

Devised by Russell Barnes

2

First published in 2019 by Raspberry Pi
Trading Ltd, Maurice Wilkes Building,
St. John's Innovation Park, Cowley Road,
Cambridge, CB4 0DS

Publishing Director Editor
Russell Barnes Phil King

Sub Editor Design
Nicola King Critical Media

Illustrations Head of Design
Dan Malone Lee Allen

Devised by CEO
Russell Barnes Eben Upton

ISBN 978-1-912047-59-8

The publisher, and contributors accept no
responsibility in respect of any omissions or errors
relating to goods, products or services referred to
or advertised in this book. Except where otherwise
noted, the content of this book is licensed under a
Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

David Crookes began his
career as a journalist in
1994 as a freelance writer
for Amstrad Action. He has
since written and worked for

regional newspapers, The Independent, BBC Radio 5
Live, gamesTM, Wireframe, and Retro Gamer,
among many others. His previous books include
Cloud Computing In Easy Steps and Facebook
for Beginners In Easy Steps. He also curated
Videogame Nation, an exhibition celebrating the
rise of gaming, which toured the UK.

Andrew Gillett grew up
with early computers such
as the ZX Spectrum, and was
writing simple programs from
the age of five. Since then,

he’s worked on games that have sold millions,
including Rollercoaster Tycoon 3, Kinectimals, and
Kinect Disneyland Adventures. After working in the
games industry for 13 years, he is now a computer
science/programming tutor and indie developer.

Liz Upton was an award-
winning journalist before
becoming one of the
co-founders of Raspberry
Pi along with her husband

Eben. She now works as Executive Director of
Communications at Raspberry Pi. Liz plays the
piano, collects and restores old fountain pens,
and has an uncanny knack of getting toddlers to
consume vegetables.

GAMES
Eben Upton co-founded the
Raspberry Pi Foundation, and
serves as the CEO of Raspberry
Pi (Trading), its commercial
and engineering subsidiary.

He is the co-author, with Gareth Halfacree, of the
Raspberry Pi User Guide; with Jeff Duntemann and
others, of Learning Computer Architecture with
Raspberry Pi; and with his father, Professor Clive
Upton, of the Oxford Rhyming Dictionary.

Sean M. Tracey calls himself a
technologist, which is his way
of saying he hasn’t decided
what he wants to do with
technology yet – other than

everything. Sean has spent his career trying to
avoid getting 'proper' jobs, and as such has had a
hand in making a variety of fun and interesting
projects, and every now and then he writes a book
about those things too.

Dan Malone has been
involved in the UK games
industry for over 30 years
and has been writing stories,
games, designing characters,

and drawing comics for most of his life. His
work includes design and graphics on games
from Speedball 2 and The Chaos Engine
(Amiga/Atari ST) to character model design on
SSX Blur (Nintendo Wii).

Allister Brimble is a music
and sound designer and has
created the audio for over
400 video games since the
early 1990s. During his time

in the industry, Allister has worked on almost
every format, from the early 8- and 16-bit home
computers to hand-held devices and beyond, into
today’s current consoles, phones, and tablets.Contributors

C O D E
the

Classics

Table of Contents

9

Foreword 010
By David Perry

Chapter 1 018
Tennis
Much can be learned from
recreating the simple
bat-and-ball action of Pong

Chapter 2 046
Action Platformer
Code your single-screen
platform game in the mould
of the classic Bubble Bobble

Chapter 3 080
Top-down
Platformer
Take a different perspective
and create a vertically scrolling
tribute to Frogger

Chapter 4 114
Fixed Shooter
Have a blast recreating the arcade
action of classic single-screen
shooter, Centipede

Chapter 5 148
Football Game
Your goal is to code a top-down-view
game of football, in the style of
Sensible Soccer

Setting up 186
Everything you need to know to
run and edit the games featured
in this book

Interview 194
Dan Malone
Talking graphics with the veteran
artist behind the visuals for some
classic video games

Interview 208
Allister Brimble
Some sound advice from the
musician who’s supplied audio
for numerous games

10

C O D E
the

Classics

Fo
re

w
or

d

11

by David Perry

Foreword

12

hen I was starting out
in gaming, I bought
magazines and books
that contained video
game programs and I
had to type in the code

if I wanted to experience them.
Some were short and sweet; some

were flight simulators and would take days
to type in. But they served two purposes:
they helped me to get better at typing and
they allowed me to study the code and learn
from the masters. I’d see their tricks and I’d
see how their games functioned from the
inside out.

Soon I was writing my own magazine
articles and books, and later ended up
making full games. Thankfully, the publishers
wanted to put them on game retail shelves.

I’ve now been in the industry
professionally for well over 30 years. I have had number-
one hits and sold more than $1 billion of video games.

I get asked ‘What’s the secret to making your game
design a hit?’, but I only explain the ‘simple’ version of
the answer: all addictive games need to incorporate skill,
risk, and strategy at every moment. If you’re missing one
of these, it’s going to get boring fast! Tetris? Yep. Call of
Duty?Yep. Angry Birds? Yep.

But, just for you… I’m going to give the full answer
to the question. So here we have the real secret to making
your game design a hit.

There has to be blame. The player must blame
themselves for any loss. If they blame the game balance or
things outside their control, you lose.

There has to be a retry rate. The player must be
able to try again – in seconds – if they fail. Tetris would
have failed if we had to watch a CG movie before we could
try again.

W
David Perry
is one of the
gaming industry's
most successful
developers. He
started his career
reading books
like these and
even wrote some
of them himself.
Since then he has
produced many
popular games such
as Aladdin and
Earthworm Jim.

Fo
re

w
or

d

13

Fo
re

w
or

d

There has to be progress. Players must see progress
after everything they do. We used to have scores, and that’s
also why World of Warcraft levels up constantly.

And there has to be feedback. If you do something
impressive or amazing, the game should respond
accordingly. Like Bejeweled would get crazy if long chains
fall into place. Or when pinball machines would enter
super multi-ball mode with all lights flashing. Think of the
game as having its own emotional state.

Now here’s the X-factor. These are multipliers to
make your game even more addictive:

Revenge. Let gamers fight back someone or
something that’s been really frustrating them. ‘Payback
time!’ Yes you can even remind them: ‘This guy over here,
killed you last time!’

Social / multiplayer / viewers. Other people, even
if they are only spectating, definitely add to the experience.
So, embrace other players and community as much
as possible.

Time accelerators.
Surprise the gamer
by letting them make
progress faster than they
expected. This is why you
see ‘experience boosts’
in massively multiplayer
games: they are incredibly
popular as they save time.

My final tip?
Humour. It’s the

most rare and valuable
thing in the video game
industry. People never forget the games they laugh at. Even
a slight bit of humour helps: for example, there were lots of
boring catapult games before Angry Birds became a big hit.

If you follow these ideas, you’ll have a fantastic
head-start on other people that want to make games.

I can’t wait to see what you make!

People never
forget the games
they laugh at.
Even a slight bit
of humour helps

Fo
re

w
or

d

14

15

Fo
re

w
or

d

16

Fo
re

w
or

d

17

Fo
re

w
or

d

18

Te
nn

is
 –

 P
on

g

In the earliest days of gaming,
all it took was a couple of lines

and a dot, and gamers would be
queuing up to play

Tennis

Chapter 1

19

Te
nn

is
 –

 P
on

g

his simple game takes ping-pong as
its inspiration and boils it down to the
bare minimum. In the early 1970s,
developers were forced to work with
the most basic of technology, but even
primitive graphics and sound couldn’t

detract from Pong’s addictive gameplay. In many ways,
games like Pong are the ultimate in pick-up-and-play. The
basic principle is easy to grasp for a player and it captures
the essence of the sport perfectly. To play, gamers control
one of two paddles on either side of the screen to knock a
ball back and forth until one of them misses. This requires
concentration and skill while opening up the possibilities
for two-player gameplay. Pong, which kick-started this kind
of competitive gaming, was very successful for developer
and publisher Atari, which shipped thousands of arcade
cabinets across the world.

Inspiration
Pong was created by Allan Alcorn as a training exercise
assigned to him by Nolan Bushnell, the co-founder of
Atari. Video gaming was in its infancy and various people
were playing around with ideas, experimenting with simple
gameplay mechanics that would cause the first wave of
gamers to become hooked. Since the games were being
played on large arcade cabinets that required players
to pump in coins to continue, the rules had to be simple
enough to understand at a glance and addictive enough
to encourage further plays. Nolan’s Atari was hugely
successful and he eventually sold the company to Warner
Communications for $28 million.

T

20

Te
nn

is
 –

 P
on

g

Pong

Released 1972

Platforms Arcade

 Dedicated consoles

 Atari 2600

21

Te
nn

is
 –

 P
on

g

22

Te
nn

is
 –

 P
on

g

The success of Pong led to the creation of Pong home consoles (and numerous unofficial
clones) that could be connected to a television. Versions have also appeared on many
home computers.

Other Notables Sanrio World Smash Ball! / Gnop! / Windjammers

Ask anyone to describe a game of table tennis and they’ll invariably tell you the same
thing: the sport involves a table split into quarters, a net dividing the two halves, a
couple of paddles, and a nice round ping-pong ball to bat back and forth between
two players. Take a look at the 1972 video game Pong, however, and you’ll notice some
differences. The table, for instance, is simply split in half and it’s viewed side-on, the
paddles look like simple lines, and the ball is square. Yet no one – not even now –
would have much trouble equating the two.

Back in the early 1970s, this was literally as good as it got. The smattering of
low-powered arcade machines of the time were incapable of realistic-looking graphics,
so developers had to be creative, hoping imaginative gamers would fill the gaps and
buy into whatever they were trying to achieve. It helped enormously that there was a
huge appetite for the new, emerging video game industry at that time. Nolan Bushnell
was certainly hungry for more – and had he
turned his nose up at Spacewar!, a space combat
game created by Steve Russell in 1962, then Pong
would never even have come about.

“The most important game I played was
Spacewar! on a PDP-1 when I was in college,” he
says, of the two-player space shooter that was
popular among computer scientists and required
a $120,000 machine to run. Although the visuals
were nothing to write home about, the game was
one of the first graphical video games ever made.
It pitted two spaceships against each other and
its popularity spread, in part, because the makers
decided the code could be distributed freely to
anyone who wanted it. “It was a great game, fun, challenging, but only playable on
a very expensive computer late at night and the wee hours of the morning,” Nolan
says. “In my opinion, it was a very important step.”

Nolan was so taken by Spacewar! that he made a version of the game with a
colleague, Ted Dabney. Released in 1971, Computer Space allowed gamers to control
a rocket in a battle against flying saucers, with the aim being to get more hits than
the enemy in a set period of time. To make it attractive to players, it was placed in a
series of colourful, space-age, moulded arcade cabinets. Nolan and Ted sold 1500 of
them; even though they made just $500 from the venture, it was
enough to spur them into continuing. They came up with the
idea for Pong and created a company called Atari.

One of their best moves was employing engineer
Al Alcorn, who had worked with Nolan at the American

The arcade
machines of the
time were incapable
of realistic-
looking graphics

1 An original 1972
flyer to promote
the launch
of the Pong
arcade game

23

Te
nn

is
 –

 P
on

g

1

24

Te
nn

is
 –

 P
on

g

electronics company Ampex. Al was asked to create a table tennis game based on
a similar title that had been released on the Magnavox Odyssey console, on the
pretence that the game would be released by General Electric. In truth, Nolan simply
wanted to work out Al’s potential, but he was blown away by what his employee came
up with. Addictive and instantly recognisable, Atari realised Pong could be a major
hit. The game’s familiarity with players meant it could be picked up and played by
just about anyone.

Even so, Nolan had a hard time convincing others. Manufacturers turned the
company down, so he visited the manager of a bar called Andy Capp’s in Sunnyvale,
California and asked them to take Pong for a week. The manager soon had to call
Nolan to tell him the machine had broken: it had become stuffed full of quarters from
gamers who loved the game. By 1973, production of the cabinet was in overdrive and
8000 were sold. It led to the creation of a Pong home console which sold more than
150,000 machines. People queued to get their hands on one and Atari was on its way
to become a legendary games company.

For Nolan, it was justification for his perseverance and belief. Suddenly, the
man who had become interested in electronics at school, where he would spend time
creating devices and connecting bulbs and batteries, was being talked of as a key
player in the fledgling video game industry. But what did Nolan, Ted, Al, and the rest
of the Atari team do to make the game so special? “We made it a good, solid, fun
game to play,” says Nolan. “And we made it simple, easy, and quickly understood.
Keeping things simple is more difficult to do than building something complex. You
can’t dress up bad gameplay with good graphics.”

Making Pong
On the face of it, Pong didn’t look like much. Each side had a paddle that could be
moved directly up and down using the controller, and the ball would be hit from one
side to the other. The score was kept at the top of the screen and the idea was to force
the opposing player to miss. It meant the game program needed to determine how
the ball was hit and where the ball would go from that point. And that’s the crux of
Pong’s success: the game encouraged people to keep playing and learning in the hope
of attaining the skills to become a master.

When creating Pong, then, the designers had a few things in mind. One of the
most important parts of the game was the movement of the paddles. This involved a
simple, vertical rectangle that went up and down. One of the benefits Atari had when
it created Pong was that it controlled not just the software but the hardware too. By

Short term: Make sure you get the ball motion working perfectly so that the movement is fluid and it
looks like it would in real life when hitting the paddles.

Medium term: Work on the paddle angles. By ensuring the ball reacts in a realistic manner when it
hits various parts of a moving paddle, skill is introduced.

Long term: Nolan says you need to have a proper escalation of difficulty. Think about ways in which
you can keep the best players wanting more.

The objectives

25

Te
nn

is
 –

 P
on

g

building the cabinet, it was able to determine how those paddles should be moved.
“The most important thing if you want to get the gameplay right is to use a knob to
move the paddle,” advises Nolan. “No one has done a good Pong using touchscreens
or a joystick.”

Look at a Pong cabinet close up – there are plenty of YouTube videos
which show the game in action on the original machine – and you will see what

Nolan means. You’ll notice that players turned
a knob anticlockwise to move the paddle down,
and clockwise to move it up. Far from being
confusing, it felt intuitive.

Movement of the ball
With the paddles moving, Atari’s developers
were able to look at the movement of the ball.
At its most basic, if the ball continued to make
contact with the paddles, it would constantly
move back and forth. If it did not make contact,
then it would continue moving in the direction
it had embarked upon and leave the screen. At

this stage, a new ball was introduced in the centre of the screen and the advantage
was given to the player who had just chalked up a point. If you watch footage of the
original Pong, you will see that the new ball was aimed at the player who had just let
the ball go past. There was a chance he or she would miss again.

To avoid defeat, players had to be quite nifty on the controls and stay alert.
Watching the ball go back and forth at great speed could be quite mesmerising as it
left a blurred trail across the cathode ray tube display. There was no need to waste
computing power by animating the ball because the main attention was focused on
what would happen when it collided with the paddle. It had to behave as you’d expect.
“The game did not exist without collisions of the ball to the paddle,” says Nolan.

Al realised that the ball needed to behave differently depending on where it
hit the paddle. When playing a real game of tennis, if the ball hits the centre of the
racket, it will behave differently from a ball that hits the edge. Certainly, the ball is
not going to be travelling in a simple, straight path back and forth as you hit it; it is
always likely to go off at an angle. This, though, is the trickiest part of making Pong.

Nolan Bushnell tells us what made Pong great.

Simplicity is key: Nolan says Pong-like games must be simple to learn. Players should be able to pick
up the fundamentals with hardly any instruction.

Introduce complexity: The game should be designed so that it is difficult to master. This way, players
will want to try to beat the game and have an incentive to do so.

Bushnell’s Law: Both of these mechanics are encapsulated in what has come to be known as
Bushnell’s Law. It says games “should reward the first quarter and the hundredth”.

Learn from the master

One of the most
important parts

of the game was
the movement of

the paddles

26

Te
nn

is
 –

 P
on

g

2

27

Te
nn

is
 –

 P
on

g

“The ball should bounce up from an upper collision
with more obtuse angles as the edge of the paddle is
approached,” Nolan says. “This balances the risk of missing
with the fact that an obtuse angle is harder to return.” This
is what Pong is all about: making sure you hit the ball with the
paddle, but in a manner that makes it difficult for the opposing

player to return it. “A
player wants the ball to
be just out of reach for
the opponent or be hard
for him or her to predict.”

Producing boundaries
For this to work effectively, there had to be
another element in the game: a boundary at the
top and bottom of the screen. As the player hit
the ball with the paddle, it could fly upwards.
If there were nothing to stop it, then it would

continue moving off the screen. Pong had an invisible top and bottom perimeter
which would interact with the ball. Send the ball flying upwards and it would hit this
boundary and come back into the field of play at another angle. This allowed the
action to take place solely at the left and right edges of the game while introducing
an extra dimension of unpredictability. “Pong was about seamless movement,” says
Nolan. So all of this had to happen without the player really noticing what was
happening behind the scenes.

Good collision detection was crucial, and the developers had to define the
height and width of the paddles. As the ball hit the paddle, the code needed to work
out what to do with the ball by assessing the vertical and horizontal speeds. It did this
by checking the position of the ball in relation to the paddle. It then needed to change
the direction of the ball accordingly to send it back across the screen.

Nolan says the original Pong code also had to take something else into
account: “It needed to consider the reaction time from the controls to where there

was a screen response. Tiny delays made a difference.” This
is because Pong was designed to be fast-paced, so the response
had to be as speedy as possible so that the player could react
quickly to what is occurring on the screen. Too much of a
delay would lead to immense frustration. Pong’s developers
needed the controls to be responsive. Handing a game to the
opponent is not fun.

Keeping score
With all of this in place, the developers could look at the
scoring system, which was relatively simple. The idea was
that each time a player missed the ball and allowed it to go
behind their paddle, the opposing player was given a point. In
Pong, the game ended when one of the players reached eleven
points, and this was an important aspect of games from that

3

2 Various novelty
Pong cabinets
were released,
including Barrel-
Pong (pictured)
and Snoopy Pong

3 The original
version of the
Pong arcade
cabinet The ball should

bounce with more
obtuse angles as the

edge of the paddle
is approached

28

Te
nn

is
 –

 P
on

g

time period. Since the coin-operated machines on
which Pong ran required players to insert coins,
there had to be a level at which the game could be
won, otherwise someone would be able to pump in
a single payment and enjoy the game all day.

“We had a limit in the coin-op because the
game needed to average three minutes or less,”
explains Nolan. This was typical of arcade games
at the time: the idea was to allow gamers to play for
just enough time to feel satisfied. If they lost, they
could make a further payment or they could give
someone else the chance to have a go.

Moving on
After creating Pong, Nolan’s career went from strength to
strength. Atari launched the Video Computer System (VCS)
console in 1977, which proved hugely successful in introducing
gaming into people’s homes and cemented the company’s
place in history, selling more than 30 million units. Nolan left
a year later and concentrated on the Chuck E. Cheese Pizza
Time Theatre which he had founded in his bid to put video
games into family-friendly venues, in this case a restaurant.
Nolan also produced personal entertainment robots and
founded the digital entertainment company uWink in 2000:
“I believed that there was a huge market opportunity in the
social gaming space.”

Today, Atari may not be the force it once was
(although it’s making a comeback with a new console), but
Nolan is regarded as one of the most important people in

video game history. He heads up an educational software company called BrainRush
and he has long been inducted into the Video Game Hall of Game. Thanks to Pong,
his legacy has been well and truly cemented.

Remaking the game
When it comes to making your own Pong-style tennis
game, you can be creative and add your own touches.
For instance, you could mix things up a bit by allowing
gamers to move the paddle more freely around the
screen to chase the ball in more complex ways. But do
think carefully about the type of controller you use,
whether it be a gamepad, joystick, rotary knob paddle,
or keyboard.

When it comes to the scoring system, you could set
up the playing area to test whether or not the ball is
passing through the section immediately behind the
area where the paddle moves up and down. If this
happens, then the code works out which side – left or

• Nolan Bushnell says
you should make sure
the difficulty increases
as the number of
volleys increases.

• He also says you
should try to always
make the most
beneficial offensive
shot have the highest
probability of a miss.

Top tips

4

4 Atari co-founder
Nolan Bushnell
knows the value
of addictive
gameplay and
simple rules

5 The original Pong
coin-op featured
monochrome
graphics

6 Fifty variants
of Pong were
included in Video
Olympics for the
Atari 2600

29

Te
nn

is
 –

 P
on

g

5

6

30

Te
nn

is
 –

 P
on

g

right – has been breached, telling the computer
to make a noise and then adding a point to the
player operating the opposing paddle.

All you need to keep in mind is how players
achieve a win. While you don’t have to worry
about inducing players to feed coins into an
arcade machine, it is still worth having a cut-
off point. With this in place, you can turn your
attention to creating an end-game, which kicks
in when either player has reached the desired
points total. This could be accompanied by

another sound, perhaps some music to indicate that you have
a winner. You could also program in some sounds whenever
the ball hits the paddle to lend some added atmosphere.

Besides adding
sound effects, you can jazz up the graphics
in any way you want. The limitations of
early technology meant the original Pong was
monochrome, but you don’t have to stick with
that. (“We actually didn’t have colours available
in the coin-op version when we started,” recalls
Nolan. “The colours on the home Pong consoles
were also difficult to activate.”) Your computer
will have no such issues, so include colour,
perhaps change the background from black to
something else, and bring this old game into the
21st century with some flair.

You can really have fun, with little flourishes at set stages in the play – perhaps
when a player goes five points clear or if the player achieves the top number of points
against an opponent scoring nothing – and you can also think about adding extras.
“Make changes that make it more fun for yourself,” advises Nolan. “Programming a
game for fun is the best way to learn.”

Pong was actually used in just this way when the games industry was in its
infancy. Atari’s 1976 release Breakout, for example, which has a paddle running along
the bottom of the screen from left to right and asks players to destroy bricks with

7

Instead of joysticks and joypads, Pong used a paddle. This had at least one fire button and a round
wheel which was used to control the movement of the on-screen action. Pong was pioneering in that
it was the first to use such paddles. One of the easiest ways to play around with a paddle controller
is to look on eBay for old Atari 2600 paddles and buy an adapter to allow it to be connected to a
computer via USB (one is available at 2600-daptor.com). You could also seek to make one of your
own if you are a dab hand at electronics. Of course, you can control the game with a traditional
gamepad and keyboard keys too. Explore the different methods to get a good feel for how they
potentially affect the game.

How to control the game

The beauty of Pong is
that it teaches some
great fundamentals
of gameplay and
collision detection

7 Atari’s Home
Pong console was
released in 1975

http://daptor.com

31

Te
nn

is
 –

 P
on

g

a bouncing ball, was based on Pong. Taito’s Arkanoid later added power-ups to the
Breakout concept and varied the levels and the types of bricks used. “As programmers
feel confident and go beyond the basics, they can use the Pong engine to move from
Pong to Breakout or Arkanoid – a Japanese rip-off,” says Nolan.

The beauty of Pong is that it teaches some great fundamentals of gameplay and
collision detection and it touches on some complex coding. It’s a great introduction
to coding which allows you to play around and expand upon the concept once you
have grasped it.

32

Te
nn

is
 –

 P
on

g

33

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

o show how a game like Pong can be
coded, we've created Boing! using Pygame
Zero, a beginner-friendly tool for making
games in Python. It’s a good starting
point for learning how games work – it
takes place on a single screen without

any scrolling, there are only three moving objects in the
game (two bats and a ball), and the artificial intelligence
for the computer player can be very simple – or even non-
existent, if you’re happy for the game to be multiplayer
only. In this case, we have both single-player and two-
player modes.

The code can be divided into three parts. First,
there’s the initial startup code. We import from other
Python modules so we can use their code from ours. Then
we check to make sure that the player has sufficiently up-
to-date versions of Python and Pygame Zero. We set the
WIDTH and HEIGHT variables, which are used by Pygame
Zero when creating the game window. We also create two
small helper functions which are used by the code below.

T

Download the fully commented Boing! game code, along with all
the graphics and sounds, from wfmag.cc/CTC1-boing

Download the code

http://wfmag.cc/CTC1-boing

34

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

The next section is the largest. We create four classes: Impact, Ball, Bat, and
Game. The first three classes inherit from Pygame Zero's Actor class, which amongst
other things keeps track of an object’s location in the game world, and takes care of
loading and displaying sprites. Bat and Ball define the behaviour of the corresponding
objects in the game, while Impact is used for an animation which is displayed briefly
whenever the ball bounces off something. The Game class’s job is to create and keep
track of the key game objects, such as the two bats and the ball.

Further down, we find the update and draw functions. Pygame Zero calls these
each frame, and aims to maintain a frame rate of 60 frames per second. Gameplay
logic, such as updating the position of an object or working out if a point has been
scored, should go in update, while in draw we tell each of the Actor objects to draw
itself, as well as displaying backgrounds, text, and suchlike.

Our update and draw functions make use of two global variables: state and
game. At any given moment, the game can be in one of three states: the main menu,
playing the game, or the game-over screen. The update and draw functions read the
state variable and run only the code relevant to the current state. So if state is
currently State.MENU, for example, update checks to see if the SPACE bar or the
up/down arrows are pressed and updates the
menu accordingly, and draw displays the menu
on the screen. The technical term for this kind
of system is ‘finite state machine’.

The game variable references an instance
of the Game class as described above. The
__init__ (constructor) method of Game optionally
receives a parameter named controls. When we
create a new Game object for the main menu, we

The ball starts moving at five pixels
per frame and speeds up by one pixel
per frame each time it hits a bat. The
simplest way of dealing with an object’s
speed is to simply update its position
by the desired distance each frame.
However, there can be some issues
with this, especially when an object
is moving very fast. Let’s say the ball
is moving horizontally at ten pixels
per frame and is about to hit a bat which is two pixels away. If we update the ball’s position by ten
pixels, it’s going to have gone eight pixels further than it should have done. In some games, this kind
of issue can lead to objects passing right through each other, or through walls, when travelling very
fast. There are a number of ways to deal with this – the approach we’ve taken here (and in other
games in this book) is to break down the movement of the ball into a series of small steps, checking
for collisions after each step. For a complex game with many moving objects, this kind of approach
can be inefficient, but for a simpler game like this it’s ideal.

Stepping through time

The Game class’s
job is to create and
keep track of the key
game objects

35

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

In single-player mode, the movement of the second bat is determined by calling the ai method in the Bat class.
There are many ways to approach artificial intelligence, even for a game as simple as Boing!. At the simplest
level, the AI could simply make the computer player try to exactly follow the movement of the ball (while
taking into account the maximum speed the bat is allowed to move). At the most advanced level, cutting-edge
machine learning could be employed – but that’s way
beyond the scope of this book. In this game, the AI
we’ve written is one small step up from the simplest
system described above. When the ball is far away
from the bat, the AI keeps the bat at the centre of the
screen on the Y axis – ready for the ball to go either
above or below it – but as the ball gets closer, the AI
increasingly takes its position into account. This reflects
the idea that as the ball gets closer, we have a better
idea of where it's going to end up.

I for one welcome our new AI overlords

don’t provide this parameter and so the game will therefore run in attract mode – in
other words, while you’re on the main menu, you’ll see two computer-controlled
players playing against each other in the background. When the player chooses to

start a new game, we replace the existing Game
instance with a new one, initialising it with
information about the controls to be used for
each player – if the controls for the second
player are not specified, this indicates that the
player has chosen a single-player game, so the
second will be computer-controlled.

Two types of movement
In Boing!, the Bat and Ball classes inherit from
Pygame Zero’s Actor class, which provides
a number of ways to specify an object’s
position. In this game, as well as games in
later chapters, we’re setting positions using
the x and y attributes, which by default specify
where the centre of the sprite will be on the
screen. Of course, we can’t just set an object’s
position at the start and be done with it – if
we want it to move as the game progresses, we
need to update its position each frame. In the
case of a Bat, movement is very simple. Each
frame, we check to see if the relevant player
(which could be a human or the computer)
wants to move – if they do, we either
subtract or add 4 from the bat’s Y coordinate,

The Game class contains an attribute ai_offset,
which is changed to a random value each time the
ball bounces off a bat. Can you work out what this is
for? Try changing the arguments given to random.
randint and see what happens. What if you keep it
fixed at zero, then start a new game and don’t touch
the controls?

There are several ways you can make the game easier
or harder – how many can you think of?

We use Python’s math.hypot function to calculate
the length of a vector. Which famous mathematical
theorem does this make use of? See if you can work it
out yourself before you Google it!

In the downloadable code (wfmag.cc/CTC1-boing),
we’ve included an alternative, more advanced AI
system. Can you work out how to enable it?

Challenges

http://wfmag.cc/CTC1-boing

36

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

depending on whether they want to move up or
down. We also ensure that the bat does not go
off the top or bottom of the screen. So, not only
are we only moving along a single axis, our Y
coordinate will always be an integer (i.e. a whole
number). For many games, this kind of simple
movement is sufficient. Even in games where
an object can move along both the X and Y
axes, we can often think of the movement along
each axis as being separate. For example, in the
next chapter’s game, Cavern, the player might
be pressing the right arrow key and therefore
moving along the X axis at 4 pixels per frame,
while also moving along the Y axis at 10 pixels
per frame due to gravity. The movement along
each axis is independent of the other.

For the Ball, things get a bit more
complicated. Not only can it move at any angle,
it also needs to move at the same speed regardless
of its direction. Imagine the ball moving at one
pixel per frame to the right. Now imagine trying
to make it move at a 45° angle from that by
making it move one pixel right and one pixel up
per frame. That’s a longer distance, so it would
be moving faster overall. That’s not great, and
that’s before we’ve even started to think about
movement in any possible direction.

The solution is to make use of vector mathematics and trigonometry. In the
context of a 2D game, a vector is simply a pair of numbers: X and Y. There are
many ways in which vectors can be used, but most commonly they represent positions
or directions.

You’ll notice that the Ball class has a pair of attributes, dx and dy. Together
these form a vector representing the direction in which the ball is heading. If dx and
dy are 1 and 0.5, then each time the ball moves, it’ll move by one pixel on the X axis

Figure 2

However, direction vectors should always be unit vectors
– they should have a length of 1 unit (in the case of this
game, 1 unit is 1 pixel). The black (1,0) vector is 1 unit
long, but the orange (1,0.5) vector is approximately 1.12
units long. Dividing the x and y components of a vector
by the vector’s length gives a unit vector – this is known
as normalisation, hence the function normalised. Doing
this for the vector (1,0.5) gives approximately (0.89,0.45) –
shown above by the green vector.

Figure 1

dx and dy represent a direction vector. The ball
will move 1 pixel to the right and half a pixel
down each time it moves. This vector can also
be written as (1,0.5)

dx, dy = 1, 0.5

Able to move at any
angle, the ball needs
to move at the same
speed regardless of
its direction

37

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

and a half a pixel on the Y axis. What does it mean to move half a pixel? When a
sprite is drawn, Pygame Zero will round its position to the nearest pixel. So the end
result is that our sprite will move down the screen by one pixel every other frame, and
one pixel to the right every frame (Figure 1).

We still need to make sure that our object moves at a consistent speed
regardless of its direction. What we need to do is ensure that our direction vector is
always a ‘unit vector’ – a vector which represents a distance of one (in this case, one
means one pixel, but in some games it will represent a different distance, such as one
metre). Near the top of the code you’ll notice a function named normalised. This
takes a pair of numbers representing a vector, uses Python’s math.hypot function to
calculate the length of that vector, and then divides both the X and Y components of
the vector by that length, resulting in a vector which points in the same direction but
has a length of one (Figure 2).

Vector maths is a big field, and we’ve only scratched the surface here. You can
find many tutorials online, and we also recommend checking out the Vector2 class in
Pygame (the library on top of which Pygame Zero is built).

38

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

import pgzero, pgzrun, pygame
import math, sys, random
from enum import Enum

if sys.version_info < (3,5):
 print("This game requires at least version 3.5 of Python. Please download"
 "it from www.python.org")
 sys.exit()

pgzero_version = [int(s) if s.isnumeric() else s
 for s in pgzero.__version__.split('.')]
if pgzero_version < [1,2]:
 print("This game requires at least version 1.2 of Pygame Zero. You are"
 "using version {pgzero.__version__}. Please upgrade using the command"
 "'pip install --upgrade pgzero'")
 sys.exit()

WIDTH = 800
HEIGHT = 480
TITLE = "Boing!"

HALF_WIDTH = WIDTH // 2
HALF_HEIGHT = HEIGHT // 2
PLAYER_SPEED = 6
MAX_AI_SPEED = 6

def normalised(x, y):
 length = math.hypot(x, y)
 return (x / length, y / length)

def sign(x):
 return -1 if x < 0 else 1

class Impact(Actor):
 def __init__(self, pos):
 super().__init__("blank", pos)
 self.time = 0

 def update(self):

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.

Open the boing.py file in a Python editor, such as IDLE, and select Run > Run Module.
For more details, see the ‘Setting up’ section on page 186.

