the mechanic as you
build out your level, to
make sure the gameplay
feels satisfying.

Unity FPS Guide 103

Developing wall running in Unity
Additional Mechanics

the mouse X position.

 //Unless we are not grounded or for

the one frame where we set the player to match

the camera.

 if (cm.Grounded)

 {

 if (resetRotation)

 {

 resetRotation = false;

 player.transform.

localEulerAngles += new Vector3(0,

currentLookRot.x, 0);

 currentLookRot.x = 0;

 }

 else

 {

 player.transform.

RotateAround(transform.position, Vector3.up,

Input.GetAxis("Mouse X") * lookSensitivity);

 }

 }

 else

 {

 resetRotation = true;

 //Free look in the Y rotation

based on mouse.

 currentLookRot.x += Input.

GetAxis("Mouse X") * lookSensitivity;

 }

 //Smooth the current Y rotation for

looking up and down.

 currentLookRot.y = Mathf.

SmoothDamp(currentLookRot.y, rotation.y, ref

rotationV.y, lookSmoothDamp);

 //Update the camera X, Y rotation

based on the values generated.

 transform.localEulerAngles = new

Vector3(-currentLookRot.y, currentLookRot.x,

0);

 }

}

Once you’ve saved this script, we should have
all the modifications we need to continue.

Our next task is to add a new C# script
to allow for our new wall-running ability.
First, select the Player prefab in the Hierarchy
panel. We then look in the Inspector panel and
select the Add Component > New Script options,
and then in the Name field, type WallRunning as

our script name. We then select the Create and
Add button to generate the script and attach it
to our game object. To edit our script, double-
click on the script name. We can then add the
script below in our code editor of choice:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

[RequireComponent(typeof(AudioSource))]

public class WallRunning : MonoBehaviour

{

 public AudioClip audioClip;

 private CharacterMovement cm;

 private Rigidbody rb;

 private bool isJumping;

 public bool isWall;

 private bool playAudio;

 private AudioSource audioSource;

 private void Start()

 {

 //Get attached components so we can

interact with them in our script.

 cm = GetComponent<CharacterMoveme

nt>();

 rb = GetComponent<Rigidbody>();

 audioSource =

GetComponent<AudioSource>();

 }

 private void FixedUpdate()

 {

 bool jumpPressed = Input.

GetButtonDown("Jump");

 float verticalAxis = Input.

GetAxis("Vertical");

 //Check if the controller is grounded.

 if (cm.Grounded)

 {

 isJumping = false;

 isWall = false;

 }

 //Has the jump button been pressed.

 if (jumpPressed)

 {

 StartCoroutine(Jumping());

 �With our script attached
and compiled, we can
easily drop in a suitable
audio clip for when we
begin our wall-run.

104 Unity FPS Guide

Developing wall running in Unity
Additional Mechanics

 }

 //If we are pushing forward, and not

grounded, and touching a wall.

 if (verticalAxis > 0 && isJumping &&

isWall)

 {

 //We constrain the Y/Z direction

to defy gravity and move off the wall.

 //But we can still run forward as

we ignore the X direction.

 rb.useGravity = false;

 rb.constraints =

RigidbodyConstraints.FreezePositionY |

RigidbodyConstraints.FreezePositionX |

RigidbodyConstraints.FreezeRotation;

 //We also telegraph to the player

by playing a sound effect on contact.

 if (audioClip != null && playAudio

== true)

 {

 audioSource.

PlayOneShot(audioClip);

 //We block more audio being

played while we are on the wall.

 playAudio = false;

 }

 }

 else

 {

 //We need to make sure we can play

audio again when touching the wall.

 playAudio = true;

 rb.useGravity = true;

 rb.constraints =

RigidbodyConstraints.FreezeRotation;

 }

 }

 void OnCollisionEnter(Collision other)

 {

 //Are we touching a wall object?

 if (other.gameObject.tag == "Walls")

 {

 isWall = true;

 }

 }

 void OnCollisionExit(Collision other)

 {

 //Did we stop touching the wall

object?

 if (other.gameObject.tag != "Walls")

 {

 isWall = false;

 }

 }

 IEnumerator Jumping()

 {

 //Check for 5 frames after the jump

button is pressed.

 int frameCount = 0;

 while (frameCount < 5)

 {

 frameCount++;

 //Are we airborne in those 5

frames?

 if (!cm.Grounded)

 {

 isJumping = true;

 }

 yield return null;

 }

 }

}

Once we’ve completed the script, we can save

this in the code editor and move back to the
Unity editor. As part of the script, we have an
option to play a sound effect when we jump and
make contact with the wall – this will telegraph
to the player that the action was successful.

For this to work, we need to assign an audio
file to the new variable we have exposed on
our script. This can be located if we look at the
script in the Inspector panel. If you select the
circle icon to the right of the words Audio Clip,
you should be able to select a suitable sound
effect – something that makes it sound like the
player is landing on a surface. If you don’t have
any Audio Clips listed, you can always import
any suitable audio effect as a common audio file
– MP3 or WAV, for example. If you find there’s
an error due to a missing AudioSource, you can
select Add Component and manually add one.

We can now test the new wall-running
mechanic by selecting the Play button.

ENERGY
The value for the energy limit
should let us just about clear
the gap we created earlier.
However, you can always
make this longer or shorter by
making the float value bigger
or smaller.

 �Titanfall allows the player to
use boosted jumps and the
player’s momentum to keep
moving between buildings.

Unity FPS Guide 105

Developing wall running in Unity
Additional Mechanics

You should be able to jump as before by tapping
the SPACE bar, but if we jump at a wall and push
forward at the same time, we should be able to
wall-run along it until we stop pushing forward.
At this stage, it’s worth making sure you apply
the script to the Player prefab.

LIMITED RUN
Finally, we’re going to complicate the mechanic
a little by adding limited energy, so the player
can only wall-run for a certain length of time.
Once the player’s energy is depleted, their
character will lose their grip and fall.
To get this working, we’re going to make some
edits to the code already in place. I would only
suggest attempting this if you’re comfortable
with being able to make these changes.

The first thing to do is open the Wallrunning
script and look for our initial variables – we can
add the following code on the line above the
audioclip variable we defined earlier:

	 public float energyLimit = 3.5f;

The next thing to do is make sure that we

trigger our energy to start depleting. We’re going
to call an IEnumerator as a way of timing our
ability – we already used one of these to test if
we’re off the ground when we’re jumping.

In this case, we need to start this counting
down when we’re wall-running and stop it
when we’re not. We’ll use the functions of
StartCoroutine and StopCoroutine to achieve this.
First, look for the statement where we test if
we’re touching a wall – it should be easy to
find from the code comments. Then, inside the
parentheses, add the following code:

 	 StartCoroutine(Energy());

As stated, we stop this when we aren’t wall-

running, so look for the Else statement and, in
the parentheses, add the following code:

 	StopCoroutine(Energy());

We’ve finished all the setup. Now we need to

set the time we can wall-run for and then, after
this, disengage it.

An effective way to handle this is to reuse
the Boolean we set when the player character
makes contact with tagged objects, and set this
to false. The Boolean has to be true before the

 �By expanding our test level
and adding some prototype
assets from Unity, we can
start to create the look and
feel of the games we’re
trying to emulate.

player can wall-run, so setting it to false will have
the opposite effect.

To add our IEnumerator, go to the bottom
of the code and look for where we have our
Jumping function as an IEnumerator. After this,
but before our closing parenthesis, add the
following code:

	 IEnumerator Energy()

	 {

 	 yield return new

WaitForSeconds(energyLimit);

 	 isWall = false;

	 }

Note that the yield uses a function call:
WaitForSeconds; the energyLimit variable
contains that wait time. Because we’ve made
the energyLimit a public variable, we can tweak
this for the Player game object in the Inspector.
Now we can save the code changes and go
back to Unity. Hopefully, your log will be free
of errors – if not, read what the errors are, and
they should give you an idea of what you need
to fix the issue.

We can now press Play and test out our
limited wall-run. If we jump on the wall too soon,
then we’ll end up losing our energy and fall off
the wall.

By now, you should have the base mechanic
working and be able to run along walls to
avoid pitfalls. There are some limitations with
this implementation due to it locking movement
to one axis – rotating the walls, for example, may
cause undesirable effects. This is something
you can fix by detecting the angle of the wall the
Player game object is touching and changing the
movement logic accordingly.

You could also expand the mechanic by
adding a boost jump between walls, or you
could add power-ups that have to be collected
to top up your energy. As always, feel free to
experiment with what you’ve developed so far.

106 Unity FPS Guide

Saving and loading game data in Unity
Additional Mechanics

Learn how to give players the ability to save and load their progress

nity provides us with a number
of solutions for saving and
loading data. From asset store
packs to serialisation and
PlayerPrefs, let’s take a moment

to break apart what this means for our game,
and how we can use Unity’s built-in systems to
efficiently create a save game system.

Unity provides two core solutions for saving
and loading data: Serialization or PlayerPrefs.
We’ll dive into each one in depth, but a general
overview is as follows: PlayerPrefs is a saving
system in Unity that can only support strings (lines
of text), integers (whole numbers such as 1,2,3),
and floats (numbers with decimal places such 1.02,
2.423, 3.1). Serialization allows you to save any

Saving and loading
game data in Unity

U object or piece of data to a file by turning an object
into data that can then be sent, deserialised,
(turned back into an object), or received.

So how do we know which save/load system to
use for our projects? To answer that question, let’s
create a system with PlayerPrefs before moving
onto a system created with Serialization to help
gain an insight into what system you might prefer
to use in your own projects.

To get started, we’re going to need data to
save and load. In the interest of the theme of a
shooting game, we’re going to save the player’s
current health and ammunition count. To do this,
we need to create a new C# script. We’ll create
this script in a folder titled SaveGame and call the
script PlayerPrefExample.

Once you’ve created the script, we need to add
code inside. Double-click the file to load up the
file in your code editor of choice, ready for us to
implement our functionality. For our example, we
need two functions in this class to save and load
our data. One of these functions will save our data
and the other will load it.

We’ll name these functions PlayerPrefSave and
PlayerPrefLoad respectively. When you create
a new C# script in Unity, you’ll notice that two
functions are auto-generated; void Start() and
void Update(). These functions aren’t needed
in the scope of our example, so we can either
remove them and create our own functions or
rename these functions to suit our needs (don’t
forget to remove the comments if you do this).

Go ahead and create the two functions
now; public void PlayerPrefSave() and

 �The Unity Asset Store has a
library of content that allows
you to add code, content,
and tools to your projects.

AUTHOR
RYAN SHAH

An avid developer with a strong passion for education,
Ryan Shah moonlights as KITATUS – an education
content creator for all things game development.

Unity FPS Guide 107

Saving and loading game data in Unity
Additional Mechanics

public void PlayerPrefLoad(). We can use
the PlayerPrefLoad function to load our data.
To do so, head inside the function and add
PlayerPrefs.GetInt("currentAmmo"); and
PlayerPrefs.GetFloat("currentHealth");.

 public void PlayerPrefLoad()
 {

 PlayerPrefs.GetInt("currentAmmo");

 PlayerPrefs.GetFloat("currentHealth");

 }

These two lines of code load the integer (whole
number) currentAmmo and the float (number with
decimal place) currentHealth. You might notice
that these variables don’t exist yet and we’re not
doing anything with the loaded data. We’ll fix
that shortly.

Our PlayerPrefSaveGame() function needs to
save the data. As we used GetInt and GetFloat
in the load data function (which gets data), we
can use SetInt and SetFloat to set the data.
As we’re setting data,
these calls will want a
value attached to them.
For now, currentAmmo
should equal 1 and
currentHealth should
equal 50.0. You can add these values to these calls
by adding a comma alongside the value after the
quotation marks.

 public void PlayerPrefSave()
 {

 PlayerPrefs.SetInt("currentAmmo", 1);

 PlayerPrefs.SetFloat("currentHealth",

50.0f);

 }

We now have code that saves and loads data
for currentAmmo and currentHealth. This is currently
all it does, which creates two issues: every time
we fire PlayerPrefSave, it’s saving our Ammo value

as 1 and our Health as 50. So, every time we load
this data, our Ammo and Health will always be
the same. The second issue is that once we’ve
loaded the data, we’re not storing the loaded data
anywhere. Essentially, our data is being thrown
into the void and never used. Let’s fix these issues.

