
raspberrypi.com

GAME DEV
COOKBOOK

Recreate mechanics and ideas from dozens of
classic video games using Python and Pygame Zero

 Thank you for reading
Source Code from Wireframe

Published every month, Wireframe is the
unique magazine that lifts the lid on video
games. Aimed at gamers who want to go

behind the scenes of their favourite hobby,
Wireframe looks at how games are made,

who makes them, and – thanks to our unique
Toolbox section – shows you how to make

games of your own.

Every issue is packed with in-depth features,
news, reviews, and previews, plus lively
opinion pieces from developers and key

industry figures. Want to know what it’s like
to make one of the most reviled games of all
time? Keen to find out more about the untold

stories behind classics like Monkey Island,
Castlevania, or Dead Space? Ever wondered

how to make your own racing game?

You’ll find all this and more every
month in Wireframe magazine.

Buy in paper format or download a
free PDF at: wfmag.cc

To subscribe, visit wfmag.cc/subscribe

You can find Raspberry Pi Press’s other books
and magazines at: store.rpipress.cc

FROM THE MAKERS OF MAGAZINE

250

100
50

10

CONTINUE?
YES
NO

LIFTING THE LID ON VIDEO GAMES

ALL FORMATS
100 PAGES MONTHLY

THE HISTORY OF
DEAD SPACE

FREE THE DARK PICTURES ANTHOLOGY POSTER

MAKE A SURVIVAL

HORROR
GAME

EXCLUSIVE SUPERMASSIVE GAMES ON ITS
TERRIFYING SEASON ONE FINALE

ANTHOLOGY
DARK PICTURES
THE

001_WF#67_COVER v4_RL_DH_VI.indd 1001_WF#67_COVER v4_RL_DH_VI.indd 1 21/09/2022 14:5521/09/2022 14:55

LIFTING THE LID ON VIDEO GAMES

ALL FORMATS
116 PAGES MONTHLY

Issue 66 £6
wfmag.cc

THE LEGACY OF
WIPEOUT

THE RETURN OF
FMV GAMES

Motorised multiplayer mayhem
in You Suck at Parking

001_WF#66_COVER v2_RL_DH_VI_RL2.indd 1001_WF#66_COVER v2_RL_DH_VI_RL2.indd 1 17/08/2022 16:1917/08/2022 16:19

Join us as we lift the lid
on video games

Visit wfmag.cc to learn more

LIFTING THE LID ON VIDEO GAMES

INSIDE THE NEXT ACTION-ADVENTURE FROM THE CREATORS OF SHOVEL KNIGHT

MAKE YOUR OWN

SPRITE EDITOR
THE MYSTICAL NINJA GAMES

WE NEVER SAW
THE EVOLUTION OF

PIXEL ART

001_WF#68_COVER_RL_VI_DH_v2.indd 1001_WF#68_COVER_RL_VI_DH_v2.indd 1 19/10/2022 16:4919/10/2022 16:49

CPC#232_Advert_template.indd 13CPC#232_Advert_template.indd 13 21/10/2022 15:0221/10/2022 15:02

http://wfmag.cc

This magazine is printed on paper sourced from
sustainable forests and the printer operates an
environmental management system which has been
assessed as conforming to ISO 14001.

Wireframe magazine is published by Raspberry Pi
(Trading) Ltd, Maurice Wilkes Building, St. John’s
Innovation Park, Cowley Road, Cambridge, CB4 0DS.
The publisher, editor, and contributors accept no
responsibility in respect of any omissions or errors
relating to goods, products or services referred to or

advertised in the magazine. Except where
otherwise noted, content in this magazine
is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported (CC BY-NC-SA 3.0).
ISSN: 2631-6722 (print), 2631-6730 (online).

Editorial
Editor
Ryan Lambie
Email ryan.lambie@raspberrypi.com

Features Editor
Aaron Potter
Email aaron.potter@raspberrypi.com

Sub-Editors
David Higgs, Vel Ilic

Design
Head of Design
Jack Willis

Designers
Sara Parodi, Natalie Turner

Contributors
Jon Bailes, Alexander Chatziioannou,
Antony de Fault, Damiano Gerli, Craig
Grannell, Shaun Hughes, Kim Justice,
Phil King, Lewis Packwood, Nic Reuben,
Paul Rose, Mark Vanstone, Howard Scott
Warshaw, Jack Yarwood

Publishing
Publishing Director
Russell Barnes
Email russell@raspberrypi.com

Director of Communications
Liz Upton

CEO
Eben Upton

Advertising
Commercial Manager
Charlie Milligan
Email charlotte.milligan@raspberrypi.com

Tel +44 (0)7725 368887

Distribution
Seymour Distribution Ltd
2 East Poultry Ave, London EC1A 9PT
Tel +44 (0)207 429 4000

Subscriptions
Unit 6, The Enterprise Centre, Kelvin Lane,
Manor Royal, Crawley, West Sussex, RH10 9PE

To subscribe
Call 01293 312192 or visit wfmag.cc/subscribe

Subscription queries
wireframe@subscriptionhelpline.co.uk

L earning to program can be an intimidating proposition
at the best of times, but if there’s one way of making the
process feel a bit friendlier, it’s learning to code by making
games. It was something magazine publishers understood in
the eighties, when it was quite common to see long listings

that would have to be painstakingly typed in, one line at a time. The
results were frequently mixed – a jerky Space Invaders clone here,
an off-brand version of Pac-Man there – but the process of typing
those listings in (and often debugging them) helped a generation of
computer users understand the basics of programming.

Source Code, one of the regular features you’ll find in Wireframe
magazine, works on a similar principle – but because it’s the 21st
century and the internet exists, you don’t have to type everything
in if you don’t want to. Head to our Github (wfmag.cc/git) and you’ll
find an archive of every project we’ve ever published, plus assets, all
ready to download.

You won’t find vast swathes of code here, either. Instead, the
idea of Source Code is to highlight a particular mechanic in a classic
game, such as the pioneering boss battle in Phoenix or the falling
rocks of Boulder Dash, and show you how to quickly recreate it in
Python and Pygame Zero. Python is an approachable, eminently
readable programming language by itself, while Pygame Zero
provides an intuitive wrap-around library that allows beginners to
start making games within just a few minutes. With the listings and
tutorials in this digital book, you’ll soon be able to move sprites
around the screen, create simple physics simulations for everything
from spaceships to ricocheting pool balls, or create the beginnings
of a match-three puzzler.

Once you’re feeling a bit more confident, you could even combine
the projects published here to create something entirely new: how
about a 2D platformer where you have to jump over pits while
shooting away at the waves of enemies spiralling down from above?
Or a driving game where you have to knock balls into goals for extra
points? Start digging into the wealth of mechanics and snippets in
this book, and you may just come up with the next indie hit. And, if
you’re really bitten by the Source Code bug, the projects published
here are only a sample of what you’ll find in the Wireframe archives.
And, if you subscribe to the magazine (wfmag.cc/subscribe), you’ll
find a new entry in the Source Code series every single month.

Enjoy!

Ryan Lambie
Editor, Wireframe magazine

CONTINUE?
YES
NO

http://wfmag.cc/subscribe
mailto:charlotte.milligan%40raspberrypi.com?subject=
mailto:russell%40raspberrypi.com?subject=
mailto:aaron.potter%40raspberrypi.com?subject=
mailto:ryan.lambie%40raspberrypi.com?subject=

06.	�Donkey Kong
	� Replicate the arcade hit’s barrel

rolling physics

08.	�Super Mario Bros.
	� Re-create the Italian plumber’s

running and jumping action

12.	 �Pitfall
	� Make swinging ropes to propel

players over deadly pits

14.	 �Manic Miner
	� Remake the ZX Spectrum classic’s

crumbling platformsC
on

te
nt

s

Puzzler

26
38

Platformer

6

Shooter

16.	 �Space Invaders
	� Add disintegrating shields to your

shoot-‘em-up

18.	 �Galaxian
	� Make your own dive-bombing alien

attack patterns

26.	 �R-Type
	� Use modular sprites to create an

iconic whipping tail

30.	 �Asteroids
	� The 1979 game’s spaceship thruster

motion detailed

34.	�Pipemania
	� Create a network of pipes before the

water starts to flow

36.	 �Columns
	� Make a match-three puzzler in just a

few lines of code

38.	 �Lemmings
	� Create an army of obedient,

path-following critters

40.	�Boulder Dash
	� Code a mining game and

accompanying level editor

04 / wfmag.cc

Contents

http://wfmag.cc

Action/adventure

Final touches

Sport

50

92

84

64.	�Lunar Lander
	� A Python homage to Atari’s

engrossing arcade staple

68.	Frogger
	� Code a simple remake of Konami’s

road-crossing gem

76.	 �Bomberman
	� Re-create the series’

unforgettable explosions

84.	�Gauntlet
	� How to get four players dungeon

crawling at the same time

90.	�High score
	� An arcade-style table you can add to

your own games

92.	 �Continue?
	� Create game states and rules for

moving between them

50.	 �Super Sprint
	� Make a top-down racer with

AI-controlled rival cars

52.	 �Side Pocket
	� Pot the balls in an homage to an

arcade pool game

60.	�Hyper Sports
	� Gun down clay pigeons in a shooting

minigame

62.	 �Rally-X
	� Add a handy mini-map to your top-

down racer

05wfmag.cc \

Contents

http://wfmag.cc

Source Code
Toolbox

06 / wfmag.cc

Donkey Kong

onkey Kong first appeared in
arcades in 1981, and starred
not only the titular angry ape,
but also a bouncing, climbing
character called Jumpman

– who later went on to star in Nintendo’s
little-known series of Super Mario games.
Donkey Kong featured four screens per level,
and the goal in each was to avoid obstacles
and guide Mario (sorry, Jumpman) to the top
of the screen to rescue the hapless Pauline.
Partly because the game was so ferociously
difficult from the beginning, Donkey Kong ’s

first screen is arguably the
most recognisable today:
Kong lobs an endless
stream of barrels, which roll
down a network of crooked
girders and threaten to
knock Jumpman flat.

Donkey Kong may have
been a relentlessly tough
game, but we can recreate

one bottom-right. It samples three pixels
and calculates how much red is in those
pixels. That tells us how much platform is
under the barrel in each position. If the
platform is tilted right, the number will be
higher on the left, and the barrel must
move to the right. If tilted left, the number
will be higher on the right, and the barrel
must move left. If there is no red under the
centre point, the barrel is in the air and must
fall downward.

There are just three frames of animation
for the barrel rolling (you could add more for
a smoother look): for rolling
right, we increase
the frame number
stored with the
barrel Actor; for
rolling to the left,
we decrease the
frame number;
and if the barrel’s
going down

one of its most recognisable elements
with relative ease. We can get a bit of code
running with Pygame Zero – and a couple of
functions borrowed from Pygame – to make
barrels react to the platforms they’re on, roll
down in the direction of a slope, and fall off
the end onto the next platform. It’s a very

simple physics simulation using an invisible
bitmap to test where the platforms are and
which way they’re sloping. We also have
some ladders which the barrels randomly
either roll past or sometimes use to descend
to the next platform below.

Once we’ve created a barrel as an Actor,
the code does three tests for its platform
position on each update: one to the bottom-
left of the barrel, one bottom-centre, and

AUTHOR
MARK VANSTONE

Replicate the physics of barrel rolling –
straight out of the classic Donkey Kong

D
“It’s a very simple

physics simulation using
an invisible bitmap”

Code your own
Donkey Kong barrels

Source Code



�Released in 1981, Donkey Kong
was one of the most
important games in
Nintendo’s history.

 �It’s fair to say Mario’s changed
quite a bit since this outing.

Platformer

Source Code
Toolbox

07wfmag.cc \

Donkey Kong Barrels
from random import randint
from pygame import image, Color
import math

barrels = []
platformMap = image.load(‘images/map.png’)
spacer = 0

def draw():
 screen.blit(“background”, (0, 0))
 for b in range(len(barrels)):
 if onScreen(barrels[b].x, barrels[b].y):
 barrels[b].draw()

def update():
 global spacer
 if randint(0,100) == 1 and spacer < 0:
 makeBarrel()
 spacer = 100
 spacer -= 1
 for b in range(len(barrels)):
 x = int(barrels[b].x)
 y = int(barrels[b].y)
 if onScreen(x,y):
 testcol1 = testPlatform(x-16,y+16,0)
 testcol2 = testPlatform(x,y+16,0)
 testcol3 = testPlatform(x+16,y+16,0)
 move = 0
 if testcol1 > testcol3: move = 1

 if testcol3 > testcol1: move = -1
 barrels[b].x += move
 if move != 0: barrels[b].frame += move * 0.1
 else: barrels[b].frame += 0.1
 if barrels[b].frame >= 4: barrels[b].frame = 1
 if barrels[b].frame < 1: barrels[b].frame = 3.9
 testladder = platformMap.get_at((x,y+32))
 if testladder[2] == 255:
 if randint(0,150) == 1:
 barrels[b].y += 20
 if testcol2 == 0: barrels[b].y += 1
 frame = str(math.floor(barrels[b].frame))
 if testPlatform(x,y+16,2) > 0:
 barrels[b].image = “bfrfront” + frame
 else:
 barrels[b].image = “bfrside” + frame

def onScreen(x,y):
 return x in range(16,784) and y in range(16,584)

def makeBarrel():
 barrels.append(Actor(‘bfrfront1’, center=(200, 30)))
 barrels[len(barrels)-1].frame = 1

def testPlatform(x,y,col):
 c = 0
 for z in range(3):
 rgb = platformMap.get_at((x,y+z))
 c += rgb[col]
 return c

Rolling barrels in Python

Donkey Kong
Platformer

Here’s Mark’s code snippet, which recreates Donkey Kong’s rolling barrels in Python. To get it running on
your system, you’ll first need to install Pygame Zero -- you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag24

a ladder, we use the front-facing images
for the animation. The movement down a
ladder is triggered by another test for the
blue component of a pixel below the barrel.
The code then chooses randomly whether to
send the barrel down the ladder.

The whole routine will keep producing
more barrels and moving them down the
platforms until they reach the bottom.
Again, this is a very simple physics system,
but it demonstrates how those rolling
barrels can be recreated in just a few lines
of code. All we need now is a jumping
player character (which could use the same
invisible map to navigate up the screen) and
a big ape to sit at the top throwing barrels,
then you’ll have the makings of your own
fully featured Donkey Kong tribute.



�Our Donkey Kong
tribute up and
running in Pygame
Zero. The barrels
roll down the
platforms and
sometimes
the ladders.

Source Code
Toolbox

08 / wfmag.cc

Super Mario
Platformer

B efore writing any code, it’s best
to decide on the rules of your
world. Will you allow your player
to double-jump, or change
direction in mid-air? There are no

right or wrong answers to these questions,
but it pays to plan ahead. We’ll be using
Python and Pygame Zero to code the game
world, but the ideas are transferable to
other languages.

The first thing we need to do is create
a player and some platforms to jump on!
As Pygame Zero has built-in support for
collision detection between game Actors and
rectangles, we’ve stored the platforms as a
list of rectangles with varying dimensions.

As vertical and horizontal motion are
perpendicular to each other, they can be
considered independently. Horizontal
motion will involve moving the player to
the left or right by updating the player’s
x-coordinate if the arrow keys are pressed
(and the player is within the screen bounds).

In each frame, the following algorithm is
used to update the player’s vertical position:
• �Add the acceleration value to the

velocity value
• �Add the velocity value to the

position value

COLLISION DETECTION
The next thing to fix is that the player’s
velocity (and therefore position) isn’t yet
affected by colliding with a platform. One
way to do this is to calculate the player’s
new position, but only move the player to
the new position if they don’t hit a platform.
If there’s a collision, then the player isn’t
moved, and its velocity is set to 0. No
collision means the player is free to move
to the new position. Making the player jump
is a matter of setting the player’s vertical
velocity to the predefined jump velocity.
However, the player should only be allowed
to jump if there’s a collision. This means
that the player is touching a platform.

This can be improved later, but we’ll keep
this simple initially to concentrate on the
vertical motion. Before writing the code for
vertical motion, let’s look at the physics:
• �Acceleration is the rate of change of

velocity. Vertical acceleration is due to
gravity, and is a positive value (i.e. acting
downwards). Gravity will be stored
as a global constant, as it acts on all
game objects.

• �Velocity is the rate of change of position.
Initially the player’s vertical velocity will
be 0, as the player is at rest. When the
player jumps, the velocity will be set to a
negative value (i.e. acting upwards).
Both of these values change with respect

to time, which for the sake of simplicity can
be thought of as increasing with each frame.
There’s nothing special about the values
chosen for gravity and jump velocity – these
can be tinkered with to suit. You can also
adjust the height and gaps between the
platforms to increase your game’s challenge.

AUTHOR
RIK CROSS

Learn how to create your own Super Mario-style
running and jumping action in Python

Super Mario-style
jumping physics

Source Code

Source Code
Toolbox

09wfmag.cc \

define screen size
WIDTH = 800
HEIGHT = 800
define a colour
MAROON = 128,0,0
vertical acceleration
GRAVITY = 0.2

a list of platforms, each a rectangle in the form ((x,y)
(w,h))
platforms = [
 Rect((0,780),(800,20)),
 Rect((200,700),(100,100)),
 Rect((400,650),(100,20)),
 Rect((600,600),(100,20))
]

create a player and define initial vertical velocity
player = Actor(‘player’,(50,450), anchor=(‘left’,’top’))
player.w = 20
player.h = 20
define initial and jump velocities
player.y_velocity = 0
player.jump_velocity = -7

def update():

 # horizontal movement
 # calculate new horizontal position if arrow keys are
pressed
 if keyboard.left and player.x > 0:
 player.x -= 2
 if keyboard.right and player.x < 780:
 player.x += 2

 # vertical movement
 # temporary variable to store new y position
 newy = player.y

 # acceleration is rate of change of velocity
 player.y_velocity += GRAVITY
 # velocity is rate of change of position
 newy += player.y_velocity

 # create a rectangle for the new y position
 newplayerpositiony =
Rect((player.x,newy),(player.w,player.h))

 # check whether the new player position collides with a
platform
 y_collision = False
 for p in platforms:

 y_collision = newplayerpositiony.colliderect(p) or
y_collision

 # player no longer has vertical velocity if colliding with
platform
 if y_collision:
 player.y_velocity = 0
 # only allow the player to move if it doesn’t collide with
any platforms
 else:
 player.y = newy

 # pressing space sets negative vertical velocity only if
player is on ground
 if keyboard.space and y_collision:
 player.y_velocity = player.jump_velocity

def draw():
 screen.clear()

 # draw platforms
 for p in platforms:
 screen.draw.filled_rect(p,MAROON)

 # draw player
 player.draw()

Jumping physics in Python

Super Mario
Platformer

Here’s a code snippet that illustrates Rik’s platform-jumping physics in Python. To get it running on your system,
you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/XVIIeD

Download
the code

from GitHub:
wfmag.cc/

wfmag7

09wfmag.cc \

We’ve fixed one potential bug, by
only allowing the player to jump if
they’re touching a platform. If you
run the code on the left, though,
you’ll notice a few other bugs:
• �The player can jump if they’re

touching any platform, even
if they’re underneath. This
can be fixed by only counting
collisions below the player,
by comparing the player and
platform’s y-coordinates.

• �There’s no horizontal collision
detection, so the player can
walk through platforms. This
can be fixed with horizontal
collision detection.

• ��If the player collides with
a platform at high velocity,
they’ll stop just short of the
platform and then drop slowly
to the ground. One way of
fixing this is to calculate the

distance between the player
and this platform, and move
the player so they’re on top of
the platform they would have
collided with.

These bugs have been fixed in
a second version of the code,
jump_physics_improved.py,
also available in the
GitHub repository link above.

MAKING IMPROVEMENTS

 �Like Super Meat Boy,
but without the meat.

10 / wfmag.cc

Q*bert
Platformer

L ate in 1982, a funny little orange
character with a big nose landed
in arcades. The titular Q*bert’s
task was to jump around a
network of cubes arranged in a

pyramid formation, changing the colours of
each as they went. Once the cubes were all
the same colour, it was on to the next level;
to make things more interesting, there
were enemies like Coily the snake, and
objects which helped Q*bert: some froze
enemies in their tracks, while floating discs
provided a lift back to the top of the stage.

Q*bert was designed by Warren Davis and
Jeff Lee at the American company Gottlieb,
and soon became such a smash hit that, the
following year, it was already being ported
to most of the home computer platforms
available at the time. New versions and
remakes continued to appear for years
afterwards, with a mobile phone version
appearing in 2003. Q*bert was by far
Gottlieb’s most popular game, and after
several changes in company ownership,
the firm is now part of Sony’s catalogue –

on the key pressed in our jump() function. If
we use this linear movement in our move()
function, we’ll see the Actor go in a straight
line to the next block. To add a bit of bounce
to Q*bert’s movement, we add or subtract
(depending on the direction) the values in
the bounce[] list. This will make a bit more of
a curved movement to the animation.

Now that we have our long-nosed friend
jumping around, we need to check where
he’s landing. We can loop through the cube
positions and check whether Q*bert is
over each one. If he is, then we change the
image of the cube to one with a yellow top.
If we don’t detect a cube under Q*bert,
then the critter’s jumped off the pyramid,
and the game’s over. We can then do a
quick loop through all the cube Actors, and
if they’ve all been changed, then the player
has completed the level. So those are the
basic mechanics of jumping around on
a pyramid of cubes. We just need some
snakes and other baddies to annoy Q*bert
– but we’ll leave those for you to add.
Good luck!

Q*bert ’s main character even made its way
into the 2015 film, Pixels.

Q*bert uses isometric-style graphics to
draw a pseudo-3D display – something we
can easily replicate in Pygame Zero by using
a single cube graphic with which we make
a pyramid of Actor objects. Starting with
seven cubes on the bottom row, we can
create a simple double loop to create the
pile of cubes. Our Q*bert character will be
another Actor object which we’ll position at
the top of the pile to start. The game screen
can then be displayed in the draw() function
by looping through our 28 cube Actors and
then drawing Q*bert.

We need to detect player input, and for
this we use the built-in keyboard object
and check the cursor keys in our update()
function. We need to make Q*bert move
from cube to cube so we can move the Actor
32 pixels on the x-axis and 48 pixels on the
y-axis. If we do this in steps of 2 for x and 3
for y, we will have Q*bert on the next cube
in 16 steps. We can also change his image
to point in the right direction depending

AUTHOR
MARK VANSTONE Code the mechanics of an eighties arcade hit

 �It was probably just as
well, considering how
popular the game would
become, that Jeff Lee
went with Q*bert instead
of his initial idea: Snots
And Boogers.

 �Players must change
the colour of every
cube to complete the
level.

 �The cabinet employed
a diagonal joystick to
move Q*bert around.

Recreate Q*bert’s
cube-hopping action

Source Code

http://wfmag.cc
http://wfmag.cc

11wfmag.cc \

Bouncing between cubes in Python

Q*bert
Platformer

Here’s Mark’s code for a Q*bert-style, cube-hopping platform game. To get it running on your
system, you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

11wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag42

Q*bert

WIDTH = HEIGHT = 500

gameState = 0
blocks = []
qbert = Actor(‘qbert2’, center=(250, 80))
qbert.movex = qbert.movey = qbert.frame = count = 0;
bounce = [-6,-4,-2,-1,0,0,0,0,0,0,0,0,1,2,4,6]

for r in range(0, 7):
 for b in range(0, 7-r):
 blocks.append(Actor(‘block0’, center=(60+(b*64)+(r*32),
400-(r*48))))

def draw():
 screen.blit(“background”, (0, 0))
 for b in range(0, 28): blocks[b].draw()
 if gameState == 0 or (gameState == 1 and count%4 == 0):
qbert.draw()
 if gameState == 2 : screen.draw.text(“YOU CLEARED THE
LEVEL!”, center = (250, 250), owidth=0.5, ocolor=(255,255,255),
color=(255,0,255) , fontsize=40)

def update():
 global gameState, count
 if gameState == 0:
 if qbert.movex == 0 and qbert.movey == 0 :
 if keyboard.left: jump(32,48,3)
 if keyboard.right: jump(-32,-48,1)
 if keyboard.up: jump(-32,48,0)
 if keyboard.down: jump(32,-48,2)
 if qbert.movex != 0 : move()
 count += 1;

def move():
 if qbert.movex > 0 :
 qbert.x -=2
 qbert.movex -=2
 if qbert.movex < 0 :
 qbert.x +=2
 qbert.movex +=2
 if qbert.movey > 0 :
 qbert.y -=3 - bounce[qbert.frame]
 qbert.movey -=3
 if qbert.movey < 0 :
 qbert.y +=3 + bounce[qbert.frame]
 qbert.movey +=3
 qbert.frame +=1
 if qbert.movex == 0 :
 checkBlock()

def checkBlock():
 global gameState
 block = -1
 curBlock = 0
 numSelected = 0
 for r in range(0, 7):
 for b in range(0, 7-r):
 x = 60+(b*64)+(r*32) -2
 y = 400-(r*48) -32
 if qbert.x == x and qbert.y == y :
 block = curBlock
 blocks[block].image = “block1”
 curBlock +=1
 if block == -1 : gameState = 1
 for b in range(0, 28):
 if blocks[b].image == “block1” : numSelected += 1
 if numSelected == 28 : gameState = 2

def jump(x,y,d):
 qbert.movex = x
 qbert.movey = y
 qbert.image = “qbert”+str(d)
 qbert.frame = 0

 �Our homage to Gottlieb’s
classic Q*bert game. Try not
to fall into the terrifying void.

http://wfmag.cc
http://wfmag.cc

12 / wfmag.cc

Pitfall!
Platformer

W hether it was because of
the design brilliance of
the game itself or because
Raiders of the Lost Ark had
just hit the box office, Pitfall

Harry became a popular character on the
Atari 2600 in 1982. His hazardous attempts
to collect treasure struck a chord with
eighties gamers, and saw Pitfall!, released
by Activision, sell over four million copies.
A sequel, Pitfall II: The Lost Caverns quickly
followed the next year, and the game was
ported to several other systems, even
making its way to smartphones and tablets
in the 21st century.

The game itself is a quest to find 32
items of treasure within a 20-minute time
limit. There are a variety of hazards for
Pitfall Harry to navigate around and over,
including rolling logs, animals, and holes
in the ground. Some of these holes can be

to the screen is background, rope, tree-
tops, Harry, and finally the front of
the pathway.

Now, let’s get our rope swinging. We can
create an Actor and anchor it to the centre
and top of its bounding box. If we rotate
it by changing the angle property of the
Actor, then it will rotate at the top of the
Actor rather than the mid-point. We can
make the rope swing between -45 degrees
and 45 degrees by increments of 1, but if
we do this, we get a rather robotic sort of
movement. To fix this, we add an ‘easing’
value which we can calculate using a square
root to make the rope slow down as it
reaches the extremes of the swing.

Our Harry character will need to be able
to run backwards and forwards, so we’ll
need a few frames of animation. There
are several ways of coding this, but for
now, we can take the x coordinate and

jumped over, but some are too wide and
have a convenient rope swinging from a
tree to aid our explorer in getting to the
other side of the screen. Harry must jump
towards the rope as it moves towards him
and then hang on as it swings him over the
pit, releasing his grip at the other end to
land safely back on firm ground.

For this code sample, we’ll concentrate
on the rope swinging (and catching)
mechanic. Using Pygame Zero, we can get
our basic display set up quickly. In this case,
we can split the background into three
layers: the background, including the back
of the pathway and the tree trunks, the
treetops, and the front of the pathway. With
these layers we can have a rope swinging
with its pivot point behind the leaves of the
trees, and, if Harry gets a jump wrong, it
will look like he falls down the hole in the
ground. The order in which we draw these

AUTHOR
MARK VANSTONE

Grab onto ropes and swing across chasms in our
Python rendition of an Atari 2600 classic

Swing into action with
an homage to Pitfall!

Source Code

 �Designed by David
Crane, Pitfall! was
released for the Atari
2600 and published by
Activision in 1982.



�Our homage to the
classic Pitfall! Atari game.
Can you add some rolling
logs and other hazards?

https://wireframe.raspberrypi.com/

Source Code
Toolbox

13wfmag.cc \

work out which frame to display as the x
value changes. If we have four frames of
running animation, then we would use the
%4 operator and value on the x coordinate
to give us animation frames of 0, 1, 2, and
3. We use these frames for running to the
right, and if he’s running to the left, we just
mirror the images. We can check to see if
Harry is on the ground or over the pit, and if
he needs to be falling downward, we add to
his y coordinate. If he’s jumping (by pressing
the SPACE bar), we reduce his y coordinate.

We now need to check if Harry has
reached the rope, so after a collision, we

check to see if he’s connected with it, and if
he has, we mark him as attached and then
move him with the end of the rope until the
player presses the SPACE bar and he can
jump off at the other side. If he’s swung far
enough, he should land safely and not fall
down the pit. If he falls, then the player can
have another go by pressing the SPACE bar
to reset Harry back to the start.

That should get Pitfall Harry over
one particular obstacle, but the original
game had several other challenges to
tackle – we’ll leave you to add those
for yourselves.

Swing when you’re winning

Pitfall!
Platformer

Here’s Mark’s code snippet, which gets a swinging rope and a jumping adventurer running in Python. To get it
working on your system, you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag48

Pitfall!
import math

rope = Actor(‘rope’,midtop=(400,110), anchor=(‘center’, ‘top’))
harry = Actor(‘harry’, (80,290))
harry.attached = False
harry.jump = 0
harry.onground = True
swing = -1

def draw():
 screen.blit(“background”, (0, 0))
 rope.draw()
 screen.blit(“trees”, (0, 0))
 harry.draw()
 screen.blit(“platform”, (0, 335))
 if harry.x > 550 and harry.y < 300: screen.draw.text(“You
made it over!”, center=(400, 560), owidth=0.5, ocolor=(0,0,255),
color=(255,255,255) , fontsize=40)

def update():
 global swing
 if rope.angle < -45:
 rope.angle = -45
 swing = 1
 if rope.angle > 45:
 rope.angle = 45
 swing = -1
 easing = (7-(math.sqrt(abs(rope.angle))))/3
 rope.angle += swing*easing
 oldx = harry.x
 harry.onground = False
 if (harry.y > 289 and harry.y < 293) or (harry.y > 468 and
harry.y < 471): harry.onground = True

 if harry.x > 260 and harry.x < 540 and harry.y > 290 and harry.y
< 470 : harry.onground = False
 if keyboard.right and (harry.onground == True or harry.jump > 0):
 harry.x += 2
 harry.image = “harry”+str(int((harry.x/20)%4))
 if keyboard.left and (harry.onground == True or harry.jump > 0):
 harry.x -= 2
 harry.image = “harry”+str(int((harry.x/20)%4))+”r”
 if harry.jump > 0:
 harry.y -= 2
 harry.jump -=1
 harry.image = “harry0”
 else:
 if harry.y < 290 and harry.jump == 0 and harry.attached ==
False:
 harry.y += 2
 elif harry.jump == 0 and harry.x > 255 and harry.x < 540 and
harry.y < 470:
 harry.y += 2

 if oldx == harry.x and harry.jump == 0 : harry.image = “harry”
 if harry.collidepoint (rope.left, rope.bottom) and rope.angle < 25:
 harry.attached = True
 if harry.attached == True:
 harry.image = “harryrope”
 harry.y = rope.bottom + 32
 harry.x = rope.x + (rope.angle * 2.7) - 12

def on_key_down(key):
 if key == keys.SPACE:
 if harry.y == 290 or harry.attached == True:
 harry.jump = 30
 harry.attached = False
 if harry.y > 450: harry.pos = (80,290)

 �In one of the earliest
platformers, Pitfall Harry
swings from the trees to
avoid falling into deadly pits.

http://wfmag.cc/
https://wireframe.raspberrypi.com/
http://wfmag.cc/wfmag46
http://wfmag.cc/wfmag46

14 / wfmag.cc

AUTHOR
MARK VANSTONE

Manic Miner
Platformer

O ne of the most iconic games
on the Sinclair ZX Spectrum
featured a little man called
Miner Willy, who spent his
days walking and jumping

from platform to platform collecting the
items needed to unlock the door on each
screen. Manic Miner ’s underground world
featured caverns, processing plants, killer
telephones, and even a forest featuring
little critters that looked suspiciously like
Ewoks.

Written by programmer Matthew Smith
and released by Bug-Byte in 1983, the game
became one of the most successful titles
on the Spectrum. Smith was only 16 when
he wrote Manic Miner and even constructed
his own hardware to speed up the
development process, assembling the code
on a TRS-80 and then downloading it to the
Spectrum with his own hand-built interface.
The success of Manic Miner was then closely
followed by Jet Set Willy, featuring the same
character, and although they were originally
written for the Spectrum, the games very
soon made it onto just about every home

to fall towards the bottom of the screen.
Instead of checking to see if Willy has
collided with the whole platform, we only
check to see if his feet are in contact with
the top. This means he can jump up through
the platforms but will then land on the top
and stop. We set a variable to indicate that
Willy’s standing on the ground so that when
the SPACE bar is pressed, we know if he can
jump or not. While we’re checking if Willy’s
on a platform, we also check to see if it’s a
collapsible one, and if so, we start a timer
so that the platform moves downwards
and eventually disappears. Once it’s gone,
Willy will fall through. The reason we have
a delayed timer rather than just starting
the platform heading straight down is so
that Willy can run across many tiles before
they collapse, but his way back will quickly
disappear. The disappearing platforms
are achieved by changing the image of the
platform block as it moves downward.

As we’ve seen, there were several other
elements to each Manic Miner screen, such
as roaming bears that definitely weren’t
from Star Wars, and those dastardly killer
telephones. We’ll leave you to add those…

computer of the time.
Both Manic Miner and Jet Set Willy featured

unstable platforms which crumbled in Willy’s
wake, and it’s these we’re going to try to
recreate this month.

In this Pygame Zero example, we need
three frames of animation for each of the
two directions of movement. As we press
the arrow keys we can move the Actor left
and right, and in this case, we’ll decide which
frame to display based on a count variable,
which is incremented each time our update()
function runs. We can create platforms from
a two-dimensional data list representing
positions on the screen with 0 meaning a
blank space, 1 being a solid platform, and 2 a
collapsible platform. To set these up, we run
through the list and make Actor objects for
each platform segment.

For our draw() function, we can blit a
background graphic, then Miner Willy,
and then our platform blocks. During our
update() function, apart from checking key
presses, we also need to do some gravity
calculations. This will mean that if Willy isn’t
standing on a platform or jumping, he’ll start

Traverse a crumbly cavern in our homage to a Spectrum classic

 �Manic Miner’s
cover art was
wonderfully lo-fi.



�Our homage to
the classic
Manic Miner.