How to run the game

wfmag.cc/CTC1-boingDownload the code

http://www.python.org
http://boing.py
http://wfmag.cc/CTC1-boing

39

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

 self.image = "impact" + str(self.time // 2)
 self.time += 1

class Ball(Actor):
 def __init__(self, dx):
 super().__init__("ball", (0,0))
 self.x, self.y = HALF_WIDTH, HALF_HEIGHT
 self.dx, self.dy = dx, 0
 self.speed = 5

 def update(self):
 for i in range(self.speed):
 original_x = self.x
 self.x += self.dx
 self.y += self.dy

 if abs(self.x - HALF_WIDTH) >= 344 and abs(original_x - HALF_WIDTH) < 344:
 if self.x < HALF_WIDTH:
 new_dir_x = 1
 bat = game.bats[0]
 else:
 new_dir_x = -1
 bat = game.bats[1]

 difference_y = self.y - bat.y

 if difference_y > -64 and difference_y < 64:
 self.dx = -self.dx
 self.dy += difference_y / 128
 self.dy = min(max(self.dy, -1), 1)
 self.dx, self.dy = normalised(self.dx, self.dy)
 game.impacts.append(Impact((self.x - new_dir_x * 10, self.y)))
 self.speed += 1
 game.ai_offset = random.randint(-10, 10)
 bat.timer = 10

 game.play_sound("hit", 5)
 if self.speed <= 10:
 game.play_sound("hit_slow", 1)
 elif self.speed <= 12:
 game.play_sound("hit_medium", 1)
 elif self.speed <= 16:
 game.play_sound("hit_fast", 1)
 else:
 game.play_sound("hit_veryfast", 1)

 if abs(self.y - HALF_HEIGHT) > 220:

040.
041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.

http://self.dx
http://self.dy
http://self.dx
http://self.dy
http://self.dx
http://self.dx
http://self.dy
http://self.dy
http://self.dy
http://self.dx
http://self.dy
http://self.dx
http://self.dy

40

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

 self.dy = -self.dy
 self.y += self.dy
 game.impacts.append(Impact(self.pos))
 game.play_sound("bounce", 5)
 game.play_sound("bounce_synth", 1)

 def out(self):
 return self.x < 0 or self.x > WIDTH

class Bat(Actor):
 def __init__(self, player, move_func=None):
 x = 40 if player == 0 else 760
 y = HALF_HEIGHT
 super().__init__("blank", (x, y))

 self.player = player
 self.score = 0

 if move_func != None:
 self.move_func = move_func
 else:
 self.move_func = self.ai

 self.timer = 0

 def update(self):
 self.timer -= 1
 y_movement = self.move_func()
 self.y = min(400, max(80, self.y + y_movement))

 frame = 0
 if self.timer > 0:
 if game.ball.out():
 frame = 2
 else:
 frame = 1

 self.image = "bat" + str(self.player) + str(frame)

 def ai(self):
 x_distance = abs(game.ball.x - self.x)
 target_y_1 = HALF_HEIGHT
 target_y_2 = game.ball.y + game.ai_offset
 weight1 = min(1, x_distance / HALF_WIDTH)
 weight2 = 1 - weight1
 target_y = (weight1 * target_y_1) + (weight2 * target_y_2)

087.
088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

http://self.dy
http://self.dy
http://self.dy
http://self.ai

41

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.

 return min(MAX_AI_SPEED, max(-MAX_AI_SPEED, target_y - self.y))

class Game:
 def __init__(self, controls=(None, None)):
 self.bats = [Bat(0, controls[0]), Bat(1, controls[1])]
 self.ball = Ball(-1)
 self.impacts = []
 self.ai_offset = 0

 def update(self):
 for obj in self.bats + [self.ball] + self.impacts:
 obj.update()

 for i in range(len(self.impacts) - 1, -1, -1):
 if self.impacts[i].time >= 10:
 del self.impacts[i]

 if self.ball.out():
 scoring_player = 1 if self.ball.x < WIDTH // 2 else 0
 losing_player = 1 - scoring_player

 if self.bats[losing_player].timer < 0:
 self.bats[scoring_player].score += 1
 game.play_sound("score_goal", 1)
 self.bats[losing_player].timer = 20

 elif self.bats[losing_player].timer == 0:

 direction = -1 if losing_player == 0 else 1
 self.ball = Ball(direction)

 def draw(self):
 screen.blit("table", (0,0))

 for p in (0,1):
 if self.bats[p].timer > 0 and game.ball.out():
 screen.blit("effect" + str(p), (0,0))

 for obj in self.bats + [self.ball] + self.impacts:
 obj.draw()

 for p in (0,1):
 score = "{0:02d}".format(self.bats[p].score)

 for i in (0,1):
 colour = "0"
 other_p = 1 - p

42

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

 if self.bats[other_p].timer > 0 and game.ball.out():
 colour = "2" if p == 0 else "1"
 image = "digit" + colour + str(score[i])
 screen.blit(image, (255 + (160 * p) + (i * 55), 46))

 def play_sound(self, name, count=1):
 if self.bats[0].move_func != self.bats[0].ai:
 try:
 getattr(sounds, name + str(random.randint(0, count - 1))).play()
 except:
 pass

def p1_controls():
 move = 0
 if keyboard.z or keyboard.down:
 move = PLAYER_SPEED
 elif keyboard.a or keyboard.up:
 move = -PLAYER_SPEED
 return move

def p2_controls():
 move = 0
 if keyboard.m:
 move = PLAYER_SPEED
 elif keyboard.k:
 move = -PLAYER_SPEED
 return move

class State(Enum):
 MENU = 1
 PLAY = 2
 GAME_OVER = 3
num_players = 1
space_down = False

def update():
 global state, game, num_players, space_down
 space_pressed = False
 if keyboard.space and not space_down:
 space_pressed = True
 space_down = keyboard.space

 if state == State.MENU:
 if space_pressed:
 state = State.PLAY
 controls = [p1_controls]
 controls.append(p2_controls if num_players == 2 else None)

181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.

http://keyboard.up:

43

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.

 game = Game(controls)
 else:
 if num_players == 2 and keyboard.up:
 sounds.up.play()
 num_players = 1
 elif num_players == 1 and keyboard.down:
 sounds.down.play()
 num_players = 2

 game.update()

 elif state == State.PLAY:
 if max(game.bats[0].score, game.bats[1].score) > 9:
 state = State.GAME_OVER
 else:
 game.update()

 elif state == State.GAME_OVER:
 if space_pressed:
 state = State.MENU
 num_players = 1
 game = Game()

def draw():
 game.draw()

 if state == State.MENU:
 menu_image = "menu" + str(num_players - 1)
 screen.blit(menu_image, (0,0))

 elif state == State.GAME_OVER:
 screen.blit("over", (0,0))

try:
 pygame.mixer.quit()
 pygame.mixer.init(44100, -16, 2, 1024)

 music.play("theme")
 music.set_volume(0.3)
except:
 pass

state = State.MENU
game = Game()

pgzrun.go()

http://keyboard.up:
http://sounds.up
http://pgzrun.go

44

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

1 The background
needs to be not
too busy, so the
ball stays visible

2 Colour-coded
overlays appear
when a point is
won by either side

3 The ball sprite
is simple; its
movement is not

4 Each bat has
three versions:
normal, with
shadow (when a
point is lost), and
hitting the ball

3

2

1

4

45

Te
nn

is
 –

 C
od

in
g

To
da

y:
 B

oi
ng

!

Coding Today

Boing!

5 The title screen
offers a choice
of one- or two-
player mode

6 Digits used to
show the scores,
colour-coded for
each player

7 There are five
impact sprites
numbered 0 to 4

5

6

7

46

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

Enduringly popular, the platform
game genre is still packed with

creative possibilities

Action Platformer

Chapter 2

47

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

latformers involve moving a character
around a series of obstacle-strewn
platforms, jumping, shooting, and
avoiding any baddies along the way.
They can be played alone or with a
friend: produced by Taito, Bubble Bobble

was a tough (and incredibly popular) coin-op, two-player
cooperative platformer which made a successful transition
to home computers. It featured two brothers called Bubby
and Bobby who had been turned into a pair of cuddly
creatures, affectionately known as Bub and Bob, by the evil
Baron Von Blubba. With their girlfriends kidnapped, 100
levels of tricky, fast-paced action awaited them as they tried
their hardest to rescue them, battling all manner of beasties
along the way. As the game’s name suggests, bubbles played
a major role in the gameplay – you had to fire them at
enemies to stun them, then pop them for the kill. Once a
screen was cleared of rivals, it was time to advance to the
next level.

Inspiration
Bubble Bobble was designed by Fukio Mitsuji, who also
created an incredibly popular follow-up in Rainbow
Islands. It was ported to many machines including the
Commodore 64, where it was overseen by Stephen Ruddy,
who worked on games such as Target: Renegade, FIFA 99,
and MotoGP 09/10. Ruddy still works in gaming for Yippee
Entertainment. Sadly, Mitsuji-san died on 11 December
2008, aged 48. In the 1990s, he went on to put his skills as
a game designer to good use by teaching coders new tricks.
He also freelanced on titles including Magical Puzzle Popils
on the Sega Game Gear.

P

48

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

Bubble Bobble

Released 1986

Platforms Arcade

 Commodore 64

 ZX Spectrum

 Amiga

 Atari ST

 MSX 2

 Amstrad CPC

 Sharp X68000

 PC

 Apple II

 FM Towns Marty

 Sega Master System

Game Boy

Game Boy Color

PlayStation

Sega Saturn

NES

SNES

Game Gear

49

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

50

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

Like many classic games of the past, Bubble Bobble originated in the arcades and was
later made available on many other machines.

Other Notables Donkey Kong / Mario / Prince of Persia

There are games where you can choose weapons of devastating effectiveness. Gravity
guns, magical swords, BFGs, and frag grenades are all fine choices. There’s no doubt
that each one of these has the potential to inflict damage on foes, making them highly
effective in combat. But what if there was no choice? What if the only thing you
had to hand was merely a bubble – yes, a simple thin film of soapy water filled with
air? As daft as that may sound, one game of the 1980s made use of just that. Its
name? Bubble Bobble.

Anyone who has been lucky enough to have some fun with this iconic 1986
arcade platformer will understand just how effective bubbles can be. They would be
used to trap enemies and, when burst, dispatch them with ease. With a bit of finesse,
multiple bubbles could get rid of enemies at once for extra points. And later in the
game, they come into their own as temporary – and occasionally deadly – floating
platforms to get the player from level to level.

The game’s designer, Fukio Mitsuji, was looking for something new. Back in
the 1980s, platformers were a strong staple of gaming, making up a large (and often
homogeneous) slice of the industry. Developers like Mitsuji realised that they needed
to create something which made their title stand out. In the case of Bubble Bobble, two
kawaii characters called Bub and Bob were introduced, and the action took place
over 100 static screens. Despite its simple premise, the game proved highly addictive
and also rather complex.

Gameplay was compulsive and kept players coming back for more. The
wobbly action of the bubbles themselves, which acted as weapons and as (fiendishly
tricky) temporary platforms to jump off, was unpredictable. There were hidden
bonuses and power-ups, and different ways of seeing enemies off (special bubbles
could be produced which, when burst, would attack foes with water, lightning, or
fire). A stage would be cleared when all of the enemies were destroyed, but the
difficulty level increased the further you progressed. And there was clarity for the
player: the basic structure of the game remained the same from start to finish,
following the same genre-defining rules laid down by Space Panic at the beginning
of the decade.

Platform jumping
In general, platformers offered players the opportunity to jump around an
environment strewn with platforms, with obstacles to avoid and enemies to slay. One
of the most popular was Donkey Kong, which starred Mario – or Jumpman as he was
known back then. Over time, platformers were married up with other genres such as
beat-’em-ups and adventures.

But even at their purest, they often proved compelling. Developers would seek
to inject their own little twists to the gameplay, introducing new and original concepts.
Nintendo’s 1983 arcade game Mario Bros. introduced two-player simultaneous

51

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

cooperative play, a concept which Bubble Bobble emulated. “In this game, you had to
play cooperatively in order to reach the true ending,” said Mitsuji.

Bubble Bobble was Mitsuji’s first game. He developed it for Taito, a coin-op
game manufacturer which had achieved huge success in 1978 with the launch of
Space Invaders, although it had made other titles prior to that, including Speed Race in
1974. With games such as Qix in 1981 and Elevator Action in 1983 under its belt, Taito
had built a solid reputation. It was always on the lookout for games that would get
players pumping coin after coin into its machines. Bubble Bobble brought with it the
right mixture of innovation and addictiveness.

Mitsuji put his game’s enduring popularity down to Bub and Bob, but he also
said the unique ability to shoot bubbles was a major attraction for gamers looking for
something new (his desire to innovate was so strong, he was adamant that he would

never produce a direct sequel). The fact that it was
an arcade game meant it also needed to be accessible
and easy to learn. For that reason, it came with little
in the way of razzmatazz, preferring to let the game
speak for itself. This aspect was also ported to the home
computer versions.

Stephen Ruddy was responsible for the
Commodore 64 port, which he created while working
for Software Creations. At the time, the publisher and
developer was based above a computer shop opposite
the BBC’s North West studios on Oxford Road in
Manchester, and Stephen had been offered a job after

responding to an advertisement in the Manchester Evening News. It was his task to
identify the structure of the game and re-code it.

“The basic structure of games is that you have a front-end and a back-
end,” he explains. “The front-end is normally made up of some kind of attract
mode [that is, something to draw the player to the game and excite them] and the
user interface that sets up the game. The back-end is normally a game manager
that manages some user interface, a bunch of game objects, and an environment
they operate in. Being an arcade game, Bubble Bobble had very little in the way of
a front-end. A title screen, an attract loop, and a high-score table were about all
it contained.”

By concentrating on the back-end, Mitsuji aimed to eliminate any wasteful
preamble that would otherwise slow down the speed at which player coins would
be deposited into the slot. It meant he could focus on the game manager. “The
manager essentially concentrated on the lives of the player – three in the case
of Bubble Bobble – as well as the introduction user interface and the game cycle,”
Stephen continues.

Non-scrolling screen
Since all of the action in Bubble Bobble took place on a series of single, non-scrolling
screens, it was much easier for developers such as Stephen to replicate it on home
computers and consoles. It removed the need for a scene management system, for
example, because with such a small environment, there was only a need for a limited
number of objects.

The unique ability to
shoot bubbles was a
major attraction for
gamers looking for

something new

52

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

1

53

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

“A scene management system is complex, but it is only needed if you have
a large environment with potentially many thousands of game objects,” Stephen
explains. “It will identify and update only those objects that need to be updated and
it will only render the objects that are on screen. Likewise, it will only collide the
relevant collision primitives.

“With a single-screen system and a limited number of objects, none of this
is required. You can simply assume all objects must be updated and all objects must
be rendered. The objects can also take on collision themselves rather than have a
separate physics/collision/collision-resolution system of some kind or other.”

Bubble Bobble had many objects. There were Bub and Bob themselves of
course, but there was also a variety of weapons. Aside from the bubbles themselves,
players would have to dodge fireballs, water drops, fire, lightning, rocks, and bombs.
They also had to avoid the enemies, with baddies made up of robots, ghosts,
whales, teddies, springs, bugs, dwarves, invaders, and a boss. In addition, there were
collectables such as fruit, bonuses, and power-ups.

“With some games the environment can be stunningly complex and may well
be made up of games objects itself, but in Bubble Bobble the environment was a simple
2D tiled map with several environmental effects attached,” says Stephen. “In Bubble
Bobble’s case the tiled map was really just collision data, a flag to indicate whether it
contained a platform or not, and an ‘airflow’ direction setting to indicate which way
bubbles should float through the time (0–3 for up, down, left, right).”

Blowing bubbles
Of all of these objects, the bubbles were the most important. A lot of time and
attention was paid to this mechanic to ensure they behaved in the way the player
expected. When a bubble was spawned by the player, it would be given a specific
horizontal velocity. Crucially, it would also include a “baddie collision lifetime”
which indicated how long an enemy could remain in a bubble before it popped
itself and allowed them to escape. There was also a total lifetime setting to prevent
the bubble from lingering for too long.

“When the player fired a bubble, it would take care
of itself, travelling horizontally as configured and changing to
a ‘captured baddie’ bubble if it touched an enemy,” Stephen
explains. “The baddie setting would then match the baddie
it captured and it would check itself for a collision with the

1 A 1986 flyer for
the US coin‑op
release; the rear
explained the
game mechanics

Short term: Enjoy yourself. Stephen Ruddy says the biggest thing is the sheer creative enjoyment of
the whole process – you start with nothing every time. So work on the basics.

Medium term: Start building up the levels. Have fun with the level design and see what designs you
come up with.

Long term: Begin to think about what else you will be able to throw into the mix. Once you move
beyond simple 2D sprites, rendering with complex shaders and 3D-skinned meshes is an interesting
and rewarding area for games designers.

The objectives

54

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

player.” In other words, if a spiky part of the player – the back, head, or feet if the
jump button was not pressed – touched the bubble, then it would pop. If it came into
contact with the front of Bub or Bob, the bubble would simply be pushed along. The
code would wait until one of these events happened and then act on it.

The code would also know if there was no contact at all between the bubble
and the enemies. “If the bubble never touched a baddie at the end of its collision
lifetime, then it would change itself to a ‘float bubble’ which would simply drift along
with the airflow as defined in the tile map,” says Stephen. It may sound complicated
but, in essence, the coders were simply working out the interaction between the
bubbles and both the player and enemy characters.

“The player was only concerned with the actions the player could do (that is,
movement and firing); the other objects took care of themselves, colliding with the
player or each other,” Stephen continues. “So, for example, a bubble would test if
it was in collision with the player and either pop or be pushed out of the way, and a
baddie would test if it was in collision with the player and either kill the player or kill
itself (if the player was invulnerable due to a power-up).”

Figuring it out
Since Stephen was porting a pre-existing arcade
game, he and the team at Software Creations
had no input into the design of the game. So,
in order to get to grips with all of the various
aspects of Bubble Bobble during the conversion,
the developers had to play the game over and
over again, noting all of the different nuances of
the gameplay. It was then up to them to figure
out the mechanics of the game and replicate it
for the home market.

Deep mechanics in the game, like a time
limit on capturing an enemy, were a challenge
to tease out. “ ‘Captured baddie’ bubbles would pop and release the baddie they
contained, but the baddie that was released would be set in a ‘hurry up’ state,”
explains Stephen.

“This was visually different since it used a red colouring. The movement
speed was also doubled. In later levels this was used as a driver to make the player
plan when to fire a bubble and when to pop the baddies because the bubbles would

Deep mechanics,
like a time limit on
capturing an enemy,
were a challenge to
tease out

Stephen Ruddy offers some excellent advice for anyone looking to program their own games.

Never fear: Stephen says you mustn’t be afraid of learning new skills or asking for help.

Use your knowledge: The more techniques you master, the easier it will be when faced with
something new.

Know when to stop: When it’s finished it’s finished. You have to learn to ignore the temptation to
rework your code and move on.

Learn from the master

55

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

whizz off to specific areas of the screen.” Players also had to stay on their toes when it
came to grabbing bonus letters, which had a finite lifetime too. Hazards like lightning,
water, and fire had infinite lifetimes and had to be treated differently.

All of this was a good learning curve for Stephen, who had only developed
three previous games on the Commodore 64: Mystery of the Nile in 1986 and both
Kinetik and The Big KO! the following year. But since Bubble Bobble was more complex
than he first imagined, some mechanics were missed. “We weren’t aware of the rules
regarding when the arcade game decided on which items appeared,” he says, “but we
did figure out some simply by playing the game.”

Bubble Bobble had a bonus collectable and a power-up collectable which
appeared on every level. “The bonus collectable simply awarded the player points
and it was selected by how quickly the player completed the previous level – the
quicker the player completed the level, the better-scoring the bonus collectable would
be. The power-up collectable was selected by a complex rule set which also reflected
how the player completed the previous level. Today, these nuances are found on the
internet, but in our conversions we noticed some but not others and ended up with a
weighted default system.”

Just as troublesome was the way in which players controlled the characters. In
Bubble Bobble, Bub and Bob could move left and right and they could also jump. In the
arcade version, there was a simple two-way joystick and two buttons to achieve this –
one to jump and one to fire. In most home systems, joysticks did not have two-button
setups, so a workaround had to be found in order to better replicate the experience
on machines like the Commodore 64.

“Controls are always the trickiest part of games development,” says
Stephen. “Really there aren’t any short cuts, so you need to keep iterating over them
until they ‘feel’ right. For the Commodore 64 version, the main issue was having
one less button than the arcade machine. It made use of a four-way joystick as
well as fire, as opposed to a two-way joystick together
with jump and fire.” The solution was to use the
up direction on the joystick as jump, but even then,
movement in Bubble Bobble was more complicated than
it first appeared.

“The player moved across platforms and was
obstructed by any solid tile cell blocking the player
character’s ‘feet’,” Stephen says. “But the logic for
moving sideways was different when not on a platform.
The player could move regardless if their character’s
‘feet’ were already embedded in a solid cell. Similarly,
when falling, player characters would only land on
platforms that had empty space about them.”

Racking up the points
To keep players motivated, they could build a high
score as they made their way through the stages. When
an enemy was killed, for instance, it was turned into
food which could then be collected for points. Many

• Experiment with
different bubbles. The
game had three
elemental
bubbles – lightning,
water, and fire – that
could destroy enemies
in different ways.

• Consider a boss in your
game so that when all
of the creatures are
defeated, there is a
monster of a challenge
to be had that will
keep players on their
toes and add variety.

Top tips

56

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

different items carried differing point values, which introduced a healthy dollop of
strategy to the game.

A green pepper had 10 points, for example, a turnip 60, a banana 500, and
French fries 1000. There was beer at 4000 points, red jewels at 7000, and gold crowns
at 10,000. There were also lots of associated triggers which could depend on how
quickly you finished a previous stage.

“The core competitive element of every arcade game is the player’s score
and a high-score table: it’s the hook that keeps you returning back for one more
go to improve on your own personal previous best and to be the best at the game,”
says Stephen. “Today this has been extended with leaderboards, which incorporate a
social aspect where you can see, challenge, and beat your friends’ scores as well as all
the scores worldwide – it’s still a key driver that
keeps players coming back to improve.”

The two-player mode of the game was
also crucial in hooking players in. Bubble Bobble
could be played by one or two people, and it was
the cooperative mode which made it such an
enduring joy. Indeed, Mitsuji wanted Bubble Bobble
to be a game that couples would enjoy playing
together. He saw gaming as a hobby that anyone
could enjoy, regardless of gender, and he wanted
to encourage more female gamers in particular,
since they were rarely seen in Japanese arcades.

At times, it was almost as if Mitsuji had a
bag of holding into which he was throwing ideas.
You could collect letters that spelt ‘EXTEND’ to get an extra life, grab an umbrella
and skip levels, or enter secret rooms and access hidden bonuses. There were even
multiple endings. The first was a ‘bad’ ending for single players who only rescued
Betty and not Patty, and told the gamer to “never forget your friend”. The good
ending needed two players and it saved both Betty and Patty while unlocking a Super
Mode which encouraged a replay of the game (obviously, to get players to pump in
more coins). Once that was completed, Bub and Bob’s parents were finally revealed.

“We didn’t implement the multiple endings of the arcade, simply because
we weren’t aware of them,” admits Stephen. Thankfully, that didn’t ruin the
attraction of the ported games. Virtually every home system has been blessed with
the presence of Bub and Bob, either as a conversion of the original coin-op or in one
of many spin-offs.

The fact that the direct ports were still considered
brilliant despite not being entirely faithful, shows that the core
mechanics of Bubble Bobble could more than stand alone as a
classic. Indeed, the only port that was accurate to a large degree
was the Sega Master System version which Taito itself coded.
But that’s not to say Taito had been miserly and kept the source
code to itself for the other versions. On the contrary, it shared
it with the developers of the other versions, but the comments
were in Japanese, making it difficult for teams that didn’t speak
the language to follow.

The core competitive
element of every
arcade game is the
player’s score and a
high-score table

2 After trapping
enemies in
bubbles, you
still need to
burst them

3 A high score
table is always
a good way to
make gamers
competitive

57

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

2

3

58

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

Still, it was a good learning curve for Stephen. “You
never stop learning, so don’t be afraid of anything,” he advises.
“You may be required to program something you’ve never
done before, so you mustn’t be afraid of learning new skills
or asking for help. The simple fact is that no one knows every
methodology, algorithm, or technology as of course new ones
are created, extruded, or manufactured all the time. Fortunately,
the more you do get to grips with will reduce apprehension
when faced with something new and unknown.”

Although Bubble Bobble was a simple enough game to create – albeit challenging to pull off
satisfactorily – there are many areas of game programming that become more complex the more
your game relies on them. According to Stephen Ruddy, scene management becomes more important
and entails breaking a large environment up into smaller more manageable pieces for updating or
rendering. For larger 2D or 3D worlds this becomes essential. Similarly, he says: “Physics simulation,
collision, and restitution in 2D and 3D can be very complex and reliant on probably the most complex
mathematics you’ll come across in game development.” Enjoying these subjects is helpful, though not
essential, for making games. And finally, he opines: “Audio is often overlooked as mostly people just
play a sample when an event occurs. But software mixing, complex fading, and multi-track streaming
may also be required if your game requires complex audio.”

Adding complexity

4 Bursting a
water bubble
releases a
torrent that
clears any
enemies in
its path

5 Special
power‑ups such
as lightning are
useful on
the trickier
later levels

59

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

4

5

60

A
ct

io
n

Pl
at

fo
rm

er
 –

 B
ub

bl
e

Bo
bb

le

61

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

ike Bubble Bobble, our game Cavern takes
place on a single screen. Robot enemies are
created just off the top of the screen, and
fall into the level. The Player can fire Orbs
– if a robot touches an orb, it will become
trapped inside. The orbs pop either after

four seconds, or when they reach the top of the screen.
Robots can fire Bolt s which can pop orbs or hurt the
player. There are two types of robot: a standard type, and
a more aggressive type which has the ability to deliberately
fire at orbs.

L

Download the fully commented Cavern game code, along with
all the graphics and sounds, from wfmag.cc/CTC1-cavern

Download the code

Coding Today

Cavern

http://wfmag.cc/CTC1-cavern

62

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

The Fruit class represents items the player can collect. Normally these items
are, as the name suggests, pieces of fruit, which increase the player’s score. However,
there are also pick-ups which increase the player’s health or give an extra life. Fruit
pick-ups are dropped when an orb containing a robot reaches the top of the screen,
and are also created in random positions every 100 frames. The extra health and
extra life power-ups have a chance of being created when an orb containing the more
aggressive type of robot is popped.

Each of the classes mentioned above inherits from either CollideActor
or GravityActor – CollideActor, which inherits from Pygame Zero’s Actor class,
provides a move method which moves the object in the specified direction, but won’t
allow it to go through walls. GravityActor inherits from CollideActor, and allows
objects to be affected by gravity.

The Game class maintains a reference to the player object, as well as lists of
fruit, bolts, enemies, orbs, and pops (objects which display an orb’s popping animation
– similar to Impact objects in Boing!). At the start of each level, the game object sets up
the grid of blocks which will form the level, decides how many enemies of each type
there will be on this level, and creates a randomly shuffled list of enemy types, which
determines the order in which different enemy types will appear.

Levels in Cavern are formed of blocks, each block being 25×25 pixels. At the top of the code you’ll
see a list called LEVELS, containing three further lists which correspond to the three level layouts in
the game. Each level list contains 17 strings, where each string represents a row. Within each row, a
space character means there’s no block at that position; any other character (we’ve used X)
represents a block. An empty string indicates a row with no blocks. You might notice that the
variable NUM_ROWS is 18, which doesn’t seem to match with the number of rows in the level lists. In
the Game.next_level method, we add a copy of the first row to the end of the level data, so that the
first and last rows are the same.

Level with me

63

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

As with Boing!, the final part of the code uses a simple state machine system
to update and draw the game objects. There are also functions for drawing text and
the player’s score, health, and lives.

You’ll sometimes see code similar to [x*2 for x in range(10)]. This makes use of a very useful
Python feature known as list comprehension. In this case, the code generates the numbers 0 to 9,
multiplies each one by two, and puts the resulting numbers in a list. In Cavern, we use this
feature to remove objects from lists. For example, take the line self.enemies = [e for e in
self.enemies if e.alive].This creates a new list which consists of the entries from the existing
self.enemies list, excluding those which are no longer alive. The new list then replaces the
existing enemies list. Bear in mind that if there were any other variables besides self.enemies
which referred to the same list, this technique wouldn’t affect those variables, and they would
continue to refer to the old version of the list. In Cavern this isn’t an issue, and list comprehensions
allow us to do in a single line what would otherwise take at least three lines.

Incomprehensible?

In Bubble Bobble, bubbles don’t automatically burst when they reach the top of the screen – instead
they float around and, if left long enough, enemies in bubbles can escape (and come back angrier,
moving at an increased speed). The player can burst bubbles by walking, falling, or jumping into them.
Bursting bubbles could also cause a chain reaction, bursting other nearby bubbles. How would you
change the game to match this?

Currently, holding the SPACE bar causes the player to blow an orb further across the level. What if
instead of this, holding the SPACE bar caused the player to create a series of orbs in quick succession?
To keep the game balanced, there are a number of other things you’d need to change, such as the
total number, maximum on-screen number, and creation rate of enemies.

Challenges

64

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

from random import choice, randint, random, shuffle
from enum import Enum
import pygame, pgzero, pgzrun, sys

if sys.version_info < (3,5):
 print("This game requires at least version 3.5 of Python. Please download"
 "it from www.python.org")
 sys.exit()

pgzero_version = [int(s) if s.isnumeric() else s
 for s in pgzero.__version__.split('.')]
if pgzero_version < [1,2]:
 print("This game requires at least version 1.2 of Pygame Zero. You are"
 "using version {pgzero.__version__}. Please upgrade using the command"
 "'pip install --upgrade pgzero'")
 sys.exit()

WIDTH = 800
HEIGHT = 480
TITLE = "Cavern"

NUM_ROWS = 18
NUM_COLUMNS = 28

LEVEL_X_OFFSET = 50
GRID_BLOCK_SIZE = 25

ANCHOR_CENTRE = ("center", "center")
ANCHOR_CENTRE_BOTTOM = ("center", "bottom")

LEVELS = [["XXXXX XXXXXXXX XXXXX",
 "","","","",
 " XXXXXXX XXXXXXX ",
 "","","",
 " XXXXXXXXXXXXXXXXXXXXXX ",
 "","","",
 "XXXXXXXXX XXXXXXXXX",
 "","",""],

 ["XXXX XXXXXXXXXXXX XXXX",

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.

Open the cavern.py file in a Python editor, such as IDLE, and select Run > Run Module.
For more details, see the ‘Setting up’ section on page 186.

How to run the game

wfmag.cc/CTC1-cavernDownload the code

http://www.python.org
http://cavern.py
http://wfmag.cc/CTC1-cavern

65

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

 "","","","",
 " XXXXXXXXXXXXXXXXXXXX ",
 "","","",
 "XXXXXX XXXXXX",
 " X X ",
 " X X ",
 " X X ",
 " X X ",
 "","",""],

 ["XXXX XXXX XXXX XXXX",
 "","","","",
 " XXXXXXXX XXXXXXXX ",
 "","","",
 "XXXX XXXXXXXX XXXX",
 "","","",
 " XXXXXX XXXXXX ",
 "","",""]]

def block(x,y):
 grid_x = (x - LEVEL_X_OFFSET) // GRID_BLOCK_SIZE
 grid_y = y // GRID_BLOCK_SIZE
 if grid_y > 0 and grid_y < NUM_ROWS:
 row = game.grid[grid_y]
 return grid_x >= 0 and grid_x < NUM_COLUMNS and len(row) > 0 and \
 row[grid_x] != " "
 else:
 return False

def sign(x):
 return -1 if x < 0 else 1

class CollideActor(Actor):
 def __init__(self, pos, anchor=ANCHOR_CENTRE):
 super().__init__("blank", pos, anchor)

 def move(self, dx, dy, speed):
 new_x, new_y = int(self.x), int(self.y)

 for i in range(speed):
 new_x, new_y = new_x + dx, new_y + dy

 if new_x < 70 or new_x > 730:
 return True

 if ((dy > 0 and new_y % GRID_BLOCK_SIZE == 0 or
 dx > 0 and new_x % GRID_BLOCK_SIZE == 0 or

041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.

66

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

 dx < 0 and new_x % GRID_BLOCK_SIZE == GRID_BLOCK_SIZE-1)
 and block(new_x, new_y)):
 return True

 self.pos = new_x, new_y

 return False

class Orb(CollideActor):
 MAX_TIMER = 250

 def __init__(self, pos, dir_x):
 super().__init__(pos)

 self.direction_x = dir_x
 self.floating = False
 self.trapped_enemy_type = None
 self.timer = -1
 self.blown_frames = 6

 def hit_test(self, bolt):
 collided = self.collidepoint(bolt.pos)
 if collided:
 self.timer = Orb.MAX_TIMER - 1
 return collided

 def update(self):
 self.timer += 1

 if self.floating:
 self.move(0, -1, randint(1, 2))
 else:
 if self.move(self.direction_x, 0, 4):
 self.floating = True

 if self.timer == self.blown_frames:
 self.floating = True
 elif self.timer >= Orb.MAX_TIMER or self.y <= -40:
 game.pops.append(Pop(self.pos, 1))
 if self.trapped_enemy_type != None:
 game.fruits.append(Fruit(self.pos, self.trapped_enemy_type))
 game.play_sound("pop", 4)

 if self.timer < 9:
 self.image = "orb" + str(self.timer // 3)
 else:
 if self.trapped_enemy_type != None:

088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

67

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

 self.image = "trap" + str(self.trapped_enemy_type) + \
 str((self.timer // 4) % 8)
 else:
 self.image = "orb" + str(3 + (((self.timer - 9) // 8) % 4))

class Bolt(CollideActor):
 SPEED = 7

 def __init__(self, pos, dir_x):
 super().__init__(pos)

 self.direction_x = dir_x
 self.active = True

 def update(self):
 if self.move(self.direction_x, 0, Bolt.SPEED):
 self.active = False
 else:
 for obj in game.orbs + [game.player]:
 if obj and obj.hit_test(self):
 self.active = False
 break

 direction_idx = "1" if self.direction_x > 0 else "0"
 anim_frame = str((game.timer // 4) % 2)
 self.image = "bolt" + direction_idx + anim_frame

class Pop(Actor):
 def __init__(self, pos, type):
 super().__init__("blank", pos)

 self.type = type
 self.timer = -1

 def update(self):
 self.timer += 1
 self.image = "pop" + str(self.type) + str(self.timer // 2)

class GravityActor(CollideActor):
 MAX_FALL_SPEED = 10

 def __init__(self, pos):
 super().__init__(pos, ANCHOR_CENTRE_BOTTOM)

 self.vel_y = 0
 self.landed = False

135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.