Looking at PlayerPrefLoadData() first, we need
a way to give this function the variables for Health
and Ammo, so we can tell whatever has called
this function the returned Health and Ammo
values. In Unity, we have a tool that can help us
achieve this. We’re about to change the header
of our function, which tells us what data to pass
in. When we do this, we can tell our compiler that
we intended to make changes to the data we’re
sending into this function.

Normally, when you send data into a function,
Unity makes a copy instead of sending the actual
data. This is so that we don’t accidentally make
changes to the data and cause issues for other
parts of our code.

A normal function header with data might
look something like this: void CoolData (int
iDataToUse). This means that whenever we call
this function, we need to supply an integer

which our function
will call iDataToUse. If
we were to write code
that dynamically set
iDataToUse, such as using
a pre-existing variable

called iOriginalData, our call might look something
like this: CoolData(iOriginalData). This would be
sending in the value of iOriginalData but not
sending in the variable itself, because making
changes to the variable could be dangerous to the
other code in our project.

There are some cases where you intend to
make changes to a variable inside a function and
you’re intentionally sending data into the function
to change the value. This is where the ref keyword
comes in. ref lets Unity know that we don’t want a
copy of the data, we want the actual data because
we intend to change its value inside our function.
An example of this would be void CoolData(ref
int iDataToUse). This means that whatever

“We’re going to save the
player’s current health and

ammunition count”

 �When replacing the Start() and Update() functions
auto-generated by Unity, it’s good practice to
remove the comments from the file as they’re no
longer applicable.



�When you don’t use voids in
your functions and you’re
returning a variable, your
code editor should warn you
with red squiggly lines when
you’re not returning a value.
You can fix this for now by
adding return new
PlayerData; to your function.

 �You can create and keep
track of all of your projects in
Unity’s new Hub application.

108 Unity FPS Guide

Saving and loading game data in Unity
Additional Mechanics

INTEGERS
AND FLOATS
Sometimes, our compiler (the
tool that turns our code into
something readable by Unity)
can’t tell the difference between
an integer and a float. It’s good
practice to force the compiler
to read float values as floats by
adding an ‘f’ immediately after
the number. This will tell the
compiler this value is a float and
not an integer.

integer we send has the power to be changed by
our function.

As our plan is to load our data and set our
Ammo and Health, go to the PlayerPrefLoad
function and change the function’s header
from public void PlayerPrefLoad() to public
void PlayerPrefLoad(ref int iAmmoToUse, ref
float fHealthToUse). Now inside the function,
we can say that our Ammo value is what we’ve
loaded from the PlayerPrefs and our Health
value is what we’ve loaded. We can do this
by typing this out: iAmmoToUse = PlayerPrefs.
GetInt("currentAmmo"); and fHealthToUse =
PlayerPrefs.GetFloat("currentHealth");.

With our header and function body combined,
we’re asking that if you’re going to fire this code,
you need to supply an integer for the Ammo
value and a float for the Health value. We then
take these values and tell the variables that their
new value is whatever data we’ve loaded from
PlayerPrefs. In our case, we’ve loaded the saved
Ammo and Heath values. We load this data and
then set the variables to the data we’ve loaded.

 public void PlayerPrefLoad(ref int
iAmmoToUse, ref float fHealthToUse)

 {

 iAmmoToUse = PlayerPrefs.

GetInt("currentAmmo");

 fHealthToUse = PlayerPrefs.

GetFloat("currentHealth");

 }

We still have the problem that we’re saving an
Ammo value of 1 and a Health amount of 50. We
want to be able to save whatever values the Ammo
and Health values are instead of these hard‑coded
numbers. In order to do this, we simply change
the function header of our PlayerPrefSave
from public void PlayerPrefSave(); to public
void PlayerPrefSave (int iAmmoToSave, float
fHealthToSave);. Now replace the values inside the

function body with our variables, and our function
will use the data sent in instead of the previous
hard-coded values.

 public void PlayerPrefSave(int iAmmoToSave,
float fHealthToSave)

 {

 PlayerPrefs.SetInt("currentAmmo",

iAmmoToSave);

 PlayerPrefs.SetFloat("currentHealth",

fHealthToSave);

 }

We’ve now created a working Saving and
Loading system in Unity using the PlayerPrefs
system that can load saved data or save data to
the user’s hard drive.

If you want to test the functionality of your
created code, you can save it and head back into
Unity. From here, you can attach your code onto
any object in the scene by dragging the code
file and dropping it into the blank area of any
properties page. You can then write another class
that calls the functions whenever you want to save
and load the data. An example class would be:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

// Putting this before our class makes sure

that we can't fire this code without our

PlayerPrefExample code attached.

[RequireComponent(typeof(PlayerPrefExample))]

public class ExampleSaveLoadScript :

MonoBehaviour

{

 PlayerPrefExample ourSaveScript;

 int iCurrentAmmo;

 float fCurrentHealth;

 // Start is called before the first frame

update

 void Start()

 {

 // Find our Save Game Script

 ourSaveScript = GetComponent<PlayerPref

Example>();

 // Fire the function using our ammo and

health values

 ourSaveScript.PlayerPrefLoad(ref

iCurrentAmmo, ref fCurrentHealth);

 �Editing MonoBehaviours
– this is where all the magic
happens in Unity.

Unity FPS Guide 109

Saving and loading game data in Unity
Additional Mechanics

 //Write our values to the log, so we

can see if they were correctly loaded.

 Debug.Log("Our current Ammo = " +

iCurrentAmmo + ", and our health value = " +

fCurrentHealth);

 }

 void PickedUpAmmo(int iAmountOfAmmoPickedUp)

 {

 iCurrentAmmo += iAmountOfAmmoPickedUp;

 }

 void PickedUpHealthPack(float fHealthToAdd)

 {

 fCurrentHealth += fHealthToAdd;

 }

 private void OnApplicationQuit()

 {

 // Find our Save Game Script

 ourSaveScript = gameObject.GetComponent

<PlayerPrefExample>();

 //Write our values to the log, so we

can see if they were correctly loaded.

 Debug.Log("We are saving the ammo value

of = " + iCurrentAmmo + " and the health value

of = " + fCurrentHealth);

 // Fire the function using our ammo and

health values

 ourSaveScript.

PlayerPrefSave(iCurrentAmmo, fCurrentHealth);

 }

}

This example code will load our file and the
values when the game starts; and, when the game
ends, it will save our values to a file. There are
also two functions in there to change the values
while the game is being played. Using what you’ve
learned this far, you should be able to trigger
these functions in your example game.

Now that we have a working saving and loading
system working in Unity, it’s time to create another
saving and loading system – this time using the
Serialization tools. This will give us a deeper
understanding of what each system does and
why you’d use Serialization in some situations and
PlayerPrefs in others.

Create another C# script file and call this one
BinarySaveLoad – place it in the same location (the
folder named SaveGame) and open it up in your
code editor. As we did before, remove the Start
and Update functions, replacing them with your

own void BinarySave(); and void BinaryLoad();
functions. We won’t be using the same function
headers as we did before because this time, we
want to deal with a lot more data.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class BinarySaveLoad : MonoBehaviour

{

 public void BinarySave()

 {

 }

 public void BinaryLoad()

 {

 }

}

To show you how to use Serialization, we’re
going to use a structure. To put it very simply for
the purposes of this tutorial, a structure (or struct)
is essentially a data type that can store more
than one variable inside, so we’ll be creating and
using one to store our player information for our
Serialization save-load system.

To do this, create a new function just before
BinarySave() – the function header should be
public Struct PlayerData. Inside, we need to add
our variables.

To show off the power of Serialization, we’re
going to add various types of variables to this
struct. We need to add a string (text) for the
player’s name (sPlayerName), an integer (whole
number) for the current ammo (iCurrentAmmo),
a float (number with decimal place) for the
player’s current health (fCurrentHealth) and a bool
(true or false) value for if the player has achieved
a certain goal (bHasPlayerDoneSomething). We will
implement these variables into our struct before
moving on.



�Functions have been added,
so now we can get to writing
all of the fun test stuff.

110 Unity FPS Guide

Saving and loading game data in Unity
Additional Mechanics

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class BinarySaveLoad : MonoBehaviour

{

 public struct PlayerData

 {

 public string sPlayerName;

 public int iCurrentAmmo;

 public float fCurrentHealth;

 public Vector3 vPlayerLocation;

 public bool bHasPlayerDoneSomething;

 }

 public void BinarySave()

 {

 }

 public void BinaryLoad()

 {

 }

}

We have our struct and functions, but before we
dive in and begin saving and loading our data, we
need to make two slight changes to our functions.
When we load our data, we don’t want to have
to already have this data to hand. We want our
function to return the loaded struct. To do this,
we’ll simply change Public Void BinaryLoad() to
Public PlayerData BinaryLoad(). This is because
the first variable declared in a function header
is what the variable will return. Before this, we
used void – which is a keyword for saying that

the function doesn’t return any value. By putting
PlayerData in place of void, we’re telling Unity that
this function will return a PlayerData variable. The
second change we need to make is to BinarySave.
We want to be able to pass in the data to save,
so go ahead and alter the BinarySave() function
header from Public Void BinarySave() to Public
Void BinarySave(PlayerData DataToUse). We
learned about sending variables into our functions
earlier, so by now you should be quite comfortable
with parsing variables into and out of functions.

Before we implement our Serialization save/
load code, we have to add two includes to this file.
An include is a statement that tells Unity that this
code needs to talk to the specified file, to retrieve
the functions and variables and perform the tasks
we need. To add the includes, go to the top of your
file and after the last Include statement, add using
System.Runtime.Serialization.Formatters.Binary;
and using System.IO;. These are the includes we
need to read and write data from a file:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using System.Runtime.Serialization.Formatters.

Binary;

using System.IO;

public class BinarySaveLoad : MonoBehaviour

 Now that we have the power to read
and write to a file, the time has come to do
exactly that. Within our public PlayerData
BinaryLoad() function, we need an if statement.

This if statement should read: if(File.Exists
(Application.persistentDataPath +
"/BinaryData.save")). This line of code is checking
the path where data is saved and looking for the
file called BinaryData.save. If this is true, we need
to tell Unity what to do, so add a {, and we’re going
to create a BinaryFormatter – a built-in C# utility
for serialising and deserialising objects.

To create a new variable inside a function,
we declare the variable type, give it a friendly
name and then fill it with data. To create a
BinaryFormatter variable, we’re going to add this
line to our code: BinaryFormatter tempFormatter =

“The data is now loaded and
the PlayerData has been
extracted from the file”

 �Now that our test stuff is
working, you can freely save
and load your ammo and HP
for your player.

Unity FPS Guide 111

Saving and loading game data in Unity
Additional Mechanics

new BinaryFormatter();. This will create the utility
for us. Once this has been done, we then need
to open the file. We can do this with a FileStream,
another C# utility, this time for loading files. Add
the code FileStream tempStreamToUse = File.
OpenRead(Application.persistentDataPath +
"/BinaryData.save");. This tells Unity to look at the
file at the location specified and the File.OpenRead
tells Unity to open said file.

We know what data this is going to be, so
we’re going to add this code next: PlayerData
tempData = (PlayerData)tempFormatter.
Deserialize(tempStreamToUse);. This line of code
tells Unity to get the raw data from the file we
fed in, deserialize it using the BinaryFormatter,
and treat that data as a PlayerData struct. The
(PlayerData) call in that line of code is a cast, which
means ‘treat whatever is after this as whatever
variable is in the bracket’, which in this case is our
PlayerData struct.

The data is now loaded and the PlayerData has
been extracted from the file. Now we need to tell
the FileStream utility that we’re finished, and we
can do that with tempStreamToUse.Close();. We’re
still holding onto the data we collected from the
BinaryFormatter and as we discussed before, this
function gives the data over to whoever asked
for it. To do this, add return tempData; to push
the data. Now simply close this block with a } and
we’re almost finished with this function.

We’ve told Unity what to do if the file is found,
but we need to tell it what should happen if it can’t
find the file specified. Inside our if check, we’re
returning data. The return keyword tells Unity
to stop firing this function as we have what we
came here for. This means that if the if check is
successful, this function will only fire what is in that
if check. This helps us, because after the if block,
we can add return new PlayerData();. If the if
statement isn’t true, it’s going to look for the next
line of code outside the if statement – which is
our new PlayerData.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using System.Runtime.Serialization.Formatters.