Remake Manic Miner’s
collapsing platforms

Source Code

https://wireframe.raspberrypi.com/
https://wireframe.raspberrypi.com/

Source Code
Toolbox

15wfmag.cc \

Crumbly platforms in Python

Manic Miner
Platformer

Here’s Mark’s code for a Manic Miner screen, complete with collapsing platforms. To get it working on
your system, you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

15wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag49

Manic Miner

HEIGHT = 400
willy = Actor(‘willyr0’,(400,300))
willy.direction = “r”
willy.jump = 0
willy.onground = False
count = 0
platforms = [[1,1,0,0,0,0,1,1,0,0,2,2,2,1,1,1,1,0,0,0,0,0,0],
 [0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,1],
 [1,1,1,0,0,0,2,2,2,2,2,0,0,0,0,1,1,1,0,0,0,0,0],
 [0,0,1,1,0,0,0,0,0,0,0,0,1,1,2,2,0,0,1,1,1,0,0],
 [1,1,0,0,1,1,0,0,0,2,2,2,0,0,0,0,0,0,0,0,0,1,1],
 [0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
platformActors = []
for r in range(len(platforms)):
 for c in range(len(platforms[r])):
 if(platforms[r][c] != 0): platformActors.
append(Actor(‘platform’+str(platforms[r][c])+”1”,(70+(c*30),1
20+(r*40))))
 platformActors[len(platformActors)-1].status = 0

def draw():
 screen.blit(“background”, (0, 0))
 willy.draw()
 drawPlatforms()

def update():
 global count
 willy.image = “willy”+ willy.direction + “0”
 if keyboard.left:
 moveWilly(-1,0)
 willy.direction = “l”
 willy.image = “willyl”+ str(int(count/8)%3)
 pass
 if keyboard.right:
 moveWilly(1,0)
 willy.direction = “r”
 willy.image = “willyr”+ str(int(count/8)%3)
 pass
 checkGravity()
 count += 1

def on_key_down(key):
 if key.name == “SPACE”:
 if willy.onground == True:
 willy.jump = 40

def drawPlatforms():
 for p in range(len(platformActors)):
 if platformActors[p].status != -1:
 platformActors[p].draw()

def moveWilly(x,y):
 if willy.x+x < 730 and willy.x+x > 70:
 willy.x += x

def checkGravity():
 if willy.jump > 0:
 willy.y -=2
 willy.jump -=1
 if willy.y < 320:
 willy.onground = False
 for p in range(len(platformActors)):
 frame = int(platformActors[p].image[-1])+1
 if platformActors[p].status > 0 :
 platformActors[p].status -= 1
 if platformActors[p].status == 0 :
 platformActors[p].y += 1
 if frame > 8 :
 platformActors[p].status = -1
 else:
 platformActors[p].image =
“platform2”+str(frame)
 platformActors[p].status = 30
 if((willy.x > platformActors[p].x-20 and willy.x <
platformActors[p].x+20) and willy.y+20 == platformActors[p].y-
14+(frame-1) and platformActors[p].status != -1):
 willy.onground = True
 if platformActors[p].image[8] == “2”:
 if platformActors[p].status == 0 :
platformActors[p].status = 30
 if willy.onground == False:
 willy.y += 1
 else:
 willy.onground = True

 �Miner Willy makes his way
to the exit, avoiding those
vicious eighties telephones.

https://wireframe.raspberrypi.com/
https://wireframe.raspberrypi.com/
http://wfmag.cc/pgzero
http://wfmag.cc
http://wfmag.cc/wfmag49
http://wfmag.cc/wfmag49

Source Code
Toolbox

16 / wfmag.cc

Space Invaders
Shooter

R eleased in 1978, Space Invaders
introduced ideas so fundamental
to video games that it’s hard to
imagine a time before them. And
it did this using custom-made

hardware which by today’s standards is
unimaginably slow.

Space Invaders ran on an Intel 8080 CPU
operating at 2MHz. With such meagre
processing power, merely moving sprites
around the screen was a struggle. In
modern 2D games, at the start of each
frame the entire screen is reset, then all
objects are displayed.

For Space Invaders ’ hardware, this process
would have been too slow. Instead, each
time a sprite needs to move, the game first
erases the sprite from the screen, then
redraws it in the new position. The game also
updates only one alien per frame – which
leads to the effect of the aliens moving
faster when there are fewer of them. These

as long as there’s no need for objects to
overlap. In the case of the shields, though,
what happens when objects do overlap is
fundamental to how they work. Whenever
a shot hits something, it’s replaced by an
explosion sprite. A few frames later, the
explosion sprite is deleted from the screen.
If the explosion sprite overlapped with a
shield, that part of the shield is also deleted.

The code to the right displays four shields,
and then bombards them with a series of
shots which explode on impact. I’m using
sprites which have been scaled up by ten,
to make it easier to see what’s going on.

We first create two empty lists – one to
hold details of any shots on screen, as well
as explosions. These will be displayed on
the screen every frame. Each entry in the
shots list will be a dictionary data structure
containing three values: a position, the
sprite to be displayed, and whether the
shot is in ‘exploding’ mode – in which case

techniques cut down the number of pixels
which need to be updated each frame, from
nearly 60,000 to around a hundred.

One of Space Invaders ’ most notable
features is its four shields. These provide
shelter from enemy fire, but deteriorate
after repeated hits. The player can take
advantage of the shields’ destructible nature

– by repeatedly firing at the same place on
a shield’s underside, a narrow gap can be
created which can then be used to take out
enemies. (Of course, the player can also be
shot through the same gap.)

The system of updating only the minimum
necessary number of pixels works well

AUTHOR
ANDREW GILLETT

They add strategy to a genre-defining shooter.
Andrew lifts the lid on Space Invaders’ shields

“Space Invaders introduced
ideas fundamental to

video games”

Space Invaders’
disintegrating shields

Source Code

http://wfmag.cc

Source Code
Toolbox

17wfmag.cc \

it’s displayed in the same position for a few
frames before being deleted. The second
list, to_delete, is for sprites which need to
be deleted from the screen. For simplicity,
I’m using separate copies of the shot and
explosion sprites where the white pixels have
been changed to black (the other pixels in
these sprites are set as transparent).

The function create_random_shot is called
every half second. The combination of
dividing the maximum value by ten, choosing
a random whole number between zero and
the maximum value, and then multiplying the
resulting random number by ten, ensures
that the chosen X coordinate is a multiple
of ten.

In the draw function, we first check to
see if it’s the first frame, as we only want to

from random import randint

WIDTH,HEIGHT = 1200, 700 # Dimensions of the screen (pixels)
shots, to_delete, first_frame = [], [], True

def create_random_shot():
 shots.append({‘pos’: [randint(0, (WIDTH-images.shot.get_
width())/10)*10, 0],
 ‘sprite’: images.shot,
 ‘exploding’: False})

A shot will be created in random position every half second
clock.schedule_interval(create_random_shot, 0.5) # Try
reducing number to 0.1!

def draw():
 global first_frame, to_delete
 if first_frame:
 for x in range(50, WIDTH, 300):
 screen.blit(images.shield, [x, 500])
 first_frame = False

 for item in to_delete:
 screen.blit(item[‘sprite’], item[‘pos’])
 to_delete = [] # Clear list

 for shot in shots:
 screen.blit(shot[‘sprite’], shot[‘pos’])

def update(dt):
 # Step backwards through shots list; avoids errors that occur

 # when deleting items from the list during the for loop
 for i in range(len(shots)-1, -1, -1):
 shot = shots[i]
 if shot[‘exploding’]:
 shot[‘timer’] -= 1
 if shot[‘timer’] <= 0:
 to_delete.
append({‘pos’:shot[‘pos’],’sprite’:images.explode_black})
 del shots[i]
 else:
 # Before moving shot, add the current position to the
to_delete list
 to_delete.append({‘pos’:shot[‘pos’].
copy(),’sprite’:images.shot_black})
 shot[‘pos’][1] += 20 # Move down the screen
 # Do collision detection based on the centre of the
sprite
 half_width = shot[‘sprite’].get_width() // 2 # // =
integer divide
 half_height = shot[‘sprite’].get_height() // 2
 if shot[‘pos’][1]+half_height >= HEIGHT:
 del shots[i] # Gone off bottom of screen
 else:
 # Hit something? If so change to exploding sprite
 collide_check_pos = (shot[‘pos’][0]+half_width,
 shot[‘pos’][1]+half_height)
 if screen.surface.get_at(collide_check_pos) !=
(0,0,0):
 shot[‘sprite’] = images.explode
 shot[‘exploding’] = True
 shot[‘timer’] = 5

Disintegrating shields in PYTHON

Space Invaders
Shooter

Here’s a code snippet that shows Andrew’s Space Invaders-style disintegrating shields working in Python. To get it running
on your system, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/XVIIeD

Download
the code

from GitHub:
wfmag.cc/

wfmag9

 �Space Invaders-style shields running in
Pygame Zero – watching them gradually
disintegrate is oddly soothing.

display the shields on that frame. The screen.
blit method is used to display sprites, and
Pygame Zero’s images object is used to
specify which sprite should be displayed. We
then display all sprites in the to_delete list,
after which we reset it to being an empty list.
Finally we display all sprites in the shots list.

In the update function, we go through
all sprites in the shots list, in reverse order.

Going through the list backwards avoids
problems that can occur when deleting
items from a list inside a for loop. For each
shot, we first check to see if it’s in ‘exploding’
mode. If so, its timer is reduced each frame
– when it hits zero we add the shot to the
to_delete list, then delete it from shots.

If the item is a normal shot rather than
an explosion, we add its current position to
to_delete, then update the shot’s position to
move the sprite down the screen. We next
check to see if the sprite has either gone off
the bottom of the screen or collided with
something. Pygame’s get_at method gives
us the colour of a pixel at a given position.
If a collision occurs, we switch the shot into
‘exploding’ mode – the explosion sprite will
be displayed for five frames.

http://wfmag.cc

Galaxian
Shooter

18 / wfmag.cc

H ot on the heels of the original
Space Invaders, Galaxian
emerged as a rival space
shooter in 1979. Released by
Namco, Galaxian brought new

colour and unpredictable motion to the
alien enemy, who would swoop down on
the defending player. Galaxian was so
popular in arcades that Namco released
a sequel, Galaga, two years later – that
game complicated the attack patterns even
more. It’s difficult to say how many ports
and clones have been made of Galaxian, as
there are several versions of similar games
for almost every home platform.

The player’s role in Galaxian is similar
to Space Invaders, in that they pilot a ship
and need to destroy a fleet of aliens. With
Galaxian, however, the aliens have a habit
of breaking formation and swooping down
towards the player’s ship, and dive-bombing
it. The aim is to destroy all the enemy
ships and move on to the next wave. The
subsequent waves of enemies get more
difficult as the player progresses. For this
sample, we’re going to look at that swooping
mechanic, and make the bare nuts and bolts
of a Galaxian game with Pygame Zero.

on as when they break formation, the two
sides fly in opposite directions. In this case,
there’ll be four aliens on the left of each row
and four on the right. Once they’re set up
in a list, we can iterate through the list on
each update and move them backwards
and forwards. While we’re moving our
aliens, we can also check to see if they’ve
collided with a bullet or the player ship. If
the collision is with a bullet, the alien cycles
through a few frames of an explosion using
the status flag, and then, when their status
reaches five, they’re no longer drawn. If the
collision is with the player, then the player
dies and the game’s over. We can also check
a random number to see if the alien will
start a bombing run; if so, we set the status
to one, which will start calls to the flyAlien()
function. This function checks which side
the alien’s on and starts changing the alien’s
angle, depending on the side. It also alters
the x and y coordinates, depending on the
angle. We’ve written this section in longhand
for clarity, but this could be collapsed down a
bit with the use of some multiplier variables
for the x coordinates and the angles.

There we have it: the basics of Galaxian.
Can you flesh it out into a full game?

First, Galaxian has a portrait display,
so we can set the play area’s width and
height to be 600 and 800 respectively.
Next, we can create a scrolling backdrop
of stars using a bitmap that we blit to the
screen and move downwards every update.
We need a second blit of the stars to fill
in the space that the first one leaves as
it scrolls down, and we could also have
another static background image behind
them, which will provide a sense of depth.

Next, we set up the player ship as an Actor,
and we’ll capture the left and right arrow keys
in the update() function to move the ship left
and right on the screen. We can also fire off a
bullet with the SPACE bar, which will travel up
the screen until it hits an alien or goes off the
top of the screen. As in the original Galaxian,
you can only shoot one bullet at a time, so
we only need one Actor for this.

The aliens are arranged in rows and move
left and right across the screen together.
We’ll stick to just one type of alien for this
sample, but draw two rows of them. You
could add extra types and any number of
rows. When we create the alien Actors, we
can also add a status flag, and we need to
determine which side of the row they’re

AUTHOR
MARK VANSTONE Blast dive-bombing aliens in our salute to Namco’s classic

 �Aliens swoop down
towards the player,
bombing as they go.
Back in 1979, this was a
big step forward from
Taito’s Space Invaders.

Recreate Galaxian’s
iconic attack patterns

Source Code

Galaxian
Shooter

19wfmag.cc \

Massive attack
Here’s Mark’s dive-bombing Galaxian code. To get it working on your system, you’ll need to install
Pygame Zero – full instructions are available at wfmag.cc/pgzero.

19wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag50

Galaxian
from random import randint
WIDTH = 600
HEIGHT = 800

bullet = Actor(‘bullet’, center=(0, -10))
ship = Actor(‘ship’, center=(300, 700))
backY = count = gameover = 0
aliens = []
for a in range(0, 8):
 aliens.append(Actor(‘alien0’, center=(200+(a*50),200)))
 aliens[a].status = 0
 aliens[a].side = int(a/4)

for a in range(0, 8):
 aliens.append(Actor(‘alien0’, center=(200+(a*50),250)))
 aliens[a+8].status = 0
 aliens[a+8].side = int(a/4)

def draw():
 screen.blit(“background”, (0, 0))
 screen.blit(“stars”, (0, backY))
 screen.blit(“stars”, (0, backY-800))
 bullet.draw()
 drawAliens()
 if gameover != 1 or (gameover == 1 and count%2 == 0): ship.
draw()

def update():
 global backY, count
 count += 1
 if gameover == 0:
 backY += 0.2
 if backY > 800: backY = 0
 if bullet.y > -10: bullet.y -= 5
 if keyboard.left and ship.x > 50 : ship.x -= 4
 if keyboard.right and ship.x < 550 : ship.x += 4
 if keyboard.space :
 if bullet.y < 0: bullet.pos = (ship.x,700)
 updateAliens()

def drawAliens():
 for a in range(0, 16):
 if aliens[a].status < 5 : aliens[a].draw();

def updateAliens():
 global gameover
 for a in range(0, 16):
 aliens[a].image = “alien0”
 if count%30 < 15 : aliens[a].image = “alien1”
 if count%750 < 375:
 aliens[a].x -=0.4

 else:
 aliens[a].x +=0.4
 if aliens[a].collidepoint(bullet.pos) and aliens[a].
status < 2:
 aliens[a].status = 2
 bullet.y = -10
 if aliens[a].colliderect(ship) : gameover = 1
 if randint(0,1000) == 1 and aliens[a].status == 0 :
aliens[a].status = 1
 if aliens[a].status == 1 : flyAlien(a)
 if aliens[a].status > 1 and aliens[a].status < 5:
 aliens[a].image = “alien” + str(aliens[a].status)
 aliens[a].status += 1

def flyAlien(a):
 if aliens[a].side == 0:
 if aliens[a].angle < 180 :
 aliens[a].angle += 2
 aliens[a].x -= 1
 if aliens[a].angle < 90: aliens[a].y -= 1
 if aliens[a].angle >= 90 :
 aliens[a].y += 2
 if aliens[a].angle >= 180 :
 aliens[a].angle = 180
 aliens[a].x += 1
 else:
 if aliens[a].angle > -180 :
 aliens[a].angle -= 2
 aliens[a].x += 1
 if aliens[a].angle > -90: aliens[a].y -= 1
 if aliens[a].angle <= -90 :
 aliens[a].y += 2
 if aliens[a].angle <= -180 :
 aliens[a].angle = -180
 aliens[a].x -= 1



�Our homage to the
classic Galaxian,
with angry aliens
that love to break
formation.

http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox

20 / wfmag.cc

Phoenix
Shooter

F irst released in 1980, Phoenix
was something of an arcade
pioneer. The game was the kind of
post-Space Invaders fixed-screen
shooter that was ubiquitous at the

time: players moved their ship from side
to side, shooting at a variety of alien birds
of different sizes and attack patterns. The
enemies moved swiftly, and the player's
only defence was a temporary shield which
could be activated when the birds swooped
and strafed the lone defender. But besides

all that, Phoenix had a few
new ideas of its own: not
only did it offer five distinct
stages, but it also featured
one of the earliest examples
of a boss battle – its heavily
armoured alien mothership,
which required accurate
shots to its shields before its
weak spot could be exposed.

To recreate Phoenix ’s

example, rather than have all the graphics
dimensions in multiples of eight (as we
always did in the old days), we will make all
our shield blocks 20 by 20 pixels, because
computers simply don't need to work in
multiples of eight any more. The first set of
shields is the purple rotating bar around
the middle of the ship. This is made up of
14 Actor blocks which shift one place to
the right each time they move. Every other
block has a couple of portal windows which
makes the rotation obvious, and when a
block moves off the right-hand side, it is
placed on the far left of the bar.

The second set of shields are in three
yellow rows (you may want to add more),
the first with 14 blocks, the second
with ten blocks, and the last with four.
These shield blocks are fixed in place but
share a behaviour with the purple bar
shields, in that when they are hit by a
bullet, they change to a damaged version.
There are four levels of damage before

boss, all we need is Pygame Zero. We can
get a portrait style window with the WIDTH
and HEIGHT variables and throw in some
parallax stars (an improvement on the
original’s static backdrop) with some blitting
in the draw() function. The parallax effect
is created by having a static background

of stars with a second (repeated) layer of
stars moving down the screen.

The mothership itself is made up of
several Actor objects which move together
down the screen towards the player's
spacecraft, which can be moved right and
left using the mouse. There’s the main
body of the mothership, in the centre is
the alien that we want to shoot, and then
we have two sets of moving shields. In this

AUTHOR
MARK VANSTONE

It was one of gaming’s first boss battles. Mark shows
you how to recreate the mothership from 1980’s Phoenix

“The mothership is made
up of several Actor objects

which move together”

Code a Phoenix-style
mothership battle

Source Code



�Phoenix’s fifth stage offered a
unique challenge in 1980: one of
gaming’s first-ever boss battles.

http://wfmag.cc

Source Code
Toolbox

21wfmag.cc \

WIDTH = 600
HEIGHT = 800

mothership = Actor(‘mothership’, center=(300, 100))
bullet = Actor(‘bullet’, center=(0, -10))
alien = Actor(‘aliendude’, center=(300, 110))
ship = Actor(‘ship’, center=(300, 700))
barShield = []
lowerShield = []
backY = count = mothership.frame = gameover = 0
for b in range(0, 14):
 barShield.append(Actor(‘bar1’+str(b%2),
center=(310+((b-7)*20), 140)))
 lowerShield.append(Actor(‘shield1’,
center=(310+((b-7)*20), 160)))
 barShield[b].frame = lowerShield[b].frame = 1
for b in range(0, 10):
 lowerShield.append(Actor(‘shield1’,
center=(310+((b-5)*20), 180)))
 lowerShield[b + 14].frame = 1
for b in range(0, 4):
 lowerShield.append(Actor(‘shield1’,
center=(310+((b-2)*20), 200)))
 lowerShield[b + 24].frame = 1

def draw():
 screen.blit(“background”, (0, 0))
 screen.blit(“stars”, (0, backY))
 screen.blit(“stars”, (0, backY-800))
 mothership.draw()
 if gameover != 1 or (gameover == 1 and count%2 == 0):
alien.draw()
 for b in range(0, 28):
 if b < 14:
 if barShield[b].frame < 5:
 barShield[b].draw()
 if lowerShield[b].frame < 5:
 lowerShield[b].draw()
 bullet.draw()
 if gameover != 2 or (gameover == 2 and count%2 == 0):
ship.draw()

def update():
 global backY, count, gameover
 count += 1
 if gameover == False:
 backY += 0.2
 if backY > 800: backY = 0
 mothership.y += 0.1
 mothership.frame = int(count/10)%14
 alien.y = mothership.y + 10
 for b in range(0, 28):
 if b < 14:
 x = (((mothership.frame+b)-7)*20)
 if x >= 140: x -= 280
 barShield[b].y += 0.1
 barShield[b].x = (mothership.x+10)+ x
 if barShield[b].frame < 5 and barShield[b].
colliderect(bullet):
 barShield[b].frame += 1
 if barShield[b].frame < 5:
 barShield[b].image =
“bar”+str(barShield[b].frame)
 bullet.y = -10
 lowerShield[b].y += 0.1
 if lowerShield[b].frame < 5 and lowerShield[b].
colliderect(bullet):
 lowerShield[b].frame += 1
 if lowerShield[b].frame < 5:
 lowerShield[b].image =
“shield”+str(lowerShield[b].frame)
 bullet.y = -10
 if alien.colliderect(bullet): gameover = 1
 if ship.colliderect(mothership): gameover = 2
 if bullet.y > -10: bullet.y -= 5

def on_mouse_down(pos):
 if bullet.y < 0: bullet.pos = (ship.x,700)

def on_mouse_move(pos):
 ^ship.x = pos[0]

Phoenix in Python

Phoenix
Shooter

Here’s Mark’s code snippet, which recreates that pioneering boss battle in Python. To get it running on
your system, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag26

they are destroyed and the bullets can
pass through. When enough shields have
been destroyed for a bullet to reach the
alien, the mothership is destroyed (in this
version, the alien flashes).

Bullets can be fired by clicking the
mouse button. Again, the original
game had alien birds flying around the
mothership and dive-bombing the player,

 �Like the original
Phoenix, our
mothership boss
battle has multiple
shields that need
to be taken out to
expose the alien at
the core.

making it harder to get a good shot in, but
this is something you could try adding to
the code yourself.

To really bring home that eighties
Phoenix arcade experience, you could also
add in some atmospheric shooting effects
and, to round the whole thing off, have
an 8-bit rendition of Beethoven’s Für Elise
playing in the background.

http://wfmag.cc

Source Code
Toolbox

22 / wfmag.cc

Gradius
Shooter

F irst released by Konami in 1985,
Gradius pushed the boundaries
of the shoot-’em-up genre with its
varied level design, dramatic boss
fights, and innovative power-up

system.
One of the most memorable of its power-
ups was the Option – a small, drone-like
blob that followed the player’s ship and
effectively doubled its firepower.
By collecting more power-ups, it was
possible to gather a cluster of death-
dealing Options, which obediently moved
wherever the player moved.

There are a few different ways of
recreating Gradius’ sprite-following,
but in this article, I’ll show you a simple
implementation that uses the player’s
‘position history’ to place other following
items on the screen. As always, I’ll be using
Python and Pygame to recreate this effect,
and I’ll be making use of a spaceship image
created by ‘pitrizzo’ from opengameart.org.

We only need to know the spaceship’s
recent position history, so the list is also
truncated to only contain the 100 most
recent positions. Although not necessary,
the following code can be added to allow
you to see a selection (in this case every
fifth) of these previous positions:

for p in previouspositions[::5]:
 screen.draw.filled_circle(p, 2,
(255,0,0))

Each frame of the game, this position
list is used to place each of the power-
ups. In our Gradius-like example, we need
each of these objects to follow the player’s
spaceship in a line, as if moving together in
a single-file queue. To achieve this effect,
a power-up’s position is determined by its
position in the power-ups list, with the first
power-up in the list taking up a position
nearest to the player. In Python, using
enumerate when iterating through a list
allows us to get the power-up’s position

The first thing to do is to create a
spaceship and a list of ‘power-up’ objects.
Storing the power-ups in a list allows us to
perform a simple calculation on a power-up
to determine its position, as you’ll see later.
As we’ll be iterating through the power-ups
stored in a list, there’s no need to create

a separate variable for each. Instead, we
can use list comprehension to create
the power-ups:

powerups = [Actor(‘powerup’) for p in
range(3)]

The player’s position history will be a list
of previous positions, stored as a list of
(x,y) tuples. Each time the player’s position
changes, the new position is added to the
front of the list (as the new first element).

Learn how to create game objects that
follow the path of the main player sprite

“A small, drone-like blob
that followed the player”

Gradius’ ship-
following Options

Source Code

AUTHOR
RIK CROSS



�Options first appeared in 1985’s Gradius,
but became a mainstay of numerous
sequels and spin-offs, including the
Salamander and Parodius series of games.

https://wireframe.raspberrypi.com/
https://wireframe.raspberrypi.com/

Source Code
Toolbox

23wfmag.cc \

in the list, which can then be used to
determine which position in the player’s
position history to use.

newposition = previouspositions[(i+1)*20]

So, the first power-up in the list (element
0 in the list) is placed at the coordinates
of the 20th ((0+1)*20) position in the
spaceship’s history, the second power-up
at the 40th position, and so on. Using this
simple calculation, elements are equally-
spaced along the spaceship’s previous
path. The only thing to be careful of here is
that you have enough items in the position
history for the number of items you want
to follow the player!

This leaves one more question to answer;
where do we place these power-ups
initially, when the spaceship has no position
history? There are a few different ways of
solving this problem, but the simplest is just
to generate a fictitious position history at
the beginning of the game. As I want power-
ups to be lined up behind the spaceship

initially, I again used list comprehension
to generate a list of 100 positions with ever-
decreasing x-coordinates.

previouspositions = [(spaceship.x -
i*spaceship.speed,spaceship.y) for i in
range(100)]

With an initial spaceship position of
(400,400) and a spaceship.speed of 4, this
means the list will initially contain the
following coordinates:

previouspositions = [(400,400),(396,400),
(392,400),(388,400),...]

Storing our player’s previous position
history has allowed us to create path-
following power-ups with very little code.
The idea of storing an object’s history
can have very powerful applications. For
example, a paint program could store
previous commands that have been
executed, and include an ‘undo’ button
that can work backwards through
the commands.

set screen width and height
WIDTH = 800
HEIGHT = 800

create spaceship and a list of 3 powerups
spaceship = Actor(‘spaceship’,pos=(400,400))
spaceship.speed = 4
powerups = [Actor(‘powerup’) for p in range(3)]

create a list of previous positions
initially containing values to the left of the spaceship
previouspositions = [(spaceship.x - i*spaceship.
speed,spaceship.y) for i in range(100)]

def update():

 global previouspositions

 # store spaceship previous position
 previousposition = (spaceship.x,spaceship.y)

 # use arrow keys to move the spaceship
 if keyboard.up:
 spaceship.y -= spaceship.speed
 if keyboard.down:

 spaceship.y += spaceship.speed
 if keyboard.left:
 spaceship.x -= spaceship.speed
 if keyboard.right:
 spaceship.x += spaceship.speed

 # add new position to list if the spaceship has moved
 # and ensure the list contains at most 100 positions
 if previousposition != spaceship.pos:
 previouspositions = [(spaceship.x,spaceship.y)] +
previouspositions[:99]

 # set the new position of each powerup
 for i,p in enumerate(powerups):
 newposition = previouspositions[(i+1)*20]
 p.pos = (newposition[0],newposition[1])

def draw():
 screen.clear()
 spaceship.draw()
 for p in powerups:
 p.draw()

Sprite-following Options in Python

Gradius
Shooter

Here’s a code snippet that creates Gradius-style Options in Python. To get it running on your system,
you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag16

LIST COMPREHENSION
List comprehensions are a way of creating a list,
using other iterables (a sequence of objects).
This is really handy for creating large lists and/
or lists where the elements follow a pattern. List
comprehension has been used twice in this sprite-
following example; for creating a list of three
power-ups and for quickly creating a list of 100
previous spaceship positions.
>>> squares = [i*i for i in range(5)]
>>> squares
>>> [0,1,4,9,16]

>>> numbers = [2,3,4,5,6,7,8,9,’J’,’Q’,’
K’,’A’]
>>> suits =
[‘Hearts’,’Clubs’,’Spades’,’Diamonds’]
>>> playing_cards = [(n,s) for n in
numbers for s in suits]
>>> playing_cards
>>> [(2, ‘Hearts’), (2, ‘Clubs’), (2,
‘Spades’), (2, ‘Diamonds’), (3, ‘Hearts’),
...

 �Plotting the
spaceship’s
position history.

 �Power-ups
following a
player sprite,
using the player’s
position history.

https://wireframe.raspberrypi.com/
https://wireframe.raspberrypi.com/

Source Code
Toolbox

24 / wfmag.cc

Tiger Heli
Shooter

R eleased in 1985, Tiger-Heli was
one of the earliest games from
Japanese developer Toaplan:
a top-down shoot-’em-up that
pitted a lone helicopter against

relentless waves of enemy tanks and
military installations. Toaplan would go on
to refine and evolve the genre through the
eighties and nineties with such titles as
Truxton and Fire Shark, so Tiger-Heli served
as a kind of blueprint for the studio’s
legendary blasters.

Tiger-Heli featured a powerful secondary
weapon, too: as well as a regular shot,
the game’s attack helicopter could also
drop a deadly bomb capable of destroying
everything within its blast radius. The
mechanic was one that first appeared
as far back as Atari’s Defender in 1981,
but Toaplan quickly made it its own, with
variations on the bomb becoming one of
the signatures in the studio’s later games.

For our Tiger-Heli-style Pygame Zero code,
we’ll concentrate on the unique bomb
aspect, but first, we need to get the basic

to the co-ordinates of the helicopter. Then,
frame by frame, we move each bomb
outwards in different directions so that
they spread out in a pattern. You could try
adjusting the number of bombs or their
pattern to see what effects can be achieved.
When the bombs get to frame 30, we
start changing the image so that we get a
flashing, expanding circle for each bomb.

It’s all very well having bombs to fire, but
we could really do with something to drop
them on, so let’s make some tank Actors
waiting on the ground for us to destroy.
We can move them with the scrolling
background so that they look like they’re
static on the ground. Then if one of our
bombs has a collision detected with one of
the tanks, we can set an animation going by
cycling through a set of explosion frames,
ending with the tank disappearing.

We can also add in some sound effects
as the bombs are dropped, and explosion
sounds if the tanks are hit. And with that,
there you have it: the beginnings of a Tiger-
Heli-style blaster.

scrolling background and helicopter on the
screen. In a game like this, we’d normally
make the background out of tiles that can
be used to create a varied but continuous
scrolling image. For this example, though,
we’ll keep things simple and have one long
image that we scroll down the screen and
then display a copy above it. When the first
image goes off the screen, we just reset the
co-ordinates to display it above the second
image copy. In this way, we can have an
infinitely scrolling background.

The helicopter can be set up as an Actor
with just two frames for the movement of
the rotors. This should look like it’s hovering
above the ground, so we blit a shadow
bitmap to the bottom right of the helicopter.
We can set up keyboard events to move the
Actor left, right, up, and down, making sure
we don’t allow it to go off the screen.

Now we can go ahead and set up the
bombs. We can predefine a list of bomb
Actors but only display them while the
bombs are active. We’ll trigger a bomb drop
with the SPACE bar and set all the bombs

AUTHOR
MARK VANSTONE Code an explosive homage to Toaplan’s classic blaster



�Fly over the military
targets, firing missiles
and dropping bombs.

 �Tiger-Heli was developed
by Toaplan and published
in Japan by Taito and by
Romstar in North America.

Recreate Tiger-Heli’s
bomb mechanic

Source Code

https://wireframe.raspberrypi.com/

Source Code
Toolbox

25wfmag.cc \

Making bombs in Python

Tiger Heli
Shooter

Here’s Mark’s code for a Tiger Heli-style shooter, complete with deadly bombs. To get it running on your
system, you’ll need to install Pygame Zero – full instructions can be found at wfmag.cc/pgzero.

25wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag45

Tiger-Heli

WIDTH = 600
HEIGHT = 800
backgroundY = count = 0
heli = Actor(‘heli1’, center=(300, 650))
bombActive = False
bombs = []
bombDirs = [(0,1),(1,1),(1,0),(0,0),(0,-1),(-1,-1),(-1,0),(-
1,1),(1,-1),(-0.5,0),(0.5,0.5),(-0.5,-0.5),(0.5,-0.5),(0,-
0.5),(-0.5,0.5),(-0.5,1),(1,-0.5),(-1,-0.5),(0.5,-1)]
for b in range(0, 18):
 bombs.append(Actor(‘bomb1’, center=(0,0)))
 bombs[b].frame = 0
tankLocations = [(500,-250),(100,-250),(300,-500)]
tanks = []
for t in range(0,3):
 tanks.append(Actor(‘tank0’, center=(tankLocations[t]
[0],tankLocations[t][1])))
 tanks[t].frame = 0

def draw():
 screen.blit(‘background’,(0,backgroundY))
 screen.blit(‘background’,(0,backgroundY-1400))
 screen.blit(“helishadow”+str(count%2 + 1),(heli.x+10,heli.
y+10))
 for t in range(0,3):
 if tanks[t].frame < 10:
 tanks[t].draw()
 if bombActive == True:
 for b in range(0, 18):
 bombs[b].draw()
 heli.draw()

def update():
 global backgroundY, count,bombActive
 backgroundY += 1
 if backgroundY > 1400: backgroundY = 0
 heli.image = “heli”+str(count%2 + 1)
 if keyboard.left and heli.x > 50 : heli.x -= 2
 if keyboard.right and heli.x < 550 : heli.x += 2
 if keyboard.up and heli.y > 50 : heli.y -= 2
 if keyboard.down and heli.y < 650 : heli.y += 2
 if keyboard.space : fireBomb()
 for t in range(0,3):
 tanks[t].y = (tankLocations[t][1] + backgroundY)
 if tanks[t].y > 850: tanks[t].frame = 0
 if tanks[t].frame > 0 and tanks[t].frame < 10 :
tanks[t].frame += 0.2
 tanks[t].image = “tank”+str(int(tanks[t].frame))
 if bombActive == True:
 for b in range(0, 18):

 bombs[b].y += 1
 bombs[b].x += bombDirs[b][0]*5
 bombs[b].y += bombDirs[b][1]*5
 bombs[b].frame += 1
 if bombs[b].frame > 30:
 bombs[b].image = “bomb”+str(bombs[b].frame-30)
 for t in range(0,3):
 if bombs[b].collidepoint(tanks[t].pos) and
tanks[t].frame == 0:
 tanks[t].frame = 1
 sounds.explosion.play()
 if bombs[b].frame == 40:
 bombActive = False
 count += 1

def fireBomb():
 global bombActive
 if bombActive == False :
 bombActive = True
 sounds.launch.play()
 for b in range(0, 18):
 bombs[b].frame = 1
 bombs[b].pos = heli.pos
 bombs[b].image = “bomb1”



�Our homage to the
classic Tiger-Heli
arcade game.

https://wireframe.raspberrypi.com/
http://wfmag.cc/pgzero
http://wfmag.cc/wfmag45

Source Code
Toolbox

26 / wfmag.cc

R-Type
Shooter

S till images don’t quite do it justice.
The screen faded to an inky black;
an ominous new tune began;
then the monster scrolled into
view. The tail appeared first,

lashing up and down; then in came the
rest of the abomination, with its skeletal
frame, snapping jaws and floating eyeballs.
It was a startling sight, particularly back in
1987, when R-Type was still a newcomer to
the world’s amusement arcades. Japanese
developer Irem evidently knew that it had
something special on its hands with this
huge, screen-filling monster, which they
called Dobkeratops: they placed it right
at the end of stage one, maximising the
chance that players would get to it; much
of the game’s promo artwork also featured
the creature’s hideous likeness.