68

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

 def update(self, detect=True):
 self.vel_y = min(self.vel_y + 1, GravityActor.MAX_FALL_SPEED)

 if detect:
 if self.move(0, sign(self.vel_y), abs(self.vel_y)):
 self.vel_y = 0
 self.landed = True

 if self.top >= HEIGHT:
 self.y = 1
 else:
 self.y += self.vel_y

class Fruit(GravityActor):
 APPLE = 0
 RASPBERRY = 1
 LEMON = 2
 EXTRA_HEALTH = 3
 EXTRA_LIFE = 4

 def __init__(self, pos, trapped_enemy_type=0):
 super().__init__(pos)

 if trapped_enemy_type == Robot.TYPE_NORMAL:
 self.type = choice([Fruit.APPLE, Fruit.RASPBERRY, Fruit.LEMON])
 else:
 types = 10 * [Fruit.APPLE, Fruit.RASPBERRY, Fruit.LEMON]
 types += 9 * [Fruit.EXTRA_HEALTH]
 types += [Fruit.EXTRA_LIFE]
 self.type = choice(types)

 self.time_to_live = 500

 def update(self):
 super().update()

 if game.player and game.player.collidepoint(self.center):
 if self.type == Fruit.EXTRA_HEALTH:
 game.player.health = min(3, game.player.health + 1)
 game.play_sound("bonus")
 elif self.type == Fruit.EXTRA_LIFE:
 game.player.lives += 1
 game.play_sound("bonus")
 else:
 game.player.score += (self.type + 1) * 100
 game.play_sound("score")

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.

69

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

 self.time_to_live = 0
 else:
 self.time_to_live -= 1

 if self.time_to_live <= 0:
 game.pops.append(Pop((self.x, self.y - 27), 0))

 anim_frame = str([0, 1, 2, 1][(game.timer // 6) % 4])
 self.image = "fruit" + str(self.type) + anim_frame

class Player(GravityActor):
 def __init__(self):
 super().__init__((0, 0))

 self.lives = 2
 self.score = 0

 def reset(self):
 self.pos = (WIDTH / 2, 100)
 self.vel_y = 0
 self.direction_x = 1
 self.fire_timer = 0
 self.hurt_timer = 100
 self.health = 3
 self.blowing_orb = None

 def hit_test(self, other):
 if self.collidepoint(other.pos) and self.hurt_timer < 0:
 self.hurt_timer = 200
 self.health -= 1
 self.vel_y = -12
 self.landed = False
 self.direction_x = other.direction_x
 if self.health > 0:
 game.play_sound("ouch", 4)
 else:
 game.play_sound("die")
 return True
 else:
 return False

 def update(self):
 super().update(self.health > 0)

 self.fire_timer -= 1
 self.hurt_timer -= 1

229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.

70

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

 if self.landed:
 self.hurt_timer = min(self.hurt_timer, 100)

 if self.hurt_timer > 100:
 if self.health > 0:
 self.move(self.direction_x, 0, 4)
 else:
 if self.top >= HEIGHT*1.5:
 self.lives -= 1
 self.reset()
 else:
 dx = 0
 if keyboard.left:
 dx = -1
 elif keyboard.right:
 dx = 1

 if dx != 0:
 self.direction_x = dx

 if self.fire_timer < 10:
 self.move(dx, 0, 4)

 if space_pressed() and self.fire_timer <= 0 and len(game.orbs) < 5:
 x = min(730, max(70, self.x + self.direction_x * 38))
 y = self.y - 35
 self.blowing_orb = Orb((x,y), self.direction_x)
 game.orbs.append(self.blowing_orb)
 game.play_sound("blow", 4)
 self.fire_timer = 20

 if keyboard.up and self.vel_y == 0 and self.landed:
 self.vel_y = -16
 self.landed = False
 game.play_sound("jump")

 if keyboard.space:
 if self.blowing_orb:
 self.blowing_orb.blown_frames += 4
 if self.blowing_orb.blown_frames >= 120:
 self.blowing_orb = None
 else:
 self.blowing_orb = None

 self.image = "blank"
 if self.hurt_timer <= 0 or self.hurt_timer % 2 == 1:
 dir_index = "1" if self.direction_x > 0 else "0"

276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.

http://keyboard.up

71

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.

 if self.hurt_timer > 100:
 if self.health > 0:
 self.image = "recoil" + dir_index
 else:
 self.image = "fall" + str((game.timer // 4) % 2)
 elif self.fire_timer > 0:
 self.image = "blow" + dir_index
 elif dx == 0:
 self.image = "still"
 else:
 self.image = "run" + dir_index + str((game.timer // 8) % 4)

class Robot(GravityActor):
 TYPE_NORMAL = 0
 TYPE_AGGRESSIVE = 1

 def __init__(self, pos, type):
 super().__init__(pos)

 self.type = type

 self.speed = randint(1, 3)
 self.direction_x = 1
 self.alive = True

 self.change_dir_timer = 0
 self.fire_timer = 100

 def update(self):
 super().update()

 self.change_dir_timer -= 1
 self.fire_timer += 1

 if self.move(self.direction_x, 0, self.speed):
 self.change_dir_timer = 0

 if self.change_dir_timer <= 0:
 directions = [-1, 1]
 if game.player:
 directions.append(sign(game.player.x - self.x))
 self.direction_x = choice(directions)
 self.change_dir_timer = randint(100, 250)

 if self.type == Robot.TYPE_AGGRESSIVE and self.fire_timer >= 24:
 for orb in game.orbs:
 if orb.y >= self.top and orb.y < self.bottom and \

72

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

 abs(orb.x - self.x) < 200:
 self.direction_x = sign(orb.x - self.x)
 self.fire_timer = 0
 break

 if self.fire_timer >= 12:
 fire_probability = game.fire_probability()
 if game.player and self.top < game.player.bottom and \
 self.bottom > game.player.top:
 fire_probability *= 10
 if random() < fire_probability:
 self.fire_timer = 0
 game.play_sound("laser", 4)

 elif self.fire_timer == 8:
 game.bolts.append(Bolt((self.x + self.direction_x * 20, self.y - 38),
 self.direction_x))

 for orb in game.orbs:
 if orb.trapped_enemy_type == None and self.collidepoint(orb.center):
 self.alive = False
 orb.floating = True
 orb.trapped_enemy_type = self.type
 game.play_sound("trap", 4)
 break

 direction_idx = "1" if self.direction_x > 0 else "0"
 image = "robot" + str(self.type) + direction_idx
 if self.fire_timer < 12:
 image += str(5 + (self.fire_timer // 4))
 else:
 image += str(1 + ((game.timer // 4) % 4))
 self.image = image

class Game:
 def __init__(self, player=None):
 self.player = player
 self.level_colour = -1
 self.level = -1

 self.next_level()

 def fire_probability(self):
 return 0.001 + (0.0001 * min(100, self.level))

 def max_enemies(self):

370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.

73

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

 return min((self.level + 6) // 2, 8)

 def next_level(self):
 self.level_colour = (self.level_colour + 1) % 4
 self.level += 1
 self.grid = LEVELS[self.level % len(LEVELS)]
 self.grid = self.grid + [self.grid[0]]
 self.timer = -1

 if self.player:
 self.player.reset()

 self.fruits = []
 self.bolts = []
 self.enemies = []
 self.pops = []
 self.orbs = []

 num_enemies = 10 + self.level
 num_strong_enemies = 1 + int(self.level / 1.5)
 num_weak_enemies = num_enemies - num_strong_enemies
 self.pending_enemies = num_strong_enemies * [Robot.TYPE_AGGRESSIVE] + \
 num_weak_enemies * [Robot.TYPE_NORMAL]

 shuffle(self.pending_enemies)
 self.play_sound("level", 1)

 def get_robot_spawn_x(self):
 r = randint(0, NUM_COLUMNS-1)

 for i in range(NUM_COLUMNS):
 grid_x = (r+i) % NUM_COLUMNS
 if self.grid[0][grid_x] == ' ':
 return GRID_BLOCK_SIZE * grid_x + LEVEL_X_OFFSET + 12

 return WIDTH/2

 def update(self):
 self.timer += 1

 for obj in self.fruits + self.bolts + self.enemies + self.pops + \
 [self.player] + self.orbs:
 if obj:
 obj.update()

 self.fruits = [f for f in self.fruits if f.time_to_live > 0]
 self.bolts = [b for b in self.bolts if b.active]

417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.

74

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

 self.enemies = [e for e in self.enemies if e.alive]
 self.pops = [p for p in self.pops if p.timer < 12]
 self.orbs = [o for o in self.orbs if o.timer < 250 and o.y > -40]

 if self.timer % 100 == 0 and len(self.pending_enemies + self.enemies) > 0:
 self.fruits.append(Fruit((randint(70, 730), randint(75, 400))))

 if self.timer % 81 == 0 and len(self.pending_enemies) > 0 and \
 len(self.enemies) < self.max_enemies():
 robot_type = self.pending_enemies.pop()
 pos = (self.get_robot_spawn_x(), -30)
 self.enemies.append(Robot(pos, robot_type))

 if len(self.pending_enemies + self.fruits + self.enemies + self.pops) == 0:
 if len([orb for orb in self.orbs if orb.trapped_enemy_type != None]) == 0:
 self.next_level()

 def draw(self):
 screen.blit("bg%d" % self.level_colour, (0, 0))

 block_sprite = "block" + str(self.level % 4)

 for row_y in range(NUM_ROWS):
 row = self.grid[row_y]
 if len(row) > 0:
 x = LEVEL_X_OFFSET
 for block in row:
 if block != ' ':
 screen.blit(block_sprite, (x, row_y * GRID_BLOCK_SIZE))
 x += GRID_BLOCK_SIZE

 all_objs = self.fruits + self.bolts + self.enemies + self.pops + self.orbs
 all_objs.append(self.player)
 for obj in all_objs:
 if obj:
 obj.draw()

 def play_sound(self, name, count=1):
 if self.player:
 try:
 sound = getattr(sounds, name + str(randint(0, count - 1)))
 sound.play()
 except Exception as e:
 print(e)

CHAR_WIDTH = [27, 26, 25, 26, 25, 25, 26, 25, 12, 26, 26, 25, 33, 25, 26,
 25, 27, 26, 26, 25, 26, 26, 38, 25, 25, 25]

464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.

75

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

def char_width(char):
 index = max(0, ord(char) - 65)
 return CHAR_WIDTH[index]

def draw_text(text, y, x=None):
 if x == None:
 x = (WIDTH - sum([char_width(c) for c in text])) // 2

 for char in text:
 screen.blit("font0"+str(ord(char)), (x, y))
 x += char_width(char)

IMAGE_WIDTH = {"life":44, "plus":40, "health":40}

def draw_status():
 number_width = CHAR_WIDTH[0]
 s = str(game.player.score)
 draw_text(s, 451, WIDTH - 2 - (number_width * len(s)))
 draw_text("LEVEL " + str(game.level + 1), 451)

 lives_health = ["life"] * min(2, game.player.lives)
 if game.player.lives > 2:
 lives_health.append("plus")
 if game.player.lives >= 0:
 lives_health += ["health"] * game.player.health

 x = 0
 for image in lives_health:
 screen.blit(image, (x, 450))
 x += IMAGE_WIDTH[image]

space_down = False

def space_pressed():
 global space_down
 if keyboard.space:
 if space_down:
 return False
 else:
 space_down = True
 return True

class State(Enum):
 MENU = 1
 PLAY = 2
 GAME_OVER = 3

511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.

76

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

def update():
 global state, game

 if state == State.MENU:
 if space_pressed():
 state = State.PLAY
 game = Game(Player())
 else:
 game.update()

 elif state == State.PLAY:
 if game.player.lives < 0:
 game.play_sound("over")
 state = State.GAME_OVER
 else:
 game.update()

 elif state == State.GAME_OVER:
 if space_pressed():
 state = State.MENU
 game = Game()

def draw():
 game.draw()

 if state == State.MENU:
 screen.blit("title", (0, 0))
 anim_frame = min(((game.timer + 40) % 160) // 4, 9)
 screen.blit("space" + str(anim_frame), (130, 280))

 elif state == State.PLAY:
 draw_status()

 elif state == State.GAME_OVER:
 draw_status()
 screen.blit("over", (0, 0))

pygame.mixer.quit()
pygame.mixer.init(44100, -16, 2, 1024)

music.play("theme")
music.set_volume(0.3)

state = State.MENU
game = Game()
pgzrun.go()

558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.

http://pgzrun.go

77

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

78

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

1 The Cavern
title for the
attract screen

2 A variety of enemy
sprite frames,
including for them
being trapped
in bubbles

3 The pop
animation for
when fruit
is collected
or expires

4 The player sprite
has several
animation
frames, including
for running
and jumping

1

3

4

2

79

A
ct

io
n

Pl
at

fo
rm

er
 –

 C
od

in
g

To
da

y:
 C

av
er

n

Coding Today

Cavern

5 Four backgrounds
are used for the
various levels

6 The bubble
popping
animation

7 The fall animation
is shown upon
losing a life

8 Getting hit by
enemy fire results
in the recoil
animation

9 Make sure to
grab an extra life
power-up if you
spot one

8

10

9

7

6

5

10 Collect fruit
left behind by
defeated enemies
for extra points

80

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

Play around with the benefits
that a different perspective

can lend to a game

Top-down Platformer

Chapter 3

81

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

rogger turned traditional platform games
on their head by adopting a top-down
perspective. It’s still fondly regarded
more than three decades on – and
continues to inspire programmers
building games like modern mobile

hit Crossy Road. The premise was simple: players guided
frogs across a busy road and a river packed full of floating
obstacles until they reached the safety of their home.
Unusually, the player viewed the game as if they were
hovering above the action. The game resembles a free-form
maze, with players needing to plot a correct path from A to
B to survive. Given that there are lots and lots of ways to
die in this game, that’s easier said than done.

Inspiration
Frogger was ported from the arcade to Atari computers by
John D. Harris, who worked for On-Line Systems. He
ended up having a long association with Atari machines, for
which he also produced Jawbreaker and Mouskattack, while
working for On-Line Systems. He pioneered new practices
from early in his career, not only creating a copy-protection
system for Atari but being the first to have a continuous
music score playing during a game. As well as working on a
3D system for the Atari Jaguar, he has produced games for
the PlayStation and has constantly sought to push the limits
of design. Having been a partner in Pulsar Interactive
Corp and now Platoteam Inc, he is acclaimed as one of
gaming’s legendary figures.

F

82

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

Frogger

Released 1981

Platforms Arcade

 Atari 8-bit

 Intellivision

 Atari 2600

 Atari 5200

 ColecoVision

 Commodore VIC-20

 Commodore 64

 Amstrad CPC

 ZX Spectrum

 TRS-80/Dragon 32

 Timex Sinclair 1000

 Timex Sinclair 2068

83

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

84

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

The game was originally ported to just about every machine possible at the time,
but in 1998 it also appeared late on the Sega Mega Drive, SNES, Game Boy, and
Game Boy Color.

Other Notables Ultima / Legend of Zelda / Pokémon

Why did the frog cross the road? To get to the other side, of course. But how did it
cross the road? Well, that’s an entirely different question and one which many players
of the classic arcade game Frogger often asked themselves – especially when the green
anthropomorphic amphibian under their control got squished beneath the wheels of
yet another lorry.

And the frog did cross that road – millions of times over. The squishing aspect
of this iconic highway/river crossing game may sound gruesome, but it sure made for
a rewarding challenge, ensuring that, back in 1981, Frogger was a surefire hit for maker
Konami. The combination of pure playability and a simple premise made it perfect
for a coin-operated machine.

Back in the late 1970s and early 1980s, arcades flourished, leading to intense
competition among games developers. The trick was to encourage players to insert
as much of their (parents’) hard-earned cash as possible, and the perceived wisdom
was that games needed to be easily explained and understood in order to get those
initial coins moving.

In Frogger’s case, all a player had to do was get the frog from the bottom of the
screen to the top, dodging vehicles and crossing a hazardous river in order to scramble
to safety. To keep players coming back for more, the developers made it difficult
enough to ensure that failure would, at some point, be inevitable. The frustration
resulting from not being able to get all five frogs to their various homes on the river
bank was all that was needed to ensure the flow of cash into the arcade cabinet.

Fledgling programmer John D. Harris was at the start of his career when
Frogger was released. He had started working as an independent developer in March
1981 and had cut his teeth developing versions of Starhawk, Head-on, and a Berzerk-style
title – three games which, unfortunately, never saw the light of day. His breakthrough
came with Jawbreaker, released that year by On-line Systems for the Atari 400 and 800
computers. It went down a storm with reviewers and gamers.

Even so, it attracted some controversy. Jawbreaker was the subject of an
unsuccessful injunction from Atari due to its similarities to another arcade hit,
Pac-Man. But it showcased John’s flair for coding and he was subsequently given the
task of officially converting Frogger from the arcades to Atari 8-bit computers. There
was massive demand among gamers to be able to enjoy the coin-op hits at home, and
it become the game that defined and truly kick-started his career.

Spawning ground
John grew up in the United States, and had been interested in gaming and coding
from an early age. “My first exposure to game programming happened in junior
high,” he says. He recalls his school having an old Teletype terminal: machines like
electromechanical typewriters which allowed typed messages to be sent from one

85

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

point to another. “We used it to play mainframe games like Star Trek or Colossal Cave
Adventure,” he continues, talking about two text-based computer games released in
1971 and 1976, respectively. “At the time, I was only vaguely aware that computers
could do anything else.”

Star Trek made a huge impression on him. As he watched someone playing
the game, he noticed it was behaving differently to what he was used to seeing. “I
asked him what was going on, and he said that he ‘changed the program’. The blank
look on my face let him know that I had no clue what he was talking about, so
he graciously explained further about the BASIC programming language, and he
showed me how to ‘break’ the game execution and list the program instructions. It
was the definitive ‘light bulb moment’ that opened up a whole new world for me.”

In the late 1970s, more and more home computers appeared on the market.
The Olivetti P6060 was released in April 1975 and it boasted just 8kB of RAM
in its lowest-priced incarnation (which, incidentally, cost an eye-watering $7950).
Meanwhile, the 8-bit Apple II was released for $1298 in June 1977. A few months
later, Commodore released the PET, a futuristic-looking home computer based
around the MOS Technology 6502 processor which had up to 96kB of RAM. This
machine made a big impression on John.

The PET was able to output monochrome graphics while software could
be stored on cassette tape, a 5.25-inch floppy, 8-inch floppy, or a hard disk. “I really
liked the Commodore PET and I knew a few people who had them,” John says.
“They would let me play with them from time to time and I had been saving money
for one. But then a friend got an Apple II and it was an interesting contrast. While
it was missing fundamental features like full-screen editing that made working with
the machine much more cumbersome, I could see the extra graphics potential of
the Apple.” Still, John decided he would buy the PET and went to the store with his
saved-up cash, excited about making his new purchase.

“But fate stepped in and provided an alternative choice,” he recalls. “On the
day I went into the store to buy the machine, they had just received an Atari 800.
It didn’t take long to discover that it had all of the ease-of-use features of the PET,
and then some, plus the colour graphics capabilities of the Apple. There was no hint
yet of how vastly superior it really was, but this combination of features resolved a
nagging concern within me that I was settling for lesser capabilities in the PET in
order to get a machine that was more fun to work with. Now I could have the best
of both worlds.”

Even so, John had the problems that come with early adoption. “There were
no programs for the Atari other than the BASIC and Educational System cartridges,
and there were no tapes. Yet I bought the Atari 800 and I couldn’t have been happier
with it.” That decision had a major influence on John’s life, leading to the porting of
Frogger to that machine. “It’s crazy to think how much different my life would have
been had I entered that store one day earlier and been a PET owner,” he adds.

Creating Frogger
In order to start porting Frogger to the Atari 400 and 800, John amassed some extra
hardware. As well as his 48kB Atari 800, he had an Axlon RAMDISK that lent an
extra 128kB of memory, a high-speed floppy disk interface made by LE Systems, and
an Austin-Franklin 80-Column Board which presented an 80-column by 25-character

86

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

screen display on a monitor. With those in hand, he began to deconstruct the original
game and make notes about the various aspects of its gameplay.

Simple, distinct sections made up the playing screen. In order for the frogs to
get from the bottom of the screen to the top, they had to cross five lanes of highway
(which is why the game was very nearly called Highway Crossing Frog). From there,
they had to reach the pavement on the other side and then negotiate a river. In
each of those two sections, the frogs had to avoid busy traffic and then avoid falling
in the water by hopping on logs while staying clear of alligators’ mouths and other
floating hazards.

In order to be faithful to the original, these aspects had to be retained. John
worked on recreating the visual look of the background, producing the graphics that
separate out the screen into the various sections, taking care to include the starting
pavement where the frogs began their perilous journey and the five homes at the top
of the screen which allowed them to rest safely.
John also created the frog itself and worked on
its movement.

Thankfully, this was a straightforward
task because the original designers had decided to
go with four-way controls. “Eight-way movement
would have offered more control, but it’s also
more likely to move in a diagonal when it wasn’t
intended, or vice versa,” he explains. “Often that
would come with fatal consequences.” Indeed,
keeping the movements simple worked well
because it not only removed the potential margin
for error, but allowed players to concentrate on
the timing of the movements.

“There’s always a balance between having enough control depth to keep the
player interested and challenged, but not too much to where the controls become a
downfall,” John adds. So the frogs were able to move left, right, up, and down, with
the latter option tending only to be used when players made an error and had to
resort to going back a step in order to avoid losing a life. At each step of the game,
players had to keep those obstacles in mind.

The first set of obstacles were the vehicles. The arcade version had five rows
of traffic, each of which would move in a different direction to the adjacent ones.
This meant the bottom row would move right-to-left, the next left-to-right and so on,
producing a challenging game environment. If all of the vehicles headed in the same
direction, then it might have been possible for a player to quickly make their way
from one corner of the traffic to another.

As it was, the game forced the brain to work with more complex movement
patterns. In gaming, keeping a player on their toes and heightening the sense of
danger is always a good thing. The arcade game also spiced things up by using
different vehicles, some of which were longer or had different
behaviours than the others.

“There are multiple simultaneous objectives in
creating a game world,” explains John. “It needs to be fun,
but it should also have interesting visuals and sounds for

The arcade version
had five rows of
traffic, each of which
would move in a
different direction

1 A flyer for the US
version of the
coin-op, released
by Sega/Gremlin

87

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

1

88

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

3

4

2

89

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

a more complete experience. Most of the vehicle types are really only there for
visual variety, with the play variety handled through the different regions of the
screen. That said, a few types offer gameplay differences like faster movement or
longer length.”

The river section worked in much the same way, except instead of having to
dodge through the gaps of the traffic, players needed to use the logs and the backs of
turtles and alligators to step across. Since the gap here is water, it causes the instant
loss of a life, and put a different spin on the second section, almost turning it into a
level of its own.

“The two parts are very similar, but they are a way to get both visual and subtle
variety in play,” says John. “At their heart, both sections are still about navigating

across scrolling safe or danger segments, with the
water being the opposite of the roadway. So you
hop through the gaps in the road, but avoid the
gaps and hop onto the solid objects in the water.
The water, however, offers additional options of
having the turtles occasionally dive, adding an
extra dimension to the player’s navigation and
planning. So as you progress up the screen from
bottom to top, the game is able to add some
additional challenge as you’re getting closer to
the home goals.”

These home goals were the five safe
places for the players’ frogs to reside. Only

one frog was able to stay on any one lily pad, so this added some extra pressure
and required players to employ some clever tactics. This was doubly vital because
there was no safe banking once the frog had hopped off the final log: the frog had
to leap straight onto an empty lily pad. Timing and positional planning at this point
became essential.

Collision detection
Without solid collision detection, obstacles don’t mean much. “When a player makes
a move, the code needs to work out where all the other objects on the screen are,
according to their directions and speeds in relation to the character. It checks for
collisions based on where you are: being hit by a vehicle in
the street, landing in open water, and so on.” If there was a
collision, then the code needed to act upon it and kill the frog,
resulting in a fun animation to show that the character has
died (a skull and crossbones appeared in the original). There
were many ways to lose a life.

A frog could be hit by a vehicle or end up in the
water. It could collide with a snake, an otter, or the jaws of
an alligator. It could try to use a turtle that was about to
dive under water, taking the frog with it. It could also stay
on a log for too long and end up going off the edge of the
screen. When it came to trying to find a home, any frog which
hopped into the bush by mistake, tried to take over an already

2 Advert for the
Atari 2600
console version
of Frogger

3 Magazine advert
for Sega’s
home computer
conversions

4 A Frogger coin-op
was featured
in ‘The Frogger’
episode of the
sitcom Seinfeld

Players needed to
use the logs and the
backs of turtles and

alligators to step
across the river

90

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

occupied home, or found the home had an alligator in it would also perish. All of this
served to heighten the player’s sense of peril – hopefully without causing them to slam
down their controller in exasperation.

“As long as all of the mechanisms for one’s demise are reasonable and
consistent, then we’re just increasing variety and not adding frustration,” says John.
“Granted, you can make the case that landing in water should not be fatal to a
frog, but that’s the rule defined by the game world – and the main point is that it’s
consistently that way, and part of the core gameplay. Frustration sets in if the rules
aren’t consistent or if players die from threats that aren’t readily obvious in nature.”

There was one other way in which a frog could die. Players could run out
of time, since each of the levels had to be completed within a time limit. In Frogger,
this was very important because it sped up a game that might otherwise be played
rather slowly. Forget everything you’ve learned about crossing a real-life road with
this game: getting across fast, albeit in one piece, was everything.

“With no time pressure, it would be too
easy to casually wait for perfect opportunities,”
confirms John. “You could retreat into safer
areas until the best gaps and alignments came
along. The timer is really the only element
that forces the player to keep driving forwards.
It’s what turns a stroll across the screen into a
challenge in which the player needs to figure out
paths in real-time while under pressure.”

But how much time should a player
have? “Figuring out the details of how much
time to give is usually a matter of play-testing,”
says John. “If you lose lives too often because
you’re running out of time, then the timer needs to be increased. If you always have
lots of time left, and you don’t feel pressured to complete the level in a reasonable
amount of time, then the timer needs to be shorter. Such tests need to be performed
by people other than the primary developers, since they are usually too familiar with
the game and would give times skewed on the faster side.”

With so much scope for losing a life, there also had to be a consideration over
how many lives a player had. “Lives in games were generally picked to adjust how
much time someone can continue to play on one quarter, back when arcades were
the primary and intended audience for the game,” John explains. “But ultimately, it is
good design to let players survive a few mistakes, or else it would be too frustrating. If
the number is too high, then there isn’t enough urgency placed on survival. So three
lives tends to be a good balance.”

High-score table
Frogger also spurred people on with a scoring system, with points being awarded for
each step of progress made. A high-score table was created for bragging rights, but
there were also bonuses to collect along the way. This encouraged replays in the
arcade version: “Bonuses are generally ways to give players something else to strive
for once they have conquered the basic mechanics,” says John – and bonuses also
allowed them to gain more points for that all-important high-score table advantage.

You can make the
case that landing in
water should not be
fatal to a frog, but
that’s the rule

91

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

“Once you can play successfully, then the challenge is whether you can also score the
most points.”

Working out how such a structured game could continue to be fun and keep
people playing was all-important. When the original developers were creating Frogger
in the arcades, the feeling of progression meant that players would keep putting more
money into the coin-op machines, but even in home versions there is a need to give
players a feeling they are getting value from their purchase.

“You always want early levels to be fairly easy for players to complete, so that
they receive some immediate rewards and progress,” advises John. “Then, as they
learn the mechanics and become more skilled at navigating them, the game needs to
increase the challenge or else players will become bored.”

He says Frogger accomplished that in two ways: “It makes the paths more
difficult and dangerous, and it gives the player less time to make the decisions on
how to get through them. So it both increases the challenge, along with the sense of
urgency. More specifically, it reduces the size of the gaps between vehicles, speeds up
some of the vehicles, and reduces the number and size of the river turtles.

“Finally, it will replace some turtles with alligators, which are functionally just
smaller turtles – there’s no difference between landing on an alligator’s head versus
landing in the water – but they really do provide a more visceral threat. Having
the greatest perceived threat also be right at the end, near the home goals, gives it
maximum emotional impact, and maximum relief and satisfaction upon success.”

Starting over
Initially, development of Frogger ran reasonably smoothly and the more John got to
grips with his Atari 800, the more he began to fall in love with it. He dedicated
himself to gaming, enjoying Star Raider, Robotron 2084, Shamus, and Mouskattack, and
he almost became inseparable from his computer, taking it with him on trips so he
could continue working.

“In the years to come, the Atari would forever establish itself in my mind
as one of the greatest computers ever made,” he says. “People were still discovering
new graphic tricks and techniques ten years after the machine was introduced. If
you compare the latest programs written for the Atari with the earliest programs,
the huge difference between them is a testament to the magic they accomplished
with its design.”

But then disaster struck. His original saved Frogger code was stolen, along with
all of his backups. “All I had left was an older backup that was near the beginning of

Short term: Start with the background elements – this way you can get the largest amount of visual
progress done early on.

Medium term: Add the frog movement, player controls, and collision detection – enough for a basic
playable game.

Long term: Throw in the remaining elements like snakes, alligators, bonus items, and a timer. Here is
also where the game should be tested for balance, excitement, and frustration.

The objectives

92

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

stage 3,” he says. “I had the basic gameplay, but all the additional elements, and all
the balancing, were gone.” It meant John ended up writing Frogger not once but twice,
and he says the second time didn’t feel as good as the first.

“I kept trying to remember and recreate what I had already done, mixed with
the emotions of the loss,” John continues. “If I could have separated myself from all
that, and just re-solved the issues rather than reconstruct earlier solutions, I probably
could have saved myself a lot of time and grief.” Fortunately, though, the version he
created sparkled, and it communicated the very essence of what made Frogger a major
hit. Sales were helped by the game’s long-lived popularity in the arcades. Indeed, the
game – along with Joust, Millipede, Super Pac-Man, and Donkey Kong Jr – was used in the
first video game world championships held in January 1983. The highest-ever score
for the arcade game is 970,440 points, achieved in 2012, which shows the game’s
enduring popularity.

Frogger wasn’t the end of the road for the green hero, though. It gained a
number of follow-ups including Frogger II: ThreeeDeep!, which introduced three
consecutive screens, while Ribbit! allowed the frogs to gobble wasps, flies, and crabs.
Frogger 2 on the Game Boy Color allowed players to control Frogger’s girlfriend Lily.
“It’s the only genre I can think of where you have so many options, and so much
control,” says John. “The creative limits are boundless and it’s an excellent mix
between creative energies and technical challenges. I wish you all the best if you
choose to follow this path.”

But how does John view the earliest days of the industry, when Frogger was
still set to leap on to the masses? “The most interesting detail
about the early computer scene, and also one of the things
I miss the most, is that everyone was very open about their
efforts, and each new discovery was enthusiastically shared,”
John says. “It was an era of experimentation, and the first
thing we’d do after finding something new was tell everyone
else about it. This was only partially due to the desire to ‘look
cool’ for figuring it out. There was also a genuine desire for
others to benefit from it, because the more people we had
using the best techniques, the better programs we would get
at every level.”

5 The Frogger
coin-op featured
a vertical screen
arrangement

6 Home versions,
including
John’s Atari 800
game, had to
convert this
to a horizontal
TV screen

John D. Harris has constantly looked to improve his design skills, learning new techniques as he’s
moved from one platform to another.

Difficulty level: You always want early levels to be fairly easy for players to complete, so that they
receive some immediate rewards and progress.

Easy controls: The simpler the control scheme is, the more intuitive your game will be to play and the
less potential there will be for input mistakes or confusion.

Learn from the master

93

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

6

5

94

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 F

ro
gg

er

95

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

nfinite Bunner is our take on the classic Frogger
gameplay. The original game takes place
on a single screen, with a busy road at the
bottom and a river at the top. In our game,
the level is procedurally generated and scrolls
continuously. The player must progress fast

enough to avoid falling off the bottom of the screen – if
this happens, an Eagle flies down the screen and catches
the player, resulting in Game Over.

The level is divided into a series of sections, each
of a particular type – Grass, Dirt, Road, Pavement, Rail, or
Water. Each section is made up of a series of rows, where
each row corresponds to one sprite from the images folder.
Rows are 40 pixels high, although you may notice that
some of the sprites are 60 pixels high; this is just a visual
effect – the sprite overhangs the row above, but the row is
still considered 40 pixels high for gameplay purposes.