Binary;

using System.IO;

public class BinarySaveLoad : MonoBehaviour

{

 public struct PlayerData

 {

 public string sPlayerName;

 public int iCurrentAmmo;

 public float fCurrentHealth;

 public Vector3 vPlayerLocation;

 public bool bHasPlayerDoneSomething;

 }

 public void BinarySave(PlayerData

DataToUse)

 {

 }

 public PlayerData BinaryLoad()

 {

 if (File.Exists(Application.

persistentDataPath + "/BinaryData.save"))

 {

 BinaryFormatter tempFormatter = new

BinaryFormatter();

 FileStream tempStreamToUse = File.

OpenRead(Application.persistentDataPath + "/

BinaryData.save");

 PlayerData tempData = (PlayerData)

tempFormatter.Deserialize(tempStreamToUse);

 tempStreamToUse.Close();

LIMITATIONS
PlayerPrefs has a number
of limitations to consider.
PlayerPrefs can only read and
save floats, integers, and strings,
and stores this data as a text
file on the user’s hard drive.
PlayerPrefs shouldn’t be used
for data that isn’t floats, integers,
or strings, and should never be
used to store any sensitive data
you don’t want the player to
manipulate, such as progress,
passwords, or anything that
could lead to a player gaining an
unfair advantage in your game.

 �The full binary formatter
script is quite complex, but it
might provide what you
need for your project.

112 Unity FPS Guide

Saving and loading game data in Unity
Additional Mechanics

 return tempData;

 }

 return new PlayerData();

 }

}

Now that we have file loading sorted,
we need to fill out our BinarySave
function. Luckily, it’s quite similar to
what we’ve already done. Head into
the BinarySave function and create
two variables. We need to store the
FileStream and BinaryFormatter – all will
become clear shortly. To create a new
FileStream, add the code FileStream
tempStreamToUse; and to create the
BinaryFormatter, add BinaryFormatter
tempFormatter = new BinaryFormatter();.
The function we’re about to write
is going to reference the file path a
number of times with string sPathToUse
= Application.persistentDataPath +

"/BinaryData.save";. That line of code lets us write
sPathToUse instead of having to type out the whole
string every time.

We now need an if statement to check if
the file exists as we can’t save data into thin air.
Create a new if statement that says if
(File.Exists(sPathToUse)). Notice how we didn’t
have to write that long string this time?

If the file exists, we open the file by
adding the { and then tempStreamToUse =
File.OpenWrite(sPathToUse); – this fills in our
FileStream variable with the data loaded from the
file we’ve just opened for writing data to. Once

you’ve added that line, close off this
block with a }. Unlike last time, we need
to perform a task if the file doesn’t
exist, as again, we can’t save data into
thin air. To do this, we can use an else
statement. else statements are similar
to if statements, but they’re used
when something is false instead of true.
Go ahead and add else {. Inside this
block, we need to create the file. This
can be done with tempStreamToUse =
File.Create(sPathToUse);. We’re creating
the file at the location and storing this
new data inside our FileStream variable.
Once done, we can close off this
block with }.

So far, we’ve either loaded the file ready to
write to it or we’ve create a brand new file ready
for data. We now have to add our data to the
file, which can be done with tempFormatter.
Serialize(tempStreamToUse, DataToUse);. This
function serialises our data to the FileStream we’ve
specified using the data we’ve fed into the function
call. We then tell Unity we’ve finished editing the
file by calling tempStreamToUse.Close();.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using System.Runtime.Serialization.Formatters.

Binary;

using System.IO;

public class BinarySaveLoad : MonoBehaviour

{

 public struct PlayerData

 {
 public string sPlayerName;

 public int iCurrentAmmo;

 public float fCurrentHealth;

 public Vector3 vPlayerLocation;

 public bool bHasPlayerDoneSomething;

 }

 public void BinarySave(PlayerData DataToUse)

 {

 FileStream tempStreamToUse;

 BinaryFormatter tempFormatter = new

BinaryFormatter();

 string sPathToUse = Application.

persistentDataPath + "/BinaryData.save";

 if (File.Exists(sPathToUse))

 {

 tempStreamToUse = File.

OpenWrite(sPathToUse);

 }

 else

 {

 tempStreamToUse = File.

Create(sPathToUse);

 }

 tempFormatter.Serialize(tempStreamToUse,

DataToUse);

 tempStreamToUse.Close();

 }

 �Here’s what your PlayerPrefs
saving prefab should look
like in your Inspector.

 �Once in the Inspector, your
binary formatter saving
prefab should look like this.

Unity FPS Guide 113

Saving and loading game data in Unity
Additional Mechanics

 public PlayerData BinaryLoad()

 {

 if (File.Exists(Application.

persistentDataPath + "/BinaryData.save"))

 {

 BinaryFormatter tempFormatter = new

BinaryFormatter();

 FileStream tempStreamToUse = File.

OpenRead(Application.persistentDataPath + "/

BinaryData.save");

 PlayerData tempData = (PlayerData)

tempFormatter.Deserialize(tempStreamToUse);

 tempStreamToUse.Close();

 return tempData;

 }

 return new PlayerData();

 }

}

Now we have the power of saving and loading
using the Serialization features of C#. To test this
out, you can create another script like we did to
test the functionality of the PlayerPrefs system.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

// Putting this before our class makes sure

that we can't fire this code without our

PlayerPrefExample code attached.

[RequireComponent(typeof(BinarySaveLoad))]

public class ExampleBinarySaveLoad :

MonoBehaviour

{

 BinarySaveLoad ourSaveScript;

 BinarySaveLoad.PlayerData ourPlayerData;

 // Start is called before the first frame

update

 void Start()

 {

 // Find our Save Game Script

 ourSaveScript =

GetComponent<BinarySaveLoad>();

 // Fire the function to get our data

values.

 ourPlayerData = ourSaveScript.

BinaryLoad();

 //Write our values to the log, so we

can see if they were correctly loaded.

 Debug.Log("Our current Ammo = " +

ourPlayerData.iCurrentAmmo + ", and our health

value = " + ourPlayerData.fCurrentHealth);

 }

 void PickedUpAmmo(int iAmountOfAmmoPickedUp)

 {

 ourPlayerData.iCurrentAmmo +=

iAmountOfAmmoPickedUp;

 }

 void PickedUpHealthPack(float fHealthToAdd)

 {

 ourPlayerData.fCurrentHealth +=

fHealthToAdd;

 }

 private void OnApplicationQuit()

 {

 // Find our Save Game Script

 ourSaveScript = gameObject.

GetComponent<BinarySaveLoad>();

 //Write our values to the log, so we

can see if they were correctly loaded.

 Debug.Log("We are saving the ammo

value of = " + ourPlayerData.iCurrentAmmo + "

and the health value of = " + ourPlayerData.

fCurrentHealth);

 // Fire the function using our ammo and

health values

 ourSaveScript.BinarySave(ourPlayerData);

 }

}

There we have it: you’ve created a full save/load
game system in both PlayerPrefs and using the
Serialization utilities. As you can see, PlayerPrefs
gives us quick, lightweight access to our integers,
floats, and strings, whereas Serialization gives us
a lot more options, control, and security. Once
you’ve wrapped your head around the concepts,
it really is quite simple to load and save player
data within Unity. From here, you can start to add
functions to the example scripts (such as only
letting the player save at certain points in the
game). The possibilities are nearly endless.

LOOK SHARP
C# has a near limitless amount
of helpful functions, utilities,
and features that can help
us in our game development
adventure. Be wary, though: not
all of these features will work
out of the box on consoles or
mobile platforms.

114 Unity FPS Guide

Developing a boss battle
Additional Mechanics

 oss battles are a major staple
of any modern action game.
These usually happen at the
end of a level, and challenge the
player to demonstrate all the skills

they’ve honed up to that point. A common idea
is that the boss has devastating but telegraphed
attacks, which the player must learn how to avoid
to survive, while at the same time hitting the
boss’s weak points to whittle down its energy.
Good examples of these sorts of set-pieces can
be seen in games like God of War and Devil May
Cry, which are famous for their striking character
designs and challenging attack patterns.

To start building a boss fight of our own, we
first need to find a suitable 3D model with a
specific set of animations that we can use to
build our encounter. Luckily for us, there’s a

B free service by Adobe called Mixamo that allows
us access to models and animations in one
convenient package.

To get started, head over to mixamo.com and
then create an Adobe account if you don’t already
have one. You can then log in, at which point you’ll
be presented with a web-based browser that has
both characters and animations to pick from.

We want to grab a character first, so select the
Characters heading along the top, and then search
for the word Mutant to find the character you can
see in the image at the top of this page. Select this,
and there should be a Download button on the
right-hand side of the page.

When you select this, you’ll then see a window
that has several drop-down options. Set the
Format to Collada (.dae) and check that the Pose is
set to a T-Pose.

Want to end your level with a formidable boss encounter?
Here’s how to create one

Developing a
boss battle

 �By changing the skybox and lighting in
our level, we’re able to make the boss
feel moody and menacing when players
eventually meet it.

AUTHOR
STUART FRASER

Stuart is a former designer and developer of high-profile
games such as RollerCoaster Tycoon 3, and also worked
as a lecturer of games development.

http://mixamo.com/

Unity FPS Guide 115

Developing a boss battle
Additional Mechanics

 �The God of War series is
well known for its superb
bosses that tower over
the protagonist.Next, we can jump to the Animations heading.

We then need to search for Mutant – this returns
all specific animations for this character. We’re
looking for the Creature Pack, since this bundle
contains all the animations together. Select this as
before, and then select the Download button on
the right-hand side of the page. We want to set the
Format to FBX for Unity and check that the Pose is
set to T-Pose, then download it.

We’re going to open our existing first-person
shooter project, and then we can select File >
New Scene to create a
new level. Initially, we
can delete the Main
Camera from the
Hierarchy as we don’t
need it in our scene.

We then need to find our Mixamo assets
in Windows, then unzip both downloads.
Starting with the initial character download, we can
drag both unzipped folders into the Project panel
in Unity. You may get a message about normal
map settings – just select the Fix Now option.
You can go ahead and delete the mutant.dae
mesh from the mutant folder that appears in the
Project panel, as it’s no longer required.

Now select the Player prefab from your Project
panel and drag it into the Hierarchy panel.
An important step is to add a floor for the boss
battle to take place on; my favoured way of doing
this is to go to the toolbar and select GameObject

> 3D Object > Plane. We can then set the X and
Z scale values to around three units each in our
Inspector. In the Project panel, select the Creature
Pack folder – this contains our animations and
the mutant mesh. Drag the mutant mesh from
the folder into the Hierarchy panel. We may need
to use the transform tools in Unity to place both
the player character and mutant mesh on our
floor. We should make sure there’s some distance
between the two – say about eight units. We also
want to delete any additional cameras in the scene

that don’t belong to
our player character.

We can now work
on making our boss
seem more menacing,
and start adding

our animations – later, we’ll add some C# code
to make the boss character have some basic
AI behaviours.

The first quick change we can make is select
the mutant game object in the Hierarchy and
then in the Inspector set the X, Y, Z scale to 2. This
instantly makes the mutant feel more menacing as
it towers above our player.

We now want to move to the Project panel
and then right-click and select Create > Animator
Controller. This will allow us to build up a set of
animations that we can then switch between by
using a finite state machine – just think of it like
a flow chart which we can trigger. We should

“Boss battles are
a major staple of any
modern action game”

116 Unity FPS Guide

Developing a boss battle
Additional Mechanics

rename the Animator Controller by clicking the
name and then typing in BossAnimator. We
can then double-click the icon, and this should
open the Animator panel. We then navigate to
the Creature Pack folder in the Project view,
as we want to drag animations over to the
Animator panel. The first animation to locate is
the Mutant Roar animation; drag this into the
Animator Controller and
you should see it’s linked to
the Entry node.

To make it easier to
differentiate between
each animation, rename
this new animation Roar in the Inspector panel.
We’ll then drag over several additional animations
and ideally rename them as we did with the
Roar. The animations you need to drag into the
Animator are: mutant run, mutant swiping, mutant
jump attack, and mutant punch. These give the
boss some basic movements, such as the run, as
well as a few attack moves.

GETTING ANIMATED
While we’re here, we should also add transitions
to each animation and a transition back to Roar.
As an example, let’s select the Roar animation and
then right-click and select Make Transition. Select
the Run animation, and you should see both are
linked by a line with an arrow that points at the

Run animation. We now need to select the Run
animation and right-click it again. Choose Make
Transition, this time selecting the Roar animation.
With that one done, we can now repeat for the
other animations.