Aside from the striking graphic design –
which owes a debt to Alien artist Hans Ruedi
Giger – R-Type ’s level one boss showcased

hardware’s memory in sections. The jaw and
stomach-bursting parasite are dealt with in
just twelve frames of animation altogether.
Similarly, the tail actually consists of 18
relatively tiny sprites, which are programmed
to whip and curl in a smoothly organic
fashion, like a horrifying string of beads.
Unless it was pointed out to the average
player grappling with R-Type back in the
eighties, they probably wouldn’t have noticed
Irem’s sleight of hand.

ORGANIC ORIGINS
Ingenious though it was, R-Type built its
success on the foundations laid by other
games. In 1985, Konami launched the
seminal Gradius – another scrolling shooter
that, like R-Type, saw a lone pilot fly through a
succession of hostile environments, blasting
aliens. While that game was in development,
its director, Hiroyasu Machiguchi, said that
he wanted to create a stage with an organic

Irem’s technical ingenuity. Characters
the size of Dobkeratops were vanishingly
rare in eighties games, largely because
hardware and memory restraints made
putting them on the screen so difficult. What
Irem did, though, was use several smaller
sprites to create the illusion of a single,
animated monster.

Look again at Dobkeratops in action,
and you can see that only three elements
move: its jaw, which moves up and down; a
green, parasite-like organism that emerges
from its stomach (another nod to the 1979
movie, Alien), and most eye-catchingly, the
long, whipping tail. The rest of the beast
is essentially a static image, stored in the

AUTHOR
RYAN LAMBIE

The 1987 shooter R-Type used multiple sprites to
create the illusion of a much larger end-of-level boss.
Here’s how to recreate the effect

“Characters the size of
Dobkeratops were rare in

eighties games”

R-Type’s spectacular
use of modular sprites

Source Code  �Dobkeratops: stunning in 1987,
still a cool design decades later.

http://wfmag.cc

Source Code
Toolbox

27wfmag.cc \

feel, since most of the other stages featured
mechanical enemies. While wondering how
to make something move organically on
eighties hardware, Machiguchi reportedly
came up with an idea: he told his designers
to draw a sprite “that looks like a pachinko
ball”, and use multiple instances of them to
create a moving tentacle.

In a 2006 interview (translated by the
good people at shmuplations.com), designer
Kengo Nakamura recalls that it took two
days of experimentation with this concept,
but the results were immediately striking.
“After about two days, I believe, we came
up with the creeping movement of the
tentacles,” Nakamura said. “We made
each little pachinko ball in his arm move
individually, and everyone was amazed at
how, in a short time, the design had become
so realistic, disturbing and gross.”

Gradius ’s tentacled monsters were tucked
away on stage five, and therefore less easy
to reach than R-Type ’s Dobkeratops. Gradius
almost certainly laid the groundwork for
R-Type, however; at least one of R-Type ’s
developers was a self-avowed fan of the
game. If anything, though, R-Type uses the
concept of organic movement through
modular sprites to even greater effect; the
expert sprite design, combined with that
aggressively lashing tail, resulted in one of
the greatest area bosses ever conceived.

from math import sin, cos

Constants that control the wobble effect
SEGMENT_SIZE = 50 # pixels from one segment to the next
ANGLE = 2.5 # Base direction for the tail (radians)
PHASE_STEP = 0.3 # How much the phase differs in each tail piece (radians)
WOBBLE_AMOUNT = 0.5 # How much of a wobble there is (radians)
SPEED = 4.0 # How fast the wobble moves (radians per second)

Dimensions of the screen (pixels)
WIDTH = 800
HEIGHT = 800

The sprites we’ll use.
10 tail pieces
tail = [Actor(‘tail_piece’) for _ in range(10)]
Plus a hook piece at the end
tail += [Actor(‘tail_hook’)]

Keep track of time
t = 0 # seconds

def draw():
 screen.clear()
 # First draw the even tail pieces
 for a in tail[::2]:
 a.draw()
 # Now draw the odd tail pieces
 for a in tail[1::2]:
 a.draw()

def update(dt):
 global t
 t += dt
 # Start at the bottom right
 x = WIDTH - SEGMENT_SIZE // 2
 y = HEIGHT - SEGMENT_SIZE // 2
 for seg, a in enumerate(tail):
 a.pos = x, y

 # Calculate an angle to the next piece which wobbles sinusoidally
 angle = ANGLE + WOBBLE_AMOUNT * sin(seg * PHASE_STEP + t * SPEED)

 # Get the position of the next piece using trigonometry
 x += SEGMENT_SIZE * cos(angle)
 y -= SEGMENT_SIZE * sin(angle)

An R-Type tail in Python

R-Type
Shooter

Here’s a code snippet that shows an R-Type-esque modular tail
working in Python. The code requires a pair of sprites to work:
tail_piece.png and tail_hook.png, which you’ll find (along with the
code itself) at the GitHub link on the right. The code also requires
you to install Pygame Zero – you can find full instructions at
wfmag.cc/XVIIeD

Download
the code

from GitHub:
wfmag.cc/

wfmag6

How it all works
To illustrate how Irem created that tail, we asked
Daniel Pope to come up with a piece of code in
Pygame Zero – you can find this on the right. It
uses the same principle that Irem came up with:
multiple sprites are drawn on the screen and
then animated using the sine function to create
a whipping motion. “So that the components of
the chain appear to stay connected, we keep the
pieces at a constant distance (SEGMENT_SIZE) from
each other, and only control the angle between
each piece,” Daniel explains. “Given an angle, we
use the trigonometric functions sin() and cos()
to work out the Cartesian (x and y) position of the
segment, and each segment is positioned relative
to the previous one.”

27wfmag.cc \

 �Chained together and animated across
a sinusoidal curve, these little sprites create
the effect of a whipping, alien tail.

http://wfmag.cc
http://wfmag.cc

Jetpac
Shooter

28 / wfmag.cc

F or ZX Spectrum owners, there was
something special about waiting
for a game to load, with the sound
of zeros and ones screeching from
the cassette tape player next to

the computer. When the loading screen –
an image of an astronaut and Ultimate Play
the Game’s logo – appeared, you knew the
wait was going to be worthwhile. Created
by brothers Chris and Tim Stamper in
1983, Jetpac was one of the first hits for
their studio, Ultimate Play the Game. The
game features the hapless astronaut
Jetman, who must build and fuel a rocket
from the parts dotted around the screen,
all the while avoiding or shooting swarms
of deadly aliens.

This month’s code snippet will provide the
mechanics of collecting the ship parts and
fuel to get Jetman’s spaceship to take off.
We can use the in-built Pygame Zero Actor
objects for all the screen elements and the
Actor collision routines to deal with gravity

is touching it, apply any thrust to Jetman,
and move any items that Jetman is holding
to move with him. When that’s all done, we
can check if refuelling levels have reached
the point where Jetman can enter the rocket
and blast off.

If you look at the helper functions
checkCollisions() and checkTouching(),
you’ll see that they use different methods of
collision detection, the first being checking
for a collision with a specified point so we
can detect collisions with the top or bottom
of an actor, and the touching collision is a
rectangle or bounding box collision, so that
if the bounding box of two Actors intersect,
a collision is registered. The other helper
function applyGravity() makes everything on
the gravity list fall downward until the base
of the Actor hits something on the collide list.

So that’s about it: assemble a rocket, fill
it with fuel, and lift off. The only thing that
needs adding is a load of pesky aliens and a
way to zap them with a laser gun.

and picking up items. To start, we need to
initialise our Actors. We’ll need our Jetman,
the ground, some platforms, the three
parts of the rocket, some fire for the rocket
engines, and a fuel container. The way each
Actor behaves will be determined by a set of
lists. We have a list for objects with gravity,

objects that are drawn each frame, a list of
platforms, a list of collision objects, and the
list of items that can be picked up.

Our draw() function is straightforward as
it loops through the list of items in the draw
list and then has a couple of conditional
elements being drawn after. The update()
function is where all the action happens: we
check for keyboard input to move Jetman
around, apply gravity to all the items on
the gravity list, check for collisions with the
platform list, pick up the next item if Jetman

AUTHOR
MARK VANSTONE

Pick up parts of a spaceship, fuel it up, and take
off in Mark’s rendition of a ZX Spectrum classic

 �Loading from cassette took a while, but Jetpac was
also available in cartridge format.



�The original game allowed two players to take turns
playing and included a record of the highest score.

Code Jetpac’s rocket
building action

Source Code

“Assemble a rocket, fill it
with fuel, and lift off”

http://wfmag.cc

Source Code
Toolbox

Rocket building in Python

Jetpac
Shooter

Here’s Mark’s Jetpac code snippet. To get it running on your system, you’ll need to install
Pygame Zero – you can find full instructions at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag40

import random
import time
t0 = time.clock()
jetman = Actor(‘jetmanl’,(400,500))
ground = Actor(‘ground’,(400,550))
platform1 = Actor(‘platform1’,(400,350))
platform2 = Actor(‘platform2’,(200,200))
platform3 = Actor(‘platform3’,(650,200))
rocket1 = Actor(‘rocket1’,(520,500))
rocket2 = Actor(‘rocket2’,(400,300))
rocket3 = Actor(‘rocket3’,(200,150))
rocketFire = Actor(‘rocketfire’,(521,0))
fuel = Actor(‘fuel’,(50,-50))
gravityList = [jetman,rocket1,rocket2,rocket3,fuel]
drawList = [rocket1, rocket2, rocket3, ground,platform1,
platform2, platform3, fuel]
platformList = [ground,platform1,platform2,platform3]
collideList = [rocket1,rocket2,rocket3]
pickupList = [rocket2,rocket3,fuel,0,fuel,0,fuel,0,0]
gravity = 1.5
jetman.thrust = jetman.holding = jetman.item = gameState =
fuelLevel = timeElapsed = 0
jetman.dir = “l”
def draw():
 global timeElapsed
 screen.clear()
 for i in range(0, len(drawList)):
 drawList[i].draw()
 if gameState == 0:
 jetman.draw()
 timeElapsed = int(time.clock() - t0)
 else:
 rocketFire.draw()
 screen.draw.text(“MISSION ACCOMPLISHED”, center =
(400, 300), owidth=0.5, ocolor=(255,255,255), color=(0,0,255),
fontsize=80)
 screen.draw.text(“TIME:”+str(timeElapsed), center= (400, 20),
owidth=0.5, ocolor=(255,255,255), color=(255,0,0), fontsize=40)
def update():
 global gameState, fuelLevel
 burn = “”
 if gameState == 0:
 if keyboard.up:
 jetman.thrust = limit(jetman.thrust+0.3,0,5)
 burn = “f”
 if keyboard.left:
 jetman.dir = “l”
 jetman.x -= 1
 if keyboard.right:
 jetman.dir = “r”
 jetman.x += 1
 applyGravity()

 coll =
checkCollisions(platformList,(jetman.x,jetman.y-32))
 if coll == False:
 jetman.y -= jetman.thrust
 if pickupList[jetman.item] != 0:
 if checkTouching(pickupList[jetman.item], jetman):
 jetman.holding = pickupList[jetman.item]
 jetman.thrust = limit(jetman.thrust-0.1,0,5)
 jetman.image = “jetman” + jetman.dir + burn
 if jetman.holding != 0 :
 jetman.holding.pos = jetman.pos
 if jetman.holding.x == rocket1.x and jetman.
holding.y < 440:
 jetman.holding = 0
 jetman.item += 1
 if fuel.x == rocket1.x and fuel.y+16 > rocket3.y-32 and
jetman.holding == 0:
 fuelLevel += 1
 if fuelLevel < 4:
 jetman.item += 1
 if fuelLevel < 3 :
 fuel.pos = (random.randint(50, 750),-50)
 else:
 fuel.pos = (0,650)
 gravityList[fuelLevel].image =
“rocket”+str(fuelLevel)+”f”
 if fuelLevel == 3 and jetman.x == rocket1.x and
jetman.y > rocket3.y:
 gameState = 1
 if gameState == 1:
 rocket1.y -= 1
 rocket2.y -= 1
 rocket3.y -= 1
 rocketFire.y = rocket1.y + 50
def limit(n, minn, maxn):
 return max(min(maxn, n), minn)
def checkCollisions(cList, point):
 for i in range(0, len(cList)):
 if cList[i].collidepoint(point):
 return True
 return False
def checkTouching(a1,a2):
 if a1.colliderect(a2): return True
 return False
def applyGravity():
 for i in range(0, len(gravityList)):
 if
checkCollisions(platformList,(gravityList[i].x,gravityList[i].
y+(gravityList[i].height/2))) == False and
checkCollisions(collideList,(gravityList[i].x,gravityList[i].
y+(gravityList[i].height/2))) == False:
 gravityList[i].y += gravity

29wfmag.cc \

http://wfmag.cc

30 / wfmag.cc

Asteroids
Shooter
Asteroids
Shooter

A steroids is a space-shooter game
released by Atari in 1979, first
as an arcade game and later
for the 2600 and other Atari
consoles. The aim is to control

a spaceship, stay alive and score points, by
shooting asteroids as they move around
the screen, breaking then into smaller and
smaller pieces.

The controls for the player’s spaceship
were unique because you could only ‘thrust’
the spaceship forwards in the direction
it was facing. The spaceship would then
continue in this direction until it either
decelerated to rest, or until the spaceship
was thrust in another direction. This
resulted in some unique player physics that
made for simple yet addictive gameplay.

The spaceship thruster motion
is achieved by making use of some
trigonometry. A force applied at an angle
can be broken down into its horizontal and
vertical components, acting independently

duplicated the image, rotated it so that
it is facing to the right, and added flames
to the rear of one of the images to show
forward acceleration.

Initially, the spaceship’s placed in the
centre of the screen, with an angle of 0.
The spaceship’s also given a value for
acceleration, as well as horizontal and
vertical speeds. As I want the spaceship
to be stationary to begin with, both of the
values for speed are initially set to 0.

Pressing the ‘up’ arrow key will apply
acceleration to the ship, in the direction
that it is currently facing. I’ll start by first
changing the spaceship’s image, so that it
appears to be thrusting forward when the
‘up’ arrow key is pressed.

Spaceship motion is achieved by
splitting its acceleration into horizontal and
vertical components, and applying each to
the corresponding speed variable.

When working with angles, it’s often
preferred to use radians instead of

at right angles to each other. When applied
together, these two components have the
same effect as the original force.

The horizontal and vertical components
can be calculated by taking the cosine
and the sine of the angle (respectively)
and multiplying by the force. These values
can then be used to calculate an object’s
position over time.

To replicate this type of player motion,
you’ll need two images for your spaceship;
one ‘normal’ spaceship image, and one
that shows the spaceship being thrust
forward. You can either create these
images yourself, or if (like me) your artistic
skills are lacking, you can adapt images
from a repository like opengameart.org.

This example uses Pygame Zero’s
framework, in which an angle of 0
corresponds to the spaceship facing to
the right. The angle of the spaceship
is then incremented as the spaceship
turns anticlockwise. I’ve therefore

AUTHOR
RIK CROSS

Learn how to recreate the iconic player physics
from Atari’s arcade classic, Asteroids

Asteroids’
thruster motion

Source Code

http://wfmag.cc

Asteroids
Shooter

import math

set screen width and height
WIDTH = 800
HEIGHT = 800

create a new spaceship, using the ‘spaceship.png’ image
spaceship = Actor(‘spaceship’)
place the spaceship in the centre of the screen, facing right
spaceship.center = (WIDTH/2, HEIGHT/2)
spaceship.angle = 0
set an acceleration for the spaceship
spaceship.ACCELERATION = 0.02
initially the spaceship is stationary
spaceship.x_speed = 0
spaceship.y_speed = 0

def update():
 # save the spaceship’s current angle,
 # as changing the actor’s image resets the angle to 0
 new_angle = spaceship.angle

 # rotate left on left arrow press
 if keyboard.left:
 new_angle += 2

 # rotate right on right arrow press
 if keyboard.right:
 new_angle -= 2

 # accelerate forwards on up arrow press
 # and change displayed image
 if keyboard.up:
 spaceship.image = ‘spaceship_thrust’
 spaceship.x_speed += math.cos(math.radians(new_angle)) * spaceship.
ACCELERATION
 spaceship.y_speed += math.sin(math.radians(new_angle)) * spaceship.
ACCELERATION
 else:
 spaceship.image = ‘spaceship’

 # set the new angle
 spaceship.angle = new_angle
 # use the x and y speed to update the spaceship position
 # subtract the y speed as coordinates go from top to bottom
 spaceship.x += spaceship.x_speed
 spaceship.y -= spaceship.y_speed

def draw():
 screen.clear()
 spaceship.draw()

Asteroids thruster motion in Python
Here’s that Asteroids thruster code in full. To get it running on your system, you’ll first
need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/

wfmag4

Asteroids
Shooter

degrees. One radian is defined as the
angle made by an arc whose length is
equal to the radius of a circle. One radian
corresponds to about 57 degrees, and
there are 2π radians in a circle. When
using radians, not only are commonly
used angles convenient fractions of π, but
calculations in radians are less likely to
introduce rounding errors.

These updated horizontal and vertical
speeds are then used to update the
spaceship’s position on the screen.
Notice that the vertical speed is actually
subtracted from the spaceship’s position,
due to the fact that the ‘y’ coordinate
increases as a sprite moves down
the screen.

The ‘left’ and ‘right’ arrow keys are used
to rotate the spaceship. Because Pygame
Zero resets a sprite’s angle when its
image is changed, notice that the angle is
saved to a temporary new_angle variable,
before being updated and re-applied to
the spaceship.

Once the basic ship movement’s been
implemented, there are many adaptations
that can be made. Firstly, the spaceship’s
acceleration value could be modified, to
allow for faster or slower motion around
the screen. It’s worth trying out different
values until you settle on something that
feels right. The spaceship could also be
made to decelerate when not being thrust
forward, to mirror the original game.
This deceleration could happen either
when the ‘up’ arrow key isn’t being
pressed, or when the ‘down’ arrow key is
pressed. As a more difficult challenge, you
could even try ‘wrapping’ the spaceship’s
movement, so that it appears on the
opposite edge of the screen if it travels too
far in any particular direction.

1 radian

arc length = radius

radius

 �One radian is the angle made by an arc of
equal length to a circle’s radius.

31wfmag.cc \

http://wfmag.cc

Subscribe
today

wfmag.cc/3for5

3 ISSUES FOR £5

SAVE
72%

32 / wfmag.cc

http://wfmag.cc/3for5
http://wfmag.cc

£45 (UK) 	 £55 (USA)

£70 (EU) 	 £80 (RoW)

Offers and prices are subject to change at any time

Subscribe for 12 months
wfmag.cc/subscribe

£25 (UK) 	 £30 (USA)

£35 (EU) 	 £40 (RoW)

Subscribe for 6 months

 ��Low initial cost
 ��Free delivery
3 for £5 offer only available in UK

3 issues for £5
Special offer:

 �Free delivery
Get it fast and for free

 �Exclusive offers
Take advantage of our
offers and discounts

 �Great savings
Save money on the cover
price compared to stores

Subscriber benefits

Digital subscriptions from

£1.99

LIFTING THE LID ON VIDEO GAMES

INSIDE THE NEXT ACTION-ADVENTURE FROM THE CREATORS OF SHOVEL KNIGHT

MAKE YOUR OWN

SPRITE EDITOR
THE MYSTICAL NINJA GAMES

WE NEVER SAW
THE EVOLUTION OF

PIXEL ART

LIFTING THE LID ON VIDEO GAMES

INSIDE THE NEXT ACTION-ADVENTURE FROM THE CREATORS OF SHOVEL KNIGHT

MAKE YOUR OWN

SPRITE EDITOR
THE MYSTICAL NINJA GAMES

WE NEVER SAW
THE EVOLUTION OF

PIXEL ART

Visit wfmag.cc/subscribe or call 01293 312192 to order
Subscription queries: wireframe@subscriptionhelpline.co.uk

Subscribe
for 12 months
FROM JUST £45

33wfmag.cc \

mailto:wireframe@subscriptionhelpline.co.uk
mailto:wireframe%40subscriptionhelpline.co.uk?subject=
http://wfmag.cc/subscribe
http://wfmag.cc/subscribe
http://wfmag.cc
http://apps.apple.com/us/app/wireframe-magazine/id1441144709
http://play.google.com/store/apps/details?id=com.apazine.wireframe

Pipemania
Puzzler

34 / wfmag.cc

P ipe Mania, also called Pipe Dream
in the US, is a puzzle game
developed by The Assembly Line
in 1989 for Amiga, Atari ST, and
PC, and later ported to other

platforms, including arcades. The player
must place randomly generated sections of
pipe onto a grid. When a counter reaches
zero, water starts to flow and must reach
the longest possible distance through the
connected pipes.

Let’s look at how to recreate Pipe Dream
in Python and Pygame Zero. The variable
start is decremented at each frame. It
begins with a value of 60*30, so it reaches
zero after 30 seconds if our monitor runs
at 60 frames per second. In that time, the
player can place tiles on the grid to build a
path. Every time the user clicks on the grid,
the last tile from nextTiles is placed on the
play area and a new random tile appears
at the top of the next tiles. randint(2,8)
computes a random value between 2 and 8.

grid and nextTiles are lists of tile values,

The image waterPath isn’t shown to the
user, but it stores the paths that the water
is going to follow. The first point of the
water path is located in the starting tile,
and it’s stored in currentPoint. update calls
the function CheckNextPointDeleteCurrent,
when the water starts flowing. That
function finds the next point in the water
path, erases it, and adds a new point to
the waterFlow list. waterFlow is shown to the
user in the draw function.

pointsToCheck contains a list of relative
positions, offsets, that define a step of two
pixels from currentPoint in every direction
to find the next point. Why two pixels? To be
able to define the ‘cross’ tile, where two lines
cross each other. In a ‘cross’ tile the water
flow must follow a straight line, and this
is how the only points found are the next
points in the same direction. When no next
point is found, the game ends and the score
is shown: the number of points in the water
path, playState is set to 0, and no more
updates are done.

from 0 to 8, and are copied to the screen
in the draw function with the screen.blit
operation. grid is a two-dimensional list, with
sizes gridWidth=10 and gridHeight=7. Every
pipe piece is placed in grid with a mouse
click. This is managed with the Pygame
functions on_mouse_move and on_mouse_down,
where the variable pos contains the mouse
position in the window. panelPosition
defines the position of the top-left corner
of the grid in the window. To get the grid
cell, panelPosition is subtracted from pos,
and the result is divided by tileSize with
the integer division //. tileMouse stores the
resulting cell element, but it is set to (-1,-1)
when the mouse lies outside the grid.

The images folder contains the PNGs
with the tile images, two for every tile: the
graphical image and the path image. The
tiles list contains the name of every tile,
and adding to it _block or _path obtains
the name of the file. The values stored in
nextTiles and grid are the indexes of the
elements in tiles.

AUTHOR
JORDI SANTONJA

Create a network of pipes before the water starts
to flow in our re-creation of a classic puzzler



�Our Pipe Mania homage.
Build a pipeline before
the water escapes, and
see if you can beat your
own score.

 �Pipe Mania’s design is so
effective, it’s appeared
in various guises
elsewhere – even as a
minigame in BioShock.

Code your own
Pipe Mania puzzler

Source Code

http://wfmag.cc

Source Code
Toolbox

Pipe-wrangling in Python

Pipemania
Puzzler

Here’s Jordi’s code for a Pipe Mania-style puzzler. To get it working on your system,
you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag46

Pipe Mania
from pygame import image, Color, Surface
from random import randint

gridWidth, gridHeight = 10, 7
grid = [[0 for x in range(gridWidth)] for y in range(gridHeight)]
tileSize = 68
panelPosition = (96, 96)
numberNextTiles = 5
nextTiles = [randint(2, 8) for y in range(numberNextTiles)]
nextTilesPosition = (16, 28)
tileMouse = (-1, -1)

tiles = [‘empty’, ‘start’,
 ‘hori’, ‘vert’, ‘cross’,
 ‘bottomleft’, ‘bottomright’,
 ‘topleft’, ‘topright’]

pathTiles = [image.load(‘images/’+tiles[i]+’_path.png’) for i in
range(1,9)]

waterPath = Surface((gridWidth*tileSize, gridHeight*tileSize))
waterPath.fill(Color(‘black’))
grid[3][2] = 1 # start tile
waterPath.blit(pathTiles[0], (2 * tileSize, 3 * tileSize))
currentPoint = (2 * tileSize + 43, 3 * tileSize + 34)
waterFlow = []
start = 60*30 # 30 seconds

playState = 1

pointsToCheck = [(2, 0),(0,2),(-2, 0),(0,-2),
 (2, 1),(1,2),(-2, 1),(1,-2),
 (2,-1),(-1,2),(-2,-1),(-1,-2),
 (2,-2),(2,2),(-2, 2),(-2,-2)]

def draw():
 screen.blit(‘background’, (0,0))
 for x in range(gridWidth):
 for y in range(gridHeight):
 screen.blit(tiles[grid[y][x]]+’_block’, (
 panelPosition[0] + x * tileSize,
 panelPosition[1] + y * tileSize))
 for y in range(numberNextTiles):
 screen.blit(tiles[nextTiles[y]]+’_block’, (
 nextTilesPosition[0],
 nextTilesPosition[1] + y * tileSize))
 for point in waterFlow:
 screen.blit(‘water’, point)
 if playState == 1:
 if tileMouse[0] >= 0 and tileMouse[1] >= 0:
 screen.blit(tiles[nextTiles[-1]]+’_block’, (
 panelPosition[0] + tileMouse[0] * tileSize,
 panelPosition[1] + tileMouse[1] * tileSize))

 if start > 0:
 screen.draw.text(“Start in “
+ str(start // 60), center=(400, 50), fontsize=35)
 else:
 screen.draw.text(“GAME OVER. Points:
“+str(len(waterFlow)), center=(400, 50), fontsize=35)

def update():
 global start, playState
 if start > 0:
 start -= 1
 elif playState == 1:
 if not CheckNextPointDeleteCurrent():
 playState = 0

def CheckNextPointDeleteCurrent():
 global currentPoint
 for point in pointsToCheck:
 newPoint = (currentPoint[0] + point[0], currentPoint[1]
+ point[1])
 if newPoint[0] < 0 or newPoint[1] < 0 or newPoint[0] >=
gridWidth*tileSize or newPoint[1] >= gridHeight*tileSize:
 return False # goes outside the screen
 if waterPath.get_at(newPoint) != Color(‘black’):
 waterPath.set_at(newPoint, Color(‘black’))
 waterFlow.append((newPoint[0] + panelPosition[0] - 4,
newPoint[1] + panelPosition[1] - 4))
 currentPoint = newPoint
 return True
 return False # no next point found

def on_mouse_down(pos):
 if playState == 1 and tileMouse[0] >= 0 and tileMouse[1] >=
0:
 if grid[tileMouse[1]][tileMouse[0]] != 1: # not start
tile
 grid[tileMouse[1]][tileMouse[0]] = nextTiles[-1]
 waterPath.fill(Color(‘black’), (tileMouse[0] *
tileSize, tileMouse[1] * tileSize, tileSize, tileSize))
 waterPath.blit(pathTiles[nextTiles[-1] - 1],
(tileMouse[0] * tileSize, tileMouse[1] * tileSize))
 for i in reversed(range(numberNextTiles - 1)):
 nextTiles[i + 1] = nextTiles[i]
 nextTiles[0] = randint(2, 8)

def on_mouse_move(pos):
 global tileMouse
 if playState == 1:
 tileMouse = ((pos[0] - panelPosition[0])//tileSize,
(pos[1] - panelPosition[1])//tileSize)
 if pos[0] < panelPosition[0] or pos[1] < panelPosition[1]
or tileMouse[0] >= gridWidth or tileMouse[1] >= gridHeight:
 tileMouse = (-1, -1) # mouse outside panel

35wfmag.cc \

http:/wfmag.cc/wfmag46
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox

36 / wfmag.cc

Columns
Puzzler

T ile-matching games began
with Tetris in 1984 and the less
famous Chain Shot! the following
year. The genre gradually evolved
through games like Dr. Mario,

Columns, Puyo Puyo, and Candy Crush
Saga. Although their mechanics differ, the
goals are the same: to organise a board
of different-coloured tiles by moving them
around until they match.

Here, I’ll show how you can create a
simple tile-matching game using Python
and Pygame. In it, any tile can be swapped
with the tile to its right, with the aim being
to make matches of three or more tiles of
the same colour. Making a match causes
the tiles to disappear from the board, with
tiles dropping down to fill in the gaps.

At the start of a new game, a board
of randomly generated tiles is created.
This is made as an (initially empty)
two-dimensional array, whose size
is determined by the values of rows

as it allows us to check for matches on any
length, as well as track multiple, separate
matches. A currentmatch list keeps track
of the (x,y) positions of a set of matching
tiles. Whenever this list is empty, the next
tile to check is added to the list, and this
process is repeated until the next tile is
a different colour. If the currentmatch list
contains three or more tiles at this point,
then the list is added to the overall matches
list (a list of lists of matches!) and the
currentmatch list is reset. To clear matched
tiles, the matched tile positions are set
to None, which indicates the absence of a
tile at that position. To fill the board, tiles
in each column are moved down by one
row whenever an empty board position is
found, with a new tile being added to the
top row of the board.

The code provided here is just a starting
point, and there are lots of ways to develop
the game, including a scoring system and
animation to liven up your tiles.

and columns. A specific tile on the board is
referenced by its row and column number.

We want to start with a truly random
board, but we also want to avoid having
any matching tiles. Random tiles are added
to each board position, therefore, but
replaced if a tile is the same as the one
above or to its left (if such a tile exists).

In our game, two tiles are ‘selected’ at
any one time, with the player pressing the
arrow keys to change those tiles. A selected
variable keeps track of the row and column
of the left-most selected tile, with the other
tile being one column to the right of the
left-most tile. Pressing SPACE swaps the
two selected tiles, checks for matches,
clears any matched tiles, and fills any gaps
with new tiles.

A basic ‘match-three’ algorithm would
simply check whether any tiles on the
board have a matching colour tile on either
side, horizontally or vertically. I’ve opted for
something a little more convoluted, though,

AUTHOR
RIK CROSS

Rik shows you how to code your own
Columns-style tile-matching puzzler

Make a tile-
matching game

Source Code



�Created by Hewlett-Packard
engineer Jay Geertsen,
Columns was Sega’s sparkly
rival to Nintendo’s all-
conquering Tetris.

http://wfmag.cc

Source Code
Toolbox

from random import randint

WHITE = 255,255,255

boardx = 40
boardy = 40
tilesize = 40
columns = 8
rows = 12
numberoftiles = 9

WIDTH = (boardx * 2) + (tilesize * columns)
HEIGHT = (boardy * 2) + (tilesize * rows)

tiles = [[1] * columns for j in range(rows)]
for r in range(rows):
 for c in range(columns):
 tiles[r][c] = randint(1, numberoftiles-1)
 while (r>0 and tiles[r][c] == tiles[r - 1][c]) or (c > 0
and tiles[r][c] == tiles[r][c - 1]):
 tiles[r][c] = randint(1, numberoftiles - 1)

selected = [0,0]

def checkmatches():
 matches = []
 for c in range(columns):
 currentmatch = []
 for r in range(rows):

 if currentmatch == [] or tiles[r][c] == tiles[r - 1][c]:
 currentmatch.append((r,c))
 else:
 if len(currentmatch) >= 3:
 matches.append(currentmatch)
 currentmatch = [(r,c)]
 if len(currentmatch) >= 3:
 matches.append(currentmatch)
 for r in range(rows):
 currentmatch = []
 for c in range(columns):
 if currentmatch == [] or tiles[r][c] == tiles[r][c - 1]:
 currentmatch.append((r,c))
 else:
 if len(currentmatch) >= 3:
 matches.append(currentmatch)
 currentmatch = [(r,c)]
 if len(currentmatch) >= 3:
 matches.append(currentmatch)

 return matches

Match-three in Python

Columns
Puzzler

Here’s Rik’s code snippet, which creates a simple match-three game in Python. To get it running on your
system, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag25

def clearmatches(matches):
 for match in matches:
 for position in match:
 tiles[position[0]][position[1]] = None

def fillboard():
 for c in range(columns):
 for r in range(rows):
 if tiles[r][c] == None:
 for rr in range(r,0,-1):
 tiles[rr][c] = tiles[rr - 1][c]
 tiles[0][c] = randint(1, numberoftiles - 1)
 while tiles[0][c] == tiles[1][c] or (c > 0 and
tiles[0][c] == tiles[0][c-1]) or (c<columns-1 and tiles[0][c]
== tiles[0][c+1]):
 tiles[0][c] = randint(1, numberoftiles - 1)

def on_key_up(key):
 if key == keys.LEFT:
 selected[0] = max(0,selected[0] - 1)
 if key == keys.RIGHT:
 selected[0] = min(selected[0] + 1,columns - 2)
 if key == keys.UP:
 selected[1] = max(0,selected[1] - 1)
 if key == keys.DOWN:
 selected[1] = min(selected[1] + 1,rows - 1)
 if key == keys.SPACE:
 tiles[selected[1]][selected[0]], tiles[selected[1]]
[selected[0] + 1] = tiles[selected[1]][selected[0] + 1],
tiles[selected[1]][selected[0]]
 matches = checkmatches()
 clearmatches(matches)
 fillboard()

def draw():
 screen.clear()
 for r in range(rows):
 for c in range(columns):
 screen.
blit(str(tiles[r][c]),
(boardx + (c * tilesize),
boardy + (r * tilesize)))
 screen.
blit(‘selected’,(boardx+
(selected[0] * tilesize),
boardy + (selected[1] *
tilesize)))

 �A board consisting of 12 rows and 8
columns of tiles. Pressing SPACE
will swap the 2 selected tiles
(outlined in white), and in this case,
create a match of red tiles vertically.