I

Download the fully commented Infinite Bunner game code, along
with all the graphics and sounds, from wfmag.cc/CTC1-bunner

Download the code

http://wfmag.cc/CTC1-bunner

96

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

Road, Water, and Rail
sections all feature moving objects:
Cars, Logs, and trains (the latter has
no class of its own). Grass sections
may contain Hedges, which the
player must walk around. Because
these objects always stay within
their rows, we classify them as child
objects of the rows. Child objects
are drawn relative to their parent
rows – e.g. if a road row has a Y
coordinate of 200, and a car on the
road has a Y coordinate of 10, the
car would be drawn at Y coordinate
210. To provide this functionality,
all objects in the game inherit from
a class called MyActor, which in turn
inherits from Pygame Zero’s built-in
Actor class. MyActor works just like
Actor except that it overrides the
update and draw methods in order
to update and draw the list of child
objects. It also ensures objects are

drawn at the correct position on screen, taking the scrolling of the level into account.
 All rows inherit from the Row class. This performs several important tasks,

such as collision detection. Some of the methods provide default results, which can be
overridden in inherited classes. For example, the push method – called by the player
to determine movement on the x-axis – returns zero, resulting in no movement. In the
Water class, however, this method is overridden,
and causes the player to move on the x-axis if
they’re currently sitting on a log.

The ActiveRow class inherits from Row,
and is the base class for Water and Road. What
those two classes have in common is that they
both feature moving objects (logs and cars)
which start just off-screen and move horizontally.
ActiveRow deals with creating and destroying
these child objects. The two subclasses override
a number of methods – one key example being
check_collision. The Bunner.update method calls this to find out if the player has
collided with something, and if so, what to do about it. In the case of Road, colliding
with a car kills the player and replaces the player sprite with the ‘splat’ image. For
Water, however, colliding with a log is a good thing, whereas not colliding with a log
ends the game and replaces the player sprite with the ‘splash’ animation.

The Game class maintains a reference to the player object, and is also
responsible for creating, updating, and deleting rows. The final part of the code uses
a simple state machine system to update and draw the game objects.

Colliding with a car kills
the player and replaces
the player sprite with
the ‘splat’ image

ActiveRow.update ensures a minimum
distance of 240 pixels between the start of
one child object and the start of the next – or
half that for rows where child objects have a
speed of 2. A random factor varies the distance
between each child object. These rules apply
to both Road and Water rows – but how would
you make it so that each of those row types
could have its own custom values or rules for
the spacing of child objects?

Try adding a new type of row to the game
– perhaps lava, ice, or space? The graphics
could initially be a copy and recolouring of an
existing row type’s. More importantly, you’ll
need to think about whether the new row will
be a variation on an existing one, or have a
completely new gameplay mechanic.

Challenges

97

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

The __init__ (constructor) method
of the Game class creates a list to
contain the rows. To begin with, this just
contains a single Grass row. This will
be the first row, and will appear at the
bottom of the screen – but how does
the game decide which types of rows
to create after that? Each row class –
Grass, Road, Dirt, Rail, Pavement,
and Water – has a next method, which
decides what the next row will be. Each
method makes a decision based on the
current row’s index – in other words,
the number of the row’s sprite.

There are 16 grass and dirt sprites,
four rail sprites, six road sprites, three pavement sprites, and eight water sprites. These sprites only
tile together correctly in certain combinations – for example, Grass 6 must be followed by Grass 7.
So some of the rules in the next methods ensure that such rows occur in the correct sequence. Other
rules make random choices as to which row comes next. For example, a sequence of Grass or Dirt
rows is followed by either Road or Water.

Random probabilities of rows can also be used to determine how many rows of certain types
occur in sequence. In the case of Water rows, there are always at least two in sequence, but after
the second one there’s always a 50-50 chance of another, up to a maximum of seven. The use of
randomness ensures that the level is different each time you play.

Rows after rows after rows

Grass rows sometimes contain Hedges. These block certain parts of the row, requiring the
player to make a detour around them. The function generate_hedge_mask decides the layout
of hedge segments in a row. A mask is a series of Boolean values which allow or prevent parts
of an underlying image from showing through. This function creates a mask representing
the presence or absence of hedges in a Grass row. False means a hedge is present; True
represents a gap.

Initially we create a list of twelve elements.
For each element there is a small chance of a gap,
but often all elements will be False, representing
a hedge with no gaps. We then randomly set
one element to True, to ensure that there is
always at least one gap that the player can get
through. Single-tile gaps aren’t wide enough for
the player to fit through, so the next step is to
widen any gaps to a minimum of three tiles. Once
the mask has been generated, the function
classify_hedge_segment is used to determine
which sprite to use for each hedge segment.

Solving the Hedge-mask

98

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

import pgzero, pgzrun, pygame, sys
from random import *
from enum import Enum

if sys.version_info < (3,5):
 print("This game requires at least version 3.5 of Python. Please download"
 "it from www.python.org")
 sys.exit()

pgzero_version = [int(s) if s.isnumeric() else s
 for s in pgzero.__version__.split('.')]
if pgzero_version < [1,2]:
 print("This game requires at least version 1.2 of Pygame Zero. You are"
 "using version {pgzero.__version__}. Please upgrade using the command"
 "'pip install --upgrade pgzero'")
 sys.exit()

WIDTH = 480
HEIGHT = 800
TITLE = "Infinite Bunner"

ROW_HEIGHT = 40
DEBUG_SHOW_ROW_BOUNDARIES = False

class MyActor(Actor):
 def __init__(self, image, pos, anchor=("center", "bottom")):
 super().__init__(image, pos, anchor)
 self.children = []

 def draw(self, offset_x, offset_y):
 self.x += offset_x
 self.y += offset_y

 super().draw()
 for child_obj in self.children:
 child_obj.draw(self.x, self.y)

 self.x -= offset_x
 self.y -= offset_y

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.

Open the bunner.py file in a Python editor, such as IDLE, and select Run > Run Module.
For more details, see the ‘Setting up’ section on page 186.

How to run the game

wfmag.cc/CTC1-bunnerDownload the code

http://www.python.org
http://bunner.py
http://wfmag.cc/CTC1-bunner

99

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

 def update(self):
 for child_obj in self.children:
 child_obj.update()

class Eagle(MyActor):
 def __init__(self, pos):
 super().__init__("eagles", pos)
 self.children.append(MyActor("eagle", (0, -32)))

def update(self):
 self.y += 12

class PlayerState(Enum):
 ALIVE = 0,
 SPLAT = 1,
 SPLASH = 2,
 EAGLE = 3

DIRECTION_UP = 0
DIRECTION_RIGHT = 1
DIRECTION_DOWN = 2
DIRECTION_LEFT = 3

direction_keys = [keys.UP, keys.RIGHT, keys.DOWN, keys.LEFT]

DX = [0,4,0,-4]
DY = [-4,0,4,0]

class Bunner(MyActor):
 MOVE_DISTANCE = 10

 def __init__(self, pos):
 super().__init__("blank", pos)
 self.state = PlayerState.ALIVE
 self.direction = 2
 self.timer = 0
 self.input_queue = []
 self.min_y = self.y

 def handle_input(self, dir):
 for row in game.rows:
 if row.y == self.y + Bunner.MOVE_DISTANCE * DY[dir]:
 if row.allow_movement(self.x + Bunner.MOVE_DISTANCE * DX[dir]):
 self.direction = dir
 self.timer = Bunner.MOVE_DISTANCE
 game.play_sound("jump", 1)

040.
041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.

http://keys.UP

100

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

 return
 def update(self):
 for direction in range(4):
 if key_just_pressed(direction_keys[direction]):
 self.input_queue.append(direction)

 if self.state == PlayerState.ALIVE:
 if self.timer == 0 and len(self.input_queue) > 0:
 self.handle_input(self.input_queue.pop(0))

 land = False

 if self.timer > 0:
 self.x += DX[self.direction]
 self.y += DY[self.direction]
 self.timer -= 1
 land = self.timer == 0

 current_row = None
 for row in game.rows:
 if row.y == self.y:
 current_row = row
 break

 if current_row:
 self.state, dead_obj_y_offset = current_row.check_collision(self.x)

 if self.state == PlayerState.ALIVE:
 self.x += current_row.push()

 if land:
 current_row.play_sound()
 else:
 if self.state == PlayerState.SPLAT:
 current_row.children.insert(0, MyActor("splat" + \
 str(self.direction), (self.x, dead_obj_y_offset)))
 self.timer = 100
 else:
 if self.y > game.scroll_pos + HEIGHT + 80:
 game.eagle = Eagle((self.x, game.scroll_pos))
 self.state = PlayerState.EAGLE
 self.timer = 150
 game.play_sound("eagle")

 self.x = max(16, min(WIDTH - 16, self.x))
 else:
 self.timer -= 1

087.
088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

101

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

 self.min_y = min(self.min_y, self.y)
 self.image = "blank"

 if self.state == PlayerState.ALIVE:
 if self.timer > 0:
 self.image = "jump" + str(self.direction)
 else:
 self.image = "sit" + str(self.direction)
 elif self.state == PlayerState.SPLASH and self.timer > 84:
 self.image = "splash" + str(int((100 - self.timer) / 2))

class Mover(MyActor):
 def __init__(self, dx, image, pos):
 super().__init__(image, pos)
 self.dx = dx

 def update(self):
 self.x += self.dx

class Car(Mover):
 SOUND_ZOOM = 0
 SOUND_HONK = 1

 def __init__(self, dx, pos):
 image = "car" + str(randint(0, 3)) + ("0" if dx < 0 else "1")
 super().__init__(dx, image, pos)
 self.played = [False, False]
 self.sounds = [("zoom", 6), ("honk", 4)]

 def play_sound(self, num):
 if not self.played[num]:
 game.play_sound(*self.sounds[num])
 self.played[num] = True

class Log(Mover):
 def __init__(self, dx, pos):
 image = "log" + str(randint(0, 1))
 super().__init__(dx, image, pos)

class Train(Mover):
 def __init__(self, dx, pos):
 image = "train" +str(randint(0, 2)) + ("0" if dx < 0 else "1")
 super().__init__(dx, image, pos)

class Row(MyActor):
 def __init__(self, base_image, index, y):

134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.

http://self.dx
http://self.dx

102

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

 super().__init__(base_image + str(index), (0, y), ("left", "bottom"))
 self.index = index
 self.dx = 0

 def next(self):
 return

 def collide(self, x, margin=0):
 for child_obj in self.children:
 if x >= child_obj.x - (child_obj.width / 2) - margin \
 and x < child_obj.x + (child_obj.width / 2) + margin:
 return child_obj

 return None

 def push(self):
 return 0

 def check_collision(self, x):
 return PlayerState.ALIVE, 0

 def allow_movement(self, x):
 return x >= 16 and x <= WIDTH-16

class ActiveRow(Row):
 def __init__(self, child_type, dxs, base_image, index, y):
 super().__init__(base_image, index, y)
 self.child_type = child_type
 self.timer = 0
 self.dx = choice(dxs)

 x = -WIDTH / 2 - 70
 while x < WIDTH / 2 + 70:
 x += randint(240, 480)
 pos = (WIDTH / 2 + (x if self.dx > 0 else -x), 0)
 self.children.append(self.child_type(self.dx, pos))

 def update(self):
 super().update()
 self.children = [c for c in self.children if c.x > -70 and c.x < WIDTH + 70]
 self.timer -= 1

 if self.timer < 0:
 pos = (WIDTH + 70 if self.dx < 0 else -70, 0)
 self.children.append(self.child_type(self.dx, pos))
 self.timer = (1.0 + random()) * (240.0 / abs(self.dx))

181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.

http://self.dx
http://self.dx
http://self.dx
http://self.dx
http://self.dx
http://self.dx
http://self.dx

103

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

class Hedge(MyActor):
 def __init__(self, x, y, pos):
 super().__init__("bush"+str(x)+str(y), pos)

def generate_hedge_mask():
 mask = [random() < 0.01 for i in range(12)]
 mask[randint(0, 11)] = True
 mask = [sum(mask[max(0, i-1):min(12, i+2)]) > 0 for i in range(12)]

 return [mask[0]] + mask + 2 * [mask[-1]]

def classify_hedge_segment(mask, previous_mid_segment):
 if mask[1]:
 sprite_x = None
 else:
 sprite_x = 3 - 2 * mask[0] - mask[2]

 if sprite_x == 3:
 if previous_mid_segment == 4 and mask[3]:
 return 5, None
 else:
 if previous_mid_segment == None or previous_mid_segment == 4:
 sprite_x = 3
 elif previous_mid_segment == 3:
 sprite_x = 4
 return sprite_x, sprite_x
 else:
 return sprite_x, None

class Grass(Row):
 def __init__(self, predecessor, index, y):
 super().__init__("grass", index, y)
 self.hedge_row_index = None
 self.hedge_mask = None

 if not isinstance(predecessor, Grass) or predecessor.hedge_row_index == None:
 if random() < 0.5 and index > 7 and index < 14:
 self.hedge_mask = generate_hedge_mask()
 self.hedge_row_index = 0
 elif predecessor.hedge_row_index == 0:
 self.hedge_mask = predecessor.hedge_mask
 self.hedge_row_index = 1

 if self.hedge_row_index != None:
 previous_mid_segment = None
 for i in range(1, 13):
 sprite_x, previous_mid_segment = \

228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

104

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

 classify_hedge_segment(self.hedge_mask[i - 1:i + 3],
 previous_mid_segment)
 if sprite_x != None:
 self.children.append(Hedge(sprite_x, self.hedge_row_index,
 (i * 40 - 20, 0)))

 def allow_movement(self, x):
 return super().allow_movement(x) and not self.collide(x, 8)

 def play_sound(self):
 game.play_sound("grass", 1)

 def next(self):
 if self.index <= 5:
 row_class, index = Grass, self.index + 8
 elif self.index == 6:
 row_class, index = Grass, 7
 elif self.index == 7:
 row_class, index = Grass, 15
 elif self.index >= 8 and self.index <= 14:
 row_class, index = Grass, self.index + 1
 else:
 row_class, index = choice((Road, Water)), 0

 return row_class(self, index, self.y - ROW_HEIGHT)

class Dirt(Row):
 def __init__(self, predecessor, index, y):
 super().__init__("dirt", index, y)

 def play_sound(self):
 game.play_sound("dirt", 1)

 def next(self):
 if self.index <= 5:
 row_class, index = Dirt, self.index + 8
 elif self.index == 6:
 row_class, index = Dirt, 7
 elif self.index == 7:
 row_class, index = Dirt, 15
 elif self.index >= 8 and self.index <= 14:
 row_class, index = Dirt, self.index + 1
 else:
 row_class, index = choice((Road, Water)), 0

 return row_class(self, index, self.y - ROW_HEIGHT)

275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.

105

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

class Water(ActiveRow):
 def __init__(self, predecessor, index, y):
 dxs = [-2,-1]*(predecessor.dx >= 0) + [1,2]*(predecessor.dx <= 0)
 super().__init__(Log, dxs, "water", index, y)

 def update(self):
 super().update()

 for log in self.children:
 if game.bunner and self.y == game.bunner.y \
 and log == self.collide(game.bunner.x, -4):
 log.y = 2
 else:
 log.y = 0

 def push(self):
 return self.dx

 def check_collision(self, x):
 if self.collide(x, -4):
 return PlayerState.ALIVE, 0
 else:
 game.play_sound("splash")
 return PlayerState.SPLASH, 0

 def play_sound(self):
 game.play_sound("log", 1)

 def next(self):
 if self.index == 7 or (self.index >= 1 and random() < 0.5):
 row_class, index = Dirt, randint(4,6)
 else:
 row_class, index = Water, self.index + 1

 return row_class(self, index, self.y - ROW_HEIGHT)

class Road(ActiveRow):
 def __init__(self, predecessor, index, y):
 dxs = list(set(range(-5, 6)) - set([0, predecessor.dx]))
 super().__init__(Car, dxs, "road", index, y)

 def update(self):
 super().update()

 for y_offset, car_sound_num in [(-ROW_HEIGHT, Car.SOUND_ZOOM),
 (0, Car.SOUND_HONK), (ROW_HEIGHT, Car.SOUND_ZOOM)]:
 if game.bunner and game.bunner.y == self.y + y_offset:

322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.

http://predecessor.dx
http://predecessor.dx
http://self.dx
http://predecessor.dx

106

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

 for child_obj in self.children:
 if isinstance(child_obj, Car):
 dx = child_obj.x - game.bunner.x
 if abs(dx) < 100 and ((child_obj.dx < 0) != (dx < 0)) \
 and (y_offset == 0 or abs(child_obj.dx) > 1):
 child_obj.play_sound(car_sound_num)

 def check_collision(self, x):
 if self.collide(x):
 game.play_sound("splat", 1)
 return PlayerState.SPLAT, 0
 else:
 return PlayerState.ALIVE, 0

 def play_sound(self):
 game.play_sound("road", 1)

 def next(self):
 if self.index == 0:
 row_class, index = Road, 1
 elif self.index < 5:
 r = random()
 if r < 0.8:
 row_class, index = Road, self.index + 1
 elif r < 0.88:
 row_class, index = Grass, randint(0,6)
 elif r < 0.94:
 row_class, index = Rail, 0
 else:
 row_class, index = Pavement, 0
 else:
 r = random()
 if r < 0.6:
 row_class, index = Grass, randint(0,6)
 elif r < 0.9:
 row_class, index = Rail, 0
 else:
 row_class, index = Pavement, 0

 return row_class(self, index, self.y - ROW_HEIGHT)

class Pavement(Row):
 def __init__(self, predecessor, index, y):
 super().__init__("side", index, y)

 def play_sound(self):
 game.play_sound("sidewalk", 1)

369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.

http://obj.dx
http://obj.dx

107

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

 def next(self):
 if self.index < 2:
 row_class, index = Pavement, self.index + 1
 else:
 row_class, index = Road, 0

 return row_class(self, index, self.y - ROW_HEIGHT)

class Rail(Row):
 def __init__(self, predecessor, index, y):
 super().__init__("rail", index, y)
 self.predecessor = predecessor

 def update(self):
 super().update()

 if self.index == 1:
 self.children = [c for c in self.children if c.x > -1000
 and c.x < WIDTH + 1000]

 if self.y < game.scroll_pos+HEIGHT and len(self.children) == 0 \
 and random() < 0.01:
 dx = choice([-20, 20])
 self.children.append(Train(dx, (WIDTH + 1000 if dx < 0 else -1000, -13)))
 game.play_sound("bell")
 game.play_sound("train", 2)

 def check_collision(self, x):
 if self.index == 2 and self.predecessor.collide(x):
 game.play_sound("splat", 1)
 return PlayerState.SPLAT, 8
 else:
 return PlayerState.ALIVE, 0

 def play_sound(self):
 game.play_sound("grass", 1)

 def next(self):
 if self.index < 3:
 row_class, index = Rail, self.index + 1
 else:
 item = choice(((Road, 0), (Water, 0)))
 row_class, index = item[0], item[1]

 return row_class(self, index, self.y - ROW_HEIGHT)

416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.

108

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

class Game:
 def __init__(self, bunner=None):
 self.bunner = bunner
 self.looped_sounds = {}

 try:
 if bunner:
 music.set_volume(0.4)
 else:
 music.play("theme")
 music.set_volume(1)
 except:
 pass

 self.eagle = None
 self.frame = 0
 self.rows = [Grass(None, 0, 0)]
 self.scroll_pos = -HEIGHT

 def update(self):
 if self.bunner:
 self.scroll_pos -= max(1, min(3, float(self.scroll_pos + HEIGHT
 - self.bunner.y) / (HEIGHT // 4)))
 else:
 self.scroll_pos -= 1

 self.rows = [row for row in self.rows if row.y < int(self.scroll_pos)
 + HEIGHT + ROW_HEIGHT * 2]

 while self.rows[-1].y > int(self.scroll_pos)+ROW_HEIGHT:
 new_row = self.rows[-1].next()
 self.rows.append(new_row)

 for obj in self.rows + [self.bunner, self.eagle]:
 if obj:
 obj.update()

 if self.bunner:
 for name, count, row_class in [("river", 2, Water), ("traffic", 3, Road)]:
 volume = sum([16.0 / max(16.0, abs(r.y - self.bunner.y)) for r in
 self.rows if isinstance(r, row_class)]) - 0.2
 volume = min(0.4, volume)
 self.loop_sound(name, count, volume)

 return self

 def draw(self):

463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.

109

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

 all_objs = list(self.rows)

 if self.bunner:
 all_objs.append(self.bunner)

 def sort_key(obj):
 return (obj.y + 39) // ROW_HEIGHT

 all_objs.sort(key=sort_key)
 all_objs.append(self.eagle)

 for obj in all_objs:
 if obj:
 obj.draw(0, -int(self.scroll_pos))

 if DEBUG_SHOW_ROW_BOUNDARIES:
 for obj in all_objs:
 if obj and isinstance(obj, Row):
 pygame.draw.rect(screen.surface, (255, 255, 255),
 pygame.Rect(obj.x, obj.y - int(self.scroll_pos),
 screen.surface.get_width(), ROW_HEIGHT), 1)
 screen.draw.text(str(obj.index), (obj.x, obj.y
 - int(self.scroll_pos) - ROW_HEIGHT))

 def score(self):
 return int(-320 - game.bunner.min_y) // 40

 def play_sound(self, name, count=1):
 if self.bunner:
 sound = getattr(sounds, name + str(randint(0, count - 1)))
 sound.play()

 def loop_sound(self, name, count, volume):
 if volume > 0 and not name in self.looped_sounds:
 full_name = name + str(randint(0, count - 1))
 sound = getattr(sounds, full_name)
 sound.play(-1)
 self.looped_sounds[name] = sound

 if name in self.looped_sounds:
 sound = self.looped_sounds[name]
 if volume > 0:
 sound.set_volume(volume)
 else:
 sound.stop()
 del self.looped_sounds[name]

510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.

110

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

 def stop_looped_sounds(self):
 for sound in self.looped_sounds.values():
 sound.stop()
 self.looped_sounds.clear()

key_status = {}

def key_just_pressed(key):
 result = False
 prev_status = key_status.get(key, False)

 if not prev_status and keyboard[key]:
 result = True

 key_status[key] = keyboard[key]

 return result

def display_number(n, colour, x, align):
 n = str(n)
 for i in range(len(n)):
 screen.blit("digit" + str(colour) + n[i], (x + (i - len(n) * align) * 25, 0))

class State(Enum):
 MENU = 1,
 PLAY = 2,
 GAME_OVER = 3

def update():
 global state, game, high_score

 if state == State.MENU:
 if key_just_pressed(keys.SPACE):
 state = State.PLAY
 game = Game(Bunner((240, -320)))
 else:
 game.update()

 elif state == State.PLAY:
 if game.bunner.state != PlayerState.ALIVE and game.bunner.timer < 0:
 high_score = max(high_score, game.score())

 try:
 with open("high.txt", "w") as file:
 file.write(str(high_score))
 except:
 pass

557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.

111

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

 state = State.GAME_OVER
 else:
 game.update()

 elif state == State.GAME_OVER:
 if key_just_pressed(keys.SPACE):
 game.stop_looped_sounds()
 state = State.MENU
 game = Game()

def draw():
 game.draw()

 if state == State.MENU:
 screen.blit("title", (0, 0))
 screen.blit("start" + str([0, 1, 2, 1][game.scroll_pos // 6 % 4]),
 ((WIDTH - 270) // 2, HEIGHT - 240))
 elif state == State.PLAY:
 display_number(game.score(), 0, 0, 0)
 display_number(high_score, 1, WIDTH - 10, 1)

 elif state == State.GAME_OVER:
 screen.blit("gameover", (0, 0))

try:
 pygame.mixer.quit()
 pygame.mixer.init(44100, -16, 2, 512)
 pygame.mixer.set_num_channels(16)
except:
 pass

try:
 with open("high.txt", "r") as f:
 high_score = int(f.read())
except:
 high_score = 0

state = State.MENU
game = Game()

pgzrun.go()

604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.

http://pgzrun.go

112

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fin

it
e

Bu
nn

er

1 Trains hurtle
along the
rail tracks

2 Get scrolled off
the bottom of the
screen and an
eagle will swoop
down for the kill

3 The digits used to
show the current
and high scores

4 Hedge must be
constructed so
there’s a gap to
pass through

5 Frames of the
animation for
falling into
the water

6 Movement and
splat animation
frames for
our bunny

1

2

3

4

5

6

113

To
p-

do
w

n
Pl

at
fo

rm
er

 –
 C

od
in

g
To

da
y:

 In
fn

it
e

Bu
nn

er

Coding Today

Infinite Bunner

7

7 The game over
screen features a
flattened bunny

8 The scrolling
backdrop is
contructed from
horizontal rows
such as dirt, grass,
and rail tracks

9 Various-coloured
cars move right
and left along
the roads

10 Logs enable the
bunny to safely
traverse rivers

8

9 10

114

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

Some shooters confine the
gameplay to a single screen while

limiting the player’s movement.
Restrictions can build challenge

and difficulty, making for truly
addictive gaming

Fixed Shooter

Chapter 4

115

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

fixed shooter is one style of shoot-’em-
up game, restricting a player's character
to a particular axis or a small section of
a single screen. Many early titles made
use of this gaming mechanic, from Space
Invaders to Galaxian, and one of the most

popular was Centipede, published by Atari in 1980. One of
the first twitch games, the original arcade version made use
of a mini-trackball as a controller, requiring lightning-fast
reactions to prevent a long centipede from reaching the
bottom of the screen. As well as shooting the centipede
itself, players had to blast the fungi in its path to slow it down
– munching on a mushroom would cause the centipede to
fall to the next row. Accidentally hitting the centipede in
the middle would cause it to split into two pieces, doubling
the danger. Added insect enemies increased the tension
and pace.

Inspiration
Centipede was developed for Atari by Dona Bailey and her
superviser Ed Logg. Dona started her career working for
General Motors, programming displays and cruise-control
systems, but she became interested in games after playing
the likes of Space Invaders and decided to join Atari’s coin-op
division. After being assigned the role of software engineer
and creating Centipede, in 1982 she moved to Videa, which
had been founded by several ex-Atari employees, and
continued to write games. Meanwhile Ed – who had also
produced Asteroids – went on to create Millipede, Xybots,
Gauntlet, and many more early gaming classics throughout
the 1980s.

A

116

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

Centipede

Released 1980

Platforms Arcade

 Atari 2600

 Atari 5200

 Atari 7800

117

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

118

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

Other versions of Centipede were created by Atarisoft for home computers including the
Apple II and Commodore 64, and it also appeared on the Sega Mega Drive, Game Gear,
and Master System among others.

Other Notables Space Invaders / Galaxian / Galaxy Wars

Where do you start if you’ve never written a computer game before. Does lack of
experience matter? Go back to the 1980s and you’ll find scores of coders in exactly
the same boat. It certainly didn’t stop them from coming up with amazing ideas
that would define gaming for years and decades to come: often, jumping feet-first
into something is the best way to get started.

For many software engineers, Dona
Bailey is an inspiration. Before 1980, she hadn’t
even played a video game. That year, she
played her first game – Space Invaders – and she
immediately realised that she’d found something
special. It inspired her so much that she decided
to leave her job as a 6502 assembly language
programmer for General Motors in California,
where she was coding sensors for the first
Cadillac to carry an on-board microprocessor.

Dona saw that Atari was building video
game arcade cabinets in Sunnyvale, California,
and she applied for a job. The games developer
took her on in June 1980, where she began a steep learning process, discovering
the different programming approaches needed to create a game, and coming to
understand concepts of what was fun and why.

“I had to learn what seemed like thousands of details in order to begin
working on a game,” Dona says. “At General Motors I had worked with teams of
programmers who coded from well-defined specifications, and each person created
limited segments of the total program. It was completely different at Atari, where
each programmer was expected to code an entire game.”

Devising ideas
Atari encouraged programmers to come up with ideas for games. It would hold
mammoth brainstorming sessions, which prompted coders to open their minds,
explore what worked and what didn’t, and discuss the intricacies of design.
An idea for the game that would become Centipede had already been jotted in a
notebook by the time Dona arrived. “It was one sentence:
‘A multi-segmented insect crawls onto the screen and is
shot by the player,’ ” she recalls. She chose it as a game she
wanted to develop.

The learning process started in earnest. “Before
I could begin, I needed to be taught how to create the
graphics for the game hardware, how to use the major and

I had to learn
what seemed like
thousands of details
in order to begin
working on a game

1 The attract
screen for the
1980 coin-op has
the centipede
moving down the
side of the high
score table

119

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

1

120

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

minor interrupts for the 6502 microprocessor, how to set up the data structures for
the motion objects in the game, how to use Atari’s custom game controllers and
custom sound chip – it went on and on,” she says. “It was a really intense learning
curve for me for at least six months when I started at Atari.”

Dona says that she started at Atari with no real clue about what she wanted
to do there. But that was very much a positive thing. Although having a solid
structure in place for your game will save you lots of time, allow you to see the
overall picture of a game, and understand how certain parts of it will affect other
areas, many programmers like Dona jumped straight into coding and developed
the game on-the-fly.

As we’ll see later, this can work very well. As long as you understand any
system constraints – Centipede was to be produced as a coin-operated arcade game,
so Dona was assigned an extremely stable raster graphics board which displayed 16
motion objects on the screen at one time – a free-style approach enables the coder
to visualise the game as she sees fit.

Looks and movement
Dona’s first task was to work on the look of the centipede itself. “Based on the brief
game description from the notebook, it just made sense to use as many motion objects
as possible for segments of the centipede,” she reveals. “I visualised the centipede
as a string of connected ‘pop beads’ and I remember that I looked forward to the
gliding motion I would create as the centipede turned when it encountered the
edges of the screen. I was thinking much more about how it looked versus planning
gameplay or pacing, especially in the early days of programming the game.”

Once she had the right graphical look, it was time to work on the game
itself, starting with the movement of the main character. “In the game, the multi-
segmented centipede crawls along the screen at the top, travels to the other side of
the screen, turns down the screen, and crawls back to the other side of the screen,
repeating this process all the way down to the bottom.” So movement was something
to bear in mind: Dona decided to have the centipede automatically move from left
to right, go down a row, turn, and then go the other way. By repeating this pattern,
the centipede made its way from the top left of the screen to the bottom right.

Now Dona needed to create some level of interaction. The player is
stationed at the bottom of the screen and is able to fire lasers at the centipede as it
travels down. On the original arcade version, the player could be moved left to right
using the mini-trackball, as well as up and down within a limited range (“the player

Centipede lent some natural constructions which meant that some parts of the gaming process were
dealt with almost by accident.

No time limit: Centipede didn’t need to have an obvious time limit because the act of the creature
moving rapidly down the screen meant players couldn’t afford to take their time.

No platforms: By having the enemy character move down the screen itself, there was no need for set
platforms to be included – the randomly positioned mushrooms did the job perfectly.

Learn from the master

121

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

couldn’t move higher than several rows from the bottom of the screen,” explains
Dona). At the same time, it could only fire one shot at a time.

“If the shot is in motion on the screen, then the player must wait until
the shot graphic is returned to the player icon before being able to fire again,”
Dona says. “The player can use a rapid fire option by keeping the firing button
depressed. The shot returns to the player icon to be used again when it either shoots
something on the screen, including some portion of the centipede, or when it gets
to the top of the screen.”

Every shot counts
For players, this mechanic ensures that every shot is sacred. The centipede will be
coming down at speed (exactly what speed you want for your fixed shooter game

would be for you to work out in your code), so
gamers will want every shot to have an impact.
Missing wastes valuable time.

When a shot hits the centipede, the
segment it comes into contact with disappears.
The segment behind it then becomes the
centipede head, creating two centipedes. The
trailing centipede moves down a row and heads
the other way while the other part continues
on its journey. “A player may shoot and cause
the centipede to break into more than one
centipede travelling in different directions on

different rows of the screen,” says Dona. Players have to keep firing until the entire
centipede is removed from the screen.

For all of this to happen, the programmer has to carefully consider what is
going on with the centipede when it is shot. To start with, each segment has to be
treated as a separate entity. It’s not really one long centipede on the screen, but a set
of individual components that act as one. You have to factor in that the sets have to
move independently of each other after they are shot. And when they are shot and
a piece disappears, you have to give the player another laser to fire. Bear in mind
too that the player will be approaching the game in different ways.

“Some players liked to practise strategies where they shot only the head of a
centipede by carefully picking off the head each time a new head appeared,” notes
Dona. “Other players liked to shoot randomly, hitting anything possible.” A game
that can be played tactically works well for players, offering depth and giving the
player the feeling that it is a skilful, beatable game full of secrets to unlock.

Coding checks
But how do you program all of this? Dona says for Centipede, the main creature,
the player, and the shot had to be displayed on the screen at all times for each
level of the game. Each round is then set up to display the graphics, the player
icon, the shot, and the various colours that the centipede head and body segments
can appear in (by changing the colour from one level to the next, you can very
quickly add variety). “The status of the trackball for any player motions is checked
repeatedly so as to react to a player’s intended movements,” says Dona. “The status

A game that
can be played

tactically works
well for players,

offering depth

122

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

2

3

123

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

of the firing button is checked repeatedly so as to react to the player’s intentions of
using the shot on screen.”

Collision are detected next. “The centipede segments move incrementally at
a steady rate in a consistent direction, and the program checks at each incremental
movement for screen edges or for mushrooms,” Dona explains. Which takes us
neatly to the part that allows the gameplay of Centipede to move up a notch by
adding a very compelling twist: the obstacles that the centipede interacts with.

Producing obstacles
The mushrooms are crucial to gameplay, making the centipede’s behaviour more
erratic. The game littered the screen with these obstacles, and the idea was that the
centipede would hit one and be forced to move down a row much sooner than it
would if the entire line had been clear. But Dona says the mushrooms in Centipede

came about as a lucky accident.
“I was learning as I worked. I made a lot

of mistakes in the code I wrote and I also made
a lot of bad estimations because everything
attempted was my first try,” she says. “When I
wrote the collision detection part of the code for
the moving shot, I thought logically that I could
just use arithmetic and count it as a hit if the
shot actually touched a centipede head or body
segment on the screen. I had no experience
with how a collision looked compared to the
arithmetic of an actual collision in numbers.