Once all the transitions have been made, we
need to make some parameters for us to trigger
the correct animations. We can do this by selecting
the Parameters tab in the Animator. We then
select the + icon and choose Bool, and change the
New Bool name to isRunning. Next, select the +
icon again and choose Int; this time, set the New
Int name to isAttacking.

We want to set up these parameters on
our transitions. Starting with our Roar to Run
transition, select the transition and then in the
Inspector, deselect the checkbox for Has Exit
Time, and then look for the Conditions entry.
Select the + icon to the right-hand side of this
word and choose isRunning and leave this set

to true. We’ll repeat this for
the transition that is the
opposite: it goes from Run
to Roar. However, we need
to change the drop-down
for the isRunning to false,

and remember to deselect Has Exit Time.
With the other animations, we only need to

set our parameters on the transition from Roar
to each of our attack animations. The reason
for this is that we want the animations to play
out completely, and the option Has Exit Time
will handle this for us. If we focus on the Swiping
attack as an example, we should select the Roar
to Swiping transition. Next, uncheck Has Exit Time
and in our Conditions, select the + icon and set
the parameter isAttacking – set the middle drop-
down to Equals, and the numeric value to 1. We
can repeat the process with the other transitions
and just increment the number value, so our
Jump Attack may have the parameter values as
isAttacking Equals 2, and so on.

We’re going to add one more animation, a single
one-way transition, and an additional parameter.
Select the mutant dying animation from the
Project folder and drag it onto the animator.
As with the other animations, rename this to
something meaningful in the Inspector: e.g. Dying.
Select the Roar animation and right-click on it,
then set the Make Transition to the new Dying
animation. We need to enter the Parameters
panel and select the + icon, then choose Bool.
We will name this isDead and then select our

 �Mixamo is an excellent tool
for adding animations to
rigged characters. In our
case, we’re going to
download one of the many
animation packs and one of
their pre-made characters.

 �We have the fully rigged
mutant mesh and a set of
suitable animations that we
can pick from. We can
implement these to make
our boss come to life.

“We can play a satisfying
animation to make it clear

we’ve beaten our foe”

Unity FPS Guide 117

Developing a boss battle
Additional Mechanics

transition to the Dying animation. In the Inspector,
uncheck the Has Exit Time option, and set our
Conditions by selecting the + icon and set the
condition to isDead. This will mean that when the
boss loses all of its health, we can play a satisfying
animation to make it clear that we’ve beaten our
abominable foe.

Once we have this set up, we can add a script
that will trigger our boss behaviour. This can be
achieved by selecting the mutant game object in
the Hierarchy and then moving to the Inspector
panel. In the Inspector, select Add Component >
New Script, set the Name to BossController, and
select Create and Add.

Once this script has been added, we can
double-click on it to open it in a script editor and
add the code below:

using UnityEngine;

public class BossController : MonoBehaviour

{

 public int attackRange = 3;

 private Transform player;

 private Animator anim;

 private int attackType;

 private bool setForce = false;

 private Vector3 direction;

 // Start is called before the first frame

update

 void Start()

 {

 player = GameObject.

FindGameObjectWithTag("Player").transform;

 anim = GetComponent<Animator>();

 }

 private void Update()

 {

 if (!anim.GetBool("isDead"))

 {

 //Find the direction

 direction = player.position -

transform.position;

 //If the boss is far enough away

from the player, rotate to look at the player.

 if (direction.magnitude > 2f)

 {

 transform.LookAt(new

Vector3(player.position.x, 0, player.

position.z));

 }

 //Set a random value between a

range we set to choose our attack type.

 if (!anim.GetBool("isRunning") &&

attackType == 0)

 {

 attackType = Random.Range(1,

attackRange+1);

 }

 }

 }

 // Update is called once per frame

 void FixedUpdate()

 {

 //If the boss is too far from the

player, run towards them.

 if (!anim.GetBool("isDead"))

 {

 if (direction.magnitude > 3f)

 {

 anim.SetBool("isRunning",

true);

 attackType = 0;

 anim.SetInteger("isAttacking",

0);

 }

 //If we are close enough, do an

attack.

ANIMATIONS
You can easily select other
animations if you want to
extend the range of movements
or attacks the boss will have.
Mixamo deals with making the
animations work on any of the
character skeletons, so you
can try mixing and matching
animations intended for
other characters.

 �The stage is set for an epic
boss fight. Or it would be
with some additional
artwork and level design.

118 Unity FPS Guide

Developing a boss battle
Additional Mechanics

 else

 {

 anim.SetBool("isRunning",

false);

 anim.SetInteger("isAttacking",

attackType);

 if (anim.

GetCurrentAnimatorStateInfo(0).normalizedTime

< 0.1f)

 {

 setForce = true;

 }

 //At the moment we trigger

damage at force when animation is about 50% for

all attacks.

 if (setForce && anim.

GetCurrentAnimatorStateInfo(0).normalizedTime

> 0.5f)

 {

 //Add some knock back to

the player.

 player.

gameObject.GetComponent<Rigidbody>().

AddExplosionForce(5.0f, transform.position,

6.0f, 4.0f, ForceMode.Impulse);

 if (direction.magnitude <=

3f)

 {

 //We can replace this

with something that sends damage to the player.

 Debug.Log("Damage

Player");

 }

 setForce = false;

 }

 }

 }

 else

 {

 anim.SetBool("isRunning", false);

 anim.SetInteger("isAttacking", 0);

 }

 }

}

Save the code, and then move back to Unity.
We now need to do some additional setup
in our project to make sure everything works
as expected. The first thing to do is select your
player object in the Hierarchy and check that the
Tag drop-down is set to Player at the top left on
the Inspector panel. Next, select the mutant object
in the Hierarchy, and then in the Inspector, select
Add Component > Physics > Capsule Collider.
In the Capsule Collider, change the Y value for
the Center to 0.9 and set the value for the Height
to 1.8. Next, select the BossAnimator from the
Project panel and drag it onto the mutant object in
the Hierarchy.

The next step is to check our animations are set
up correctly. First, select all files in the Creature
Pack from the Project panel. We want to look in
the Inspector and select the Rig tab and change
the Animation Type to Humanoid and then
Apply. Unfortunately, this shows an error, but
we can easily fix this by selecting just the mutant
animation file. We will select the button marked
as Configure… and when prompted, we should
select save. We now have a 2D view of a humanoid
character. Notice that the right hand is highlighted
red; select it and then scroll the optional bone list
that is below this representation of our character.

DAMAGE
The code printed here doesn’t
deal with player damage, but
this could easily be extended
to allow for this. Eagle-eyed
readers should see some
comments and debug to allow
you to hook this in easily.

 �We must have a base set of animations in the animator
so we can have the boss character stomp around and
pull off some devastating attacks.

 �It’s important to be sure that all the
transitions have been made, and the
parameters for triggering them are correct.

Unity FPS Guide 119

Developing a boss battle
Additional Mechanics

You should see that the left arm hasn’t been set
and shows None (Transform). We need to select
it and set Mutant:LeftHand in the empty slot, then
select Done and Apply.

We’ll need to select all the other animations
we’re using in the Project panel. This can easily be
achieved by holding the CTRL key and selecting
the animations we’re using. Next, look in the
Inspector. In the Rig tab, change the drop-
down for the Avatar Definition to Copy From
Other Avatar, pick mutantAvatar as our Source,
and Apply.

Next, select the mutant jump attack from the
Project and then in the Inspector, you should
select the Animation tab. We need to checkmark
the following options – Loop Time, Loop Pose,
and Bake into Pose – for Root Transform Rotation
and Root Transform Position (Y). We’ll have to
repeat this process for the mutant run animation;
however, we additionally
need to set an Offset for the
Root Transform Rotation to a
value of -5.36.

We can now preview the
scene by selecting the Play
button from the toolbar. You should see the boss
run toward the player and play one of the various
attack animations. You should also see that we’ve
added a knockback effect in our code.

HOW TO ADD WEAK SPOTS
Often in a boss battle, you’ll get some feedback
when you’ve successfully hit a weak spot.
We’re going to have a weak spot on each of our
boss’s hands, and we’ll highlight the area to the
player by using an emissive glow. This emissive
glow effect is achieved by using a texture –
anything black on the texture will be unlit, and
anything white will be lit. We’ll need to produce
two new textures: we can use the mutant diffuse
texture that’s currently applied to the boss
mesh to work out where we need to place our
emissive hotspots. Using a photo editing package,
open the Mutant_diffuse texture from the Unity
Project. We’ll save two copies of this with the
names EmissiveLeft and EmissiveRight and then
modify them as shown. I’ve created a diagram to
show which areas to mask as white and what to
paint as a solid black (Figure 1). Once these are
done, we should save them into our Assets folder
so they appear in our Project.

The next step is to create our own material.
If we don’t do this, then Unity will use its own

default material and won’t use our emissive
channels. To make this new material, right-click
in the Project panel and select Create > Material,
then rename this MutantMat. In the Inspector we
should see our material parameters; we need to
set the Albedo to be the Mutant_diffuse texture

provided by Mixamo.
You will also need to set
the Normal Map to be the
mutant_normal that was
also provided, and enable
Emission via the checkbox.

This material is now ready to use; we can simply
drag it onto the mutant object in the Hierarchy.

We can now add a way to detect whether
the player has managed to shoot our boss’s
weak spots. For this, we’ll need to use colliders to
check for the collision, and then a script to detect
that they’ve been hit. This will work with a main
boss health script to then calculate the damage.

The first step is to select the mutant object in
the Hierarchy. We then need to navigate through
the child objects. The objects we’re looking for are
buried and quite difficult to find, so expand mutant
> Mutant:Hips > Mutant:Spine> Mutant:Spine1
> Mutant:Spine2 > Mutant:LeftShoulder >
Mutant:LeftArm > Mutant:LeftForeArm and then
select the Mutant:LeftHand. We can then right-click
and select 3D Object > Capsule.

 �Make sure you have set up
your base avatar and that
you have set the option to
copy this avatar to your
animation set.

“We’re going to have a
weak spot on each of

our boss’s hands”

 �Figure 1: For each of the new
textures, we want to add
white highlights to the areas
that are used by the mutant
mesh to render its hands. An
example can be seen of the
original diffuse texture and
the emissive textures that
have been created from it.

120 Unity FPS Guide

Developing a boss battle
Additional Mechanics

We should change the name in the Inspector to
LeftHit for ease of use. The capsule is the wrong
orientation and too big for the hand, so we need
to rotate it 90 degrees in the Z axis and scale it
down using the scale view.

We want to orient the capsule so the boss
hand is just poking through its end. At this point,
we can disable the Mesh Renderer component
on our capsule, as we don’t want it rendered
in-game. We can then add the script by selecting
Add Component > New Script and then setting our
Name to WeakSpot and selecting Create and Add.
We then need to double-click on the script and
open it ready for editing with the following code:

using UnityEngine;

public class WeakSpot : MonoBehaviour

{

 private GameObject recGO;

 private BossHealth bossHealth;

 private void Start()

 {

 recGO = transform.root.gameObject;

 bossHealth = recGO.

GetComponent<BossHealth>();

 }

 public void OnCollisionEnter(Collision col)

 {

 string name = gameObject.name;

 bossHealth.ReceiveCollision(ref col,

ref name);

 }

}

Once complete, we can save the code
and move back to Unity. The next stage is to
repeat the process for the right hand. In this
case, we need to go back to our Hierarchy
panel and expand mutant > Mutant:Hips >
Mutant:Spine > Mutant:Spine1 > Mutant:Spine2
> Mutant:RightShoulder > Mutant:RightArm
> Mutant:RightForeArm and then select the
Mutant:RightHand.

As before, right-click and create a capsule.
This time, name it RightHit in the Inspector.

Again, we need to rotate and rescale it and hide
the render mesh. We may need to play about with
the rotation as this hand is slightly offset from
90 degrees. There’s no need for another script –
we simply reuse the one we just made by dragging
it from the Project panel to the Inspector.

We’re nearly done. All we need to do is add
our boss health script. Select the mutant in the
Hierarchy; in the Inspector, you should be able
to select Add Component > New Script and set
the Name to BossHealth, and then select Create
and Add.