37wfmag.cc \

http://wfmag.cc/wfmag25
http://wfmag.cc

Source Code
Toolbox

38 / wfmag.cc

Lemmings
Puzzler

L emmings is a puzzle-platformer,
created at DMA Design, and first
became available for the Amiga
in 1991. The aim is to guide a
number of small lemming sprites

to safety, navigating traps and difficult
terrain along the way. Left to their own
devices, the lemmings will simply follow the
path in front of them, but additional ‘special
powers’ given to lemmings allow them to
(among other things) dig, climb, build, and
block in order to create a path to freedom
(or to the next level, anyway).

I’ll show you a simple way (using Python
and Pygame) in which lemmings can be
made to follow the terrain in front of them.
The first step is to store the level’s terrain
information, which I’ve achieved by using a
two-dimensional list to store the colour of
each pixel in the background ‘level’ image.
In my example, I’ve used the ‘Lemcraft’ tileset
by Matt Hackett (of Lost Decade Games) –
taken from opengameart.org – and used the

suitable ground is found to move onto, then
the lemming reverses its direction.

The above algorithm is stored as a lemming’s
update() method, which is executed for each
lemming, each frame
of the game. The sample level.png file can
be edited, or swapped for another image
altogether. If using a different image, just
remember to update the level’s BACKGROUND_
COLOUR in your code, stored as a (red, green,
blue, alpha) tuple. You may also need to
increase your lemming climbheight if you
want them to be able to navigate a climb of
more than four pixels.

There are other things you can do to make
a full Lemmings clone. You could try replacing
the yellow-rectangle lemmings in my example
with pixel-art sprites with their own walk cycle
animation (see my article in issue #14) or give
your lemmings some of the special powers
they’ll need to get to safety, achieved by
creating flags that determine how lemmings
interact with the terrain around them.

‘Tiled’ software (mapeditor.org) to stitch the
tiles together into a level.

The algorithm we then use can be
summarised as follows: check the pixels
immediately below a lemming. If the colour of
those pixels isn’t the same as the background
colour, then the lemming is falling.

In this case, move the lemming down by one
pixel on the y-axis. If the lemming isn’t falling,
then it’s walking. In this case, we need to see
whether there is a non-ground, background-
coloured pixel in front of the lemming for it
to move onto. If a pixel is found in front of
the lemming (determined by its direction)
that is low enough to get to (i.e. lower than its
climbheight), then the lemming moves forward
on the x-axis by one pixel, and upwards on the
y-axis to the new ground level. However, if no

Learn how to create your own obedient lemmings
that follow any path put in front of them

“Left to their own devices,
the lemmings will follow

the path in front of them”

Path-following
Lemmings

Source Code

AUTHOR
RIK CROSS



�The original Lemmings, first released
for the Amiga, quickly spread like a
virus to just about every computer and
console of the day.

http://wfmag.cc

Source Code
Toolbox

from time import sleep
from PIL import Image

screen size
HEIGHT=800
WIDTH=800

level information
level_image = ‘level’
BACKGROUND_COLOUR = (114,114,201,255)

store the colour of each pixel in the ‘level’ image
img = Image.open(‘images/level.png’)
pixels = [[img.getpixel((x, y)) for y in range(HEIGHT)] for x
in range(WIDTH)]

a list to keep track of the lemmings
lemmings = []
max_lemmings = 10
start_position = (100,100)
a timer and interval for creating new lemmings
timer = 0
interval = 10

returns ‘True’ if the pixel specified is ‘ground’
(i.e. anything except BACKGROUND_COLOUR)
def groundatposition(pos):
 # ensure position contains integer values
 pos = (int(pos[0]),int(pos[1]))
 # get the colour from the ‘pixels’ list
 if pixels[pos[0]][pos[1]] != BACKGROUND_COLOUR:
 return True
 else:
 return False

class Lemming(Actor):
 def __init__(self, **kwargs):
super().__init__(image=’lemming’, pos=start_position,
anchor=(‘left’,’top’), **kwargs)
 self.direction = 1
 self.climbheight = 4
 self.width = 10
 self.height = 20
 # update a lemming’s position in the level
 def update(self):
 # if there’s no ground below a lemming (check both
corners), it is falling
 bottomleft = groundatposition((self.pos[0],self.
pos[1]+self.height))
 bottomright = groundatposition((self.pos[0]+(self.
width-1), self.pos[1]+self.height))
 if not bottomleft and not bottomright:

 self.y += 1
 # if not falling, a lemming is walking
 else:
 height = 0
 found = False
 # find the height of the ground in front of a
 # lemming up to the maximum height a lemming
 # can climb
 while (found == False) and (height <= self.
climbheight):
 # the pixel ‘in front’ of a lemming
 # will depend on the direction it’s
 # traveling
 if self.direction == 1:
 positioninfront = (self.pos[0]+self.width,
self.pos[1]+(self.height-1)-height)
 else:
 positioninfront = (self.pos[0]-1, self.
pos[1]+(self.height-1)-height)
 if not groundatposition(positioninfront):
 self.x += self.direction
 # rise up to new ground level
 self.y -= height
 found = True

 height += 1
 # turn the lemming around if the ground in front
 # is too high to climb
 if not found:
 self.direction *= -1

def update():
 global timer
 # increment the timer and create a new
 # lemming if the interval has passed
 timer += 0.1
 if timer > interval and len(lemmings) < max_lemmings:
 timer = 0
 lemmings.append(Lemming())
 # update each lemming’s
position in the level
 for i in lemmings:
 i.update()

def draw():
 screen.clear()
 # draw the level
 screen.blit(level_image,(0,0))
 # draw lemmings
 for i in lemmings:
 i.draw()

Path-following critters in Python

Lemmings
Puzzler

Here’s a code snippet that will send path-following creatures roaming around your screen. To get it
running, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag17

 �Sprites cling to the
ground below them,
navigating uneven
terrain, and reversing
direction when they hit
an impassable obstacle.

39wfmag.cc \

http://wfmag.cc/wfmag17
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox
Boulder Dash
Puzzler

B oulder Dash first appeared in
1984 for the Commodore 64,
Apple II, and the Atari 400/800.
It featured an energetic gem
collector called Rockford who,

thanks to some rather low-resolution
graphics, looked a bit like an alien. His
mission was to tunnel his way through a
series of caves to find gems while avoiding
falling rocks dislodged by his digging.
Deadly creatures also inhabited the caves
which, if destroyed by dropping rocks
on them, turned into gems for Rockford
to collect.

The ingenious level designs were what
made Boulder Dash so addictive. Gems had
to be collected within a time limit to unlock
the exit, but some were positioned in places
that would need planning to get to, often
using the physics of falling boulders to block
or clear areas. Of course, the puzzles got
increasingly tough as the levels progressed.

Written by Peter Liepa and Chris Gray,

We can also define an Actor for Rockford, as
this will make things like switching images
and tracking other properties easier.

Our draw() function is just a nested loop
to iterate through the list matrix and blit to
the screen whatever is indicated in each
square. The Rockford Actor is then drawn
over the top. We can also keep a count of
how many gems have been collected and
provide a congratulatory message if all of
them are found. In the update() function,
there are only two things we really need
to worry about: the first being to check
for keypresses from the player and move
Rockford accordingly, and the second to
check rocks to see if they need to move.

Rockford is quite easy to test for
movement, as he can only move onto an
empty square – a soil square or a gem
square. It’s also possible for him to push a
boulder if there’s an empty space on the
other side. For the boulders, we need to first
test if there’s an empty space below it, and

Boulder Dash was published by First Star
Software, which still puts out new versions
of the game to this day. Due to its original
success, Boulder Dash was ported to all
kinds of platforms, and the years since have
seen no fewer than 20 new iterations of
Boulder Dash, and a fair few clones, too.

We’re going to have a look at the boulder
physics aspect of the game, and make a
simple level where Rockford can dig out
some gems and hopefully not get flattened
under an avalanche of rocks. Writing our
code in Pygame Zero, we’ll automatically
create an 800 by 600-size window to work
with. We can make our game screen by
defining a two-dimensional list, which, in
this case, we will fill with soil squares and
randomly position the rocks and gems.
Each location in the list matrix will have a
name: either wall for the outside boundary,
soil for the diggable stuff, rock for a round,
moveable boulder, gem for a collectable item,
and finally, rockford to symbolise our hero.

Dig through the caves to find gems –
but watch out for falling boulders

Code a Boulder Dash
mining game

Source Code

AUTHOR
MARK VANSTONE



�The original Boulder Dash
was marked out by some
devious level design, which
threatened to squash the
player at every turn.

40 / wfmag.cc

http://wfmag.cc

Source Code
Toolbox

import random

rockford = Actor(‘rockford-1’, center=(60, 100))
gameState = count = 0
items = [[] for _ in range(14)]
gems = collected = 0
for r in range(0, 14):
 for c in range(0, 20):
 itype = “soil”
 if(r == 0 or r == 13 or c == 0 or c == 19): itype =
“wall”
 elif random.randint(0, 4) == 1: itype = “rock”
 elif random.randint(0, 20) == 1:
 itype = “gem”
 gems += 1
 items[r].append(itype)
items[1][1] = “rockford”

def draw():
 screen.fill((0,0,0))
 if gems == collected: infoText(“YOU COLLECTED ALL THE
GEMS!”)
 else: infoText(“GEMS : “+ str(collected))
 for r in range(0, 14):
 for c in range(0, 20):
 if items[r][c] != “” and items[r][c] !=
“rockford”:
 screen.blit(items[r][c], ((c*40), 40+(r*40)))
 if gameState == 0 or (gameState == 1 and count%4 == 0):
rockford.draw()

def update():
 global count
 mx = my = 0
 if count%10 == 0:
 for r in range(13, -1, -1):
 for c in range(19, -1, -1):
 if items[r][c] == “rockford”:
 if keyboard.left: mx = -1
 if keyboard.right: mx = 1

 if keyboard.up: my = -1
 if keyboard.down: my = 1
 if items[r][c] == “rock”: testRock(r,c)
 rockford.image = “rockford”+str(mx)
 if gameState == 0: moveRockford(mx,my)
 count += 1

def infoText(t):
 screen.draw.text(t, center = (400, 20), owidth=0.5,
ocolor=(255,255,255), color=(255,0,255) , fontsize=40)

def moveRockford(x,y):
 global collected
 rx, ry = int((rockford.x-20)/40), int((rockford.y-40)/40)
 if items[ry+y][rx+x] != “rock” and items[ry+y][rx+x] !=
“wall”:
 if items[ry+y][rx+x] == “gem”: collected +=1
 items[ry][rx], items[ry+y][rx+x] = “”, “rockford”
 rockford.pos = (rockford.x + (x*40), rockford.y +
(y*40))
 if items[ry+y][rx+x] == “rock” and y == 0:
 if items[ry][rx+(x*2)] == “”:
 items[ry][rx], items[ry][rx+(x*2)], items[ry+y]
[rx+x] = “”, “rock”, “rockford”
 rockford.x += x*40

def testRock(r,c):
 if items[r+1][c] == “”:
 moveRock(r,c,r+1,c)
 elif items[r+1][c] == “rock” and items[r+1][c-1] == “” and
items[r][c-1] == “”:
 moveRock(r,c,r+1,c-1)
 elif items[r+1][c] == “rock” and items[r+1][c+1] == “” and
items[r][c+1] == “”:
 moveRock(r,c,r+1,c+1)

def moveRock(r1,c1,r2,c2):
 global gameState
 items[r1][c1], items[r2][c2] = “”, items[r1][c1]
 if items[r2+1][c2] == “rockford”: gameState = 1

Tumbling rocks in Python

Boulder Dash
Puzzler

Here’s Mark’s code snippet, which creates some falling Boulder Dash rocks – and an intrepid explorer – in Python.
To get it running on your system, you’ll need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag30

BOTTOMS UP
An important thing to notice about the process of scanning
through the list matrix to test for boulder movement is that we
need to read the list from the bottom upwards; otherwise, because
the boulders move downwards, we may end up testing a boulder
multiple times if we test from the beginning to the end of the list.
Similarly, if we read the list matrix from the top down, we may end
up moving a boulder down and then when reading the next row,
coming across the same one again, and moving it a second time.

if so, the boulder must move downwards.
We also test to see if a boulder is on top of
another boulder – if it is, the top boulder
can roll off and down onto a space either to
the left or the right of the one beneath.

There’s not much to add to this snippet
of code to turn it into a playable game of
Boulder Dash. See if you can add a timer,
some monsters, and, of course, some
puzzles for players to solve on each level.

 �Our homage to Boulder Dash
running in Pygame Zero. Dig
through the caves to find gems
– while avoiding death from above.

41wfmag.cc \

http://wfmag.cc/wfmag17
http://wfmag.cc/pgzero
http://wfmag.cc

Boulder Dash level editor
Puzzler

In a Source Code special, Mark shows you how to create
an entire Boulder Dash construction kit from scratch

oulder Dash was a popular video
computer game in the mid-eighties,
and in Wireframe issue 30
(wfmag.cc/30), we showed you how
to code your own miniature remake.

This time, we’ll expand on that program to make
a level editor, which you can then use to design
your own puzzles for other players to navigate.

Before you get started, be sure to have a look
through that previous Source Code article to
familiarise yourself with how the program works
– you can get the code and assets for it from that
issue’s GitHub: wfmag.cc/wfmag30. As a quick
reminder of how the game works, it saw intrepid
hero Rockford dig his way through underground
caves to find gems, all the while avoiding the
falling rocks. Those rocks not only fall downwards

Source Code DX:
make a Boulder Dash
level editor in Python

B if there’s nothing to hold them up, but they’ll also
roll down onto other rocks if there’s nothing to
the left or right of them. Rockford’s controlled
with the cursor keys, and the aim is to collect all
the gems to complete the level.

We’ll continue writing our code in Pygame
Zero based on the original program, but to
incorporate an editor section, we change our
window size to add an extra 200 pixels to the
width. As before, our game screen is defined
by a two-dimensional list which, in our original
program, we filled with random items. For this
version, we’ll set the play area to a ‘default’
layout of all soil blocks with wall blocks around
the outside to stop Rockford from going off
the screen. Each location in the list matrix has
a name: either wall for the outside boundary,
soil for the diggable stuff, rock for a round,
moveable boulder, gem for a collectable jewel,
and finally rockford to denote our hero.
Rockford is also defined as an Actor, as this
makes things like switching images and tracking
other properties easier.

The first thing to do to our program is to add
a switch to turn the editor on or off. To do this,
we’ll define a variable called editorState. If this
variable’s set to True, we open the program with
an extra 200 pixels on the right-hand side of the
play area using WIDTH = 1000. When this area is

 �The original Boulder
Dash had its own level
editor called the
Construction Kit.

AUTHOR
MARK VANSTONE

Mark Vanstone is the technical director of TechnoVisual, author of the
nineties educational game series, ArcVenture, and after all this time,
still can’t resist game coding. education.technovisual.co.uk

Download
the code

from GitHub:
wfmag.cc/
wfmag56

42 / wfmag.cc

http://wfmag.cc/30
http://wfmag.cc/wfmag30
http://education.technovisual.co.uk
http://wfmag.cc/wfmag56
http://wfmag.cc/wfmag56
http://wfmag.cc/wfmag56
http://wfmag.cc/30
http://wfmag.cc/wfmag30
http://education.technovisual.co.uk
http://wfmag.cc

Boulder Dash level editor
Puzzler



�When we first load the
program, we fill the
game area with just soil
and a wall border.

 �The editor panel. This
could start to look a lot
busier once you start
adding your own block
types.

shown, we’ll need to draw all the elements we
need to see in the editor. First, to keep things
tidy, we make a function called drawEditor()
which will be called from the draw() function.
We probably want to display a title for the area
– something like ‘EDITOR’ will do the job – and
then underneath, print ‘ON’ if the editorState
variable is True. We can
toggle the editorState
variable with a key press
such as the SPACE bar.
We do this by defining
the on_key_down(key)
function and then capturing the key press
value. If the SPACE bar is pressed, we set
the editorState to the opposite of what it is.
The code below shows you how we do this.

def on_key_down(key):
 global editorState
 if key == keys.SPACE and WIDTH > 800:
 editorState = not editorState

To write an editor for the game, we need to be
able to change the blocks that are in the play
area. So here’s the plan: we’ll create a visual list
of the available blocks which are clickable. When
the block’s clicked on, it becomes the currently
selected item. Then if we click in the play area,

it will change the block to be the item we’ve
selected. All we need to do to change what’s
in the play area is to change the item name in
the items list and the display will update. We’ll
be using a small set of blocks for this example,
but you can add new ones yourself. If you want
to create new images for any new blocks, you’ll

need an image editing
program. If you don’t
have Photoshop, you
can create new graphics
with programs like GIMP
or even Microsoft Paint.

There are also free online alternatives such as
Photopea, which can export graphics as a PNG
file – this is what you’ll need for any new blocks.
The block images are 40 pixels by 40 pixels in
size and should be saved in the images directory
alongside your program file.

BLOCK FALL
To create our visual list of blocks, we can create
a list of Actors which will mean we can test them
for mouse clicks. We’ll call the list blockTypes and
define them at the start of the program. Notice
how we can define a screen position for them
so we can have them neatly arranged in a line.
If we had more blocks then we could arrange
them in a grid format. You can add your own

“We need to be able to
change the blocks that

are in the play area”

43wfmag.cc \

http://wfmag.cc

Boulder Dash level editor
Puzzler

blocks here if you want to expand the game,
and you can define new blocks in the same way
with their name being the file name of the image
without .png at the end. To display our list on
the screen, we’ll need to add a draw() command
for each item on the list. See the code below
to learn how the list is defined and how our
drawEditor() function is shaping up.

blockTypes = [
 Actor(‘blank’, center=(900, 250)),
 Actor(‘soil’, center=(900, 300)),
 Actor(‘rock’, center=(900, 350)),
 Actor(‘gem’, center=(900, 400)),
 Actor(‘wall’, center=(900, 450))
]

def drawEditor():
 screen.draw.text(“EDITOR”, center = (900, 20),
owidth=0.5, ocolor=(255,255,255), color=(0,0,255)
, fontsize=40)
 if editorState: screen.draw.text(“ON”, center
= (900, 50), owidth=0.5, ocolor=(255,255,255),
color=(255,0,0) , fontsize=40)
 for b in range(0, len(blockTypes)):

 blockTypes[b].draw()

We should now see the editor panel (with the
‘ON’ indicator) and a column of blocks. Next, we

need to make them clickable. To do this, we’ll
need to define an on_mouse_down(pos) function.
In this function, we’ll check we’re in the right
editorState (True) and then check each of the
blockTypes on the list with the collidepoint(pos)
function to see if the mouse down event
was over the block in the editor section. If it
was, then we can set a variable to represent
the currently selected item called editItem.
This variable will be defined at the top of the
program and set as the name of the block that
was clicked. As things stand, we won’t have
any visual indicator of which block is currently
selected, so we can remedy this by drawing a
copy of the editItem block in the editor above
the list with screen.blit(editItem,(880,100)).

We should now have an editor with a list of
blocks which can be clicked to set the currently
selected item, which is then displayed above the
list. Once we’ve selected a block, we then want to
be able to place it in the game area so it changes
the map. To do this, we need to check the mouse
click position to see if it’s over the play area. Then
we need to work out which square on the map
has been clicked and change that item in the data
to be our editItem value. Each of the blocks on
the map are 40 pixels by 40 pixels, so we can find
the position we need in the items list by dividing
the mouse position by 40. However, the game
area’s displayed starting at 40 pixels down the

EARTH
SHAKING
If you owned a ZX Spectrum
in the early 1990s, you may
have encountered one of the
best Boulder Dash clones
ever made: Earth Shaker,
programmed by Michael Batty
and given away as a cassette
on the cover of Your Sinclair
magazine. With large scrolling
levels and a complex array of
additional block types – such
as a Gravity Stick, which made
rocks and other items float
for a period – it was a slick
and polished iteration of a
familiar classic. A few months
later, Your Sinclair published
a level editor, which, like the
one introduced here, allowed
readers to design, save, and
play their own maps in the
original game. You had to type
in reams of BASIC, though, but
thanks to the wonders of the
internet, you can now download
it from World of Spectrum:
wfmag.cc/earthshaker.

 �Our earlier Source Code
Boulder Dash game from
issue 30 had randomly
generated blocks.

44 / wfmag.cc

http://wfmag.cc/earthshaker
http://wfmag.cc/earthshaker
http://wfmag.cc

Boulder Dash level editor
Puzzler

screen (to give room for information prompts), so
we subtract 40 from the mouse y position before
we do the division. The code below shows you
how this calculation and testing for clicks on
the blocks in the editor is written in the
on_mouse_down(pos) function.

def on_mouse_down(pos):
 global editItem
 if editorState:
 c = int(pos[0]/40)
 r = int((pos[1]-40)/40)
 if r > 0 and r < 14 and c > 0 and c < 20:
 if editItem != “blank”:
 items[r][c] = editItem
 else : items[r][c] = “”
 else:
 for b in range(0, len(blockTypes)):
 if blockTypes[b].collidepoint(pos):
 editItem = blockTypes[b].image

GRID LOCKED
If you’ve added some extra blocks to the list, you
should be able to select and place them on the
map at this point. If you want them to behave
differently than other blocks in the game, though,
you’ll need to add some code. The code you
write will depend what you want the blocks to
do. For example, if you wanted to add a fire block
which will sizzle Rockford if he walks over it, you’d
need to put some code to test the block directly
under Rockford to see
if it’s a fire block; if it is,
set gameState to 1. You’d
need to put that code
in the moveRockford(x,y)
function. If you want to
add extra blocks, have a look at the full listing at
the end of this tutorial to see how different types
of blocks are dealt with in that function.

So now we should be able to go from a
default play area with just soil, border wall, and
Rockford to generating a set of boulders and
walls with gems for the player to collect without
getting squished.

There are many ways to arrange the boulders
and walls to make it difficult for the player to
get the gems without clearing the soil or moving
boulders in the right order. (Of course, you’ll
need to make sure that it’s actually possible to
collect the gems.)

Once you’ve laid out some blocks on the game
area, you can test the level by hitting the SPACE

bar to switch the editor mode off and then start
moving Rockford around the play area to see
how the boulders react. The only problem with
this situation at the moment is that as we move
Rockford around, he’s changing the map we
have made. The rocks start moving, the gems
get collected, and the only way to get the original
map back is to make it again in the editor. What
we need is a way of saving and loading maps.
Let’s make a couple of buttons to load and save
maps, then. We can position these down at the

bottom of the editor.
They’ll be Actors and
respond to a mouse
click like our blocks, but
when clicked, we’ll call
functions saveMap() and

loadMap(). There are several ways we can save
data from our program; if the data was more
complicated, we might want to look at the JSON
format to save our game maps, or we could use
a comma-separated text format. In this case,
though, a really effective way of saving this data
is to use a library called Pickle. This provides data
serialisation functions, which means translating
structured data into and from a suitable file
format. By opening a file and then calling pickle.
dump, we can take a lot of the headache out of
saving our maps. Conversely, when we want to
load our map back in, we just open the file and
call pickle.load and the data is read back into our
items list. Have a look at the code overleaf to see
the basics of our save and load functions.

“If you want to expand
the game, you can
define new blocks”

 �Repton: a lot like Boulder
Dash, but set in a posh
boarding school.
(We may have made
that last bit up.)

45wfmag.cc \

http://wfmag.cc

Boulder Dash level editor
Puzzler

import pickle

def loadMap():
 global items
 with open (‘mymap.map’, ‘rb’) as fp:
 items = pickle.load(fp)

def saveMap():
 with open(‘mymap.map’, ‘wb’) as fp:

 pickle.dump(items, fp)

LOAD AND SAVE
You’ll see that we’re using a fixed file name for
saving the map. If you wanted to have the user
change the file name, you might want to have a
look at the filedialog part of the tkinter library to
provide a load or save dialog window to enable
choosing a file name for your map. For the
purposes of this article though, we will stick with
a fixed file name for our map.

Currently when our save function is called,
there’s no feedback to the user that anything
has happened, which may be a bit disconcerting
for some. It’s probably wise to add some
messages into our routines, then: we’ll want to
have a confirmation that the file has been saved
or if there was a problem saving it. We can make
a simple messaging system by having a global
variable editorMessage and a countdown variable

editorMessageCount to display the message for
a period of time and then stop displaying it. If
we set the editorMessage variable to something
like ‘MAP SAVED’ and the editorMessageCount
variable to 200, then we can check to see if this
variable is greater than zero in the drawEditor()
function, then, if it is, display the message
on the screen using screen.draw.text().
After displaying the text, we decrement the
editorMessageCount variable by 1. This will mean
that after 200 cycles of the draw() function, our
message will disappear.

What if the saving operation failed? There
could be all kinds of reasons why this might
happen, and it’s always a good policy to check
when files are loaded or saved that the data
transfer actually happened. To check that our
file save didn’t encounter an error, we can use
a try: and then an except IOError: structure.
Underneath the try: command we open our file,
use Pickle to dump the data to the file, and then
set our editorMessage to confirm the file’s saved.
Then we use the except IOError: command, and
under that, we set our editorMessage to display
an error message. This means that if an error
occurs while saving, we’ll see an error message;
otherwise, we’ll see the confirmation and know
that our map file has been saved. Look at
the code below to see the updated saveMap()
function with error checking.

def saveMap():
 global editorMessage, editorMessageCount
 try:
 with open(‘mymap.map’, ‘wb’) as fp:
 pickle.dump(items, fp)
 editorMessage = “MAP SAVED”
 editorMessageCount = 200
 except IOError:
 editorMessage = “ERROR SAVING MAP”
 editorMessageCount = 200

Our save function is now complete, so we’ll turn
our attention to how we load the map back in.
We have the basics of the loading routine using
the pickle.load() function, but what happens
if we haven’t created a map yet? The loading
routine would fail and we wouldn’t have any
map data to work from. We can use the same
technique we used with the saveMap() function
to catch an error if it can’t load the file. By using
try: and except IOError: again, we can display a
message to say the map has loaded if no error

 �Earth Shaker was one
of the best Boulder
Dash clones on the
ZX Spectrum.

46 / wfmag.cc

http://wfmag.cc

Boulder Dash level editor
Puzzler

occurs, and if the map isn’t loaded, fill our items
list with the default map layout (just soil and
boundary walls) and display a message to say
that the default map has been loaded. Having
put all this in place, we can then add a call to
loadMap() when the
program first runs. If we
have an existing map file,
the program will load it,
and if not, it will load the
default map. This means
we don’t need to generate the default items list
at the beginning of the program as the loadMap()
function will do it for us.

FILE HANDLING
Now we have an editor that will automatically load
the last map we saved or make a default map,
allowing us to edit all the blocks in the game area,
save the map, and then test it with Rockford. If
we test our puzzle layout and find that Rockford
gets squished, then at the moment all we can do
is close the program and restart it to get back to
the saved map. That’s going to get very tedious
if we’re testing over and over. What we need is a
reset key. We can check for the escape key in the
on_key_down() function, and when that’s detected,
we need to set our gems, collected, and gameState
variables all to zero, redefine the Rockford

Actor to be back in the top corner, and then call
loadMap(). This will set everything back to the way
it first loads in.

Our editor’s nearly finished now, with just one
more thing to do. When we’ve made and tested

our fiendish map, we’ll
want to challenge our
friends, family, or random
passers-by to solve it.
In other words, we want
to let them play the game

without the editor section. All we need to do is
change the editorState at the top of the program
to False (this will mean the editor section will not
be shown) and add a new variable, editorEnabled
(also set to False), which we will check before
letting the SPACE bar switch modes. The game is
then playable by a non-editing user.

You now have a fully functional Boulder
Dash editor! Have a look at the full listing to
see how everything fits together. You could, of
course, expand this to add more block items
for Rockford to deal with, or enable multiple
levels by loading in different maps as the player
completes each one. You could add more tools
for the editor, such as file load and save dialogs
so you can choose the file names you use for
your maps, but we’ll leave you to have fun
adding those extra features.

“Now we have an editor
that will load the last

map we saved”

 �The finished editor.
See how devious you can
make your own puzzles!

47wfmag.cc \

http://wfmag.cc

Boulder Dash level editor
Puzzler

Boulder Builder
Here’s Mark’s code for a full-featured Boulder Dash construction kit. To get it running on your system,
you’ll need to install Pygame Zero. Full instructions are available at wfmag.cc/pgzero.

Boulder Dash Editor
import pgzrun
import pickle

editorState = True
editorEnabled = True

if editorState:
 WIDTH = 1000

gameState = count = 0
editItem = “blank”
editorMessage = “”
editorMessageCount = 0

blockTypes = [
 Actor(‘blank’, center=(900, 250)),
 Actor(‘soil’, center=(900, 300)),
 Actor(‘rock’, center=(900, 350)),
 Actor(‘gem’, center=(900, 400)),
 Actor(‘wall’, center=(900, 450))
]

loadButton = Actor(‘load’, center=(850, 580))
saveButton = Actor(‘save’, center=(950, 580))
items = [[] for _ in range(14)]
gems = collected = 0
rockford = Actor(‘rockford-1’, center=(60, 100))

def draw():
 screen.fill((0,0,0))
 if gems == 0 and collected > 0: infoText(“YOU COLLECTED ALL
THE GEMS!”)
 else: infoText(“GEMS : “+ str(collected))
 for r in range(0, 14):
 for c in range(0, 20):
 if items[r][c] != “” and items[r][c] != “rockford”:
 screen.blit(items[r][c], ((c*40), 40+(r*40)))
 if gameState == 0 or (gameState == 1 and count%4 == 0):
rockford.draw()
 drawEditor()

def update():
 global count,gems
 mx = my = 0
 if count%10 == 0:
 gems = 0

 for r in range(13, -1, -1):
 for c in range(19, -1, -1):
 if items[r][c] == “gem”:
 gems += 1
 if items[r][c] == “rockford”:
 if keyboard.left: mx = -1
 if keyboard.right: mx = 1
 if keyboard.up: my = -1
 if keyboard.down: my = 1
 if items[r][c] == “rock”: testRock(r,c)
 rockford.image = “rockford”+str(mx)
 if gameState == 0 and editorState == False:
moveRockford(mx,my)
 count += 1

def on_mouse_down(pos):
 global editItem
 if editorState:
 c = int(pos[0]/40)
 r = int((pos[1]-40)/40)
 if loadButton.collidepoint(pos): loadMap()
 if saveButton.collidepoint(pos): saveMap()
 if r > 0 and r < 14 and c > 0 and c < 20:
 if editItem != “blank”:
 items[r][c] = editItem
 else : items[r][c] = “”
 else:
 for b in range(0, len(blockTypes)):
 if blockTypes[b].collidepoint(pos):
 editItem = blockTypes[b].image

def on_key_down(key):
 global editorState, gameState, rockford, collected, gems
 if key == keys.SPACE and editorEnabled:
 editorState = not editorState
 if key == keys.ESCAPE:
 gems = collected = gameState = 0
 rockford = Actor(‘rockford-1’, center=(60, 100))
 loadMap()

def infoText(t):
 screen.draw.text(t, center = (400, 20), owidth=0.5,
ocolor=(255,255,255), color=(255,0,255) , fontsize=40)

def moveRockford(x,y):
 global collected

48 / wfmag.cc

http://wfmag.cc/pgzero
http://wfmag.cc/pgzero
http://wfmag.cc

Boulder Dash level editor
Puzzler

 rx, ry = int((rockford.x-20)/40), int((rockford.y-40)/40)
 if items[ry+y][rx+x] != “rock” and items[ry+y][rx+x] !=
“wall”:
 if items[ry+y][rx+x] == “gem”: collected +=1
 items[ry][rx], items[ry+y][rx+x] = “”, “rockford”
 rockford.pos = (rockford.x + (x*40), rockford.y + (y*40))
 if items[ry+y][rx+x] == “rock” and y == 0:
 if items[ry][rx+(x*2)] == “”:
 items[ry][rx], items[ry][rx+(x*2)], items[ry+y][rx+x]
= “”, “rock”, “rockford”
 rockford.x += x*40

def testRock(r,c):
 if items[r+1][c] == “”:
 moveRock(r,c,r+1,c)
 elif items[r+1][c] == “rock” and items[r+1][c-1] == “” and
items[r][c-1] == “”:
 moveRock(r,c,r+1,c-1)
 elif items[r+1][c] == “rock” and items[r+1][c+1] == “” and
items[r][c+1] == “”:
 moveRock(r,c,r+1,c+1)

def moveRock(r1,c1,r2,c2):
 global gameState
 items[r1][c1], items[r2][c2] = “”, items[r1][c1]
 if items[r2+1][c2] == “rockford”: gameState = 1

def drawEditor():
 global editorMessageCount
 screen.draw.text(“EDITOR”, center = (900, 20), owidth=0.5,
ocolor=(255,255,255), color=(0,0,255) , fontsize=40)
 if editorState: screen.draw.text(“ON”, center = (900, 50),
owidth=0.5, ocolor=(255,255,255), color=(255,0,0) , fontsize=40)
 for b in range(0, len(blockTypes)):
 blockTypes[b].draw()
 if editItem != “”:
 screen.blit(editItem,(880,100))
 loadButton.draw()
 saveButton.draw()
 if editorMessageCount > 0:
 screen.draw.text(editorMessage, center = (400, 300),
owidth=0.5, ocolor=(255,255,255), color=(0,0,255) , fontsize=40)
 editorMessageCount -= 1

def loadMap():
 global items, rockford, editorMessage, editorMessageCount
 try:

 with open (‘mymap.map’, ‘rb’) as fp:
 items = pickle.load(fp)
 editorMessage = “MAP LOADED”
 editorMessageCount = 200
 except IOError:
 editorMessage = “DEFAULT MAP LOADED”
 editorMessageCount = 200
 for r in range(0, 14):
 for c in range(0, 20):
 itype = “soil”
 if(r == 0 or r == 13 or c == 0 or c == 19): itype
= “wall”
 items[r].append(itype)
 items[1][1] = “rockford”

def saveMap():
 global editorMessage, editorMessageCount
 try:
 with open(‘mymap.map’, ‘wb’) as fp:
 pickle.dump(items, fp)
 editorMessage = “MAP SAVED”
 editorMessageCount = 200
 except IOError:
 editorMessage = “ERROR SAVING MAP”
 editorMessageCount = 200

loadMap()
pgzrun.go()

 �Enter the code shown here (or download it from our GitHub)
and you’ll be designing your own cunning stages in no time.