“The first time I played this code to test
it, I saw that it appeared, to my eyes, that a shot

went straight through a centipede segment. It turns out that the area that must
count as a collision in order to appear correct visually is much greater than the
area of actual arithmetic for a collision. I kept adjusting and after a bit of time and
experimenting, I believed I had a collision routine that appeared valid visually.”

Her struggle with collisions had shaken her confidence, but one morning,
soon after getting the collision detection working, she says she found herself with
a couple of free hours when no one was pushing her to start on new features. “I
decided to pause for a moment because I wanted to further
reassure myself that I was correctly handling the breaking
apart and turning of centipede segments after a segment
had been shot. I wanted to take time out to put a visual
marker on the screen where a segment was shot, and I
wanted to play the game and be certain the remaining part
of the centipede turned at the place where the visual marker
was placed.”

She made a simple black box graphic in an 8×8
bitmap stamp pattern and wrote the code to place the black
square where a centipede segment was shot. “I got the code
compiled and a test PROM created and I raced back to
the development cabinet to check it out,” recounts Dona.

2 The centipede
splits in two
whenever it’s hit
in the middle,
often resulting in
multiple enemies
to deal with

3 The Atari 2600
version of the
game features
simplified
graphics, but
the gameplay is
largely the same

The first time I played
this code to test it, I

saw that it appeared,
to my eyes, that a shot
went straight through
a centipede segment

124

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

“I played the game and I was so relieved to see that the collision detection and
subsequent movement of the centipede was working properly. I continued to play
because it was making me happy to see the interesting patterns that developed
on the screen as I shot more and more centipede segments and more and more
square boxes made an ever-changing maze pattern that broke up the screen nicely.
In just a few minutes, I understood that these test boxes had a lot of potential as a
permanent feature.”

New perspectives
Stepping back from a project and looking at it from a player’s point of view can
make you see the game from a different perspective, and remind you that you
shouldn’t always stick to a firm path. The best games programming is creative and
flexible, growing organically as you become more familiar with the basic constructs.
By experimenting and testing, Dona decided to replace the 8×8 pixel squares with
a better-looking graphic.

She decided on rocks or boulders in brown at first, but dismissed them
quickly. “It’s almost impossible to make a good-looking rock in 8×8 pixels, and
combined with the brown colour it appeared that the screen was littered with
poop.” She says she replaced them with simple mushrooms that had a cap and stem
with an edge around them so she could use two colours for contrast.

“This turned out to be beautiful in my view, and I played the game,
scattering a field of the shimmering mushrooms,” Dona recalls. “Really tired
from all the hurrying and effort of the morning, I left for lunch. By the time I
came back, other guys in the coin-op department at Atari were playing Centipede
and endorsing the addition of the mushrooms. The new feature had caught on and
caused a little flurry of attention, and it was decided that the mushrooms could stay
in the game.”

But that wasn’t the end of the tweaking. “We had a lot of fun with the new
feature for the remainder of the development of the game,” Dona continues. “We
used the random number generator to vary the placement of the mushrooms when
each new round is set up. After working for a long while with the mushrooms as
permanent and non-eroding, we had the breakthrough idea during a game review
to shoot the mushrooms away for points in order to clear the screen or to create
new patterns.”

Short term: Begin by moving the characters that are on the screen at all times or most of the time.
This is likely to include the player icon. For example, in Centipede the first objective was to move the
centipede, then the player icon, and then the icon for the shot.

Medium term: Add other characters that appear less often; begin adding points for scoring; begin
adding sound effects.

Long term: Add complexity to gameplay, such as more difficult higher levels based on scoring higher
points or longer playing times. Polish the pacing and fun factor of the game. Polish scoring, sounds,
and graphics. Test for bugs in gameplay as much, and with as many players, as possible.

The objectives

125

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

Enemy movement
By shooting at the mushrooms, it was possible to prevent the centipede from
moving down the screen too quickly. But before she had even got to work on the
mushrooms, Dona had looked to increase the number of things a player had to deal
with. She introduced a spider which moves at the bottom of the screen in diagonal
directions, at angles and in time intervals that vary at random.

“Atari’s custom sound chip contained a random number generator
that I used to add variety to the spider’s movement and timing so that each
appearance of the spider is unpredictable, keeping gameplay fresh,” she reveals.
“I was taught and guided how to implement much of Centipede’s gameplay by more
experienced programmers at Atari, and I benefited greatly from the advice and

help of others, but using the random number
generator in Centipede was my idea. I think
the introduction of unpredictability makes the
game more fun.”

Because the system could only support
16 motion objects on the screen at one time, at
least one centipede segment must be shot prior
to bringing out the spider. “Until at least one
centipede segment is shot, all motion objects
are in use on the screen. When a centipede
section is shot and removed from the screen, its

unused motion object can then be utilised for the spider.” But even with the spider
in place, the management team in the coin-op department wanted more.

“Management generally liked the game, but there was a consensus that
Centipede needed ‘more’,” says Dona. “More what?, we wondered. I seized on what
it didn’t have at the time, which was something that moved straight down the screen
and something that moved straight across the screen, and that’s how the ant (I
believed I drew an ant, but it was immediately known as a flea) with its vertical
movement and the scorpion with its horizontal movement were born. These two
added challenge and difficulty in more advanced levels of the game.”

More creatures meant more complexity, including the option to manipulate
the mushrooms to work with these extra creatures. “After the decision to shoot away
the mushrooms, we were able to add mushroom-related features to the ant, which
lays down a column of new mushrooms, and to the scorpion, which poisons a row
of mushrooms, and each poisoned mushroom causes the centipede to go into a
free-fall on the screen after touching one.”

Awarding points
In keeping with most games at the time, points were also awarded to players. They
would gain a set number whenever a segment of the centipede was shot or if
another creature was gunned down. There would be more points for mushrooms
removed. A high score stayed on the screen along with the current player’s score,
and this incentivised gamers to try to beat the highest points tally.

“I believe that earning points and keeping score are elemental to any type
of defined game, and I think most players enjoy the aspect of scoring and earning
points,” says Dona. “I think it’s fun to offer some easily earned low-value points, as

I think most
players enjoy the
aspect of scoring

and earning points

126

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

well as some risky high-value points. Game creators should
remember to offer those easy points but build in some
difficult points in order to tie in with a maxim attributed to
Nolan Bushnell, founder of Atari, stating that games should
be easy to learn but hard to master.”

Centipede embodied that maxim: a pick-up-and-play title that translated well
to consoles and joystick controls while lending the right dose of challenge and
frustration to ensure players would keep going (or, in the case of the arcades, pump
more money into the machines). It was a major triumph for Dona Bailey and co-
creator Ed Logg and it brought fresh thinking to the shoot-’em-up genre. There
are principles and concepts of gaming embedded in Centipede that can translate to
many other games.

“When making a game, it’s difficult for the programmer to back away
from the familiar gameplay and weigh the
game’s strengths and weaknesses in order to
revise and balance overall features,” concludes
Dona. “In 1980 when I worked on Centipede, I
had played very few video games for only short
amounts of time, and the field of game studies
was unheard of at that point. Today’s game
programmers can play a wide variety of games,
apply critical thinking to each game in order to
carefully analyse its features, and study game
programming as well as game studies.”

Dona advises you to enlist your friends,
family, and critical game players as helpers. “In addition to formal studies, it’s
helpful to ask others to play your game, and it’s also helpful if you ask other players
to complete a questionnaire or to write responses on features you are testing,” she
says. “Game programmers learn to adjust and balance game features by playing
other games, by consulting with other players, and by extensively practising the art
of game development. Remember that every skill worth cultivating improves with
extensive practice, and this is certainly true for game development.”

Back in the early days of games programming, too few women were employed as programmers. Carol
Shaw is believed to have paved the way in 1978 when she joined Atari as Microprocessor Software
Engineer before going on to work at Tandem Computers and Activision, but Dona Bailey was still the
only woman in the coin-op division when she joined. Today, the situation is thankfully getting better.
Amy Hennig, who was heavily involved in the acclaimed Uncharted series, is among many highly
influential women in gaming. Robin Hunicke has produced some of gaming’s most inspiring and
creative titles, including the award-winning multiplayer co-op adventure game Journey.

Women in gaming

4 A flyer for the
1980 arcade
game features a
female player

It’s difficult for the
programmer to weigh
the game’s strengths
and weaknesses

127

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

4

128

Fi
xe

d
Sh

oo
te

r
 –

 C
en

ti
pe

de

129

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

Coding Today

Myriapod

yriapod is our homage to Centipede. In this
version of the game, the mushrooms
have become rocks and the spider is a
flying insect. The centipede is referred to
as a myriapod – a word that categorises
animals such as centipedes and

millipedes. We’ve created classes for each of these, named
Rock and FlyingEnemy. The classes inherit from Pygame
Zero’s Actor class, which keeps track of an object’s location
in the game world, as well as taking care of loading and
displaying sprites. There’s also an Explosion class, used
when a bullet is destroyed.

The myriapod itself, rather than being a single
entity, is made of multiple instances of the Segment class
– each of which moves independently of the others, even
if it may not initially look like it when they come onto the
screen in a nice tidy row. The Player class handles player
movement and animation, as well as dealing with what

M

Download the fully commented Myriapod game code, along with
all the graphics and sounds, from wfmag.cc/CTC1-myriapod

Download the code

http://wfmag.cc/CTC1-myriapod

130

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

happens when the player is destroyed and then respawns. It also handles the creation
of Bullets.

The Game class is responsible for creating the flying enemy, the myriapod
segments, and most of the rocks. It also maintains a reference to the player object,
and creates a two-dimensional list to represent the grid – where each element is either
a reference to a Rock object or the value None, which indicates there is no rock at this
grid location. The Game class contains many key methods which are called from other
parts of the game, such as allow_movement which ensures the player cannot drive
through rocks.

The update and draw functions read the state variable and run only the
code relevant to the current state. The game variable references an instance of the
Game class as described above. The __init__ (constructor) method of Game optionally
receives a parameter named player. When we create a new Game object for the
main menu, we don’t provide this parameter, and the game will therefore run in
attract mode. When we create a new Game object for the game itself, we supply a new
Player object.

Segment movement
The most complex code in this game relates to how myriapod segments move, and
how they decide where to go next. Each segment moves in relation to its current
grid cell. A segment enters a cell from a particular edge (stored in in_edge in the
Segment class). After five frames, it decides which edge it’s going leave through (stored
in out_edge). For example, it might carry straight on and leave through the opposite
edge from the one it started at. Or it might turn 90 degrees and leave through an edge
to its left or right. In the latter it initially turns 45 degrees and continues along that
path for eight frames. It then turns another 45 degrees, at which point it is heading
directly towards its next grid cell. A segment spends a total of 16 frames in each cell.
Within the update method, the variable phase refers to where it is in that cycle – 0
meaning it’s just entered a grid cell, and 15 meaning it’s about to leave it.

Let’s first imagine the case where a segment enters from the top edge of a cell
and carries on in a straight line, eventually leaving from the bottom edge (Figure 1).
Grid cells are 32×32 pixels, and segments take either 16 or 8 frames to travel through
a cell (every fourth wave of myriapods is fast). For normal-speed segments, this means
they just need to move two pixels in the relevant direction each frame.

When the player presses a key to start heading in a new direction,
we don't want the sprite to just instantly change to facing in that
new direction. That would look wrong, since in the real world
vehicles can't just suddenly change direction in the blink of an
eye. Instead, we want the vehicle to turn to face the new direction
over several frames. For example, if the vehicle is currently facing
down, and the player presses the left arrow key, the vehicle should
first turn to face diagonally down and to the left, and then turn to
face left.

Player sprite animation

131

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

Let’s now imagine the case where a segment enters from the left edge of a cell
and then turns to leave from the bottom edge (Figure 2). The segment will initially
move along the horizontal (X) axis, and will end up moving along the vertical (Y) axis.
In this case we’ll call the X axis the primary axis, and the Y axis the secondary axis. It
starts out moving at two pixels per frame on the primary axis, but then starts moving
along the secondary axis based on the values in the list SECONDARY_AXIS_POSITIONS –
which stores the total secondary axis movement that will have occurred at each phase
in the segment’s movement through the current grid cell. In this case we don’t want it
to continue moving along the primary axis – it should initially slow to moving at one
pixel per frame (the diagonal part of the segment’s movement), and then stop moving
along that axis completely. In effect, the secondary axis steals movement from the
primary axis – hence the variable stolen_y_movement.

The code starts off with the assumption that a segment is starting from the
top of the cell. The primary and secondary axes would therefore be Y and X. Later,
a calculation is applied to rotate these X and Y offsets, based on the actual direction
the segment is coming from.

These are the essentials of how segments move – you can find more detail
in the fully commented code at wfmag.cc/CTC1-myriapod. But how does a
segment choose which cell it’s going to move into next?

Although the myriapod initially looks like it moves as one unit, the individual
segments are actually independent of each other. This becomes clear when you
shoot a segment in the middle. Destroyed segments turn into rocks, which causes the
segments behind to change direction and split off from the front segments.

As described above, each segment has a phase variable which indicates where
it’s at in its movement through its current grid cell. In the update method, when phase
reaches 4, a decision needs to be made as to which grid cell it’s going to try to move
into next – and therefore, which edge of the current cell it will leave via, to be stored
in out_edge.

Figure 1 Figure 2

in_edge: DIRECTION_UP

in
_e

dg
e:

DI
RE

CT
IO

N_
LE

FT

2px per frame

2px/frame
on primary axis

1px/frame
on both axes

2px/frame
on secondary axis

out_edge: DIRECTION_DOWN out_edge: DIRECTION_DOWN

http://wfmag.cc/CTC1-myriapod

132

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

The rank method is key to understanding the decision-making process. Its
purpose is to rank the possible directions in which a segment could move, in order
of preference. It contains an inner/nested function, named inner, which it returns
as its result. The returned function is passed to Python’s min function in the update
method, as the ‘key’ optional parameter. min then calls this function four times with
the numbers 0 to 3, representing the four possible directions (see DIRECTION_UP etc.,
further up the code). We’ll explain shortly why and how we’re using min.

The inner function takes one parameter named proposed_out_edge,
representing a direction. The function returns a tuple consisting of a series of factors
determining which grid cell the segment should try to move into next. These are not
absolute rules – rather, they are used to rank the four directions in order of preference,
i.e. which direction is the best (or at least, least bad) to move in. The factors are
Boolean (True or False) values. A value of False is preferable to a value of True. The
order of the factors in the returned tuple determines their importance in deciding
which way to go, with the most important factor coming first. Some examples of
these factors are that a segment shouldn’t try to go in a direction that takes it outside
the grid, it shouldn’t try to go through a rock unless absolutely necessary (in which
case the rock will be destroyed), and it should usually prefer to move horizontally.

Back in the update method, range(4) generates all the numbers from 0 to 3
(corresponding to DIRECTION_UP etc). Python’s built-in min function usually chooses
the lowest number that it’s given, so would usually return 0 as the result. But if the
optional key argument is specified, this changes how the function determines the
result. The inner function returned by the rank function is called by min to decide how
the items should be ordered. The inner function returns a tuple of Boolean values
– e.g. (True,False,False,True). When Python compares two such tuples, it considers
values of False to be less than values of True, and values that come earlier in the
sequence are more significant than later values. So (False,True) would be considered
less than (True,False). Since it’s min rather than max we’re calling, the end result of all

At the start of the game, or each time the player has
destroyed all myriapod segments, a new wave is started.
This occurs in the Game.update method. The first
thing that happens is that rocks are randomly created
throughout the level. Although we could create them all
in one go, it’s more aesthetically pleasing to create one
per frame until we have the desired number. Once we
have enough rocks (a number that increases each wave),
we move on to creating the myriapod itself. Initially
we create eight segments per myriapod, but every four
waves this number increases by two. The segments are created just off the top left corner of the screen.
In the first wave, we create a basic myriapod where each segment takes one hit to kill. On the second
wave, every other segment takes two hits to kill. On the third, all segments take two hits. On the fourth,
the segments take only one hit, but they move twice as fast. This sequence then repeats, but with a
longer myriapod.

Making waves

133

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

this is that out_edge will be set to the direction which corresponds to the tuple with
the lowest value.

The elements of the tuple are as follows:

• Does the proposed direction take us to a cell outside the grid?

• Does it take us back on ourselves – a 180 degree turn?

• Does it take us in a direction that’s disallowed? (Can’t go down if we’re on the
bottom row of the grid, can’t go up if we’re on row 18)

• Is there a rock in the new cell?

• Is the new cell already occupied by another segment, or is another segment
trying to enter my cell from the opposite direction?

• A factor causing us to prefer to move horizontally, unless there's a rock in the way.
If there are rocks both horizontally and vertically, we prefer to move vertically.

• A factor causing us to change direction from left to right and vice versa each time
we move up or down.

In the original Centipede, only one bullet can exist at a time, and the player can fire again as soon as
the current bullet is destroyed. If the player holds down the fire button, the fire rate will be very rapid
while repeatedly shooting targets close to the player, and slower when shooting more distant targets.
How would you achieve this behaviour in Myriapod?

How would you change the code so that a wave could consist of multiple myriapods – created either
simultaneously or at intervals?

Currently, shooting a ‘Totem’ rock gives a score bonus, but what if it also dropped a power-up which
could be collected – temporarily giving the player three bullets at once, for example?

Award an extra life when the player scores 1000 points, then another after another 1200 points, then
1400, and so on. Play a sound effect when an extra life is gained.

Keep track of the high score and save new high scores to a file, in a similar way to Bunner. On the
game-over screen, display the player’s score and either the current high score if it hasn’t been beaten,
or ‘NEW HIGH SCORE!’

Challenges

134

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

import pgzero, pgzrun, pygame, sys
from random import choice, randint, random
from enum import Enum

if sys.version_info < (3,5):
 print("This game requires at least version 3.5 of Python. Please download"
 "it from www.python.org")
 sys.exit()

pgzero_version = [int(s) if s.isnumeric() else s
 for s in pgzero.__version__.split('.')]
if pgzero_version < [1,2]:
 print("This game requires at least version 1.2 of Pygame Zero. You are"
 "using version {pgzero.__version__}. Please upgrade using the command"
 "'pip install --upgrade pgzero'")
 sys.exit()

WIDTH = 480
HEIGHT = 800
TITLE = "Myriapod"

DEBUG_TEST_RANDOM_POSITIONS = False
CENTRE_ANCHOR = ("center", "center")

num_grid_rows = 25
num_grid_cols = 14

def pos2cell(x, y):
 return ((int(x)-16)//32, int(y)//32)

def cell2pos(cell_x, cell_y, x_offset=0, y_offset=0):
 return ((cell_x * 32) + 32 + x_offset, (cell_y * 32) + 16 + y_offset)

class Explosion(Actor):
 def __init__(self, pos, type):
 super().__init__("blank", pos)
 self.type = type
 self.timer = 0

 def update(self):

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.
040.

Open the myriapod.py file in a Python editor, such as IDLE, and select Run > Run Module.
For more details, see the ‘Setting up’ section on page 186.

How to run the game

wfmag.cc/CTC1-myriapodDownload the code

http://www.python.org
http://myriapod.py
http://wfmag.cc/CTC1-myriapod

135

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 self.timer += 1
 self.image = "exp" + str(self.type) + str(self.timer // 4)

class Player(Actor):
 INVULNERABILITY_TIME = 100
 RESPAWN_TIME = 100
 RELOAD_TIME = 10

 def __init__(self, pos):
 super().__init__("blank", pos)

 self.direction = 0
 self.frame = 0
 self.lives = 3
 self.alive = True
 self.timer = 0
 self.fire_timer = 0

 def move(self, dx, dy, speed):
 for i in range(speed):
 if game.allow_movement(self.x + dx, self.y + dy):
 self.x += dx
 self.y += dy

 def update(self):
 self.timer += 1

 if self.alive:
 dx = 0
 if keyboard.left:
 dx = -1
 elif keyboard.right:
 dx = 1

 dy = 0
 if keyboard.up:
 dy = -1
 elif keyboard.down:
 dy = 1

 self.move(dx, 0, 3 - abs(dy))
 self.move(0, dy, 3 - abs(dx))
 directions = [7,0,1,6,-1,2,5,4,3]
 dir = directions[dx+3*dy+4]

 if self.timer % 2 == 0 and dir >= 0:
 difference = (dir - self.direction)

041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.
087.

http://keyboard.up:

136

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 rotation_table = [0, 1, 1, -1]
 rotation = rotation_table[difference % 4]
 self.direction = (self.direction + rotation) % 4

 self.fire_timer -= 1

 if self.fire_timer < 0 and (self.frame > 0 or keyboard.space):
 if self.frame == 0:
 game.play_sound("laser")
 game.bullets.append(Bullet((self.x, self.y - 8)))
 self.frame = (self.frame + 1) % 3
 self.fire_timer = Player.RELOAD_TIME

 all_enemies = game.segments + [game.flying_enemy]

 for enemy in all_enemies:
 if enemy and enemy.collidepoint(self.pos):
 if self.timer > Player.INVULNERABILITY_TIME:
 game.play_sound("player_explode")
 game.explosions.append(Explosion(self.pos, 1))
 self.alive = False
 self.timer = 0
 self.lives -= 1
 else:
 if self.timer > Player.RESPAWN_TIME:
 self.alive = True
 self.timer = 0
 self.pos = (240, 768)
 game.clear_rocks_for_respawn(*self.pos)

 invulnerable = self.timer > Player.INVULNERABILITY_TIME
 if self.alive and (invulnerable or self.timer % 2 == 0):
 self.image = "player" + str(self.direction) + str(self.frame)
 else:
 self.image = "blank"

class FlyingEnemy(Actor):
 def __init__(self, player_x):
 side = 1 if player_x < 160 else 0 if player_x > 320 else randint(0, 1)
 super().__init__("blank", (550*side-35, 688))
 self.moving_x = 1
 self.dx = 1 - 2 * side
 self.dy = choice([-1, 1])
 self.type = randint(0, 2)
 self.health = 1
 self.timer = 0

088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.

http://self.dx
http://self.dy

137

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 def update(self):
 self.timer += 1
 self.x += self.dx * self.moving_x * (3 - abs(self.dy))
 self.y += self.dy * (3 - abs(self.dx * self.moving_x))

 if self.y < 592 or self.y > 784:
 self.moving_x = randint(0, 1)
 self.dy = -self.dy

 anim_frame = str([0, 2, 1, 2][(self.timer // 4) % 4])
 self.image = "meanie" + str(self.type) + anim_frame

class Rock(Actor):
 def __init__(self, x, y, totem=False):
 anchor = (24, 60) if totem else CENTRE_ANCHOR
 super().__init__("blank", cell2pos(x, y), anchor=anchor)
 self.type = randint(0, 3)

 if totem:
 game.play_sound("totem_create")
 self.health = 5
 self.show_health = 5
 else:
 self.health = randint(3, 4)
 self.show_health = 1

 self.timer = 1

 def damage(self, amount, damaged_by_bullet=False):
 if damaged_by_bullet and self.health == 5:
 game.play_sound("totem_destroy")
 game.score += 100
 else:
 if amount > self.health - 1:
 game.play_sound("rock_destroy")
 else:
 game.play_sound("hit", 4)

 game.explosions.append(Explosion(self.pos, 2 * (self.health == 5)))
 self.health -= amount
 self.show_health = self.health
 self.anchor, self.pos = CENTRE_ANCHOR, self.pos

 return self.health < 1

 def update(self):
 self.timer += 1

135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.

Coding Today

Myriapod

http://self.dx
http://self.dy
http://self.dy
http://self.dx
http://self.dy
http://self.dy

138

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 if self.timer % 2 == 1 and self.show_health < self.health:
 self.show_health += 1

 if self.health == 5 and self.timer > 200:
 self.damage(1)

 colour = str(max(game.wave, 0) % 3)
 health = str(max(self.show_health - 1, 0))
 self.image = "rock" + colour + str(self.type) + health

class Bullet(Actor):
 def __init__(self, pos):
 super().__init__("bullet", pos)

 self.done = False

 def update(self):
 self.y -= 24
 grid_cell = pos2cell(*self.pos)

 if game.damage(*grid_cell, 1, True):
 self.done = True
 else:
 for obj in game.segments + [game.flying_enemy]:
 if obj and obj.collidepoint(self.pos):
 game.explosions.append(Explosion(obj.pos, 2))
 obj.health -= 1

 if isinstance(obj, Segment):
 if obj.health == 0 \
 and not game.grid[obj.cell_y][obj.cell_x] \
 and game.allow_movement(game.player.x, \
 game.player.y, obj.cell_x, obj.cell_y):

 rock = Rock(obj.cell_x, obj.cell_y, random() < .2)
 game.grid[obj.cell_y][obj.cell_x] = rock

 game.play_sound("segment_explode")
 game.score += 10
 else:
 game.play_sound("meanie_explode")
 game.score += 20

 self.done = True

 return

182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.

139

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

SECONDARY_AXIS_SPEED = [0]*4 + [1]*8 + [2]*4
SECONDARY_AXIS_POSITIONS = [sum(SECONDARY_AXIS_SPEED[:i]) for i in range(16)]

DIRECTION_UP = 0
DIRECTION_RIGHT = 1
DIRECTION_DOWN = 2
DIRECTION_LEFT = 3

DX = [0,1,0,-1]
DY = [-1,0,1,0]

def inverse_direction(dir):
 if dir == DIRECTION_UP:
 return DIRECTION_DOWN
 elif dir == DIRECTION_RIGHT:
 return DIRECTION_LEFT
 elif dir == DIRECTION_DOWN:
 return DIRECTION_UP
 elif dir == DIRECTION_LEFT:
 return DIRECTION_RIGHT

def is_horizontal(dir):
 return dir == DIRECTION_LEFT or dir == DIRECTION_RIGHT

class Segment(Actor):
 def __init__(self, cx, cy, health, fast, head):
 super().__init__("blank")
 self.cell_x = cx
 self.cell_y = cy
 self.health = health
 self.fast = fast
 self.head = head

 self.in_edge = DIRECTION_LEFT
 self.out_edge = DIRECTION_RIGHT

 self.disallow_direction = DIRECTION_UP
 self.previous_x_direction = 1

 def rank(self):
 def inner(proposed_out_edge):
 new_cell_x = self.cell_x + DX[proposed_out_edge]
 new_cell_y = self.cell_y + DY[proposed_out_edge]

 out = new_cell_x < 0 or new_cell_x > num_grid_cols - 1 \
 or new_cell_y > 0 or new_cell_y > num_grid_rows - 1

229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.

Coding Today

Myriapod

140

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 turning_back_on_self = proposed_out_edge == self.in_edge
 direction_disallowed = proposed_out_edge == self.disallow_direction

 if out or (new_cell_y == 0 and new_cell_x < 0):
 rock = None
 else:
 rock = game.grid[new_cell_y][new_cell_x]

 rock_present = rock != None

 occupied_by_segment = (new_cell_x, new_cell_y) in game.occupied \
 or (self.cell_x, self.cell_y, proposed_out_edge) in game.occupied

 if rock_present:
 horizontal_blocked = is_horizontal(proposed_out_edge)
 else:
 horizontal_blocked = not is_horizontal(proposed_out_edge)

 same_as_previous_x_direction = \
 proposed_out_edge == self.previous_x_direction

 return (out, turning_back_on_self, direction_disallowed, \
 occupied_by_segment, rock_present, horizontal_blocked, \
 same_as_previous_x_direction)

 return inner

 def update(self):
 phase = game.time % 16

 if phase == 0:
 self.cell_x += DX[self.out_edge]
 self.cell_y += DY[self.out_edge]
 self.in_edge = inverse_direction(self.out_edge)

 if self.cell_y == (18 if game.player else 0):
 self.disallow_direction = DIRECTION_UP
 if self.cell_y == num_grid_rows-1:
 self.disallow_direction = DIRECTION_DOWN
 elif phase == 4:
 self.out_edge = min(range(4), key = self.rank())

 if is_horizontal(self.out_edge):
 self.previous_x_direction = self.out_edge

 new_cell_x = self.cell_x + DX[self.out_edge]

276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.

141

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 new_cell_y = self.cell_y + DY[self.out_edge]

 if new_cell_x >= 0 and new_cell_x < num_grid_cols:
 game.damage(new_cell_x, new_cell_y, 5)

 game.occupied.add((new_cell_x, new_cell_y))
 game.occupied.add((new_cell_x, new_cell_y, \
 inverse_direction(self.out_edge)))

 turn_idx = (self.out_edge - self.in_edge) % 4

 offset_x = SECONDARY_AXIS_POSITIONS[phase] * (2 - turn_idx)
 stolen_y_movement = (turn_idx % 2) * SECONDARY_AXIS_POSITIONS[phase]
 offset_y = -16 + (phase * 2) - stolen_y_movement

 rotation_matrices = [[1,0,0,1],[0,-1,1,0],[-1,0,0,-1],[0,1,-1,0]]
 rotation_matrix = rotation_matrices[self.in_edge]
 offset_x, offset_y = offset_x * rotation_matrix[0] \
 + offset_y * rotation_matrix[1], \
 offset_x * rotation_matrix[2] \
 + offset_y * rotation_matrix[3]

 self.pos = cell2pos(self.cell_x, self.cell_y, offset_x, offset_y)

 direction = ((SECONDARY_AXIS_SPEED[phase] * (turn_idx - 2)) \
 + (self.in_edge * 2) + 4) % 8

 leg_frame = phase // 4

 self.image = "seg" + str(int(self.fast)) + str(int(self.health == 2)) \
 + str(int(self.head)) + str(direction) + str(leg_frame)

class Game:
 def __init__(self, player=None):
 self.wave = -1
 self.time = 0
 self.player = player
 self.grid = [[None] * num_grid_cols for y in range(num_grid_rows)]
 self.bullets = []
 self.explosions = []
 self.segments = []
 self.flying_enemy = None
 self.score = 0

 def damage(self, cell_x, cell_y, amount, from_bullet=False):
 rock = self.grid[cell_y][cell_x]

323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.

Coding Today

Myriapod

142

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 if rock != None:
 if rock.damage(amount, from_bullet):
 self.grid[cell_y][cell_x] = None

 return rock != None

 def allow_movement(self, x, y, ax=-1, ay=-1):

 if x < 40 or x > 440 or y < 592 or y > 784:
 return False

 x0, y0 = pos2cell(x-18, y-10)
 x1, y1 = pos2cell(x+18, y+10)

 for yi in range(y0, y1+1):
 for xi in range(x0, x1+1):
 if self.grid[yi][xi] or xi == ax and yi == ay:
 return False

 return True

 def clear_rocks_for_respawn(self, x, y):
 x0, y0 = pos2cell(x-18, y-10)
 x1, y1 = pos2cell(x+18, y+10)

 for yi in range(y0, y1+1):
 for xi in range(x0, x1+1):
 self.damage(xi, yi, 5)

 def update(self):
 self.time += (2 if self.wave % 4 == 3 else 1)
 self.occupied = set()
 all_objects = sum(self.grid, self.bullets + self.segments \
 + self.explosions + [self.player] + [self.flying_enemy])

 for obj in all_objects:
 if obj:
 obj.update()

 self.bullets = [b for b in self.bullets if b.y > 0 and not b.done]
 self.explosions = [e for e in self.explosions if not e.timer == 31]
 self.segments = [s for s in self.segments if s.health > 0]

 if self.flying_enemy:
 if self.flying_enemy.health <= 0 or self.flying_enemy.x < -35 \
 or self.flying_enemy.x > 515:
 self.flying_enemy = None

370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.

143

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 elif random() < .01:
 self.flying_enemy = FlyingEnemy(self.player.x if self.player else 240)

 if self.segments == []:
 num_rocks = 0
 for row in self.grid:
 for element in row:
 if element != None:
 num_rocks += 1
 if num_rocks < 31+self.wave:
 while True:
 x, y = randint(0, num_grid_cols-1), randint(1, num_grid_rows-3)
 if self.grid[y][x] == None:
 self.grid[y][x] = Rock(x, y)
 break
 else:
 game.play_sound("wave")
 self.wave += 1
 self.time = 0
 self.segments = []
 num_segments = 8 + self.wave // 4 * 2
 for i in range(num_segments):
 if DEBUG_TEST_RANDOM_POSITIONS:
 cell_x, cell_y = randint(1, 7), randint(1, 7)
 else:
 cell_x, cell_y = -1-i, 0

 health = [[1,1],[1,2],[2,2],[1,1]][self.wave % 4][i % 2]
 fast = self.wave % 4 == 3
 head = i == 0
 self.segments.append(Segment(cell_x, cell_y, health, fast, head))

 return self

 def draw(self):
 screen.blit("bg" + str(max(self.wave, 0) % 3), (0, 0))
 all_objs = sum(self.grid, self.bullets + self.segments + self.explosions \
 + [self.player])

 def sort_key(obj):
 return (isinstance(obj, Explosion), obj.y if obj else 0)

 all_objs.sort(key=sort_key)
 all_objs.append(self.flying_enemy)

 for obj in all_objs:
 if obj:

417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.

Coding Today

Myriapod

144

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 obj.draw()

 def play_sound(self, name, count=1):
 if self.player:
 try:
 sound = getattr(sounds, name + str(randint(0, count - 1)))
 sound.play()
 except Exception as e:
 print(e)

space_down = False

def space_pressed():
 global space_down
 if keyboard.space:
 if not space_down:
 space_down = True
 return True
 else:
 space_down = False
 return False

class State(Enum):
 MENU = 1,
 PLAY = 2,
 GAME_OVER = 3

def update():
 global state, game

 if state == State.MENU:
 if space_pressed():
 state = State.PLAY
 game = Game(Player((240, 768)))

 game.update()

 elif state == State.PLAY:
 if game.player.lives == 0 and game.player.timer == 100:
 sounds.gameover.play()
 state = State.GAME_OVER
 else:
 game.update()

 elif state == State.GAME_OVER:
 if space_pressed():
 state = State.MENU

464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.
510.