As usual, open the script and add the following
code to handle the boss’s health:

using System.Collections;

using UnityEngine;

public class BossHealth : MonoBehaviour

{

 public int health = 5000;

 public GameObject mutantMesh;

 public Texture[] texture = new Texture[2];

 private int texRef;

 private Animator anim;

 // Start is called before the first frame

update

 void Start()

 {

 anim = GetComponent<Animator>();

 }

 public void Update()

 {

 if (health <= 0)

 {

 anim.SetBool("isDead", true);

 }

 }

 public void ReceiveCollision(ref Collision

col, ref string name)

 {

 if (col.transform.tag == "bullet")

 {

 health -= 250;

Unity FPS Guide 121

Developing a boss battle
Additional Mechanics

 Destroy(col.gameObject);

 if (mutantMesh != null && health >

0)

 {

 if (name == "LeftHit")

 {

 StartCoroutine(HitFlash(0));

 }

 if (name == "RightHit")

 {

 StartCoroutine(HitFlash(1));

 }

 }

 }

 }

 private void OnCollisionEnter(Collision

other)

 {

 if (other.gameObject.

CompareTag("bullet"))

 {

 health -= 1;

 Destroy(other.gameObject);

 }

 }

 private IEnumerator HitFlash(int num)

 {

 for (int i = 0; i < 5; i++)

 {

 mutantMesh.GetComponent<Renderer>().

material.SetTexture("_EmissionMap",

texture[num]);

 mutantMesh.GetComponent<Renderer>().

material.SetColor("_EmissionColor", Color.red);

 yield return new

WaitForSeconds(0.1f);

 mutantMesh.GetComponent<Renderer>().

material.SetColor("_EmissionColor", Color.

black);

 yield return new

WaitForSeconds(0.1f);

 }

 yield return null;

 }

}

Save the script and move back to the mutant
object in Unity. Once it’s fully compiled, you
should see a few new entries in the script on the
Inspector that need us to assign some references.
First, select the circle to the right of the words
Mutant Mesh; search for MutantMesh in the
window that appears and select it. You should also
see the parameter called Texture; this needs to
be expanded so you can see two slots. These slots
are for the emissive textures we made earlier. We
can easily drag these over from the Project view
into these slots. Start with the EmissiveLeft texture
in the first slot and the EmissiveRight texture in the
second slot.

Now we can press the Play button from
the Unity toolbar and try out our boss battle.
You should see that we do the most damage to
the boss by blasting the weak points, but you can
still chip away at its energy by hitting the body.
The range of attacks it uses is quite simple, so you
could look at adding to those. You could also make
a more bespoke boss mesh, add different weak
spots, or even design a boss fight with multiple
stages – shooting a weak spot on the boss’s back
could eventually expose a second vulnerable area
on its chest, for example. There are all kinds of
ways you could customise this tutorial to make an
epic boss battle of your own.

 �We should have colliders on
the main body of the boss,
as well as the two weak spot
colliders we just set up on
each hand. This is to help
detect collisions, but
specifically between the
projectiles and the boss.

Find out more about the theory behind hitboxes,
and glean some tips from the masters

Level design
and inspiration

122

Build Your Own

in Unity
FIRST-PERSON SHOOTER

Getting into FPS
level design
A masterclass from
Bulletstorm’s Steve Lee

Tips for improving
your level designs
Six simple ways to make your
stages sparkle

The theory
behind hitboxes
Why hitboxes matter, and how
to implement them

Jon Chey
on level design
Design principles from the
director of System Shock 2

124.

126.

128.

134.

System Shock 2
director Jon Chey
and Bulletstorm
level designer Steve
Lee provide their
insights into the
process of making
a great shooter.

124 Unity FPS Guide

Getting into FPS level design
Level Design and Inspiration

Want to learn more about shooter level design?
Then Half-Life 2 is a perfect place to start

Getting into
FPS level design

AUTHOR
STEVE LEE

Steve Lee is a former designer at studios including Arkane
and Irrational, and is now freelancing and consulting.
doublefunction.co.uk

as my final project in university on YouTube
(wfmag.cc/steve-lee). That level and video was
my main portfolio piece when I applied for level
design jobs in the industry.

Today, most people talk about Unity and
Unreal 4 as the game engines of choice for
would-be designers – but for getting into a
first-person, single-player level design in 3D
environments, I still recommend Half-Life 2
as an ideal way to get started. It’s modern
enough that you can make things that look
good, but also simple enough that it won’t take
you three years to finish a map on your own
(which is an important thing to consider while
you’re learning).

Unity and Unreal 4 are obviously great at a
lot of things, but they’re largely a blank canvas
for making games from scratch. This basically

A few tips for beginners:
1 �Start with the smallest ideas and projects that you can

think of. You’ll learn far more by finishing a few small
projects than starting one major project that’s too
ambitious to complete.

2 �Focus on the player’s experience. What can the player
do, what are they thinking at any given time, and what
happens if they perform a particular action?

3 �Work efficiently to make something playable early on,
in simple, rough form – then test it, analyse it, and build
on it from there.

4 �Get some friends or find people online to playtest
your levels and give honest feedback throughout the
process. Testing your own work is important, but the
real acid test is when other people play it.

I

124

’ve been a designer in the games
industry for about twelve years now,
mostly working as a level designer on
such triple-A games as Bulletstorm,
BioShock Infinite, and Dishonored 2.

The through-line that connects these titles is
my love for the mix of action, storytelling, and
exploration in first-person games. Like many
designers of my generation, I started out making
my own maps for Doom, back in the 1990s: one
day, my older brother got hold of a Doom level
editor called DoomCAD. As an eleven-year-old,
it was a real watershed moment for me to learn
that I could design levels myself.

The idea of learning game development at
school or university basically didn’t exist back
then, but when Doom helped kick-start the
mapping and modding scene, a number of later
shooters included official level editors. I moved
onto Quake level editing after Doom – another
milestone, because it was one of the first truly
3D game engines that was deliberately designed
to be modded – and later, Half-Life 2. You can
still watch a video of the Half-Life 2 level I made

 �Here’s how Steve’s Terminal
level looks in Valve’s
Hammer Editor, the studio’s
Source engine map editor.

 �Steve Lee’s Terminal level up
and running in Half-Life 2.

http://doublefunction.co.uk
http://wfmag.cc/steve-lee/

Unity FPS Guide 125

Getting into FPS level design
Level Design and Inspiration

What if I don’t
like shooters?
Here are a few alternative
approaches for you to consider, if
you’re keen to dip your toes into
level design some other way:

•�Make a small Half-Life 2 level
that tells a simple story without
any action – perhaps through
environmental storytelling, some
simple interactions with other
characters, and using the game’s
weapons to solve puzzles and
navigate the area instead
of engaging in combat.

•�Find another kind of game
that you like that comes with a
level editor. Portal, Super Mario
Maker, TrackMania, Skyrim
– there are plenty of them to
choose from.

means that in order to do any level design
with them, you have to make a whole game,
too – exponentially multiplying the amount
of work on your plate before you even start
thinking about level design. If you know that it’s

specifically level design that you want to get into,
I strongly recommend you approach it in a way
that lets you focus on it as purely and efficiently
as possible.

I want to stress that to get a job as a level
designer at a modern studio, you don’t need
to use the latest software or make levels for
the latest, most complex games. My last job on
a triple-A game was as a Senior Level Designer
on Dishonored 2 at Arkane Studios, and for
my level design test, I made another, small
Half-Life 2 level to show that I knew my stuff and
was a good fit for the team. This worked partly
because I knew that Arkane have a history of
using that engine, and that they like the kind
of game Half-Life 2 is: rich world-building and
narrative, non-linear, systemic gameplay – all
of that stuff.

What employers want to see is that you can
make real, playable levels, with smart, interesting
design, that are robust enough to deal with
lots of different players let loose inside them.
Knowing how to use a certain editor or tool a
company uses is a plus, of course – but if you’ve
made something good, they’ll assume you can
learn a new tool on the job.

So this first column is a call for you to go and
seek out some level design software, look up the
level design communities and tutorials online,
and see what you can make. These projects take
a lot of time, but stick with it and you might be
surprised by what you can come up with, and
where it leads you.

 �Placement of enemies is a
key consideration in FPS
level design.

“What employers want to
see is that you can make
real, playable levels, with
smart, interesting design”

 �Doom may be an antique,
but Doom Builder is still an
intuitive, fun map editor.

 �Doom Builder’s top-down level
editor is clean and intuitive.

 �Half-Life 2 : classic game,
perfect for learning level design.

Getting into FPS level design
Level Design and Inspiration

126 Unity FPS Guide

6 tips for improving your level designs
Level Design and Inspiration

Want to really make your stages stand out?
Then here are six tips handy tips to follow

6tips for improving
your level designs

AUTHOR
STEVE LEE

Steve Lee is a former designer at studios including Arkane
and Irrational, and is now freelancing and consulting.
doublefunction.co.uk

I n the previous chapter, I talked
about getting into level design the
way I did – using the level editors for
games you can get for free – and how
I still recommend people get into it

today using something like Hammer, the editor
that comes with Half-Life 2 (and Portal, Team
Fortress 2 and Left 4 Dead).

Here, I want to follow that up with a series of
simple but important tips on how to approach
the level design process, for any of you who are
giving it a go. Sound good? Good.

1. Know your goals
This might sound obvious, but before you
start doing things, it really helps to understand
what you’re trying to do. Yes, you’re trying to
make a level – but what kind of level? Which
game is it for? What is it about? Is the focus on
exciting, cinematic action gameplay? Mind-
bending puzzles? Subtle, engaging interactive
storytelling? What kind of experience do you
want players to have? How is this level similar
to what has come before, and how is it unique?
Are you making the level to convince companies
to hire you as a level designer, and if so,
which ones?

These are questions that it’s worth having
answers to. Always have sensible and specific
goals, and consciously design your project or
level to achieve them.

2. Keep your projects small
Speaking of sensible goals, try not to fall into
the classic trap of being too ambitious with
your project – especially if this is your first one.

 �Levels for triple-A games can
take several people months,
even years, to make. Start
simple and small!

 �Half-Life 2 levels look like this,
when viewed in Hammer, the
Source Engine’s level editor.

A common piece of advice in game development
is to take your estimate of how long you think a
project will take, and double it (at least).

Game dev and level design is hard, and it can
take a long time to try ideas out, see which ones
work, and which ones don’t. By keeping your
projects small, everything becomes faster, you
increase the chances that you’ll finish them, and
you give yourself more time to not only make
things, but make them really good.

3. Greybox first,
get playable quickly
Another classic trap in game development is
going overboard and being too wrapped up in
making stuff, or polishing little things that don’t
really matter, forever – losing track of the bigger
picture and how all things fit together (if they do
at all). To avoid this, it’s important to work broad
strokes to begin with, blocking things out and
prototyping in a quick and functional way early
on, trying things out, and seeing what works
(and just as importantly, what doesn’t).

With 3D level design, this blockout phase
is often done literally with big, simple boxes,
covered in flat-colour development textures –

http://doublefunction.co.uk/

Unity FPS Guide 127

6 tips for improving your level designs
Level Design and Inspiration

Level design or environment art?
Level design and environment art sometimes get mixed up because of how much the two
disciplines can overlap. Put simply, the latter is generally about making the environments look
great, whereas level design is all about how it plays, and the overall player experience. Both
involve a lot of thinking about presentation, composition and layout, and ideally complement each
other. On the other hand, they can be in tension with each other and cause problems if they’re not
working together very well.

Creatively, most people lean more towards one of these disciplines than the other. And
either is fine, of course. But if you consider yourself a level designer, you have to be focused
on the player experience when other people play your game, and how everything (including
the environment art and the visuals) serves the goal of helping the player understand and
interact with it.

hence the term ‘greyboxing’ (or ‘whiteboxing’,
‘orangeboxing’, etc.). It’s important to work like
this so that shapes and layouts can be tested
early, and also iterated on quickly, when testing
reveals problems and changes that need to
be made.

4. Focus on the
player experience
When you’re making levels, it can be tempting
to get swept up in things like nice graphics, or
deep, complex fiction that could fill a book, or
cinematic presentation and bombastic events.
All of these things can be good, of course, but
the most important
thing is always the player
experience. It can be very
easy to make something
that seems superficially
cool or impressive, but
really, is kind of boring
to play.

As level designers, we don’t just care about
what happens or what the players see and
do – but what they’re thinking, and how they
feel about it. Are they really thinking about and
understanding the things you want them to? Are
they really having the experience you intended?