49wfmag.cc \

http://wfmag.cc

Source Code
Toolbox

50 / wfmag.cc

Super Sprint
Sport

D ecades before the advent of
more realistic racing games like
Sega Rally or Gran Turismo, Atari
produced a string of popular
arcade racers, beginning

with Gran Trak 10 in 1974 and gradually
updated via the Sprint series, which
appeared regularly through the seventies
and eighties. By 1986, Atari’s Super Sprint
allowed three players to compete at once,
avoiding obstacles and collecting bonuses
as they careened around the track.

The original arcade machine was
controlled with steering wheels and
accelerator pedals, computer-controlled cars
added to the racing challenge. Tracks were
of varying complexity, with some featuring
flyover sections and shortcuts, while oil slicks
and tornadoes provided obstacles to avoid.
If a competitor crashed really badly, a new
car would be airlifted in by helicopter.

So how can we make our own Super
Sprint-style racing game with Pygame Zero?

and Color objects and then load our guide
bitmaps. One is for the player to restrict
movement to the track, and the other is
for guiding the computer-controlled cars
around the track.

The cars are Pygame Zero Actors,
and are drawn after the main track image
in the draw() function. Then all the good
stuff happens in the update() function.
The player’s car is controlled with the up
and down arrows for speed, and the left
and right arrows to change the direction
of movement. We then check to see if any
cars have collided with each other. If a crash
has happened, we change the direction of
the car and make it reverse a bit. We then
test the colour of the pixel where the car is
trying to move to. If the colour is black or red
(the boundaries), the car turns away from
the boundary.

The car steering is based on the shade of
a pixel’s colour read from the guide bitmap.
If it’s light, the car will turn right, if it’s dark,

To keep this example code short and simple,
I’ve created a simple track with a few bends.
In the original game, the movement of
the computer-controlled cars would have
followed a set of coordinates round the
track, but as computers have much more
memory now, I have used a bitmap guide

for the cars to follow. This method produces
a much less predictable movement for the
cars as they turn right and left based on the
shade of the track on the guide.

With Pygame Zero, we can write quite a
short piece of code to deal with both the
player car and the automated ones, but to
read pixels from a position on a bitmap, we
need to borrow a couple of objects directly
from Pygame: we import the Pygame image

AUTHOR
MARK VANSTONE

Making player and computer-controlled cars
race round a track isn’t as hard as it sounds

“This snippet shows how
you can get a top-down
racing game working”

Recreate Super Sprint’s
top-down racing

Source Code  �The original arcade machine had three
steering wheels and three accelerator pedals.

http://wfmag.cc

Source Code
Toolbox

51wfmag.cc \

the car will turn left, and if it’s mid-grey, the
car continues straight ahead. We could make
the cars stick more closely to the centre by
making them react quickly, or make them
more random by adjusting the steering
angle more slowly. A happy medium would
be to get the cars mostly sticking to the track
but being random enough to make them
tricky to overtake.

Our code will need a lot of extra elements
to mimic Atari’s original game, but this
short snippet shows how easily you can
get a top-down racing game working in
Pygame Zero.

import math
from random import randint
from pygame import image, Color
controlimage1 = image.load(‘images/guide1.png’)
controlimage2 = image.load(‘images/guide2.png’)
cars = []
for c in range(4):
 cars.append(Actor(‘car’+str(c), center=(400, 70+(30*c))))
 cars[c].speed = 0

def draw():
 screen.blit(“track”, (0, 0))
 for c in range(4):
 cars[c].draw()

def update():
 if keyboard.up: cars[0].speed += .15
 if keyboard.down: cars[0].speed -= .15
 if(cars[0].speed != 0):
 if keyboard.left: cars[0].angle += 2
 if keyboard.right: cars[0].angle -= 2
 for c in range(4):
 crash = False
 for i in range(4):
 if cars[c].collidepoint(cars[i].center) and c != i:
 crash = True
 cars[c].speed = -(randint(0,1)/10)
 if crash:
 newPos = calcNewXY(cars[c].center, 2, math.
radians(randint(0,360)-cars[c].angle))
 else:
 newPos = calcNewXY(cars[c].center, cars[c].
speed*2, math.radians(180-cars[c].angle))
 if c == 0:

 ccol = controlimage1.get_
at((int(newPos[0]),int(newPos[1])))
 else:
 ccol = controlimage2.get_
at((int(newPos[0]),int(newPos[1])))
 if cars[c].speed != 0:
 if ccol != Color(‘blue’) and ccol != Color(‘red’):
 cars[c].center = newPos
 else:
 if c > 0:
 if ccol == Color(‘blue’):
 cars[c].angle += 5
 if ccol == Color(‘red’):
 cars[c].angle -= 5
 cars[c].speed = cars[c].speed/1.1
 if c > 0 and cars[c].speed < 1.8+(c/10):
 cars[c].speed += randint(0,1)/10
 if crash:
 cars[c].angle += ((ccol[1]-
136)/136)*(2.8*cars[c].speed)
 else:
 cars[c].angle -= ((ccol[1]-
136)/136)*(2.8*cars[c].speed)
 else:
 cars[c].speed = cars[c].speed/1.1

def calcNewXY(xy,speed,ang):
 newx = xy[0] - (speed*math.cos(ang))
 newy = xy[1] - (speed*math.sin(ang))
 return newx, newy

Top-down racing in Python

Super Sprint
Sport

Here’s a code snippet that creates a Super Sprint-style racer in Python. To get it running on your system,
you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero Download

the code
from GitHub:
wfmag.cc/
wfmag21



�Four Formula One cars race
around the track. Collisions
between other cars and the
sides of the track are
detected.

 �Three bitmaps are used for
the track. One’s visible, and
the other two are guides for
the cars.

http://wfmag.cc
http://wfmag.cc/wfmag21
http://wfmag.cc/pgzero

Side Pocket
Sport

52 / wfmag.cc

C reated by Data East in 1986,
Side Pocket was an arcade pool
game that challenged players
to sink all the balls on the table
and achieve a minimum score

to progress. As the levels went on, players
faced more balls in increasingly difficult
locations on the table.

Here, I’ll focus on three key aspects from
Side Pocket: aiming a shot, moving the balls,
and handling collisions for balls and pockets.
This project is great for anyone who wants
to dip their toe into 2D game physics. I’m
going to use the Pygame’s built-in collision

from play. Each ball will have similar
functionality as well – moving and colliding
with each other. The best way to do this is
with a class: a blueprint for each ball that I
will make copies of when I need a new ball
on the table.

class Ball:
 def __init__(self, image, pos):
 self.actor = Actor(image,
center=pos, anchor=(“center”, “center”))
 self.movement = [0, 0]
 self.pocketed = False

 def move(self):
 self.actor.x += self.movement[0]
 self.actor.y += self.movement[1]
 if self.pocketed == False:
 if self.actor.y < playArea.
top + 16 or self.actor.y > playArea.
bottom-16:
 self.movement[1] = -self.
movement[1]

system as much as possible, to keep the
code readable and short wherever I can.
Before thinking about aiming and moving
balls, I need a table to play on. I created
both a border and a play area sprite using
piskelapp.com ; originally, this was one

sprite, and I used a rect to represent the
play area (see Figure 1). Changing to two
sprites and making the play area an actor
made all the collisions easier to handle and
made everything much easier to place. For
the balls, I made simple 32×32 sprites in
varying colours. I need to be able to keep
track of some information about each ball
on the table, such as its position, a sprite,
movement, and whether it’s been pocketed
or not – once a ball’s pocketed, it’s removed

AUTHOR
MAC BOWLEY

Recreate the arcade pool action of
Data East’s Side Pocket. Mac has the code

“Before I think about
aiming and moving balls,
I need a table to play on”

Make a Side Pocket
pool game

 �Figure 1: Our table with separate border.
You could add some detail to your own
table, or even adapt a photograph to
make it look even more realistic.



�In the original Side Pocket, the dotted
line helped the player line-up shots,
while additional functions on the UI
showed where and how hard you
were striking the cue ball.Source Code

http://wfmag.cc
http://piskelapp.com

Side Pocket
Sport

53wfmag.cc \

 self.actor.y =
clamp(self.actor.y, playArea.top+16,
playArea.bottom-16)
 if self.actor.x < playArea.
left+16 or self.actor.x > playArea.
right-16:
 self.movement[0] = -self.
movement[0]
 self.actor.x =
clamp(self.actor.x, playArea.left+16,
playArea.right-16)
 else:
 self.actor.x += self.
movement[0]
 self.actor.y += self.
movement[1]
 self.resistance()

 def resistance(self):
 # Slow the ball down
 self.movement[0] *= 0.95
 self.movement[1] *= 0.95

 if abs(self.movement[0]) +
abs(self.movement[1]) < 0.4:
 self.movement = [0, 0]

The best part about using a class is that I
only need to make one piece of code to
move a ball, and I can reuse it for every ball
on the table. I’m using an array to keep track
of the ball’s movement – how much it will
move each frame. I also need to make sure
it bounces off the sides of the play area if it
hits them. I’ll use an array to hold all the balls
on the table. To start with, I need a cue ball:

balls = []
cue_ball = Ball(“cue_ball.png”,
(WIDTH//2, HEIGHT//2))
balls.append(cue_ball)

AIMING THE SHOT
In Side Pocket, players control a dotted line
that shows where the cue ball will go when
they take a shot. Using the joystick or arrow
buttons rotated the shot and moved the
line, so players could aim to get the balls
in the pockets (see Figure 2 overleaf).
To achieve this, we have to dive into our
first bit of maths, converting a rotation in
degrees to a pair of x and y movements.
I decided my rotation would be at 0 degrees

when pointing straight up; the player can
then press the right and left arrow to
increase or decrease this value.

Pygame Zero has some built-in attributes
for checking the keyboard, which I’m taking
full advantage of.

shot_rotation = 270.0 # Start pointing
up table
turn_speed = 1
line = [] # To hold the points on my line
line_gap = 1/12
max_line_length = 400

def update():
 global shot_rotation

 ## Rotate your aim
 if keyboard[keys.LEFT]:
 shot_rotation -= 1 * turn_speed
 if keyboard[keys.RIGHT]:
 shot_rotation += 1 * turn_speed

 # Make the rotation wrap around
 if shot_rotation > 360:
 shot_rotation -= 360
 if shot_rotation < 0:
 shot_rotation += 360

At 0 degrees, my cue ball’s movement
should be 0 in the x direction and -1 in
y. When the rotation is 90 degrees, my x
movement would be 1 and y would be zero;
anything in between should be a fraction
between the two numbers. I could use a
lot of ‘if-elses’ to set this, but an easier way
is to use sin and cos on my angle – I sin
the rotation to get my x value and cos the
rotation to get the y movement.

The in-built functions need radian
rot_radians = shot_rotation * (math.
pi/180)

x = math.sin(rot_rads)
y = -math.cos(rot_rads)
if not shot:
 current_x = cue_ball.actor.x
 current_y = cue_ball.actor.y
 length = 0
 line = []
 while length < max_line_length:

Side Pocket
Sport

 �Side Pocket was a big hit for Data East
in the mid-eighties, and spawned a
whole string of ports and spin-offs.

 �The NES Side Pocket was a solid
conversion. It was even ported back to
arcades as an adult-themed spin-off
from the main series.

Download
the code

from GitHub:
wfmag.cc/
wfmag36

http://wfmag.cc
http://wfmag.cc/wfmag36

Side Pocket
Sport

54 / wfmag.cc

 hit = False
 if current_y < playArea.top
or current_y > playArea.bottom:
 y = -y
 hit = True
 if current_x < playArea.left
or current_x > playArea.right:
 x = -x
 hit = True
 if hit == True:
 line.append((current_x-
(x*line_gap), current_y-(y*line_gap)))
 length += math.sqrt(((x*line_
gap)**2)+((y*line_gap)**2))
 current_x += x*line_gap
 current_y += y*line_gap
 line.append((current_x-(x*line_
gap), current_y-(y*line_gap)))

I can then use those x and y co-ordinates to
create a series of points for my aiming line.

SHOOTING THE BALL
To keep things simple, I’m only going to
have a single shot speed – you could
improve this design by allowing players to
load up a more powerful shot over time,
but I won’t do that here.

shot = False
ball_speed = 30

…
 ## Inside update
 ## Shoot the ball with the space bar
 if keyboard[keys.SPACE] and not shot:
 shot = True
 cue_ball.momentum = [x*ball_
speed, y*ball_speed]

When the shot variable is True, I’m going
to move all the balls on my table – at the
beginning, this is just the cue ball – but this
code will also move the other balls as well
when I add them.

 # Shoot the ball and move all the balls
on the table
 else:
 shot = False
 balls_pocketed = []
 collisions = []
 for b in range(len(balls)):
 # Move each ball
 balls[b].move()
 if abs(balls[b].momentum[0])
+ abs(balls[b].momentum[1]) > 0:
 shot = True

Each time I move the balls, I check whether
they still have some movement left. I made
a resistance function inside the ball class
that will slow them down.

COLLISIONS
Now for the final problem: getting the balls
to collide with each other and the pockets.
I need to add more balls and some
pocket actors to my game in order to test
the collisions.

balls.append(Ball(“ball_1.png”, (WIDTH//2
- 75, HEIGHT//2)))
balls.append(Ball(“ball_2.png”, (WIDTH//2
- 150, HEIGHT//2)))

pockets = []
pockets.append(Actor(“pocket.png”,
topleft=(playArea.left, playArea.top),

anchor=(“left”, “top”)))
I create one of these actors for each
pocket, they are not drawn

Each ball needs to be able to collide with
the others, and when that happens, the
direction and speed of the balls will change.
Each ball will be responsible for changing
the direction of the ball it has collided with,
and I add a new function to my ball class:

def collide(self, ball):
 collision_normal = [ball.actor.x
- self.actor.x, ball.actor.y - self.
actor.y]
 ball_speed = math.sqrt(collision_
normal[0]**2 + collision_normal[1]**2)
 self_speed = math.sqrt(self.
momentum[0]**2 + self.momentum[1]**2)
 if self.momentum[0] == 0 and
self.momentum[1] == 0:
 ball.momentum[0] = -ball.
momentum[0]
 ball.momentum[1] = -ball.
momentum[1]
 elif ball_speed > 0:
 collision_normal[0] *= 1/
ball_speed
 collision_normal[1] *= 1/
ball_speed
 ball.momentum[0] = collision_
normal[0] * self_speed
 ball.momentum[1] = collision_
normal[1] * self_speed

When a collision happens, the other ball
should move in the opposite direction to the
collision. This is what allows you to line-up
slices and knock balls diagonally into the
pockets. Unlike the collisions with the edges,
I can’t just reverse the x and y movement.
I need to change its direction, and then give
it a part of the current ball’s speed. Above,
I’m using a normal to find the direction of
the collision. You can think of this as the
direction to the other ball as they collide.

 �Figure 2: The dotted line shows the trajectory of
the ball. Pressing the left or right arrows rotates
the aim.

“Now for the final
problem: getting the balls
to collide with each other

and the pockets”

http://wfmag.cc

Side Pocket
Sport

55wfmag.cc \

HANDLING COLLISIONS
I need to add to my update loop to detect
and store the collisions to be handled after
each set of movement.

 # Check for collisions
 for other in balls:
 if other != b and b.actor.
colliderect(other.actor):
 collisions.append((b, other))
 # Did it sink in the hole?
 in_pocket = b.actor.
collidelistall(pockets)
 if len(in_pocket) > 0 and b.pocketed
== False:
 if b != cue_ball:
 b.movement[0] = (pockets[in_
pocket[0]].x - b.actor.x) / 20
 b.movement[1] = (pockets[in_
pocket[0]].y - b.actor.y) / 20
 b.pocket = pockets[in_
pocket[0]]
 balls_pocketed.append(b)
 else:
 b.x = WIDTH//2
 b.y = HEIGHT//2

First, I use the colliderect() function to
check if any of the balls collide this frame
– if they do, I add them to a list. This is so
I handle all the movement first and then
the collisions. Otherwise, I’m changing the
momentum of balls that haven’t moved yet.
I detect whether a pocket was hit as well;
if so, I change the momentum so that the
ball heads towards the pocket and doesn’t
bounce off the walls anymore.

When all my balls have been moved, I can
handle the collisions with both the other
balls and the pockets:

for col in collisions:
 col[0].collide(col[1])
if shot == False:
 for b in balls_pocketed:
 balls.remove(b)

And there you have it: the beginnings of
an arcade pool game in the Side Pocket
tradition. You can get the full code and
assets from wfmag.cc/wfmag36, and you
can find some suggestions for improving
and expanding the game in the box on
the right.

WHAT NEXT?
If you wanted to improve your pool game, there
are a few things you could do…

1. �Add more balls, and arrange them in
challenging ways.

2. �Implement a scoring system that increases
with each ball being pocketed.

3. �Give the player lives; a certain amount of
shots before they have to start again.

Best of luck and happy developing!

 Our finished pool game. See if you can expand
it with extra balls and maybe a scoring system.

http://wfmag.cc

Pinball
Sport

56 / wfmag.cc

56 / wfmag.cc

T here are so many pinball video
games that it’s become a genre in
its own right. For the few of you
who haven’t encountered pinball
for some reason, it originated as

an analogue arcade machine where a metal
ball would be fired onto a sloping play area
and bounce between obstacles. The player
operates a pair of flippers by pressing
buttons on each side of the machine, which
will in turn ping the ball back up the play
area to hit obstacles and earn points. The
game ends when the ball falls through the
exit at the bottom of the play area.

Video game developers soon started
y-coordinate will move by the cos of the ball
direction multiplied by speed. We need to
detect collisions with objects and obstacles,
so we sample four pixels around the ball to
see if it’s hit anything solid. If it has, we need
to make the ball bounce.

If you wanted more realistic physics,
you’d calculate the reflection angle from
the surface which has been hit, but in this
case, we’re going to use a shortcut which will
produce a rough approximation. We work
out what direction the ball is travelling in and
then rotate either left or right by a quarter of
a turn until the ball no longer collides with a
wall. We could finesse this calculation further
to create a more accurate effect, but we’ll
keep it simple for this sample. Finally, we
need to add some gravity. As the play area
is tilted downwards, we need to increase the
ball speed as it travels down and decrease it
as it travels up.

All of this should give you the bare bones
of a pinball game. There’s lots more you
could add to increase the realism, but we’ll
leave you to discover the joys of normal
vectors and dot products…

trying to recreate pinball, first with fairly
rudimentary graphics and physics, but with
increasingly greater realism over time – if
you look at Nintendo’s Pinball from 1984,
then, say, Devil’s Crush on the Sega Mega
Drive in 1990, and then 1992’s Pinball
Dreams on PC, you can see how radically
the genre evolved in just a few years. In this
month’s Source Code, we’re going to put
together a very simple rendition of pinball
in Pygame Zero. We’re not going to use any
complicated maths or physics systems, just a
little algebra and trigonometry.

Let’s start with our background. We need
an image which has barriers around the
outside for the ball to bounce off, and a gap
at the bottom for the ball to fall through. We
also want some obstacles in the play area
and an entrance at the side for the ball to
enter when it’s first fired. In this case, we’re
going to use our background as a collision
map, too, so we need to design it so that all
the areas that the ball can move in are black.

Next, we need some flippers. These
are defined as Actors with a pivot anchor
position set near the larger end, and are
positioned near the bottom of the play
area. We detect left and right key presses
and rotate the angle of the flippers by
20 degrees within a range of -30 to +30
degrees. If no key is pressed, then the flipper
drops back down. With these elements in
place, we have our play area and an ability
for the player to defend the exit.

All we need now is a ball to go bouncing
around the obstacles we’ve made. Defining
the ball as an Actor, we can add a direction
and a speed parameter to it. With these
values set, the ball can be moved using a
bit of trigonometry. Our new x-coordinate
will move by the sin of the ball direction
multiplied by the speed, and the new

AUTHOR
MARK VANSTONE Get flappers flapping and balls bouncing off bumpers

Code your own
pinball video game

Source Code
 �In 1984, Nintendo released

Pinball for the NES. It was
simple but captured all the
basics of the real thing.

 �Here it is: your own
pinball game in less
than 100 lines of code.

https://wireframe.raspberrypi.com/
http://wfmag.cc/

Pinball
Sport

57wfmag.cc \

Play the silver ball

Pinball
Sport

Here’s Mark’s code for a simple pinball video game. To get it running on your system, you’ll
first need to install Pygame Zero – full instructions can be found at wfmag.cc/pgzero.

57wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag53

Pinball
import pgzrun
import math
import random
from pygame import image, Color
WIDTH = 600
HEIGHT = 800
collisionMap = image.load(‘images/background.png’)
flipperLeft = Actor(‘flipperl’,center=(210,660), anchor=(20, 20))
flipperLeft.angle = -30
flipperRight = Actor(‘flipperr’,center=(390,660), anchor=(112, 20))
flipperRight.angle = 30

def init():
 global gamestate, ball
 ball = Actor(‘ball’, center=(560,310))
 ball.speed = 5 + random.randint(0, 7)
 ball.dir = 4 + ((random.randint(0, 10)/10)-0.5)
 gamestate = 0

def draw():
 screen.blit(“background”, (0, 0))
 flipperLeft.draw()
 flipperRight.draw()
 if gamestate == 0 or random.randint(0,1) == 1: ball.draw()

def update():
 if gamestate == 0:
 if keyboard.left:
 flipperLeft.angle = limit(flipperLeft.angle+20, -30, 30)
 else:
 flipperLeft.angle = limit(flipperLeft.angle-20, -30, 30)
 if keyboard.right:
 flipperRight.angle = limit(flipperRight.angle-20, -30, 30)
 else:
 flipperRight.angle = limit(flipperRight.angle+20, -30, 30)
 moveBall()
 checkBounce()
 else:
 if keyboard.space: init()

def moveBall():
 global gamestate
 ball.x += ball.speed * math.sin(ball.dir)
 ball.y += ball.speed * math.cos(ball.dir)
 if ball.x > 570 or ball.y > 760: gamestate = 1

def checkBounce():
 global score
 d = math.degrees(ball.dir)%360
 inc = -1.5
 if d > 90 and d < 270:
 inc = 1.5
 ball.speed -= 0.03
 if ball.speed < 0: ball.dir = 0
 else:
 if ball.speed < 10: ball.speed += 0.04
 if flipperRight.collidepoint(ball.pos):
 ball.dir = 4 + (flipperRight.angle/50)
 if keyboard.right :
 ball.speed += 0.3
 moveBall()
 if inc == 1.5:
 ball.dir = 0
 moveBall()
 if flipperLeft.collidepoint(ball.pos):
 ball.dir = 3 +(flipperLeft.angle/50)
 if keyboard.left :
 ball.speed += 0.3
 moveBall()
 if inc == 1.5:
 ball.dir = 0
 moveBall()
 rgb = collisionCheck()
 while rgb != Color(“black”):
 ball.dir += inc
 moveBall()
 rgb = collisionCheck()

def collisionCheck():
 r = 22
 cl = [(0,-r),(r,0),(0,r),(-r,0)]
 for t in range(4):
 rgb = collisionMap.get_at((int(ball.x)+cl[t]
[0],int(ball.y)+cl[t][1]))
 if rgb != Color(“black”):
 return rgb
 return rgb

def limit(n, minn, maxn):
 return max(min(maxn, n), minn)

init()
pgzrun.go()

https://wireframe.raspberrypi.com/
http://wfmag.cc/wfmag53
http://wfmag.cc/pgzero

58 / wfmag.cc

Source Code
Toolbox

AUTHOR
MARK VANSTONE

Crazy Golf
Sport

F irst released by Mr. Micro in
1983 – then under the banner
of Sinclair Research – Krazy Golf
was, confusingly, also called Crazy
Golf. The loading screen featured

the Krazy spelling, but on the cover, it was
plain old Crazy Golf. Designed for the ZX
Spectrum, the game provided nine holes
and a variety of obstacles to putt the ball
around. Crazy Golf was released at a time
when dozens of other games were hitting
the Spectrum market, and although it was
released under the Sinclair name and
reviewed in magazines such as Crash, it
didn’t make much impact. The game itself
employed a fairly rudimentary control
system, whereby the player selects the
angle of the shot at the top left of the
screen, sets the range via a bar along the
top, and then presses the RETURN key to
take the shot.

If you’ve been following our Source Code
articles each month, you will have seen
the pinball game where a ball bounces
off various surfaces. In that example, we

pinball game) we check to see if it has
collided with a surface by sampling the
colours of the pixels from the collision map.
If the pixel’s blue, we know that the ball
has hit a vertical wall; if it’s red, the wall’s
horizontal. We then calculate the new angle
for the ball. If we mark the hole as black,
then we can also test for collision with that –
if the ball’s in the hole, the game ends.

We have our ball bouncing mechanism, so
now we need our user interaction system.
We’ll use the left and right arrow keys to
rotate our pointer, which designates the
direction of the next shot. We also need a
range-setting gizmo, which will be shown as
a bar at the top of the screen. We can make
that grow and shrink with the up and down
arrows. Then when we press the RETURN
key, we transfer the pointer angle and the
range to the ball and watch it go. We ought
to count each shot so that we can display
a tally to the player once they’ve putted
the ball into the hole. From this point, it’s a
simple task to create another eight holes –
and then you’ll have a full crazy golf game!

used a few shortcuts to approximate the
bounce angles. Here, we’re only going to
have horizontal and vertical walls, so we can
use some fairly straightforward maths to
calculate more precisely the new angle as
the ball bounces off a surface. In the original
game, the ball was limited to only 16 angles,
and the ball moved at the same speed
regardless of the strength of the shot. We’re
going to improve on this a bit so that there’s
more flexibility around the shot angle; we’ll
also get the ball to start moving fast and
then reduce its speed until it stops.

To make this work, we need to have a
way of defining whether an obstruction is
horizontal or vertical, as the calculation is
different for each. We’ll have a background
graphic showing the course and obstacles,
but we’ll also need another map to check
our collisions. We need to make a collision
map that just has the obstacles on it, so
we need a white background; mark all the
horizontal surfaces red and all the vertical
surfaces blue. As we move the ball around
the screen (in much the same way as our

Putt the ball around irrational obstacles in our take on golf



The pointer’s angle is
rotated using degrees, but
we’ll use radians for our
ball direction as it will
simplify our movement
and bounce calculations.

 �The game was called
Crazy Golf on the cover…

Code a Spectrum-style
Crazy Golf game

Source Code

http://wfmag.cc

Source Code
Toolbox

59wfmag.cc \

Crazy Golf in Python

Crazy Golf
Sport

Here’s Mark’s code for a nifty top-down golf game. To get it running on your system, you’ll need to
install Pygame Zero. Full instructions are available at wfmag.cc/pgzero.

59wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag54

Crazy Golf
import pgzrun
import math
from pygame import image, Color

collisionMap = image.load(‘images/collision.png’)
pointer = Actor(‘pointer’,center=(90,85))
pointer.angle = 0
ball = Actor(‘ball’, center=(100,150))
ball.speed = ball.dir = 0
gamestate = shots = 0
shotrange = 300

def draw():
 screen.blit(“background”, (0, 0))
 ball.draw()
 pointer.draw()
 screen.draw.filled_
rect(Rect((180,5),(shotrange,10)),(255,0,0))
 screen.draw.text(“SHOT RANGE:”, topleft = (20,
2),color=(0,0,0) , fontsize=28)
 if gamestate == 1 : screen.draw.text(“YOU SUNK THE BALL IN
“ + str(shots) + “ STROKES”, center = (400, 300), owidth=0.5,
ocolor=(255,255,0), color=(255,0,0) , fontsize=50)

def update():
 global shotrange
 if gamestate == 0:
 if keyboard.left:
 pointer.angle += 5
 if keyboard.right:
 pointer.angle -= 5
 if keyboard.up:
 shotrange = limit(shotrange + 10, 0, 600)
 if keyboard.down:
 shotrange = limit(shotrange - 10, 0, 600)
 checkBounce()
 moveBall()
 ball.speed = limit(ball.speed-0.01, 0, 10)

def on_key_down(key):
 if gamestate == 0:
 if key.name == “RETURN”: hitBall(pointer.
angle,shotrange/100)

def hitBall(a,s):
 global shots
 ball.speed = s
 ball.dir = math.radians(a)

 shots += 1

def moveBall():
 ball.x += ball.speed * math.sin(ball.dir)
 ball.y += ball.speed * math.cos(ball.dir)

def checkBounce():
 global gamestate
 rgb = collisionCheck()
 if rgb == Color(“black”):
 gamestate = 1

def collisionCheck():
 r = 4
 cl = [(0,-r),(r,0),(0,r),(-r,0)]
 for t in range(4):
 rgb = collisionMap.get_at((int(ball.x)+cl[t]
[0],int(ball.y)+cl[t][1]))
 if rgb != Color(“white”):
 if rgb == Color(“blue”):
 ball.dir = (2*math.pi - ball.dir)%(2*math.pi)
 if rgb == Color(“red”):
 ball.dir = (3*math.pi - ball.dir)%(2*math.pi)
 return rgb

def limit(n, minn, maxn):
 return max(min(maxn, n), minn)

pgzrun.go()

 �…but weirdly, the loading screen spelled the name as Krazy
Golf. The early games industry was strange.

http://wfmag.cc
http://wfmag.cc/wfmag54
http://wfmag.cc/pgzero

Source Code
Toolbox

60 / wfmag.cc

Hyper Sports
Sport

K onami’s sequel to its 1983 arcade
hit, Track & Field, Hyper Sports
offered seven games – or events –
in which up to four players could
participate. Skeet shooting was

perhaps the most memorable game in the
collection, and required just two buttons: fire
left and fire right. The display showed two
target sights, and each moved up and down
to come into line with the next clay disc’s
trajectory. When the disc was inside the red
target square, the player pressed the fire
button, and if their timing was correct, the
clay disc exploded. Points were awarded for
being on target, and every now and then, a
parrot flew across the screen, which could
be gunned down for a bonus.

To make a skeet shooting game with
Pygame Zero, we need a few graphical
elements. First, a static background of hills
and grass, with two clay disc throwers each
side of the screen, and a semicircle where

game the illusion of depth. While we’re in the
update() function, looping around our disc
object list, we can calculate the distance of
the disc to the nearest target sight frame,
and from that, work out which is the closest.

When we’ve calculated which disc is
closest to the right-hand sight, we want to
move the sight towards the disc so that their
paths intersect. All we need to do is take the
difference of the Y coordinates, divide by two,
and apply that offset to the target sight. We
also do the same for the left-hand sight. If the
correct key (left or right arrows) is pressed
at the moment a disc crosses the path of
the sight frame, we register a hit and cycle
the disc through a sequence of exploding
frames. We can keep a score and display this
with an overlay graphic so that the player
knows how well they’ve done.

And that’s it! You may want to add multiple
players and perhaps a parrot bonus, but we’ll
leave that up to you.

our shooter stands – this can be displayed
first, every time our draw() function is called.
We can then draw our shooter (created as
an Actor) in the centre near the bottom of
the screen. The shooter has three images:
one central while no keys are pressed, and
two for the directions left and right when the
player presses the left or right keys. We also
need to have two square target sights to the
left and right above the shooter, which we
can create as Actors.

To make the clay targets, we create an
array to hold disc Actor objects. In our
update() function we can trigger the creation
of a new disc based on a random number,
and once created, start an animation to
move it across the screen in front of the
shooter. We can add a shadow to the discs
by tracking a path diagonally across the
screen so that the shadow appears at the
correct Y coordinate regardless of the disc’s
height – this is a simple way of giving our

AUTHOR
MARK VANSTONE

Gun down the clay pigeons in our re-creation of
a classic minigame from Konami’s Hyper Sports

 �Hyper Sports’ Japanese
release was tied in with the
1984 Summer Olympics.



�When the clay targets
appear, the player uses the
left and right buttons to
shoot either the left or right
target respectively.

 �Like its predecessor, Track
& Field, Hyper Sports had
two run buttons and one
action button per player.

Code Hyper Sports’
shooting minigame

Source Code

https://wireframe.raspberrypi.com/

Source Code
Toolbox

61wfmag.cc \

from random import randint
gameState = shootTimer = score = 0
shooter = Actor(‘shooter’, center=(400, 450))
frameLeft = Actor(‘frame’, center=(320, 350))
frameRight = Actor(‘frame’, center=(480, 350))
skeets = []
def draw():
 screen.blit(“background”, (0, 0))
 if gameState == 0:
 for s in range(len(skeets)):
 if skeets[s].x > 0 and skeets[s].x < 800 and skeets[s].
frame < 4:
 skeets[s].draw()
 screen.blit(“shadow”, (skeets[s].x-20, 400-(skeets[s].
life/2)))
 shooter.draw()
 frameLeft.draw()
 frameRight.draw()
 else:
 screen.draw.text(“ROUND OVER”, center = (400, 300),
owidth=0.5, ocolor=(255,255,255), color=(0,255,0) , fontsize=80)
 screen.blit(“overlay”, (0, 0))
 screen.draw.text(“SCORE:”+str(score), center = (400, 550),
owidth=0.5, ocolor=(255,255,255), color=(0,0,255) , fontsize=80)
 screen.draw.text(“PYGAME ZERO SKEET SHOOT”, center = (400, 55),
owidth=0.5, ocolor=(255,255,255), color=(255,0,0) , fontsize=60)
def update():
 global shootTimer, gameState
 if gameState == 0:
 if len(skeets) == 100: gameState = 1
 if randint(0,100) == 1: makeSkeet(700)
 if randint(0,100) == 2: makeSkeet(100)
 if shootTimer == 0:
 shooter.image = “shooter”
 else: shootTimer -= 1
 for s in range(len(skeets)):
 skeets[s].life += 1
 if skeets[s].frame > 0 and skeets[s].frame < 4:
 skeets[s].image = “skeet”+str(skeets[s].frame)
 skeets[s].frame += 1
 if skeets[s].x < 320 and skeets[s].dir == “right”:
 skeets[s].distToLeftTarget = 320 - skeets[s].x
 else: skeets[s].distToLeftTarget = 999
 if skeets[s].x > 480 and skeets[s].dir == “left”:
 skeets[s].distToRightTarget = skeets[s].x - 480
 else: skeets[s].distToRightTarget = 999
 targetLeft = getNearestSkeetY(“left”)
 if targetLeft > 0: frameLeft.y += (targetLeft-
frameLeft.y)/2
 targetRight = getNearestSkeetY(“right”)
 if targetRight > 0: frameRight.y += (targetRight-
frameRight.y)/2

def on_key_down(key):
 global shootTimer
 if (shootTimer == 0):
 if key.name == “LEFT”:
 shooter.image = “shooter_l”
 shootTimer = 10
 checkShot(“left”)
 if key.name == “RIGHT”:
 shooter.image = “shooter_r”
 shootTimer = 10
 checkShot(“right”)
def makeSkeet(st):
 skeets.append(Actor(‘skeet’, center=(st, 370)))
 s = len(skeets)-1
 skeets[s].frame = 0
 skeets[s].life = 0
 skeets[s].distToLeftTarget = 999
 skeets[s].distToRightTarget = 999
 endpoint = 800
 skeets[s].dir = “right”
 if st > 400:
 endpoint = 0
 skeets[s].dir = “left”
 animate(skeets[len(skeets)-1], duration=3, pos=(endpoint,
randint(-200,250)))
def getNearestSkeetY(leftorright):
 y = 0
 dist = 999
 for s in range(len(skeets)):
 if leftorright == “right”:
 if(skeets[s].distToRightTarget < dist):
 dist = skeets[s].distToRightTarget
 y = skeets[s].y
 if leftorright == “left”:
 if(skeets[s].distToLeftTarget < dist):
 dist = skeets[s].distToLeftTarget
 y = skeets[s].y
 return y
def checkShot(leftorright):
 global score
 sounds.shot.play()
 for s in range(len(skeets)):
 if leftorright == “right”:
 if skeets[s].collidepoint((frameRight.x, frameRight.y))
and skeets[s].frame == 0:
 score += 1000
 skeets[s].frame = 1
 if leftorright == “left”:
 if skeets[s].collidepoint((frameLeft.x, frameLeft.y)) and
skeets[s].frame == 0:
 score += 1000
 skeets[s].frame = 1

Skeet shooting in Python

Hyper Sports
Sport

Here’s Mark’s code snippet, which creates a skeet shooting game in Python. To get it running on your
system, you’ll need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag35

61wfmag.cc \

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-35/
https://pygame-zero.readthedocs.io/en/stable/installation.html

Rally-X
Sport

62 / wfmag.cc

T he original Rally-X arcade game
blasted onto the market in 1980,
at the same time as Pac‑Man
and Defender. This was the first
year that developer Namco had

exported its games outside Japan thanks to
the deal it struck with Midway, an American
game distributor. The aim of Rally-X is to
race a car around a maze, avoiding enemy
cars while collecting yellow flags – all before
your fuel runs out.