145

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

 game = Game()

def draw():
 game.draw()

 if state == State.MENU:
 screen.blit("title", (0, 0))
 screen.blit("space" + str((game.time // 4) % 14), (0, 420))

 elif state == State.PLAY:
 for i in range(game.player.lives):
 screen.blit("life", (i*40+8, 4))

 score = str(game.score)

 for i in range(1, len(score)+1):
 digit = score[-i]
 screen.blit("digit"+digit, (468-i*24, 5))

 elif state == State.GAME_OVER:
 screen.blit("over", (0, 0))

try:
 pygame.mixer.quit()
 pygame.mixer.init(44100, -16, 2, 1024)

 music.play("theme")
 music.set_volume(0.4)
except:
 pass

state = State.MENU
game = Game()

pgzrun.go()

511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.

Coding Today

Myriapod

http://pgzrun.go

146

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

1 Varieties of the
centipede’s head
are rendered at all
possible angles

2 Body segments
feature various
angles for the
turning motion

3 The insect
baddies flap their
wings as they
fly around

2

3

1

147

Coding Today

Myriapod

Fi
xe

d
Sh

oo
te

r
 –

 C
od

in
g

To
da

y:
 M

yr
ia

po
d

4 5

6

4 One of the three
shades of cracked
earth backdrop

5 The title graphic
is shown on the
starting screen

6 Rather than
mushrooms,
random rocks can
be shot to clear
them away

7 The wheeled
player sprite
has rotated and
shooting variants

Coding Today

Myriapod

7

148

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

Top-down games of pinball-style
soccer built a huge cult following

and kicked off a sports genre that’s
still going strong

Football Game

Chapter 5

149

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

ensible Soccer was a fast-paced, top-down,
arcade-action football game, While it
looked a far cry from the realistic soccer
renditions of the likes of FIFA today, it
quickly won a legion of fans. The top-
down view allowed players to see more

of the pitch as they knocked the ball from end to end,
attacking and defending. It also allowed Sensible Software
to be creative: the game’s greatest hallmark was arguably
its tiny sprites, which not only ran like fury but were well-
animated and responded elegantly to slide tackles and the
other major physical aspects of the beautiful game. With
an immersive atmosphere, underpinned by authentic live
crowd noises, Sensible Soccer won huge popularity.

Inspiration
Sensible Soccer was created by Jon Hare and Chris Yates,
who met during their school days. Having been in a band
together, the pair began to code games, starting with
the never-released Escape From Sainsbury’s, and their first
commercial game, Twister: Mother of Charlotte. They formed
their own development company in 1986 called Sensible
Software and went on to produce commercial games
including Parallax, Wizball, and SEUCK. The pair’s first
stab at a football game came with Microprose Soccer in 1988.
With other 1980s and 1990s staples like Mega Lo Mania,
Wizkid, and Cannon Fodder in their stable, Hare and Yates
are among Britain’s gaming heroes.

S

150

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

Sensible Soccer

Released 1993

Platforms Amiga

 Atari ST

 Amiga CD32

 Acorn Archimedes

 Xbox Live Arcade

 Windows

151

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

152

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

Sensible Soccer was followed up two years later by Sensible World of Soccer, which
included all of the professional leagues and competitions and also had a strong
management element.

Other Notables Microprose Soccer / Kick Off / Tehkan World Cup

How are you watching the game? Are you high up in the stands at Wembley Stadium,
soaking up the atmosphere of the crowd on a summer’s day, or are you wrapping
up warm on the touchline in the pouring rain and shouting pleasantries in the park
as the local Sunday league team get their usual thrashing? Perhaps you’re watching
live on the television from the comfort of your armchair or listening to over-excited
commentary on the car radio. Or maybe you’re playing a video game, in which case
we’ll ask again: how are you viewing it?

That’s because, over the years, many different developers have had their own
take on the adaptation of football as a video game. There have been side-on, top-
down, and isometric views, as well as games stripped down to their bare bones and
games adorned with flashy overlaid graphics and stacks of menus. The first big soccer
title, Pele’s Championship Soccer on the Atari 2600 in 1981, was a three-a-side affair
which had players moving one block at a time. Real Sports Soccer finally introduced
sprites which resembled humans a year later. But even though they were spartan,
these games were unmistakably football.

Games like the classic 8-bit title Match Day skipped real-life features:
substitutions and team names were missing along with concepts like formations
and referees, but they were still very recognisably football games. Back in the day,
the goal for games developers was often to simply get players to knock the ball into
the back of the net. As long as players could rack up the scores, everyone – it seemed
– was happy.

Compare Sensible Soccer to the top football games of today (so the likes of FIFA
and Pro Evolution Soccer) and you’ll see exactly what we mean. The contemporary
blockbuster titles like to view football as a televised game with commentary,
on-screen graphics, close-ups of goal celebrations, and realistic physics embedded
within players that look as close as possible to their real-life counterparts. Sensible
Soccer, meanwhile, had tiny players scurrying around a pitch that was viewed from
the top down. It felt almost as much like pinball as it felt like football, with the ‘ping,
ping’ action of the ball being passed around the pitch at a breakneck speed.

The mechanic worked spectacularly well. Sensible
Soccer takes its place, even today, as one of the greatest football
games ever produced in pixel form. What’s more, co-creator
Jon Hare makes no apologies for the presentation and
mechanics of the game: everything, he says, was deliberate
and he’s pleased that it all worked out so well. “We used small
sprites because that was our style at the time,” he says. “We
had tiny characters and a bigger semi-overhead view of the
environment when we were making Mega Lo Mania and when
we realised they worked, we used them in Cannon Fodder and

1 Fittingly, Sensible
Soccer was a
team effort, led
by Jon Hare and
Chris Chapman

2 The Sensible
Software team
doing some
research at a
football stadium

153

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

1

2

154

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

Sensible Golf.” In fact, the first Sensible Soccer
characters were Mega Lo Mania sprites with
football kits on them.

Kicking off
Jon was the co-founder of Sensible Software,
a company he formed with his friend Chris
Yates. The pair had been introduced by a
mutual friend when Jon was travelling back
from a Rush concert in London and they

became close. They had a shared love of music, and wrote and
played songs together while they dreamed of becoming rock stars.
Chris was studying computing at college. He would buy machines
from a catalogue and spend a month frantically programming
them. He’d then send them back, get a refund, and order a

replacement. When money became even tighter, Chris took a job at LT Software
and worked on a game called Sodov The Sorcerer for the ZX Spectrum. He asked Jon to
create the artwork for it. That led to Jon being taken on too.

The pair worked on a number of games, including Twister: Mother of Charlotte,
but they decided they would make more money if they left LT Software and set up their
own company. They did so in March 1986, creating the games Parallax, Wizball, and
Shoot-’Em-Up Construction Kit (SEUCK). Their first football game was Microprose Soccer,
which they made with a new team member called Martin Galway, and it astounded
gamers with its introduction of speed, a rain effect, and aftertouch. Inspired by the
arcade game Tehkan World Cup, players could swerve the
ball after kicking, see much of what was around them
on the pitch, and replay their goals. The top-down view
worked a treat, as did the simple controls.

This suited Jon. The staunch Norwich City fan
had spent many an hour flicking plastic players around
a metre-long felt Subbuteo pitch, so he was used to a
bird’s-eye perspective of soccer. Another game, Kick
Off, already used the same viewpoint, but Jon and
Chris Chapman, who had joined Sensible Software
to work on Mega Lo Mania, felt they could do better.
The team worked for nine solid months to ensure that
Sensible Soccer was released in time for the 1992 UEFA
European Football Championship.

“We concentrated on the actual gameplay when we created Sensible Soccer,”
says Jon. “We didn’t go down the path of flashy presentation and the emphasis on
style over substance, which we eventually saw when FIFA International Soccer was
released in 1993. We wanted a game where the player had to chase the ball and use
skill to keep it. We certainly didn’t want to replicate a televised game. We preferred
to make players feel like they were on the pitch rather than an uninvolved member
of a TV audience.”

Sensible Soccer initially appeared on the Amiga and the Atari ST in June 1992
before later being converted to the PC, Mega Drive, and other platforms. It focused

We concentrated
on the actual
gameplay when
we created
Sensible Soccer

3

3 Stuart ‘Stoo’
Cambridge
joined Sensible
Software as a
graphic artist

155

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

mostly on European club football, adding a few international teams. Some versions
had made-up player names and included some fictitious custom football teams. The
game had great pace and required a high level of skill. Sensible Soccer’s beauty came
from within.

Creating the beautiful game
The first thing Jon and his team did when creating the game was look at perfecting
the controls. They thought about how people would play the game and the type of
controller they would use, before starting to think about the best way for the action
to evolve. At the time of development, most home platforms used eight-directional
joysticks (left, right, up, down, and diagonals) with a single fire button.

“Every game, whether football or otherwise, should be designed around the
hardware itself, so that’s what we did well with Sensible Soccer,” explains Jon. “We
designed the controls around the limitations of the Commodore Amiga hardware,
which was that eight-direction joystick and a single button. All the best games are
designed that way and it helped to get things right.”

With the controls in place, the developer was then able to deconstruct the
real-life game of football itself so that it could be recreated in pixellated form. Basing
the game on an existing sport helped enormously since it provided a set of ready-
made rules, allowing Sensible Software to take a few design short cuts. By working in
accordance with the sport’s specific objects and established rules, the developer could
concentrate on the skills needed by players and on the best ways of providing them
with an adrenaline rush.

This is why some games have got away with stripping right back. You don’t
necessarily need leagues, cups, and tournaments, for instance, although they can
provide a more immersive experience. You don’t really need crowd noise, let alone
commentary. Red and yellow cards can be done away with, as can over-the-top goal
celebrations. As long as the ball moves as well as expected and the players can make
their way reasonably quickly from one end to the next, football can be recreated
convincingly on screen. The key is to get the behind-the-scenes elements right.
“There’s plenty of stuff in a game like Sensible Soccer other than what is straight out
there on the football pitch,” advises Jon. “The whole framework has to be there too,
taking in the graphics and sound as well as the ball skills and gravity.”

Jon Hare offers some expert advice for making your football game a winner.

The right mindset: When you play sport, you’re drawing on your whole body. In a football video game,
you tend to use just your brain and hands. Jon advises getting into the player mindset.

Keep it simple: Psychologically, you think up and down the pitch when you play football – the goal
behind you and in front of you.

Shots count: Always make the goals big enough for shots to have a chance of going in, otherwise
frustrated gamers will lose the desire to keep playing.

Learn from the master

156

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

Si
ng

le
-S

cr
ee

n
Sh

oo
te

r
 -

 C
en

ti
pe

de

Player movement
The joystick was used to move the players around
the pitch and to indicate where the ball should travel
when it was kicked. “The fire button would be tapped
to pass the ball along the ground and held down
to do something in the air,” Jon says. These simple
controls enabled the gamer to perform a large number
of moves, depending on whether he or she was in
possession of the ball. With possession of the ball, the
player could pull back on the joystick or swiftly switch it
from one direction to another in order to achieve chips,
volleys, lobs, and headers. There were trick shots and a
banana shot available too.

If gamers pushed forward, the sprite in
possession would dribble the ball. If they pushed in a
particular direction and tapped the fire button, the ball
would be passed along the ground. By pressing longer, it would be kicked harder.
There was a short amount of time following a kick for the gamer to lift and bend
the ball by quickly moving the joystick. Depending on how it was done, this could
result in straight or bending kicks: pulling down (i.e. in the opposite direction) quickly
following a kick would send the ball high up into the air.

When a player had the ball, it stuck to his feet unless he turned too sharply.
This was a conscious decision – the other way of doing it is to make the sprite bump
into the ball repeatedly to edge it around the screen. “If you bounce the ball away
from the player, the disadvantage is the animation means the player has to gather the
ball as he turns,” explains Jon. “The problem of bouncing four feet in front of him is
that when he turns sharp left, the ball will drag with him. The closer it stays to his feet,
Messi style, the more naturalistic it will look when he physically turns left or right.
This is counterbalanced by allowing the player to lose the ball if he turns too sharply,
dependent upon his ball control skill.”

Off-the-ball mechanics
If the player was off the ball (i.e. defending) in Sensible Soccer, pressing fire would
perform a sliding tackle in the direction faced; if the ball was overhead, hitting fire
would attempt a header. Sensible Software made the game easier for the player by
keeping the goalkeepers under the control of the computer. That way, the focus could
remain on the outfield play.

Jon says the control system off the ball is just as important as when the
player is in possession. “A good control system off the ball is vital because 50 percent
of the time you are on the ball and 50 percent of the time you’re not. So you want
controls that enable the player to get to the ball as quickly as possible and a passing
system that intelligently selects where the player is intending to play the ball.”

Tackling is also vital when a player does not have
the ball and this requires a routine. To make tackling work
well, when the players that run towards the ball are within a
certain number of degrees from alignment with it, they are
automatically aimed directly at the ball. “Fifteen degrees is

• Think about overall
presentation. Jon Hare
says game controls
and the actual game
are only a part of a
professional package.

• Consider the different
roles of players: do
you want give your
strikers different
attributes than
the defenders?

Top tips

4 The Sensible
team enjoying
a kickabout to
promote the
launch of SWOS

157

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

4

158

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

23

5

6

7

159

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

the number we used,” Jon reveals. “This means a slide tackle will be more accurate
because the animation will be focused in the direction of the ball. The player slide-
tackling should be slide-tackling to a projected position of the ball, possibly two
or three frames ahead of where it currently is and not directly now. So it will be
projecting in two or three frames time that the ball will be in this position, so the
players slide-tackles towards that position. Then there are other calculations. If you
tackle in front, it’s a good clean tackle and the player wins the ball. If it’s behind, the
player concedes a foul, maybe even gets a yellow or red card. And from the side, it
depends on the relative tackling and ball control skills of the players involved.”

Ball in play
The Sensible Soccer development team needed to figure out what happened when the
ball was being played, and build physics and graphics accordingly. “When the ball
leaves the foot of a player, the programmer has to think about drawing a shadow
underneath the ball,” says Jon. “He or she also has to take into account the way the
animation of the player is working and this basically operates on three levels: the
floor height, which is your dribbling, kicking, slide tackles, and so on; the waist height,
which is volleys and diving headers; and head height, which is mainly headers. So
when the ball leaves the foot of a player, you take into account the arc of the ball. I
guess it is harder to keep the ball down when it starts off already off the floor, but that
is worked into the physics and gravity systems, so the main thing is the animations.”

All of this helped to make Sensible Soccer as realistic as possible. Even though
the sprites in the game were tiny, they ran smoothly and gamers
could see tackles being carried out in an obvious way, with decent
renditions of the players on the pitch. Many of the teams had
made-up names because the official licences would have proven
too expensive (try getting licensing deals for the likes of Manchester
United, Barcelona, or Bayern Munich today and you’d certainly
pay through the nose), but the Sensible Soccer developers had to
consider the colours of the kit the players wore.

“The main thing we had to think about is that the players
were against a green pitch, so it was about avoiding what colours
worked badly,” says Jon. “Pretty much the worst colour is green,
understandably, but certain shades of yellow and maybe orange
didn’t work so well either. It made it harder to, say, recreate the
Dutch national team or Blackpool FC, but most of the others
worked fine.”

5 The console
conversions
feature
this match
intro screen

6 The top-down
view is ideal
for seeing
where your
team-mates are

7 Scoring goals
requires skilful
ball control
and a good
passing game

Short term: Work on the controls so that each player is able to move around the pitch, kick and tackle,
and score.

Medium term: Add in the goal scoring system, the amount of time you want there to be for each half,
and the additional rules of the game.

Long term: To absorb players into the game, there needs to be something to pull them back in.
Adding cups and leagues would do the trick.

The objectives

160

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

A good frame rate kept the action flowing and an absence of too much on-
screen clutter gave gamers the best possible view of the pitch and the positions of
the players. Sensible Software decided not to bother having the score constantly
displayed on the screen – it only appeared when a goal was scored or the ball left
the pitch. “The score system for football was dead simple, though,” says Jon. “Who
scored the most goals won, and that’s the only score system we needed. It can get
complicated if you have figures evaluating players – so, a system based on how
many tackles and passes and shots are accurately
performed – but scoring is just 1-0, 2-0 and so
on, and easily implemented.”

It was easy to add flourishes like cards
and substitutions. “Adding red and yellow cards
was simple,” he says. “They were created as part
of the tackling system.” The team wrote code
which worked out the nature of the tackle and
the opposition player’s movement and position
to detect whether there was foul play. “In Sensible
Soccer, you only got a red or yellow card if you
tackled from behind,” Jon adds.

Substitutions were activated by using
either the joystick or the keyboard (Sensible
Software was unafraid of making use of the keyboard to add greater control over
non-action elements of the game). Pressing the up or down arrow key called up
the bench, depending on the team, and the player could then select the substitute,
indicating who was coming on and who was going off. “Players could call it up at any
time when the ball was out of play,” says Jon. “This was quite simple to do.” Gamers
were also able to save their games at any point, which avoided having to complete a
tournament or league in one sitting.

Things became more complex from a development point of view when
Sensible Software created a slightly improved version in 1993, called the Sensible
Soccer International Edition. It also released a substantially more complex sequel, Sensible
World of Soccer, in 1994, adding many more menus, 1400 teams, and 23,000 players
from all over the world, along with a management section, taking advantage of
the 1990s popularity of football management games like Championship Manager. “A
football game has a lot of menus, league systems, team selections and so on, which
are vitally important for more advanced titles,” says Jon, whose own development

In Sensible Soccer,
you only got a red
or yellow card
if you tackled
from behind

Sensible Soccer was viewed from the top down, but this wasn’t to make it easier for the developers
to code. According to Jon Hare, neither the top-down view or the side-on view is any more difficult
than the other to program. The Sensible Software team decided on a top-down view because Jon
believes it makes for a more realistic game when it is being played. “A top-down view gives you more
of the viewpoint from a football player, and the side-on view gives you more of the viewpoint from
a football spectator in a stadium or on television. That’s why Sensible Soccer feels like a footballer’s
football game: because you feel like you’re playing it.”

Top-down or side-on?

161

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

team was having lots of fun. As well as putting together a serious recreation of world
football, they believed that an entertaining game should have off-beat elements,
and kept the fun up by making it possible to compete in the Turkey Tournament
or Booby League and see European Cities go up against Great Wars. They even
included West Germany, even though the team ceased to exist in 1990 following
German reunification.

Jon hasn’t stopped developing football games, and this kind of philosophy is
being carried over into his latest game, Sociable Soccer. It retains all of the fast, slick
playability of Jon’s classic football games, but this time using cutting-edge technology,
featuring online and offline play, 1000 teams from all over the world, 31 collectable
and upgradable player cards, and support for all current virtual reality systems.

In 2006, Sensible World of Soccer was honoured by Stanford University in
California as one of the ten most influential computer games of all time, alongside
such greats as Spacewar!, Super Mario Bros. 3, and Tetris. Sociable Soccer looks set to reboot
a 1990s classic into the modern era.

162

Fo
ot

ba
ll

G
am

e
 –

 S
en

si
bl

e
So

cc
er

163

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

ur final game, Substitute Soccer, is
inspired by top-down-view football
classics such as Kick Off 2 and Sensible
Soccer. It features both one- and two-
player modes, as well as three difficulty
settings. Each team has seven players

– and as the pitch is larger than the game window, the
viewport scrolls on both the X and Y axes.

As before, we’ll start by looking at the classes which
contain the bulk of the game’s code. Game, Ball, Player,
and Goal are all pretty self-explanatory – although we
should note that the Player class is used by each of the 14
football players on the pitch, only one or two (depending
on the game mode) of which are controlled by a human
player at any one time. Whereas in, for example, Myriapod,
an instance of the Player class is the manifestation of the
human player in the game, in this game it makes more
sense to think in terms of a particular team corresponding

O

Substitute
Soccer

Coding Today

Download the fully commented Substitute Soccer game code, along
with all the graphics and sounds, from wfmag.cc/CTC1-soccer

Download the code

http://wfmag.cc/CTC1-soccer

164

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

to a human player, rather than a specific player on the pitch. Difficulty is used to
store and refer to a number of parameters which are chosen based on the difficulty
level. Controls deals with control inputs (arrow keys and SPACE for player 1, WSAD
and left SHIFT for player 2). Team stores an instance of the Controls class, which
determines the controls for the relevant player – computer-controlled teams use
the value None here. The Team class also keeps track of the active_control_player
– the player on the pitch currently being controlled by a human, indicated by an
arrow over their head. When they don’t have the ball, a human player can switch the
active_control_player using the same key they use to kick the ball.

You may remember that Bunner had a class named MyActor, which inherited
from Pygame Zero’s Actor class, and was the base class of all objects in the game.
Amongst other things, MyActor made sure that objects were displayed at the correct
position on the screen, based on the scrolling of the level. This game also has a
MyActor class – and while part of its job is to deal with scrolling, it has another
important purpose. In Boing!, we introduced the concept of vectors. That game’s Ball
class defined a pair of attributes – dx and dy – which together formed a unit vector,
indicating the ball’s current direction of travel. In Soccer, we’ve made use of Pygame’s
Vector2 class. Instances of this class store the X and Y components of a vector, and
the class defines a number of useful methods such as length and normalize, and
allows us to subtract one vector from another –
which is necessary when we want to work out the
position of an object in relation to another, or the
distance between two objects. The MyActor class
defines the attribute vpos, which stores an object’s
position using a Vector2. Having made the
decision to store positions in this way, it’s vital to
remember to always access or change an object’s
position via vpos, and not via Pygame Zero’s
usual methods of accessing Actor positions, such
as pos or x and y. The only time we set those is
when it’s time to actually draw the object on the
screen. We also need to be careful when we want
to copy the contents of one Vector2 to another.
As with any class in Python, instances of Vector2
are reference types. Therefore, copying should be
done like this – v2 = Vector2(v1) – rather than
this: v2 = v1. The latter means that the variable
v2 will refer to the same object as v1, so changing
one will change the other.

The Game class creates and maintains
objects for the teams, players, goals, and ball. Its
reset method is called at the start of the game
and after each goal – it recreates the players, ball,
and goals, and decides the initial positions of
the players on the pitch. Amongst other things,
Game.update detects goals being scored and
assigns players to mark one another (including

With so many computer-controlled players running around
once, it can be hard to verify that the AI code is doing what
it’s supposed to be doing – especially given that players
can change roles multiple times within the space of a few
seconds. One moment a player might be acting as a goalie,
then he might be one of the ‘lead’ players trying to tackle
the ball owner, then he might be marking a player on the
opposite team. One way to help to confirm everything is
working as it should is to use debug visualisations. Near
the top of the code you’ll see a number of constants such
as DEBUG_SHOW_TARGETS. When set to True, Game.draw
displays a line from each player, showing the position
they’re currently running towards. Debug visualisations can
also be useful for learning how a game works. Try turning
on each one – preferably one at a time.

Visualisation quest

165

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

Substitute
Soccer

Coding Today

166

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

assigning a goalie on hard difficulty). If a team has the ball, it also chooses either one
or two (depending on difficulty level) ‘lead’ players from the other team, who will try
to intercept the ball.

As with the previous games, the final part of the code uses a simple state
machine system to process interactions with the main menu, and trigger updating and
drawing of the current Game instance. There are also a number of helper functions to
do with ball physics, targeting, and angles. In this game, the numbers 0 to 7 are used
for angles, with 0 representing up, 1 up and right, 2 right, and so on. Hence we have
our own custom sine and cosine functions which work with those angles, as opposed
to degrees and radians.

When a computer player has the ball, there are two decisions it has to make each frame – which
direction to run in, and whether to kick the ball. These decisions are made with the help of the cost
function. Given a position on the pitch and a team number, it calculates the number representing
how good or bad it would be for the ball to move to that position – the lower the better. The cost
value is calculated based on the distance to our own goal (further away is better), the proximity of
the position to players on the opposing team, a quadratic equation (don’t panic too much!) causing
the player to favour the centre of the pitch and their opponents goal, and a ‘handicap’ value.

The cost function is called in two places. First, when a player with the ball is deciding where
to run, cost is called five times, each time being passed a position indicating where the player
would be if they were to move slightly forward in a particular direction – the five directions being
straight ahead, left or right 45°, and left or right 90°. cost's optional third parameter, handicap,
is used to slightly discourage the player from making turns – this ensures that the player doesn’t
exhibit unrealistic behaviour such as repeatedly turning left and right within the space of a fraction
of a second. cost is also called when a player is deciding whether to pass the ball to a team-mate.
A piece of code in Ball.update tries to find a suitable player to pass to, but the pass only goes
ahead if the cost value for the target player’s location is less than the cost value for the current
player’s location.

Counting the cost

167

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

Display a different message from the usual ‘GOAL!’ if an own goal is scored.

Try enlarging the game window so you can see more of the pitch at once. Notice how certain aspects
of the user interface do not display correctly after this change. How would you fix this?

The game includes code allowing players to mark players on the opposing team – however, this is
currently only enabled for computer-controlled teams. Try enabling this marking behaviour for human
teams. Consider how this affects the gameplay and whether you feel the game is better or worse
having made this change.

Give each player a name. Display this above their head, using Pygame Zero’s screen.draw.text
method. You could also generate stats for each player, altering their speed in different circumstances
– e.g. when running with or without the ball.

Simulate a full-length match, including swapping ends at half-time. Display a timer on the screen
indicating the number of minutes into the match. The timer could advance at, for example, one
minute of game time for every five seconds of real time. Make sure that the timer is stopped during
the kick-off phase – otherwise a player could run down the clock by refusing to kick-off!

Challenges

The AI in the previous games has mostly been very straightforward. The bat in Boing! moves along
a single axis, obeying just two rules – stay near the centre when the ball is far away; as the ball
gets nearer, increasingly try to follow its movement. In Cavern, the robots move forward, randomly
change direction, and randomly decide to shoot – with a higher probability if the player is at the
same height as the robot. Bunner doesn’t really have AI, and in Myriapod the segments choose
their next cell based on a series of rules, with higher-priority rules taking precedence over others.
Although the games are very different, Soccer’s AI is closest to that of Myriapod. Each frame, a
computer-controlled player decides their next action based on a series of conditions. The first is
whether anyone currently has the ball. If so, it must be owned by either that player, someone on
their team, or someone on the opposite team. Each scenario has its own corresponding behaviour.
Alternatively, it might be that no-one has the ball. This could be because kick-off is about to take

place, in which case no players are allowed to
move other than the player who is about to
take the kick-off. Otherwise, all players who
currently considered ‘active’ (i.e. are within 400
pixels of the ball on the Y axis) will attempt to
intercept the ball by looking at its trajectory
and calculating where to run to have the best
chance of obtaining it.

I am very intelligent

168

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

import pgzero, pgzrun, pygame
import math, sys, random
from enum import Enum
from pygame.math import Vector2

if sys.version_info < (3,5):
 print("This game requires at least version 3.5 of Python. Please download"
 "it from www.python.org")
 sys.exit()

pgzero_version = [int(s) if s.isnumeric() else s for s in pgzero.__version__.
split('.')]
if pgzero_version < [1,2]:
 print("This game requires at least version 1.2 of Pygame Zero. You are"
 "using version {pgzero.__version__}. Please upgrade using the command"
 "'pip install --upgrade pgzero'")
 sys.exit()

WIDTH = 800
HEIGHT = 480
TITLE = "Substitute Soccer"

HALF_WINDOW_W = WIDTH / 2

LEVEL_W = 1000
LEVEL_H = 1400
HALF_LEVEL_W = LEVEL_W // 2
HALF_LEVEL_H = LEVEL_H // 2

HALF_PITCH_W = 442
HALF_PITCH_H = 622

GOAL_WIDTH = 186
GOAL_DEPTH = 20
HALF_GOAL_W = GOAL_WIDTH // 2

PITCH_BOUNDS_X = (HALF_LEVEL_W - HALF_PITCH_W, HALF_LEVEL_W + HALF_PITCH_W)
PITCH_BOUNDS_Y = (HALF_LEVEL_H - HALF_PITCH_H, HALF_LEVEL_H + HALF_PITCH_H)

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034.
035.
036.
037.
038.
039.

Open the soccer.py file in a Python editor, such as IDLE, and select Run > Run Module.
For more details, see the ‘Setting up’ section on page 186.

How to run the game

wfmag.cc/CTC1-soccerDownload the code

http://www.python.org
http://soccer.py
http://wfmag.cc/CTC1-soccer

169

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

GOAL_BOUNDS_X = (HALF_LEVEL_W - HALF_GOAL_W, HALF_LEVEL_W + HALF_GOAL_W)
GOAL_BOUNDS_Y = (HALF_LEVEL_H - HALF_PITCH_H - GOAL_DEPTH,
 HALF_LEVEL_H + HALF_PITCH_H + GOAL_DEPTH)

PITCH_RECT = pygame.rect.Rect(PITCH_BOUNDS_X[0], PITCH_BOUNDS_Y[0],
 HALF_PITCH_W * 2, HALF_PITCH_H * 2)
GOAL_0_RECT = pygame.rect.Rect(GOAL_BOUNDS_X[0], GOAL_BOUNDS_Y[0],
 GOAL_WIDTH, GOAL_DEPTH)
GOAL_1_RECT = pygame.rect.Rect(GOAL_BOUNDS_X[0], GOAL_BOUNDS_Y[1] - GOAL_DEPTH,
 GOAL_WIDTH, GOAL_DEPTH)

AI_MIN_X = 78
AI_MAX_X = LEVEL_W - 78
AI_MIN_Y = 98
AI_MAX_Y = LEVEL_H - 98

PLAYER_START_POS = [(350, 550), (650, 450), (200, 850), (500, 750), (800, 950),
 (350, 1250), (650, 1150)]

LEAD_DISTANCE_1 = 10
LEAD_DISTANCE_2 = 50

DRIBBLE_DIST_X, DRIBBLE_DIST_Y = 18, 16

PLAYER_DEFAULT_SPEED = 2
CPU_PLAYER_WITH_BALL_BASE_SPEED = 2.6
PLAYER_INTERCEPT_BALL_SPEED = 2.75
LEAD_PLAYER_BASE_SPEED = 2.9
HUMAN_PLAYER_WITH_BALL_SPEED = 3
HUMAN_PLAYER_WITHOUT_BALL_SPEED = 3.3

DEBUG_SHOW_LEADS = False
DEBUG_SHOW_TARGETS = False
DEBUG_SHOW_PEERS = False
DEBUG_SHOW_SHOOT_TARGET = False
DEBUG_SHOW_COSTS = False

class Difficulty:
 def __init__(self, goalie_enabled, second_lead_enabled, speed_boost,
 holdoff_timer):
 self.goalie_enabled = goalie_enabled
 self.second_lead_enabled = second_lead_enabled
 self.speed_boost = speed_boost
 self.holdoff_timer = holdoff_timer

DIFFICULTY = [Difficulty(False, False, 0, 120), Difficulty(False, True, 0.1, 90),
 Difficulty(True, True, 0.2, 60)]

040.
041.
042.
043.
044.
045.
046.
047.
048.
049.
050.
051.
052.
053.
054.
055.
056.
057.
058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
078.
079.
080.
081.
082.
083.
084.
085.
086.

170

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

def sin(x):
 return math.sin(x*math.pi/4)

def cos(x):
 return sin(x+2)

def vec_to_angle(vec):
 return int(4 * math.atan2(vec.x, -vec.y) / math.pi + 8.5) % 8

def angle_to_vec(angle):
 return Vector2(sin(angle), -cos(angle))

def dist_key(pos):
 return lambda p: (p.vpos - pos).length()

def safe_normalise(vec):
 length = vec.length()
 if length == 0:
 return Vector2(0,0), 0
 else:
 return vec.normalize(), length

class MyActor(Actor):
 def __init__(self, img, x=0, y=0, anchor=None):
 super().__init__(img, (0, 0), anchor=anchor)
 self.vpos = Vector2(x, y)

 def draw(self, offset_x, offset_y):
 self.pos = (self.vpos.x - offset_x, self.vpos.y - offset_y)
 super().draw()

KICK_STRENGTH = 11.5
DRAG = 0.98

def ball_physics(pos, vel, bounds):
 pos += vel

 if pos < bounds[0] or pos > bounds[1]:
 pos, vel = pos - vel, -vel

 return pos, vel * DRAG

def steps(distance):
 steps, vel = 0, KICK_STRENGTH

 while distance > 0 and vel > 0.25:

087.
088.
089.
090.
091.
092.
093.
094.
095.
096.
097.
098.
099.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.

http://math.pi/4
http://math.pi

171

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 distance, steps, vel = distance - vel, steps + 1, vel * DRAG

 return steps

class Goal(MyActor):
 def __init__(self, team):
 x = HALF_LEVEL_W
 y = 0 if team == 0 else LEVEL_H
 super().__init__("goal" + str(team), x, y)

 self.team = team

 def active(self):
 return abs(game.ball.vpos.y - self.vpos.y) < 500

def targetable(target, source):
 v0, d0 = safe_normalise(target.vpos - source.vpos)

 if not game.teams[source.team].human():

 for p in game.players:
 v1, d1 = safe_normalise(p.vpos - source.vpos)

 if p.team != target.team and d1 > 0 and d1 < d0 and v0*v1 > 0.8:
 return False

 return target.team == source.team and d0 > 0 and d0 < 300 and \
 v0 * angle_to_vec(source.dir) > 0.8

def avg(a, b):
 return b if abs(b-a) < 1 else (a+b)/2

def on_pitch(x, y):
 return PITCH_RECT.collidepoint(x,y) \
 or GOAL_0_RECT.collidepoint(x,y) \
 or GOAL_1_RECT.collidepoint(x,y)

class Ball(MyActor):
 def __init__(self):
 super().__init__("ball", HALF_LEVEL_W, HALF_LEVEL_H)

 self.vel = Vector2(0, 0)

 self.owner = None
 self.timer = 0

 self.shadow = MyActor("balls")

134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.