5. Playtest your
map with others
It’s important to remember that we’re not
designing levels just to play ourselves – they’re
for other people (and hopefully lots of them).
Every player is different, and is going to
experience a level in their own way. While you
need to test your own work constantly while
you’re making it, the only real proof for whether
a level is really working is when you see other
people play it, and they give you honest opinions
about their experience.

“If you really want to make
something good, you need

to give yourself time to
make something first”

Everyone is too close to their own work to be
able to see it from every angle. So if you want it
to be good enough for lots of people to play, you
have to let other people show you how it looks
through their eyes, played by their hands.

6. Quality only
comes from iteration
To paraphrase the novelist Ernest Hemingway:
“The first draft of anything is poo.” He’s on the
money, and this applies to level design just as
much as it does to writing novels. If you really

want to make something
good, you need to give
yourself time to make
something first, and then
spend even more time
repeatedly improving it.
This obviously ties in

with point number one, about keeping projects
small. The first level you make probably won’t
be your life’s masterpiece – but if it’s small, you’ll
be able to start iterating much earlier, and that
much faster.

 �Level designers work with simple shapes
and textures to begin with, to be able to
test, change and improve things quickly.

 �In 2007, Steve made his own
two-part level for Half-Life 2,
called The Terminal, which
helped him get his first level
design job in the industry.

6 tips for improving your level designs
Level Design and Inspiration

128 Unity FPS Guide

The theory behind first-person hitboxes
Level Design and Inspiration

Choosing the right hitbox is key to making a great shooter.
Here’s the difference between them and why they matter

lmost all modern games simulate
physics in some way. From the
most basic collision in a roguelike
to the complex calculations
powering simulations like Kerbal

Space Program, if you want to build a 3D game,
you’ll need to make the world feel solid. This is
why your game needs hitboxes – the industry
term for the physicality of a virtual object.

A hitbox is the representation of a shape that
can’t overlap with other hitboxes. The world has
a hitbox, each player has a hitbox, the scenery,
the houses, almost everything you can see and
‘touch’ in a game has a hitbox. To give the player
a sense of realism, they have to be stopped from
walking straight through that object, and will
often see a physical reaction when two objects
connect – bouncing is a common effect of a

collision between hitboxes.
Why have we singled out first-

person shooters for this feature?
Because it’s the genre that contains
the most varied hitboxes, and
where hitboxes have the most
tangible impact on the action.
The hitboxes you choose have
to work hand-in-hand with the
shooter you want to make. Do you
want your game to feel slow and
deliberate, with an emphasis on
accuracy, or fast and arcade-like,
where twitch reactions determine
the winner?

The theory behind
first-person hitboxes

A It’s useful to understand a little bit of
geometry here, since we’ll be talking about
shapes and lines in three dimensions: spheres,
boxes, rays, and segments. You can see these
clearly laid out in the diagram on the bottom left.

The two most popular game engines today,
Unity and Unreal, both have tools for working
with simple capsules and joint articulated
hitboxes (the most complex kind we’ll be
talking about) out of the box. Unreal lets you
edit hitboxes of models in the Physics Asset
Editor, while Unity gives you the Ragdoll Wizard
for complete customisation and Character
Controllers for single capsule hitboxes.

PRIMITIVES
‘Hitbox’ is actually a bit of a misnomer, because
they come in more shapes than just boxes.
The most common approach to making a hitbox
is to use a set of primitives, such as spheres,
rays, and more complex objects like capsules,
which can be efficiently tested for intersecting
with each other one-to-one. Boxes (or cuboids)
aren’t often used in shooters because they’re
more computationally expensive to intersect
with each other and other primitives.

Axis-alignment and orientation is an important
consideration for a hitbox. If a hitbox is
axis-aligned, it means the primary axes don’t
rotate relative to the world/map axes: the ‘up’
direction on the box will always be the same
vector. Boxes, cylinders, and capsules are often
axis-aligned.

AUTHOR
PATRICK GORDON

Patrick is a research engineer at Hadean, a
deep tech startup in Shoreditch, and a former
competitive Counter-Strike player.

 �Figure 1: Hitboxes for CS: GO
players are built from several
capsules to closely match the
character model, because the
emphasis is on accuracy rather
than speed of movement.

 �This will explain some
of the terms you’ll come
across in this article and,
more importantly, the
parameters you’ll need
to set to define them.

Name

Axis aligned
box

Width, height

Oriented box
Width, height,

orientation

Diagram Common
Parameterisation

Ball/sphere/
circle

Radius

Ray Start, direction

Segment Start, end

Capsule Radius, segment

128

Unity FPS Guide 129

The theory behind first-person hitboxes
Level Design and Inspiration

When it comes to applying a hitbox to a
character model, the process typically involves
lining up boxes or capsules to the model’s joints.
If the triangle mesh around the upper arm
bone of a player has a radius of roughly 10 cm
all the way along the bone, for example, then
the hitbox for that bone will have a radius of
10 cm and a length that is the same as the
bone (Figure 1).

PROJECTILE HITBOXES
Once you’ve built a player hitbox, how does a
non-player object interact with it? There are
other primitives to consider here: rays and
segments. Rays are straight lines that start
at a point in space and go to infinity, while
segments are lines with
start and end points.
Both of these can be
used for hitboxes of
projectiles. A ray would
be used for something
that travels with infinite speed and hits its
target instantly, whereas a segment might be
used for something that travels with a finite
speed (Figure 2).

If a ray’s start point and direction vector are
the same as the position and direction of the
barrel of a weapon, then the first intersection
point along the ray is where the projectile

will hit. The ray might intersect with
many objects along its path, but
you’re mainly interested in whatever
the ray hits first. The same is true
for a segment, except this changes
its position each ‘tick’ (or iteration
of the game loop) until it reaches its
end point. These two methods are
commonly referred to as ‘hitscan
weapons’ and ‘projectile weapons’.

First-person shooters frequently
use hitscan for most weapons, since
developers make the assumption
that bullets move fast enough to
instantly hit their target. This can be
both for gameplay and simulation

reasons, since players
may expect their shot
to strike an object
regardless of how fast
they or the target is
moving. If you plan to

build a more realistic shooter, however, you
may not want to make this assumption. In this
instance, you should segment the trajectory of
the projectile, and simulate one segment per
tick, giving it a finite speed. The Battlefield and
Arma games are examples of this approach:
both simulate projectile drop-off over long
distances due to gravity. Arma even

“‘Hitbox’ is a misnomer,
because they come in more

shapes than just boxes”

 �Apex Legends uses segmented
trajectories for its weapons,
which means its projectiles are
all affected by physics.

Hitscan

Projectile

Projectile
+ Gravity

 �Figure 2: A comparison of hitscan
weapons versus projectile
weapons. Unlike hitscan
weapons, projectile weapons can
also simulate the effect of gravity.

130 Unity FPS Guide

The theory behind first-person hitboxes
Level Design and Inspiration

 �For military shooter
Arma 3, developer
Bohemia Interactive
went into obsessive
detail over the physics,
with projectiles even
affected by wind speed.

 �Figure 4: Although
Axis-Aligned Bounding
Boxes are great for
computation speed, they
suffer for hit accuracy.
Hitboxes change size
depending on another
player’s view, meaning shots
that should ‘miss’ will hit.

simulates the lateral movement due to wind.
Dropoff can have even more of a gameplay impact
if a projectile’s damage decreases the further it
flies, as in Counter-Strike: Global Offensive.

Grenades are another type of projectile.
These have a finite and relatively small
velocity, so they’re much more affected by
gravity. A number of segments are generally
used to approximate their path, tracing a
perfect parabola that ignores wind resistance
(see Figure 3).

To add dropoff for low-velocity projectiles,
the length of the segment should be velocity
* time delta per tick. For each tick, you should
also change the direction of the segment
according to gravity. Do this by adding g
(= 9.81m/s2) to the downwards velocity each
tick (or do it through acceleration by applying a
force F=mg each tick, where m is the mass of the
projectile – this will cancel out when the force is
applied to acceleration).

The main decisions for projectiles come down
to how fast the projectile is moving relative to
the simulation tickrate, whether gravity and/or
wind affects the path, and whether it bounces.
There’s a fun versus realism trade-off to be
made here, though, and it may well be that the
realism is part of your game’s specific appeal.

EXPLOSIONS AND
SPLASH DAMAGE
Low-velocity projectiles often have an area of
effect, commonly known as ‘splash damage’.
This doesn’t just occur at one point in space
where the ray/segment hits, but radiates
outwards. The best way to simulate this effect
is to use a sphere or a cylinder (you can also use

a spheroid or ellipsoid, although the latter isn’t
as common because it usually makes sense for
the effect to radiate equally in all directions).

This could be as simple as finding all objects
within a radius of the collision point and applying
an effect. One problem with this method is
that thick walls or other objects might not
block the effect – think about how FPS players
hide behind ‘cover’ when a grenade is thrown
at them – without a very complex calculation.
A workaround for this issue is to project rays
out from the hit point to the edge of the sphere,
and then applying the effect where those rays
intersect with objects. This can avoid splash
damage effects passing through walls, but the
downside is a more expensive computation.

SPEED VS ACCURACY
Before you go ahead and build an
approximation of your player model out of
capsules and spheres, you’ll want to think
about gameplay. An interesting decision you

 �Scenery in Battlefield is built from several
hitboxes, so destruction can take away
the walls, the floors, and so on. In games
like Call of Duty, walls will usually consist
of a single hitbox rather than several.

 �Figure 3: Segments can be
used to approximate the path
of a projectile object like a
grenade or a bouncing bomb.

1.0

Viewer

1.41

Viewer

Unity FPS Guide 131

The theory behind first-person hitboxes
Level Design and Inspiration

have to make when building a shooter is that
the accuracy of hitboxes for players and NPCs
is strongly linked to the movement mechanics
and speed of your game. The faster a player
moves, the harder they are to hit; combining
this with ‘model tight’ hitboxes might make for a
game that is either too hard, or one that makes
players think the collision detection is bad.

The Quake series is a good example of this.
Up to and including Quake 3, the hitboxes
for players were Axis-Aligned Bounding
Boxes, containing the whole of the model.
The advantage here for id Software was
computation speed, but in terms of hit accuracy,
it is probably the worst solution. The corners of
the box stick out far further than the rendered
model of the player, meaning even nearby shots
that ‘miss’ the model would be counted as hits.
This method is also directionally dependent,
meaning that if you move vertically around
another player by 45 degrees, the hittable area
could expand by a factor of √2 ≈ 1.41 (Figure 4).
But this was still great fun for players! Because
movement speeds are insane, the hitboxes need
to compensate for that slightly.

In Quake Champions, there are a couple
of interesting differences. Its creators
experimented early on with having hitboxes that
almost exactly matched the rendered model
using a triangle mesh hitbox, but, according to
one developer, it turned out to be frustratingly
difficult to hit. They then moved to a hitbox that
comprised a sphere for the head and capsules
for the torso and limbs. This sphere and
capsule model was then expanded by about
double for the lighter player models, to make
players easier to hit and match the players’
expectations of what they should be able to
hit (Figure 5).

The developers chose this approach because
the Quake games are arena shooters with an
emphasis on fast movement techniques such
as bunny-hopping, so having accurate hitboxes
isn’t as important as players being able to hit
their opponents who are bouncing around the
maps at high speed. Consider Counter-Strike,

and particularly Counter-Strike: Global Offensive,
where movement speed has been slowed down
and bunny-hopping has been hugely nerfed.
The slower speed of CS: GO means two things
happen: the player finds it easier to aim at
exact hitboxes, and it becomes much more
obvious to the player when a hit doesn’t land but
‘should’ have.

COUNTER-STRIKE
Counter-Strike is a great example of why hitboxes
are so important in shooters. Its players are
well aware that its hitboxes don’t match the
rendered models, and there have even been
a few hitbox bugs in the game’s history, each
resulting in a community-led investigation. One
of the larger ones was the fast-crouching bug,
where the player could stand and crouch quickly,
gaining sight of the enemy, but the hitbox would
change back to crouching much quicker than the
model would, meaning the other player wouldn’t
be able to hit the crouching player even if they
could see the model.