The aspect of Rally-X that we’ll cover here
is the mini-map. As the car moves around
the maze, its position can be seen relative to
the flags on the right of the screen. The main
view of the maze only shows a section of the
whole map, and scrolls as the car moves,
whereas the mini-map shows the whole
size of the map but without any of the maze
walls – just dots where the car and flags are
(and in the original, the enemy cars). In our
example, the mini-map is five times smaller
than the main map, so it’s easy to work
out the calculation to translate large map
co‑ordinates to mini-map co-ordinates.

detected, we rotate the car rather than
moving it. If we draw the side panel after the
main map, we’ll then be able to see the full
layout of the screen with the map scrolling
as the car navigates through the maze.

We can add flags as a list of Actor objects.
We could make these random, but for the
sake of simplicity, our sample code has them
defined in a list of x and y co-ordinates. We
need to move the flags with the map, so
in each update(), we loop through the list
and add the same increments to the x and
y co‑ordinates as the main map. If the car
collides with any flags, we just take them
off the list of items to draw by adding a
collected variable. Having put all of this in
place, we can draw the mini-map, which will
show the car and the flags. All we need to
do is divide the object co-ordinates by five
and add an x and y offset so that the objects
appear in the right place on the mini-map.

And those are the basics of Rally-X! All it
needs now is a fuel gauge, some enemy cars,
and obstacles – but we’ll leave those for you
to sort out…

To set up our Rally-X homage in Pygame
Zero, we can stick with the default screen
size of 800×600. If we use 200 pixels for the
side panel, that leaves us with a 600×600
play area. Our player’s car will be drawn in
the centre of this area at the co-ordinates
300,300. We can use the in-built rotation
of the Actor object by setting the angle
property of the car. The maze scrolls
depending on which direction the car is
pointing, and this can be done by having
a lookup table in the form of a dictionary
list (directionMap) where we define x and y
increments for each angle the car can travel.
When the cursor keys are pressed, the car
stays central and the map moves.

To detect the car hitting a wall, we can
use a collision map. This isn’t a particularly
memory-efficient way of doing it, but it’s easy
to code. We just use a bitmap the same size
as the main map which has all the roads as
black and all the walls as white. With this
map, we can detect if there’s a wall in the
direction in which the car’s moving by testing
the pixels directly in front of it. If a wall is

AUTHOR
MARK VANSTONE

Race around using a mini-map for navigation,
just like the arcade classic, Rally-X

 �Three different cabinet styles were
available for Rally-X.



�In Namco’s original arcade game, the
red cars chased the player relentlessly
around each level. Note the handy
mini-map on the right.

Code a Rally-X-style
mini-map

Source Code

http://wfmag.cc

Source Code
Toolbox

63wfmag.cc \

Rally-X racing in Python

Rally-X
Sport

Here’s Mark’s code for a Rally-X-style racer, complete with mini-map. To get it working on your
system, you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

63wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag43

Rally X
from pygame import image, Color

car = Actor(‘car’, center=(300, 300))
car.angle = 180
mapx = -100
mapy = 0
directionMap = {0:(0,1), 90:(1,0), 180:(0,-1), 270:(-1,0)}
speed = 5
collisionmap = image.load(‘images/collisionmap.png’)
count = gameStatus = 0
flagsXY=[(200,1900),(300,1100),(300,300),
(400,600),(600,1600),(800,350)]
flags = []
for f in range(0, 6):
 flags.append(Actor(‘flag’, center=(0, 0)))
 flags[len(flags)-1].collected = False

def draw():
 screen.blit(“colourmap”,(mapx,mapy))
 car.draw()
 for f in range(0, 6):
 if not flags[f].collected: flags[f].draw()
 screen.blit(“sidepanel”,(600,0))
 drawMiniMap()
 if gameStatus == 1 : screen.draw.text(“YOU GOT
ALL THE FLAGS!”, center = (400, 300), owidth=0.5,
ocolor=(255,255,255), color=(0,0,255) , fontsize=80)

def update():
 global mapx,mapy,count,gameStatus
 if gameStatus == 0 :
 checkInput()
 testmove = (int((-mapx+300) - ((directionMap[car.
angle][0]*8) * speed)),int((-mapy+300) - ((directionMap[car.
angle][1]*8) * speed)))
 if collisionmap.get_at(testmove) == Color(‘black’):
 mapx += directionMap[car.angle][0] * speed
 mapy += directionMap[car.angle][1] * speed
 else:
 car.angle += 90
 if car.angle == 360: car.angle = 0
 if collisionmap.get_at((int(-mapx+330), int(-
mapy+300))) == Color(‘white’): mapx += 1
 if collisionmap.get_at((int(-mapx+270), int(-
mapy+300))) == Color(‘white’): mapx -= 1
 if collisionmap.get_at((int(-mapx+300), int(-
mapy+330))) == Color(‘white’): mapy += 1

 if collisionmap.get_at((int(-mapx+300), int(-
mapy+270))) == Color(‘white’): mapy -= 1
 flagCount = 0
 for f in range(0, 6):
 flags[f].x = flagsXY[f][0]+mapx
 flags[f].y = flagsXY[f][1]+mapy
 if flags[f].collidepoint(car.pos):
 flags[f].collected = True
 if flags[f].collected == True: flagCount += 1
 count += 1
 if flagCount == 6: gameStatus = 1

def checkInput():
 if keyboard.left: car.angle = 90
 if keyboard.right: car.angle = 270
 if keyboard.up: car.angle = 0
 if keyboard.down: car.angle = 180

def drawMiniMap():
 carRect = Rect((658+(-mapx/5),208+(-mapy/5)),(4,4))
 if count%10 > 5:
 screen.draw.filled_rect(carRect,(0,0,0))
 else:
 screen.draw.filled_rect(carRect,(100,100,100))
 for f in range(0, 6):
 if not flags[f].collected:
 flagRect = Rect((600+(flagsXY[f]
[0]/5),150+(flagsXY[f][1]/5)),(4,4))
 screen.draw.filled_rect(flagRect,(255,255,0))

 �Roam the maze and
collect those flags in our
Python homage to Rally-X.

http://wfmag.cc
http://wfmag.cc/pgzero
http://wfmag.cc
http://wfmag.cc/wfmag43
http://wfmag.cc/wfmag43
http://wfmag.cc/wfmag43
http://wfmag.cc/pgzero

Lunar Lander
Action/adventure

64 / wfmag.cc

F irst released in 1979 by Atari,
Lunar Lander was based on a
concept created a decade earlier.
The original 1969 game (actually
called Lunar) was a text-based

affair that involved controlling a landing
module’s thrust to guide it safely down to the
lunar surface; a later iteration, Moonlander,
created a more visual iteration of the same
idea on the DEC VT50 graphics terminal.

Given that it appeared at the height of
the late-seventies arcade boom, though, it
was Atari’s coin-op that became the most
recognisable version of Lunar Lander, arriving
just after the tenth anniversary of the Apollo
11 moon landing. Again, the aim of the game
was to use rotation and thrust controls to
guide your craft, and gently set it down on
a suitably flat platform. The game required
efficient control of the lander, and extra
points were awarded for parking successfully
on more challenging areas of the landscape.

The arcade cabinet was originally going
to feature a normal joystick, but this was
changed to a double stalked up-down lever

is applied (by pressing the up arrow) things
get a little more complicated. We need to
remember which direction the thrust came
from so that the craft will continue to move in
that direction even if it is rotated, so we have
a direction property attached to our lander
object. A little gravity is applied to the position
of the lander, and then we just need a little bit
of trigonometry to work out the movement of
the lander based on its speed and direction
of travel.

To judge if the lander has been landed
safely or rammed into the lunar surface, we
look at the downward speed and angle of
the craft as it reaches an altitude of 1. If the
speed is sufficiently slow and the angle is near
vertical, then we trigger the landed message,
and the game ends. If the lander reaches
zero altitude without these conditions met,
then we register a crash. Other elements that
can be added to this sample are things like a
limited fuel gauge and variable difficulty levels.
You might even try adding the sounds of the
rocket booster noise featured on the original
arcade game.

providing variable levels of thrust. The player
had to land the craft against the clock with
a finite amount of fuel with the Altitude,
Horizontal Speed, and Vertical Speed
readouts at the top of the screen as a guide.
Four levels of difficulty were built into the
game, with adjustments to landing controls
and landing areas.

To write a game like Lunar Lander with
Pygame Zero, we can replace the vector
graphics with a nice pre-drawn static
background and use that as a collision
detection mechanism and altitude meter.
If our background is just black where
the Lander can fly and a different colour
anywhere the landscape is, then we can
test pixels using the Pygame function image.
get_at() to see if the lander has landed. We
can also test a line of pixels from the Lander
down the Y-axis until we hit the landscape,
which will give us the lander’s altitude.

The rotation controls of the lander are
quite simple, as we can capture the left and
right arrow keys and increase or decrease the
rotation of the lander; however, when thrust

AUTHOR
MARK VANSTONE Shoot for the moon in Mark’s version of an Atari hit

 �Atari released the first
Lunar Lander arcade
game in 1979.



�The player must
manoeuvre the lander to a
landing site and carefully
descend to the surface.

 �Atari’s cabinet
featured a thrust
control, two buttons
for rotating, and an
abort button in
case it all went
horribly wrong.

Code a homage
to Lunar Lander

Source Code

https://wireframe.raspberrypi.com/

Lunar Lander
Action

65wfmag.cc \

import math
from pygame import image, Color
import time
start_time = time.time()
backgroundImage = image.load(‘images/background.png’)
lander = Actor(‘lander’,(50,30))
lander.angle = lander.direction = -80
lander.thrust = 0.5
gravity = 0.8
lander.burn = speedDown = gameState = gameTime = 0

def draw():
 global gameTime
 screen.blit(‘background’,(0,0))
 screen.blit(‘space’,(0,0))
 r = lander.angle
 if(lander.burn > 0):
 lander.image = “landerburn”
 else:
 lander.image = “lander”
 lander.angle = r
 lander.draw()
 if gameState == 0:
 gameTime = int(time.time() - start_time)
 screen.draw.text(“Altitude : “+ str(getAlt()),
topleft=(650, 10), owidth=0.5, ocolor=(255,0,0),
color=(255,255,0) , fontsize=25)
 screen.draw.text(“Time : “+ str(gameTime), topleft=(40,
10), owidth=0.5, ocolor=(255,0,0), color=(255,255,0) ,
fontsize=25)
 if gameState == 2:
 screen.draw.text(“Congratulations \nThe Eagle Has
Landed”, center=(400, 50), owidth=0.5, ocolor=(255,0,0),
color=(255,255,0) , fontsize=35)
 if gameState == 1:
 screen.draw.text(“Crashed”, center=(400, 50),
owidth=0.5, ocolor=(255,0,0), color=(255,255,0) , fontsize=35)

def update():
 global gameState, speedDown
 if gameState == 0:
 if keyboard.up:
 lander.thrust = limit(lander.thrust+0.01,0,1)
 changeDirection()
 lander.burn = 1
 if keyboard.left: lander.angle += 1
 if keyboard.right: lander.angle -= 1
 oldPos = lander.center
 lander.y += gravity
 newPos = calcNewXY(lander.center, lander.thrust, math.
radians(90-lander.direction))
 lander.center = newPos

 speedDown = newPos[1] - oldPos[1]
 lander.thrust = limit(lander.thrust-0.001,0,1)
 lander.burn = limit(lander.burn-0.05,0,1)
 if speedDown < 0.2 and getAlt() == 1 and lander.angle >
-5 and lander.angle < 5:
 gameState = 2
 if getAlt() == 0:
 gameState = 1

def changeDirection():
 if lander.direction > lander.angle: lander.direction -= 1
 if lander.direction < lander.angle: lander.direction += 1

def limit(n, minn, maxn):
 return max(min(maxn, n), minn)

def calcNewXY(xy,speed,ang):
 newx = xy[0] - (speed*math.cos(ang))
 newy = xy[1] - (speed*math.sin(ang))
 return newx, newy

def getAlt():
 testY = lander.y+8
 height = 0;
 while testPixel((int(lander.x),int(testY))) ==
Color(‘black’) and height < 600:
 testY += 1
 height += 1
 return height

def testPixel(xy):
 if xy[0] >= 0 and xy[0] < 800 and xy[1] >= 0 and xy[1] <
600:
 return
backgroundImage.get_at(xy)
 else:
 return
Color(‘black’)

Lunar Lander in Python

Lunar Lander
Action/adventure

Here’s Mark’s code for a simple, modern take on Lunar Lander. To get it running on your system,
you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag37

 �Our homage to the classic
Lunar Lander. Can you land
without causing millions of
dollars’ worth of damage?

65wfmag.cc \

ENGAGE
The direction of thrust could be done in several ways. In this case, we’ve
kept it simple, with one directional value which gradually moves in a
new direction when an alternative thrust is applied. You may want to try
making an X- and Y-axis direction calculation for thrust so that values are
a combination of the two dimensions. You could also add joystick control
to provide variable thrust input.

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-37

Source Code
Toolbox

66 / wfmag.cc

Breakout
Action/adventure

T he games industry owes a lot
to the humble bat and ball.
Designed by Allan Alcorn in
1972, Pong was a simplified
version of table tennis, where

the player moved a bat and scored points
by ricocheting a ball past their opponent.
About four years later, Atari’s Nolan
Bushnell and Steve Bristow figured out a
way of making Pong into a single-player
game. The result was 1976’s Breakout,
which rotated Pong ’s action through 90
degrees and replaced the second player
with a wall of bricks. Points were scored
by deflecting the ball off the bat and
destroying the bricks; and, as in Pong, the
player would lose the game if the ball left
the play area. Breakout was a hit for Atari,
and remains one of those game ideas
that has never quite faded from view; in
the 1980s, Taito’s Arkanoid updated the
action with collectible power-ups, multiple
stages with different layouts of bricks,

The ball has a velocity, vel – which is a vector,
or a pair of numbers: vx for the x direction
and vy for the y direction. The program loop
checks the position of the ball and whether
it’s collided with a brick or the edge of the play
area. If the ball hits the left side of the play
area, the ball’s x velocity vx is set to positive,
thus sending it bouncing to the right. If it hits
the right side, it’s set to a negative number, so
it moves left. Likewise when the ball hits the
top or bottom of a brick, we set the sign of
the y velocity vy, and so on for the collisions
with the bat, and the top of the play area and
the sides of bricks. Collisions set the sign of vx
and vy but never change the magnitude. This
is called a perfectly elastic collision.

To this basic framework, you could add all
kinds of additional features: a 2012 talk by
developers Martin Jonasson and Petri Purho,
which you can watch on YouTube (wfmag.cc/
breakout), shows how the Breakout concept
can be given new life with the addition of a
few modern design ideas.

and additional enemies that disrupted
the trajectory of the player’s ball. Breakout
had an impact on other genres, too; game
designer Tomohiro Nishikado came up with
the idea for Space Invaders by switching
Breakout ’s bat with a base that shot bullets,
while its bricks became aliens that moved

and fired back at the player.
The code on the right, written by Daniel

Pope, shows you just how easy it is to get a
basic version of Breakout up and running in
Python, using the Pygame Zero library. Like
Atari’s original, it draws a wall of blocks on the
screen, sets a ball bouncing around, and gives
the player a paddle, which can be controlled
by moving the mouse left and right. The ball
physics are relatively simple to grasp, too.

AUTHOR
RYAN LAMBIE

Atari’s Breakout was one of the earliest video game
blockbusters. Here’s how to recreate it in Python

“Breakout replaced
Pong’s second player
with a wall of bricks”

Breakout’s brick-
breaking action

 �The original Breakout, designed by Nolan
Bushnell and Steve Bristow, and
famously built by a young Steve Wozniak.Source Code

http://wfmag.cc
http://wfmag.cc/breakout
http://wfmag.cc/breakout

Source Code
Toolbox

67wfmag.cc \

import random
import colorsys
from math import copysign

WIDTH = 600
HEIGHT = 800
BALL_SIZE = 10
MARGIN = 50

BRICKS_X = 10
BRICKS_Y = 5
BRICK_W = (WIDTH - 2 * MARGIN) //
BRICKS_X
BRICK_H = 25

ball = ZRect(WIDTH / 2, HEIGHT / 2,
BALL_SIZE, BALL_SIZE)
bat = ZRect(WIDTH / 2, HEIGHT - 50, 80,
12)

bricks = []

def hsv_color(h, s, v):
 “””Return an RGB color from HSV.”””
 r, g, b = colorsys.hsv_to_rgb(h, s,
v)
 return r * 255, g * 255, b * 255

def reset():
 “””Reset bricks and ball.”””
 # First, let’s do bricks
 del bricks[:]
 for x in range(BRICKS_X):
 for y in range(BRICKS_Y):
 brick = ZRect(
 (x * BRICK_W + MARGIN, y
* BRICK_H + MARGIN),
 (BRICK_W - 1, BRICK_H
- 1)
)
 hue = (x + y) / BRICKS_X
 saturation = (y / BRICKS_Y)
* 0.5 + 0.5
 brick.highlight = hsv_
color(hue, saturation * 0.7, 1.0)
 brick.color = hsv_color(hue,
saturation, 0.8)
 bricks.append(brick)

 # Now reset the ball
 ball.center = (WIDTH / 2, HEIGHT /
2)
 ball.vel = (random.uniform(-200,
200), 400)

Reset bricks and ball at start
reset()

def draw():
 screen.clear()
 for brick in bricks:
 screen.draw.filled_rect(brick,
brick.color)
 screen.draw.line(brick.
bottomleft, brick.topleft, brick.
highlight)
 screen.draw.line(brick.topleft,
brick.topright, brick.highlight)

 screen.draw.filled_rect(bat, ‘pink’)
 screen.draw.filled_circle(ball.
center, BALL_SIZE // 2, ‘white’)

def update():
 # When you have fast moving objects,
like the ball, a good trick
 # is to run the update step several
times per frame with tiny time steps.
 # This makes it more likely that
collisions will be handled correctly.
 for _ in range(3):
 update_step(1 / 180)

def update_step(dt):
 x, y = ball.center
 vx, vy = ball.vel

 if ball.top > HEIGHT:
 reset()
 return

 # Update ball based on previous
velocity
 x += vx * dt
 y += vy * dt
 ball.center = (x, y)

 # Check for and resolve collisions
 if ball.left < 0:
 vx = abs(vx)
 ball.left = -ball.left
 elif ball.right > WIDTH:
 vx = -abs(vx)
 ball.right -= 2 * (ball.right -
WIDTH)

 if ball.top < 0:
 vy = abs(vy)
 ball.top *= -1

 if ball.colliderect(bat):
 vy = -abs(vy)
 # randomise the x velocity but
keep the sign
 vx = copysign(random.uniform(50,
300), vx)
 else:
 # Find first collision
 idx = ball.collidelist(bricks)
 if idx != -1:
 brick = bricks[idx]
 # Work out what side we
collided on
 dx = (ball.centerx - brick.
centerx) / BRICK_W
 dy = (ball.centery - brick.
centery) / BRICK_H
 if abs(dx) > abs(dy):
 vx = copysign(abs(vx), dx)
 else:
 vy = copysign(abs(vy), dy)
 del bricks[idx]

 # Write back updated position and
velocity
 ball.center = (x, y)
 ball.vel = (vx, vy)

def on_mouse_move(pos):
 x, y = pos
 bat.centerx = x
 if bat.left < 0:
 bat.left = 0
 elif bat.right > WIDTH:
 bat.right = WIDTH

Bricks and balls in Python

Breakout
Action/adventure

Courtesy of Daniel Pope, here’s a simple Breakout game written in Python. To get it running on your system,
you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag11

http://wfmag.cc
http://wfmag.cc/wfmag11
http://wfmag.cc/pgzero

Source Code
Toolbox

68 / wfmag.cc

Frogger
Action/adventure

W hy did the frog cross the
road? Because Frogger
would be a boring game
if it didn’t. Released in
1981 by Konami, the game

appeared in assorted bars, sports halls,
and arcades across the world, and
became an instant hit. The concept
was simple: players used the joystick
to move a succession of frogs from
the bottom of the screen to the

top, avoiding a variety of
hazards – cars, lorries,
and later, the occasional
crocodile. Each frog had
to be safely manoeuvred
to one of five alcoves
within a time limit,
while extra points were
awarded for eating flies
along the way.

Before Frogger,
Konami mainly focused

floating objects – logs and turtles – moving in
opposite directions. Our background graphic
will provide the road, river, and grass for our
frog to move over. The frog’s movement will
be triggered from an on_key_down() function,
and as the frog moves, we switch to a second

frame with legs outstretched, reverting
back to a sitting position after a short
delay. We can use the inbuilt Actor
properties to change the image and set
the angle of rotation.

For all the other moving elements, we can
also use Pygame Zero Actors; we just need
to make an array for our cars with different
graphics for the various rows, and an array for
our floating objects in the same way.

In our update() function, we need to move
each Actor according to which row it’s in, and
when an Actor disappears off the screen,
set the x coordinate so that it reappears on
the opposite side. Handling the logic of the
frog moving across the road is quite easy;
we just check for collision with each of the

on churning out clones of other hit arcade
games like Space Invaders and Breakout;
Frogger was one of its earliest original ideas,
and the simplicity of its concept saw it ported
to just about every home system available
at the time. (Ironically, Konami’s game would

fall victim to repeated cloning by other
developers.) Decades later, developers still
take inspiration from it; Hipster Whale’s Crossy
Road turned Frogger into an endless running
game; earlier this year, Konami returned to
the creative well with Frogger in Toy Town,
released on Apple Arcade.

We can recreate much of Frogger’s
gameplay in just a few lines of Pygame
Zero code. The key elements are the frog’s
movement, which use the arrow keys,
vehicles that move across the screen, and

AUTHOR
RIK CROSS

Save the frog from busy roads and rivers with a
simple remake of Konami’s classic arcade game

“We can recreate Frogger in just
a few lines of Pygame Zero code”

Code a Frogger-style
road-crossing game

Source Code

http://wfmag.cc

Source Code
Toolbox

69wfmag.cc \

cars, and if the frog hits a car, then we have
a squashed frog. The river crossing is a little
more complicated. Each time the frog moves
on the river, we need to make sure that it’s on
a floating Actor. We therefore check to make
sure that the frog is in collision with one of the
floating elements, otherwise it’s game over.

There are lots of other elements you could
add to the example shown here: the original
arcade game provided several frogs to guide
to their alcoves on the other side of the river,
while crocodiles also popped up from time
to time to add a bit more danger. Pygame
Zero has all the tools you need to make a fully
functional version of Konami’s hit.

frog = Actor(‘frog1’, center=(400, 580))
frog.direction = frog.delay = 0
frog.onBoard = -1
cars = []
floats = []
gameState = count = 0
for r in range(0, 6):
 for c in range(0, 4):
 cars.append(Actor(‘car’+str(r+1),
center=((r*20)+(c*(240-(r*10))), 540-(r*40))))
 if r < 5: floats.append(Actor(‘float’+str(r+1),
center=((r*20)+(c*(240-(r*10))), 260-(r*40))))

def draw():
 global count
 screen.blit(“background”, (0, 0))
 for c in range(0, 20):
 floats[c].draw()
 if gameState == 0 or (gameState == 1 and count%2 == 0):
frog.draw()
 for c in range(0, 24):
 cars[c].draw()
 count += 1

def update():
 global gameState
 if gameState == 0:
 frog.onBoard = -1
 for r in range(0, 6):
 s = -1
 if r%2 == 0: s = 1
 for c in range(0, 4):
 i = (r*4)+c

 cars[i].x += s
 if cars[i].x > 840: cars[i].x = -40
 if cars[i].x < -40: cars[i].x = 840
 if cars[i].colliderect(frog): gameState = 1
 if r < 5:
 floats[i].x -= s
 if floats[i].x > 880: floats[i].x = -80
 if floats[i].x < -80: floats[i].x = 880
 if floats[i].colliderect(frog):
 frog.onBoard = i
 frog.x -= s
 if frog.delay > 0:
 frog.delay += 1
 if frog.delay > 10:
 frog.image = “frog1”
 frog.angle = frog.direction
 if frog.y > 60 and frog.y < 270 and frog.onBoard ==
-1: gameState = 1

def on_key_down(key):
 if gameState == 0:
 if key.name == “UP”: frogMove(0,-40,0)
 if key.name == “DOWN”: frogMove(0,40,180)
 if key.name == “LEFT”: frogMove(-40,0,90)
 if key.name == “RIGHT”: frogMove(40,0,270)

def frogMove(x,y,d):
 if 800 > frog.x+x > 0: frog.x += x
 if 600 > frog.y+y > 0: frog.y += y
 frog.image = “frog2”
 frog.delay = 1
 frog.angle = frog.direction = d

Frogger in Python

Frogger
Action/adventure

Here’s Mark’s code snippet, which recreates Frogger in Python. To get it running on your system,
you’ll first need to install Pygame Zero -- you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag27

Amphibious machines
The Frogger arcade machine was
groundbreaking in that it used two CPUs:
a pair of Z80 processors, one to run the
main game and one to handle the sound.
Konami used the same Z80 CPU in many
of its other arcade hits in the early eighties,
including Konami’s Ping Pong, Time Pilot,
and the surreal pigs-versus-wolves action
game, Pooyan. Along with Scramble,
also released in 1981, Frogger was by
far Konami’s most influential game of
the period, though, with its ports selling
an estimated 20 million units across all
systems.

http://wfmag.cc
http://wfmag.cc/wfmag27
http://wfmag.cc/pgzero

Source Code
Toolbox

70 / wfmag.cc

Moon Patrol
Action/adventure

P arallax scrolling is an effect that
can be used to give the illusion of
depth in a two‑dimensional world.
Often in games, player motion is
simulated by keeping the player

in a fixed position on the screen, with
platforms, backgrounds, enemies, and
other objects moving across the
screen, relative to the stationary
player. This gives a ‘window’ on the
game world, with the player taking
centre stage.

A parallax scrolling effect is
achieved by moving an object at a speed
dependent on its distance from the player.
Background objects (for example, clouds or
distant mountains) move across the screen
more slowly than objects in the foreground
(such as platforms and trees). The quicker an
object moves across the screen, the closer
to the ‘window’ the object is perceived to be.

You can see this effect for yourself if you

effect in countless space shooters.
In fact, the idea predates computer

games, and is borrowed from the
‘multiplane camera’, an invention used by
Disney and others to film cartoons in the
1930s. This achieved the effect by moving
multiple layers of artwork past the camera

at different speeds and distances.
To create the parallax scrolling

effect for yourself, you’ll first need
to decide how to break up your
background into a number of
separate image layers that will

move independently from each other.
In my example, I’ll use three layers for

far, mid, and near mountain ranges, but
the technique will work for any number
of layers – how many of them you’ll need
will depend on the level of detail you’re
aiming for.

Each layer should consist of a duplicated
image, giving a layer that is exactly twice

look out of a window and move your head
horizontally from side to side (you’ll just
have to make sure that no one is watching
you!). Nearby objects will move across your
field of vision more quickly than objects
further away.

The effect was first used in computer

games in the early 1980s, in titles such as
Moon Patrol and Jungle Hunt, and in many
games since. You’ll notice the effect in
classics such as Super Mario World and Sonic
the Hedgehog, and it was used to create a
creepy atmosphere in the more modern
Limbo. It’s not just used in platformers,
either: nearby stars and distant galaxies
have been used to create the same parallax

AUTHOR
RIK CROSS

Classic games like Moon Patrol used parallax
scrolling to create a sense of depth. Here’s how
you can recreate the effect for yourself

“The idea predates computer games,
and is borrowed from the ‘multiplane
camera’, an invention used by Disney”

Moon Patrol’s
illusion of depth

Source Code

https://wireframe.raspberrypi.com/

Source Code
Toolbox

71wfmag.cc \

the width of the screen. The images should
contain some transparency, so that the
movement of other layers behind can be
seen. To avoid a ‘seam’ in my mountain
layers, I’ve also made sure that the mountain
height is the same at the left and right side
of the image. If you find creating the layer
images difficult, you can either use the
images I’ve created for my example, or go to
an open-source media repository like Open
Game Art (opengameart.org) and search
for ‘parallax’ – you’ll find lots of great ready-
made layer sets to use.

Each layer is given its own speed, which
will be used when updating its position.
You can tinker with the numbers; all that’s
important is that the speed of a layer is
higher than the layers behind it. Layers start

with their left edge at the left of the screen,
and every frame, layers are moved to the
left according to their speed. Once the right
hand edge of a layer’s image has reached
the right edge of the screen, it is reset to its
original starting position.

Layers are then drawn to the screen
in order, from back to front. And that’s all
there is to it! Once you’ve achieved this
basic effect, you can play with the code and
experiment with different images to see
what you can create.

set screen width and height
WIDTH = 800
HEIGHT = 400

create the back layer
layer_back = Actor('image_back')
layer_back.topleft = 0, 0
layer_back.speed = 1

#create the middle layer
layer_middle = Actor('image_middle')
layer_middle.topleft = 0, 0
layer_middle.speed = 3

#create the front layer
layer_front = Actor('image_front')
layer_front.topleft = 0, 0
layer_front.speed = 5

#add layers to list
layers = [layer_back, layer_middle, layer_front]

def update():
 for l in layers:
 # move each layer to the left
 l.left -= l.speed
 # if the layer has moved far enough to the left
 # then reset the layers position
 if l.right <= WIDTH:
 l.left = 0

def draw():
 screen.clear()
 # draw all images in the image list
 for l in layers:
 l.draw()

PARALLAX SCROLLING in PYTHON

Moon Patrol
Action/adventure

Here’s a parallax scrolling effect that uses three layers to create a moving background.
To get it running on your system, you’ll first need to install Pygame Zero – you can find
full instructions at wfmag.cc/XVzieD

Download
the code

from GitHub:
wfmag.cc/

wfmag3

 �The background is broken up
into a number of separate
layers that move
independently from each
other.

 �Moon Patrol made
clever use of parallax
scrolling to create an
alien landscape.

 �Each double-width layer
moves across the screen
from right to left.

Game Screen

Image start position

Image end position

Game Screen

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-3
https://pygame-zero.readthedocs.io/en/stable/index.html#

Source Code
Toolbox

72 / wfmag.cc

Tron
Action/adventure

A t the beginning of the 1980s,
Disney made plans for an
entirely new kind of animated
movie that used cutting-
edge computer graphics.

The resulting film was 1982’s TRON, and
it inevitably sparked one of the earliest
tie-in arcade machines. The game featured
several minigames, including one based on

screen. There are various ways to code this
with Pygame Zero. In this sample, we’ll focus
on the movement of the player Light Cycle
and creating the trails that are left behind as
it moves around the screen. We could use
line drawing functions for the trail behind
the bike, or go for a system like Snake, where
blocks are added to the trail as the player
moves. In this example, though, we’re going
to use a two-dimensional list as a matrix of
positions on the screen. This means that
wherever the player moves on the screen,
we can set the position as visited or check
to see if it’s been visited before and, if so,
trigger an end-game event.

For the main draw() function, we first blit
our background image which is the cross-
hatched arena, then we iterate through our
two-dimensional list of screen positions
(each 10 pixels square) displaying a square
anywhere the Cycle has been. The Cycle is
then drawn and we can add a display of the
score. The update() function contains code to
move the Cycle and check for collisions. We
use a list of directions in degrees to control

the Light Cycle section of the movie, where
players speed around an arena on high-
tech motorbikes, which leave a deadly trail
of light in their wake. If competitors hit any
walls or cross the path of any trails, then
it’s game over. Players progress through
the twelve levels which were all named
after programming languages. In the Light
Cycle game, the players compete against
AI players who drive yellow Light Cycles
around the arena. As the levels progress,
more AI Players are added.

The TRON game, distributed by Bally
Midway, was well-received in arcades, and
even won Electronic Games Magazine’s
(presumably) coveted Coin-operated Game
of the Year gong. Although the arcade game
wasn’t ported to home computers at the
time, several similar games – and outright
clones – emerged, such as the unsubtly
named Light Cycle for the BBC Micro, Oric,
and ZX Spectrum.

The Light Cycle minigame is essentially a
variation on Snake, with the player leaving a
trail behind them as they move around the

AUTHOR
MARK VANSTONE Speed around an arena, avoiding walls and deadly trails

Code a Light Cycle
arcade minigame

Source Code

 �The TRON cab had
two game controllers:
a rotary wheel and
a joystick.

 �Battle against AI
enemies in the
original arcade classic.

 �Our homage to the
TRON Light Cycle
classic arcade game.

http://wfmag.cc

Source Code
Toolbox

73wfmag.cc \

the angle the player is pointing, and another
list of x and y increments for each direction.
Each update we add x and y coordinates to
the Cycle actor to move it in the direction
that it’s pointing multiplied by our speed
variable. We have an on_key_down() function
defined to handle changing the direction of
the Cycle actor with the arrow keys.