172

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

 def collide(self, p):
 return p.timer < 0 and (p.vpos - self.vpos).length() <= DRIBBLE_DIST_X

 def update(self):
 self.timer -= 1

 if self.owner:
 new_x = avg(self.vpos.x, self.owner.vpos.x + DRIBBLE_DIST_X *
 sin(self.owner.dir))
 new_y = avg(self.vpos.y, self.owner.vpos.y - DRIBBLE_DIST_Y *
 cos(self.owner.dir))

 if on_pitch(new_x, new_y):
 self.vpos = Vector2(new_x, new_y)
 else:
 self.owner.timer = 60
 self.vel = angle_to_vec(self.owner.dir) * 3
 self.owner = None
 else:
 if abs(self.vpos.y - HALF_LEVEL_H) > HALF_PITCH_H:
 bounds_x = GOAL_BOUNDS_X
 else:
 bounds_x = PITCH_BOUNDS_X

 if abs(self.vpos.x - HALF_LEVEL_W) < HALF_GOAL_W:
 bounds_y = GOAL_BOUNDS_Y
 else:
 bounds_y = PITCH_BOUNDS_Y

 self.vpos.x, self.vel.x = ball_physics(self.vpos.x, self.vel.x, bounds_x)
 self.vpos.y, self.vel.y = ball_physics(self.vpos.y, self.vel.y, bounds_y)

 self.shadow.vpos = Vector2(self.vpos)

 for target in game.players:

 if (not self.owner or self.owner.team != target.team) and \
 self.collide(target):
 if self.owner:
 self.owner.timer = 60

 self.timer = game.difficulty.holdoff_timer
 game.teams[target.team].active_control_player = self.owner = target

 if self.owner:
 team = game.teams[self.owner.team]

181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.

173

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 targetable_players = [p for p in game.players + game.goals if p.team ==
 self.owner.team and targetable(p, self.owner)]

 if len(targetable_players) > 0:
 target = min(targetable_players, key=dist_key(self.owner.vpos))
 game.debug_shoot_target = target.vpos
 else:
 target = None

 if team.human():
 do_shoot = team.controls.shoot()
 else:
 do_shoot = self.timer <= 0 and target and cost(target.vpos,
 self.owner.team) < cost(self.owner.vpos, self.owner.team)

 if do_shoot:
 game.play_sound("kick", 4)

 if target:
 r = 0
 iterations = 8 if team.human() and isinstance(target, Player) else 1

 for i in range(iterations):
 t = target.vpos + angle_to_vec(self.owner.dir) * r
 vec, length = safe_normalise(t - self.vpos)
 r = HUMAN_PLAYER_WITHOUT_BALL_SPEED * steps(length)
 else:
 vec = angle_to_vec(self.owner.dir)
 target = min([p for p in game.players if p.team ==
 self.owner.team], key=dist_key(self.vpos + (vec * 250)))

 if isinstance(target, Player):
 game.teams[self.owner.team].active_control_player = target

 self.owner.timer = 10
 self.vel = vec * KICK_STRENGTH
 self.owner = None

def allow_movement(x, y):
 if abs(x - HALF_LEVEL_W) > HALF_LEVEL_W:
 return False

 elif abs(x - HALF_LEVEL_W) < HALF_GOAL_W + 20:
 return abs(y - HALF_LEVEL_H) < HALF_PITCH_H

 else:
 return abs(y - HALF_LEVEL_H) < HALF_LEVEL_H

228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.

174

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

def cost(pos, team, handicap=0):
 own_goal_pos = Vector2(HALF_LEVEL_W, 78 if team == 1 else LEVEL_H - 78)
 inverse_own_goal_distance = 3500 / (pos - own_goal_pos).length()

 result = inverse_own_goal_distance \
 + sum([4000 / max(24, (p.vpos - pos).length())
 for p in game.players if p.team != team]) + ((pos.x
 - HALF_LEVEL_W)**2 / 200 - pos.y * (4 * team - 2)) + handicap

 return result, pos

class Player(MyActor):
 ANCHOR = (25,37)

 def __init__(self, x, y, team):
 kickoff_y = (y / 2) + 550 - (team * 400)
 super().__init__("blank", x, kickoff_y, Player.ANCHOR)

 self.home = Vector2(x, y)
 self.team = team
 self.dir = 0
 self.anim_frame = -1
 self.timer = 0
 self.shadow = MyActor("blank", 0, 0, Player.ANCHOR)
 self.debug_target = Vector2(0, 0)

 def active(self):
 return abs(game.ball.vpos.y - self.home.y) < 400

 def update(self):
 self.timer -= 1
 target = Vector2(self.home)
 speed = PLAYER_DEFAULT_SPEED
 my_team = game.teams[self.team]
 pre_kickoff = game.kickoff_player != None
 i_am_kickoff_player = self == game.kickoff_player
 ball = game.ball

 if self == game.teams[self.team].active_control_player and \
 my_team.human() and (not pre_kickoff or i_am_kickoff_player):

 if ball.owner == self:
 speed = HUMAN_PLAYER_WITH_BALL_SPEED
 else:
 speed = HUMAN_PLAYER_WITHOUT_BALL_SPEED

275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.

175

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 target = self.vpos + my_team.controls.move(speed)

 elif ball.owner != None:
 if ball.owner == self:
 costs = [cost(self.vpos + angle_to_vec(self.dir + d) * 3,
 self.team, abs(d)) for d in range(-2, 3)]

 _, target = min(costs, key=lambda element: element[0])
 speed = CPU_PLAYER_WITH_BALL_BASE_SPEED + game.difficulty.speed_boost

 elif ball.owner.team == self.team:
 if self.active():
 direction = -1 if self.team == 0 else 1
 target.x = (ball.vpos.x + target.x) / 2
 target.y = (ball.vpos.y + 400 * direction + target.y) / 2
 else:
 if self.lead is not None:
 target = ball.owner.vpos + angle_to_vec(ball.owner.dir) * self.lead
 target.x = max(AI_MIN_X, min(AI_MAX_X, target.x))
 target.y = max(AI_MIN_Y, min(AI_MAX_Y, target.y))

 other_team = 1 if self.team == 0 else 1
 speed = LEAD_PLAYER_BASE_SPEED
 if game.teams[other_team].human():
 speed += game.difficulty.speed_boost

 elif self.mark.active():

 if my_team.human():
 target = Vector2(ball.vpos)
 else:
 vec, length = safe_normalise(ball.vpos - self.mark.vpos)

 if isinstance(self.mark, Goal):
 length = min(150, length)
 else:
 length /= 2

 target = self.mark.vpos + vec * length
 else:
 if (pre_kickoff and i_am_kickoff_player) or (not pre_kickoff and
 self.active()):
 target = Vector2(ball.vpos)
 vel = Vector2(ball.vel)
 frame = 0

 while (target - self.vpos).length() > PLAYER_INTERCEPT_BALL_SPEED *

322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.

176

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

 frame + DRIBBLE_DIST_X and vel.length() > 0.5:
 target += vel
 vel *= DRAG
 frame += 1

 speed = PLAYER_INTERCEPT_BALL_SPEED

 elif pre_kickoff:
 target.y = self.vpos.y

 vec, distance = safe_normalise(target - self.vpos)
 self.debug_target = Vector2(target)

 if distance > 0:
 distance = min(distance, speed)
 target_dir = vec_to_angle(vec)

 if allow_movement(self.vpos.x + vec.x * distance, self.vpos.y):
 self.vpos.x += vec.x * distance
 if allow_movement(self.vpos.x, self.vpos.y + vec.y * distance):
 self.vpos.y += vec.y * distance

 self.anim_frame = (self.anim_frame + max(distance, 1.5)) % 72
 else:
 target_dir = vec_to_angle(ball.vpos - self.vpos)
 self.anim_frame = -1

 dir_diff = (target_dir - self.dir)
 self.dir = (self.dir + [0, 1, 1, 1, 1, 7, 7, 7][dir_diff % 8]) % 8

 suffix = str(self.dir) + str((int(self.anim_frame) // 18) + 1) # todo

 self.image = "player" + str(self.team) + suffix
 self.shadow.image = "players" + suffix
 self.shadow.vpos = Vector2(self.vpos)

class Team:
 def __init__(self, controls):
 self.controls = controls
 self.active_control_player = None
 self.score = 0

 def human(self):
 return self.controls != None

369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.

177

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

class Game:
 def __init__(self, p1_controls=None, p2_controls=None, difficulty=2):
 self.teams = [Team(p1_controls), Team(p2_controls)]
 self.difficulty = DIFFICULTY[difficulty]

 try:
 if self.teams[0].human():
 music.fadeout(1)
 sounds.crowd.play(-1)
 sounds.start.play()
 else:
 music.play("theme")
 sounds.crowd.stop()
 except:
 pass

 self.score_timer = 0
 self.scoring_team = 1
 self.reset()

 def reset(self):
 self.players = []
 random_offset = lambda x: x + random.randint(-32, 32)
 for pos in PLAYER_START_POS:
 self.players.append(Player(random_offset(pos[0]),
 random_offset(pos[1]), 0))
 self.players.append(Player(random_offset(LEVEL_W - pos[0]),
 random_offset(LEVEL_H - pos[1]), 1))

 for a, b in zip(self.players, self.players[::-1]):
 a.peer = b

 self.goals = [Goal(i) for i in range(2)]
 self.teams[0].active_control_player = self.players[0]
 self.teams[1].active_control_player = self.players[1]
 other_team = 1 if self.scoring_team == 0 else 0
 self.kickoff_player = self.players[other_team]
 self.kickoff_player.vpos = Vector2(HALF_LEVEL_W - 30 + other_team * 60,
 HALF_LEVEL_H)
 self.ball = Ball()
 self.camera_focus = Vector2(self.ball.vpos)
 self.debug_shoot_target = None

 def update(self):
 self.score_timer -= 1

 if self.score_timer == 0:

416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.

178

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

 self.reset()

 elif self.score_timer < 0 and abs(self.ball.vpos.y -
 HALF_LEVEL_H) > HALF_PITCH_H:
 game.play_sound("goal", 2)

 self.scoring_team = 0 if self.ball.vpos.y < HALF_LEVEL_H else 1
 self.teams[self.scoring_team].score += 1
 self.score_timer = 60

 for b in self.players:
 b.mark = b.peer
 b.lead = None
 b.debug_target = None

 self.debug_shoot_target = None

 if self.ball.owner:
 o = self.ball.owner
 pos, team = o.vpos, o.team
 owners_target_goal = game.goals[team]
 other_team = 1 if team == 0 else 1

 if self.difficulty.goalie_enabled:
 nearest = min([p for p in self.players if p.team != team],
 key = dist_key(owners_target_goal.vpos))

 o.peer.mark = nearest.mark
 nearest.mark = owners_target_goal

 l = sorted([p for p in self.players
 if p.team != team
 and p.timer <= 0
 and (not self.teams[other_team].human() or p !=
 self.teams[other_team].active_control_player)
 and not isinstance(p.mark, Goal)],
 key = dist_key(pos))

 a = [p for p in l if (p.vpos.y > pos.y if team == 0
 else p.vpos.y < pos.y)]
 b = [p for p in l if p not in a]

 NONE2 = [None] * 2
 zipped = [s for t in zip(a+NONE2, b+NONE2) for s in t if s]

 zipped[0].lead = LEAD_DISTANCE_1
 if self.difficulty.second_lead_enabled:

463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.
505.
506.
507.
508.
509.

179

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 zipped[1].lead = LEAD_DISTANCE_2

 self.kickoff_player = None

 for obj in self.players + [self.ball]:
 obj.update()

 owner = self.ball.owner

 for team_num in range(2):
 team_obj = self.teams[team_num]

 if team_obj.human() and team_obj.controls.shoot():
 def dist_key_weighted(p):
 dist_to_ball = (p.vpos - self.ball.vpos).length()
 goal_dir = (2 * team_num - 1)
 if owner and (p.vpos.y - self.ball.vpos.y) * goal_dir < 0:
 return dist_to_ball / 2
 else:
 return dist_to_ball

 self.teams[team_num].active_control_player = \
 min([p for p in game.players
 if p.team == team_num], key = dist_key_weighted)

 camera_ball_vec, distance = safe_normalise(self.camera_focus
 - self.ball.vpos)
 if distance > 0:
 self.camera_focus -= camera_ball_vec * min(distance, 8)

 def draw(self):
 offset_x = max(0, min(LEVEL_W - WIDTH, self.camera_focus.x - WIDTH / 2))
 offset_y = max(0, min(LEVEL_H - HEIGHT, self.camera_focus.y - HEIGHT / 2))
 offset = Vector2(offset_x, offset_y)

 screen.blit("pitch", (-offset_x, -offset_y))

 objects = sorted([self.ball] + self.players, key = lambda obj: obj.y)
 objects = objects + [obj.shadow for obj in objects]
 objects = [self.goals[0]] + objects + [self.goals[1]]

 for obj in objects:
 obj.draw(offset_x, offset_y)

 for t in range(2):
 if self.teams[t].human():
 arrow_pos = self.teams[t].active_control_player.vpos - \

510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.

180

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

 offset - Vector2(11, 45)
 screen.blit("arrow" + str(t), arrow_pos)

 if DEBUG_SHOW_LEADS:
 for p in self.players:
 if game.ball.owner and p.lead:
 line_start = game.ball.owner.vpos - offset
 line_end = p.vpos - offset
 pygame.draw.line(screen.surface, (0,0,0), line_start, line_end)

 if DEBUG_SHOW_TARGETS:
 for p in self.players:
 line_start = p.debug_target - offset
 line_end = p.vpos - offset
 pygame.draw.line(screen.surface, (255,0,0), line_start, line_end)

 if DEBUG_SHOW_PEERS:
 for p in self.players:
 line_start = p.peer.vpos - offset
 line_end = p.vpos - offset
 pygame.draw.line(screen.surface, (0,0,255), line_start, line_end)

 if DEBUG_SHOW_SHOOT_TARGET:
 if self.debug_shoot_target and self.ball.owner:
 line_start = self.ball.owner.vpos - offset
 line_end = self.debug_shoot_target - offset
 pygame.draw.line(screen.surface, (255,0,255), line_start, line_end)

 if DEBUG_SHOW_COSTS and self.ball.owner:
 for x in range(0,LEVEL_W,60):
 for y in range(0, LEVEL_H, 26):
 c = cost(Vector2(x,y), self.ball.owner.team)[0]
 screen_pos = Vector2(x,y)-offset
 screen_pos = (screen_pos.x,screen_pos.y)
 screen.draw.text("{0:.0f}".format(c), center=screen_pos)

 def play_sound(self, name, c):
 if state != State.MENU:
 try:
 getattr(sounds, name+str(random.randint(0, c-1))).play()
 except:
 pass

key_status = {}

def key_just_pressed(key):
 result = False

557.
558.
559.
560.
561.
562.
563.
564.
565.
566.
567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.

181

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 prev_status = key_status.get(key, False)

 if not prev_status and keyboard[key]:
 result = True

 key_status[key] = keyboard[key]

 return result

class Controls:
 def __init__(self, player_num):
 if player_num == 0:
 self.key_up = keys.UP
 self.key_down = keys.DOWN
 self.key_left = keys.LEFT
 self.key_right = keys.RIGHT
 self.key_shoot = keys.SPACE
 else:
 self.key_up = keys.W
 self.key_down = keys.S
 self.key_left = keys.A
 self.key_right = keys.D
 self.key_shoot = keys.LSHIFT

 def move(self, speed):
 dx, dy = 0, 0
 if keyboard[self.key_left]:
 dx = -1
 elif keyboard[self.key_right]:
 dx = 1
 if keyboard[self.key_up]:
 dy = -1
 elif keyboard[self.key_down]:
 dy = 1
 return Vector2(dx, dy) * speed

 def shoot(self):
 return key_just_pressed(self.key_shoot)

class State(Enum):
 MENU = 0
 PLAY = 1
 GAME_OVER = 2

class MenuState(Enum):
 NUM_PLAYERS = 0
 DIFFICULTY = 1

604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.
629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.

http://keys.UP

182

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

def update():
 global state, game, menu_state, menu_num_players, menu_difficulty

 if state == State.MENU:
 if key_just_pressed(keys.SPACE):
 if menu_state == MenuState.NUM_PLAYERS:
 if menu_num_players == 1:
 menu_state = MenuState.DIFFICULTY
 else:
 state = State.PLAY
 menu_state = None
 game = Game(Controls(0), Controls(1))
 else:
 state = State.PLAY
 menu_state = None
 game = Game(Controls(0), None, menu_difficulty)
 else:
 selection_change = 0
 if key_just_pressed(keys.DOWN):
 selection_change = 1
 elif key_just_pressed(keys.UP):
 selection_change = -1
 if selection_change != 0:
 sounds.move.play()
 if menu_state == MenuState.NUM_PLAYERS:
 menu_num_players = 2 if menu_num_players == 1 else 1
 else:
 menu_difficulty = (menu_difficulty + selection_change) % 3

 game.update()

 elif state == State.PLAY:
 if max([team.score for team in game.teams]) == 9 and game.score_timer == 1:
 state = State.GAME_OVER
 else:
 game.update()

 elif state == State.GAME_OVER:
 if key_just_pressed(keys.SPACE):
 state = State.MENU
 menu_state = MenuState.NUM_PLAYERS
 game = Game()

def draw():
 game.draw()

651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.
689.
690.
691.
692.
693.
694.
695.
696.
697.

http://keys.UP

183

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

 if state == State.MENU:
 if menu_state == MenuState.NUM_PLAYERS:
 image = "menu0" + str(menu_num_players)
 else:
 image = "menu1" + str(menu_difficulty)
 screen.blit(image, (0, 0))

 elif state == State.PLAY:
 screen.blit("bar", (HALF_WINDOW_W - 176, 0))

 for i in range(2):
 screen.blit("s" + str(game.teams[i].score), (HALF_WINDOW_W + 7
 - 39 * i, 6))

 if game.score_timer > 0:
 screen.blit("goal", (HALF_WINDOW_W - 300, HEIGHT / 2 - 88))

 elif state == State.GAME_OVER:
 img = "over" + str(int(game.teams[1].score > game.teams[0].score))
 screen.blit(img, (0, 0))

 for i in range(2):
 img = "l" + str(i) + str(game.teams[i].score)
 screen.blit(img, (HALF_WINDOW_W + 25 - 125 * i, 144))

try:
 pygame.mixer.quit()
 pygame.mixer.init(44100, -16, 2, 1024)
except:
 pass

state = State.MENU
menu_state = MenuState.NUM_PLAYERS
menu_num_players = 1
menu_difficulty = 0

game = Game()
pgzrun.go()

698.
699.
700.
701.
702.
703.
704.
705.
706.
707.
708.
709.
710.
711.
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
732.
733.
734.
735.

http://pgzrun.go

184

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

1 This graphic is
only displayed
when a goal
is scored

2 The banner used
for the scores
at the top of
the screen

3 This simple ball
graphic is used
throughout

4 Player sprites
for both teams,
for every
animation frame
and direction

5 The nets for the
bottom and top of
the pitch

6 Shadows are
added to players
for extra realism

1

2

4

5

3

6

185

Fo
ot

ba
ll

G
am

e
 –

 C
od

in
g

To
da

y:
 S

ub
st

it
ut

e
So

cc
er

Substitute
Soccer

Coding Today

10

7

8

9

11

7 The menu
screen enables
the selection of
number of players
and one-player
difficulty level

8 The pitch – only
part of it is shown
on screen at
one time

9 Digits used for
the team scores

10 An arrow is used
to indicate which
player is currently
under control

11 The game-over
screen shows
the winning team
and score

186

Se
tt

in
g

U
p

Learn how to run and edit the
games in this book by installing

Python, Pygame Zero, and an IDE

Setting up

187

Se
tt

in
g

U
p

T o run and edit the games in this book,
you’ll need three things:

1. The Python interpreter
This is the software that allows you to
run programs written in Python.

2. Pygame Zero
An add-on package for Python which takes care of a lot
of the essentials of game development, such as displaying
graphics and playing sound.

3. An integrated development environment (IDE)
Software which includes a code editor and the ability to run
a program from that editor. It’s possible to get by without
an IDE, but it’s much more convenient to use one.

You must have at least version 3.5 of the Python interpreter.
Note that when a new version of Python is released, it can
take some time before Pygame Zero becomes compatible
with it. At the time of writing, the most recent version of
Python which can be used with Pygame Zero is 3.7.5.

There are many IDEs available, here we’re going
to look at three of them – IDLE, Thonny, and PyCharm.
IDLE is a very simple IDE which comes bundled with
Python for Windows and Mac, and is installed by default
on some versions of the Raspberry Pi’s Raspbian operating
system. Thonny has some additional features although is
still geared towards beginners. PyCharm is an advanced
IDE used by professional developers. We recommend
Thonny or IDLE for beginners, and PyCharm for more
experienced or confident users.

Occasionally, errors can occur while trying to get
everything installed and running – especially on older
computers. We’re dealing with three separate pieces of
software (plus the games themselves) which frequently
change but have to work together. If you experience errors
while trying to use a particular IDE or version of Python,
try another IDE or Python version.

188

Se
tt

in
g

U
p

Windows

Installing Python
Windows does not come with Python pre-installed. If you think you may have
installed Python previously, you can check this by looking for ‘Python’ in the Start
menu or under ‘Apps and Features’ within Settings.

If you intend to use Thonny as your IDE, you can skip ahead to the ‘Thonny’
section as Python is automatically installed alongside it, and Pygame Zero can be
installed via Thonny.

Go to python.org, mouse-over
Downloads and click on Windows. Do not
choose the option to directly download the
latest version.

Under ‘Stable Releases’, find Python
3.7.5, then choose to download ‘Windows x86
executable installer’. (You could alternatively
choose the x86-64 (64 bit) installer – both
versions will work fine with our games.)

Once the download is complete, run the
program either via your web browser or from
your Downloads folder. Check the box next to
‘Add Python 3.7 to PATH’. Then click ‘Install
now’ to install using the default options.

It is also possible to install Python via the
Microsoft Store, but at the time of writing only Python 3.8 is available, which isn’t
currently compatible with Pygame Zero. If you have any difficulties, full installation
instructions can be found at wfmag.cc/python-windows.

Installing Pygame Zero
If you intend to use PyCharm as your IDE, you can skip ahead to ‘Installing
PyCharm’, as Pygame Zero can be installed via that software.

Otherwise, open a Command Prompt or Windows PowerShell window.
Enter the command python --version to confirm that Python has installed correctly.
Then type pip3 install pgzero. This will download the Pygame Zero package, and
other packages it requires.

Once the download
is complete, run
the program via
your web browser
or from your
Downloads folder

http://python.org
http://wfmag.cc/python-windows

189

Se
tt

in
g

U
p

Mac

Installing Python
Although most versions of macOS come with a Python interpreter, it’s version 2.7
which is not compatible with Pygame Zero. Therefore you need to install a more up-
to-date version alongside the existing version.

Go to python.org, mouse-over Downloads and click on Mac OS X. Do not
choose the option to directly download the latest version.

Under ‘Stable Releases’, find Python 3.7.5, then choose to download ‘macOS
64-bit installer’.

Once the download is complete, run the program either via your web browser
or from your Downloads folder. Install using the default options.

Installing Pygame Zero
If you intend to use PyCharm as your IDE, you can skip ahead to ‘Installing
PyCharm’, as Pygame Zero can be installed via that software.

Otherwise, open a Terminal window. Enter the command python3 --version
to confirm that Python has installed correctly. Then enter pip3 install pgzero. This
will download the Pygame Zero package, and other packages it requires.

Raspberry Pi

The Raspberry Pi’s Raspbian operating system comes with both Python and Pygame
Zero already installed. We recommend using at least the 'Buster' release of Raspbian
(released June 2019). Older versions may have poorer performance, or may not have
the correct version of Python or Pygame Zero.

Recent versions of Raspbian come withThonny, but do not include IDLE.
PyCharm can be used on the Raspberry Pi – see the installation instructions for the
Linux version: wfmag.cc/pycharm-help.

http://python.org
http://wfmag.cc/pycharm-help

190

Se
tt

in
g

U
p

Although you could try typing in the code of the five games presented in this book, this would be a
lot of work and prone to errors. More importantly, a game can’t be run without its set of image and
sound files. Each chapter in this book includes a link where you can download all the files needed to
get a game running.

Each game can be downloaded from GitHub – a website for hosting projects stored using
the git version control system. Git and version control are big topics and outside the scope of this
book, but are well worth learning about. Each game has its own page on GitHub. There are two
options for downloading a game. The first is to click on ‘Clone or download’ and choose ‘Download
ZIP’ – this packages all the game’s files into a zip file which can then be downloaded and extracted
into a folder. The alternative is to download it directly using the git version control system, which
you can download from git-scm.com. Install it using the default settings. On the game’s GitHub page,
copy the web address that comes up when ‘Clone or download’ is clicked, and then either use git via
the command prompt/terminal to download the project – enter git clone followed by the URL
found by clicking on ‘Clone or download’ on the game’s GitHub page; or download it via the ‘Check
out from Version Control’ option in PyCharm, if you intend to use that IDE.

Once you’ve downloaded a game, there are several ways you can run it. On Windows or
Mac, you can simply double-click on the game’s Python file in File Explorer. On any system, you can
navigate to a game’s folder in a command prompt/terminal window and type pgzrun game.py
(replace game.py with the name of the Python file). Or you can run the game via an IDE.

Two of the games – Bunner and Myriapod – use particularly tall game windows. These
can have difficulty fitting on the screen if you have a computer with a low screen resolution, or
sometimes if you’re using display scaling. In Windows 10, you can check to see if display scaling is
turned on by going to the display settings – the relevant setting is ‘Change the size of text, apps and
other items'. If it’s above 100%, and you are having difficulty with a game not fitting on the screen, try
reducing this to 100%.

Getting the games

IDEs

IDLE
IDLE is a simple IDE which is automatically installed alongside Python. You can
find it under the Python folder within the Start Menu on Windows, or by searching
for ‘IDLE’. Make sure you use the correct version of IDLE – in our case, the one for
Python 3.7.

Once IDLE starts, the first thing you’ll see is a window titled ‘Python 3.7.5
Shell’. In this window you can type a line of Python code and see it run straight away.
For example, try entering:

x = 5
y = 3
x + y

You can use the File menu to open a Python file – for example, boing.py.
You can then run the game by going to the Run menu and choosing Run Module –
or by pressing F5. If an error occurs, text will be output to the Python shell window.

http://git-scm.com
http://game.py
http://game.py
http://boing.py

191

Se
tt

in
g

U
p

Thonny
Thonny comes installed with recent versions of the Raspberry Pi’s Raspbian
operating system. For Windows and Mac computers, you can download and install
it from thonny.org. By default, Thonny uses a version of Python which comes
packaged with it. If you’ve already downloaded Python separately and installed
Pygame Zero, you can choose to use our version by going to the Run menu, clicking
‘Select interpreter’, changing the selected option to ‘Alternative Python 3 interpreter
or virtual environment’, and then selecting the desired interpreter from the second
drop-down list.

You can install Pygame Zero from within Thonny, by going to the Tools menu
and selecting ‘Manage packages’. In the text box, type ‘pgzero’ (without quotes) and
then click the button to the right. Then click ‘Install’.

You can use the File menu to open a Python file – for example, boing.py.
You can then run the game by selecting the ‘Run current script’ button, or by pressing
F5. If an error occurs, the details will be output to the Shell area at the bottom of
the screen.

Do not enable ‘Pygame Zero mode’ in the Run menu – this is only needed if
the line pgzrun.go() is not present at the end of the code.

Thonny includes a debugger which allows you to step through the code one
line at a time and see how the variables change. However, we have had difficulty
getting this to work properly and at a decent frame rate when running our games,
whereas the debugger in PyCharm works much more reliably.

PyCharm
PyCharm is a powerful IDE
with dozens of features.
One of most useful is code
completion, where the IDE
tries to predict what you’re
going to type based on variable
and function names, or class
members. When PyCharm
shows a list of suggestions,
you can press TAB to accept
the currently selected item.
Another important feature is
the debugger, which is very
useful when you’re trying to
work out why a piece of code
isn’t working as expected.

You can download
PyCharm from jetbrains.com/pycharm. Make sure you
get the Community version. Once it’s installed, run it and
choose the default options. You should end up on a screen
which gives you the option of creating a new project, opening
an existing project, or checking out from version control. If you
haven’t already downloaded the games, the most convenient

1 PyCharm
is a more
sophisticated
IDE with a handy
debugger tool

1

http://thonny.org
http://boing.py
http://pgzrun.go
http://jetbrains.com/pycharm

192

Se
tt

in
g

U
p

option is to choose ‘Check out from Version Control’ – the
address to enter in the URL text box is the one that can be
found by clicking on ‘Clone or download’ on the game’s
GitHub page – see ‘Getting the games’. If you have already
downloaded a game, you can select ‘Open’ and choose the folder where you extracted
the zip file. Make sure you select the folder which directly contains the game’s files,
not a folder which contains another subfolder of the same name, as can happen
depending on how you unzipped the files.

The following instructions will assume you’re trying to run the game Boing!.
Once the project has loaded, look for the ‘Project’ area near the top left of

the window. Below the word Project, you should
see the name of the folder, e.g. boing, with an
arrow to the left. Click on the arrow to expand
the folder. You should then see a list of files and
folders, one of which will be the game’s Python
file – e.g. boing.py. Double-click this to load it.

If you haven’t yet installed Pygame
Zero, or you’re not sure if you have the latest
version, go to the File menu and select Settings.
Expand ‘Project: boing’ and select ‘Project
interpreter’. Here you can choose which Python
interpreter your project will use, and which
external packages are available. If Pygame Zero
is installed, you will see ‘pgzero’ in the list of
packages, and its version number should be displayed alongside it. If it’s there but the
version number is less than 1.2, select pgzero and click the upward-pointing arrow at
the right-hand side of the window. If pgzero is not present, click the plus icon near
the top right of window. Type ‘pgzero’ into the search box and click ‘Install Package’.
Wait for it to install, then close the window and click OK to close the settings window.

2 PyCharm’s project
interpreter showing
installed packages

You can choose which
Python interpreter
your project will use,
and which packages
are available

2

http://boing.py

193

Se
tt

in
g

U
p

To run the game, right-click on the background of
the code area (the main part of the window) and choose ‘Run
‘boing’ ’. If the option is greyed out, this is most likely because
PyCharm is running some processes in the background which
need to finish – wait until these are done (see the notification

at the bottom of the screen) and then try again.
You can run the game in debug mode by choosing ‘Debug ‘boing’ ’. Running

under the debugger can result in a worse frame rate, but provides a number of
benefits. If an unhandled exception (a type of error which causes the program to stop)
occurs, normally all you’ll get is a text printout showing the details of the exception
(at the bottom of the printout) and the call stack, which indicates the function and
line number where the error occurred and the functions which called that function.
In debug mode, an unhandled exception causes the program to pause – you can then
use the debugger to see where the error occurred, and view the current contents
of the variables and call stack. You can also manually break into the debugger by
adding a breakpoint – click in the grey area to the right of a line number. You should
see a red circle appear. When you run in debug mode, PyCharm will break into the
debugger just before that line of code is about run. Now you can view the variables
and call stack as before, but you can also cause the code to run one line at a time by
using commands such as Step Over and Step Into (via the Run menu or buttons in
the Debug window).

3 Running under the
debugger helps
you to pinpoint
errors in the code

3

194

Today, we explore vast and beautiful
game worlds without restriction. But how
did graphic artists in gaming’s early days
replicate environments and characters

with limited technology?

Talking graphics with

Dan Malone

ARTISTICALLY SPEAKING

195

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

196

197

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Graphic artists joined
small development

teams and poured
many hours into

producing visually
impressive games

n the early days of gaming, graphics were everything. Players would
gush about the cutting-edge graphics of the many coin-operated
machines vying for their attention in arcades up and down the country.
Certain games would push the visual boundaries of their home
computers and consoles, and the screenshots on the back of game
boxes were immensely important to players looking for something they

could show off to their friends.
Graphical innovations formed the battle lines between machines as

playground chatter turned to war over which computer was better. They spawned
terms such as ‘colour clash’, particularly on the ZX Spectrum. They also had
players reaming off numbers: 27 possible colours on an Amstrad CPC versus 4096
on a Commodore Amiga… Meanwhile, magazine reviewers dished out marks just
for the look of a game, and debate would rage over whether graphics were more
important than gameplay.

Despite the importance of such visuals, many games programmers in the
early days tried to be a jack of all trades: writing code while also creating graphics

and producing sound. So long as the graphics
were representative, developers believed the job
was done. This situation changed in the early
1980s, however, when dedicated graphic artists
joined small development teams and poured
many hours into producing visually impressive
games. Nintendo’s NES in particular saw
graphics evolve spectacularly, while the 16‑bit
era brought with it intricate detail.

Many techniques were also introduced
over the years, including Mode 7 on the SNES,
which allowed backgrounds to be scaled and
rotated; parallax scrolling for backdrops;
3D-rendered triangle-based geometry; and Full
Motion Video. Pretty soon, realism became an
objective, particularly in the PlayStation era of

the mid‑1990s, whereas in the beginning it had been left to the imagination of
players (and, in many cases, descriptions in the accompanying game manuals).