If a player can give away their position by
firing a single shot, and this can dramatically
alter the outcome of a round, then the player
needs to know for sure whether a shot has hit
its target. The only way to do this is to ensure
the hitbox matches accurately with what they
see. Because this accuracy is so important to
a slower-paced, every-shot-counts game like
CS: GO, its developers have spent considerable
time fine-tuning its hitboxes. CS: GO started with
much tighter hitboxes than CS: Source or CS 1.6.
The developers also decided to move from a box
model (Figure 6 overleaf) to a majority sphere
and capsule model, and worked to make sure
the hitboxes accurately reflected the bones of
the character models for all animation poses.

The more complex and accurate the hitbox
becomes, however, the more work you make
for your netcode. Increasing the number of
articulated joints increases both the game’s
bandwidth, and the chance that internet latency
will cause a hitbox to appear out of sync to
some players.

 �Figure 5: Quake Champions
used chunky hitboxes to make
characters easier to shoot.

THE QUAKE
EFFECT
Fast-moving and competitive,
Quake kick-started a subgenre
of arena shooters, such as
Warsow, Reflex Arena, Xonotic,
and OpenArena. Each tends to
closely follow Quake’s hitbox
design: models are entirely
cosmetic, and the player
can choose what model to
use for other players – every
player has exactly the same
hitbox, whatever they look
like. These design decisions
are made specifically for
high-level competition –
this competitiveness is
one of the main drivers of
hitbox importance.

132 Unity FPS Guide

The theory behind first-person hitboxes
Level Design and Inspiration

penetration. You may want projectiles to affect
multiple objects along their trajectory and
change the behaviour depending on what they
pass through, which is sometimes known as
‘wallbanging’. In this case, the hitbox intersection
should return all of the objects or surfaces along
the ray, not just the first. To implement this in

your game, you may
want a generic system
that can calculate the
proper modifier from
each surface based
on the thickness,
angle of penetration,
and material.

Varying damage by material and position can
be done by detecting which part of the hitbox
the ray or segment intersected with first, then
choosing from a damage table what to apply.
Varying by material could be implemented by
lowering the damage of a projectile when it has
already hit and passed through a thin wooden
wall. Your game engine and terrain hitbox will
need to detect these collisions and tell you what
material an object is made of, then you can look
up in a material table how much something
penetrates that material, or lower the damage
based on the thickness of the wall by detecting
and calculating the distance between both the
entry and exit points.

DESTRUCTION
Vehicles are another aspect to consider.
Battlefield has a system where a vehicle has
multiple component hitboxes, which have
unique effects when they’re damaged or
destroyed. Short of outright blowing it up, for

“The more complex
the hitbox becomes,

the more work you make
for your netcode ”

 �Hitboxes in Counter-Strike: Global Offensive are smaller
because the game emphasises accuracy over speed.

TWEAKING
In Unity and Unreal, you can
tweak your hitbox sizes using
either the Ragdoll Wizard (Unity)
or the Physics Asset Editor
(Unreal). Gathering feedback
from playtests might be valuable
here; your players may tell you
that your fast-moving player
models with highly accurate
hitboxes are just too hard to hit,
or that your slow-moving players
with large hitboxes feel unfairly
vulnerable to attack.

APPLYING HIT EFFECTS
Detecting a hit is only the first part of making
a game feel real. The second part is applying
a realistic effect to the hit player. In some
games, this means different damage is applied,
depending on which part of the hitbox was hit.
For example, CS: GO applies less damage for
leg and foot hits than
it does for headshots.
Headshots are so key
to the Counter-Strike
series that weapons
are defined by whether
they can kill a helmeted
enemy with one
headshot or not. The most well-known weapon
which can do this is the AK-47, compared to
the alternate teams’ M4A4 and M4A1-S, which
can’t ‘oneshot’.

Another mechanic that can be applied
here is armour penetration and surface

 �Just how weapons will interact with your
game’s hitboxes is a vital consideration.
Counter-Strike: Global Offensive’s AK-47
can kill an opponent with one headshot.

Unity FPS Guide 133

The theory behind first-person hitboxes
Level Design and Inspiration



�Figure 6: Early builds of Counter-
Strike: Global Offensive used cuboid
hitboxes, before switching to
mostly spheres and capsules for
greater accuracy.



�Most weapons in Fortnite
are hitscan, but sniper rifles
use segmented trajectories
to simulate bullets that
take a split second to hit
their target, and drop off at
longer ranges.

 �Battlefield V ’s vehicles, including its tanks, have multiple
hitboxes, allowing for different damage effects
depending on where the player shoots.

example, destroying the tracks on one or both
sides of a tank may limit its movement or stop it
completely. Damaging the turret may disable it,
and of course, hitting the players through a hole
in the armour will damage them too. These are
all possible if your hitboxes are fine-grained and
well-matched to the model. Vehicle hitboxes
can be quite different from the ones for players/
NPCs and the map. Because vehicles have lots of
flat surfaces, it makes much more sense to build
them from oriented boxes rather than capsules.

Destructible environments can provide a great
spectacle for players. In the Battlefield series,
most structures can be damaged or completely
destroyed, while the landscape itself can be
destroyed by blowing holes in it. This requires
something new in the hitbox system, where hits
from a powerful class of weapon can change the
hitbox of large objects. This could be
accomplished by having the structure of a
house, say, composed of smaller hitboxes for
each individual wall. The wall-sections could
either be destroyed in an on/off way, or broken
up into even smaller wall-sections on a hit.
These details help to immerse the player, but
should be balanced carefully so that using
buildings for cover isn’t completely useless.

Allowing players to create their own cover is
one way to balance the destruction aspect. In
Fortnite, players can make and repair buildings
with prefabricated walls and stairs. Players can

create buildings
taller and larger
than anything else in the
game, but this is balanced is by
making the structures collapse
if they cease to be connected to
the ground. Other players then
have the chance to kill their
opponents with fall damage if
they climb too high – although
this tactic was slightly nerfed
by allowing players to use
their glider if they were at a
high enough altitude.

CONSIDERATIONS
There are so many decisions to make when
developing your game, and there are examples
of shooters that have found success with all
kinds of different hitboxes. Fortnite, Quake,
Counter-Strike, and Battlefield are all popular
at least in part because of the consideration
that went into designing hitboxes for players,
NPCs, the map, and objects. By putting the time
and thought into your hitboxes, you’ll greatly
increase the chances of making a successful
shooter of your own.

 �Despite rumours on
some corners of the
internet, skins don’t
affect the size of a
character’s hitbox
in Fortnite.

Unity FPS Guide

Unity FPS Guide134

t’s obvious but true: level design
is important. You can have all
the best coding tricks and ideas
in the world, but if your game’s
stages aren’t any fun, people will

switch off. Think back to something like
Halo’s Blood Gulch, BioShock ’s Fort Frolic,
or Half‑Life 2 ’s Ravenholm: they’re all levels
in which the wider game concepts take a
back seat to the level design. It could be
that they’re intricate and smart, they tell

a story, or they terrify you, but they all get
your attention.

With this in mind, we took a few
questions to Jon Chey, founder of Blue
Manchu Games and developer on the
likes of Void Bastards, BioShock, and System
Shock 2. Basically, someone who knows a
fair bit about FPS level design. What follows
are his thoughts and top tips on the best –
and worst – of FPS level design. Enjoy.

Breaking it down to a few parts, what are
the essentials of good FPS level design?
Every FPS is different, and each demands a
different approach. The number one pillar
of good FPS level design is to respect the
design goals of your game and support
them through your levels. For example,
System Shock 2 is a game that supports
a strong narrative, focuses the mood on
anxiety and dread, and demands tactical
skills as well as navigation and exploration
from the player. It also supports revisiting
levels multiple times, as well as grinding
respawning enemies for resources.

So, good levels for System Shock 2:
• �Supported the narrative.
• �Made sense as ‘real’ spaces, not just

combat arenas.
• �Provided the opportunity for exploration

and reasons to search spaces for loot.

I

Level design, from a designer
Level Design and Inspiration

The thoughts, feelings, and tips
on great FPS level design by
Blue Manchu’s Jon Chey

• �Afforded opportunities for interesting
combat encounters that weren’t always
pre-scripted.

• �Provided multiple pathways without
becoming so complex that the player
would get lost (unless that was our
goal in a specific place – like in the
engineering ducts).
These requirements result in a very

different set of design constraints than
were applied in, for example, Tribes:
Vengeance. That being an open-world,
team-based shooter with extremely rapid
movement, flying, and focus on high-skill
long-range shooting.

Of course, there are some principles that
generally apply to most shooters. These
would be things like:

Level design,
from a designer

CHEY’S
GAMEOGRAPHY
• �Void Bastards – 2019

• �Card Hunter – 2015

• �BioShock – 2007

• �SWAT 4: The Stetchkov Syndicate –
2006

• �Freedom Force vs
The 3rd Reich – 2005

• �Tribes: Vengeance – 2004

• �Freedom Force – 2002

• �Thief II: The Metal Age – 2000

• �System Shock 2 – 1999

• �Wall Street Tycoon – 1999

• �Thief: The Dark Project – 1998

• �British Open
Championship Golf – 1997

• �Flight Unlimited II – 1997

• �Terra Nova: Strike Force Centauri –
1996*

*Five lines of code!

http://wfmag.cc

Unity FPS Guide 135

takes too long to build; 2) the designer
or team is reluctant to change it because
they’ve already sunk so much time into it.
This is where the process of ‘greyboxing’
is important – blocking out a space in a
functional way so it can be gameplay tested
before art polish is required. Of course,
greyboxing has its own risks – by focusing
on the gameplay, you may end up with a
level that is visually boring. Or, you may
build a level that doesn’t make good use of
prefabricated mesh pieces that have already
been developed for the game. It’s a constant
struggle to balance the competing interests
of gameplay and art.

There’s a related set of challenges around
the issues of making levels that feel like
real spaces and levels that play well. The
dimensions of real spaces often don’t work
well in games, and vice versa. For example,
say you’re building a level set in an office
cube farm. The corridors between the
workstations might be way too small for
player or enemy navigation if they’re based
on real-world dimensions. Often, designers
will make the mistake of scaling things too
realistically. Or they might make the opposite
mistake and create a great gameplay
space that looks weird because it’s so out
of scale with the real-world place it’s trying
to represent.

Is there a magic sauce you’ve applied or
seen applied to get around this problem of
scaling? How is it something you avoid?
I don’t think there’s a magic sauce other than
‘don’t get lazy’. The right answer for any level
is probably going to require some thought,
and generally relies on prioritising gameplay
over realism, using iconic visual elements
rather than reproducing everything that
might appear in an actual location, and
compressing space (e.g. if you’re building a
level based on the Eiffel Tower, the scale is
probably going to be nothing like the actual
tower). ‘Don’t get lazy’ isn’t just a directive
to produce more assets; it’s also important
not to just fall back on lazy stereotypes – i.e.
the abundance of crates in FPS levels from
Doom to now. I do think that understanding
the function of a space you are building (in
the game world) is important.

• �Support the combat skill set you want
from your players by providing the right
amount of cover, terrain features, etc.

• �Be visually interesting without distracting
from the key gameplay features of
the space.

• �Be visually distinctive to aid navigation.
• �Respect the performance constraints

of your engine!

What are the basic mistakes people make
when designing FPS levels? How can they
avoid them?
A very common mistake I’ve seen is
designers trying to create levels at a final
art quality or focusing on the look of a
space before understanding its gameplay.
This creates two big problems: 1) the level

 ��Call of Duty 4: Modern Warfare’s
‘All Ghillied Up’ proved that a
level doesn’t need wall-to-wall
action – just rock-solid design.

Level design, from a designer
Level Design and Inspiration

HALO: BLOOD GULCH
One of the things that makes this perennial
favourite one of the best of all time is its design:
it’s an enclosed arena, but it’s styled like a
natural, American Midwest environment – and
it’s done so subtly that at no point do you feel
hemmed in. It’s also home to some of the finest
capture-the-flag-focused multiplayer map design
ever seen, a landscape of peaks and troughs,
routes to sneak through, and boulders to hide
behind; open space to make a run for it in, and
the safety of a couple of home bases in which to
be ambushed in another surprise attack. It even
has enclosed corridor sections for some more
traditional FPS action in the midst of a manic
multiplayer melee. There’s a reason Blood Gulch
keeps on coming back for more in the Halo
series (admittedly under new names each time).

THE BEST LEVELS
EVER MADE

http://wfmag.cc

136 Unity FPS Guide

If you don’t know what the inhabitants of the
space use it for or why it exists, you’re going
to end up building rooms full of crates, and
that’s boring. If you know that this room is
a kitchen or a laundry, you’ve got a head
start on knowing how to decorate it and lay
it out. Every good dungeon master knows
the same thing.