We need to wait a while before checking
for collisions on the current position, as the
Cycle won’t have moved away for several
updates, so each screen position in the
matrix is actually a counter of how many
updates it’s been there for. We can then test
to see if 15 updates have happened before
testing the square for collisions, which gives
our Cycle enough time to clear the area.
If we do detect a collision, then we can
start the game-end sequence. We set the
gamestate variable to 1, which then means
the update() function uses that variable
as a counter to run through the frames of
animation for the Cycle’s explosion. Once it
reaches the end of the sequence, the game
stops. We have a key press defined (the
SPACE bar) in the on_key_down() function to
call our init() function, which will not only
set up variables when the game starts but
sets things back to their starting state.

So that’s the fundamentals of the
player Light Cycle movement and collision
checking. To make it more like the original
arcade game, why not try experimenting
with the code and adding a few computer-
controlled rivals?

Light Cycles in Python

Tron
Action/adventure

Here’s Mark’s code for a Light Cycle minigame straight out of TRON. To get it
working on your system, you’ll need to install Pygame Zero – full instructions are
available at wfmag.cc/pgzero.

73wfmag.cc \

Download
the code

from GitHub:
wfmag.cc/
wfmag47

TRON

speed = 3
dirs = [0,90,180,270]
moves = [(0,-1),(-1,0),(0,1),(1,0)]

def draw():
 screen.blit(“background”, (0, 0))
 for x in range(0, 79):
 for y in range(0, 59):
 if matrix[x][y] > 0:
 matrix[x][y] += 1
 screen.blit(“dot”,((x*10)-5,(y*10)-5))
 bike.draw()
 screen.draw.text(“SCORE : “+ str(score), center=(400, 588), owidth=0.5,
ocolor=(0,255,255), color=(0,0,255) , fontsize=28)

def update():
 global matrix,gamestate,score
 if gamestate == 0:
 bike.angle = dirs[bike.direction]
 bike.x += moves[bike.direction][0]*speed
 bike.y += moves[bike.direction][1]*speed
 score += 10
 if matrix[int(bike.x/10)][int(bike.y/10)] < 15 :
 matrix[int(bike.x/10)][int(bike.y/10)] += 1
 else:
 gamestate = 1
 if bike.x < 60 or bike.x > 750 or bike.y < 110 or bike.y > 525:
 gamestate = 1
 else:
 if gamestate < 18:
 bike.image = “bike”+str(int(gamestate/2))
 bike.angle = dirs[bike.direction]
 gamestate += 1

def on_key_down(key):
 if key == keys.LEFT:
 bike.direction += 1
 snapBike()
 if bike.direction == 4 : bike.direction = 0
 if key == keys.RIGHT:
 bike.direction -= 1
 snapBike()
 if bike.direction == -1 : bike.direction = 3
 if key == keys.SPACE and gamestate == 18:
 init()

def snapBike():
 bike.x = int(bike.x/10)*10
 bike.y = int(bike.y/10)*10

def init():
 global bike,matrix,gamestate,score
 bike = Actor(‘bike1’, center=(400, 500))
 bike.direction = 0
 matrix = [[0 for y in range(60)] for x in range(80)]
 gamestate = score = 0

init()

 �The TRON arcade game
was released in the same
year Walt Disney
Productions motion
picture TRON was released.

http://wfmag.cc
http://wfmag.cc/pgzero
http://wfmag.cc
http://wfmag.cc/wfmag47
http://wfmag.cc/wfmag47
http://wfmag.cc/wfmag47
http://wfmag.cc/pgzero

Robotron 2084
Action/adventure

74 / wfmag.cc

 �Robotron: 2084 is often listed on
‘best game of all time’ lists, and has
been remade and re-released for
numerous systems over the years.

R eleased back in 1982, Robotron:
2084 popularised the concept
of the twin-stick shooter. It gave
players two joysticks which
allowed them to move in one

direction while also shooting at enemies in
another. Here, I’ll show you how to recreate
those controls using Python and Pygame.
We don’t have access to any sticks, only a
keyboard, so we’ll be using the arrow keys
for movement and WASD to control the
direction of fire.

The movement controls use a global
variable, a few if statements, and two
built-in Pygame functions: on_key_down and
on_key_up. The on_key_down function is called
when a key on the keyboard is pressed, so
when the player presses the right arrow
key, for example, I set the x direction of the
player to be a positive 1. Instead of setting
the movement to 1, instead, I’ll add 1 to
the direction. The on_key_down function is
called when a button’s released. A key being

the math module’s atan2 function to find
the arc tangent of two points. The function
returns a result in radians, so it needs to be
converted. (You’ll also notice I had to adjust
mine by 90 degrees. If you want to avoid
having to do this, create a sprite that faces
right by default.)

To fire bullets, I’m using a flag called
‘shooting’ which, when set to True, causes
my turret to turn and fire. My bullets are
dictionaries; I could have used a class, but
the only thing I need to keep track of is an
actor and the bullet’s direction.

You can look at the update function and
see how I’ve implemented a fire rate for
the turret as well. You can edit the update
function to take a single parameter, dt,
which stores the time since the last frame.
By adding these up, you can trigger a bullet
at precise intervals and then reset the timer.

This code is just a start – you could add
enemies and maybe other player weapons
to make a complete shooting experience.

released means the player doesn’t want
to travel in that direction anymore and so
we should do the opposite of what we did
earlier – we take away the 1 or -1 we applied
in the on_key_up function.

We repeat this process for each arrow
key. Moving the player in the update()
function is the last part of my movement; I
apply a move speed and then use a playArea
rect to clamp the player’s position.

Now for the aiming and rotating. When
my player aims, I want them to set the
direction the bullets will fire, which functions
like the movement. The difference this
time is that when a player hits an aiming
key, I set the direction directly rather than
adjusting the values. If my player aims up,
and then releases that key, the shooting will
stop. Our next challenge is changing this
direction into a rotation for the turret. Actors
in Pygame can be rotated in degrees, so I
have to find a way of turning a pair of x and
y directions into a rotation. To do this, I use

Move in one direction and fire in another
with Mac’s re-creation of an arcade classic

Code Robotron: 2084’s
twin-stick action

Source Code

AUTHOR
MAC BOWLEY

http://wfmag.cc

Robotron 2087
Action/adventure

Twin-stick shooting in Python

Robtron 2084
Action/adventure

Here’s Mac’s code snippet. To get it running on your system, you’ll need to install
Pygame Zero – you can find full instructions at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag38

import pygame as pg
import math

WIDTH = 860
HEIGHT = 540

bg = pg.image.load(“images/arena.png”).
convert()
play_Area = Rect((150, 75), (560, 390))

player = Actor(“treads.png”,
center=(WIDTH//2, HEIGHT//2),
anchor=(‘center’, ‘center’))
turret = Actor(“turret.png”,
center=(player.x, player.y),
anchor=(‘center’, ‘center’))
pl_movement = [0, 0]
pl_move_speed = 5

pl_rotation = [0, 0]
turn_speed = 5
shooting = False
bullets = []
bullet_speed = 150
fire_rate = 0.15
fire_timer = 0

def on_key_down(key, unicode):
 global shooting

 # Movement
 if key == keys.RIGHT:
 pl_movement[0] += 1
 if key == keys.LEFT:
 pl_movement[0] += -1
 if key == keys.UP:
 pl_movement[1] += -1
 if key == keys.DOWN:
 pl_movement[1] += 1
 if key == keys.D:
 pl_rotation[0] = 1
 if key == keys.A:
 pl_rotation[0] = -1
 if key == keys.W:
 pl_rotation[1] = -1
 if key == keys.S:
 pl_rotation[1] = 1
 print(pl_rotation)

def on_key_up(key):
 global shooting

 # Movement
 if key == keys.RIGHT:
 pl_movement[0] = 0
 if key == keys.LEFT:
 pl_movement[0] = 0
 if key == keys.UP:
 pl_movement[1] = 0
 if key == keys.DOWN:
 pl_movement[1] = 0
 if key == keys.D:
 pl_rotation[0] = 0
 if key == keys.A:
 pl_rotation[0] = 0
 if key == keys.W:
 pl_rotation[1] = 0
 if key == keys.S:
 pl_rotation[1] = 0
def update(dt):
 global shooting, bullets, fire_timer

 # Movement every frame
 player.x += pl_movement[0] * pl_
move_speed
 player.y += pl_movement[1] * pl_
move_speed

 # Clamp the position
 if player.y - 16 < play_Area.top:
 player.y = play_Area.top + 16
 elif player.y + 16 > play_Area.
bottom:
 player.y = play_Area.bottom - 16
 if player.x - 16 < play_Area.left:
 player.x = play_Area.left + 16
 elif player.x + 16 > play_Area.
right:
 player.x = play_Area.right - 16

 turret.pos = player.pos

 if any([keyboard[keys.W],
keyboard[keys.A], keyboard[keys.S],
keyboard[keys.D]]):
 shooting = True
 else:
 shooting = False
 fire_timer = fire_rate

 if shooting == True:

 # Rotate the turret
 desired_angle = (math.atan2(-

pl_rotation[1], pl_rotation[0]) / (math.
pi/180)) - 90
 turret.angle = desired_angle
 fire_timer += dt
 if fire_timer > fire_rate:
 bullet = {}
 bullet[“actor”] =
Actor(“bullet.png”, center=player.pos,
anchor=(‘center’, ‘center’))
 bullet[“direction”] = pl_
rotation.copy()
 bullet[“actor”].x += pl_
rotation[0] * 4
 bullet[“actor”].y += pl_
rotation[1] * 4
 bullets.append(bullet)
 fire_timer = 0

 bullets_to_remove = []
 for b in bullets:
 b[“actor”].x += b[“direction”]
[0] * bullet_speed * dt
 b[“actor”].y += b[“direction”]
[1] * bullet_speed * dt
 if not b[“actor”].
colliderect(play_Area):
 bullets_to_remove.append(b)

 for b in bullets_to_remove:
 bullets.remove(b)

def draw():
 screen.blit(bg, (0, 0))
 player.draw()
 turret.draw()
 for b in bullets:
 b[“actor”].draw()

 �The arena background and tank sprites were
created in Piskel (piskelapp.com). Separate
sprites for the tank allow the turret to rotate
separately from the tracks.

75wfmag.cc \

http://wfmag.cc/wfmag38
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox

76 / wfmag.cc

Bomberman
Action/adventure

B omberman was first released in
the early 1980s as a tech demo
for a BASIC compiler, but soon
became a popular series that’s
still going today. Bomberman

sees players use bombs to destroy
enemies and uncover doors behind
destructible tiles. In this article, I’ll show you
how to recreate the bombs that explode in
four directions, destroying parts of the level
as well as any players in their path!

The game level is a tilemap stored as a
two-dimensional array. Each tile in the map
is a Tile object, which contains the tile type,
and corresponding image. For simplicity, a
tile can be set to one of five types; GROUND,
WALL, BRICK, BOMB, or EXPLOSION. In this
example code, BRICK and GROUND can be
exploded with bombs, but WALL cannot, but
of course, this behaviour can be changed.

Each Tile object also has a timer, which
is decremented each frame of the game.
When a tile’s timer reaches 0, an action

with a range determined by the RANGE, which
in our code is 3. As the bomb explodes
out to the right, for example, the tile to the
right of the bomb is checked. If such a tile
exists (i.e. the position isn’t out of the level
bounds) and can be exploded, then the tile’s
type is set to EXPLOSION and the next tile to
the right is checked. If the explosion moves
out of the level bounds, or hits a WALL tile,
then the explosion will stop radiating in that
direction. This process is then repeated for
the other directions.

There’s a nice trick for exploding the bomb
without repeating the code four times, and
it relies on the sine and cosine values for
the four direction angles. The angles are 0°
(up), 90° (right), 180° (down) and 270° (left).
When exploding to the right (at an angle
of 90°), sin(90) is 1 and cos(90) is 0, which
corresponds to the offset direction on the x-
and y-axis respectively. These values can be
multiplied by the tile offset, to explode the
bomb in all four directions.

is carried out, which is dependent on the
tile type. BOMB tiles (and surrounding tiles)
turn into EXPLOSION tiles after a short delay,
and EXPLOSION tiles eventually turn back
into GROUND. At the start of the game, the
tilemap for the level is generated, in this
case consisting of mostly GROUND, with some
WALL and a couple of BRICK tiles. The player

starts off in the top-left tile, and moves by
using the arrow keys. Pressing the SPACE
key will place a bomb in the player’s current
tile, which is achieved by setting the Tile at
the player’s position to BOMB. The tile’s timer
is also set to a small number, and once this
timer is decremented to 0, the bomb tile and
the tiles around it are set to EXPLOSION. The
bomb explodes outwards in four directions,

AUTHOR
RIK CROSS

Learn how to recreate the exploding bombs
found in the classic Bomberman games

“I’ll show you how to
recreate the bombs that

explode in four directions”

Recreate Bomberman’s
iconic explosives

Source Code

 �An early incarnation of
Bomberman on the NES; the
series is still going strong today
under Konami’s wing.

https://wireframe.raspberrypi.com/

Source Code
Toolbox

77wfmag.cc \

from math import cos, sin, radians

SIZE = 9
WIDTH = SIZE*45 - 5
HEIGHT = SIZE*45 - 5

bomb range
RANGE = 3

GROUND = 0
WALL = 1
BRICK = 2
BOMB = 3
EXPLOSION = 4
images for tile types
images = [‘ground’,’wall’,’brick’,’bomb’,’explosion’]

player = Actor(‘player’)
player.mapx = 0
player.mapy = 0

each position in tilemap is a ‘Tile’ with type, image, timer
class Tile():
 def __init__(self, type):
 self.set(type)
 def set(self,type):
 self.timer = 0
 self.t=type
 self.i=images[type]

tilemap = [[Tile(WALL) if x%2==1 and y%2==1 else Tile(GROUND)
for y in range(10)] for x in range(10)]
tilemap[3][2].set(BRICK)
tilemap[4][7].set(BRICK)

def on_key_down():

 newx = player.mapx
 newy = player.mapy

 if keyboard.left and player.mapx > 0:
 newx -= 1
 elif keyboard.right and player.mapx < SIZE-1:
 newx += 1
 elif keyboard.up and player.mapy > 0:
 newy -= 1
 elif keyboard.down and player.mapy < SIZE-1:
 newy += 1

 if tilemap[newx][newy].t in [GROUND,EXPLOSION]:
 player.mapx = newx
 player.mapy = newy

 # space key to place bomb
 if keyboard.space:
 tilemap[player.mapx][player.mapy].set(BOMB)
 tilemap[player.mapx][player.mapy].timer = 150

def update():

 for x in range(SIZE):
 for y in range(SIZE):

 tile = tilemap[x][y]

 # decrement timer
 if tile.timer > 0:
 tile.timer -= 1

 # process tile types on timer finish
 if tile.timer <= 0:

 # explosions eventually become ground
 if tile.t == EXPLOSION:
 tile.set(GROUND)

 # bombs eventually create explosions
 if tile.t == BOMB:
 # bombs radiate out in all 4 directions
 for angle in range(0,360,90):
 cosa = int(cos(radians(angle)))
 sina = int(sin(radians(angle)))
 # RANGE determines bomb reach
 for ran in range(1,RANGE):
 xoffset = ran*cosa
 yoffset = ran*sina
 if x+xoffset in range(0,SIZE) and \
 y+yoffset in range(0,SIZE) and \
 tilemap[x+xoffset][y+yoffset].t in
[GROUND,BRICK]:
 tilemap[x+xoffset][y+yoffset].set(EXPLOSION)
 tilemap[x+xoffset][y+yoffset].timer = 50
 else:
 break

 # remove bomb
 tile.set(EXPLOSION)
 tile.timer = 50

def draw():
 for x in range(SIZE):
 for y in range(SIZE):
 screen.blit(tilemap[x][y].i,(x*45,y*45))
 # draw the player
 screen.blit(player.image, (player.mapx*45,player.mapy*45)

Bomberman bombs in Python

Bomberman
Action/adventure

Here’s Rik’s example code, which recreates Bomberman’s bombs and four-way explosions in Python. To get it running on
your system, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag12

77wfmag.cc \

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-12
https://pygame-zero.readthedocs.io/en/stable/installation.html

Kung-Fu Master
Action/adventure

K ung-Fu Master hit arcades in
1984. Its side-scrolling action,
punching and kicking through an
army of knife-throwing goons,
helped create the beat-’em-

up genre. In fact, its designer, Takashi
Nishiyama, would go on to kickstart the
Street Fighter series at Capcom, and later
start up the Fatal Fury franchise at SNK.

In true eighties arcade style, Kung-Fu Master
distils the elements of a chop-socky action
film to its essentials. Hero Thomas and his
girlfriend are attacked, she’s kidnapped, and
Thomas fights his way through successive
levels of bad guys to rescue her. The screen
scrolls from side to side, and Thomas must
use his kicks and punches to get from one
side of the level to the other and climb the
stairs to the next floor of the building.

To recreate this classic with Pygame Zero,
we’ll need quite a few frames of animation,
both for the hero character and the enemies
he’ll battle. For a reasonable walk cycle, we’ll

cycling through the walk animation frames.
Then if we detect a Q key press, we change
the action string to kick; if it’s A, it’s punch.
Then in our update() function, we use
that action to set the Actor’s image to the
indicated action frame.

Our enemy Actors will constantly walk
towards the centre of the screen, and we can
cycle through their walking frames the same
way we do with the main hero. To give kicks
and punches an effect, we put in collision
checks. If the hero strikes while an enemy
collides with him, we register a hit. This could
be made more precise to require more skill,
but once a strike’s registered, we can switch
the enemy to a different status that will cause
them to fall downwards and off the screen.

This sample is a starting point to
demonstrate the basics of the beat-’em-up
genre. With the addition of flying daggers,
several levels, and a variety of bad guys, you’ll
be on your way to creating a Pygame Zero
version of this classic game.

need at least six frames in each direction.
Any fewer than six won’t look convincing, but
more frames can achieve a smoother effect.
For this example, I’ve used the 3D package
Poser, since it has a handy walk designer
which makes generating sequences of
animation much easier.

Once we have the animation frames for
our characters, including a punch, kick,
and any others you want to add, we need
a background for the characters to walk
along. The image we’re using is 2000×400
pixels, and we start the game by displaying
the central part so our hero can walk either
way. By detecting arrow key presses, the
hero can ‘walk’ one way or the other by
moving the background left and right, while

AUTHOR
MARK VANSTONE

Punch and kick your way through a rabble of
bad dudes in a simple scrolling beat-’em-up

“For a walk cycle animation,
we’ll need at least six

frames in each direction”

 �Although released to tie in
with Jackie Chan’s Spartan X,
Kung-Fu Master was originally
inspired by the Bruce Lee film,
Game of Death.



�Thomas battles his way
through the martial arts mob
to rescue his girlfriend, Sylvia.

Code a Kung-Fu Master
style beat-’em-up

Source Code

78 / wfmag.cc

http://wfmag.cc

Source Code
Toolbox

Kung-Fu Master
import random

HEIGHT = 450
gameState = count = 0
bloke = Actor(‘walkl_0001’, center=(400, 250))
blokeDir = “l”
backPos = -500
dudes = []
action = “”
actioncount = 0

def draw():
 screen.fill((0,0,0))
 screen.blit(“background”, (backPos, 30))
 screen.draw.text(“Pygame Zero Kung-Fu Master”, center =
(400, 15), owidth=1, ocolor=(255,0,0), color=(255,255,0) ,
fontsize=30)
 if gameState != 1 or (gameState == 1 and count%2 ==
0):bloke.draw()
 for d in dudes:
 d.draw()

def on_key_down(key):
 global action, actioncount
 actioncount = 10
 if gameState == 0:
 if key.name == “A”: action = “punch”
 if key.name == “Q”: action = “kick”

def update():
 global count, backPos, blokeDir, action, actioncount
 if gameState == 0:
 bloke.image = ‘stand’ + blokeDir
 if action == “punch”: bloke.image = ‘punch’+blokeDir
 if action == “kick”: bloke.image = ‘kick’+blokeDir
 if actioncount <= 0: action = “”
 if keyboard.left: moveBloke(3,”l”)
 elif keyboard.right: moveBloke(-3,”r”)
 if random.randint(0, 100) == 0: makeDude()
 updateDudes()
 count += 1
 actioncount -= 1

def moveBloke(x,d):
 global backPos, blokeDir
 frame = int((count%48)/8) + 1
 if backPos + x < -3 and backPos + x > -1197:
 backPos += x
 moveDudes(x)
 bloke.image = ‘walk’+d+’_000’+str(frame)
 blokeDir = d

def makeDude():
 d = len(dudes)
 if random.randint(0, 1) == 0:
 dudes.append(Actor(‘duder_0001’, center=(-50,250)))
 else:
 dudes.append(Actor(‘dudel_0001’, center=(850, 250)))
 dudes[d].status = 0

def updateDudes():
 global gameState
 frame = int((count%48)/8) + 1
 for d in dudes:
 if (bloke.image == ‘punch’+blokeDir or bloke.image ==
‘kick’+blokeDir) and bloke.collidepoint((d.x, d.y)):
 d.status += 1
 if d.x <=400:
 if d.status > 10:
 d.image = ‘dudefallr’
 d.y += 5
 else:
 d.x += 2
 d.image = ‘duder_000’+str(frame)
 if d.x >400:
 if d.status > 10:
 d.image = ‘dudefalll’
 d.y += 5
 else:
 d.x -= 2
 d.image = ‘dudel_000’+str(frame)
 if d.x > 398 and d.x < 402 and d.status == 0:
gameState = 1

def moveDudes(x):
 for d in dudes:
 d.x += x

A basic beat-’em-up basis

Kung-Fu Master
Action/adventure

Here’s Mark’s code to make a classic 1980s-style scrolling beat-’em-up in Python. To get up and
running you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag32

 �Our Kung-Fu Master
homage features punches,
kicks, and a host of goons
to use them on.

THE GENERATION GAME
Because we’re moving the background when our hero walks left and
right, we need to make sure we move our enemies with the background,
otherwise they’ll look as though they’re sliding in mid-air – this also
applies to any other objects that aren’t part of the background.
The number of enemies can be governed in several ways: in our code,
we just have a random number deciding if a new enemy will appear
during each update, but we could use a predefined pattern for the
enemy generation to make it a bit less random, or we use a combination
of patterns and random numbers.

79wfmag.cc \

http://wfmag.cc/wfmag32
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox
Marble Madness
Action/adventure

H itting arcades in 1984, Atari’s
Marble Madness presented
a rather different control
mechanism than other games
of the time. The original arcade

cabinet provided players with a trackball
controller rather than a conventional
joystick, and the aim was to guide a marble
through a three-dimensional course in the
fastest possible time. This meant that a
player could change the angle and speed
of the marble as it rolled and avoid various
obstacles and baddies.

During development, designer Mark
Cerny had to shelve numerous ideas for
Marble Madness, since the hardware just
wasn’t able to achieve the level of detail and
interaction he wanted. The groundbreaking
3D display was one idea that made it
through to the finished game: its pre-
rendered, ray-traced isometric levels.

Marble Madness was the first game to
use Atari’s System 1 upgradeable hardware

flats and slopes. We can produce the
background graphic using a 3D modelling
program such as Blender. The camera needs
to be set to Orthographic to get the forced
perspective look we’re after. The angle of the
camera is also important, in that we need an
X rotation of 54.7 degrees and a Y rotation
of 45 degrees to get the lines of the terrain
correct. The heightmap can be derived from
an overhead view of the terrain, but you’ll
probably want to draw the heights of the
blocks in a drawing package such as GIMP to
give you precise colour values on the map.

The ball rolling physics are calculated
from the grey-shaded heightmap graphic.
We’ve left a debug mode in the code; by
changing the debug variable to True, you
can see how the marble moves over the
terrain from the overhead viewpoint of the
heightmap. The player can move the marble
left and right with the arrow keys – on a level
surface it will gradually slow down if no keys
are pressed. If the marble is on a gradient

platform, and also boasted the first use of
an FM sound chip produced by Yamaha to
create its distinctive stereo music. The game
was popular in arcades to start with, but
interest appeared to drop off after a few
months – something Cerny attributed to the
fact that the game didn’t take long to play.

Marble Madness ’s popularity endured in the
home market, though, with ports made for
most computers and consoles of the time
– although inevitably, most of these didn’t
support the original’s trackball controls.

For our version of Marble Madness, we’re
going to use a combination of a rendered
background and a heightmap in Pygame
Zero, and write some simple physics code to
simulate the marble rolling over the terrain’s

AUTHOR
MARK VANSTONE

Code the map and movement basics of
the innovative marble-rolling arcade game

“The ball physics are
calculated from the grey-

shaded heightmap”

Code a homage to
Marble Madness

Source Code

 �Each of the six levels got progressively
harder to navigate and had to be
completed within a time limit.

 �Although the designer was against it, Atari
wanted the marbles to have smiley faces
on them. The idea didn’t make it to the
game but is reflected in the game logo.

80 / wfmag.cc

http://wfmag.cc

Source Code
Toolbox

on the heightmap, it will increase speed in
the direction of the gradient. If the marble
hits a section of black on the heightmap, it
falls out of play, and we stop the game.

That takes care of the movement of
the marble in two dimensions, but now
we have to translate this to the rendered
background’s terrain. The way we do this is
to translate the Y coordinate of the marble
as if the landscape was all at the same
level – we multiply it by 0.6 – and then
move it down the screen according to the
heightmap data, which in this case moves
the marble down 1.25 pixels for each shade
of colour. We can use an overlay for items
the marble always rolls behind, such as the
finish flag. And with that, we have the basics
of a Marble Madness level.

Marble Madness
from pygame import image

HEIGHT = 570
WIDTH = 600
gameState = 0
marble = Actor(‘marble’, center=(300, 45))
marbleh = Actor(‘marbleh’, center=(300, 60))
marble.dir = marble.speed = 0
heightmap = image.load(‘images/height45.png’)
set debug variable below to True for debug mode
debug = False

def draw():
 if(debug):
 screen.blit(“height45”, (0, 0))
 marbleh.draw()
 else:
 screen.blit(“map”, (0, 0))
 if gameState == 0:
 marble.draw()
 else:
 if gameState == 2:
 screen.draw.text(“YOU WIN!”, center = (300,
300), owidth=0.5, ocolor=(255,255,255), color=(0,0,255) ,
fontsize=80)
 marble.draw()
 else:
 screen.draw.text(“GAME OVER!”, center = (300,
300), owidth=0.5, ocolor=(255,255,255), color=(0,0,255) ,
fontsize=80)
 screen.blit(“overlay”, (0, 0))

def update():
 if gameState == 0:
 if keyboard.left:
 marble.dir = max(marble.dir-0.1,-1)
 marble.speed = min(1,marble.speed + 0.1)
 if keyboard.right:
 marble.dir = min(marble.dir+0.1,1)
 marble.speed = min(1,marble.speed + 0.1)
 moveMarble()
 marble.speed = max(0,marble.speed - 0.01)

def moveMarble():
 global gameState
 ccol = getHeight(marbleh.x,marbleh.y)
 lcol = getHeight(marbleh.x-10,marbleh.y+10)
 rcol = getHeight(marbleh.x+10,marbleh.y+10)
 if ccol.r == 0:
 gameState = 1
 if (lcol.r < ccol.r or rcol.r < ccol.r):
 marble.y += marble.speed
 marble.speed += 0.03
 marbleh.x += marble.speed*marble.dir
 marbleh.y += marble.speed
 marble.x = marbleh.x
 marble.y = (marbleh.y*0.6)+((255-ccol.r)*1.25)
 marble.angle = marble.angle + marble.speed*marble.dir*-10
 if marble.angle > 0 : marble.angle = -50
 if marble.angle < -50 : marble.angle = 0
 if marbleh.y > 610: gameState = 2

def getHeight(x,y):
 return heightmap.get_at((int(x),int(y)))

Rolling marbles in Python

Marble Madness
Action/adventure

To get Mark’s code running on your system, you’ll need to install Pygame Zero – all instructions are at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag34

Module Madness
We use the image module from
Pygame to sample the colour of
the pixel directly under the marble
on the heightmap. We also take
samples from the left diagonal
and the right diagonal to see if
there is a change of height. We are
only checking for left and right
movement, but this sample could
be expanded to deal with the two
other directions and moving up
the gradients, too. Other obstacles
and enemies can be added using
the same heightmap translations
used for the marble, and other
overlay objects can be added to
the overlay graphic.

 �In our sample level, you
can control the movement
of the marble using the
left and right arrow keys.

81wfmag.cc \

http://wfmag.cc/wfmag34
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox

82 / wfmag.cc

Pang
Action/adventure

P rogrammed by Mitchell and
distributed by Capcom, Pang
was first released as an arcade
game in 1989, but was later
ported to a whole host of home

computers, including the ZX Spectrum,
Amiga, and Commodore 64. The aim
of Pang is to destroy balloons as they
bounce around the screen, either alone
or working together with another player,
in increasingly elaborate levels. Destroying
a balloon can sometimes also spawn a

take in my example is to use various features
of object orientation (as usual, my example
code has been written in Python, using
the Pygame Zero library). It’s also worth
mentioning that for brevity, the example
code only deals with simple spawning and
destroying of objects, and doesn’t handle
balloon movement or collision detection.

The base Enemy class is simply a subclass
of Pygame Zero’s Actor class, including a
static enemies list to keep track of all enemies
that exist within a level. The Enemy subclass
also includes a destroy() method, which
removes an enemy from the enemies list and
deletes the object.

There are then three further subclasses
of the Enemy class, called LargeEnemy,
MediumEnemy, and SmallEnemy. Each of
these subclasses are instantiated with a
specific image, and also include a destroy()
method. This method simply calls the same
destroy() method of its parent Enemy class,
but additionally creates two more objects

power-up, freezing all balloons for a short
time or giving the player a better weapon
with which to destroy balloons.

Initially, the player is faced with the task of
destroying a small number of large balloons.
However, destroying a large balloon spawns
two smaller balloons, which in turn spawns

two smaller balloons, and so on. Each level
is only complete once all balloons have been
broken up and completely destroyed. To
add challenge to the game, different-sized
balloons have different attributes – smaller
balloons move faster and don’t bounce as
high, making them more difficult to destroy.

There are a few different ways to achieve
this game mechanic, but the approach I’ll

Rik shows you how to recreate the spawning of objects
found in the balloon-bursting arcade gem, Pang

“Pang was the game that
took the sphere-hating
concept to the masses”

Recreate Pang’s sprite
spawning mechanic

Source Code

AUTHOR
RIK CROSS

https://wireframe.raspberrypi.com/

Source Code
Toolbox

83wfmag.cc \

nearby – with large enemies spawning two
medium enemies, and medium enemies
spawning two small enemies.

In the example code, initially two
LargeEnemy objects are created, with the first
object in the enemies list having its destroy()
method called each time the Space key is
pressed. If you run this code, you’ll see that
the first large enemy is destroyed and two
medium-sized enemies are created. This
chain reaction of destroying and creating
enemies continues until all SmallEnemy
objects are destroyed (small enemies don’t
create any other enemies when destroyed).

As I mentioned earlier, this isn’t the only
way of achieving this behaviour, and there
are advantages and disadvantages to this
approach. Using subclasses for each size of
enemy allows for a lot of customisation, but
could get unwieldy if much more than three
enemy sizes are required. One alternative
is to simply have a single Enemy class, with
a size attribute. The enemy’s image, the
entities it creates when destroyed, and
even the movement speed and bounce
height could all depend on the value of the
enemy size.

class Enemy(Actor):
 # static list, to keep track of all enemies
 enemies = []
 def __init__(self, **kwargs):
 super().__init__(**kwargs)
 # add enemy to the enemies list
 self.enemies.append(self)
 def destroy(self):
 # remove self from the enemies list
 self.enemies.remove(self)
 self = None

class LargeEnemy(Enemy):
 def __init__(self, **kwargs):
 # all large-sized enemies have the same image
 super().__init__(image='large_enemy', **kwargs)
 def destroy(self):
 # spawn 2 medium-sized enemies when destroying
 m1 = MediumEnemy(pos=(self.pos[0]-40,self.pos[1]-40))
 m2 = MediumEnemy(pos=(self.pos[0]+40,self.pos[1]+40))
 super().destroy()

class MediumEnemy(Enemy):
 def __init__(self, **kwargs):
 # all medium-sized enemies have the same image
 super().__init__(image='medium_enemy', **kwargs)
 def destroy(self):
 # spawn 2 small-sized enemies when destroying
 s1 = SmallEnemy(pos=(self.pos[0]-20,self.pos[1]-20))
 s2 = SmallEnemy(pos=(self.pos[0]+20,self.pos[1]+20))
 super().destroy()

class SmallEnemy(Enemy):
 def __init__(self, **kwargs):
 # all small-sized enemies have the same image
 super().__init__(image='small_enemy', **kwargs)

start with 2 large-sized enemies
l1 = LargeEnemy(pos=(300,150))
l2 = LargeEnemy(pos=(150,300))

destroy the first enemy in the enemies list
def on_key_down():
 if len(Enemy.enemies) > 0:
 Enemy.enemies[0].destroy()

draw all enemies in static enemies list
def draw():
 screen.clear()
 for e in Enemy.enemies:
 e.draw()

Pang balloons in Python

Pang
Action/adventure

Here’s Rik’s example code, which recreates Pang’s spawning balloons in Python.
To get it running on your system, you’ll first need to install Pygame Zero – you
can find full instructions at wfmag.cc/XVIIeD

Download
the code

from GitHub:
wfmag.cc/
wfmag10

HIDDEN HISTORIES
Pang was a widely-ported hit in 1989, but its
concept originates even further back in video
game history. Asteroids pioneered a markedly
similar brand of spawning, splitting enemies
in 1979, but Pang’s clearest antecedent is the
1983 game Cannon Ball, released for the MSX
and later the ZX Spectrum as Bubble Buster.
Released by Hudson Soft, Cannon Ball is
markedly similar to Pang: it has the little guy
running around at the bottom of the screen,
the dividing balloons, and even the distinctive
harpoon weapon. But with its chunky graphics
and minimal sound, it’s easy to see why Pang
– with its colourful characters and wealth
of power-ups – was the game that took the
sphere-hating concept to the masses.

83wfmag.cc \

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-10
https://pygame-zero.readthedocs.io/en/stable/installation.html

Gauntlet
Action/adventure

A tari’s Gauntlet was an eye-
catching game, not least
because it allowed four people
to explore its dungeons
together. Each player could

choose one of four characters, each with
its own abilities – there was a warrior, a
Valkyrie, a wizard, and an elf – and surviving
each dungeon required slaughtering
enemies and the constant gathering of
food, potions, and keys that unlocked
doors and exits.