One person who witnessed many of these changes is Dan Malone, a comic‑
book artist who inadvertently found himself working in the gaming industry,
initially for Palace Software. He ended up working across a host of computers and
consoles, from the 8‑bit machines right through to the present‑day platforms. In
doing so, he was given access to increasingly complex hardware on which to flex his
artistic talents and ended up working on some of the finest games ever made, from
Speedball 2: Brutal Deluxe to The Chaos Engine. Dan has created the visual assets for all
the games in this book.

I

198

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

You began your gaming career in 1985, but were you an artist prior to that?
Yes, I’ve been drawing comics since I could pick up a pencil and I’ve had a massive
love for Marvel since I was a kid. Growing up in the 1960s and early 1970s, my dad
would buy me many comics. When my parents split and my mum moved to Brussels,
she’d send me a steady stream of American comics from an international bookshop
that would sell anything from anywhere all over the world. I was truly inspired by the
artistic talents of people such as John Severin and Jack Kirby and they really did have
a massive influence on me.

But how did you progress from comics to producing art for games?
Well, that was an accident. Several months after I’d left art college, an old typography
teacher sent me a cutting from an industry magazine called Campaign. It was an
advertisement for a company called Palace
Software which was looking for 2000AD‑
style artists and, because I was really into
2000AD which I think is the best British
comic ever made, I knew I needed to
respond. I got an interview but even at that
stage, I didn’t realise it had anything to
do with games. It was a complete surprise
to me.

Did you have any experience at all with
games before then?
No, I wasn’t really a gamer. I knew that
games were around and I’d heard of the
Spectrum, Commodore, and the Amstrad CPC, but I hadn’t played a lot of computer
games. My passion had been tabletop games of Dungeons & Dragons and I’d write
my own D&D campaigns and illustrate them. It meant I had a knowledge of games
and gaming in general, though.

What was it like working for Palace Software?
I was in London on my own for the first time as a young adult and it was especially
great because we were working at the legendary independent Scala cinema in King’s
Cross. We worked with Pat Mills from 2000AD, which was really exciting because it
let me combine gaming with comics. It was a bright new world for me in London,
having been in college in Ipswich.

What was it like approaching art on 8-bit computers having had a
background of using a pen?
It was a real scale down. Apart from the limitations, the number of frames and
the variety of backgrounds, I was working with pixels, which I always felt was like
working with large Lego bricks. But Palace Software had in‑house sprite editors and
another artist – Steve Brown, who arrived just before me – had pretty much set
everything up by the time I got there, which eased me in. Palace was also very artist‑
led: the company was about what the artist could deliver and how the machine could
achieve it.

I got an interview
but even at that
stage, I didn’t realise
it had anything to
do with games

199

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Did you feel constrained by the technology?
Well, it was my first job so my approach was to just get into it and do my best, but
it was still a big shock and I would constantly look at comics and think, “Blimey, I
really want to get back into that.” But I love animation and it was nice to use those
skills, even though I was operating with a simple four‑frame loop. I also seized the
opportunity to create a little comic for Sacred Armour of Antiriad.

How closely did you work with the coders?
One of my jobs was to push the programmers at Palace and, after developing
Cauldron II, I worked closely with a guy called Stanley Schembri on Sacred Armour
of Antiriad. We sat side‑by‑side and I’d haggle for more graphics to do while they’d
point out stuff that wasn’t working, which meant I’d have to cut the frames down or
do something else. But it was great fun and there were some nice friendly battles. For
instance, the main character in Sacred Armour of Antiriad was two four-by-four sprites
joined together and that proved a bit of a push to get in.

Was it frustrating to be told you couldn’t do certain things?
You just have to readjust and realise that you’re working within a limitation and that
it is your job to make it work. In that sense, any frustration turned into a challenge,

more so when you consider I had no artistic reference point
because I wasn’t really into any games. Coming to the job
really fresh like that helped and it’s why I pushed what I was
doing as much as I could. I spent about six months on Sacred
Armour of Antiriad in total and it was pretty intense.

1 A 1986 interview
with Dan in CRASH
magazine, when
he was working for
Palace Software

1

200

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Creating new worlds

1.
2.

3.

5.

6.

4.

Solid background
areas – must stand
out clearly from
play area

Impact FX to show
when an enemy
sprite is hit

Level area

Node
(level
exit key)
locked

Node (level exit
key) unlocked

Extra
life

Shield

Enemy sprites

Level
map

Looking at the many artistic elements that make up The Chaos Engine

1. ENEMY EXPLOSION
When an enemy is hit, it must react in
some way. An explosion is a perfect visual
because it’s not only bright, thereby
reinforcing what has just taken place, it is
also mightily satisfying.

2. MAIN PLAYING AREA
Dan Malone says he kept the background
surface area of the game mostly blank
so that the sprites could stand out more
clearly, something which is always helpful
to the player.

3. PLAYER SPRITES
Gamers are going to spend a lot of time
looking at the main character sprites, so
they need to be attractive and instantly
distinguishable from other objects. Dan
Malone gave the characters shadows to
help make them feel grounded and solid
against the background. They also had

different characteristics defined by skill,
stamina, speed, and wisdom.

4. STATUS AREA
Whether you have a button to call up the
current stats on a separate page or having it
as part of the main playing screen, a status
area is vital for displaying the current score,
health, and pick-up in a game like this.

5. MANY PUZZLES
It’s always a good idea to challenge players,
so as well as providing lots of enemies,
The Chaos Engine let you pick up goodies
such as keys, food, and treasure. Indicators
would tell players when an exit was open
or locked.

6. MAPS
Big games need maps, but The Chaos
Engine kept things simple by showing a
view of the three-screen square area around
the character rather than the whole level.

201

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Were you always looking to develop
little tricks with your art?
Not so much on the 8‑bit computers
because the pixels were massive and
you really only had four colours and
one transparent to play around with.
But with the 16‑bit stuff there was a
little bit more you could push here and
there, with little techniques such as anti‑
aliasing that ensured the graphics would
look smooth and not overly pixellated.

Did you also work on the design of games?
Yes, it was my mandate to come up with gaming concepts for
Sacred Armour of Antiriad and Superthief and develop ideas that
would make them playable. To do this, I’d start by sketching
the whole thing out on paper and there were periods where I’d

just keep drawing until someone said, “Right, we’re starting development properly
now.” At that point, I’d sort some graphics for the programmer to work with all the
ideas bristling in my head.

Why did you design on paper first rather than launch straight in?
I can always think better when I’m drawing by hand. In fact, more often than not,
I don’t have an idea in mind when I get down to drawing and so it helps them to
emerge. The only exception is when I actually do have a strong idea and I’m itching
to get it down, but I’m still very much old‑school in my use of pen and paper, even
though I know a lot of people draw on tablets and that I should maybe get into that.

Where did you get your ideas from?
Well, I’d started to play a few games by this point so I was getting a feel for what would
and wouldn’t work. Sacred Armour of Antiriad, for example, had prehistoric characters
and alien technology and while it proved to be similar to another game called Turrican
(even though I was designing it independently, miles away), it
showed that I was on the right lines.

I think it helped that I knew so much about games such
as Dungeons & Dragons and understood what made a game a
game. I also like sport and I saw games as a competition that
worked within a set of rules. So that
was my main influence, with comics
always in the background. I’d read
somewhere that writing a good book
was as simple as getting readers to
turn the page, so I felt that we should
always encourage players to push
on to the next level. I’d do this by
including little teasers.

2 The Chaos
Engine was
devised by The
Bitmap Brothers

3 Sacred Armour
of Antiriad
on the ZX
Spectrum

2

3

202

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

4 Dan’s comic-
book-style
artwork for
an advert
for Superthief

4

203

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

There are lots of college courses

everywhere catering for game design,

3D modelling, and storyboarding

making, so there is now a clearer route

to employment. But it’s a hard one. You

need to be committed and sacrifice

things along the way.

Dan Malone

204

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Did you find working on 16-bit computers rather liberating?
It certainly brought a lot of stuff to the table: greater resolution, more memory and
more colours, for starters, and that was a big deal because you could anti-alias better.
I remember that I was always looking at arcade machines with a view to bringing that
vibe to the home computer. With 16‑bit, it was suddenly possible to do that and it was
such a breakthrough. I couldn’t wait to get involved.

Was there a big difference in the types of graphics you were expected to
produce for a 16-bit computer and a 16-bit console?
At the time, we would always start by producing games on home computers, so we’d
create them on the Amiga and Atari ST first and then port the graphics backwards
and forwards on to other formats. On one occasion, when I was producing Speedball 2,
I created two separate palettes – one for the Atari ST and the other for the Amiga –
but I held everybody up doing that. With the consoles, on the other hand, we were
just porting games straight across before touching them up. We needed to get them
to look good, which wasn’t always easy because the colours on the consoles were very
garish and saturated. It was also harder to get
nice, smooth anti-aliasing, but the good news is
that we had a bit more memory on some of them
when compared to the Amiga.

You moved from Palace to join the Bitmap
Brothers. Was it a special company to work
for?
It was a major highlight for me, definitely. At the
time, Palace was on the verge of closing, but I’d
already seen the Bitmaps’ Speedball and fallen in
love with it. I thought the music, the graphics and
the gameplay were just astounding and so I was
really pleased to go straight in on Speedball 2 when I joined the Bitmap Brothers. It
was very exciting, especially because the company had always been seen to be very
cool. Not that Palace Software wasn’t like that – it was a great company to work for
too – but it was just unfortunate that it ended because it could have been something
really special.

Were you given a lot of freedom at the Bitmap Brothers?
Yes, and it’s a beautiful thing. I’ve always said that design by committee is not the best
way of creating a standout product and I was very pleased by that. Speedball II, and
The Chaos Engine, come to that, gave me a lot of freedom to do my thing. I think those
games became my best work because of that.

Of all of the games, which appealed most in terms of art?
The Chaos Engine was a real favourite of mine. The Victorian feel and the steampunk
vibe were good fun and I was given a lot of freedom with the characters, which meant
the game became very close to my heart. I’d even go as far as saying the game was my
baby, even though it was a Bitmap game and Eric Matthews was in charge of it. Just
being allowed to get on with things is always good.

I was always looking
at arcade machines
with a view to
bringing that vibe to
the home computer

205

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

When you approached The Chaos Engine and you were developing the
steampunk style, what influenced you?
There was a story in 2000AD which had a kind of Victorian steampunk vibe, but
it was Steve Wilcox who pretty much conceptualised The Chaos Engine. I’d be sitting
beside him drawing while he’d say, “Try this out, try that out.” Even so, it was very

much a case of me following my
nose because there wasn’t much to
base the game around apart from
a comic strip. I also had to adapt
because I knew that I wouldn’t be
able to get the sort of detailing
you’d find in comics into a game
at that time. But that’s why the
characters in the game have always
been a big favourite of mine and
why I love those backgrounds. I’m
particularly proud of the tile set for
The Chaos Engine.

As games became more
advanced and development teams grew in size, did that
affect how you approached your subsequent games?
I started to became more of a creative director as time went
on and that really entailed starting with a blank sheet of paper
and inspiring the team, getting them to know what they were

working on and why they were working on it. I was still drawing a lot – mainly the
characters and the backgrounds – but I was mainly there to create a story with my
games. It was like the Dungeons & Dragons thing again: we were creating rich worlds
populated with characters and I had to get things ready for a deadline. It was all
about making the artists and modellers share the same view.

6

2 Working on
Speedball 2
was a thrill
for Dan

Dan Malone works through six main stages when he creates art for his games. With this character,
for instance, he’ll start by creating initial rough sketches that show the figure in various poses – for
example, left, right, back, front, running, and standing still. Once he is satisfied, he’ll move on to the
clean-up process, penning the lines that will be visible in the final character. With the image scanned
into a computer, shadows and highlights are added and it’s time to lend some colour. The sprite can
finally be scaled down for use in-game.

Creating a character

206

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

When did things really change?
With the PlayStation. The development teams for the console were still tiny by
today’s standards but very large for the day, with about 15 people in each. For me,
it was a watershed moment and when I eventually joined Sony itself and got a blue
PlayStation development kit, I was blown away. I’d play Wipeout and Tekken with my
jaw dropping to the floor. I particularly remember the intro for Tekken blowing me
away because it was so cinematic.

Did it open your eyes to new approaches?
In an environment like the one I was working in at Sony, it’s inevitable. I was
alongside many other people and the job became a lot more about communicating
ideas efficiently. But I was also checking other people’s work and delegating, which I
had never done before.

Was there a lot of pressure to
showcase the PlayStation in the
best light?
It was still a case of giving each
project the best you had, but it was
a much bigger deal because more
people were involved in the decision
process and it would take a lot more
time to get things passed. I worked
on a licensed game called Porsche
Challenge and that brought extra
pressure because I also had to contend with Porsche having its own idea of how the
game should look. That brought clashes because I wanted stuff like crazy paint jobs
on the cars, but Porsche didn’t and that is basically why I left. It also pained me to see
that another game I was working on – an original game – was canned in favour of
a licence: NBA 97. I knew those games were bringing the money in, but in my mind

this was Sony and I felt it should be leading
the way.

What was the game?
It was a skate‑surf hybrid – a precursor of
sorts to Tony Hawk which came out a couple
of years later and blew up the scene. I
thought we’d missed a trick and I still think
it was a shame we didn’t get to develop that.

So did you feel constrained having
to work with real models on Porsche
Challenge?

We had a good car modeller who worked closely with the Porsche specs
and it was more for me to build a story around it. But Porsche had a lot of
influence over its licence and, for me, it ultimately didn’t work. The game was
OK, but it could have been more playable and a nod to street-level culture.

The development
teams for the console
were still tiny by
today’s standards but
very large for the day

7

7 Harry Potter
and the
Chamber of
Secrets on
the GBA

207

A
rt

is
ti

ca
lly

 S
pe

ak
in

g
 –

 D
an

 M
al

on
e

Porsche was conservative in
what it wanted.

You also created Harry Potter
and the Chamber of Secrets
for the Game Boy Advance.
What was it was like working
in 2D again?
It was like going back to the
16‑bits really, although with
a bigger palette and a similar
resolution to the Amiga screen.
But it was also a return to what I’d been doing several years
before and it was also straightforward. Working with the Game
Boy Advance was simply a case of reducing the graphics down
to fit a small screen. The same rules of creating art applied.

Was there a different expectation of graphics in the
2000s, though?
Yes, a lot more realism came into it. We had greater polygon counts and texture maps
and special effects, and there was more of a lean towards cinematic realism, certainly
in the big games. In fact, it was all about big games, big teams, and big pressures.

Was it refreshing to revise classics such as Broken Sword with its
2D graphics?
Yes, it was nice working with Charles Cecil and Dave Gibbons, who is a great British
comic artist. I ended up working over his stuff and pretty much processing sprites and
portraits from his artwork.

So what should somebody seeking a career in games art do today to get
their foot on the ladder?
There are lots of college courses everywhere catering for game design, 3D modelling,
and storyboarding making, so there is now a clearer route to employment. But it’s a
hard one. You need to be committed and sacrifice things along the way. You also need
to be aware that you don’t always get the fun stuff to start with – you may end up in a

large team drawing rocks every
day. But it’s a great job and
working in the games industry
is rewarding. Anyone with talent
will do very well.

9

8 Dan worked on
the character
concepts for
SSX Blur on
Nintendo Wii

9 Broken Sword:
Shadow of the
Templars on
Nintendo Wii

8

208

Music and sound effects can make a massive
difference to the experience of playing a game.
We chat to the musician who has created sound

for games from the 1980s to the present day

Talking music with

Allister Brimble

SOUNDING OFF

209

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

210

211

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

The term ‘chiptunes’
was coined to

describe synthesized
electronic music

created on
8-bit machines

ideo games don’t work if you can’t display something on a
screen. They can, however, be enjoyed without any sound. This
imbalance makes for one of the most frustrating elements of a
game musician’s job, as well as one of the most challenging. The
overriding aim is to create audio that will have players wanting to
crank up the volume rather than hit the mute button.

At first, in gaming, audio played second fiddle to graphics and gameplay.
Music would be used sparingly, perhaps for an intro or to introduce a level, and
then basic effects would kick in although there were exceptions. Space Invaders,
for instance, had a pulsating background sound accompanied by shooting noises
whenever fire was pressed – but nothing you could call music. Melodies were few
and far between.

Part of the issue was the rudimentary technology to hand, combined with a
lack of memory, forcing developers to compromise. It therefore took a few years for
dedicated musicians to emerge but when they did, they were at least able to work
with ever more advanced sound chips: the programmable sound generator chip for
the Commodore 64, known as SID, has even been likened to a musical instrument.

As time went on, audio just got better and better. Composers such as
Rob Hubbard, David Whittaker, Martin Galway, and Ben Daglish became well

known in gaming circles. Nintendo also saw
the benefit of audio when it designed the NES
with five channels, and there were experiments
with sampled sound. The term ‘chiptunes’ was
coined to describe synthesized electronic music
created on 8-bit machines. Audio was given a
further boost on the 16-bit platforms.

The MOD computer file format came
into being when Ultimate Soundtracker was
released for the Commodore Amiga in 1987.
Music could be based on digitised samples
and it allowed songs to be created with vocals.
The 16-bit consoles also had a greater number
of sound channels and effects. When the CD
format was introduced with 32-bit machines,
quality jumped yet again, and some games

would allow gamers to play their own compact discs.
Audio remains crucial to games today and good musicians are highly prized

among development teams. Games need music, sound effects, and spoken dialogue
to work seamlessly and create an immersive environment for the player, in tandem
with the on-screen action and narrative.

British video game composer Allister Brimble has a career that tracks every
generation of gaming. He began his career in the mid-1980s and continues to
work, right through to the current day. Ever played Superfrog, Fantasy World Dizzy,
Alien Breed, Sensible Golf, Driver, Colin McRae Rally, Micro Machines V4, or even Goat
Simulator? Then you’ve heard some of his amazing output.

Allister wrote the audio assets for all the games you program in this book.

V

212

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

You’ve been creating music for games
for a long time. What was your musical
background prior to entering the industry?
I’d been interested in music from a young age
and I was influenced by my parents who worked
in the theatre. From the age of seven, I had piano
lessons and although I wasn’t particularly good at
them, I enjoyed playing, as I still do today. I did
O-level music at school, which in those days was
very difficult on the theory side and I failed it.
But the music in early computer games inspired
me to want to create my own.

What initial steps did you take?
I used to record games music on to tape and
slow it down to hear how things were done.
But in 1985, Melbourne House released Wham!
The Music Box, and it allowed me to start
experimenting with music. Even so, it wasn’t
until the Commodore Amiga was released that
I was really able to unlock my creativity with
programs like Aegis Sonix and Sound Tracker. At that time, I had seen an article in a
magazine in which a company called 17 Bit Software was asking for music that would
be released for free into the public domain. I sent in some music and got a letter back
saying they enjoyed it – 17 Bit later turned into a games company called Team 17 and
I went on to produce music for some of its biggest titles.

What was expected of a games musician in those early days? Did software
houses treat music and sound as important parts of a game?
With the early 8-bit and 16-bit games, you had to be able to work within limitations.
For the 8-bit machines, music may have to fit in is as little as 2kB of memory and this
meant typing patterns of notes one by one into a text editor and then sequencing
these patterns to create a longer piece of music. You not only had to be a musician
but to be aware of coding and the limitations of the hardware as well. The games
were much simpler than today, so we generally just needed one piece of music and a
few sound effects. However, with only one tune to rely on, we did have to make sure it
was really good. Games composers came up with some inspired tunes in those days.
Players appreciated the technical limitations and were often
amazed at what was possible, so I think the music and sound
was treated as an important part of the game, often even
advertised on the game boxes.

Which 8-bit machine allowed you to unleash your
musical talent the most?
The Spectrum 128K could play three tunes at the same time
with full pitch and volume control and that was a massive
jump from the ZX Spectrum 48K’s single-channel beeper.

1

1 This Amiga Format
issue’s cover
disk included
‘Brimble’s Beats’:
some of Allister’s
game music

2 The Commodore
Amiga featured
a four-channel
sound chip

213

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

One of the most prolific composers
at the time, David Whittaker showed
us all how it was done in games such
as Glider Rider and he inspired
me to want to create my own
game music. Recently, Glider
Rider’s music featured in
my own remake album,
The Spectrum Works
(wfmag.cc/brimble).

You worked at Codemasters
in the early days, but how
would you set about
creating music for computer
games there?
My first titles for Codemasters were
on the Commodore Amiga. The games usually had a very strong theme such as
football or driving and I’d be shown early versions of the game where possible.
I’d need to be aware of whether the music was for the title screen or in-game
or both, so as to correctly match with the gameplay. The music for the Amiga
was done on a music editor called Sound Tracker. I’d first go about creating an
instrument set of short, sampled sounds that would fit into the required memory
allowance of around 40kB. I’d then set about composing the music and creating
the sound effects.

Were you producing music solely for home computers?
Codemasters soon started producing games for the Nintendo NES. I was invited
up to their offices in Leamington Spa and I was sat in front of a text editor and

asked to compose some music. This was a far cry
from the Amiga music I’d done before and I had
to ask for help. I was shown how to create the
various patterns and sequences as text and then
test it out on a specially modified NES console.
The specs for these games were much different,
often requiring eight or ten tunes.

You worked on some iconic games such
as the Dizzy series. How would sound be
used to enhance these titles and what
limitations were you working under?
Typically, the more graphically diverse games

such as the Dizzy titles had a lot less memory left for audio. The music for Treasure
Island Dizzy, for example, was done in something like 5kB of memory, which equates
to five pages of text – compare that to 20 or 30 megabytes for audio today! I therefore
had to create short, real-time synth instruments that took only 32 bytes of memory
each for the Amiga.

The music for
Treasure Island
Dizzy was done

in something like
5kB of memory

2

 Image credit: © Bill Bertram 2006, CC-BY-2.5

http://wfmag.cc/brimble

214

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

Did the switch to the Atari ST and Amiga take your approach to music to a
different level?
The Atari ST had much the same sound chip as the Spectrum 128 and its music
sounded pretty much identical. However, the big jump forwards was the Amiga,
which wasn’t limited to single bleeps but instead featured four-channel sampled
sound, previously only available on very expensive synthesizers of the time, like the
Fairlight CMI. Programs such as Sound Tracker
allowed full sample manipulation, which inspired
a whole new generation of musicians.

Much of your work was on the Game Boy
series of handhelds. Given that these
machines were as likely to have been
enjoyed without headphones as with,
did you take into consideration that
others would be more likely to overhear
a handheld game being played and that,
potentially, your audience could be a group
of non-gamers sitting on public transport?
Well, I have to apologise to everyone for those
annoying tunes whilst sitting on public transport.
I admit it’s my fault [laughs]. While it didn’t
change my approach to making music, I did have to take into account that the
sound was probably playing on the tiny built-in speakers. These had almost no bass
response so some sounds – bass instruments or deep explosions – could just disappear
unless you treated them correctly, almost having to turn them into a tinny radio
sound to be heard at all. This did mean, though, that headphone users didn’t get the
best experience.

How did the consoles alter the approach to in-game music, though?
The Amiga CD32 followed by the PlayStation were the really big changes with the
advent of the CD player built in. This meant that music no longer had limitations
and it became, well, just music played from a CD.

Songs by pop and rock musicians began to be used in gaming soundtracks.
What effect did that have on you?
Having pop music works in some types of game. It’s good for racing games, for
example, where you have a radio in your car and it makes sense to have popular
tracks playing. But game music on the whole needs to be composed to fit a game
and, these days, be adaptive; I don’t think many licensed tracks have achieved this.
But recently I think we’ve been moving back to dedicated game composers who
understand the likes of adaptive music. Of course, there will still be some popular
rock and pop composers out there who still do a good job at this.

Did their involvement alter the way music in games was perceived?
For many, music lost its appeal in games for a bit. With no limitations, you could
no longer be impressed by what was coming out of your speakers. But it was soon

The Amiga wasn’t
limited to single
bleeps but
instead featured
four-channel
sampled sound

215

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

Allister Brimble gives us his top musical tips to help you create some hits

TIP 1 Most 8-bit computers and consoles only had three channels for sound, meaning you could play
three notes at the same time, so it’s important to remember to limit your compositions to only
a few parts at any one time in order to give an 8-bit limited feel.

TIP 2 Use fast arpeggios, also known as ‘single-channel chords’ – quickly alternating between several
notes of a chord allows us to create the impression of chords on one channel, and it thus
became the iconic sound of 8-bit. Some of the best examples are to be heard in Glider Rider by
David Whittaker for the ZX Spectrum 128.

TIP 3 Keep the sounds short, fast, and snappy. Short sounds work much better for 8-bit tunes
because you can fit more into the same space. The exception to this might be a long, flowing
lead instrument.

TIP 4 Use plenty of effects. We would use echo effects on higher-pitched sound to give a sense of
space. We’d also use pitch vibrato, especially on melody sounds, often delaying the vibrato
for half a second before it kicked in. This made simple sounds much richer and smoother. On
the whole we would avoid effects on the bass, which was better-sounding kept simple and
therefore a more solid foundation to the track.

TIP 5 A classic technique was to share a single channel for both bass and percussion, often placing
a snare drum in-between the gaps in the bass-line. A little bit of white noise was also added
to the start of the bass sound to create the impression of hi-hat percussion and had the side
effect of giving extra attack to the bass.

Create classic tunes like a pro

* You can hear examples of how Allister Brimble has recreated 8-bit tracks to modern-day standard on his album,
The Spectrum Works, available at allisterbrimble.bandcamp.com and on most current streaming platforms.
He often overlays new parts which shadow the original 8-bit recordings for a much richer sound.

4 Left to right:
Glider Rider, a
Commodore 64,
and Allister’s
album, The
Spectrum Works

4
 Image credit:

Evan Amos

http://allisterbrimble.bandcamp.com

216

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

I have always believed that music
should not be bigger than the game.

We need to listen to game music for a
long time and, let’s face it, it’s going to

be turned off once it gets annoying!

Allister Brimble

217

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

3

3 Allister first started
experimenting with
music using Wham!
The Music Box by
Melbourne House

218

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

realised that streamed CD audio did hold its own limitations, in that it was always
linear, start-to-end, and could not adapt to gameplay.

So when did adaptive music become integral to a gaming experience and
what did it force musicians to consider?
Adaptive music has been possible since the days of the Xbox and the PlayStation 2,
but it has taken a while to take off and is still not fully utilised today in many cases.
There are a few ways to do it, though, and the musician needs to consider how each
game may benefit from each method.

Most games simply have several parts to a track: a main looping part, a
transition part that can hide the join to another part, and so on. Each part can be
transitioned to depending on what’s happening during the game. This works for a
lot of games. We can also break each part into
layers – say, percussion, melody, and backing –
and have different versions of each layer that
can be switched between for varying levels of
action. In a recent title I worked on, Scrat’s Nutty
Adventure, there’s a skydiving game where you
could fall at different speeds. I included music
that would evolve based on a timeline 0 to 100.
Various looping parts would fade in and out, and
a bomb-dropping sound was introduced at the
end. However fast you fell, the music would still
seemingly play from start to end.

What makes for good music and sound in
games, then, and how has that evolved?
Since my early days working for Team 17, I have always believed that music should
not be bigger than the game. We need to listen to game music for a long time and, let’s
face it, it’s going to be turned off once it gets annoying! Good in-game audio puts the
sound effects and ambience first and the music in the background and it is written so
as not to be annoying in the long run. In the old days, we’d have a big melody as that
was our only chance to impress, but today we try and back off from melody and let
the music do its job to enhance the gameplay. For sound effects, we try to introduce
as much random variation as possible. For instance, a footstep sound might be made
of 50 or more individual samples that vary each time of playing.

For a spell in your career, you produced audio tracks which were distributed
on the disks which came with some Amiga magazines. Can you tell me more
about how they came about?
Martyn Brown, the project manager at Team 17 software, had some connections with
Amiga Format magazine and asked me to create a piece of music for one of their
cover disks. The September 1990 issue included my track composed on the Game
Music Creator software. It was a variation on Bach’s Prelude in C and Charles Gounod’s
Ave Maria. I then made my own new version based on both, including guitar and rock
beats! I’ve had people ask for it to be played at their funeral; I’m not sure if that’s
good or not!

Good in-game
audio puts the
sound effects and
ambience first and
the music in the
background

219

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

1. ALIEN BREED
(for Team 17 on the Commodore Amiga)

This music was a hybrid of 8-bit synth and Amiga sampled sounds,
something rarely heard on the Amiga. I created several tiny but
complex 64 byte looping wave forms, including choral sounds and
applied 8-bit techniques such as ADSR, vibrato, tremolo, and echoes.
This created a unique Alien-esque atmosphere, and also meant that
20 minutes of music fitted into 39kB of memory, which was some
achievement at the time.

2. SUPER FROG
(for Team 17 on the Commodore Amiga)

I was inspired by the C64 classics by Rob Hubbard and was asked to create
some cute and funny themes for this game. The opening title was like the
Superman theme but with a frog croak added after the intro fanfare for laughs.
The Amiga had four sound channels, so the music had to be carefully composed
so that channel four could be overwritten by sound effects and the listener not
notice anything dropping out.

3. ROLLERCOASTER TYCOON
(for Chris Sawyer on the PC)

Chris Sawyer’s famous game was a lot of fun to compose for. Each ride in
the theme park had its own themed piece of music to go along with the
sound effects. This meant that as you panned around the map, different
tunes would fade in and out, based on proximity the various rides. The
music therefore never became boring and the ambience created really
helped to bring the game alive.

4. ICE AGE: SCRAT’S NUTTY ADVENTURE
(for Just Add Water & Outright Games on PS4, Xbox
One, Nintendo Switch)

This is my most recent title, and in this game I used
techniques learnt over my whole career using some
software called FMOD Studio, an audio interface
that sits between the composer and the game. This
allowed me to create adaptive music. The music for
the skydiving part of the game evolves depending on
how fast the player falls, and in the temple scene the

music is randomly generated, sounding different each time. I also used additional layers for action so
that when you fight enemies, the music becomes more intense.

Brimble’s Best

220

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

Of all of the games that you have made, which stand out musically for you
and why?
I’m probably most pleased with the music from Scrat’s Nutty Adventure, released in the
autumn of 2019. It includes full interactive music and even some randomly generated
music in the temple.

Roller Coaster Tycoon for PC was another I was pleased with. Each ride had
its own music that would fade in as you got close. It meant you were not listening to
one piece of music all the time – it would be constantly changing. The sounds of the
roller-coasters were also lovely once the game engine starting pitching them up and
down with the loops and ramps.

Which of your games would suffer most if the sound was turned off? And
how much of a challenge is it to ensure that gamers would
want that sound up loud?
I think all of them would suffer! But the games that suffer most are
fighting games. With no punch and kick impacts, it feels like you
are hitting with cotton wool, so I would have to say Body Blows by
Team 17 on the Amiga, or Dragon: The Bruce Lee Story by Virgin
Games on the SNES.

To keep the sound up loud, sound effects have to be
the main consideration and music has to be rich and varied
and fully adapt to the gameplay. Repetition means the
music will be sure to be turned off.

Is the use of in-game audio heading in the right
direction, would you say?
Yes, just recently we have seen music in console
games improve considerably. This is due to freely
available middleware such as FMOD or Wwise,
which composers can utilise to create adaptive
music with an easy-to-use graphical user
interface. I find that coming from an 8-bit or
16-bit background is now a big advantage in
utilising this software, as I learnt how to be

5 The Amiga CD32 –
consoles with CD
drives enabled
music to played
from the disc

6 The Game Boy’s
tiny built-
in speakers
required careful
treatment of
sound and music

5

6

 Image credit: Evan Amos

Image credit:
Evan Amos

221

So
un

di
ng

 O
ff

 –
 A

lli
st

er
 B

ri
m

bl
e

creative within limitations back then. Applying your own set of limitations is now the
key to focus how you want things to sound.

And how have you adapted to working with so many formats over the years?
It started with a lot of limitations. Three notes at the same time, limited memory, and
so on. Things slowly got better with the Amiga, and then the Super Nintendo where
I could play eight sounds at once. It was a fairly easy transition up to there. We then
got to the PlayStation and beyond. Now I needed a full music studio to create my
music, but I was prepared as I’d already produced my first CD album in 1992, called
Sounds Digital. In around 2000, I started to work more and more on handheld audio.
This has now gone full circle back to the days of limitations, but it meant that I was
one of the few remaining composers left with the old-school skills needed to fully
utilise their audio capabilities. Today we are back to music produced in a studio but
within the confines of adaptive music – a blend of old and new skills, and probably
my favourite era so far.

What is the biggest difference between then and now?
It’s strange. Things have come full circle. I used to be able to create 8-bit music on
one computer. That changed dramatically when I needed a full studio for PlayStation
music. These days, though, I’m back to one computer with all my instruments and
sounds contained in one place.

If I had to pick one difference, it would be in the choices I now have at my
fingertips. At any moment I can pull in any sound I need without having to worry
about how I will make it. There are so many rich and varied instrument and sound
libraries out there that you are almost spoilt for choice.

Code the Classics not only tells the stories of

some of the seminal video games of the 1970s

and 1980s, but shows you how to create your

own games inspired by them using Python and

Pygame Zero, following examples programmed

by Raspberry Pi founder Eben Upton.

Get game design

tips and tricks from

the masters

Explore the code

listings and find out

how they work

Download and play

game examples by

Eben Upton

Learn how to code

your own games with

Pygame Zero
23P

ric
e

£1
2

Words David Crookes, Andrew Gillett, Liz Upton Code Eben Upton

Additional Code Sean M. Tracey Graphics Dan Malone Sound Allister Brimble

	Blank Page