Where should we look for examples of
great FPS level design?
Of course I’m biased, but I think System
Shock 2 and BioShock both have a very
interesting selection of levels to look at.
BioShock in particular provides a great deal
of lessons about how to weave narrative

elements and gameplay together in tight
ways. Jordan Thomas’s Fort Frolic is rightly
acclaimed as a very powerful level amongst
many good ones in that game.

How important is writing/narrative?
Is it something you’d recommend FPS
designers look to?
I wouldn’t recommend anyone get into
writing or narrative design unless they’re
going to take it very seriously. Games have
often suffered from designers thinking
that writing and narrative can be done by
someone who has read a lot of books or
seen a lot of movies. Yes, some of the games
I’ve worked on are guilty of this. I’m not trying
to gatekeep writing, just making the point
that it has to be treated as a serious skill set
that takes a lot of time, effort, and talent to
be good at – just like any other discipline,
from programming to QA.

What are the unique factors that matter
when designing a large level?
Performance, obviously, but also navigation
and connectivity. Do you want your players

to be able to navigate the level easily or do
you want to challenge their spatial skills? Do
you plan to provide them with a map or do
you want the level itself to provide all the
navigational cues they need? If the latter, you
better be sure you design visually distinctive
spaces that provide memorable landmarks,
and think about how those landmarks reveal
themselves from every direction you expect
the player to arrive from.

What would you recommend as an
approach for each ‘type’ of design
you mention?
Most FPS levels are probably built for ease
of navigation, supporting a fast-paced play
style. That relies, of course, on fairly simple

“If you’re building a game that wants to challenge
navigational skills, you’re probably looking at much more
complex connectivity that rewards players for finding
alternate routes”

connectivity and heavy use of recognisable
landmarks. Most single-player levels tend
to push the player forward without any
significant branching choices and with clear
imperatives to move forward (a light shining
onto the door that leads into the next area,
for example).

If you’re building a game that wants to
challenge navigational skills instead, you’re
probably looking at much more complex
connectivity that rewards players for finding
alternate routes. Maybe you want to build in
windows where players can look ahead and
see what’s coming up before they decide
how they’re going to approach the next
combat encounter.

When designing Void Bastards levels, which
have very free-form gameplay and thus can’t
be designed as a fixed linear experience, we
focused on making each room (module) a
small but interesting combat arena, and then
built each level so that it had a small number
of loops, allowing the player to traverse the
level without having to backtrack through
already cleared areas. We then sprinkled
a bunch of shortcuts, either corridors or

crawlspaces, on top of this to provide variety.
In addition, varying the connectivity could
then create new types of challenges, like
dead ends or highly connected sub-spaces.

And what are the unique factors that
matter when designing a small level?
In Void Bastards, we built a level that is
literally just two rooms connected together.
I love that level because it’s really different
to our normal-sized ships and provides a
nice variation in gameplay – get in and get
out in under a minute.

Of course, you wouldn’t want to play
a level like that too frequently because
the choices you can make inside it are
pretty limited.

Level design, from a designer
Level Design and Inspiration

HALF-LIFE 2:
RAVENHOLM
You almost don’t pay it any attention, walking
past a dark corridor on reaching a secret base
in the opening hours of Half-Life 2. “That’s the
old passage to Ravenholm,” Alyx Vance tells
you. “We don’t go there any more.” This being
a video game, the inevitable happens and you
end up having to traverse this ex-mining town
on your way to take down the Combine forces.
And hoo boy, it’s a doozy. Ravenholm single-
handedly switches Half-Life 2’s tone from a
smart, action-packed blast, into a panicked
traversal of terror. The town is dark, dank, and
riddled with headcrab zombies. Within seconds
of arriving, you know exactly why Alyx and
the resistance don’t go there any more, and
within minutes you never want to go back there
either… except for all the times you replay this,
one of the best levels in one of the best games
ever made.

THE BEST LEVELS
EVER MADE

Unity FPS Guide 137

Are there any tools or pieces of software
you’d recommend for use in designing the
perfect levels?
Given the 3D nature of FPS levels, I think
sketching in 2D has utility, but blocking out
in the actual engine quickly becomes more
useful. I think the most critical thing is the
ability to quickly switch between the editor
and running around in the level in the game
itself. Nothing beats viewing (and playing)
your level in the actual game to understand
if you’re going in the right direction.

Do you think paper prototyping is useful
for FPS design?
It’s useful at an early stage to talk about
ideas and rough flow. I think it very rapidly
becomes insufficient – and potentially
misleading, due to the huge difference in
representational complexity.

What feature can no good FPS level
be without?
Cover. The player needs the ability to not get
shot, as well as shoot their enemies.

Outside of building the map, what’s
another important design factor people
might overlook?
Do you include placement of spawn points,
loot, and scripting in ‘building the map’?
Because those things can easily take more
time than the raw placement of geometry.

Probably the biggest thing novice level
builders might overlook, though, is data
gathering, analysis, and using that to drive
changes to the level. Obviously, this is true in
MP levels, but every SP level can also benefit
from seeing how real players interact with it.
Sitting behind a player and watching them
get lost in your level can be very illuminating.

Is it helpful to consider other genres when
working on a first-person shooter?
Yes – particularly these days as new games
are often crossing genre boundaries.

For example, we describe Void Bastards
as a ‘strategy shooter’, but it also contains
roguelike elements. So, the rhythm and
pacing of roguelike games was an important
reference point when thinking about how
large and complex our levels should be.
When we were mixing RPG elements with an
FPS for System Shock 2, we drew inspiration
from other RPGs. I’m a big believer in genre
mixing and being aware of what’s going on in
the larger game design space.

If you could boil it down to one bit of
advice, what would you say to the aspiring
FPS designers out there?
Please don’t just copy other shooters. I want
to experience something different from
your game – go to someplace I haven’t
been before or [where I’ll] be challenged by
something that I haven’t [yet] confronted.

Level design, from a designer
Level Design and Inspiration

BIOSHOCK:
FORT FROLIC
BioShock has the player travelling through
the undersea world at the behest of one
main character or another, until they enter a
very separate realm: Fort Frolic. Like the rest
of Rapture, this was once a thriving region,
presided over by an artist known as Sander
Cohen, and home to all the fine art, theatre, and
debauchery a person could reasonably crave.
After the fall of Rapture, Fort Frolic remained
closed off in its own little bubble inside the
larger sphere of the city. Cohen’s world mixes
things up significantly, throwing the player at
the mercy of a new character, who tells them
to carry out acts which are… different, let’s
say, from the rest of the game. It’s terrifying,
atmospheric, and brilliant.

THE BEST LEVELS
EVER MADE

 �Void Bastards: a
strategy shooter,
and much more.

What was the process like to make
a two‑room level as impactful as an
intricately designed, sprawling mass?
Oh, I don’t think that level is as impactful as
a normal level. What makes it interesting is
the contrast with other levels in the game.
And that’s an important point – games are
boring if the experience is flat and repetitive.
Each level should have something to say
that’s different, otherwise why is it in the
game at all?

What’s the difference between designing
for single and multiplayer levels?
It is literally designing two different games,
and that’s why I think we’re finally seeing
many shooters not trying to support
both. I mean, just look at some of the
key differences:
• �MP levels designed to be played hundreds

or thousands of times; most SP levels
designed to be traversed once or twice.

• �SP levels support narrative; MP levels are
largely combat arenas.

• �MP levels generally designed to get players
into combat quickly without much travel
time; SP levels often support exploration as
well as combat.

• �Massively different performance
constraints.

What are examples of co-op multiplayer
needing different design approaches?
It’s not an area where I have a lot
of experience. Co-op was added to System
Shock 2 after it shipped, which obviously
meant that we didn’t spend a lot of (or any)
time thinking about how it should impact
level design. I think that shows in the final
product, and not in a good way.

Games with complicated narrative
scripting (like System Shock 2) obviously
introduce a lot of potential problems when
you have more than one player running
around in the space – for example, we
want to lock the player in a room and then
have some scripted moment happen.
What happens if the other players aren’t in
the same room?

o there you have it: by now, you should have
a simple yet fully-functioning shooter up and
running in Unity, complete with marauding
zombies, a level to explore, and items that top
up your health and ammo levels. Better yet,

piecing Zombie Panic together should have given you a
better understanding of Unity, and how you can use it to
extend and customise the game almost beyond recognition.

Maybe you don’t want to have zombies slowly staggering
around the place, and prefer the idea of having smaller,
speedier creatures attack the player instead. Maybe you’d
prefer to have levels that are more open than our infested
castle, with more branching paths and items to collect.
Or maybe you want to drop the shooting angle altogether,
and have the player laying traps or using stealth and cunning
to evade enemies.

As the past 25 years have proved, the first-person
shooter is a hugely malleable genre: we’ve seen fast-paced,
arcade-like shooters; other shooters that favour narrative
over action; and shooters that emphasise planning and
tactics over razor-sharp reactions. With time, practice, and
imagination, the design possibilities are almost limitless.

What will you come up with?

S

138 Unity FPS Guide

Join us as we lift the lid
on video games

Visit wfmag.cc to learn more

http://wfmag.cc

Price: £10

IN THE PROCESS,
YOU’LL DISCOVER HOW TO:

Making a fast-paced 3D action game needn’t
be as daunting as it sounds. Build Your Own

First-Person Shooter in Unity will take you step-
by-step through the process of making Zombie

Panic: a frenetic battle for survival inside a
castle heaving with the undead.

Build Your Own

in Unity

FIRST-PERSON
SHOOTER

Set up and use
the free software

you’ll need

Make enemies
that follow and

attack the player

Create and texture
3D character

models

Extend your game
further, with tips

from experts

Design a level
with locked doors

and keys

	01_WF_Unity FPS Guide_Cover V3_LA_RL_LA_PK
	002_WF_Unity FPS Guide_IFC_RL_PK
	003_WF_Unity FPS Guide_Welcome_RL_LA_RL_PK1_LA
	04-05_WF_Unity FPS Guide_Contents_RL_LA_PK_RL2_LA
	06-07_WF_Unity FPS Guide_basic-engine-section-intro_LA5_RL_PK
	008-015_WF_Unity FPS Guide_FPS Guide_HK_RL_PK
	016-023_WF_Unity FPS Guide_Advancing_RL
	024-031_WF_Unity FPS Guide_Finalising_RL_PK
	32-33_WF_Unity FPS Guide_LevelsModels-intro_RL_PK
	034-039_WF_Unity FPS Guide_Create Level_HK_RL_NK_PK
	040-045_WF_Unity FPS Guide_DoorsSwitches_RL_NK_PK
	046-051_WF_Unity FPS Guide_Extend Gameplay_RL_NK_PK
	052-063_WF_Unity FPS Guide_Modelling in blender_RL_NK_PK
	064-069_WF_Unity FPS Guide_Lighting_HK_RL_NK_PK
	070-075_WF_Unity FPS Guide_Sound_RL_HK_NK_PK
	76-77_WF_Unity FPS Guide_Mechanics-intro_RL_PK
	078_083_WF_Unity FPS Guide_Mission Markers_HK_RL_VI_RL_PK
	084-087_WF_Unity FPS Guide_Minimap_RL_HK_RL_VI_PK
	088-093_WF_Unity FPS Guide_Gun Turret_RL_VI_PK
	094-99_WF_Unity FPS Guide_BlinkMechanic_RL_LA_RL2_PK
	100-105_WF_Unity FPS Guide_Wall Running_RL_VI_PK
	106-113_WF_Unity FPS Guide_Save_Load Data_RL_VI_PK
	114-121_WF_Unity FPS Guide_Boss Battle_RL_LA_VI_PK
	122-123_WF_Unity FPS Guide_LevelDesign-intro_RL_PK
	124-125_WF_Unity FPS Guide_LevelDesign_Pt1_RL_PK
	126-127_WF_Unity FPS Guide_LevelDesign_Pt2_RL_PK
	128-133_WF_Unity FPS Guide_Hitboxes_RL_PK
	134-137_WF_Unity FPS Guide_Jon Chey Interview_LA_RL_LA_VI_PK
	138_WF_Unity FPS Guide_outro_RL_LA_PK
	139_WF_Unity FPS GuideI_IBC_RL_PK
	140_WF_Unity FPS Guide_OBC_RL_PK1_LA