Designed by Ed Logg, and loosely based
on the tabletop RPG Dungeons & Dragons,
as well as John Palevich’s 1983 dungeon
crawler, Dandy, Gauntlet was a big success.
It was ported to most of the popular home
systems at the time, and Atari released a
sequel arcade machine, Gauntlet II, in 1986.

Atari’s original arcade machine featured
four joysticks, but our example will mix
keyboard controls and gamepad inputs.
Before we deal with the movement, we’ll need
some characters and dungeon graphics. For
this example, we can make our dungeon

For joystick or gamepad movement, we
need to import the joystick module from
Pygame. This provides us with methods to
count the number of joystick or gamepad
devices that are attached to the computer,
and then initialise them for input. When we
check for input from these devices, we just
need to get the x-axis value and the y- axis
value and then make it into an integer.
Joysticks and gamepads should return a
number between -1 and 1 on each axis,
so if we round that number, we will get the
movement value we need.

We can work out the direction (and the
image we need to use) of the character with
a small lookup table of x and y values and
translate that to a frame number cycling
through those three frames of animation as
the character walks. Then all we need to do
before we move the character is check they
aren’t going to collide with a wall or another
character. And that’s it – we now have a
four-player control system. As for adding
enemy spawners, loot, and keys – well, that’s
a subject for another time.

from a large bitmap image and use a collision
map to prevent our characters from clipping
through walls. We’ll also need graphics for
the characters moving in eight different
directions. Each direction has three frames of
walking animation, which makes a total of 24
frames per character. We can use a Pygame
Zero Actor object for each character and
add a few extra properties to keep track of
direction and the current animation frame.
If we put the character Actors in a list, we can
loop through the list to check for collisions,
move the player, or draw them to the screen.

We now test input devices for movement
controls using the built-in Pygame keyboard
object to test if keys are pressed. For
example, keyboard.left will return True if the
left arrow key is being held down. We can
use the arrow keys for one player and the
WASD keys for the other keyboard player.
If we register x and y movements separately,
then if two keys are pressed – for example,
up and left – we can read that as a diagonal
movement. In this way, we can get all eight
directions of movement from just four keys.

AUTHOR
MARK VANSTONE Four players dungeon crawling at once? Mark shows you how

 �Gauntlet was originally
going to be called
Dungeon, but that
name was already taken
by the time of release.



�Players collected items
while battling their way
through dungeons.
Shooting food was a
definite faux pas.

 �Atari released the
four-player cabinet
in 1985, but then put
out a slimmed-
down, two-player
version in 1986.

Code Gauntlet’s
four-player co-op

Source Code

84 / wfmag.cc

http://wfmag.cc

Source Code
Toolbox

Four-player movement in Python

Gauntlet
Action/adventure

Here’s Mark’s code for a Gauntlet-style four-player mechanic. To get it running on your system,
you’ll need to install Pygame Zero – full instructions are available at wfmag.cc/pgzero.

Download
the code

from GitHub:
wfmag.cc/
wfmag39

import math
from pygame import image, Color, joystick

myChars = []
myDirs = [(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-
1),(1,0),(1,1)]
collisionmap = image.load(‘images/collisionmap.png’)
joystick.init()
joyin0 = joyin1 = False
if(joystick.get_count() > 0):
 joyin0 = joystick.Joystick(0)
 joyin0.init()
if(joystick.get_count() > 1):
 joyin1 = joystick.Joystick(1)
 joyin1.init()

def makeChar(name,x,y):
 c = len(myChars)
 myChars.append(Actor(name+”_1”,(x, y)))
 myChars[c].name = name
 myChars[c].frame = myChars[c].movex = myChars[c].movey =
myChars[c].dir = 0

def draw():
 screen.blit(“colourmap”,(0,0))
 drawChars()

def drawChars():
 for c in range(len(myChars)):
 myChars[c].image = myChars[c].
name+”_”+str(((myChars[c].dir*3)+1)+math.floor(myChars[c].
frame/10))
 myChars[c].draw()

def update():
 checkInput()
 moveChars()

def checkInput():
 if keyboard.left: myChars[0].movex = -1
 if keyboard.right: myChars[0].movex = 1
 if keyboard.up: myChars[0].movey = -1
 if keyboard.down: myChars[0].movey = 1
 if keyboard.a: myChars[1].movex = -1
 if keyboard.d: myChars[1].movex = 1
 if keyboard.w: myChars[1].movey = -1
 if keyboard.s: myChars[1].movey = 1
 if joyin0:
 myChars[2].movex = round(joyin0.get_axis(0))
 myChars[2].movey = round(joyin0.get_axis(1))
 if joyin1:
 myChars[3].movex = round(joyin1.get_axis(0))

 myChars[3].movey = round(joyin1.get_axis(1))

def moveChars():
 for c in range(len(myChars)):
 getCharDir(myChars[c])
 if myChars[c].movex or myChars[c].movey:
 myChars[c].frame += 1
 if myChars[c].frame >= 30: myChars[c].frame = 0
 testmove = (int(myChars[c].x + (myChars[c].movex
*20)),int(myChars[c].y + (myChars[c].movey *20)))
 if collisionmap.get_at(testmove) == Color(‘black’)
and collideChars(c,testmove) == False:
 myChars[c].x += myChars[c].movex
 myChars[c].y += myChars[c].movey
 myChars[c].movex = 0
 myChars[c].movey = 0

def getCharDir(ch):
 for d in range(len(myDirs)):
 if myDirs[d] == (ch.movex,ch.movey):
 ch.dir = d

def collideChars(c,xy):
 for ch in range(len(myChars)):
 if myChars[ch].collidepoint(xy) and ch != c:
 return True
 return False

makeChar(“warrior”,60,60)
makeChar(“valkyrie”,500,450)
makeChar(“wizard”,460,180)
makeChar(“elf”,100,400)

 �Our four-player homage to the
classic Gauntlet arcade game.

Finding sprites
If you want to reconstruct a retro game like Gauntlet, you can often
find sprite sheets online – these are bitmaps with all the frames of
animation for a character on one sheet. A good source of these files is
spriters-resource.com, where you’ll find sprite sheets for a wide range
of retro games. Some coding systems can use the sprite-sheets as they
are, but for this example, we have cut them up into separate frames. You
can do this with Sprite Sheet Slicer, available at wfmag.cc/slicer.

85wfmag.cc \

http://wfmag.cc/wfmag39
http://wfmag.cc/pgzero
http://wfmag.cc
http://spriters-resource.com
http://wfmag.cc/slicer

86 / wfmag.cc

Source Code
Toolbox

86 / wfmag.cc

Turn-based combat
Action/adventure

n the late 1970s, high school
student Richard Garriott
made a little game called
Akalabeth. Programmed in
Applesoft BASIC, it helped set

the template for the role-playing genre on
computers. Even today, turn-based combat
is still a common sight in games, with
this autumn’s Pokémon Sword and Shield
revolving around a battle system which sees
opponents take turns to plan and execute
attacks or defensive moves.

The turn-based combat system in this
article is text-only, and works by allowing
players to choose to defend against or attack
their opponent in turn. The battle ends when
only one player has some health remaining.

Each Player taking part in the battle
is added to the static players list as it’s
created. Players have a name, a health value
(initially set to 100) and a Boolean defending
value (initially set to False) to indicate

its execute() method. A few time.sleep()
commands have also been thrown in here
to ramp up the suspense!

After each player has had their turn, a
check is done to make sure that at least two
players still have a health value greater than
0, and therefore that the battle can continue.
If so, the static get_next_player() method
finds the next player still in the game to take

their turn in the
battle, otherwise,
the game ends
and the winner is
announced.

Our example
battle can be easily extended in lots of
interesting ways. The AI for choosing
an action could also be made more
sophisticated, by looking at opponents’
health or defending attributes before
choosing an action. You could also give each
action a ‘cost’, and give players a number
of action ‘points’ per turn. Chosen actions
would be added to a list, until all of the
points have been used. These actions would
then be executed one after the other, before
moving on to the next player’s turn.

whether a player is using their shield.
Players also have an inputmethod attribute,
which is the function used for getting player
input for making various choices in the
game. This function is passed to the object
when created, and means that we can have
human players that give their input through
the keyboard, as well as computer players
that make choices (in our case simply by
making a random choice between the
available options).

A base Action class specifies an action
owner and an opponent, as well as an
execute() method which has no effect on the
game. Subclasses of the base class override
this execute() method to specify the effect
the action has on the owner and/or the
opponent of the action. As a basic example,
two actions have been created: Defend, which
sets the owner’s defending attribute to True,
and Attack, which sets the owner’s defending
attribute to
False, and lowers
the opponent’s
health by a
random amount
depending on
whether or not they are defending.

Players take turns to choose a single
action to perform in the battle, starting with
the human ‘Hero’ player. The choose_action()
method is used to decide what to do next
(in this case either attack or defend), as well
as an opponent if the player has chosen
to attack. A player can only be selected as
an opponent if they have a health value
greater than 0, and are therefore still in the
game. This choose_action() method returns
an Action, which is then executed using

Learn how to create the turn-based
combat system found in games like
Pokémon, Final Fantasy, and Undertale

I

“Even today, turn-based
combat is still a common

sight in games”

 �With their emphasis on trading and collecting as
well as turn-based combat, the Pokémon games
helped bring RPG concepts to the masses.

 �It may look crude, but Richard Garriott’s
Akalabeth laid the groundwork for Ultima, and
was one of the earliest CRPGs.

Create a turn-based
combat system

Source Code

AUTHOR
RIK CROSS

https://wireframe.raspberrypi.com/

87wfmag.cc \

Source Code
Toolbox

87wfmag.cc \

import random, time

class Action():
 def __init__(self, owner, opponent):
 self.owner = owner
 self.opponent = opponent

 def execute(self):
 pass

class Attack(Action):
 def __init__(self, owner, opponent):
 super().__init__(owner, opponent)

 def execute(self):
 self.owner.defending = False
 if self.opponent.defending:
 hit = random.randrange(10,20)
 else:
 hit = random.randrange(20,40)
 self.opponent.health -= hit
 print(‘{} is hit! (-{})’.format(self.opponent.name, hit))

class Defend(Action):
 def __init__(self, owner, opponent):
 super().__init__(owner, opponent)

 def execute(self):
 self.owner.defending = True
 print(self.owner.name, ‘is defending!’)

class Player():
 players = []

 def __init__(self, name, inputmethod):
 self.name = name
 self.inputmethod = inputmethod
 self.health = 100
 self.defending = False
 self.players.append(self)

 def __str__(self):
 description = “Player: {}\n{}\nHealth = {}\
nDefending = {}\n”.format(
 self.name,
 ‘-’ * (8 + len(self.name)),
 self.health,
 self.defending
)
 return(description)

 @classmethod
 def get_next_player(cls, p):
 # get the next player still in the game
 current_index = cls.players.index(p)
 current_index = (current_index + 1) % len(cls.players)
 while cls.players[current_index].health < 1:
 current_index = (current_index + 1) % len(cls.players)
 return cls.players[current_index]

 def choose_action(self):
 print(self.name, ‘: [a]ttack or [d]efend?’)

 action_choice = self.inputmethod([‘a’, ‘d’])
 if action_choice == ‘a’:
 print(‘Choose an opponent’)
 # build up a list of possible opponents
 opponent_list = []
 for p in self.players:
 if p != self and p.health > 0:
 print(‘[{}] {}’.format(self.players.
index(p), p.name))
 opponent_list.append(str(self.players.
index(p)))
 # use input to get the opponent of player’s action
 opponent = self.players[int(self.inputmethod(opponent_
list))]
 return Attack(self, opponent)
 else:
 return Defend(self, None)

def human_input(choices):
 choice = input()
 while choice not in choices:
 print(‘Try again!’)
 choice = input()
 return choice

def computer_input(choices):
 time.sleep(2)
 choice = random.choice(choices)
 print(choice)
 return choice

add 2 players to the battle, with their own input method
hero = Player(‘The Hero’, human_input)
enemy = Player(‘The Enemy’, computer_input)

the hero has the first turn
current_player = Player.players[0]
playing = True

game loop
while playing:

 # print all players with health remaining
 for p in Player.players:
 if p.health > 0:
 print(p, end=’\n\n’)

 # current player’s action executed
 action = current_player.choose_action()
 time.sleep(2)
 action.execute()

 # continue only if more than 1 player with health remaining
 if len([p for p in Player.players if p.health > 0]) > 1:
 current_player = Player.get_next_player(current_player)
 time.sleep(2)
 else:
 playing = False

for p in Player.players:
 if p.health > 0:
 print(‘**’, p.name, ‘wins!’)

Turn-based combat in Python

Turn-based combat
Action/adventure

Here’s Rik’s code snippet, which creates a simple turn-based combat sequence in Python. To get it running on your
system, you’ll first need to install Pygame Zero – you can find full instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag28

https://wireframe.raspberrypi.com/
https://github.com/Wireframe-Magazine/Wireframe-28
https://pygame-zero.readthedocs.io/en/stable/installation.html

Source Code
Toolbox
Flappy Bird
Action/adventure

F lappy Bird was released by
programmer Dong Nguyen
in 2013, and made use of a
straightforward game mechanic
to create an addictive hit. Tapping

the screen provided ‘lift’ to the main
character, which is used strategically to
navigate through a series of moving pipes.
A point is scored for each pipe successfully
passed. The idea proved so addictive that
Nguyen eventually regretted his creation
and removed it from the Google and Apple
app stores. In this article, I’ll show you how
to recreate this simple yet time-consuming
game, using Python and Pygame Zero.

The player’s motion is very similar to that
employed in a standard platformer: falling
down towards the bottom of the screen
under gravity. See the article, Super Mario-
style jumping physics in Wireframe #7 for
more on creating this type of movement.
Pressing a button (in our case, the SPACE
bar) gives the player some upward thrust

the gap between each newly created pair
of pipes is decided randomly (between
minimum and maximum limits), which is
used to calculate the position and height
of the new pipes.

The game stops and a Game Over
message appears if the player collides
with either a pipe or the ground. The
collision detection in the game uses the
player.colliderect() method, which checks
whether two rectangles overlap. As the
player sprite isn’t exactly rectangular, it
means that the collision detection isn’t
pixel-perfect, and improvements could
be made by using a different approach.
Changing the values for GRAVITY, PIPE_GAP,
PIPE_SPEED, and player.flap_velocity
through a process of trial and error will
result in a game that has just the right
amount of frustration! You could even
change these values as the player’s
score increases, to add another layer
of challenge.

by setting its velocity to a negative value
(i.e. upwards) larger than the value of
gravity acting downwards. I’ve adapted
and used two different images for the
sprite (made by Imaginary Perception and
available on opengameart.org), so that it
looks like it’s flapping its wings to generate
lift and move upwards.

Sets of pipes are set equally spaced
apart horizontally, and move towards the
player slowly each frame of the game.
These pipes are stored as two lists of
rectangles, top_pipes and bottom_pipes, so
that the player can attempt to fly through
gaps between the top and bottom pipes.
Once a pipe in the top_pipes list reaches
the left side of the screen past the player’s
position, a score is incremented and the
top and corresponding bottom pipes
are removed from their respective lists.
A new set of pipes is created at the right
edge of the screen, creating a continuous
challenge for the player. The y-position of

AUTHOR
RIK CROSS

Learn how to create your own version of the
simple-yet-addictive side-scroller



�Flappy Bird:
ridiculously big
in 2014, at least
for a while.

Recreate Flappy Bird’s
flight mechanic

Source Code

88 / wfmag.cc

http://opengameart.org
http://wfmag.cc

Source Code
Toolbox

from random import randint

WIDTH = 1000
HEIGHT = 600

pipes are dark green, move 2 pixels per frame and
have a gap of 150 pixels between top and bottom pipes
PIPE_COLOUR = (38,155,29)
PIPE_SPEED = 2
PIPE_GAP = 150

GRAVITY = 0.2

create top and bottom pipes, with a gap in between
top_pipes = [
 Rect((500,0),(50,200)),
 Rect((1000,0),(50,300))
]

bottom_pipes = [
 Rect((500,200 + PIPE_GAP), (50,HEIGHT - 200 - PIPE_GAP)),
 Rect((1000,300 + PIPE_GAP), (50,HEIGHT - 300 - PIPE_GAP))
]

player = Actor(‘player-down’,(100,400))
define initial and flap velocities
player.y_velocity = 0
player.flap_velocity = -5
player.score = 0

playing = True

def update():

 global playing
 if playing:

 # space key to flap
 if keyboard.space and player.y_velocity > 0:
 player.y_velocity = player.flap_velocity

 # acceleration is rate of change of velocity
 player.y_velocity += GRAVITY
 # velocity is rate of change of position
 player.y += player.y_velocity

 # player image depends on velocity
 if player.y_velocity > 0:
 player.image = ‘player-down’
 else:
 player.image = ‘player-up’
 for pipe_list in top_pipes, bottom_pipes:

A flapping bird in Python

Flappy Bird
Action/adventure

Here’s Rik’s code, which recreates Flappy Bird’s avian mayhem in Python. To get it running on your
system, you’ll need to install Pygame Zero – you can find instructions at wfmag.cc/pgzero

Download
the code

from GitHub:
wfmag.cc/
wfmag29

89wfmag.cc \

 for pipe in pipe_list:
 pipe.x -= PIPE_SPEED
 if pipe.x < -50:
 pipe_list.remove(pipe)

 # create new pipes
 if len(top_pipes) < 2:
 player.score += 1
 h = randint(150,350)
 top_pipes.append(Rect((1000,0),(50,h)))
 bottom_pipes.append(Rect((1000,h + PIPE_GAP),(50,
HEIGHT - h - PIPE_GAP)))

 # game over if player collides with a pipe...
 for p in top_pipes + bottom_pipes:
 if player.colliderect(p):
 playing = False

 # ...or touches the ground
 if player.y > (HEIGHT - 20):
 playing = False

def draw():

 if playing:

 screen.clear()

 screen.blit(‘background’, (0,0))

 for pipe in top_pipes + bottom_pipes:
 screen.draw.filled_rect(pipe, PIPE_COLOUR)

 screen.draw.text(str(player.score), (20, 20),
fontsize=40, color=”white”)

 player.draw()

 else:

 screen.draw.text(‘Game Over!’, (420, 200),
fontsize=40, color=”white”)



�Pressing the SPACE
bar gives the bird ‘lift’
against gravity,
allowing it to navigate
through moving pipes.

89wfmag.cc \

http://wfmag.cc
http://wfmag.cc/wfmag29
http://wfmag.cc/pgzero
http://wfmag.cc

Source Code
Toolbox
High-score table
Final touches

F irst appearing in arcade games
back in the late seventies, high-
score tables add an additional
challenge, and keep players
coming back for more. In this

article, I’ll show you how to create a
high-score table that you can add to your
games.

A simple way to track a top score is to
create a highscore variable. The highscore
is initially set to 0, and at the end of each
game a sufficiently high score becomes the
new highscore.

The principle for creating a high-score
table is the same, except now you need to
store a list of scores and names, and at the
end of each game you need to add the new
score and name to the table if the score is
high enough. The high-score table is stored
as a list, containing (score,name) tuples.
(In Python, a tuple can be thought of as a list
whose elements cannot be changed.)

The code for checking a score and
(optionally) adding it to the table will be put
in a function called addscore(score). This
function will take a score as a parameter,
and add to the highscores list if the score is
higher than the lowest score in the list.

Firstly, there’s no need to do anything if the
score isn’t high enough to make it into the
table. If the score isn’t higher than the tenth
score in the list (the first tuple element of list
element nine – highscores[9][0]) then the
function returns without updating the table:

 if score < highscores[9][0]:
 return

If the function hasn’t returned, then the
score is to be added to the table, and next
we need a name to attach to the score:

 # get the player’s name
 name = input(‘High score! What is your
name?’)

So a highscores list containing three
(score,name) tuples might look like this:

highscores =
[(100,‘Rik’),(86,‘Becci’),(45,‘Steve’)]

Square brackets [] are used to access a
particular element of a list, so highscores[0]
is (100,‘Rik’), and highscores[1] is
(86,‘Becci’), etc (remember we count lists
starting at position 0). score is the first item
(item 0) of each tuple and name is second
item (item 1), and we use the same square
bracket notation to access elements of a
tuple. Therefore, you can access the first
score in the list using highscores[0][0],
and the first name by using highscores[0]
[1]. It’s best to have some scores to aspire
to, so when creating the highscores list I’ll
populate it with ten low scores:

 highscores = [(0,‘Player’) for i in

range(10)]

AUTHOR
RIK CROSS

Here’s how to create a high-score table that
you can easily add to your own games

A retro-style
high-score table

Source Code

 �It’s obscure these days, but 1979’s
Star Fire was the first arcade
game to allow players to enter
their initials in a high-score table.

90 / wfmag.cc

http://wfmag.cc

Source Code
Toolbox

Next, the score and name need to be
inserted into the highscores list at the
correct position. To do this, we start with
a variable called pos which is set to 0 (the
first item in the list). This variable is then
incremented until either we reach the end
of the list, or until the player’s score is higher
than the next score in the list. Here, the
value of pos is where we place the new score.

 pos = 0
 while pos < len(highscores) and score
<= highscores[pos][0]:
 pos += 1

To add the new score and name to the list,
we next need to split the highscores list into
two parts; all scores before the position
to add, and all scores after the position
to add. In Python, the shorthand syntax
for all elements up to and including pos is
highscores[:pos] and all items from pos to
the end of the list is highscores[pos:]. We
then add the (score,name) tuple to the list:

 highscores = highscores[:pos] +
[(score,name)] + highscores[pos:]

We only need the top ten scores in the
list, and the addition of another score means
there are now eleven. To save just the top
ten scores, we can use the same shorthand:

 highscores = highscores[:10]

To print the scores, we first need to print
the table headings, separated by a tab (\t).
Then, we can loop through each tuple in the
highscores list and print the score and the
name, again separated by a tab. Using tabs
rather than spaces keeps the data lined up.

def drawtabletext():

 # print the table headings

 print(‘Score\tName’)

 # print score and name pairs in order

 for s in highscores:

 print(“{0}\

t{1}”.format(s[0],s[1]))

As an additional challenge you could save
the table to a file when the game is quit so
it can be retrieved later. For a retro feel, you
could also limit the player’s name to three
characters, using ‘up’ and ‘down’ to cycle
through the alphabet!

highscore list is initially filled with low scores
highscores = [(0,‘Player’) for i in range(10)]

def addscore(score):
 global highscores
 # only add the score if it is greater than the
 # current lowest score in the highscores list
 if score < highscores[9][0]:
 return
 # get the player’s name
 name = input(‘High score! What is your name?’)
 # starting at 0, increment the ‘pos’ variable
 # until it’s at the position to insert the score
 pos = 0
 while pos < len(highscores) and score <= highscores[pos][0]:
 pos += 1
 # add the (score, name) tuple
 # at the correct place in the list
 highscores = highscores[:pos] + [(score,name)] + highscores[pos:]
 # only store the top 10 scores in the list
 highscores = highscores[:10]

def drawtabletext():
 # print the table headings
 print(‘Score\tName’)
 # print each score and name pair in order
 for s in highscores:
 print(“{0}\t{1}”.format(s[0],s[1]))

prints the table in Pygame Zero
def drawtablepygame():
 # print the table headings
 screen.draw.text(‘Score’, topleft=(50,50), fontsize=40)
 screen.draw.text(‘Name’, topleft=(150,50), fontsize=40)
 # using ‘enumerate()’ gives the position of each tuple in the list
 # which is used to calculate the vertical draw position of the data
 for pos,data in enumerate(highscores):
 screen.draw.text(str(data[0]), topleft=(50,100+(pos*50)), fontsize=40)
 screen.draw.text(data[1], topleft=(150,100+(pos*50)), fontsize=40)

 def draw():
 drawtablepygame()

use the ‘addscore()’ function to add some scores
addscore(64)
addscore(30)
addscore(87)

print the populated table
drawtabletext()

High-score table in Python

High-score table
Final touches

Here’s the full high-score table Python code. To get it running on your system, you’ll first
need to install Pygame Zero – you can find full instructions at wfmag.cc/XVzieD

Download
the code

from GitHub:
wfmag.cc/

wfmag5

91wfmag.cc \

http://wfmag.cc/wfmag5
http://wfmag.cc/XVzieD

Source Code
Toolbox

92 / wfmag.cc

Continue screen
Final touches

T he continue screen, while
much less common now, was a
staple feature of arcade games,
providing an opportunity (for
a small fee) to reanimate the

game’s hero and to pick up where they left
off.

Games such as Tecmo’s Ninja Gaiden
coin-op (known in some regions as Shadow
Warriors) added jeopardy to their continue
screen, in an effort to convince us to part
with our money.

Often, a continue screen is one of many
screens that a player may find themselves
on; other possibilities being a title screen
or an instruction screen. I’ll show you how
you can add multiple screens to a game in a
structured way, avoiding a tangle of if…else
statements and variables.

A simple way of addressing this problem
is to create separate update and draw
functions for each of these screens, and
then switch between these functions as

currentupdatefunction =
updatecontinuescreen
currentdrawfunction = drawcontinuescreen

def update():
 currentupdatefunction()

def draw():
 currentdrawfunction()

The example code above calls
currentupdatefunction() and
currentdrawfunction(), which each store
a reference to separate update and draw
functions for the continue screen. These
continue screen functions could then
also include logic for changing which
function is called, by updating the function
reference stored in currentupdatefunction
and currentdrawfunction.

This way of structuring code can be
taken a step further by making use of state
machines. In a state machine, a system can
be in one of a (finite) number of predefined

required. Functions are ‘first-class citizens’
of the Python language, which means that
they can be stored and manipulated just
like any other object, such as numbers, text,
and class instances. They can be stored in
variables and other data types such as lists
and dictionaries, and passed as parameters
to (or returned from) other functions.

We can take advantage of the first-class
nature of Python functions by storing
the functions for the current screen in
variables, and then calling them in the
main update() and draw() functions. In the
following example, notice the difference
between storing a function in a variable
(by using the function name without
parentheses) and calling the function (by
including parentheses).

AUTHOR
RIK CROSS

Learn how to create game states,
and rules for moving between them

“The continue screen was
a staple of arcade games”

Create your own
continue screen

Source Code

 �SNK’s Fantasy, released in
1981, was the first arcade
game to feature a
continue screen.



�Ninja Gaiden’s dramatic
continue screen. Who
would be cruel enough
to walk away?

https://wireframe.raspberrypi.com/
http://wfmag.cc

Source Code
Toolbox

93wfmag.cc \

states, and rules determine the conditions
under which a system can transition from
one state into another.

A state machine (in this case a very
simplified version) can be implemented
by first creating a core State() class.
Each game state has its own update() and
draw() methods, and a rules dictionary
containing state:rule pairs – references to
other state objects linked to functions for
testing game conditions. As an example, the
continuescreen state has two rules:
• �Transition to the gamescreen state if the

SPACE key is pressed;
• �Transition to the titlescreen state if the

frame timer reaches 10.

This is pulled together with a
StateMachine() class, which keeps track
of the current state. The state machine
calls the update() and draw() methods for
the current state, and checks the rules for
transitioning between states. Each rule in
the current state’s rules list is executed, with
the state machine updating the reference to
its current state if the rule function returns
True. I’ve also added a frame counter that is
incremented by the state machine’s update()
function each time it is run. While not a
necessary part of the state machine, it does
allow the continue screen to count down
from 10, and could have a number of other
uses, such as for animating sprites.

class State():
 def __init__(self):
 self.rules = {}
 def addrule(self, state, rule):
 self.rules[state] = rule
 def update(self):
 pass
 def draw(self):
 pass

class StateMachine():
 def __init__(self):
 self.current = None
 self.frame = 0
 def update(self):
 if self.current == None:
 return
 self.frame += 0.01
 for s, r in self.current.rules.items():
 if r():
 self.current = s
 self.frame = 0
 self.current.update()
 def draw(self):
 if self.current == None:
 return
 self.current.draw()

sm = StateMachine()

def drawtitle():
 screen.draw.text(“Title screen”, (50, 50), fontsize=40,
color=“white”)
 screen.draw.text(“Press [space] to start”, (50, 80),
fontsize=40, color=“white”)

titlescreen = State()
titlescreen.draw = drawtitle

def drawgame():
 screen.draw.text(“Game screen”, (50, 50), fontsize=40,
color=“white”)
 screen.draw.text(“Press [e] to end game”, (50, 80),
fontsize=40, color=“white”)
gamescreen = State()
gamescreen.draw = drawgame

def drawcontinue():
 screen.draw.text(“Continue screen”, (50, 50), fontsize=40,
color=“white”)
 screen.draw.text(“Press [space] to play again”, (50, 80),
fontsize=40, color=“white”)
 screen.draw.text(str(int(10 - sm.frame)+1), (50, 110),
fontsize=40, color=“white”)
continuescreen = State()
continuescreen.draw = drawcontinue

titlescreen.addrule(gamescreen, lambda: keyboard.space)
gamescreen.addrule(continuescreen, lambda: keyboard.e)
continuescreen.addrule(titlescreen, lambda: sm.frame >= 10)
continuescreen.addrule(gamescreen, lambda: keyboard.space)

sm.current = titlescreen

def update():
 sm.update()

def draw():
 screen.clear()
 sm.draw()

Game states in Python

Continue screen
Final touches

You’ll need to install Pygame Zero to get Rik’s code running. You can find instructions at wfmag.cc/pgzero Download
the code

from GitHub:
wfmag.cc/
wfmag19

Something else to point out is the use
of lambda functions when adding rules
to states. Lambda functions are small,
single-expression anonymous functions
that return the result of evaluating its
expression when called. Lambda functions
have been used in this example simply to
make the code a little more concise, as
there’s no benefit to naming the functions
passed to addrule().

State machines have lots of other
potential uses, including the modelling of
player states. It’s also possible to extend the
state machine in this example by adding
onenter() and onexit() functions that can be
called when transitioning between states.

 �Rules define conditions that need to be
satisfied in order to move between states.

https://wireframe.raspberrypi.com/
http://wfmag.cc
https://github.com/Wireframe-Magazine/Wireframe19
https://github.com/Wireframe-Magazine/Wireframe19

.

Wireframe magazine’s
GameDev.tv course bundle
Learn how to make games for less with Wireframe
and GameDev.tv’s exclusive reader offer

COMPLETE C# UNITY GAME
DEVELOPER COURSE

Learn Unity in C# and code your first five 2D video games
for web, Mac, and PC.

Learn how to create video games using Unity, with the
world’s most popular online game development courses.

We start super-simple, so you need no prior experience
of Unity or coding!

You’ll build multiple games, including:

Snow Boarder:	 a simple side-scrolling jumping game
Laser Defender: 	� a top-down space shooter with

enemies to shoot and dodge
TileVania:	 a fast-paced classic platformer
Quiz Master:	 a quiz game to learn setting up the 	
		 user interface

By the end of the course, you’ll be confident in the
basics of coding and game development, and hungry to
learn more.

Ever wanted to make a 2D
platformer in Unity? Fancy
learning how to make your first
3D models in Blender? How
about diving into some C++
programming in Unreal Engine?
You can learn all this and more
for a bargain price, thanks to
GameDev.tv and Wireframe’s
exclusive reader offer. You’ll get
full lifetime access to three
online course bundles for a
single one-off fee!

94 / wfmag.cc

http://wfmag.cc

.

Wireframe magazine’s
GameDev.tv course bundle

THE COMPLETE BLENDER CREATOR:
LEARN 3D MODELLING FOR BEGINNERS

Learn how to create 3D models and assets for games
using Blender, the free-to-use 3D production suite.

You’ll be amazed at what you can achieve with our tutorials:

•	 Create assets for video games
•	 Make unique 3D-printed gifts
•	 Design your dream house, car, and more
•	 Express yourself through 3D artwork

The course is project-based, so you’ll apply your new skills
to real 3D models. All project files are included, as well as
additional references and resources, so you’ll never get
stuck. If you’re a complete beginner, we’ll teach you all the
modelling fundamentals you’ll need.

If you’re an artist, we’ll teach you how to bring your assets
to life. If you’re a coder, we’ll teach you modelling and
design principles.

Dive in now – you won’t be disappointed!

UNREAL C++ DEVELOPER COURSE

Ready to make games in the amazing world of Unreal
Engine 5? This “critically acclaimed” and “insanely
successful” Unreal Engine course was created in
collaboration with Epic Games.

We start super-simple, so no prior experience of Unreal
or coding is needed. We believe project-based learning is
the best way to learn Unreal Engine, so you’ll create five
Unreal games (including a tank game and FPS).

You’ll learn C++, the powerful industry-standard language
from scratch. And by the end of the course, you’ll be
confident in the basics of coding and game development.

“Any serious game programmer needs to know C++”
Jason Gregory, lead programmer at Naughty Dog,
creators of Uncharted and The Last of Us.

Benefit from world-class support, both from other
students, and instructors who are regularly on the forums.

Grab the bundle and start making UE5 games now!

Get over £600 of online courses for around £30!* Visit wfmag.cc/gamedevsc

Go to wfmag.cc/gamedevsc to get your exclusive discount

*Bundle original price $702 inc VAT. Discounted price $35.10 inc. VAT. All prices are approximate and based on exchange rate at time of going to press.

95wfmag.cc \

http://wfmag.cc/gamedevsc
http://wfmag.cc/gamedevsc
http://wfmag.cc

THE BE ELLING MAG FOR PC HARDWARE, OVERCLOCKING, GAMING & MODDING

PC HARDWARE
ENTHUSIASTS

VISIT CUSTOMPC.CO.UK TO LEARN MORE
ISSUE 232 OUT NOW

http://custompc.co.uk

raspberrypi.com

GAME DEV
COOKBOOK

Recreate mechanics and ideas from dozens of
classic video games using Python and Pygame Zero

 Thank you for reading
Source Code from Wireframe

Published every month, Wireframe is the
unique magazine that lifts the lid on video
games. Aimed at gamers who want to go

behind the scenes of their favourite hobby,
Wireframe looks at how games are made,

who makes them, and – thanks to our unique
Toolbox section – shows you how to make

games of your own.

Every issue is packed with in-depth features,
news, reviews, and previews, plus lively
opinion pieces from developers and key

industry figures. Want to know what it’s like
to make one of the most reviled games of all
time? Keen to find out more about the untold

stories behind classics like Monkey Island,
Castlevania, or Dead Space? Ever wondered

how to make your own racing game?

You’ll find all this and more every
month in Wireframe magazine.

Buy in paper format or download a
free PDF at: wfmag.cc

To subscribe, visit wfmag.cc/subscribe

You can find Raspberry Pi Press’s other books
and magazines at: store.rpipress.cc

FROM THE MAKERS OF MAGAZINE

250

100
50

10

CONTINUE?
YES
NO

http://wfmag.cc
http://wfmag.cc/subscribe
http://store.rpipress.cc

